WorldWideScience

Sample records for mg lithium carbonate

  1. Preparation and Lithium-Storage Performance of a Novel Hierarchical Porous Carbon from Sucrose Using Mg-Al Layered Double Hydroxides as Template

    International Nuclear Information System (INIS)

    Shi, Liluo; Chen, Yaxin; Song, Huaihe; Li, Ang; Chen, Xiaohong; Zhou, Jisheng; Ma, Zhaokun

    2017-01-01

    Highlights: • A new hierarchical porous carbon containing slit-shaped mesopores and 3D carbon nanosheets were prepared using Mg-Al layered double hydroxides as template. • The hierarchical porous carbon electrode showed a high capacity and excellent cycle stability when used in lithium-ion battery. • The excellent performance is ascribed to its hierarchical porous structure, especially the mesoporous struture. - Abstract: Novel hierarchical porous carbons (NHPCs) containing 3D carbon nanosheets and slit-mesopores are prepared in this work, using MgAl-layered double hydroxides as template and sucrose as carbon source, and their electrochemical performances as anodes of lithium-ion batteries are also investigated. Owing to the existence of abundant carbon nanosheets and slit-mesopores, the NHPCs electrode exhibits the specific reversible capacity of 1151.9 mA h/g at the current density of 50 mA/g, which is significantly higher than other hierarchical porous carbons reported in previous literatures. The contributions of carbon nanosheets and mesopores to the electrochemical performance are further clarified by nitrogen adsorption-desorption test, electrochemical impedance spectroscopy, cyclic voltammograms and galvanostatic charge/discharge test. This work not only provides an easy and effective method to prepare hierarchical porous carbon materials, but also is beneficial for the design of high-performance anode materials for lithium ion batteries.

  2. Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode

    Science.gov (United States)

    Tamirat, Andebet Gedamu; Hou, Mengyan; Liu, Yao; Bin, Duan; Sun, Yunhe; Fan, Long; Wang, Yonggang; Xia, Yongyao

    2018-04-01

    Silicon is an ideal candidate anode material for Li-ion batteries (LIBs). However, it suffers from rapid capacity fading due to large volume expansion upon lithium insertion. Herein, we design and fabricate highly stable carbon coated porous Mg2Si intermetallic anode material using facile mechano-thermal technique followed by carbon coating using thermal vapour deposition (TVD), toluene as carbon source. The electrode exhibits an excellent first reversible capacity of 726 mAh g-1 at a rate of 100 mA g-1. More importantly, the electrode demonstrates high rate capability (380 mAh g-1 at high rate of 2 A g-1) as well as high cycle stability, with capacity retentions of 65% over 500 cycles. These improvements are attributable to both Mg supporting medium and the uniform carbon coating, which can effectively increase the conductivity and electronic contact of the active material and protects large volume alterations during the electrochemical cycling process.

  3. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  4. Clinical investigation of 131I therapy combined with low-dose lithium carbonate for Graves disease

    International Nuclear Information System (INIS)

    Xu Haiqing; Wu Bian

    2006-01-01

    Objective: To investigate the clinical curative effects of 131 I therapy combined with low-dose lithium carbonate for Graves disease. Methods: Patients with Graves disease took lithium carbonate (250 mg, once per day) orally for 5 weeks. Then they were treated with 131 I (doses=3.15 MBq(80 uCi)/g, based on 60%-70% of the thyroid size). We kept track from 6 to 24 months (averaging 14 months) and classified the results into three: cured, improved or no effect. Results: After a single cycle of 131 I therapy combined with low-dose lithium carbonate, 106 patients with Graves disease were cured, 28 were improved and 8 saw no effects, respectively 74.6%, 19.7% and 5.6% among the 142 patients. We then treated 23 of them with another 131 I therapy (without lithium carbonate). 10 of such were cured (43.5%), 8 were improved (34.8%) and the other 5 saw no effects. Among all patients, hypothyroidism was observed from 25(17.6%), 6 months after the first 131 I therapy. Conclusions: Notable curative results were observed from 131 I therapy combined with low-dose lithium carbonate for Graves disease. Moreover, the dosage of 131 I was therefore decreased, which also lowered the toxicity response. (authors)

  5. Extraction of lithium Carbonate from Petalite Ore (Momeik District, Myanmar)

    International Nuclear Information System (INIS)

    Tun Tun Moe

    2011-12-01

    The methods for preparing high purity lithium carbonate which can be used for pharmaceutical applications, electronic grade crystals of lithium or to prepare battery-grade lithium metal are disclosed. Lithium carbonate as commercially produced from mineral extraction, lithium containing brines or sea water. One method for the production of pure lithium carbonate from mineral source (petalite ore) obtained from Momeik District, Myanmar is disclosed. Method for mineral processing of ore concentrate is also disclosed.

  6. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.

    Science.gov (United States)

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S

    2014-01-21

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.

  7. The solubility of carbon in low-nitrogen liquid lithium

    International Nuclear Information System (INIS)

    Yonco, R.M.; Homa, M.I.

    1986-01-01

    The solubility of carbon in liquid lithium containing 0 C and compared with the solubility in lithium containing proportional 2600 wppm nitrogen in that same temperature range. A direct sampling method was employed in which filtered samples of the saturated solution were taken at randomly selected temperatures. The entire sample was analyzed for carbon by the acetylene evolution method. The analytical method was examined critically and it was found that (1) all of the carbon in solution, including carbon introduced as lithium cyanamide is detected and (2) ethylene and ethane must also be measured and included with the acetylene to get complete recovery of the carbon content of the sample. The solubility of carbon in low-nitrogen lithium can be expressed by the equations ln S=6.731-8617T -1 and log Ssup(*)=7.459-3740T -1 , where S is the mole percent Li 2 C 2 and Ssup(*) is in weight parts per million carbon. The presence of proportional 2600 wppm nitrogen does not affect the solubility of carbon in lithium at temperatures above proportional 350 0 C, but at lower temperatures it increased the solubility by as much as an order of magnitude compared to the solubility in low-nitrogen lithium. (orig.)

  8. Twelve-hour brain lithium concentration in lithium maintenance treatment of manic-depressive disorder: daily versus alternate-day dosing schedule

    DEFF Research Database (Denmark)

    Jensen, H.V.; Plenge, P; Stensgaard, A

    1996-01-01

    The 12-h brain lithium concentration was measured by lithium-7 magnetic resonance spectroscopy in ten manic-depressive patients receiving daily or alternate-day lithium carbonate treatment. The median dose of lithium carbonate was 800 mg in the daily treatment group and 1200 mg in the alternate......-day group. Median 12-h serum lithium concentration in the two groups was 0.86 mmol l-1 and 0.55 mmol l-1, respectively, while the corresponding concentration in brain was 0.67 mmol l-1 and 0.52 mmol l-1, respectively. The 12-h brain lithium concentration was independent of lithium dosing schedule (multiple...... linear regression), but correlated significantly with the 12-h serum lithium concentration (P = 0.003; B = 0.53, 95% c.l. 0.24-0.82; beta = 0.83). Thus at identical 12-h serum lithium concentrations the 12-h brain lithium concentration is similar with both treatment regimes. As the risk of manic...

  9. Study of lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium

    Science.gov (United States)

    Sulistiyono, Eko; Lalasari, Latifa Hanum; Mayangsari, W.; Prasetyo, A. B.

    2018-05-01

    Lithium is one of the key elements in the development of batteries for electric car applications. Currently, the resources of the world's lithium are derived from brine water and lithium mineral based on spodumene rock. Indonesia which is located in the area of the ring of fire, has potential brine water resources in some area, such as brine water from Bledug Kuwu, Central Java that used in this research. The purposes of this research are to characterize brine water, Bledug Kuwu and to investigate the influence of chemical solvents on Li, Na, K, Ca, Mg, Al, B ion precipitation from brine water. This research was done with 2 times the process of chemical precipitation that runs series as follows: 5 liters of brine water were chemically precipitated using 400 ml of 12.43 N oxalic acid and followed by chemical precipitation using 400 mL of 7.07 N sodium carbonate solutions. Evaporation and filtration processes were also done twice in an effort to separate white precipitate and filtrate. The filtrate was analyzed by ICP-OES and white precipitates (salts) were analyzed by SEM, XRD, and XRF. The result shows that oxalate precipitation process extracted 32.24% Al, 23.42% B, 22.43% Ca, 14.26% Fe, 3.21 % K, 9.86% Na and 14.26% Li, the following process by carbonate precipitation process extracted 98.86% Mg, 73% Ca, 22.53% Li, 82.04% Al, 14.38% B, 12.50% K, 2.27% Na. There is 63.21% lithium is not extracted from the series process. The SEM analysis shows that the structure of granules on the precipitated salts by oxalic acid form gentle cubic-shaped solid. In the other hand, oxalate precipitation followed by sodium carbonate has various particle sizes and the shape of crystals is fragments, prism and cube look like magnesium carbonate, calcium chloride, and calcite's crystal respectively. This is in accordance with XRD analysis that phases of whewellite (CaC2O4.H2O), disodium oxalate (Na2C2O4), magnesite (MgCO3), calcium lithium aluminum (Al1.19 Ca1Li0.81), dolomite (CaCO3

  10. Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes.

    Science.gov (United States)

    Zhang, Yaguang; Du, Ning; Chen, Yifan; Lin, Yangfan; Jiang, Jinwei; He, Yuanhong; Lei, Yu; Yang, Deren

    2018-03-28

    Si/C composite is one of the most promising candidate materials for next-generation lithium-ion battery anodes. Herein, we demonstrate the novel structure of carbon cages encapsulating porous Si synthesized by the reaction between magnesium silicide (Mg 2 Si) and carbon dioxide (CO 2 ) and subsequent acid washing. Benefitting from the in situ deposition through magnesiothermic reduction of CO 2 , the carbon cage seals the inner Si completely and shows higher graphitization than that obtained from the decomposition of acetylene. After removing MgO, pores are created, which can accommodate the volume change of the Si anode during the charge/discharge process. As the anode material for lithium-ion batteries, the porous Si/C electrode shows a charge capacity of ∼1124 mA h g -1 after 100 cycles with 86.4% capacity retention at the current density of 0.4 A g -1 . When the current density increases to 1.6 and 3.2 A g -1 , the capacity can still be maintained at ∼860 and ∼460 mA h g -1 , respectively. The prominent cycling and rate performance is contributed by the built-in space for Si expansion, static carbon cages that prevent penetration of electrolyte and stabilize the solid electrolyte interface (SEI) outside, and fast charge transport by the novel structure.

  11. The effects of carbon distribution and thickness on the lithium storage properties of carbon-coated SnO_2 hollow nanofibers

    International Nuclear Information System (INIS)

    Zhou, Huimin; Li, Zhiyong; Qiu, Yiping; Xia, Xin

    2016-01-01

    To alleviate the enormous volume change problem of tin-based anodes for lithium ion batteries (LIBs), carbon-coated tin dioxide (SnO_2) hollow nanofibers were prepared by means of single-spinneret electrospinning followed by calcination and hydrothermal treatment. By varying the concentration of glucose and the reaction time during the hydrothermal coating process, the final product with different carbon distribution and thickness could be obtained. Galvanostatic charge/discharge was carried out to evaluate them as potential anode materials for LIBs. It was shown that the main effect of carbon distribution was to control the capacity retention rate, and the carbon thickness played the important role in lithium insertion/extraction properties. The optimum composite nanofibers could be prepared with glucose concentration of 10 mg/ml and hydrothermal time of 20 h, the carbon content and the specific surface area of which were 26.15% and 29.4 m"2/g, respectively. And this anode with both the carbon core and deposited thin carbon skin was able to deliver a high reversible capacity of 704.6 mAhg"−"1 and the capacity retention could retain 68.2% after 80 cycles. - Graphical abstract: Based on the electrochemical properties of carbon-coated hollow SnO2 anodes, how the carbon distribution and carbon thickness affect their performance are disscussed in groups. - Highlights: • The hollow SnO_2 nanofibers were carbon-coated by hydrothermal process. • The controlled distribution and thickness of carbon layer can be obtained. • The main effect of carbon distribution was to control the capacity retention rate. • The carbon thickness played the important role in lithium insertion/extraction properties.

  12. Performances of a lithium-carbon ``lithium ion``battery for electric powered vehicle; Performances d`un accumulateur au lithium-carbone ``Lithium Ion`` pour vehicule electrique

    Energy Technology Data Exchange (ETDEWEB)

    Broussely, M.; Planchat, J.P.; Rigobert, G.; Virey, D.; Sarre, G. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1996-12-31

    The lithium battery, also called `lithium-carbon` or `lithium ion`, is today the most promising candidate that can reach the expected minimum traction performances of electric powered vehicles. Thanks to a more than 20 years experience on lithium generators and to a specific research program on lithium batteries, the SAFT company has developed a 100 Ah electrochemical system, and full-scale prototypes have been manufactured for this application. These prototypes use the Li{sub x}NiO{sub 2} lithiated graphite electrochemical pair and were tested in terms of their electrical performances. Energy characteristics of 125 Wh/kg and 265 Wh/dm{sup 3} could be obtained. The possibility of supplying a power greater than 200 W/kg, even at low temperature (-10 deg. C) has been demonstrated with these elements. A full battery set of about 20 kWh was built and its evaluation is in progress. It comprises the electronic control systems for the optimum power management during charge and output. (J.S.) 9 refs.

  13. Performances of a lithium-carbon ``lithium ion``battery for electric powered vehicle; Performances d`un accumulateur au lithium-carbone ``Lithium Ion`` pour vehicule electrique

    Energy Technology Data Exchange (ETDEWEB)

    Broussely, M; Planchat, J P; Rigobert, G; Virey, D; Sarre, G [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1997-12-31

    The lithium battery, also called `lithium-carbon` or `lithium ion`, is today the most promising candidate that can reach the expected minimum traction performances of electric powered vehicles. Thanks to a more than 20 years experience on lithium generators and to a specific research program on lithium batteries, the SAFT company has developed a 100 Ah electrochemical system, and full-scale prototypes have been manufactured for this application. These prototypes use the Li{sub x}NiO{sub 2} lithiated graphite electrochemical pair and were tested in terms of their electrical performances. Energy characteristics of 125 Wh/kg and 265 Wh/dm{sup 3} could be obtained. The possibility of supplying a power greater than 200 W/kg, even at low temperature (-10 deg. C) has been demonstrated with these elements. A full battery set of about 20 kWh was built and its evaluation is in progress. It comprises the electronic control systems for the optimum power management during charge and output. (J.S.) 9 refs.

  14. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  15. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X; Boudin, F [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  16. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  17. The use of lithium carbonate in the treatment of Graves' disease with 131I

    International Nuclear Information System (INIS)

    Kang Yuguo; Chen Miao; Kuang Anren

    2004-01-01

    Lithium carbonate involving radioactive iodine uptake, goiter volume, thyroid hormone and applying range is reviewed briefly. Lithium may elongate the T 1/2 of iodine in thyroid gland, decrease 131 I dosage and enhance curative effect. Lithium carbonate inhibit iodine uptake and thyroid hormone synthesize, blocks the release of iodine and thyroid hormone from the thyroid gland, which lead to reduce the 131 I dosage the patients need and to decrease the surge of serum FT 3 and FT 4 levels caused by 131 I therapy. so lithium carbonate can alleviate the symptoms caused by 131 I treatment. For lithium carbonate can increase leucocyte amount, there are some merits with lithium carbonate in treating Graves' disease by 131 I. (authors)

  18. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    arsenic particles that were synthesized on melt away carbon nanotubes by akalide reduction. The performance of these anodes proved sensitive to electrolyte composition, which was significantly improved by using fluorinated ethylene carbonate. Additionally, further gains in capacity retention can be made by limiting the loading voltage to 0.75 V vs lithium metal. The arsenic and melt away carbon nanotube composite was found to have excellent cycle life and capacity at high mass loading (80% arsenic) when the nanoparticles were directly synthesized on the melt away carbon nanotubes. Gallium arsenide is well known for its semiconducting properties, but its performance as in Li-ion battery anodes is first reported here. Gallium is a metal with a low melting point that has been touted as a possible self-healing material for lithium ion anodes. Alone, gallium proves to be unstable as a lithium ion battery anode, but when synthesized as gallium arsenide nanoparticles and mixed with melt away carbon nanotubes it can charge and discharge in a battery 100 times with approximately twice the capacity of graphite anodes. This first study of gallium arsenide shows dramatic cycle life improvements by using nanoscale rather that micron size gallium arsenide.

  19. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.

    Science.gov (United States)

    Song, Jiangxuan; Gordin, Mikhail L; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Profile of lithium carbonate use in patients with bipolar disorder in Colombia].

    Science.gov (United States)

    Machado-Duque, Manuel Enrique; Alzate-Carvajal, Catalina; Zapata-Castañeda, Kevin; Machado-Alba, Jorge Enrique

    2017-04-01

    Lithium is the drug of choice for the treatment of bipolar affective disorder. To define lithium therapeutic profile and adverse reactions to its use in patients with bipolar affective disorder in Colombia. We conducted an observational retrospective cohort study between January 1 and December 31, 2013, which included patients with a diagnosis of bipolar disorder treated with lithium carbonate in 25 Colombian cities; we evaluated socio-demographic variables, lithium dose, co-medication, drug interactions and adverse reactions. A multivariate analysis was done using SPSS 22.0. The 331 patients had an average age of 44.5 ± 13.9 years; 59.2% were women. The mean dose of lithium was 898 ± 294 mg/day; 22% received doses lower than recommended, and patients had received lithium for 38.0 ± 39.5 months (range: 12-159 months). Lithium levels in blood had been measured only in 13.5% of patients; 71.3% of them had received adjuvant therapy for bipolar disorder with other drugs, especially clozapine (16.6%) and valproic acid (16.6%). The main comorbidities were hypothyroidism (18.1%) and hypertension (12.7%); 390 potentially toxic drug interactions were found, and adverse reactions were reported in 1.2% of patients. A statistically significant association was found between a lower risk of combination therapy and receiving treatment in the cities of Bogotá (OR=0.4, p=0.025), Cartagena (OR=0.3, p=0.015) and Ibagué (OR=0.3, p=0.025). Lithium was generally used at recommended doses and intervals, but a significant percentage of patients received lower doses than those recommended, and it was not possible to compare with lithium levels in blood. Adverse reactions and blood lithium levels reporting should be improved in patients with bipolar disorder in Colombia.

  1. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Ahn, J.-O.; Andong National University,; Wang, G.X.; Liu, H.K.; Dou, S.X.

    2003-01-01

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d 002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li + /Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient d Li decreases with an increase of Li ion concentration in carbon nanotube host

  2. Lithium-Catalyzed Carbon Aerogel and Its Possible Application in Energy Storage Materials

    Science.gov (United States)

    Ciszewski, Mateusz; Szatkowska, Elżbieta; Koszorek, Andrzej

    2017-07-01

    A lithium-based catalyst for carbon aerogel compounds and carbon nanotubes synthesis was used. Lithium hydroxide-catalyzed and CNT-modified carbon aerogel was compared to traditionally synthesized sodium carbonate-catalyzed carbon aerogel, as well as to the same material modified with CNT to evaluate the real effect of lithium hydroxide addition. Enhancement in the specific surface area from 498 m2/g to 786 m2/g and significant change in pore size distribution were observed. Low temperature, supercritical drying in carbon dioxide was used to prepare an organic aerogel with subsequent pyrolysis in an inert gas flow to convert it into carbon aerogel. The as-obtained material was examined with respect to energy storage applications, i.e. symmetric hybrid supercapacitors. It was shown that lithium hydroxide was responsible for shorter gelation time, increased specific surface area, and a greater number of micropores within the structure. For both reference materials prepared using sodium carbonate, quite different data were recorded. It was presented that the proper choice of carbon matrix should combine both high specific surface area and appropriate pore size distribution. High surface area and a relatively large number of micropores were responsible for specific capacity loss.

  3. A Novel synthesis of MgS and its application as electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Minjuan; Li, Xiang; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng

    2014-01-01

    Highlights: • Nanocrystallite MgS was synthesized by means of a reaction of MgH 2 of S via ball milling. • MgS was firstly investigated as anode material for lithium-ion batteries (LIBs). • MgS with acetylene black introduced by ball milling shows superior electrochemical property. • The mechanisms of the lithium insertion and extraction processes of MgS are discussed. • The work is considered helpful in developing new electrode material for LIBs. - Abstract: MgS was firstly investigated as an anode material for lithium-ion batteries (LIBs). A novel method for the synthesis of nano-sized MgS was conducted, i.e., by means of a reaction of MgH 2 of S via ball milling. Acetylene black (AB) was used as electron conductive agent and introduced by two approaches to the MgS anode material: the one is ball milling AB with the as-prepared MgS derived from MgH 2 and S; the other is pre-milling AB with S and then further milling the mixture with MgH 2 . X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM) and high resolution TEM analyses show that MgS/AB composites with MgS nanocrystallites embedded in the AB matrix are formed via either of the approaches. The MgS anode derived from MgH 2 and the pre-milled S/AB mixture shows high capacity. Capacity fading occurs mainly in the initial several cycles. A capacity of 630 mA h/g is retained after 80 cycles. The electrochemical property is much better than that of the MgS/AB derived from MgS and AB, due to the much homogenous microstructure of the former. The mechanism of the lithium insertion and extraction process of MgS is primarily discussed. The work is considered helpful in developing new synthesis method for MgS and new electrode material for LIBs

  4. [The effect of lithium carbonate on the leukocyte count following ionizing radiation. 4. The effect of lithium carbonate on the activation of granulocytes].

    Science.gov (United States)

    Wolf, G; Müller, G M; Kehrberg, G

    1989-01-01

    From numerous investigations it is known that lithium carbonate promotes granulocytopoiesis by stimulation of CSF (colony stimulating factor) in bone marrow. To prove if no immature, in their functions restricted cells are delivered from bone marrow, the activity of granulocytes was tested in vitro in patients with lithium therapy. It could be seen that granulocytes of peripheral blood show an increased in-vitro-activation after lithium influence in vivo.

  5. Effect of lithium carbonate on leukocyte number after influence of ionizing radiation. 2. Influence of lithium carbonate on peripheral leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rose, H.; Kehrberg, G.; Saul, G.; Pradel, I. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1985-01-01

    The increase of leukocyte number in peripheral blood, found after application of lithium carbonate, is attributed to a rise in granulocytes first of all. The reduced period of acute leukopenia after whole-body irradiation, caused by lithium, is the result of the stimulating the myeloid progenitor cells. Increased syntheses of colony stimulating factor or influencing factors on the microecology of bone marrow are discussed.

  6. Behavioral and neurochemical responses to 8-OH-DPAT in restrained and unrestrained animals treated with lithium carbonate in drinking water

    International Nuclear Information System (INIS)

    Naz, H.; Haleem, D.J.

    2012-01-01

    Lithium has been suggested for mood disorders and neurodegenerative diseases. Its ability to increase the gray matter and provision of protection against neuronal death makes it tempting to be marketed as brain food. Moreover it also ameliorates the effects of stress on brain dendrites; however lithium has a narrow therapeutic range. Brain serotonin (5-HT) neurotransmission may mediate the actions of lithium. Preclinical studies have shown that single restraint stress produces behavioral and neurochemical deficits. The present study was designed to investigate a potential role of Lithium in attenuation of stress induced behavioral and neurochemical deficits in rats. Moreover the study also monitored the esponsiveness of pre and post synaptic serotonin 1 A receptor following restraint and administration of lithium carbonate. Pre stress behavioral activities were monitored after 15 and 30 days of consumption of 0.1% lithium carbonate in drinking water while post stress were monitored on day 31. Pre and post synaptic 5-HT -1 A responsiveness was monitored by injecting 0.25mg/ml/kg of 8-OH-DPAT. Although lithium produced hypo activity but attenuated stress induced behavioral deficits. Whole brain neurochemical analysis revealed that its administration increased tryptophan, 5-HT and 5-Hydroindoleacetic acid (5-HIAA). 8-OH-DPAT elicited hyperactivity and fore paw treading were enhanced in lithium treated rats. Lithium induced pre synaptic changes together with the super sensitivity of post synaptic receptors may be able to produce antidepressant effect. (author)

  7. [Correction of neutropenia with lithium carbonate during the radiation treatment of lymphogranulomatosis patients].

    Science.gov (United States)

    Il'in, N V; Korytova, L I; Filatova, A M

    1986-01-01

    The purpose of the investigation was to study the effect of lithium carbonate on the time-course of changes in neutrophil leukocytes of the peripheral blood. Sixty-nine patients afflicted with Hodgkin's disease were entered into the study. Greater preservation of the content of neutrophil leukocytes was attained with the use of lithium carbonate coupled with radiation therapy. At the same time administration of lithium carbonate in the interval between the stages of anticancer treatment brought about an increase in the neutrophil count.

  8. Performance of Novel Randomly Oriented High Graphene Carbon in Lithium Ion Capacitors

    Directory of Open Access Journals (Sweden)

    Rahul S. Kadam

    2018-01-01

    Full Text Available The structure of carbon material comprising the anode is the key to the performance of a lithium ion capacitor. In addition to determining the capacity, the structure of the carbon material also determines the diffusion rate of the lithium ion into the anode which in turn controls power density which is vital in high rate applications. This paper covers details of systematic investigation of the performance of a structurally novel carbon, called Randomly Oriented High Graphene (ROHG carbon, and graphite in a high rate application device, that is, lithium ion capacitor. Electrochemical impedance spectroscopy shows that ROHG is less resistive and has faster lithium ion diffusion rates (393.7 × 10−3 S·s(1/2 compared to graphite (338.1 × 10−3 S·s(1/2. The impedance spectroscopy data is supported by the cell data showing that the ROHG carbon based device has energy density of 22.8 Wh/l with a power density of 4349.3 W/l, whereas baseline graphite based device has energy density of 5 Wh/l and power density of 4243.3 W/l. This data clearly shows advantage of the randomly oriented graphene platelet structure of ROHG in lithium ion capacitor performance.

  9. Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.

    Science.gov (United States)

    Hong, Seok-Min; Etacheri, Vinodkumar; Hong, Chulgi Nathan; Choi, Seung Wan; Lee, Ki Bong; Pol, Vilas G

    2017-06-07

    Fluorocarbon (C x F y ) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g -1 and 269 mAh g -1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g -1 ) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

  10. Effect of the addition of lithium carbonate on the properties of low density polyethylene

    International Nuclear Information System (INIS)

    Hoshimura, Yoshikazu; Yamamoto, Shigeru

    1992-01-01

    For improvement of the properties of polyethylene (PE), γ-ray was irradiated to the lithium carbonate added PE. An increase in the numbers of OH and C=C bonds was observed from FT-IR measurements. The melting temperature (or the vanishing temperature of crystallinity by X-ray diffraction) of the lithium carbonate added PE after γ-ray irradiation (10 6 Gy) was 20degC higher than that of the PE's with no additives and with quartz added PE. The lamellae of lithium carbonate added PE were not observed in the scanning electron micrographs. This vanishing of lamellae of the lithium carbonate added PE was also suggested by the extinction of the maltese cross with a polarizing microscope. (author)

  11. Theoretical study of adsorption of lithium atom on carbon nanotube

    Directory of Open Access Journals (Sweden)

    Masato Senami

    2011-12-01

    Full Text Available We investigate the adsorption of lithium atoms on the surface of the (12,0 single wall carbon nanotube (SWCNT by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsive force between lithium atoms destabilizes a system for the large number of lithium atoms.

  12. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery

    International Nuclear Information System (INIS)

    Xiang, Xiaoxia; Liu, Enhui; Huang, Zhengzheng; Shen, Haijie; Tian, Yingying; Xiao, Chengyi; Yang, Jingjing; Mao, Zhaohui

    2011-01-01

    Highlights: → Nitrogen-containing microporous carbon was prepared from polyaniline base by K 2 CO 3 activation, and used as anode material for lithium ion secondary battery. → K 2 CO 3 activation promotes the formation of amorphous and microporous structure. → High nitrogen content, and large surface area with micropores lead to strong intercalation between carbon and lithium ion, and thus improve the lithium storage capacity. -- Abstract: Microporous carbon with large surface area was prepared from polyaniline base using K 2 CO 3 as an activating agent. The physicochemical properties of the carbon were characterized by scanning electron microscope, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurement. The electrochemical properties of the microporous carbon as anode material in lithium ion secondary battery were evaluated. The first discharge capacity of the microporous carbon was 1108 mAh g -1 , whose first charge capacity was 624 mAh g -1 , with a coulombic efficiency of 56.3%. After 20 cycling tests, the microporous carbon retains a reversible capacity of 603 mAh g -1 at a current density of 100 mA g -1 . These results clearly demonstrated the potential role of microporous carbon as anode for high capacity lithium ion secondary battery.

  13. Lithium ion implantation effects in MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Kooi, B.J.; Hosson, J.T.M. de [Rijksuniversiteit Groningen (Netherlands). Materials Science Centre

    2001-07-01

    Single crystals of MgO(100) were implanted with 10{sup 16} {sup 6}Li ions cm{sup -2} at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted {sup 6}Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of {sup 6}Li starts at an annealing temperature of 1200K. (orig.)

  14. Lithium ion implantation effects in MgO(100)

    International Nuclear Information System (INIS)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E.; Kooi, B.J.; Hosson, J.T.M. de

    2001-01-01

    Single crystals of MgO(100) were implanted with 10 16 6 Li ions cm -2 at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted 6 Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of 6 Li starts at an annealing temperature of 1200K. (orig.)

  15. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  16. Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling.

    Science.gov (United States)

    Liang, Chungwen; Kwak, Kyungwon; Cho, Minhaeng

    2017-12-07

    Carbonate electrolytes in lithium-ion batteries play a crucial role in conducting lithium ions between two electrodes. Mixed solvent electrolytes consisting of linear and cyclic carbonates are commonly used in commercial lithium-ion batteries. To understand how the linear and cyclic carbonates introduce different solvation structures and dynamics, we performed molecular dynamics simulations of two representative electrolyte systems containing either linear or cyclic carbonate solvents. We then modeled their two-dimensional infrared (2DIR) spectra of the carbonyl stretching mode of these carbonate molecules. We found that the chemical exchange process involving formation and dissociation of lithium-ion/carbonate complexes is responsible for the growth of 2DIR cross peaks with increasing waiting time. In addition, we also found that cyclic carbonates introduce faster dynamics of dissociation and formation of lithium-ion/carbonate complexes than linear carbonates. These findings provide new insights into understanding the lithium-ion mobility and its interplay with solvation structure and ultrafast dynamics in carbonate electrolytes used in lithium-ion batteries.

  17. Modified carbon black materials for lithium-ion batteries

    Science.gov (United States)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  18. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.

    Science.gov (United States)

    Gao, Wenfang; Zhang, Xihua; Zheng, Xiaohong; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-07

    A closed-loop process to recover lithium carbonate from cathode scrap of lithium-ion battery (LIB) is developed. Lithium could be selectively leached into solution using formic acid while aluminum remained as the metallic form, and most of the other metals from the cathode scrap could be precipitated out. This phenomenon clearly demonstrates that formic acid can be used for lithium recovery from cathode scrap, as both leaching and separation reagent. By investigating the effects of different parameters including temperature, formic acid concentration, H 2 O 2 amount, and solid to liquid ratio, the leaching rate of Li can reach 99.93% with minor Al loss into the solution. Subsequently, the leaching kinetics was evaluated and the controlling step as well as the apparent activation energy could be determined. After further separation of the remaining Ni, Co, and Mn from the leachate, Li 2 CO 3 with the purity of 99.90% could be obtained. The final solution after lithium carbonate extraction can be further processed for sodium formate preparation, and Ni, Co, and Mn precipitates are ready for precursor preparation for cathode materials. As a result, the global recovery rates of Al, Li, Ni, Co, and Mn in this process were found to be 95.46%, 98.22%, 99.96%, 99.96%, and 99.95% respectively, achieving effective resources recycling from cathode scrap of spent LIB.

  19. Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    Composites of MoS 2 and amorphous carbon are grown and self-assembled into hierarchical nanostructures via a hydrothermal method. Application of the composites as high-energy electrodes for rechargeable lithium-ion batteries is investigated. The critical roles of nanostructuring of MoS 2 and carbon composition on lithium-ion battery performance are highlighted. © 2012 The Royal Society of Chemistry.

  20. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    Science.gov (United States)

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  1. Materialographic preparation of lithium-carbon intercalation compounds; Materialographische Praeparation von Lithium-Kohlenstoff-Einlagerungsverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Druee, Martin; Seyring, Martin; Grasemann, Aaron [Jena Univ. (Germany). Otto Schott Institute of Materials Research; Rettenmayr, Markus [Center for Energy and Environmental Chemistry, Jena (Germany)

    2016-12-15

    The materialographic investigation of anode materials for rechargeable lithium ion batteries is a significant step in the understanding and development of electrode materials, but made dramatically more difficult due to the high reactivity of the materials involved. In this work a method is presented which permits the metallographic preparation of the lithium-carbon intercalation compounds used as anode materials in today's rechargeable lithium ion batteries, and which allows the details of their microstructures to be contrasted. After classic, but absolutely water free, preparation in a protective gas atmosphere, the final stage of preparation is carried out using both ion beam polishing and manual polishing on a stationary polishing disc, whereby no significant differences of the quality of the microstructural images obtained is apparent.

  2. About the safety of lithium batteries with carbon anode; De la securite des accumulateurs au lithium a anode de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Biensan, Ph.; Le Nay, F. [SAFT, Direction de la Recherche, 91 - Marcoussis (France); Simon, B. [Alcatel Alsthom Recherche, 91 - Marcoussis (France); Bodet, J.M. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1996-12-31

    The replacement of lithium metal from the negative electrode of lithium batteries by a material allowing the reversible insertion of lithium ions is an undeniable commercial success. Carbon electrodes, generally called Li{sub x}C{sub 6}, are the most common type and allow to increase the service life of the battery, its charging fastness and its safety. The safety of such batteries is well known in normal conditions of use, but it has to be known also in any abusive condition of use, whatever is the charging state. The mastery of the phenomena that can occur requires a good knowledge of the kinetics of the exothermal chemical reactions involved. (J.S.) 8 refs.

  3. About the safety of lithium batteries with carbon anode; De la securite des accumulateurs au lithium a anode de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Biensan, Ph; Le Nay, F [SAFT, Direction de la Recherche, 91 - Marcoussis (France); Simon, B [Alcatel Alsthom Recherche, 91 - Marcoussis (France); Bodet, J M [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1997-12-31

    The replacement of lithium metal from the negative electrode of lithium batteries by a material allowing the reversible insertion of lithium ions is an undeniable commercial success. Carbon electrodes, generally called Li{sub x}C{sub 6}, are the most common type and allow to increase the service life of the battery, its charging fastness and its safety. The safety of such batteries is well known in normal conditions of use, but it has to be known also in any abusive condition of use, whatever is the charging state. The mastery of the phenomena that can occur requires a good knowledge of the kinetics of the exothermal chemical reactions involved. (J.S.) 8 refs.

  4. Study of lithium insertion in hard carbon made from cotton wool

    Science.gov (United States)

    Peled, Emanuel; Eshkenazi, Victor; Rosenberg, Yuri

    Hard-carbon materials were made either by one-step or multi-step pyrolysis of cotton cloth between 700 and 1100°C. All carbons have been characterized by gas sorption, X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) techniques. Two types of carbons have been obtained. One, made by multi-step pyrolysis, has the highest lithium reversible capacity [about 600 (mA h)/g] and two distinct voltage regions: a sloping one between 1.5 and about 0.1 V, called the high-voltage region (HVR), and a horizontal one between 0.1 and 0 V, called the low-voltage plateau (LVP). The other carbons made by the one-step process have only the HVR and less capacity [up to 470 (mA h)/g]. The influence of the current density and temperature on the capacity and degradation rate in both LVP and HVR was checked. We suggest that there are two different modes of lithium insertion: intercalation-like (on both sides of single graphene sheets) at lower potentials and chemical binding to edge carbon atoms at higher potentials vs. lithium reference electrode. A schematic model for lithiated carbon is proposed.

  5. Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xiang Xiaoxia; Huang Zhengzheng; Liu Enhui; Shen Haijie; Tian Yingying; Xie Hui; Wu Yuhu; Wu Zhilian

    2011-01-01

    Highlights: → Polyaniline nanotube is synthesized by the self-assembly method in aqueous media. → Carbon nanotubes were prepared from polyaniline nanotube by physical activation. → Activation leads to large surface area, and surface nitrogen and oxygen functional groups. → Such physical and chemical properties lead to the good electrochemical properties. → After 20 cycles, a reversible capacity of 728 mAh g -1 was obtained. - Abstract: Carbon nanotubes with large surface area and surface nitrogen and oxygen functional groups are prepared by carbonizing and activating of polyaniline nanotubes, which is synthesized by polymerization of aniline with the self-assembly method in aqueous media. The physicochemical properties of the carbon nanotubes are characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurements. The surface area and pore diameter are 618.9 m 2 g -1 and 3.10 nm. The electrochemical properties of the carbon nanotubes as anode materials in lithium ion batteries are evaluated. At a current density of 100 mA g -1 , the activated carbon nanotube shows an enormously first discharge capacity of about 1370 mAh g -1 and a charge capacity of 907 mAh g -1 . After 20 cycling tests, the activated carbon nanotube retains a reversible capacity of 728 mAh g -1 . These indicate it may be a promising candidate for an anode material for lithium secondary batteries.

  6. Effect of shrapnel penetration on lithium-carbon monofluoride and lithium-manganese dioxide batteries

    Science.gov (United States)

    Garrard, W. N. C.

    National BR2/3A lithium-carbon monofluoride and Duracell DL2/3A lithium-manganese dioxide batteries were subjected to simulated shrapnel penetration using a projectile from an M16 rifle. Trials were conducted on batteries in various states of charge (0, 50, and 100 percent discharged) in both wet and dry environments. Only one fully charged Duracell Battery (under wet conditions) caught fire during the test. The effects of environmental conditions, the chemical reactions involved, and the state of charge of the batteries on the probability of the batteries igniting are discussed.

  7. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  8. Process for recovery of lithium from spent lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Eiichi; Jonghwa, Kim; Komasawa, Isao [Osaka Univ., Faculty of Engineering Science, Osaka, (Japan)

    1989-07-10

    An experimental study of the recovery and purification of lithium from spent lithium batteries was carried out, taking advantage of the characterisitics of lithium ion and its carbonate. More than 75% of the lithium contained in the whole battery or its anode component can be leached with sulfuric acid where the pH of the final pregnant liquor is 7.7 or higher, the other metals being left in the residue is their hydroxides. The extracted liquor is evaporated/concentrated, added with saturated sodium carbonate solution at around 100{sup 0}C to precipitate lithium as a carbonate. The coprecipitated sodium carbonate is washed/removed with a hotwater to give 99% pure lithium carbonate. Separation of lithium and sodium in the barren liquor is conducted with LIX 51, a chelating/extracting agent, and TOPO, a neutral organic phosphate, which have a synergic effect, to selectively extract lithium; the organic phase is reverse-extracted with a dilute hydrochloric acid to obtain lithium of 99% purity. 9 refs., 4 figs., 5 tabs.

  9. Theoretical study of adsorption of lithium atom on carbon nanotube

    OpenAIRE

    Senami, Masato; Ikeda, Yuji; Fukushima, Akinori; Tachibana, Akitomo

    2011-01-01

    We investigate the adsorption of lithium atoms on the surface of the (12, 0) single wall carbon nanotube (SWCNT) by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsiv...

  10. Application of lithium carbonate on radioiodine treatment of Graves' hyperthyroidism

    International Nuclear Information System (INIS)

    Zha Jinshun; Huang Chunling; Jiang Tingyin; Jiang Yan

    2011-01-01

    Effectiveness of radioiodine for Graves' hyperthyroidism depends on retention time of 131 I in the thyroid, and may be effected by several factors, including previous treatment with antithyroid drugs,goiter volume, 24 h thyroidal radioactive iodine uptake and so on. A short course of therapy with low dose of lithium carbonate increased retention of 131 I in the thyroid and prolong the intrathyroidal effective half-life of 131 I before and after 131 I therapy in patients with Graves' disease, because of the actions that lithium blocks the release of organic iodine and thyroid hormone from the thyroid gland without affecting thyroidal radioactive iodine uptake. Therefore, using lithium as adjunct to radioiodine therapy increases the radiation dose delivered to the thyroid, to result in reduced the activity required and whole-body radiation dose in patients with very short effective half-life, and so improve the cure rate of hyperthyroidism. A short course of lithium carbonate therapy can be considered a useful adjunct to 131 I therapy for obtaining a more rapid control of thyrotoxicosis and avoiding its transient exacerbation because of methimazole withdrawal prior to 131 I administration or in patients who cannot tolerate or do not respond to antithyroid drugs, and for helping to prevent the radioiodine-associated increase in serum free thyroid hormone concentrations. In addition, lithium carbonate enhances the effectiveness of 131 I therapy, in terms of prompter control of hyperthyroidism in patients with small or large goiters. At the same time, lithium also may increases the rate of permanent control of hyperthyroidism in patients with large goiters. In summary, in the short-term lithium plays an important role as an adjunct to 131 I, since it helps to prevent the 131 I-associated increase in serum free thyroid hormone concentrations and allows a more prompt control of thyrotoxicosis. This is of particular importance in high risk patients, such as the elderly

  11. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Khomenko, Volodymyr G.; Barsukov, Viacheslav Z.

    2007-01-01

    In recent years development of active materials for negative electrodes has been of great interest. Special attention has been focused on the active materials possessing higher reversible capacity than that of conventional graphite. In the present work the electrochemical performance of some carbon/silicon-based materials has been analyzed. For this purpose various silicon-based composites were prepared using such carbon materials as graphite, hard carbon and graphitized carbon black. An analysis of charging-discharging processes at electrodes based on different carbon materials has shown that graphite modified with silicon is the most promising anode material. It has also been revealed that the irreversible capacity mainly depends on the content of Si. An optimum content of Si has been determined with taking into account that high irreversible capacity is not suitable for practical application in lithium-ion batteries. This content falls within the range of 8-10 wt%. The reversible capacity of graphite modified with 8 wt% carbon-coated Si was as high as 604 mAh g -1 . The irreversible capacity loss with this material was as low as 8.1%. The small irreversible capacity of the material allowed developing full lithium-ion rechargeable cells in the 2016 coin cell configuration. Lithium-ion batteries based on graphite modified with silicon show gravimetric and volumetric specific energy densities which are higher by approximately 20% than those for a lithium-ion battery based on natural graphite

  12. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  13. Ameliorative Effect of Cactus (Opuntia ficus indica Extract on Lithium-Induced Nephrocardiotoxicity: A Biochemical and Histopathological Study

    Directory of Open Access Journals (Sweden)

    Anouar ben Saad

    2017-01-01

    Full Text Available Opuntia ficus indica (family Cactaceae is used in the treatment of a variety of conditions including metal-induced toxicity. The study reports the protective effects of Opuntia ficus indica (CCE against lithium carbonate-induced toxicity in rats. Nephrocardiotoxicity was induced in male Wistar rats by single dose of lithium carbonate (25 mg/kg b.w twice daily for 30 days. Aqueous extract of Opuntia ficus indica was administered at the dose of 100 mg/kg of b.w by gavage for 60 days. Obtained results revealed that administration of lithium carbonate caused a significant increase in serum creatinine, uric acid, and urea levels. Additionally, a significant decrease in the level of renal and cardiac SOD, CAT, and GPx activities was associated with a significant increase of MDA levels in lithium carbonate group more than those of the control. However, the treatment of experimental rats with CCE prevented these alterations and maintained the antioxidant status. The histopathological observations supported the biochemical evidences of nephrocardioprotection. CCE supplementation could protect against lithium carbonate-induced renal and cardiac injuries in rats, plausibly by the upregulation of antioxidant enzymes and inhibition of MDA to confer the protective effect.

  14. Ameliorative Effect of Cactus (Opuntia ficus indica) Extract on Lithium-Induced Nephrocardiotoxicity: A Biochemical and Histopathological Study.

    Science.gov (United States)

    Saad, Anouar Ben; Rjeibi, Ilhem; Ncib, Sana; Zouari, Nacim; Zourgui, Lazhar

    2017-01-01

    Opuntia ficus indica (family Cactaceae) is used in the treatment of a variety of conditions including metal-induced toxicity. The study reports the protective effects of Opuntia ficus indica (CCE) against lithium carbonate-induced toxicity in rats. Nephrocardiotoxicity was induced in male Wistar rats by single dose of lithium carbonate (25 mg/kg b.w twice daily for 30 days). Aqueous extract of Opuntia ficus indica was administered at the dose of 100 mg/kg of b.w by gavage for 60 days. Obtained results revealed that administration of lithium carbonate caused a significant increase in serum creatinine, uric acid, and urea levels. Additionally, a significant decrease in the level of renal and cardiac SOD, CAT, and GPx activities was associated with a significant increase of MDA levels in lithium carbonate group more than those of the control. However, the treatment of experimental rats with CCE prevented these alterations and maintained the antioxidant status. The histopathological observations supported the biochemical evidences of nephrocardioprotection. CCE supplementation could protect against lithium carbonate-induced renal and cardiac injuries in rats, plausibly by the upregulation of antioxidant enzymes and inhibition of MDA to confer the protective effect.

  15. Ameliorative Effect of Cactus (Opuntia ficus indica) Extract on Lithium-Induced Nephrocardiotoxicity: A Biochemical and Histopathological Study

    Science.gov (United States)

    Ncib, Sana

    2017-01-01

    Opuntia ficus indica (family Cactaceae) is used in the treatment of a variety of conditions including metal-induced toxicity. The study reports the protective effects of Opuntia ficus indica (CCE) against lithium carbonate-induced toxicity in rats. Nephrocardiotoxicity was induced in male Wistar rats by single dose of lithium carbonate (25 mg/kg b.w twice daily for 30 days). Aqueous extract of Opuntia ficus indica was administered at the dose of 100 mg/kg of b.w by gavage for 60 days. Obtained results revealed that administration of lithium carbonate caused a significant increase in serum creatinine, uric acid, and urea levels. Additionally, a significant decrease in the level of renal and cardiac SOD, CAT, and GPx activities was associated with a significant increase of MDA levels in lithium carbonate group more than those of the control. However, the treatment of experimental rats with CCE prevented these alterations and maintained the antioxidant status. The histopathological observations supported the biochemical evidences of nephrocardioprotection. CCE supplementation could protect against lithium carbonate-induced renal and cardiac injuries in rats, plausibly by the upregulation of antioxidant enzymes and inhibition of MDA to confer the protective effect. PMID:29376078

  16. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  17. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries. PMID:28347087

  18. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  19. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  20. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  1. Improving the performance of soft carbon for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen Zonghai; Wang Qingzheng; Amine, K.

    2006-01-01

    A novel technique for designing a robust solid electrolyte interface (SEI) on the negative electrodes of lithium-ion batteries has been developed using a silane coating. Two silane compounds, 3,3,3-trifluoropropyltrimethoxysilane (TFPTMS) and dimethoxybis(2-(2-(2-mothoxyethoxy)ethoxy)ethoxy)silane (1ND3(MeO)), have been investigated with respect to improving the capacity retention of lithium manganese oxide spinel/soft carbon cells. The impact of the silane coating on the soft carbon electrode will be attributed to (1) changes in surface functional groups (2) compositional change of the SEI, and (3) changes in the kinetics of manganese deposition. The impact of the upper cutoff voltage on the capacity retention of the cell was also discussed

  2. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  3. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-01-01

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl 2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g −1 , the carbon without activation shows a first discharge capacity of 515 mAh g −1 . After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl 2 and KOH activation was 1010 and 2085 mAh g −1 , respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g −1 after 20 cycles, which was much better than that activated by ZnCl 2 . These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  4. Delirium during the course of electroconvulsive therapy in a patient on lithium carbonate treatment.

    Science.gov (United States)

    Sadananda, Suneetha Karkada; Narayanaswamy, Janardhanan C; Srinivasaraju, Ravindra; Math, Suresh Bada

    2013-01-01

    The safety of concurrent mood stabilizers during the course of electroconvulsive therapy (ECT) is yet to be clearly established. Delirium with concurrent administration of ECT and lithium carbonate is described in this case report. A 30-year-old male with a past history of significant head injury developed delirium during the course of bitemporal ECT. The clinical picture and the details of the cognitive impairment have been discussed in the report with a focus on relationship between the lithium carbonate administration and the concurrent ECT. Patients with preexisting organic brain damage could be prone to develop the cognitive adverse effect while on a combination of lithium and ECT. Possible interactions between lithium and ECT need further systematic evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  6. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP).

    Science.gov (United States)

    Forney, Michael W; Ganter, Matthew J; Staub, Jason W; Ridgley, Richard D; Landi, Brian J

    2013-09-11

    Stabilized lithium metal powder (SLMP) has been applied during battery assembly to effectively prelithiate high capacity (1500-2500 mAh/g) silicon-carbon nanotube (Si-CNT) anodes, eliminating the 20-40% first cycle irreversible capacity loss. Pressure-activation of SLMP is shown to enhance prelithiation and enable capacity matching between Si-CNT anodes and lithium nickel cobalt aluminum oxide (NCA) cathodes in full batteries with minimal added mass. The prelithiation approach enables high energy density NCA/Si-CNT batteries achieving >1000 cycles at 20% depth-of-discharge.

  7. Ultrahigh-Energy Density Lithium-Ion Cable Battery Based on the Carbon-Nanotube Woven Macrofilms.

    Science.gov (United States)

    Wu, Ziping; Liu, Kaixi; Lv, Chao; Zhong, Shengwen; Wang, Qinghui; Liu, Ting; Liu, Xianbin; Yin, Yanhong; Hu, Yingyan; Wei, Di; Liu, Zhongfan

    2018-05-01

    Moore's law predicts the performance of integrated circuit doubles every two years, lasting for more than five decades. However, the improvements of the performance of energy density in batteries lag far behind that. In addition, the poor flexibility, insufficient-energy density, and complexity of incorporation into wearable electronics remain considerable challenges for current battery technology. Herein, a lithium-ion cable battery is invented, which is insensitive to deformation due to its use of carbon nanotube (CNT) woven macrofilms as the charge collectors. An ultrahigh-tap density of 10 mg cm -2 of the electrodes can be obtained, which leads to an extremely high-energy density of 215 mWh cm -3 . The value is approximately seven times than that of the highest performance reported previously. In addition, the battery displays very stable rate performance and lower internal resistance than conventional lithium-ion batteries using metal charge collectors. Moreover, it demonstrates excellent convenience for connecting electronics as a new strategy is applied, in which both electrodes can be integrated into one end by a CNT macrorope. Such an ultrahigh-energy density lithium-ion cable battery provides a feasible way to power wearable electronics with commercial viability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained ;solubility product; of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  9. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  10. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should

  11. Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries.

    Science.gov (United States)

    Yu, Kai; Lu, Ping; Jackson, Jeffrey J; Nguyen, Thuy-Ai D; Alvarado, Joseph; Stivala, Craig E; Ma, Yun; Mack, Kyle A; Hayton, Trevor W; Collum, David B; Zakarian, Armen

    2017-01-11

    Lithium enolates derived from carboxylic acids are ubiquitous intermediates in organic synthesis. Asymmetric transformations with these intermediates, a central goal of organic synthesis, are typically carried out with covalently attached chiral auxiliaries. An alternative approach is to utilize chiral reagents that form discrete, well-defined aggregates with lithium enolates, providing a chiral environment conducive of asymmetric bond formation. These reagents effectively act as noncovalent, or traceless, chiral auxiliaries. Lithium amides are an obvious choice for such reagents as they are known to form mixed aggregates with lithium enolates. We demonstrate here that mixed aggregates can effect highly enantioselective transformations of lithium enolates in several classes of reactions, most notably in transformations forming tetrasubstituted and quaternary carbon centers. Easy recovery of the chiral reagent by aqueous extraction is another practical advantage of this one-step protocol. Crystallographic, spectroscopic, and computational studies of the central reactive aggregate, which provide insight into the origins of selectivity, are also reported.

  12. Lithium clearance method and the renal response to low-dose dopamine in man

    DEFF Research Database (Denmark)

    Olsen, N V; Olsen, M H; Fogh-Andersen, N

    1993-01-01

    .00 hours on three different occasions. After an overnight fast, the subjects were water-loaded and clearance studies were started at 09.00 hours with a 1h baseline period and three 1h periods during dopamine infusion. 2. Baseline sodium clearance with placebo was 0.65 +/- 0.35 ml/min, but with lithium......-induced changes in effective renal plasma flow, glomerular filtration rate or osmolal clearance. Neither lithium nor dopamine influenced plasma concentrations of renin, aldosterone or atrial natriuretic peptide. 4. In conclusion, single test doses of lithium, as normally used in lithium clearance studies......1. The effect of a single dose of lithium on renal function before and during intravenous infusion of dopamine (3 micrograms min-1 kg-1) was investigated in 12 healthy males. In a double-blind and randomized design, 450mg or 600mg of lithium carbonate or placebo was administered orally at 22...

  13. Lithium clearance method and the renal response to low-dose dopamine in man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Olsen, M H; Fogh-Andersen, N

    1993-01-01

    .00 hours on three different occasions. After an overnight fast, the subjects were water-loaded and clearance studies were started at 09.00 hours with a 1h baseline period and three 1h periods during dopamine infusion. 2. Baseline sodium clearance with placebo was 0.65 +/- 0.35 ml/min, but with lithium...... in effective renal plasma flow, glomerular filtration rate or osmolal clearance. Neither lithium nor dopamine influenced plasma concentrations of renin, aldosterone or atrial natriuretic peptide. 4. In conclusion, single test doses of lithium, as normally used in lithium clearance studies, increase baseline......1. The effect of a single dose of lithium on renal function before and during intravenous infusion of dopamine (3 micrograms min-1 kg-1) was investigated in 12 healthy males. In a double-blind and randomized design, 450mg or 600mg of lithium carbonate or placebo was administered orally at 22...

  14. Solvation of lithium ion in dimethoxyethane and propylene carbonate

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Solvation of the lithium ion (Li+) in dimethoxyethane (DME) and propylene carbonate (PC) is of scientific significance and urgency in the context of lithium-ion batteries. I report PM7-MD simulations on the composition of Li+ solvation shells (SH) in a few DME/PC mixtures. The equimolar mixture features preferential solvation by PC, in agreement with classical MD studies. However, one DME molecule is always present in the first SH, supplementing the cage formed by five PC molecules. As PC molecules get removed, DME gradually substitutes vacant places. In the PC-poor mixtures, an entire SH is populated by five DME molecules.

  15. Lithium Carbonate in the Treatment of Graves’ Disease with ATD-Induced Hepatic Injury or Leukopenia

    Directory of Open Access Journals (Sweden)

    Rendong Zheng

    2015-01-01

    Full Text Available Objective. GD with ATD-induced hepatic injury or leukopenia occurs frequently in clinical practice. The purpose of the present study was to observe the clinical effect of lithium carbonate on hyperthyroidism in patients with GD with hepatic injury or leukopenia. Methods. Fifty-one patients with GD with hepatic injury or leukopenia participated in the study. All patients were treated with lithium carbonate, in addition to hepatoprotective drugs or drugs that increase white blood cell count. Thyroid function, liver function, and white blood cells were measured. Clinical outcomes were observed after a 1-year follow-up. Results. After treatment for 36 weeks, symptoms of hyperthyroidism and the level of thyroid hormones were improved and liver function, and white blood cells returned to a normal level. Twelve patients (23.5% obtained clinical remission, 6 patients (11.8% relapsed after withdrawal, 25 patients (49.0% received radioiodine therapy, and 8 patients (15.7% underwent surgical procedures after lithium carbonate treatment. Conclusion. Lithium carbonate has effects on the treatment of mild-to-moderate hyperthyroidism caused by GD, and it is particularly suitable for patients with ATD-induced hepatic injury or leukopenia.

  16. [Use of lithium carbonate as a leukocyte stimulant in acute radiation sickness in humans].

    Science.gov (United States)

    Konchalovskiĭ, M V; Shishkova, T V; Chotiĭ, V G; Baranov, A E

    1989-03-01

    A total of 50 patients, who had suffered from acute radiation sickness (I-III degree of severity) as a result of the accident at the Chernobyl Nuclear Power Plant, were followed up for hematological changes. The absorbed dose of relatively even gamma-irradiation assessed by karyometry fluctuated from 0.5 to 5.7 Gy. In 17 of the patients the influence of lithium carbonate on the course of radiation neutropenia was evaluated. No appreciable effect of the agent administration in a dose of 900 mg/patient/day was recorder from 9 to 42 day after irradiation. The authors have also considered the correlations of the values of irradiation doses calculated by varying methods of biological dosimetry.

  17. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Hyoung-Joon Jin

    2013-03-01

    Full Text Available Carbon nanotubes (CNTs have displayed great potential as anode materials for lithium ion batteries (LIBs due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs.

  18. Effect of lithium carbonate on leukocyte number after influence of ionizing radiation. 3. Influence of lithium carbonate on peripheral leukocytes after fractionated caudal half-body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, H.; Saul, G.; Kehrberg, G. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1985-01-01

    Fractionated half-body irradiation of rats resulted in leukopenia of the peripheral blood. The decrease of leukocytes was smaller in animals pretreated with an orally administered dose of lithium carbonate for 14 days.

  19. Spectroscopic analysis of lithium hydroxide and carbonate in solid state lithium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Oohira, Shigeru; Fujii, Yasuhiko; Okamoto, Makoto; Kakihana, Masato; Nagumo, Tadashi

    1985-08-01

    Infrared spectra of LiOH and Li2CO3 suspended on KBr discs were measured over the concentration range 20 g/100 mg KBr to 600 g/100 mg KBr. The absorbance of a selected infrared band of each sample was carefully determined. The empirical equation, which expresses a correlation between the absorbance and the concentration, was given for each lithium compound. The feasibility of independent and direct determination of the LiOH and Li2CO3 content in Li2O was shown, and the spectroscopic technique was applied to a typical Li2O sample. It was shown that the detection limit of the analysis was improved by low-temperature measurements of the infrared spectra. (orig.).

  20. Three-dimensional core-shell Fe_2O_3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-01-01

    Highlights: • The 3D core-shell Fe_2O_3@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe_2O_3 nanorods and outer carbon layer. • The Fe_2O_3@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe_2O_3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe_2O_3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe_2O_3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe_2O_3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  1. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    Science.gov (United States)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  2. Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Yongjin Jeong

    2016-12-01

    Full Text Available Porous carbon materials are used for many electrochemical applications due to their outstanding properties. However, research on controlling the pore structure and analyzing the carbon structures is still necessary to achieve enhanced electrochemical properties. In this study, mesoporous carbon nanotube (CNT-carbon nanofiber electrodes were developed by heat-treatment of electrospun starch with carbon nanotubes, and then applied as a binder-free electrochemical electrode for a lithium-ion battery. Using the unique lamellar structure of starch, mesoporous CNT-carbon nanofibers were prepared and their pore structures were controlled by manipulating the heat-treatment conditions. The activation process greatly increased the volume of micropores and mesopores of carbon nanofibers by etching carbons with CO2 gas, and the Brunauer-Emmett-Teller (BET specific area increased to about 982.4 m2·g−1. The activated CNT-carbon nanofibers exhibited a high specific capacity (743 mAh·g−1 and good cycle performance (510 mAh·g−1 after 30 cycles due to their larger specific surface area. This condition presents many adsorption sites of lithium ions, and higher electrical conductivity, compared with carbon nanofibers without CNT. The research suggests that by controlling the heat-treatment conditions and activation process, the pore structure of the carbon nanofibers made from starch could be tuned to provide the conditions needed for various applications.

  3. Advanced Carbon Fluorides For Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guérin K.

    2017-01-01

    Full Text Available Li-CFx battery using a specific fluorinated nanocarbon as cathode material exhibits a capacity exceeding the expected theoretical value when used as an electrode material in primary lithium battery. Carbon nanodiscs were partially fluorinated by atomic fluorine released by thermal decomposition of TbF4, and the capacity of this material was up to 1180 mAh.g−1, whereas a theoretical value of 847 mAh.g−1 for the CF0.95 sample was calculated. The obtained value is also higher than the maximum one of 865 mAh.g−1 expected for CF1 carbon fluorides. The discharge mechanism was investigated using mainly SEM and solid state NMR in order to understand this “extracapacity”. Both the unfluorinated carbon and the LiF covering, which is formed outside the carbon lattice during the discharge mechanism, play a key role for the achievement of the extracapacity by the consumption of Li+ to form Li2F+ species stabilized by the carbon host structure formed after the electrochemical defluorination.

  4. Preparation of 18F in a research reactor, from irradiated lithium carbonate

    International Nuclear Information System (INIS)

    Gariglia, H.T.; Silva, C.P.G. da.

    1978-01-01

    A procedure for preparation of carrier - free fluorine-18 is described. The 18 F is produced by neutron irradiation of lithium carbonate and is separated by passing the dissolved material through a 1000 0 C calcinated aluminium oxyde column. The yield is about 90%, the tritium content 2%; other radioactive impurities are not found. The radiochemical purity is about 93% and the lithium content of the solution is [pt

  5. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  6. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  7. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor

    International Nuclear Information System (INIS)

    Sun, Xianzhong; Zhang, Xiong; Liu, Wenjie; Wang, Kai; Li, Chen; Li, Zhao; Ma, Yanwei

    2017-01-01

    Highlights: • Three-electrode pouch cell is used to investigate the capacity fading of AC/HC LIC. • the electrode potential swing is critical for the cycleability of a LIC cell. • Different capacity fading behaviors are discussed. • A large-capacity LIC pouch cell has been assembled with a specific energy of 18.1 Wh kg −1 based on the total weight. - Abstract: Lithium ion capacitor (LIC) is one of the most promising electrochemical energy storage devices, which offers rapid charging-discharging capability and long cycle life. We have fabricated LIC pouch cells using an electrochemically-driven lithium pre-doping method through a three-electrode pouch cell structure. The active materials of cathode and anode of LIC cell are activated carbon and pre-lithiated hard carbon, respectively. The electrochemical performances and the capacity fading behaviors of LICs in the voltage range of 2.0 − 4.0 V have been studied. The specific energy and specific power reach 73.6 Wh kg −1 and 11.9 kW kg −1 based on the weight of the active materials in both cathode and anode, respectively. Since the cycling performance is actually determined by hard carbon anode, the anode potential swings are emphasized. The capacity fading of LIC upon cycling is proposed to be caused by the increases of internal resistance and the consumption of lithium stored in anode. Finally, a large-capacity LIC pouch cell has been assembled with a maximum specific energy of 18.1 Wh kg −1 and a maximum specific power of 3.7 kW kg −1 based on the weight of the whole cell.

  8. Unique effect of mechanical crushing on the electrochemical intercalation of lithium in carbons of different morphologies; Effet unique du broyage mecanique sur l`intercalation electrochimique du lithium dans des carbones de morphologies differentes

    Energy Technology Data Exchange (ETDEWEB)

    Salver-Disma, F.; Tarascon, J.M. [Universite de Picardie, 80 - Amiens (France)

    1996-12-31

    Lithium ion batteries use an oxide as a positive electrode and a carbon material as a negative electrode. The performances of carbon electrodes have rapidly evolved during the last years thanks to the substitution of soft carbons of Conoco or MCMB-2510 type by graphites (F-399, MCMB-2528) and then by hard carbons. These high capacity carbons (700 mAh/g) have higher service life and volume capacity than graphites but their irreversible losses are greater (>20%). In this work, materials with similar electrochemical performances are prepared by mechanical crushing. Mechanical crushing allows to obtain a wide range of carbon materials with various morphologies, specific surfaces and levels of disorder. The formation of the passivation film is directly linked with the surface of materials. A reaction scheme of the reversible and irreversible capacities has been defined and has permitted to obtain compounds with reversible capacities of 720 mAh/g (2 lithium for 6 carbon). (J.S.)

  9. Unique effect of mechanical crushing on the electrochemical intercalation of lithium in carbons of different morphologies; Effet unique du broyage mecanique sur l`intercalation electrochimique du lithium dans des carbones de morphologies differentes

    Energy Technology Data Exchange (ETDEWEB)

    Salver-Disma, F; Tarascon, J M [Universite de Picardie, 80 - Amiens (France)

    1997-12-31

    Lithium ion batteries use an oxide as a positive electrode and a carbon material as a negative electrode. The performances of carbon electrodes have rapidly evolved during the last years thanks to the substitution of soft carbons of Conoco or MCMB-2510 type by graphites (F-399, MCMB-2528) and then by hard carbons. These high capacity carbons (700 mAh/g) have higher service life and volume capacity than graphites but their irreversible losses are greater (>20%). In this work, materials with similar electrochemical performances are prepared by mechanical crushing. Mechanical crushing allows to obtain a wide range of carbon materials with various morphologies, specific surfaces and levels of disorder. The formation of the passivation film is directly linked with the surface of materials. A reaction scheme of the reversible and irreversible capacities has been defined and has permitted to obtain compounds with reversible capacities of 720 mAh/g (2 lithium for 6 carbon). (J.S.)

  10. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery

    International Nuclear Information System (INIS)

    Bae, Joonwon

    2011-01-01

    Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: → Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. → Accommodate volume changes of Si NPs during Li ion charge/discharge. → Sizes of microcapsules were controlled by experimental parameters.

  11. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiawen Xiong

    2018-04-01

    Full Text Available Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g−1 after 150 cycles at 0.2 A g−1, and a high capacity of 531.2 mA h g−1 can be observed even after 5,000 cycles at 10.0 A g−1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g−1 can be obtained at 5.0 A g−1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

  12. Detection and distribution of lithium in Mg-Li-Al based alloy by ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in [Metallurgical and Materials Engineering, MNIT Jaipur, 302017 (India); Adjunct Faculty, Materials Research Centre, MNIT Jaipur, 302017 (India)

    2016-12-01

    Highlights: • First time, Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy. • There are six multi-oxide layers present within the surface film of LATZ9531R. • Secondary ion imaging by ToF-SIMS with mass contrast effect (including Li) is possible for a multiphase lithium-containing alloy systems. - Abstract: Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy namely Mg-9Li-7Al-3Sn-1Zn (LATZ9531). ToF-SIMS study indicates that there are six multi-oxide layers present within the surface film of LATZ9531. Furthermore, The presence of Li containing phase has been qualitatively confirmed based on the high number of Li-ion counts in SIMS, and the same is verified quantitatively by using electron probe microanalysis (EPMA). The novel approach may be useful to determine the chemical composition of the phases in various alloys which has lighter alloying elements such as lithium.

  13. Equilibrium between (Li,Na,K,Mg)-carbonate melt, gaseous CO

    NARCIS (Netherlands)

    Velden, P.F. van

    1967-01-01

    Considerable amounts of MgCO3 may appear in alkali metal carbonate melts in contact with MgO and carbon dioxide gas. The equilibrium between dissolved MgCO3, MgO and carbon dioxide gas has been studied. The results satisfactorily obey thermodynamic theory based upon a melt

  14. Determination of lithium in rocks by distillation

    Science.gov (United States)

    Fletcher, M.H.

    1949-01-01

    A method for the quantitative extraction and recovery of lithium from rocks is based on a high temperature volatilization procedure. The sample is sintered with a calcium carbonate-calcium chloride mixture at 1200?? C. for 30 minutes in a platinum ignition tube, and the volatilization product is collected in a plug of Pyrex glass wool in a connecting Pyrex tube. The distillate, which consists of the alkali chlorides with a maximum of 5 to 20 mg. of calcium oxide and traces of a few other elements, is removed from the apparatus by dissolving in dilute hydrochloric acid and subjected to standard analytiaal procedures. The sinter residues contained less than 0.0005% lithium oxide. Lithium oxide was recovered from synthetic samples with an average error of 1.1%.

  15. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  16. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jian-Gan; Yang, Ying; Huang, Zheng-Hong; Kang, Feiyu

    2015-01-01

    MnO-carbon hybrid nanofiber composites are fabricated by electrospinning polyimide/manganese acetylacetonate precursor and a subsequent carbonization process. The composition, phase structure and morphology of the composites are characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the composites exhibit good nanofibrous morphology with MnO nanoparticles uniformly encapsulated by carbon nanofibers. The hybrid nanofiber composites are used directly as freestanding anodes for lithium-ion batteries to evaluate their electrochemical properties. It is found that the optimized MnO-carbon nanofiber composite can deliver a high reversible capacity of 663 mAh g −1 , along with excellent cycling stability and good rate capability. The superior performance enables the composites to be promising candidates as an anode alternative for high-performance lithium-ion batteries

  17. Rheological Behavior of Carbon Nanotubes as an Additive on Lithium Grease

    Directory of Open Access Journals (Sweden)

    Alaa Mohamed

    2013-01-01

    Full Text Available The rheological behaviors of carbon nanotubes (CNTs as an additive on lithium grease at different concentrations were examined under various settings of shear rate, shear stress, and apparent viscosity. The results indicated that the optimum content of the CNTs was 2%. These experimental investigations were evaluated with a Brookfield Programmable Rheometer DV-III ULTRA. The results indicated that the shear, stress and apparent viscosity increase with the increase of CNTs concentration. The microstructure of CNTs and lithium grease was examined by high resolution transmission electron microscope (HRTEM and scanning electron microscope (SEM. The results indicated that the microscopic structure of the lithium grease presents a more regular and homogeneous network structure, with long fibers, which confirms the rheological stability.

  18. Thermal stability and oxidizing properties of mixed alkaline earth-alkali molten carbonates: A focus on the lithium-sodium carbonate eutectic system with magnesium additions

    International Nuclear Information System (INIS)

    Frangini, Stefano; Scaccia, Silvera

    2013-01-01

    Highlights: • TG/DSC analysis was conducted on magnesium-containing eutectic Li/Na eutectic carbonates. • Magnesium influence on the oxygen solubility properties of carbonate was also experimentally determined at 600 °C and 650 °C. • A reproducible partial decarbonation process in premelting region caused formation of magnesium oxycarbonate-like phases. • The acidobase buffering action of magnesium oxycarbonate species could explain the high basic/oxidizing properties of such carbonate melts. • A general correlation between thermal instability in premelting region and basic/oxidizing melt properties was established. - Abstract: A comparative study on thermal behavior and oxygen solubility properties of eutectic 52/48 lithium/sodium carbonate salt containing minor additions of magnesium up to 10 mol% has been made in order to determine whether a general correlation between these two properties can be found or not. Consecutive TG/DSC heating/cooling thermal cycles carried out under alternating CO 2 and N 2 gas flows allowed to assign thermal events observed in the premelting region to a partial decarbonation process of the magnesium-alkali mixed carbonates. The observed decarbonation process at 460 °C is believed to come from initial stage of thermal decomposition of magnesium carbonate resulting in the metastable formation of magnesium oxycarbonate-like phases MgO·2MgCO 3 , in a similar manner as previously reported for lanthanum. Reversible formation and decomposition of the magnesium carbonate phase has been observed under a CO 2 gas atmosphere. The intensity of the decomposition process shows a maximum for a 3 mol% MgO addition that gives also the highest oxygen solubility, suggesting therefore that instability thermal analysis in the premelting region can be considered as providing an effective measure of the basicity/oxidizing properties of alkali carbonate melts with magnesium or, in more general terms, with cations that are strong modifiers of

  19. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  20. Dosimetric evaluation of lithium carbonate (Li2CO3) as a dosemeter for gamma-radiation dose measurements.

    Science.gov (United States)

    Popoca, R; Ureña-Núñez, F

    2009-06-01

    This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.

  1. Excess lithium storage in LiFePO4-Carbon interface by ball-milling

    Science.gov (United States)

    Guo, Hua; Song, Xiaohe; Zheng, Jiaxin; Pan, Feng

    2016-07-01

    As one of the most popular cathode materials for high power lithium ion batteries (LIBs) of the electrical-vehicle (EV), lithium iron phosphate (LiFePO4 (LFP)) is limited to its relatively lower theoretical specific capacity of 170mAh g-1. To break the limits and further improve the capacity of LFP is promising but challenging. In this study, the ball-milling method is applied to the mixture of LFP and carbon, and the effective capacity larger than the theoretical one by 30mAh g-1 is achieved. It is demonstrated that ball-milling leads to the LFP-Carbon interface to store the excess Li-ions.

  2. Hierarchical three-dimensional porous SnS{sub 2}/carbon cloth anode for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Junfeng, E-mail: chchjjff@163.com [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Zhang, Xiutai [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Xing, Shumin [College of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000 (China); Fan, Qiufeng; Yang, Junping; Zhao, Luhua; Li, Xiang [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China)

    2016-08-15

    Graphical abstract: Hierarchical 3D porous SnS{sub 2}/carbon cloth, good electrochemical performance. - Highlights: • Hierarchical 3D porous SnS{sub 2}/carbon cloth has been firstly synthesized. • The SnS{sub 2}/carbon clothes were good candidates for excellent lithium ion batteries. • The SnS{sub 2}/carbon cloth exhibits improved capacity compared to pure SnS{sub 2}. - Abstract: Hierarchical three-dimension (3D) porous SnS{sub 2}/carbon clothes were synthesized via a facile polyol refluxing process. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) and UV–vis diffuse reflectance spectrometer (UV–vis DRS). The 3D porous SnS{sub 2}/carbon clothes-based lithium ion batteries exhibited high reversible capacity and good rate capability as anode materials. The good electrochemical performance for lithium ion storage could be attributed to the special nanostructure, leading to high-rate transportation of electrolyte ion and electrons throughout the electrode matrix.

  3. Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring.

    Science.gov (United States)

    Eltayib, Eyman; Brady, Aaron J; Caffarel-Salvador, Ester; Gonzalez-Vazquez, Patricia; Zaid Alkilani, Ahlam; McCarthy, Helen O; McElnay, James C; Donnelly, Ryan F

    2016-05-01

    We describe, for the first time, hydrogel-forming microneedle (s) (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2mmol/l. However, after 1h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15mg/kg and 30mg/kg lithium carbonate, respectively. MN arrays were applied 1h after dosing and removed 1h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5% compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in outpatient settings. We will now focus on correlation between serum and MN lithium concentrations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Transformation from hollow carbon octahedra to compressed octahedra and their use in lithium-ion batteries

    International Nuclear Information System (INIS)

    Mei, Tao; Li, Na; Li, Qianwen; Xing, Zheng; Tang, Kaibin; Zhu, Yongchun; Qian, Yitai; Shen, Xiaoyan

    2012-01-01

    Graphical abstract: Schematic illustration of the transformation process from hollow carbon octahedra into deflated balloon-like compressed hollow carbon octahedra ▪. Highlights: ► We demonstrate the in situ template synthesis of hollow carbon octahedra. ► The shell thickness of hollow carbon octahedra is only 2.5 nm. ► Morphology transformation could be realized by extending of reaction time. ► The hollow structures show reversible capacity as 353 mAh g −1 after 100 cycles. -- Abstract: Hollow carbon octahedra with an average size of 300 nm and a shell thickness of 2.5 nm were prepared by a reaction starting from ferrocene and Mg(CH 3 COO) 2 ·4H 2 O at 700 °C for 10 h. They became compressed and turned into deflated balloon-like octahedra when the reaction time was increased to 16 h. It was proposed that the gas pressure generated during the reaction process induced the transformation from broken carbon hollow octahedra into deflated balloon-like compressed octahedra. X-ray powder diffraction and Raman spectroscopy indicate that the as-obtained carbon products possess a graphitic structure and high-resolution transmission electron microscopy images indicate that they have low crystallinity. Their application as an electrode shows reversible capacity of 353 mAh g −1 after 100 cycles in the charge/discharge experiments of secondary lithium ion batteries.

  5. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries.

    Science.gov (United States)

    Caballero, Alvaro; Hernán, Lourdes; Morales, Julián

    2011-05-23

    Two disordered microporous carbons were obtained from two different types of biomass residues: olive and cherry stones. The former (OS) was activated physically under steam while the latter (CS) chemically with an aqueous solution of ZnCl(2). Their structural and textural properties were studied by X-ray diffraction, scanning electron microscopy, and N(2) adsorption/desorption. Although the samples possess similar textural properties (BET surface areas, micropore surfaces and volumes), the CS carbon is more disordered than the OS carbon. Their electrochemical response in half-cells (CS[OS]/Li) is good; the values are comparable to those obtained from mesocarbon microbeads commonly used in commercial lithium-ion batteries, which consist of highly graphitized carbon. However, cells featuring the OS or CS carbon as anode and LiMn(2)O(4) as cathode perform poorly. Electrochemical activation of the electrodes against lithium metal, a recommended procedure for boosting the electrochemical properties of real lithium-ion batteries, improves cell performance (particularly with OS) but is ultimately ineffective: the delivered average capacity of the activated cell made from OS was less than half its theoretical value. The high irreversible capacity, high polarization between the charge and discharge curves, combined with the presence of various functional groups and the high disorder of the studied carbons which may facilitate side reactions such as electrolyte decomposition, results in a degraded cell performance. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    Science.gov (United States)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  7. Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance

    KAUST Repository

    Das, Shyamal K.; Mallavajula, Rajesh; Jayaprakash, Navaneedhakrishnan; Archer, Lynden A.

    2012-01-01

    Composites of MoS 2 and amorphous carbon are grown and self-assembled into hierarchical nanostructures via a hydrothermal method. Application of the composites as high-energy electrodes for rechargeable lithium-ion batteries is investigated

  8. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  9. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

    International Nuclear Information System (INIS)

    He, Weisheng; Cui, Zili; Liu, Xiaochen; Cui, Yanyan; Chai, Jingchao; Zhou, Xinhong; Liu, Zhihong; Cui, Guanglei

    2017-01-01

    The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window (<4.0 V vs. Li + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5 S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C-rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

  10. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  11. Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 °C

    International Nuclear Information System (INIS)

    Koo, Bonjae; Lee, Jeongmin; Lee, Yongwon; Kim, Jun Ki; Choi, Nam-Soon

    2015-01-01

    Highlights: •The combination of tris(trimethylsilyl) phosphite and vinylene carbonate improves the electrochemical performance of lithium manganese oxide/graphite cells at 60 °C. •Removal of hydrogen fluoride and water by tris(trimethylsilyl) phosphite suppresses manganese dissolution from lithium manganese oxide. -- Abstract: The organophosphorus compounds tris(trimethylsilyl) phosphite (TMSP) and vinylene carbonate (VC) have been considered for use as functional additives to improve the electrochemical performance of Li 1.1 Mn 1.86 Mg 0.04 O 4 (LMO)/graphite full cells. Our investigation reveals that the combination of VC and TMSP as additives enhances the cycling properties and storage performance of full cells at 60 °C. The unique functions of the TMSP additive in the VC electrolyte are investigated via ex situ X-ray photoelectron spectroscopy (XPS) and 19 F nuclear magnetic resonance (NMR) measurements. The TMSP additive effectively eliminates trace water and hydrogen fluoride (HF) and produces a protective film on the LMO cathode that alleviates manganese dissolution at 60 °C

  12. Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Jianping; Wu, Ping; Lou, Feijian; Zhang, Peng; Tang, Yawen; Zhou, Yiming; Lu, Tianhong

    2013-01-01

    Highlights: •SnS 2 nanosheets densely and uniformly anchored on 3D mesoporous carbon matrix. •Unique structural characteristics of both 2D nanosheet and 3D porous carbon matrix. •Markedly enhanced lithium storage capability by virtue of its structure superiority. -- Abstract: This paper reports a novel type of nanohybrid, mesoporous carbon anchored with SnS 2 nanosheets (MC-SnS 2 NSs), which integrates the structural characteristics of both two-dimensional (2D) nanosheet and 3D porous carbon matrix. When evaluated as an anode for lithium-ion batteries, the MC-SnS 2 NSs exhibits significantly enhanced cycling stability and rate capability by virtue of its unique structural superiority

  13. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  14. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    Science.gov (United States)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  15. Rheological Behavior of Carbon Nano tubes as an Additive on Lithium Grease

    International Nuclear Information System (INIS)

    Mohamed, A.; Zaki, M.; Mohamed, A.; Khattab, A.A.; Osman, T.A.

    2013-01-01

    The rheological behaviors of carbon nano tubes (CNTs) as an additive on lithium grease at different concentrations were examined under various settings of shear rate, shear stress, and apparent viscosity. The results indicated that the optimum content of the CNTs was 2%. These experimental investigations were evaluated with a Brookfield Programmable Rheometer DV-III ULTRA. The results indicated that the shear, stress and apparent viscosity increase with the increase of CNTs concentration. The microstructure of CNTs and lithium grease was examined by high resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM). The results indicated that the microscopic structure of the lithium grease presents a more regular and homogeneous network structure, with long fibers, which confirms the rheological stability.

  16. Three-dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Zhang, Miao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); He, Fang; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China)

    2016-12-30

    Highlights: • The 3D core-shell Fe{sub 2}O{sub 3}@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe{sub 2}O{sub 3} nanorods and outer carbon layer. • The Fe{sub 2}O{sub 3}@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe{sub 2}O{sub 3} nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe{sub 2}O{sub 3} nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe{sub 2}O{sub 3} to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  17. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  18. Reversible storage of lithium in a rambutan-like tin-carbon electrode.

    Science.gov (United States)

    Deng, Da; Lee, Jim Yang

    2009-01-01

    Fruity electrodes: A simple bottom-up self-assembly method was used to fabricate rambutan-like tin-carbon (Sn@C) nanoarchitecture (see scheme, green Sn) to improve the reversible storage of lithium in tin. The mechanism of the growth of the pear-like hairs is explored.

  19. Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics

    International Nuclear Information System (INIS)

    Kaspar, Jan; Mera, Gabriela; Nowak, Andrzej P.; Graczyk-Zajac, Magdalena; Riedel, Ralf

    2010-01-01

    This paper presents the lithium insertion into carbon-rich polymer-derived silicon carbonitride (SiCN) ceramic synthesized by the thermal treatment of poly(diphenylsilylcarbodiimide) at three temperatures, namely 1100, 1300, and 1700 o C under 0.1 MPa Ar atmosphere. At lower synthesis temperatures, the material is X-ray amorphous, while at 1700 o C, the SiCN ceramic partially crystallizes. Anode materials prepared from these carbon-rich SiCN ceramics without any fillers and conducting additives were characterized using cyclic voltammetry and chronopotentiometric charging/discharging. We found that the studied silicon carbonitride ceramics demonstrate a promising electrochemical behavior during lithium insertion/extraction in terms of capacity and cycling stability. The sample synthesized at 1300 o C exhibits a reversible capacity of 392 mAh g -1 . Our study confirms that carbon-rich SiCN phases are electrochemically active materials in terms of Li inter- and deintercalation.

  20. Enhancing the Lithium Storage Performance of Graphene/SnO2 Nanorods by a Carbon-Riveting Strategy.

    Science.gov (United States)

    Liu, Xianghong; Ma, Tiantian; Sun, Li; Xu, Yongshan; Zhang, Jun; Pinna, Nicola

    2018-04-25

    Graphene/metal oxide (MO) nanocomposites hold great promise for application as anodes in lithium-ion batteries (LIBs). However, the restacking of graphene during subsequent processing remains a challenge to overcome for enhanced lithium storage properties. Herein, the fabrication of sandwich-architecture carbon-riveted graphene/SnO 2 nanorods, in which the SnO 2 nanorods are confined in the nanospaces formed by the carbon layers on graphene, by a two-step hydrothermal process followed by thermal treatment, is reported. Electrochemical tests show that the carbon-riveted nanolayers significantly improve the lithium storage performance of graphene/SnO 2 . The nanocomposite displays a high reversible capacity of 815 mAh g -1 after 150 cycles at 100 mA g -1 and high cycling stability at 1000 mA g -1 . This work provides an efficient way to manipulate graphene/MO-based nanocomposites for LIBs with improved performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Manzo, Michele; Gallo, Katia, E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2016-03-21

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, as well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode–PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN–PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.

  2. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  3. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  4. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    Science.gov (United States)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-07-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  5. Precipitation of hydrated Mg carbonate with the aid of carbonic anhydrase for CO2 sequestration

    Science.gov (United States)

    Power, I. M.; Harrison, A. L.; Dipple, G. M.

    2011-12-01

    Strategies for sequestering CO2 directly from the atmosphere are likely required to achieve the desired reduction in CO2 concentration and avoid the most damaging effects of climate change [1]. Numerous studies have demonstrated the accelerated precipitation of calcium carbonate minerals with the aid of carbonic anhydrase (CA) as a means of sequestering CO2 in solid carbonate form; however, no study has examined precipitation of magnesium carbonate minerals using CA. Precipitation of magnesite (MgCO3) is kinetically inhibited [2]; therefore, Mg2+ must be precipitated as hydrated carbonate minerals. In laboratory experiments, the uptake of atmospheric CO2 into brine solutions (0.1 M Mg) was rate-limiting for the precipitation of dypingite [Mg5(CO3)4(OH)2-5H2O] with initial precipitation requiring 15 days [3]. It was also found that dypingite precipitation outpaced the uptake of CO2 gas into solution. CO2 uptake is limited by the hydration of CO2 to form carbonate ions [4]. Carbonic anhydrase (CA) enzymes are among the fastest known in nature and are able to catalyze the hydration of CO2, i.e., converting CO2(aq) to CO32- and HCO3- [5]. CA plays an important role in the carbon concentrating mechanism of photoautotrophic, chemoautotrophic, and heterotrophic prokaryotes and is involved in pH homeostasis, facilitated diffusion of CO2, ion transport, and the interconversion of CO2 and HCO3- [6]. Introducing CA into buffered Mg-rich solutions should allow for more rapid precipitation of hydrated magnesium carbonate minerals. Batch experiments were conducted using 125 mL flasks containing 100 mL of Millipore deionized water with 0.2 M of MgCl2-6H2O. To buffer pH, 1.0 g of pulverized brucite [Mg(OH)2] or 1.0 g of NaOH was added to the systems, which were amended with Bovine carbonic anhydrase (BCA) (Sigma-Aldrich). Solutions were stirred continuously and kept at room temperature (~22°C) with laboratory air introduced by bubbling. Temperature and pH were measured routinely

  6. One-Pot Synthesis of Carbon-Coated SnO 2 Nanocolloids with Improved Reversible Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen; Chen, Jun Song; Chen, Peng; Archer, Lynden A.

    2009-01-01

    of 300 mA/g in hybrid SnO 2-carbon electrodes containing as much as 1/3 of their mass in the low-activity carbon shell. By reducing the SnO 2-carbon particles with H 2, we demonstrate a simple route to carbon-coated Sn nanospheres. Lithium storage

  7. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries

    OpenAIRE

    Hellqvist Kjell, Maria; Jacques, Eric; Zenkert, Dan; Behm, Mårten; Lindbergh, Göran

    2011-01-01

    Several grades of commercially-available polyacrylonitrile (PAN)-based carbon fibers have been studied for structural lithium-ion batteries to understand how the sizing, different lithiation rates and number of fibers per tow affect the available reversible capacity, when used as both current collector and electrode, for use in structural batteries. The study shows that at moderate lithiation rates, 100 mA g-1, most of the carbon fibers display a reversible capacity close to or above 100 mAh ...

  8. Influence of heat-treatment on lithium ion anode properties of mesoporous carbons with nanosheet-like walls

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong; Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-15

    Highlights: ► Mesoporous carbons possess unique nanosheet-like pore walls which can be changed by heat treatment. ► Lithium ion anode properties of mesoporous carbons could be influenced by the nanosheet-like walls. ► Mesoporous carbons with nanosheet-like walls exhibit enhanced electrochemical properties LIBs. -- Abstract: Mesoporous carbons (MCs) with nanosheet-like walls have been prepared as electrodes for lithium-ion batteries by a simple one-step infiltrating method under the action of capillary flow. The influence of heat treatment temperature on the surface topography, pore/phase structure and anode performances of as-prepared materials has been investigated. The results reveal that melted liquid-crystal polycyclic aromatic hydrocarbons could be anchored on liquid/silica interfaces by molecule engineering. After carbonization, the nanosheets are formed as the pore walls of MCs and are perpendicular to the long axis of pores. The anode properties demonstrate that C-1200 displays higher reversible capacitance than those treated in higher temperature. The rate performances of C-1200 and C-1800 are similar and more excellent than that of C-2400. These improved lithium ion anode properties could be attributed to the nanosheet-like walls of MCs which can be influenced by the heat treatment temperature.

  9. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Yanyi; Liu, Dawei; Zhang, Qifeng; Yu, Danmei; Liu, Jun; Cao, Guozhong

    2011-01-01

    This paper reports sol-gel derived nanostructured LiFePO4/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO4/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO4/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO4 electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions.

  10. 131I therapy of Graves' disease using lithium

    International Nuclear Information System (INIS)

    Sato, Kenshi

    1983-01-01

    Lithium is known to cause goiter and hypothyroidism. In the mechanism of goitrogenesis, there is general agreement that lithium inhibits the release of the thyroid hormones from the thyroid gland without significantly impairing other thyroid functions. The present study was undertaken, therefore, to investigate the usefulness of lithium in the radioiodine treatment of Graves' disease. Nine patients with Graves' disease who were all, except one, previously treated with antithyroid drugs were studied. 600 mg of lithium carbonate were administered daily to investigate the effects on thyroidal 131 I uptake, disappearance rate of 131 I from the prelabeled thyroid and the serum concentrations of thyroid hormones. Lithium showed no significant effect on the thyroidal 131 I uptake when the 24 hour thyroidal 131 I uptakes were determined both before and during lithium treatment in the five cases. On the other hand, lithium clearly prolonged the mean value of effective half-lives of 131 I to approximately 8 days vs. 5.1 days before lithium treatment (p 4 and T 3 levels significantly decreased during lithium treatment, from 21.3 to 12.4μg/dl (n=9, p 131 I for the Graves' disease can be reduced by using lithium, the radiation exposure to the total body is decreased. Moreover, it is possible to perform the 131 I therapy while improving the thyrotoxicosis with lithium. Finally, it is concluded that lithium is a very useful drug to be combined with the 131 I therapy of Graves' disease. (author)

  11. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  12. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous; Dong, Zhihua; Warzywoda, Juliusz; Fan, Zhaoyang

    2017-01-01

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li_2S_8–Li_2S_6). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  13. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States); Dong, Zhihua [Hangzhou Dianzi University, No. 1158, 2nd Street, Xiasha Higher Education District, Hangzhou City, Zhejiang Province (China); Warzywoda, Juliusz [Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Fan, Zhaoyang, E-mail: zhaoyang.fan@ttu.edu [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States)

    2017-02-28

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li{sub 2}S{sub 8}–Li{sub 2}S{sub 6}). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  14. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery

    Science.gov (United States)

    Bae, Joonwon

    2011-07-01

    Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer@PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT@C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

  15. Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Reddy, MV

    2014-05-01

    Full Text Available at ScienceDirect Electrochimica Acta jo ur nal ho me p age: www.elsev ier .com/ locate /e lec tac ta Graphical Abstract Electrochimica Acta xxx (2013) xxx–xxx Studies on Bare and Mg-doped LiCoO2 as a cathode material for Lithium ion Batteries M.V. Reddy... for Lithium ion Batteries M.V. Reddy∗, Thor Wei Jie, Charl J. Jafta, Kenneth I. Ozoemena, Mkhulu K. Mathe, A. Sree Kumaran Nair, Soo Soon Peng, M. Sobri Idris, Geetha Balakrishna, Fabian I. Ezema, B.V.R. Chowdari • Layered compounds, Li...

  16. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  17. Improving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.

    Science.gov (United States)

    Schneider, Artur; Janek, Jürgen; Brezesinski, Torsten

    2017-03-22

    The use of monolithic carbons with structural hierarchy and varying amounts of nitrogen and oxygen functionalities as sulfur host materials in high-loading lithium-sulfur cells is reported. The primary focus is on the strength of the polysulfide/carbon interaction with the goal of assessing the effect of (surface) dopant concentration on cathode performance. The adsorption capacity - which is a measure of the interaction strength between the intermediate lithium polysulfide species and the carbon - was found to scale almost linearly with the nitrogen level. Likewise, the discharge capacity of lithium-sulfur cells increased linearly. This positive correlation can be explained by the favorable effect of nitrogen on both the chemical and electronic properties of the carbon host. The incorporation of additional oxygen-containing surface groups into highly nitrogen-functionalized carbon helped to further enhance the polysulfide adsorption efficiency, and therefore the reversible cell capacity. Overall, the areal capacity could be increased by almost 70% to around 3 mA h cm -2 . We believe that the design parameters described here provide a blueprint for future carbon-based nanocomposites for high-performance lithium-sulfur cells.

  18. Systematic investigations on acyclic organic carbonate solvents for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, J.; Peter, S.; Novak, P.

    2003-03-01

    Electrochemical cycling tests on cells with graphite electrodes and several alkyl methyl carbonates were performed. Experiments with mixed binary solvent electrolytes with ethylene carbonate (EC) showed that the alkyl methyl carbonates H{sub 3}CO(CO)O(CH{sub 2}){sub n}H (n = 3-5) are suitable as co-solvents in lithium-ion batteries. Ternary mixtures of EC, BMC, and propylene carbonate (PC) showed better overall performances than EC/PC electrolytes. The branched isobutyl methyl carbonate (i-BMC) outperforms its linear isomer (BMC) in terms of electrochemical performance. LiPF{sub 6} is superior to LiClO{sub 4} as conducting salt in both EC/BMC and EC/i-BMC mixtures in terms of electrolyte conductivity, rate capability, and cycling stability. (author)

  19. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  20. In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Wu, Ruofei; Xia, Guofeng; Shen, Shuiyun; Zhu, Fengjuan; Jiang, Fengjing; Zhang, Junliang

    2015-01-01

    Graphical abstract: In-situ soft-templated LFP nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs), exhibited superior electrochemical performance due to the synergetic effect between CNTs and CNSs, which form interconnected conductive network for fast transport of both electrons and lithium ions. - Highlights: • LFP nanocrystals were in-situ synthesized on interconnected CNTs/CNSs framework with an in-situ soft-templated method. • LFP@CNTs/CNSs exhibited superior rate capability and cycling stability, due to interconnected conductive network for fast transport of both electrons and lithium ions. • The synergetic effect between CNTs and CNSs on the electrochemical performance of LFP electrode was demonstrated by a systematically electrochemical study compared with LFP/CNSs and LFP/CNTs. - Abstract: Lithium ion phosphate (LiFePO 4 ) nanocrystals are successfully in-situ grown on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs) with a soft-templated method, which involves the multi-constituent co-assembly of a triblock copolymer, CNTs, resol and precursors of LFP followed by thermal treatment. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and N 2 adsorption-desorption techniques are used to characterize the structure and morphology of the as-synthesized materials. When used as the cathode of lithium ion batteries, the LFP@CNTs/CNSs composite exhibits superior rate capability and cycling stability, compared with the samples modified only with CNSs (designated as LFP/CNSs) or with CNTs (designated as LFP/CNTs). This is mainly attributed to the synergetic effect between CNTs and CNSs caused by their unique structure, which forms interconnected conductive network for fast transport of both electrons and lithium ions, and thus remarkably improves the electrode kinetics. Firstly, nano-sized LFP are in-situ grown on the

  1. Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 Nano materials

    CSIR Research Space (South Africa)

    Palaniyandy, Nithyadharseni

    2017-09-01

    Full Text Available In this paper, we show that magnesium and cobalt doped SnO2 (Mg-SnO2 and Co-SnO2) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO2 and zinc doped SnO2 (Zn-Sn...

  2. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  3. Highly Graphitic Carbon Nanofibers Web as a Cathode Material for Lithium Oxygen Batteries

    Directory of Open Access Journals (Sweden)

    Hyungkyu Han

    2018-01-01

    Full Text Available The lithium oxygen battery is a promising energy storage system due to its high theoretical energy density and ability to use oxygen from air as a “fuel”. Although various carbonaceous materials have been widely used as a cathode material due to their high electronic conductivity and facial processability, previous studies mainly focused on the electrochemical properties associated with the materials (such as graphene and carbon nanotubes and the electrode configuration. Recent reports demonstrated that the polarization associated with cycling could be significantly increased by lithium carbonates generated from the reaction between the carbon cathode and an electrolyte, which indicates that the physicochemical properties of the carbon cathode could play an important role on the electrochemical performances. However, there is no systematic study to understand these phenomena. Here, we systematically explore the electrochemical properties of carbon nanofibers (CNF webs with different graphitization degree as a cathode for Li oxygen batteries. The physicochemical properties and electrochemical properties of CNF webs were carefully monitored before and after cycling. CNF webs are prepared at 1000, 1200 and 1400 °C. CNF web pyrolyzed at 1400 °C shows lowered polarization and improved cycle retention compared to those of CNF webs pyrolyzed at 1000 and 1200 °C.

  4. Particulate inverse opal carbon electrodes for lithium-ion batteries.

    Science.gov (United States)

    Kang, Da-Young; Kim, Sang-Ok; Chae, Yu Jin; Lee, Joong Kee; Moon, Jun Hyuk

    2013-01-29

    Inverse opal carbon materials were used as anodes for lithium ion batteries. We applied particulate inverse opal structures and their dispersion in the formation of anode electrodes via solution casting. We prepared aminophenyl-grafted inverse opal carbons (a-IOC), inverse opal carbons with mesopores (mIOC), and bare inverse opal carbons (IOC) and investigated the electrochemical behavior of these samples as anode materials. Surface modification by aminophenyl groups was confirmed by XPS measurements. TEM images showed mesopores, and the specific area of mIOC was compared with that of IOC using BET analysis. A half-cell test was performed to compare a-IOC with IOC and mIOC with IOC. In the case of the a-IOC structure, the cell test revealed no improvement in the reversible specific capacity or the cycle performance. The mIOC cell showed a reversible specific capacity of 432 mAh/g, and the capacity was maintained at 88%-approximately 380 mAh/g-over 20 cycles.

  5. MoS2 coated hollow carbon spheres for anodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yufei; Wang, Ye; Shi, Wenhui; Yang, Huiying; Yang, Jun; Huang, Wei; Dong, Xiaochen

    2016-01-01

    With the assistance of resorcinol–formaldehyde, MoS 2 coated hollow carbon spheres (C@MoS 2 ) were synthesized through a facile hydrothermal route followed by heat and alkali treatments. The measurements indicate that the hollow carbon spheres with an average diameter of 300 nm and shell thickness of 20 nm. And the hollow core are uniformly covered by ultrathin MoS 2 nanosheets with a length increased to 400 nm. The unique hollow structure and the synergistic effect between carbon layer and MoS 2 nanosheets significantly enhance the rate capability and electrochemical stability of C@MoS 2 spheres as anode material of lithium-ion battery. The synthesized C@MoS 2 delivered a capacity of 750 mAh g −1 at a current density of 100 mA g −1 . More importantly, the C@MoS 2 maintained a reversible capacity of 533 mAh g −1 even at a high current density of 1000 mA g −1 . The study indicated that MoS 2 coated hollow carbon spheres can be promising anode material for next generation high-performance lithium-ion batteries. (paper)

  6. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  7. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

    Science.gov (United States)

    Fang, Yin; Lv, Yingying; Che, Renchao; Wu, Haoyu; Zhang, Xuehua; Gu, Dong; Zheng, Gengfeng; Zhao, Dongyuan

    2013-01-30

    We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle close-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.

  8. Interdispersed amorphous MnO{sub x}-carbon nanocomposites with superior electrochemical performance as lithium-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD (United States); Liu, Qing; Zachariah, Michael R. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD (United States)

    2012-02-22

    The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnO{sub x}-C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnO{sub x} blocks the penetration of liquid electrolyte to the inside of MnO{sub x}, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnO{sub x} brings additional benefits by reducing the stress/strain of the conversion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnO{sub x}-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Lithium carbonate and coenzyme Q10 reduce cell death in a cell model of Machado-Joseph disease

    Directory of Open Access Journals (Sweden)

    C.M. Lopes-Ramos

    Full Text Available Machado-Joseph disease (MJD or spinocerebellar ataxia type 3 (SCA3 is an autosomal dominant neurodegenerative disorder caused by expansion of the polyglutamine domain of the ataxin-3 (ATX3 protein. MJD/SCA3 is the most frequent autosomal dominant ataxia in many countries. The mechanism underlying MJD/SCA3 is thought to be mainly related to protein misfolding and aggregation leading to neuronal dysfunction followed by cell death. Currently, there are no effective treatments for patients with MJD/SCA3. Here, we report on the potential use of lithium carbonate and coenzyme Q10 to reduce cell death caused by the expanded ATX3 in cell culture. Cell viability and apoptosis were evaluated by MTT assay and by flow cytometry after staining with annexin V-FITC/propidium iodide. Treatment with lithium carbonate and coenzyme Q10 led to a significant increase in viability of cells expressing expanded ATX3 (Q84. In addition, we found that the increase in cell viability resulted from a significant reduction in the proportion of apoptotic cells. Furthermore, there was a significant change in the expanded ATX3 monomer/aggregate ratio after lithium carbonate and coenzyme Q10 treatment, with an increase in the monomer fraction and decrease in aggregates. The safety and tolerance of both drugs are well established; thus, our results indicate that lithium carbonate and coenzyme Q10 are good candidates for further in vivo therapeutic trials.

  10. Solvothermal synthesis of Mg-doped Li2FeSiO4/C nanocomposite cathode materials for lithium-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Naik, V. M.; Nazri, G. A.; Naik, R.

    Lithium transition metal orthosilicates, such as Li2FeSiO4 and Li2MnSiO4, as cathode material have attracted much attention lately due to their high theoretical capacity ( 330 mAh/g), low cost, and environmental friendliness. However, they suffer from poor electronic conductivity and slow lithium ion diffusion in the solid phase. Several cation-doped orthosilicates have been studied to improve their electrochemical performance. We have synthesized partially Mg-substituted Li2Mgx Fe1-x SiO4-C, (x = 0.0, 0.01, 0.02, and 0.04) nano-composites by solvothermal method followed by annealing at 600oC in argon flow. The structure and morphology of the composites were characterized by XRD, SEM and TEM. The surface area and pore size distribution were measured by using N2 adsorption/desorption curves. The electrochemical performance of the Li2MgxFe1-x SiO4-C composites was evaluated by Galvanostatic cycling against metallic lithium anode, electrochemical impedance spectroscopy, and cyclic voltammetry. Li2Mg0.01Fe0.99SiO4-C sample shows a capacity of 278 mAh/g (at C/30 rate in the 1.5-4.6 V voltage window) with an excellent rate capability and stability, compared to the other samples. We attribute this observation to its higher surface area, enhanced electronic conductivity and higher lithium ion diffusion coefficient.

  11. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2011-01-01

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber

  12. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.

    Science.gov (United States)

    Liu, Yuxin; Liu, Ping; Wu, Dongqing; Huang, Yanshan; Tang, Yanping; Su, Yuezeng; Zhang, Fan; Feng, Xinliang

    2015-03-27

    Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron-doped, carbon-coated SnO2 /graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core-shell architecture and B-doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium-ion batteries with a highly stable capacity of 1165 mA h g(-1) at 0.1 A g(-1) after 360 cycles and an excellent rate capability of 600 mA h g(-1) at 3.2 A g(-1), and thus outperforms most of the previously reported SnO2-based anode materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  14. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  15. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2018-01-01

    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  16. Deposition of lithium on a plasma edge probe in TFTR -- Behavior of lithium-painted walls interacting with edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y. [Univ. of California, San Diego, La Jolla, CA (United States); Ashida, K. [Toyama Univ. (Japan); Kugel, H. [Princeton Univ., NJ (United States)] [and others

    1998-05-01

    Recent observations have indicated that lithium pellet injection wall conditioning plays an important role in achieving the enhanced supershot regime in TFTR. However, little is understood about the behavior of lithium-coated limiter walls, interacting with edge plasmas. In the final campaign of TFTR, a cylindrical carbon fiber composite probe was inserted into the boundary plasma region and exposed to ohmically-heated deuterium discharges with lithium pellet injection. The ion-drift side probe surface exhibits a sign of codeposition of lithium, carbon, oxygen, and deuterium, whereas the electron side essentially indicates high-temperature erosion. It is found that lithium is incorporated in these codeposits in the form of oxide at the concentration of a few percent. In the electron side, lithium has been found to penetrate deeply into the probe material, presumably via rapid diffusion through interplane spaces in the graphite crystalline. Though it is not conclusive, materials mixing in the carbon and lithium system appears to be a key process in successful lithium wall conditioning.

  17. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  18. Crown-ether functionalized carbon nanotubes for purification of lithium compounds: computational and experimental study

    International Nuclear Information System (INIS)

    Singha Deb, A.K.; Arora, S.K.; Joshi, J.M.; Ali, Sk. M.; Shenoy, K.T.; Goyal, Aiana

    2015-01-01

    Lithium compounds finds several applications in nuclear science and technology, viz, lithium fluoride/hydroxide/alloys are used as dosimetric materials in luminescence devices, molten-salt breeder reactor, international thermonuclear experimental reactor, single crystal based neutron detectors etc. The lithium compounds should be in a proper state of purity; especially it should not contain other alkali metal cations which can downgrade the performance. Hence, there is a need to develop a process for purification of the lithium salt to achieve the desired quality. Therefore an attempt has been made to develop advanced nanomaterials for purification of the lithium salts. In this work, benzo-15-crown-5(B15C5) functionalized carbon nanotubes (CNTs), owing to the good adsorption properties of CNT and alkali metal encapsulation behaviour of B15C5, were showed to bind preferentially with sodium and potassium ions compared to lithium ions. DFT based computation calculations have shown that the free energy of complexation of Na + and K + by B15C5-CNT is higher than that of Li + , implying that B15C5-CNT selectively binds Na + and K + . The experimental batch solid-liquid extraction has also revealed the same trend as in the calculations. The crown-ethers functionalized CNTs have the potentiality for use in purifying lithium compounds. (author)

  19. Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Kim, Jinwoo; Kim, Ji Yoon; Pham-Cong, De; Jeong, Se Young; Chang, Jinho; Choi, Jun Hee; Braun, Paul V.; Cho, Chae Ryong

    2016-01-01

    Highlights: • Li_4Ti_5O_1_2 nanofibers are fabricated by electrospinning and annealing process. • Carbon-coated Li_4Ti_5O_1_2 nanofibers are prepared by hydrothermal process. • Individually graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers are prepared by electrostatic force. • Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers. - Abstract: The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li_4Ti_5O_1_2 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110 mAh g"−"1 at 20C) and over two orders of magnitude higher diffusion coefficient (D_L_i = ∼1.04 × 10"−"1"1 cm"2 s"−"1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.

  20. Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Noelia; Caballero, Alvaro [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Morales, Julián, E-mail: iq1mopaj@uco.es [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Agostini, Marco [Department of Chemistry, SapienzaUniversity, P.zzale Aldo Moro 5, 00185, Rome (Italy); Hassoun, Jusef, E-mail: jusef.hassoun@unife.it [Università di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Via Fossato di Mortara 17, Ferrara (Italy)

    2016-09-01

    Three dimensional, flower-like hierarchical porous carbon (FPC) and its CO{sub 2}-activation (AFPC) are reported as sulfur-hosting matrixes in Li/S battery. The composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms as well as by galvanostatic cycling and electrochemical impedance spectroscopy (EIS) in lithium-cell. Both samples show well defined micrometric morphology and a sulfur content as high as 66% expected to reflect into rather high practical energy density of the electrode in lithium-sulfur battery. The lithium sulfur cell using the FPC-S composite exhibits at 25 °C a moderate cycling stability with delivered capacity ranging from 1000 to about 610 mAh g{sup −1} upon 50 cycles at 100 mA g{sup −1}. The AFPC-S composite reveals increased cycling stability and delivers a capacity ranging from 1000 to 680 mAh g{sup −1}. Improved capacity is achieved by slightly increasing the temperature, as demonstrated by cycling the FPC-S at 35 °C using a current as high as 500 mA g{sup −1}. The excellent rate capability of the electrode is associated to the carbon texture and morphology that significantly lower the cell resistance, as indeed demonstrated by EIS measurement upon cycling. - Highlights: • Sulfur electrode basing on activated, flower-like hierarchical porous carbon is reported. • Defined micrometric morphology and a sulfur content as high as 66% are obtained. • Lithium sulfur cell using the composite exhibits remarkable performances. • A specific capacity of about 1000 mAh g{sup −1} is obtained at high current rate. • The resulting Li/S battery has relevant energy content.

  1. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia [Department of Applied Physics, KTH - Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.

  2. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    International Nuclear Information System (INIS)

    Neumayer, Sabine M.; Rodriguez, Brian J.; Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.; Manzo, Michele; Gallo, Katia; Kholkin, Andrei L.

    2015-01-01

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity

  3. Lithium-induced downbeat nystagmus.

    Science.gov (United States)

    Schein, Flora; Manoli, Pierre; Cathébras, Pascal

    2017-09-01

    We report the case of a 76-year old lady under lithium carbonate for a bipolar disorder who presented with a suspected optic neuritis. A typical lithium-induced downbeat nystagmus was observed. Discontinuation of lithium therapy resulted in frank improvement in visual acuity and disappearance of the nystagmus.

  4. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system.

    Science.gov (United States)

    Kim, Seoni; Lee, Jaehan; Kang, Jin Soo; Jo, Kyusik; Kim, Seonghwan; Sung, Yung-Eun; Yoon, Jeyong

    2015-04-01

    Lithium is one of the most important elements in various fields including energy storage, medicine manufacturing and the glass industry, and demands for lithium are constantly increasing these days. The lime soda evaporation process using brine lake water is the major extraction method for lithium, but this process is not only inefficient and time-consuming but also causes a few environmental problems. Electrochemical recovery processes of lithium ions have been proposed recently, but the better idea for the silver negative electrodes used in these systems is required to reduce its cost or increase long term stability. Here, we report an electrochemical lithium recovery method based on a λ-MnO2/activated carbon hybrid supercapacitor system. In this system, lithium ions and counter anions are effectively captured at each electrode with low energy consumption in a salt solution containing various cationic species or simulated Salar de Atacama brine lake water in Chile. Furthermore, we designed this system as a flow process for practical applications. By experimental analyses, we confirmed that this system has high selectivity and long-term stability, with its performance being retained even after repetitive captures and releases of lithium ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Treatment of lithium tremor with the beta receptor blocker, pindolol].

    Science.gov (United States)

    Floru, L; Tegeler, J; Wolmsen, H

    1979-01-01

    In a cross-over study with Pindolol, 15 mg/day, against placebo, we studied during 4 weeks 22 patients aged between 20 and 65 years who where treated by means of lithium carbonate retard (Quilonum Retard). The tremor was measured twice a week by means of three apparative methods: an accelerometer, a 'hole-plate' and an 'aimed tapping plate', both constructed by Janke, and was also studied by means of a self-evaluation rating-scale. We obtained a positive therapeutic effect of Pindolol on lithium-induced tremor, which was statistically significant by means of the 'hole-plate' and of self-evaluation. Differences in results are discussed.

  6. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Ivanov, Ilia N. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia, E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  7. Protons in neutron-irradiated and thermochemically reduced MgO crystals doped with lithium impurities

    International Nuclear Information System (INIS)

    Gonzalez, R.; Pareja, R.; Chen, Y.

    1992-01-01

    H - (hydride) ions have been observed in lithium-doped MgO crystals which have been neutron irradiated or thermochemically reduced (TCR). Infrared-absorption measurements have been used to identify the local modes of the H - ions in these crystals. The concentration of the H - ions in the neutron-irradiated crystals is found to be far less than that found in the TCR crystals. The thermal stability of H - and oxygen vacancies in both oxidizing and reducing atmospheres are investigated. The emergence of sharp structures due to OH - ions is attributed to the displacements of substitutional Li + ions, leaving behind unperturbed OH - ions, via a mechanism of rapid radiation-induced diffusion during irradiation in a reactor. Results of neutron-irradiated MgO:Li, which had previously been oxidized at high temperature, are also presented

  8. MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium-sulfur batteries

    Science.gov (United States)

    Li, Zhengzheng

    2018-02-01

    MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be achieved. MGN@MC/S cathodes exhibit high reversible capacity of 1475 mA h g-1 at 0.1 C and an ultra-low capacity fading of 0.042% per cycle at 1 C over 450 cycles.

  9. Tuning hydrogen storage in lithium-functionalized BC2N sheets by doping with boron and carbon.

    Science.gov (United States)

    Qiu, Nian-xiang; Zhang, Cheng-hua; Xue, Ying

    2014-10-06

    First-principles calculations are used to explore the strong binding of lithium to boron- and carbon-doped BC2N monolayers (BC2NBC and BC2NCN, respectively) without the formation of lithium clusters. In comparison to BC2N and BC2NCB, lithium-decorated BC2NBC and BC2NCN systems possess stronger s-p and p-p hybridization and, hence, the binding energy is higher. Lithium becomes partially positively charged by donating electron density to the more electronegative atoms of the sheet. Attractive van der Waals interactions are responsible for binding hydrogen molecules around the lithium atoms. Each lithium atom can adsorb three hydrogen molecules on both sides of the sheet, with an average hydrogen binding energy of approximately 0.2 eV, which is in the range required for practical applications. The BC2NBC-Li and BC2NCN-Li complexes can serve as high-capacity hydrogen-storage media with gravimetric hydrogen capacities of 9.88 and 9.94 wt %, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [The acute renal and cerebral toxicity of lithium: a cerebro-renal syndrome? A case report].

    Science.gov (United States)

    Prencipe, M; Cicchella, A; Del Giudice, A; Di Giorgio, A; Scarlatella, A; Vergura, M; Aucella, F

    2013-01-01

    This descriptive report describes the case of a 50 year-old woman with bipolar disorder, whose maintenance therapy comprised risperidone, sodium valproato and lithium carbonate without any past occurrence of toxicity. Her past medical history was significant for hypertension, cardiopathy and obesity. She presented with a 1-week history of fever, increasing confusion and slurred speech. At presentation, the patient was somnolent. Laboratory investigations revealed a serum creatinine of 3,6 mg/dl, BUN 45 mg/dl serum lithium 3,0 mEq/L with polyuria defined as more than 3 litres a day. EEG and ECG were abnormal. CT brain scanning and lumbar puncture were negative for brain haemorrage or infection. Lithium toxicity causes impairment of renal concentration and encephalopathy due to lithium recirculation, a mechanism responsible for the so-called cerebro-renal syndrome, where dialysis plays an important role in treatment.The patient was treated with continous veno-venous haemodiafiltration (CVVHDF) over 35 hours with gradual improvement of her general condition and efficacy of renal concentration. Our case highlights a few important points. Lithium nefrotoxicity and neurotoxicity can cause a cerebro-renal syndrome even when serum lithium levels are not particularly raised (2,5-3,5 mEq/L). Haemodialysis is the treatment of choice to reduce the molecular mechanisms of lithium-related changes in urinary concentration and reinstate dopaminergic activity in the brain.

  11. Lithium alkyl anions of uranium(IV) and uranium(V)

    International Nuclear Information System (INIS)

    Sigurdson, E.R.; Wilkinson, G.

    1977-01-01

    Organouranium compounds with six or eight uranium-to-carbon sigma-bonds have been synthesized for the first time. The interaction of uranium tetrachloride with lithium alkyls in diethyl ether leads to the isolation of unstable lithium alkyluranate(IV) compounds of stoicheiometry Li 2 UR 6 .8Et 2 0 (R = Me, CH 2 SiMe 3 . Ph, and o-Me 2 NCH 2 C 6 H 4 ). These lithium salts can also be obtained with other donor solvents, such as tetrahydrofuran or NNN'N'-tetramethylethylenediamine. From uranium pentaethoxide similar lithium salts of stoicheiometry Li 3 UR 8 .3 dioxan (R = Me, CH 2 CMe 3 , and CH 2 SiMe 3 ) can be obtained. The interaction of uranium(VI) hexaisopropoxide with lithium, magnesium, or aluminium alkyls does not give compounds containing U-C bonds, but green oils, e.g. U(OPrsup(i)) 6 (MgMe 2 ) 3 , that appear to be adducts in which the oxygen atom of the isopropoxide group bound to uranium is acting as a donor. I.r. and n.m.r. spectroscopy and analytical data for the new compounds are presented. (author)

  12. Lithium carbonate in amyotrophic lateral sclerosis: lack of efficacy in a dose-finding trial.

    Science.gov (United States)

    Chiò, A; Borghero, G; Calvo, A; Capasso, M; Caponnetto, C; Corbo, M; Giannini, F; Logroscino, G; Mandrioli, J; Marcello, N; Mazzini, L; Moglia, C; Monsurrò, M R; Mora, G; Patti, F; Perini, M; Pietrini, V; Pisano, F; Pupillo, E; Sabatelli, M; Salvi, F; Silani, V; Simone, I L; Sorarù, G; Tola, M R; Volanti, P; Beghi, E

    2010-08-17

    A neuroprotective effect of lithium in amyotrophic lateral sclerosis (ALS) has been recently reported. We performed a multicenter trial with lithium carbonate to assess its tolerability, safety, and efficacy in patients with ALS, comparing 2 different target blood levels (0.4-0.8 mEq/L, therapeutic group [TG], vs 0.2-0.4 mEq/L, subtherapeutic group [STG]). The study was a multicenter, single-blind, randomized, dose-finding trial, conducted from May 2008 to November 2009 in 21 Italian ALS centers. The trial was registered with the public database of the Italian Agency for Drugs (http://oss-sper-clin.agenziafarmaco.it/) (EudraCT number 2008-001094-15). As of October 2009, a total of 171 patients had been enrolled, 87 randomized to the TG and 84 to the STG. The interim data analysis, performed per protocol, showed that 117 patients (68.4%) discontinued the study because of death/tracheotomy/severe disability, adverse events (AEs)/serious AEs (SAEs), or lack of efficacy. The Data Monitoring Committee recommended stopping the trial on November 2, 2009. Lithium was not well-tolerated in this cohort of patients with ALS, even at subtherapeutic doses. The 2 doses were equivalent in terms of survival/severe disability and functional data. The relatively high frequency of AEs/SAEs and the reduced tolerability of lithium raised serious doubts about its safety in ALS. The study provides Class II evidence that therapeutic (0.4-0.8 mEq/L) vs subtherapeutic (0.2-0.4 mEq/L) lithium carbonate did not differ in the primary outcome of efficacy (survival/loss of autonomy) in ALS. Both target levels led to dropouts in more than 30% of participants due to patient-perceived lack of efficacy and AEs.

  13. RECOVERY OF LITHIUM FROM WASTE MATERIALS

    Directory of Open Access Journals (Sweden)

    JITKA JANDOVÁ

    2012-03-01

    Full Text Available In this study, processes based on roasting-leaching-crystallization steps and condensation-precipitation steps for Li2CO3 separation from spent Li/MnO2 batteries and lithium-containing wastewaters were developed and verified on a laboratory scale. Spent Li/MnO2 batteries were roasted under reduced pressure at 650°C, which split the castings and deactivated the batteries by reduction of LiMnO2 and MnO2 with residual lithium metal and graphite to form MnO and Li2CO3. The resultant lithium carbonate was selectively solubilised in water with manganese remaining in the leach residue. Li2CO3 of 99.5 % purity was obtained after evaporation of 95 % water. Processing of lithium-containing alkaline wastewaters from the production of liquid rubber comprises condensation up to lithium concentration of 12-13 g/l Li and a two-step precipitation of lithium carbonate using CO2 as a precipitation agent. Sparingly soluble Li2CO3 was produced in the second step at 95°C, whilst most impurities remain in the solution. Obtained lithium carbonate products contained on average more than 99.5 % Li2CO3. The lithium precipitation efficiency was about 90 %.

  14. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    Science.gov (United States)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  15. New anode material for lithium-ion cells produced by catalytic graphitization of glassy carbon at 1000 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Skowronski, J.M. [Poznan Univ. of Technology, Poznan (Poland). Inst. of Chemistry and Technical Electrochemistry; Central Lab. of Batteries and Cells, Poznan (Poland); Knofczynski, K. [Central Lab. of Batteries and Cells, Poznan (Poland)

    2006-10-15

    This study investigated the conversion of glassy carbon into graphite at relatively low temperature of 1000 degrees C under ambient pressure using iron powder as the catalyst. The composite product of reaction was a graphite and turbostratic carbon whose use was then examined in terms of application in lithium-ion cells. Glassy, hard carbon spheres of 10 to 15 {iota}m were prepared from phenolic resin in a nitrogen atmosphere and then subjected to heat treatment with an iron powder mixture. After cooling down to ambient temperature, the carbon/iron mixture was treated with diluted HCl solution to remove metallic additives. The modified carbon was then washed with distilled water until chloride ions disappeared in a filtrate. All samples were characterized using XRD analysis. Working electrodes for electrochemical measurements were made by mixing carbons with PVDF. Cyclic voltammograms recorded for unmodified and modified carbons were consistent with XRD measurements. SEM analysis revealed that the process of graphitization begins at the external regions of glassy carbon spheres where erosion occurs when the carbon reacts with iron particles. The surface destruction of carbon spheres progresses into the interior of the spheres, resulting in their collapse followed by the transformation into pallets resembling a stack of graphite sheets. It was noted that not all unorganized carbon was conversed to graphite. Rather, only 50 per cent of turbostratic carbon existed in the product of heat treatment. The product of graphitization appeared to be a promising material for the preparation of anodes for lithium-ion cells. The discharge capacity for carbon produced by catalytic treatment was found to be approximately 5 times higher, while the discharge/charge reversibility was 23 per cent higher than values obtained for untreated carbon. The study showed that the uptake of lithium ions by the original carbon depends on the insertion/deinsertion mechanism of hard carbon as well

  16. Recovery of lithium from geothermal water by amorphous hydrous aluminium oxide

    International Nuclear Information System (INIS)

    Wada, Hideo; Kitamura, Takao; Ooi, Kenta; Katoh, Shunsaku

    1984-01-01

    Effects of chemical composition, temperature, and lithium concentration of geothermal water on lithium recovery by amorphous hydrous aluminium oxide (a-HAO) were investigated in order to evaluate the feasibility of this process. The results are summarized as follows: (1) Among various chemical consituents in geothermal water, silica interfered with the lithium adsorption. The lithium uptake decreased when silica concentration exceeded 73 mg/l under 100 mg/50 ml a-HAO to solution ratio. (2) The lithium uptake decreased with an increase of adsorption temperature and was not observed above 40 deg C. At higher temperature, the crystallization of a-HAO to bayerite occurred prior to lithium adsorption. (3) The lithium uptake increased with an increase of lithium concentration. Lithium uptake comparable with lithium contents in lithium ores was obtained at the lithium concentration of 30 mg/l at 20 deg C. These results show that a-HAO is applicable to collect lithium from geothermal water if silica can be removed before lithium adsorption. (author)

  17. Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Fan, Lei; Zhuang, Houlong L; Zhang, Kaihang; Cooper, Valentino R; Li, Qi; Lu, Yingying

    2016-12-01

    Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified cathode through both chemical and physical confinements, these chloride-coated cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. From adsorption experiments and theoretical calculations, it is shown that not only the sulfide-adsorption effect but also the diffusivity in the vicinity of these chlorides materials plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Balancing the adsorption and diffusion effects of these nonconductive materials could lead to the enhanced cycling performance of an Li-S cell. Electrochemical analyses over hundreds of cycles indicate that cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salts, delivering an average specific capacity of above 1200 mAh g -1 at 0.2 C.

  18. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.

    Science.gov (United States)

    Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2014-08-13

    Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.

  19. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Guo, Shasha; Chen, Yaxin; Shi, Liluo; Dong, Yue; Ma, Jing; Chen, Xiaohong; Song, Huaihe

    2018-04-01

    In this paper, a low-cost and environmental friendly synthesis strategy is proposed to fabricate nitrogen-doped biomass-based ultra-thin carbon nanosheets (N-CNS) with interconnected framework by using soybean milk as the carbon precursor and sodium chloride as the template. The interconnected porous nanosheet structure is beneficial for lithium ion transportation, and the defects introduced by pyridine nitrogen doping are favorable for lithium storage. When used as the anodes for lithium-ion batteries, the N-CNS electrode shows a high initial reversible specific capacity of 1334 mAh g-1 at 50 mA g-1, excellent rate performance (1212, 555 and 336 mAh g-1 at 0.05, 0.5 and 2 A g-1, respectively) and good cycling stability (355 mAh g-1 at 1 A g-1 after 1000 cycles). Furthermore, this study demonstrates the prospects of biomass and soybean milk, as the potential anode for the application of electrochemical energy storage devices.

  20. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Liu, Xifeng; Wang, Jing; Shi, Jingli; Shi, Zhiqiang

    2016-01-01

    Highlights: • Two types of HC materials with different properties as negative electrode. • Lithium ion intercalation plateau of HC affects electrochemical performance of LIC. • The electrochemical performance of LIC is operated at different potential ranges. • The selection of HC and appropriate potential range of LIC have been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated hard carbon (HC) anode. Two kinds of HC materials with different physical and electrochemical behaviors have been investigated as the negative electrodes for LIC. Compared with spherical HC, the irregular HC shows a distinct lithium ion intercalation plateau in the charge–discharge process. The existence of lithium ion intercalation plateau for irregular HC greatly affects the electrochemical behavior of HC negative electrode and AC positive electrode. The effect of working potential range on the electrochemical performance of LIC-SH and LIC-IH is investigated by the galvanostatic charging–discharging, electrochemical impedance tests and cycle performance testing. The charge–discharge potential range of the irregular HC negative electrode is lower than the spherical HC electrode due to the existence of lithium ion intercalation plateau, which is conducive to the sufficient utilization of the AC positive electrode. The working potential range of LIC should be controlled to realize the optimization of electrochemical performance of LIC. LIC-IH at the working potential range of 2.0-4.0 V exhibits the optimal electrochemical performance, high energy density up to 85.7 Wh kg −1 and power density as high as 7.6 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention about 96.0% after 5000 cycles.

  1. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Qiang; Zhang, Zhenghao; Yin, Shengyu; Guo, Zaiping; Wang, Shiquan; Feng, Chuanqi

    2016-01-01

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg −1 after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li + ) window at current density of 100 mAg −1 , respectively, which are much higher than that of graphite (375 mAhg −1 ) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg −1 with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  2. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qiang; Zhang, Zhenghao [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Yin, Shengyu [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Guo, Zaiping [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522 (Australia); Wang, Shiquan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2016-08-30

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg{sup −1} after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li{sup +}) window at current density of 100 mAg{sup −1}, respectively, which are much higher than that of graphite (375 mAhg{sup −1}) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg{sup −1} with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  3. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  4. Lithium neurotoxicity.

    Science.gov (United States)

    Suraya, Y; Yoong, K Y

    2001-09-01

    Inspite of the advent of newer antimanic drugs, lithium carbonate remains widely used in the treatment and prevention of manic-depressive illness. However care has to be exercised due to its low therapeutic index. The central nervous system and renal system are predominantly affected in acute lithium intoxication and is potentially lethal. The more common side effect involves the central nervous system. It occurs early and is preventable. We describe three cases of lithium toxicity admitted to Johor Bahru Hospital, with emphasis on its neurological preponderance.

  5. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries

    International Nuclear Information System (INIS)

    Stephan, A. Manuel; Kumar, T. Prem; Ramesh, R.; Thomas, Sabu; Jeong, Soo Kyung; Nahm, Kee Suk

    2006-01-01

    Disordered carbonaceous materials were synthesized by the pyrolysis of banana fibers treated with pore-forming substances such as ZnCl 2 and KOH. X-ray diffraction studies indicated a carbon structure with a large number of disorganized single layer carbon sheets. Addition of porogenic agent led to remarkable changes in the structure and morphology of the carbonaceous products. The product obtained with ZnCl 2 treatment gave first-cycle lithium insertion and de-insertion capacities of 3325 and 400 mAh g -1 , respectively. Lower capacities only could be realized in the subsequent cycles, although the coulombic efficiency increased upon cycling, which in the 10th cycle was 95%

  6. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  7. Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability

    International Nuclear Information System (INIS)

    Qu, Yaohui; Zhang, Zhian; Zhang, Xiahui; Ren, Guodong; Wang, Xiwen; Lai, Yanqing; Liu, Yexiang; Li, Jie

    2014-01-01

    Highlights: • A novel HPHC was prepared by a simple template process. • The HPHC as matrix to load sulfur for Lithium-Sulfur battery cathodes. • S-HPHC cathode shows high rate capability and long cycling stability. • The sulfur-HPHC composite presents electrochemical stability up to 300 cycles at 1.5 C. - Abstract: Sulfur has a high specific capacity of 1675 mAh g −1 as lithium battery cathode, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a novel hierarchical porous honeycomb carbon (HPHC) for lithium-sulfur battery cathode with effective trapping of polysulfides. The HPHC was prepared by a simple template process, and a sulfur-carbon composite based on HPHC was synthesized for lithium-sulfur batteries by a melt-diffusion method. It is found that the elemental sulfur was dispersed inside the three-dimensionally hierarchical pores of HPHC based on the analyses. Electrochemical tests reveal that the sulfur-HPHC composite shows high rate capability and long cycling stability as cathode materials. The sulfur-HPHC composite with sulfur content of 66.3 wt% displays an initial discharge capacity of 923 mAh g −1 and a reversible discharge capacity of 564 mAh g −1 after 100 cycles at 2 C charge-discharge rate. In particular, the sulfur-HPHC composite presents a long term cycling stability up to 300 cycles at 1.5 C. The results illustrate that the electrochemical reaction constrained inside the interconnected macro/meso/micropores of HPHC would be the dominant factor for the excellent high rate capability and long cycling stability of the sulfur cathode, and the three-dimensionally honeycomb carbon network would be a promising carbon matrix structure for lithium-sulfur battery cathode

  8. Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance

    Science.gov (United States)

    Leng, Xuning; Wei, Sufeng; Jiang, Zhonghao; Lian, Jianshe; Wang, Guoyong; Jiang, Qing

    2015-11-01

    A high-performance anode material for lithium storage was successfully synthesized by glucose as carbon source and cobalt nitrate as Co3O4 precursor with the assistance of sodium chloride surface as a template to reduce the carbon sheet thickness. Ultrafine Co3O4 nanoparticles were homogeneously embedded in ultrathin porous graphitic carbon in this material. The carbon sheets, which have large specific surface area, high electronic conductivity, and outstanding mechanical flexibility, are very effective to keep the stability of Co3O4 nanoparticales which has a large capacity. As a consequence, a very high reversible capacity of up to 1413 mA h g-1 at a current density of 0.1 A g-1 after 100 cycles, a high rate capability (845, 560, 461 and 345 mA h g-1 at 5, 10, 15 and 20 C, respectively, 1 C = 1 A g-1), and a superior cycling performance at an ultrahigh rate (760 mA h g-1 at 5 C after 1000 cycles) are achieved by this lithium-ion-battery anode material.

  9. Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2018-01-01

    Full Text Available A boron-doped carbon nano-/microballs (BC was successfully obtained via a two-step procedure including hydrothermal reaction (180°C and carbonization (800°C with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

  10. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gnanamuthu, RM.; Lee, Chang Woo

    2011-01-01

    Highlights: → A novel attempt of Super P carbon black as an anode active material for lithium-ion batteries. → The first discharge capacity was approximately 1256 mAh g -1 and at the end of 20th cycling the capacity was 610 mAh g -1 at 0.1 C rate. → Coulombic efficiency of Super P carbon black electrode was maintained about 84% at the end of cycling. - Abstract: A new approach to investigate upon the electrochemical properties of Super P carbon black anode material is attempted and compared with conventional mesophase pitch-based carbon fibers (MPCFs) anode material for lithium-ion batteries. The prepared Super P carbon black electrodes are characterized using transmission electron microscope (TEM). The assembled 2032-type coin cells are electrochemically characterized by ac impedance spectroscopic and cyclic voltammetric methods. The electrochemical performance of charge and discharge was analyzed using a battery cycler at 0.1 C rate and cut-off potentials of 1.20 and 0.01 V vs. Li/Li + . The electrochemical test illustrates that the discharge capacity corresponding to Li intercalation into the Super P carbon black electrode is higher and coulombic efficiency is maintained approximately 84% at the end of the 20th cycling at room temperature.

  11. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  12. Dosimetric Characteristics of a LKB:Cu,Mg Solid Thermoluminescence Detector

    International Nuclear Information System (INIS)

    Alajerami Yasser Saleh Mustafa; Hashim Suhairul; Ramli Ahmad Termizi; Saleh Muneer Aziz; Kadir Ahmad Bazlie Bin Abdul; Saripan, Mohd. Iqbal

    2013-01-01

    We present the main thermoluminescence characteristics of a newly borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and MgO. An enhancement of about three times has been shown with the increment of 0.1mol% MgO as a co-dopant impurity. The effects of dose linearity, storage capacity, effective atomic number and energy dose response are studied. The proposed dosimeter shows a simple glow curve, good linearity up to 10 3 Gy, close effective atomic number and photon energy independence. The current results suggest using the proposed dosimeter in different dosimetric applications

  13. Fe_3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, You-Guo; Lin, Xi-Le; Zhang, Xiao-Hui; Pan, Qi-Chang; Yan, Zhi-Xiong; Wang, Hong-Qiang; Chen, Jian-Jun; Li, Qing-Yu

    2015-01-01

    ABSTRACT: Fe_3C@carbonnanocapsules(*)/expanded graphite composite was successfully prepared by a new and facile method, including mix of starting materials and heat treatment of the precursor. It is featured by unique 3-D structure, where expanded graphite acts as scaffold to ensure a continuous entity, and Fe_3C particles coated by carbon nanocapsules are embedded intimately. The Fe_3C nanoparticles encased in carbon nanocapsules act as catalyst in the modification of SEI film during the cycles. The interesting 3-D architecture which aligns the conductivity paths in the planar direction with expanded graphite and in the axial direction with carbon nanocapsules minimizes the resistance and enhances the reversible capacity. The prepared composite exhibits a high reversible capacity and excellent rate performance as an anode material for lithium ion batteries. The composite maintains a reversible capacity of 1226.2 mAh/g after 75 cycles at 66 mA/g. When the current density increases to 200 mA/g, the reversible capacity maintains 451.5 mAh/g. The facile synthesis method and excellent electrochemical performances make the composite expected to be one of the most potential anode material for lithium ion batteries.

  14. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    Science.gov (United States)

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  15. Comparative study of 131I with 131I plus lithium carbonate in the treatment of Graves' hyperthyroidism

    International Nuclear Information System (INIS)

    Kang Yuguo; Kuang Anren; Guan Changtian

    2003-01-01

    Objective: To evaluate the effects of lithium carbonate on serum TSH, FT 3 , FT 4 and thyroid mass volume in patients with Graves' hyperthyroidism treated with 131 I. Methods: Thirty patients with newly diagnosed, untreated Graves' disease (GD) and nonsevere or absent Graves' ophthalmopathy, were randomly assigned to group 1 and group 2. The 1st group was treated with 131 I therapy only, the 2nd group with 131 I plus lithium carbonate. All subjects were evaluated for changes in serum TSH, FT 3 and FT 4 as well as thyroid mass volume at the 7, 14, 30 d after 131 I therapy. Differences between the two groups in thyroid mass volume, serum FT 4 , FT 3 , and TSH levels at each interval were evaluated by ANCOVA. Results: Serum FT 4 and FT 3 levels increased shortly after 131 I therapy only in group 1, and decreased in group 2. The differences of serum FT 3 and FT 4 levels between the two groups were significant. Conclusion: It is important for GD patients to accept lithium carbonate treatment and 131 I therapy simultaneously in order to decrease the serum FT 3 and FT 4 levels caused by 131 I therapy

  16. One-Pot Synthesis of Carbon-Coated SnO 2 Nanocolloids with Improved Reversible Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2009-07-14

    We report a simple glucose-mediated hydrothermal method for gram-scale synthesis of nearly monodisperse hybrid SnO 2 nanoparticles. Glucose is found to play the dual role of facilitating rapid precipitation of polycrystalline SnO 2 nanocolloids and in creating a uniform, glucose-derived, carbon-rich polysaccharide (GCP) coating on the SnO 2 nanocores. The thickness of the GCP coating can be facilely manipulated by varying glucose concentration in the synthesis medium. Carbon-coated SnO 2 nanocolloids obtained after carbonization of the GCP coating exhibit significantly enhanced cycling performance for lithium storage. Specifically, we find that a capacity of ca. 440 mA h/g can be obtained after more than 100 charge/discharge cycles at a current density of 300 mA/g in hybrid SnO 2-carbon electrodes containing as much as 1/3 of their mass in the low-activity carbon shell. By reducing the SnO 2-carbon particles with H 2, we demonstrate a simple route to carbon-coated Sn nanospheres. Lithium storage properties of the latter materials are also reported. Our results suggest that large initial irreversible losses in these materials are caused not only by the initial, presumably irreversible, reduction of SnO 2 as generally perceived in the field, but also by the formation of the solid electrolyte interface (SEI). © 2009 American Chemical Society.

  17. Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres

    International Nuclear Information System (INIS)

    Zhao, Liwei; Li, Hongji; Li, Mingji; Xu, Sheng; Li, Cuiping; Qu, Changqing; Zhang, Lijun; Yang, Baohe

    2016-01-01

    Highlights: • Graphene/TaC/Ta wire electrode was prepared by CVD. • Carbon hollow spheres as a solid electrolyte were prepared by hydrothermal. • Specific capacitance of assembled capacitor reached 593 F g −1 at 10 A g −1 . • The capacitor provided high energy and power densities (132 W h kg −1 /3.17 kW kg −1 ). • The hybrid capacitor also exhibited a high stability during long endurance tests. - Abstract: Lithium-ion storage capacitors were assembled using graphene/tantalum carbide/tantalum wire electrodes and carbon hollow spheres as electrolyte. The graphene/tantalum carbide layers were prepared by electron-assisted hot filament chemical vapor deposition; the carbon hollow spheres were synthesized by hydrothermal reaction and pyrolysis treatment. The specific capacitance of the capacitor was 593 F g −1 at a current density of 10 A g −1 . The capacitor showed excellent cycling stability, retaining 91.2% of its initial capacitance after 8000 cycles. Moreover, the capacitor provided a high specific energy density of 132 W h kg −1 at a high power density of 3.17 kW kg −1 . The high energy density is attributed to the widened operation window ranging from 0 to 3.0 V. The graphene layer of the electrode and carbon hollow spheres in electrolyte synergistic affect influence on the electrochemical performance of the capacitor are discussed. In addition, the use of a low-cost lithium salt, lithium chloride, is also featured in this paper.

  18. An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries

    KAUST Repository

    Yang, Zichao

    2011-01-01

    Transition metal oxides are actively investigated as anode materials for lithium-ion batteries (LIBs), and their nanocomposites with carbon frequently show better performance in galvanostatic cycling studies, compared to the pristine metal oxide. An in situ, scalable method for creating a variety of transition metal oxide-carbon nanocomposites has been developed based on free-radical polymerization and cross-linking of poly(acrylonitrile) in the presence of the metal oxide precursor containing vinyl groups. The approach yields a cross-linked polymer network, which uniformly incorporates nanometre-sized transition metal oxide particles. Thermal treatment of the organic-inorganic hybrid material produces nearly monodisperse metal oxide nanoparticles uniformly embedded in a porous carbon matrix. Cyclic voltammetry and galvanostatic cycling electrochemical measurements in a lithium half-cell are used to evaluate the electrochemical properties of a Fe3O 4-carbon composite created using this approach. These measurements reveal that when used as the anode in a lithium battery, the material exhibits stable cycling performance at both low and high current densities. We further show that the polymer/nanoparticle copolymerization approach can be readily adapted to synthesize metal oxide/carbon nanocomposites based on different particle chemistries for applications in both the anode and cathode of LIBs. © 2011 The Royal Society of Chemistry.

  19. Effect of Al–Mg Alloy Infiltration on Mechanical and Electrical Properties for Carbon/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Lihui Cui

    2018-05-01

    Full Text Available Under vacuum Al–Mg alloy, liquids were successfully infiltrated into carbon/carbon (C/C composites at high temperatures. Then, the mechanical properties, the metallographics, the scanning electron microscope images, the transmission electron microscope images, the X-ray diffraction images, and the energy dispersive spectroscopy results of C/C–Al–Mg composites were analyzed. The result showed that the bending property of C/C–Al–Mg composites reached 183 MPa whereas that of C/C composites totaled 165 MPa. The compressive strength of C/C–Al–Mg measured 206 MPa whereas that of C/C composites amounted to 142 MPa. The flexural strength and compressive strengths of the steeped metal sliders measured 121 and 104 MPa, respectively. The alloy liquid infiltrated into the matrix by forming a “network conduction” structure which reduced the resistivity and improved the conductivity of the composites. The resistivity of C/C–Al–Mg totaled 1.63 µΩm whereas that of C/C was 3.56 μΩm. During infiltration, an excellent wettability was observed between Al and the carbon matrix due to the existence of Al4C3. The friction coefficients of C/C, the steeped metal slide, and C/Al–Mg were 0.152, 0.068, and 0.189, respectively. The properties of C/C–Al–Mg composites meet the performance requirements of locomotive pantograph sliders.

  20. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries

    Science.gov (United States)

    Zeng, Shao-Zhong; Yao, Yuechao; Zeng, Xierong; He, Qianjun; Zheng, Xianfeng; Chen, Shuangshuang; Tu, Wenxuan; Zou, Jizhao

    2017-07-01

    Lithium-sulfur batteries are the most promising candidates for future high-energy applications because of the unparalleled capacity of sulfur (1675 mAh g-1). However, lithium-sulfur batteries have limited cycle life and rate capability due to the dissolution of polysulfides and the extremely low electronic conductivity of sulfur. To solve these issues, various porous carbons including hollow carbon nanospheres (HCNs) have been used for improving the conductivity. However, these methods still suffer from polysulfides dissolution/loss owing to their weak physical adsorption to polysulfides. Herein, we introduced a covalent grafting route to composite the HCNs and the vulcanized trithiocyanuric acid (TTCA). The composite exhibits a high loading of the vulcanized TTCA by the HCNs with high surface area and large pore volume, and covalent bonds to sulfur, effectively depressing the dissolution of polysulfides. The first discharge capacity of the composite reaches 1430 mAh g-1 at 0.1 C and 1227 mAh g-1 at 0.2 C.

  1. Facile synthesis of graphene oxide @ mesoporous carbon hybrid nanocomposites for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Chen, Wei; Zhou, Chengkun; Lai, Yanqing; Li, Jie

    2014-01-01

    Graphical abstract: - Highlights: • A novel design and synthesis of GO@Meso-C using GO@MOF-5 as precursor. • GO@Meso-C hybrid material as a host material was applied for sulfur cathode. • Electrochemical performances were improved in sulfur cathode using Go@Meso-C. - Abstract: We present a design and synthesis of a hierarchical architecture of graphene oxide @ mesoporous carbon (GO@Meso-C) using graphene oxide @ metal-organic framework hybrid materials (GO@MOF-5) as both the template and precursor. Active sulfur is encapsulated into the GO@Meso-C matrix prepared via carbonize GO@MOF-5 polyhedrons for high performance lithium sulfur battery. The initial and 100th cycle discharge capacity of GO@Meso-C/S sulfur cathode are as high as 1122 mAh g −1 and 820 mAh g −1 at a current rate of 0.2 C. The remarkably high special capacity and capacity retention rate indicate that the GO@Meso-C is a promising host material for the sulfur cathode in the lithium sulfur battery applications

  2. Development of new anodes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G. [Argonne National Laboratory, Argonne, IL (United States)

    2001-10-01

    Lithium ion batteries have been introduced in the early 1990s by Sony Corporation. Ever since their introduction carbonaceous materials have received considerable attention for use as anodes because of their potential safety and reliability advantages. Natural graphite, cokes, carbon fibres, non-graphitizable carbon, and pyrolytic carbon have been used as sources for carbon materials. Recently metal alloys and metal oxides have been studied as alternatives to carbon as negative electrodes in lithium-ion cells. This paper reviews the performance of some of the carbonaceous materials used in lithium-ion batteries as well as some of the new metallic alloys of aluminum, silica, selenium, lead, bismuth, antimony and arsenic, as alternatives to carbon as negative electrodes in lithium-ion batteries. It is concluded that while some of these materials are promising, practical applications will continue to be limited until after the volume expansion and the irreversibility problems are resolved. 50 refs., 5 figs.

  3. Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy

    Science.gov (United States)

    Mogi, Ryo; Inaba, Minoru; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi

    The surface films formed on deposited lithium in electrolyte solutions based on ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) were analyzed by pyrolysis-gas chromatography-mass spectroscopy (Py-GC-MS). In 1 M LiClO 4/EC, the main component of the surface film was easily hydrolyzed to give ethylene glycol after exposure to air, and hence was considered to have a chemical structure of ROCH 2CH 2OR', of which OR and OR' are OLi or OCO 2Li. Ethylene oxide, acetaldehyde, and 1,4-dioxane were detected in decomposition products, and they were considered to have been formed by pyrolysis of ROCH 2CH 2OR' in the pyrolyzer. The presence of ethanol in decomposition products confirmed that ring cleavage at the CH 2O bonds of EC occurs by one electron reduction. In addition, the presence of methanol implied the cleavage of the CC bond of EC upon reduction. From the surface films formed in 1 M LiClO 4/DEC and /DMC, ethanol and methanol, respectively, were detected, which suggested that corresponding lithium alkoxides and/or lithium alkyl carbonates were the main components. In 1 M LiClO 4/EC+DEC (1:1), EC dominantly decomposed to form the surface film. The surface film formed in 1 M LiPF 6/EC+DEC (1:1) contained a much smaller amount of organic compounds.

  4. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  5. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    Science.gov (United States)

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  6. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, A. Manuel [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Central Electrochemical Research Institute, Karaikudi 630006 (India); Kumar, T. Prem [Central Electrochemical Research Institute, Karaikudi 630006 (India); Ramesh, R. [Central Electrochemical Research Institute, Karaikudi 630006 (India); Thomas, Sabu [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560 (India); Jeong, Soo Kyung [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Nahm, Kee Suk [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: nahmks@chonbuk.ac.kr

    2006-08-25

    Disordered carbonaceous materials were synthesized by the pyrolysis of banana fibers treated with pore-forming substances such as ZnCl{sub 2} and KOH. X-ray diffraction studies indicated a carbon structure with a large number of disorganized single layer carbon sheets. Addition of porogenic agent led to remarkable changes in the structure and morphology of the carbonaceous products. The product obtained with ZnCl{sub 2} treatment gave first-cycle lithium insertion and de-insertion capacities of 3325 and 400 mAh g{sup -1}, respectively. Lower capacities only could be realized in the subsequent cycles, although the coulombic efficiency increased upon cycling, which in the 10th cycle was 95%.

  7. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  8. Novel iron-cobalt derivatised lithium iron phosphate nanocomposite for lithium ion battery cathode

    CSIR Research Space (South Africa)

    Ikpo, CO

    2013-01-01

    Full Text Available Described herein is the electrochemical study conducted on lithium ion battery cathode material consisting of composite of lithium iron phosphate (LiFePO(sub4), iron-cobalt derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials...

  9. Lithium containing MgAl mixed oxides obtained from sol-gel hydrotalcite for transesterification

    Directory of Open Access Journals (Sweden)

    Renata A. B. Lima-Corrêa

    Full Text Available Abstract The innumerous advantages of heterogeneous catalysts employed in biodiesel production have stimulated the search for a solid catalyst capable of replacing the industrially used homogeneous catalysts. This paper investigates the effect of the sol-gel method in the catalytic activity and stability of Li-MgAl mixed oxides prepared by the “in situ” lithium addition to a MgAl hydrotalcite. The analyses based on N2 physisorption, thermogravimetric analysis, X-ray diffractometry, scanning electron microscopy and temperature-programmed desorption of CO2 were carried out to elucidate the properties of the catalysts. Considerable differences in the physico-chemical properties of the catalysts were observed with the Li addition. Li reduced the surface area and increased the crystallite size of the oxides. Furthermore, Li-MgAl mixed oxides prepared by the calcination of the sol-gel MgAl hydrotalcites presented substantial morphological differences when compared to the same oxides obtained by heat treatment of hydrotalcites synthesized via the conventional co-precipitation route. Furthermore, Li increased the number and strength of the base sites which resulted in the increase of the oxide reactivities towards the transesterification reaction between methyl acetate and ethanol. The activity was dependent on the Li loading on the catalysts. The catalyst containing only 5 wt.% Li turned out to be highly active (( 85% conversion at 50°C, ethanol/methyl acetate molar ratio = 6/1, 4 wt.% of catalyst and 30 min of reaction. Stability tests showed that the Li-MgAl catalysts lose activity after 3 reuse cycles.

  10. Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yanli Zhou

    2018-02-01

    Full Text Available The three-dimensional (3D SnS decorated carbon nano-networks (SnS@C were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g−1 for SnS@C composites can be obtained at 100 mA·g−1 after 100 cycles. Even cycled at a high current density of 2 A·g−1, the reversible capacity of this composite can be maintained at 610 mAh·g−1 after 1000 cycles. The initial charge capacity for sodium ion batteries can reach 333 mAh·g−1, and it retains a reversible capacity of 186 mAh·g−1 at 100 mA·g−1 after 100 cycles. The good lithium or sodium storage performances are likely attributed to the synergistic effects of the conductive carbon nano-networks and small SnS nanoparticles.

  11. Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage

    International Nuclear Information System (INIS)

    Li, Xiaoyan; Fu, Nianqing; Zou, Jizhao; Zeng, Xierong; Chen, Yuming; Zhou, Limin; Lu, Wei; Huang, Haitao

    2017-01-01

    Graphical abstract: Ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes show exceptional lithium ion storage as anodes. - Abstract: Nanostructured cobalt sulfide based materials with rational design are attractive for high-performance lithium-ion batteries. In this work, we report a multistep method to synthesize ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes (CoS x @HNCNTs). Co-based zeolitic imidazolate framework (ZIF-67) nanotubes are obtained from the reaction between electrospun polyacrylonitrile/cobalt acetate and 2-methylimidazole, followed by the dissolution of template. Next, a combined calcination and sulfidation process is employed to convert the ZIF-67 nanotubes to CoS x @HNCNTs. Benefited from the compositional and structural features, the as-prepared nanostructured hybrid materials deliver superior lithium storage properties with high capacity of 1200 mAh g −1 at 0.25 A g −1 . More importantly, a remarkable capacity of 1086 mAh g −1 can be maintained after 100 cycles at the current density of 0.5 A g −1 . Even at a high rate of 5 A g −1 , a reversible capacity of 592 mAh g −1 after 1600 cycles can still be achieved.

  12. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoqing, E-mail: yxq-886@163.com [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Hong [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guoqing; Li, Xinxi [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Dingcai [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Fu, Ruowen, E-mail: cesfrw@mail.sysu.edu.cn [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-01-15

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g{sup −1} for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g{sup −1}). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m{sup 2} g{sup −1}, which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite.

  13. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Huang, Hong; Zhang, Guoqing; Li, Xinxi; Wu, Dingcai; Fu, Ruowen

    2015-01-01

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g −1 for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g −1 ). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m 2  g −1 , which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite

  14. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    Science.gov (United States)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  15. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Lithium carbonate tablets. Preparation techniques influence over active ingredient liberation

    International Nuclear Information System (INIS)

    Bueno, J.H.F.; Oliveira, A.G. de; Toledo Salgado, P.E. de

    1989-01-01

    Lithium carbonate tablets, prepared using wet and dry granulation, were assessed in vitro so as to determine the active ingredient dissolution. In this study, standardized formulations were used and developed with usual adjuvants (lactose - maize starch). Parallel to the dissolution testing. The influence of the preparation process over some physical characteristics (hardness, friability and disintegration) was also analysed. Although a better performance was observed of tables prepared using dry granulation, the authors concluded that the wet process is more suitable in preparing tables with the mentioned drug. (author)

  17. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.

    Science.gov (United States)

    Wu, Xiao; Yao, Shanshan; Hou, Jinli; Jing, Maoxiang; Qian, Xinye; Shen, Xiangqian; Xiang, Jun; Xi, Xiaoming

    2017-04-01

    Conventional lithium-sulfur batteries suffer from severe capacity fade, which is induced by low electron conductivity and high dissolution of intermediated polysulfides. Recent studies have shown the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and improved the performance for lithium sulfur batteries. In this work, we present the nickel coated multi-walled carbon nanotubes (Ni-MWNTs) as additive materials for elemental sulfur positive electrodes for lithium-sulfur rechargeable batteries. Compared with MWNTs, the obtained Ni-MWNTs/sulfur composite cathode demonstrate a reversible specific capacity approaching 545 mAh after 200 cycles at a rate of 0.5C as well as improved cycling stability and excellent rate capacity. The improved electrochemical performance can be attributed to the fact the MWNTs shows a vital role on polysulfides adsorption and nickel has a catalytic effect on the redox reactions during charge–discharge process. Meanwhile, the Ni-MWNTs is a good electric conductor for sulfur cathode.

  18. Effect of lithium tetrafluoroborate on the solubility of carbon dioxide in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate

    NARCIS (Netherlands)

    Durano Arno, S.; Lucas, S.; Shariati - Sarabi, A.; Peters, C.J.

    2012-01-01

    In this work, the phase behavior of the ternary system of carbon dioxide +1-butyl-3-methylimidazolium tetrafluoroborate + lithium tetrafluoroborate has been investigated. Mixtures of known concentrations of the salt, ionic liquid and carbon dioxide were prepared and their bubble point pressures were

  19. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  20. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  1. First-principles studies of complex hydrides for lithium-ion battery and hydrogen storage applications

    Science.gov (United States)

    Mason, Timothy Hudson

    We employ density functional theory in a computational study of two energy storage systems. In the first, we explore the thermodynamic viability of light metal hydrides as a high capacity Li-ion battery negative electrode. Given a set of solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble as a function of lithium electrochemical potential. We present computational results for several new conversion reactions with predicted capacities between 2400 and 4000 mAhg-1 that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li4BN3H10 and compare with our theoretical prediction. The maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si, whose 400% expansion hinders its cyclability. In the second study, we attempt to gain understanding of recent experimental results of lithium borohydride nanoconfined in highly ordered nanoporous carbon. The carbon environment is modeled as a single sheet of graphene, and adsorption energies are calculated for nanoparticles of the constituent phases of LiBH 4 desorption processes (LiBH4, LiH, lithium and boron). We find good agreement with previous studies of a single lithium atom adsorbed onto graphene. We predict that infiltrated LiBH4 will decompose such that boron is trapped in carbon vacancies, and that the resulting boron doping is required to achieve negative wetting energies for the remaining LiBH4. Desorption enthalpies are found to increase with shrinking cluster sizes, suggesting that the observed lowering of desorption temperatures is a kinetic effect although interactions with the carbon surface itself are predicted to have an overall effect of decreasing the desorption enthalpy .

  2. Effect of Mg/Ca ratios on microbially induced carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali

    2016-04-01

    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  3. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    Science.gov (United States)

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  4. Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wenelska, K.; Ottmann, A.; Schneider, P.; Thauer, E.; Klingeler, R.; Mijowska, E.

    2016-01-01

    HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO_2 and MnO_2, respectively) were successfully synthesized and investigated regarding their potential as anode materials for lithium-ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure. The mesoporous nature of the nanocomposites is confirmed by Brunauer–Emmett–Teller analysis. For both metal oxides under study, the metal oxide functionalization of HCS yields a significant increase of electrochemical performance. The charge capacity of HCS/SnO_2 is 370 mA hg"−"1 after 45 cycles (266 mA hg"−"1 in HCS/MnO_2) which clearly exceeds the value of 188 mA hg"−"1 in pristine HCS. Remarkably, the data imply excellent long term cycling stability after 100 cycles in both cases. The results hence show that mesoporous HCS/metal oxide nanocomposites enable exploiting the potential of metal oxide anode materials in Lithium-ion batteries by providing a HCS host structure which is both conductive and stable enough to accommodate big volume change effects. - Highlights: • Strategy to synthesize hollow carbon spheres decorated by metal oxides nanoparticles. • High-performance of HCS/MOx storage as mesoporous hybrid material. • The results hence demonstrate high electrochemical activity of the HCS/MOx.

  5. Persistent cyclestability of carbon coated Zn–Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, Guoqing; Kaneko, Shingo; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zhang, Ruixue; Zheng, Junwei; Li, Decheng

    2013-01-01

    Development of high-capacity anode materials equipped with strong cyclestability is a great challenge for use as practical electrode for high-performance lithium-ion rechargeable battery. In this study, we synthesized a carbon coated Zn–Sn metal nanocomposite oxide and carbon spheres (ZTO@C/CSs) via a simple glucose hydrothermal reaction and subsequent carbonization approach. The carbon coated ZTO/carbon microspheres composite maintained a reversible capacity of 680 mAh g −1 after 345 cycles at a current density of 100 mA g −1 , and furthermore the cell based on the composite exhibited an excellent rate capability of 470 mAh g −1 even when the cell was cycled at 2000 mA g –1 . The thick carbon layer formed on the ZTO nanoparticles and carbon spheres effectively buffered the volumetric change of the particles, which thus prolonged the cycling performance of the electrodes

  6. Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties

    Science.gov (United States)

    Yao, Libing; Su, Qingmei; Xiao, Yanling; Huang, Min; Li, Haojie; Deng, Huihui; Du, Gaohui

    2017-07-01

    Carbon-coated ZnFe2O4 spheres with sizes of 110-180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g-1 and maintains a reversible capacity of 775 mAh g-1 after 150 cycles at a current density of 500 mA g-1. After being tested at 2 A g-1 for 700 cycles, the capacity still retains 617 mAh g-1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating ( 3-6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries. [Figure not available: see fulltext.

  7. Influence of lithium slag from lepidolite on the durability of concrete

    Science.gov (United States)

    Qi, Luo; Shaowen, Huang; Yuxuan, Zhou; Jinyang, Li; Weiliang, Peng; Yufeng, Wen

    2017-04-01

    This paper mainly studies the effect of lithium slag from lepidolite on the property of concrete including dry shrinkage, anti-carbonation, wear resistance and chloride ion resistance. Concrete interface structure has been observed with SEM. The results show that adding lithium slag to concrete can improve concrete property including dry shrinkage, wear resistance and chloride ion resistance. However, the wear resistance tends to decrease when the amount of lithium slag reach 20%. Lithium slag also has negative effect on anti-carbonation property. With the increasing amount of lithium slag, anti-carbonation property of concrete decrease gradually.

  8. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Jin, Juan; Shi, Zhi-qiang; Wang, Cheng-yang

    2014-01-01

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N 2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g −1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  9. Influences of Ti4+ and Mg2+ substitutions on the properties of lithium ferrites

    International Nuclear Information System (INIS)

    Su Hua; Zhang Huaiwu; Tang Xiaoli; Liu Baoyuan

    2009-01-01

    The Ti 4+ and Mg 2+ co-substituted lithium ferrites with different compositions of Zn 0.1 Li 0.45 Mn 0.1 Fe 2.35-2x (TiMg) x O 4 (x=0.0-0.5) were prepared by the ceramic standard processing. The magnetic properties and microstructure of the samples were investigated. A single phase spinel structure was confirmed by XRD in substituting range. Sintering densities continuously decreased with the increase at x value, which was attributed to the fact that the heavier Fe 3+ ions were replaced by the relatively lighter Ti 4+ and Mg 2+ ions. However, relative density of the samples had no obvious relationship with the substituting value. Saturation magnetization continuously decreased with x value, which was attributed to the decrease of resultant magnetic moment between A and B sub-lattice. Remanence decreased monotonously with x value due to the decrease of saturation magnetization and magnetocrystalline anisotropy constant. But the effect of Ti 4+ and Mg 2+ substitutions on the Br/Bs ratio values was not obvious. Coercive force was mainly determined by the microstructure and magnetocrystalline anisotropy constant of the ferrites. In this research, with the increase of Ti 4+ and Mg 2+ substitutions, the advantageous influence by the decrease of magnetocrystalline anisotropy constant was more significant than the disadvantageous influence caused by the increase of closed pores. As a result, coercive force of the ferrites also decreased monotonously with the increase at x value.

  10. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  11. Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; De Silva, K.S.B.; Kondyurin, A.; Bao, P.; Li, W.X.; Xu, X.; Peleckis, G.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    Highlights: • First report on nano-carbon doped MgB 2 superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B 4 C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB 2 with 2.5% nano-carbon doped showed the highest J c , ≈10 4 A/cm 2 for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB 2 crystalline. The strain increased across the doping level due to the carbon substitution in the MgB 2 matrix. The broadening of the T c curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B 4 C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB 2 . Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J c of the 10% nano-carbon doped MgB 2 bulk superconductor

  12. Yolk-shell structured composite for fast and selective lithium ion sieving.

    Science.gov (United States)

    Li, Na; Lu, Deli; Zhang, Jinlong; Wang, Lingzhi

    2018-06-15

    Yolk-shell structured C@Li 4 Ti 5 O 12 microspheres composed of carbon core (ca. 500 nm) and sea urchin-like Li 4 Ti 5 O 12 shell (ca. 400-500 nm) are formed by hydrothermally treating the core-shell structured C@TiO 2 in the EtOH/H 2 O solution of LiOH and calcining it in N 2 atmosphere. Yolk-shell structured TiO 2 -type lithium ion sieve is further transformed from C@Li 4 Ti 5 O 12 through the acid treatment, which have a high specific surface area of 201.74 m 2 /g. The composite shows adsorption capacity towards Li + proportional to the pH value in the range of 7-13. The adsorption reaches equilibrium within 2 h with a high equilibrium adsorption capacity of 28.46 mg/g under alkaline conditions, which is ca. 8 times the value of ordinary TiO 2 lithium ion sieve with comparable size and surface area, demonstrating the enhanced adsorption is attributed to the generation of more accessible surficial voids by replacing internal part with light carbon core. The adsorption follows Freundlich and pseudo-second-order kinetic models with a high rate constant of 0.015 g/(mg·min). The selective adsorption to Li + is verified in the presence of K + , Na + , Ca 2+ and Mg 2+ . Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Characteristics of Vanadium Doped And Bamboo Activated Carbon Coated LiFePO4 And Its Performance For Lithium Ion Battery Cathode

    Directory of Open Access Journals (Sweden)

    Nofrijon Sofyan

    2018-04-01

    Full Text Available Vanadium doped and bamboo activated carbon coated lithium iron phosphate (LiFePO4 used for lithium ion battery cathode has been successfully prepared. Lithium iron phosphate was prepared through a wet chemical method followed by a hydrothermal process from the starting materials of LiOH, NH4H2PO4, and FeSO4.7H2O. The dopant variations of 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% of vanadium and a fixed 3 wt.% of bamboo activated carbon were carried out via a solid-state reaction process each by using NH4VO3 as a source of vanadium and carbon pyrolyzed from bamboo tree, respectively. The characterization was carried out using X-ray Diffraction (XRD for the phase formed and its crystal structure, Scanning Electron Microscope (SEM for the surface morphology, Electrochemical Impedance Spectroscopy (EIS for the conductivity, and battery analyzer for the performance of lithium ion battery cathode. The XRD results show that the phase formed has an olivine based structure with an orthorhombic space group. Morphology examination revealed that the particle agglomeration decreased with the increasing level of vanadium concentrations. Conductivity test showed that the impedance of solid electrolyte interface decreased with the increase of vanadium concentration indicated by increasing conductivity of 1.25 x 10-5 S/cm, 2.02 x 10-5 S/cm, 4.37 x 10-5 S/cm, and 5.69 x 10-5 S/cm, each for 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% vanadium, respectively. Vanadium doping and bamboo activated carbon coating are promising candidate for improving lithium ion battery cathode as the initial charge and discharge capacity at 0.5C for LiFePO4/C at 7 wt.% vanadium is in the range of 8.0 mAh/g.

  14. Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material

    Directory of Open Access Journals (Sweden)

    Ji Xiaoxu

    2010-01-01

    Full Text Available Abstract Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs. The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs.

  15. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  16. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries

    Science.gov (United States)

    Wu, Ping; Du, Ning; Zhang, Hui; Yu, Jingxue; Qi, Yue; Yang, Deren

    2011-02-01

    This paper reports the synthesis of carbon-coated SnO2 (SnO2-C) nanotubes through a simple glucose hydrothermal and subsequent carbonization approach by using Sn nanorods as sacrificial templates. The as-synthesized SnO2-C nanotubes have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure SnO2 nanotubes. The hollow nanostructure, together with the carbon matrix which has good buffering effect and high electronic conductivity, can be responsible for the improved cyclic performance.

  17. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Rafal M [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Blaszczak, Piotr [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Dekundy, Andrzej [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Parada-Turska, Jolanta [Department of Rheumatology and Connective Tissue Diseases, Medical University, Jaczewskiego 8, 20-090 Lublin (Poland); Calderazzo, Lineu [Department of Neurology and Neurosurgery, Laboratory of Experimental Neurology, Escola Paulista de Medicina, R. Botucatu 862, BR-04023 Sao Paulo, S.P. (Brazil); Cavalheiro, Esper A [Department of Neurology and Neurosurgery, Laboratory of Experimental Neurology, Escola Paulista de Medicina, R. Botucatu 862, BR-04023 Sao Paulo, S.P. (Brazil); Turski, Waldemar A [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8, 20-090 Lublin (Poland)

    2007-03-15

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithium pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality.

  18. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    International Nuclear Information System (INIS)

    Kaminski, Rafal M.; Blaszczak, Piotr; Dekundy, Andrzej; Parada-Turska, Jolanta; Calderazzo, Lineu; Cavalheiro, Esper A.; Turski, Waldemar A.

    2007-01-01

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithium pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality

  19. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    Science.gov (United States)

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CRITIC-I: Instrumented lithium oxide irradiation: Part 1, Lithium oxide fabrication and characteristics

    International Nuclear Information System (INIS)

    Applegate, D.S.; Poeppel, R.B.

    1987-06-01

    Fine-grained, sinterable lithium oxide powder was prepared by high-temperature vacuum calcination of molten lithium carbonate. The product was ball milled, cold pressed, and fired in an oxygen atmosphere. The fired density, grain size, and surface roughness varied widely with firing schedule. Most variations were attributed to moisture content. Rings of high-density, sintered lithium oxide will be used in an in-reactor experiment to measure tritium release. 2 refs., 8 figs., 1 tab

  1. Influence of the Mg-content on ESR-signals in synthetic calcium carbonate

    International Nuclear Information System (INIS)

    Barabas, M.; Bach, A.; Mudelsee, M.; Mangini, A.

    1989-01-01

    Carbonate crystals doped with various concentrations of Mg 2+ -ions have been grown by a gel-diffusion method. An increase of the Mg/Ca-ratio to more than about 1 caused a phase change in the crystal lattice from calcite to aragonite. The properties of the ESR-signals of the synthetic carbonates were studied and compared with natural marine carbonates. The following results were derived: (a) In the presence of Mg 2+ -ions the synthetic carbonates display the same ESR-signals as natural calcites of marine origin with similar properties (thermal stability, radiation sensitivity). (b) The saturation value of the signal at g=2.0006 in synthetic calcites was found to be strongly related with the Mg-content in the crystals. (c) The signal at g=2.0036 (axial symmetry) which is present in calcite was not influenced by the Mg-concentration. Its saturation value decreases when the crystal phase changed from calcite to aragonite and in complement the signal at g=2.0031 appeared. (d) The signals at g=2.0057 and g=2.0031 are most probably not of organic origin. (author)

  2. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  3. (Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations

    Science.gov (United States)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Morris, R. V.

    2011-01-01

    Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate.

  4. On heavy carbon doping of MgB2

    International Nuclear Information System (INIS)

    Kasinathan, Deepa; Lee, K.-W.; Pickett, W.E.

    2005-01-01

    Heavy carbon doping of MgB 2 is studied by first principles electronic structure studies of two types, an ordered supercell (Mg(B 1-x C x ) 2 , x 0.0833) and also the coherent potential approximation method that incorporates effects of B-C disorder. For the ordered model, the twofold degenerate σ-bands that are the basis of the high temperature superconductivity are split by 60 meV (i.e. 7 meV/% C) and the σ Fermi cylinders contain 0.070 holes/cell, compared to 0.11 for MgB 2 . A virtual crystal treatment tends to overestimate the rate at which σ holes are filled by substitutional carbon. The coherent potential approximation (CPA) calculations give the same rate of band filling as the supercell method. The occupied local density of states of C is almost identical to that of B in the upper 2 eV of the valence bands, but in the range -8 eV to -2 eV, C has a considerably larger density of states. The calculations indicate that the σ Fermi surface cylinders pinch off at the zone center only above the maximum C concentration x ∼ 0.10. These results indicate that Mg(B 1-x C x ) 2 as well as Mg 1-x Al x B 2 is a good system in which to study the evolution of the unusual electron-phonon coupling character and strength as the crucial σ hole states are filled

  5. Enantioselective Effect of Flurbiprofen on Lithium Disposition in Rats.

    Science.gov (United States)

    Uwai, Yuichi; Matsumoto, Masashi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2017-01-01

    Lithium is administered for treating bipolar disorders and is mainly excreted into urine. Nonsteroidal anti-inflammatory drugs inhibit this process. In this study, we examined the enantioselective effect of flurbiprofen on the disposition of lithium in rats. Pharmacokinetic experiments with lithium were performed. Until 60 min after the intravenous administration of lithium chloride at 30 mg/kg as a bolus, 17.8% of lithium injected was recovered into the urine. Its renal clearance was calculated to be 1.62 mL/min/kg. Neither creatinine clearance (Ccr) nor pharmacokinetics of lithium was affected by the simultaneous injection of (R)-flurbiprofen at 20 mg/kg. (S)-flurbiprofen impaired the renal function and interfered with the urinary excretion of lithium. The ratio of renal clearance of lithium to Ccr was decreased by the (S)-enantiomer. This study clarified that the (S)-flurbiprofen but not (R)-flurbiprofen inhibited the renal excretion of lithium in rats. © 2017 S. Karger AG, Basel.

  6. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  7. Activated Flake Graphite Coated with Pyrolysis Carbon as Promising Anode for Lithium Storage

    International Nuclear Information System (INIS)

    Chen, Jun; Zou, Guoqiang; Zhang, Yan; Song, Weixin; Hou, Hongshuai; Huang, Zhaodong; Liao, Hanxiao; Li, Simin; Ji, Xiaobo

    2016-01-01

    A facile route to improve the lithium-storage properties of flake graphite (FG) is proposed through coating pyrolysis carbon from polyvinylidene fluoride (PVDF) assisted by KOH activation. The interplanar distance between the graphene sheets of activated PVDF/FG is enlarged, effectively suppressing the electrode deformation during lithium (de)-intercalation. More edge and porous structures of PVDF/FG arising from KOH activation on graphite flakes contribute to improved electron and ion transport, leading to great improvement in its rate and cycling performances. The initial specific capacity of the activated PVDF/FG is 476.6 mAh g −1 at 50 mA g −1 and when the current increases to 1000 mA g −1 , the value still retains 142.6 mAh g −1 .

  8. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  9. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium

    Science.gov (United States)

    Hofstetter, Kyle; Samson, Alfred Junio; Narayanan, Sumaletha; Thangadurai, Venkataraman

    2018-06-01

    Fast lithium-ion conducting garnet-type metal oxides are promising membranes for next-generation all-solid-state Li batteries and beyond Li-ion batteries, including Li-air and Li-S batteries, due to their high total Li-ion conductivity and excellent chemical stability against reaction with elemental Li. Several studies have been reported on structure-chemical composition-ionic conductivity property in Li-stuffed garnet-type metal oxides. Here, an overview of the chemical and electrochemical stability of lithium-based garnets against moisture/humidity, aqueous solutions, carbon dioxide, sulfur, and metallic lithium are analyzed. Moisture and aqueous stability studies focus on understanding the crystal structure stability, the proton exchange capacity as a function of Li content in Li-stuffed garnets, and how the protonated species affect the crystal structure and mass transport properties. H+/Li+ exchange was found to be in the range of 2-100%. Stability concerning Li-ion conductivity and morphology under carbon dioxide are discussed. Interfacial chemical stability with lithium metal characterized by electrochemical stability window, Li dendrite formation and area specific resistance (ASR) for the reaction Li ⇌ Li+ +e- are presented. Recent attempts to suppress dendrite formation and to reduce ASR via surface modification are also highlighted. Li and Li-stuffed garnet interface ASR values are shown to be as high as >2000 Ω cm2 and as low as 1 Ω cm2 at room temperature for surface modified Li-stuffed samples. Furthermore, recent studies on Li-S battery utilizing chemically stable Li - garnet electrolyte are also discussed.

  10. Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Liyong; Liu, Zhanjun; Guo, Quangui; Wang, Guizhen; Yang, Jinhua; Li, Peng; Wang, Xianglei; Liu, Lang

    2016-01-01

    Carbon nanocoils (CNCs) have been used as anode materials for preparation of lithium ion batteries. As pure carbon material without any chemical modification, the graphitized CNCs anode exhibited larger capacities with good Coulombic efficiency, a higher rate capability, and better reversibility than the hollow graphite fibers (HGFs) anode. The excellent performance of the CNCs was possibly ascribed to the special structure and the high degree of graphitization. As a result, the CNCs anode exhibited high reversible capacity of 385.5 mA h g"−"1 at 50 mA g"−"1, 104.7% reversible capacity retention after 105 cycles, and superior reversible capability of 177.4 mA h g"−"1 at 1 A g"−"1 after 100 cycles. This result indicated that CNCs could be an attractive choice as anode material for high-energy density and high-power lithium-ion batteries.

  11. Isotope analysis of lithium by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.

    1991-04-01

    An analytical mass spectrometric method for the isotope analysis of lithium has been studied. The analysis were carried out by using a single focusing thermoionic mass spectrometer Varian Mat TH5 with 90 sup(0) magnetic sector field and 21.4 cm deflection radius, equipped with a dual Re-filament thermal ionization ion source. The effect of different lithium chemical forms, such as, carbonate, chloride, nitrate and sulfate upon the isotopic ratios sup(6)Li/ sup(7)Li has been studied. Isotopic fractionation of lithium was studied in terms of the time of analysis. The results obtained with lithium carbonate yielded a precision of ±0.1% and an accuracy of ± 0.6%, whereas with other chemical forms yielded precisions of ±0.5% and accuracies of ±2%. A fractionation correction factor, K=1.005, was obtained for different samples of lithium carbonate isotopic standard CBNM IRM 016, which has been considered constant. (author)

  12. Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping

    International Nuclear Information System (INIS)

    Geng, Zhen; Xiao, Qiangfeng; Wang, Dabin; Yi, Guanghai; Xu, Zhigang; Li, Bing; Zhang, Cunman

    2016-01-01

    A two-step method with high-efficiency is developed to prepare nitrogen doped activated carbons (NACs) with high surface area and nitrogen content. Based on the method, series of NACs with similar surface area and pore texture but different nitrogen content and nitrogen group species are successfully prepared. The influence of nitrogen doping on electrochemical performance of carbon/sulfur composites cathode is studied deeply under the conditions of similar surface area and pore texture. It presents the directly experimental demonstration that both nitrogen content and nitrogen group species play crucial roles on electrochemical performance of carbon/sulfur composites cathode. NAC/sulfur composites show the much improved cycling performance, which is about 3.5 times as that of nitrogen free carbon. Improved electrochemical performance is due to synergistic effects between nitrogen content and effective nitrogen groups, which enables effective trapping of lithium polysulfides within carbon framework. Besides, it is found that oxygen groups exist in carbon materials obviously influence electrochemical performance of cathode, which could be ignored in most of studies. Based on above, it can be concluded that enhanced chemisorption to lithium polysulfides by functional groups modification is the effective route to improve the electrochemical performance of Li-S battery.

  13. Peapod-like Li3 VO4 /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors.

    Science.gov (United States)

    Shen, Laifa; Lv, Haifeng; Chen, Shuangqiang; Kopold, Peter; van Aken, Peter A; Wu, Xiaojun; Maier, Joachim; Yu, Yan

    2017-07-01

    Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li 3 VO 4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li 3 VO 4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g -1 at 0.1 A g -1 , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li 3 VO 4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li 3 VO 4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg -1 at a power density of 532 W kg -1 , revealing the potential for application in high-performance and long life energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrochemical reactivity of ilmenite FeTiO3, its nanostructures and oxide-carbon nanocomposites with lithium

    International Nuclear Information System (INIS)

    Tao, Tao; Glushenkov, Alexey M.; Rahman, Md Mokhlesur; Chen, Ying

    2013-01-01

    The electrochemical reactivity of the ball-milled ilmenite FeTiO 3 and ilmenite nanoflowers with lithium has been investigated. The electrode assembled with the ilmenite nanoflowers delivers better electrochemical performance than that of the milled material during charging and discharging in the potential range of 0.01 and 3 V vs. Li/Li + . The ilmenite nanoflowers demonstrate the capacity of ca. 650 mAh g −1 during the first discharge, and a reversible capacity of approximately 200 mAh g −1 in the course of the first 50 cycles. The possible reaction mechanism between ilmenite and lithium was studied using cyclic voltammetry and transmission electron microscopy. The first discharge involves the formation of an irreversible phase, which is either LiTiO 2 or LiFeO 2 . Subsequently, the extraction–insertion of lithium happens in a reversible manner. It was also observed that the lithium storage might be significantly improved if the electrode was prepared in the form of a nanocomposite of FeTiO 3 with carbon

  15. Evaluation of Sub-acute Oral Toxicity of Lithium Carbonate Microemulsion (Nano Size) on Liver and Kidney of Mice

    Science.gov (United States)

    Kalantari, Heibatullah; Salimi, Anayatollah; Rezaie, Anahita; Jazayeri Shushtari, Fereshteh; Goudarzi, Mehdi

    2015-01-01

    Background: The development of drug delivery systems has improved the therapeutic and toxic properties of existing drugs in therapy. Microemulsion systems are novel vehicles for drug delivery, which have been developed in recent years. These systems are currently of interest to the pharmaceutical scientist because of their considerable potential to act as drug delivery vehicles by incorporating into a wide range of drug molecules. Although these systems improved solubility and bioavailability of drugs, they may have potential toxic effects on the body organs. Objectives: The purpose of this study was to examine a possible hepatotoxic and nephrotoxic effect of lithium carbonate microemulsion (LCME) in a mice model. Materials and Methods: Eighty male Swiss albino mice were randomly allocated to eight experimental groups, as follows: Group 1, as negative control group were treated orally with normal saline (0.9% NaCl); Group 2, received microemulsion base without drug as control group; Groups 3 to 5, received lithium carbonate (LC) solution in doses of 50, 100, and 200 mg/kg, respectively; Groups 6 to 8, received LCME orally in doses of 50, 100, and 200 mg/kg, respectively. All drugs were administered orally for ten consecutive days. Serum glutamate pyruvate aminotransferase (SGPT), serum glutamate oxaloacetate aminotransferase (SGOT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), and plasma creatinine (Cr), as markers of liver and kidney toxicity in treated mice, were measured. Furthermore, the changes of tissue were assessed by histopathologic examination. Results: The findings showed that serum activity of ALP, SGOT, and SGPT and the levels of BUN and Cr in microemulsion base group was greater than normal saline group. However, this difference was not significant. Administration of LC and LCME in all doses resulted in a significant increase in the levels of BUN and serum activity of SGOT and SGPT in comparison to normal saline group (P < 0

  16. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO_4

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Cíntora-Juárez, Daniel; Pérez-Vicente, Carlos; Tirado, José L.; Ahmad, Shahzada; Gerbaldi, Claudio

    2016-01-01

    Highlights: • Carbonate free truly quasi-solid-state polymer electrolytes for lithium batteries. • Simple and easy up scalable preparation by solvent free thermal curing. • LiFePO_4 cathode engineered by PEDOT:PSS interphase at the current collector. • Direct polymerization over the engineered electrode surface in one pot. • Stable lithium polymer cells operating in a wide temperature range. - Abstract: Stable and safe functioning of a Li-ion battery is the demand of modern generation. Herein, we are demonstrating the application of an in-situ free radical polymerisation process (thermal curing) to fabricate a polymer electrolyte that possesses mechanical robustness, high thermal stability, improved interfacial and ion transport characteristics along with stable cycling at ambient conditions. The polymer electrolyte is obtained by direct polymerization over the electrode surface in one pot starting from a reactive mixture comprising an ethylene oxide-based dimethacrylic oligomer (BDM), dimethyl polyethylene glycol (DPG) and lithium salt. Furthermore, an engineered cathode is used, comprising a LiFePO_4/PEDOT:PSS interface at the current collector that improves the material utilization at high rates and mitigates the corrosive effects of LiTFSI on aluminium current collector. The lithium cell resulting from the newly elaborated multiphase assembly of the composite cathode with the DPG-based carbonate-free polymer electrolyte film exhibits excellent reversibility upon prolonged cycling at ambient as well as elevated temperatures, which is found to be superior compared to previous reports on uncoated electrodes with polymer electrolytes.

  17. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.

    Science.gov (United States)

    Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng

    2014-12-22

    The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  19. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes

    DEFF Research Database (Denmark)

    Loftager, Simon; García Lastra, Juan Maria; Vegge, Tejs

    2017-01-01

    a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3......Lithium iron borate (LiFeBO3) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and a small volume change during operation. Yet, challenges relating to severe air- and moisture-induced degradation necessitate the application of a protective...... coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating–electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present...

  20. Development of Al-Mg-Li alloys for fusion reactor

    International Nuclear Information System (INIS)

    Shoji, Yoshifusa; Yoshida, Hideo; Uno, Teruo; Baba, Yoshio; Kamada, Koji.

    1985-01-01

    Aluminum-magnesium-lithium alloys featuring low residual induced radioactivity and high electrical resistivity have been developed for fusion reactor structural materials. The addition of lithium in aluminum and Al-Mg alloys markedly increases electrical resistivity and tensile strength of them. However the elongation of Al-Mg-Li alloys containing more than 2 mass% lithium are less than 10 %. The Al-4--5 mass%Mg-1 mass%Li alloys are optimum for fusion reactor materials, and exhibit high resistivity (86 nΩm: 20 %IACS), medium strength (300 MPa) and good formability (22 % elongation). The variation of electrical resistivity of Al-Li and Al-Mg-Li alloys in solid solution can be approximated by the Matthiessen's rule. (author)

  1. Characterization of lithium coordination sites with magic-angle spinning NMR

    Science.gov (United States)

    Haimovich, A.; Goldbourt, A.

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  2. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway.

    Science.gov (United States)

    Mohseni, Gholmreza; Ostadhadi, Sattar; Imran-Khan, Muhammad; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Haddadi, Nazgol-Sadat; Dehpour, Ahmad-Reza

    2017-04-01

    Depression is one the world leading global burdens leading to various comorbidities. Lithium as a mainstay in the treatment of depression is still considered gold standard treatment. Similar to lithium another agent agmatine has also central protective role against depression. Since, both agmatine and lithium modulate various effects through interaction with NMDA receptor, therefore, in current study we aimed to investigate the synergistic antidepressant-like effect of agmatine with lithium in mouse force swimming test. Also to know whether if such effect is due to interaction with NMDA receptor. In our present study we found that when potent dose of lithium (30mg/kg) was administered, it significantly decreased the immobility time. Also, when subeffective dose of agmatine (0.01mg/kg) was coadministered with subeffective dose of lithium (3mg/kg), it potentiated the antidepressant-like effect of subeffective dose of lithium. For the involvement of NMDA receptor in such effect, we administered NMDA receptor antagonist MK-801 (0.05mg/kg) with a combination of subeffective dose of lithium (3mg/kg) and agmatine (0.001mg/kg). A significant antidepressant-like effect was observed. Furthermore, when subeffective dose (50 and 75mg/kg) of NMDA was given it inhibited the synergistic effect of agmatine (0.01mg/kg) with lithium (3mg/kg). Hence, our finding demonstrate that agmatine have synergistic effect with lithium which is mediated by NMDA receptor pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shulei; Zheng, Shili; Wang, Zheming; Cui, Wenwen; Zhang, Hailin; Yang, Liangrong; Zhang, Yi; Li, Ping

    2018-01-01

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.

  4. Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Cuesta, Nuria; Cameán, Ignacio; Ramos, Alberto; García, Ana B.

    2016-01-01

    The electrochemical performance as potential anodes for lithium-ion batteries of graphitized biogas-derived carbon nanofibers (BCNFs) is investigated by galvanostatic cycling versus Li/Li + at different electrical current densities. These graphitic nanomaterials have been prepared by high temperature treatment of carbon nanofibers produced in the catalytic decomposition of biogas. At low current density, they deliver specific capacities comparable to that of oil-derived micrometric graphite, the capacity retention values being mostly in the range 70-80% and cycling efficiency ∼ 100%. A clear tendency of the anode capacity to increase alongside the BCNFs crystal thickness was observed. Besides the degree of graphitic tri-dimensional structural order, the presence of loops between the adjacent edges planes on the graphene layers, the mesopore volume and the active surface area of the graphitized BCNFs were found to influence on battery reversible capacity, capacity retention along cycling and irreversible capacity. Furthermore, provided that the development of the crystalline structure is comparable, the graphitized BCNFs studied show better electrochemical rate performance than micrometric graphite. Therefore, this result can be associated with the nanometric particle size as well as the larger surface area of the BCNFs which, respectively, reduces the diffusion time of the lithium ions for the intercalation/de-intercalation processes, i.e. faster charge-discharge rate, and increases the contact area at the anode active material/electrolyte interface which may improve the Li + ions access, i.e. charge transfer reaction.

  5. Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries

    Science.gov (United States)

    Teixidor, Genis Turon; Zaouk, Rabih B.; Park, Benjamin Y.; Madou, Marc J.

    This paper presents fabrication and testing results of three-dimensional carbon anodes for lithium-ion batteries, which are fabricated through the pyrolysis of lithographically patterned epoxy resins. This technique, known as Carbon-MEMS, provides great flexibility and an unprecedented dimensional control in shaping carbon microstructures. Variations in the pattern density and in the pyrolysis conditions result in anodes with different specific and gravimetric capacities, with a three to six times increase in specific capacity with respect to the current thin-film battery technology. Newly designed cross-shaped Carbon-MEMS arrays have a much higher mechanical robustness (as given by their moment of inertia) than the traditionally used cylindrical posts, but the gravimetric analysis suggests that new designs with thinner features are required for better carbon utilization. Pyrolysis at higher temperatures and slower ramping up schedules reduces the irreversible capacity of the carbon electrodes. We also analyze the addition of Meso-Carbon Micro-Beads (MCMB) particles on the reversible and irreversible capacities of new three-dimensional, hybrid electrodes. This combination results in a slight increase in reversible capacity and a big increase in the irreversible capacity of the carbon electrodes, mostly due to the non-complete attachment of the MCMB particles.

  6. Imprinting of slip bands in mechanically deformed MgO crystals using lithium impurities

    Energy Technology Data Exchange (ETDEWEB)

    Orera, V M; Chen, Y; Abraham, M M

    1980-01-01

    Lithium impurities in MgO can be used to imprint slip bands produced by plastic deformation. The imprinting is obtained by means of (Li)/sup 0/ defects (subtitutional Li/sup +/ ions each with an adjacent O/sup -/ ion) which absorb light at 680 nm (1.8 eV). Slip bands are observed as discolored regions against the background of dark blue coloration due to these defects. The decoloration can be achieved by two different processes: either by oxidation at 1275 K of a deformed crystal, or by the reverse procedure - deformation of a previously oxidized crystal. The mechanisms involved in the decoloration are different; the former is due to ionic motion, and the latter is an electronic effect. Similar procedures involving surface indentation by sharp objects also result in decoloration patterns.

  7. Radiation-damage recovery in undoped and oxidized Li doped Mg O crystals implanted with lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E. E-mail: ealves@itn.pt; Silva, R.C. da; Pinto, J.V.; Monteiro, T.; Savoini, B.; Caceres, D.; Gonzalez, R.; Chen, Y

    2003-05-01

    Undoped MgO and oxidized Li-doped MgO single crystals were implanted with 1 x 10{sup 17} Li{sup +}/cm{sup 2} at 175 keV. The Rutherford backscattering spectrometry (RBS)/channeling data obtained after implantation shows that damage was produced throughout the entire range of the implanted ions. Optical absorption measurements indicate that after implantation the most intense band occurs at {approx}5.0 eV, which has been associated with anion vacancies. After annealing at 450 K the intensity of the oxygen-vacancy band decreases monotonically with temperature and completely disappears at 950 K. A broad extinction band centered at {approx}2.14 eV associated with lithium precipitates emerges gradually and anneals out at 1250 K. RBS/channeling shows that recovery of the implantation damage is completed after annealing the oxidized samples at 1250 K.

  8. Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhan Liang; Wang Yanli; Qiao Wenming; Ling, Licheng; Yang Shubin

    2012-01-01

    Graphical abstract: Hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles were synthesized. As anode materials for lithium ion battery, the reversible capacity of obtained electrode is as high as 732 mAh g −1 at 74 mA g −1 and 500 mAh g −1 at 744 mA g −1 . - Abstract: Based on the high theoretical capacity of Co 3 O 4 for lithium storage, a noval type of monodisperse hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles (HCSE-Co 3 O 4 ) were designed and synthesized. The monodisperse hollow carbon spheres not only can provide enough void volume to accommodate the volume change of encapsulated Co 3 O 4 nanoparicles, but also can prevent the formation of solid electrolyte interface (SEI) films on the surface of Co 3 O 4 nanoparticles and following direct contact of Co and SEI films upon lithium extraction. The HCSE-Co 3 O 4 electrode exhibit highly reversible capacity, excellent cycle performance and rate capability attributed to the unique structure. The reversible capacity of HCSE-Co 3 O 4 electrode is as high as 500 mAh g −1 at a current density of 744 mA g −1 , while that of bare Co 3 O 4 electrode is only around 80 mAh g −1 .

  9. Graphene oxide-multiwalled carbon nanotubes composite as an anode for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Majchrzycki Łukasz

    2016-09-01

    Full Text Available Nowadays reduced graphene oxide (rGO is regarded as a highly interesting material which is appropriate for possible applications in electrochemistry, especially in lithium-ion batteries (LIBs. Several methods were proposed for the preparation of rGO-based electrodes, resulting in high-capacity LIBs anodes. However, the mechanism of lithium storage in rGO and related materials is still not well understood. In this work we focused on the proposed mechanism of favorable bonding sites induced by additional functionalities attached to the graphene planes. This mechanism might increase the capacity of electrodes. In order to verify this hypothesis the composite of non-reduced graphene oxide (GO with multiwalled carbon nanotubes electrodes was fabricated. Electrochemical properties of GO composite anodes were studied in comparison with similarly prepared electrodes based on rGO. This allowed us to estimate the impact of functional groups on the reversible capacity changes. As a result, it was shown that oxygen containing functional groups of GO do not create, in noticeable way, additional active sites for the electrochemical reactions of lithium storage, contrary to what has been postulated previously.

  10. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.

    Science.gov (United States)

    Zhang, Linlin; Wan, Fang; Wang, Xinyu; Cao, Hongmei; Dai, Xi; Niu, Zhiqiang; Wang, Yijing; Chen, Jun

    2018-02-14

    The lithium sulfur (Li-S) battery has attracted much attention due to its high theoretical capacity and energy density. However, its cycling stability and rate performance urgently need to improve because of its shuttle effect. Herein, oxygen-doped carbon on the surface of reduced graphene oxide (labeled as ODC/rGO) was fabricated to modify the separators of Li-S batteries to limit the dissolution of the lithium polysulfides. The mesoporous structure in ODC/rGO can not only serve as the physical trapper, but also provide abundant channels for fast ion transfer, which is beneficial for effective confinement of the dissoluble intermediates and superior rate performance. Moreover, the oxygen-containing groups in ODC/rGO are able to act as chemical adsorption sites to immobilize the lithium polysulfides, suppressing their dissolution in electrolyte to enhance the utilization of sulfur cathode in Li-S batteries. As a result, because of the synergetic effects of physical adsorption and chemical interaction to immobilize the soluble polysulfides, the Li-S batteries with the ODC/rGO-coated separator exhibit excellent rate performance and good long-term cycling stability with 0.057% capacity decay per cycle at 1.0 C after 600 cycles.

  11. A safe and cost-effective PMMA carbon source for MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of); Jang, S. H. [Kiswire Advanced Technology Ltd, Daejeon (Korea, Republic of); Sinha, B. B. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Mumbai (India); Bhardwaj, A. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-03-15

    Carbon is proven to be very effective in pinning the magnetic vortices and improving the superconducting performance of MgB2 at high fields. In this work, we have used polymethyl methacrylate (PMMA) polymer as a safe and cost effective carbon source. The effects of molecular weight of PMMA on crystal structure, microstructure as well as on superconducting properties of MgB2 were studied. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with different molecular weights of PMMA. This indicates that carbon could be substituted in the boron honeycomb layers without affecting the interlayer interactions. As compared to undoped MgB2, substantial enhancement in Jc(H) properties was obtained for PMMA-doped MgB2 samples both at 5 K and 20 K. The enhancement could be attributed to the effective carbon substitution for boron and the refinement of crystallite size by PMMA doping.

  12. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    International Nuclear Information System (INIS)

    Emery, R.; Klopfer, D.C.; Skalski, J.R.

    1981-07-01

    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters

  13. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.

    Science.gov (United States)

    Li, Wenyue; Tang, Yongbing; Kang, Wenpei; Zhang, Zhenyu; Yang, Xia; Zhu, Yu; Zhang, Wenjun; Lee, Chun-Sing

    2015-03-18

    Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet-like carbon film supported core-shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g(-1)) after 200 cycles at 1 A g(-1). The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core-shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet-like composite. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. TITANIUM CARBON ALUMINIUM : A NOVEL GRAIN REFINER FOR ALUMINIUM-LITHIUM ALLOYS

    OpenAIRE

    Birch , M.; Cowell , A.

    1987-01-01

    This work explores the possibility of achieving grain size control in aluminium-lithium alloys with the titanium carbon aluminium (TiCAl) master alloys invented at the Technical University of Berlin and developed by London and Scandinavian Metallurgical Co Ltd (LSM). Grain refining tests were conducted on a single batch of 8090 alloy using addition rates of 0.2wt% and 0.4wt% of TiCAl and 3/1 titanium boron aluminium (TiBAl). Other tests using 0.4wt% of binary TiAl gave poor results, showing t...

  15. The protective effect of curcumin against lithium-induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Mohammad Shaterpour

    2017-08-01

    Full Text Available Lithium is an element which has been used as salts of chloride or carbonate for many years in the treatment of some psychological disorders such as mania, bipolar or schizophrenic diseases. Chronic application of lithium may induce some serious nephropathies such as natriuresis, renal tubular acidosis, tubulointerstitial nephritis progression to progressive chronic kidney disease and hypercalcemia and, most commonly, nephrogenic diabetes insipidus. Curcumin is an antioxidant derived from Curcuma longa (turmeric or curcuma which has the ability to react directly with reactive species and up-regulation of many cytoprotective and antioxidant proteins. The preventive roles of curcumin in nephropathies were reported, but there was little information on the protective effect of curcumin against lithium-induced nephrotoxicity. In this study, male Wistar rats divided into five groups of six each and were treated as follows: group1; animals were received lithium chloride as 2 mmol/kg, group 2; animals were received normal saline (0, 5%, group 3; animals were received curcumin (200 mg/kg, group 4 animals were received curcumin plus lithium and group 5; animals were received solvent intraperitoneally for three weeks. Then the animals were killed and biochemical parameters of blood were assayed and histopathological assessment was performed. The results have shown that curcumin significantly improved the biochemicals (BUN, creatinine, malondialdehyde. Curcumin prevented significantly the histological parameters that were changed by lithium administration in rats. Our results provide new insights into beneficial usages of curcumin in chronic nephrotoxicity induced by lithium salts.

  16. Synthesis of Microspherical LiFePO4-Carbon Composites for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Maria-Magdalena Titirici

    2013-07-01

    Full Text Available This paper reports an “all in one” procedure to produce mesoporous, micro-spherical LiFePO4 composed of agglomerated crystalline nanoparticles. Each nanoparticle is individually coated with a thin glucose-derived carbon layer. The main advantage of the as-synthesized materials is their good performance at high charge-discharge rates. The nanoparticles and the mesoporosity guarantee a short bulk diffusion distance for both lithium ions and electrons, as well as additional active sites for the charge transfer reactions. At the same time, the thin interconnected carbon coating provides a conductive framework capable of delivering electrons to the nanostructured LiFePO4.

  17. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  18. Microscopic unravelling of nano-carbon doping in MgB{sub 2} superconductors fabricated by diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.C.K. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Yeoh, W.K. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); De Silva, K.S.B. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Institute for Nanoscale Technology, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007 (Australia); Kondyurin, A.; Bao, P. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Li, W.X. [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Xu, X.; Peleckis, G.; Dou, S.X. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Ringer, S.P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); Zheng, R.K., E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, New South Wales 2006 (Australia)

    2015-09-25

    Highlights: • First report on nano-carbon doped MgB{sub 2} superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B{sub 4}C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB{sub 2} with 2.5% nano-carbon doped showed the highest J{sub c}, ≈10{sup 4} A/cm{sup 2} for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB{sub 2} crystalline. The strain increased across the doping level due to the carbon substitution in the MgB{sub 2} matrix. The broadening of the T{sub c} curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B{sub 4}C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB{sub 2}. Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J{sub c} of the 10% nano-carbon doped MgB{sub 2} bulk superconductor.

  19. Suppressing Lithium Dendrite Growth with a Single-Component Coating.

    Science.gov (United States)

    Liu, Haodong; Zhou, Hongyao; Lee, Byoung-Sun; Xing, Xing; Gonzalez, Matthew; Liu, Ping

    2017-09-13

    A single-component coating was formed on lithium (Li) metal in a lithium iodide/organic carbonate [dimethyl carbonate (DMC) and ethylene carbonate (EC)] electrolyte. LiI chemically reacts with DMC to form lithium methyl carbonate (LMC), which precipitates and forms the chemically homogeneous coating layer on the Li surface. This coating layer is shown to enable dendrite-free Li cycling in a symmetric Li∥Li cell even at a current density of 3 mA cm -2 . Adding EC to DMC modulates the formation of LMC, resulting in a stable coating layer that is essential for long-term Li cycling stability. Furthermore, the coating can enable dendrite-free cycling after being transferred to common LiPF 6 /carbonate electrolytes, which are compatible with metal oxide cathodes.

  20. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    Science.gov (United States)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  1. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-04-02

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  2. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    Science.gov (United States)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-05-01

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  3. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  4. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L; Bayoudh, S [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H [Bollore Technologies, 29 - Quimper (France); Herlem, G [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1997-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  5. The influence of Al2O3, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics

    International Nuclear Information System (INIS)

    Salman, S.M.; Darwish, H.; Mahdy, E.A.

    2008-01-01

    The crystallization characteristics of glasses based on the Li 2 O-CaO-SiO 2 eutectic (954 ± 4 deg. C) system containing Al 2 O 3 , MgO and ZnO has been investigated by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The partial replacement of Li 2 O by Al 2 O 3 and CaO by MgO or ZnO in the studied glass-ceramics led to the development of different crystalline phase assemblages, including lithium meta- and di-silicates, lithium calcium silicates, α-quartz, diopside, clinoenstatite, wollastonite, β-eucryptite ss, β-spodumene, α-tridymite, lithium zinc orthosilicate, hardystonite and willemite using various heat-treatment processes. The dilatometric thermal expansion of the glasses and their corresponding glass-ceramics were determined. A wide range of thermal expansion coefficient values were obtained for the investigated glasses and their corresponding crystalline products. The thermal expansion coefficients of the investigated glasses were decreased by Al 2 O 3 , MgO or ZnO additions. The α-values of the investigated glasses were ranged from (+18) to (+108) x 10 -7 K -1 (25-300 deg. C), while those of the glass-ceramics were (+3) to (+135) x 10 -7 K -1 (25-700 deg. C). The chemical durability of the glass-ceramics, towards the attack of 0.1N HCl solution, was markedly improved by Al 2 O 3 with MgO replacements. The composition containing 11.5 mol% Al 2 O 3 and 6.00 mol% MgO exhibited low thermal expansion values and good chemical durability

  6. Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode

    International Nuclear Information System (INIS)

    Chen, Hedong; Wang, Zhoulu; Hou, Xianhua; Fu, Lijun; Wang, Shaofeng; Hu, Xiaoqiao; Qin, Haiqing; Wu, Yuping

    2017-01-01

    Carbon-coated core-shell structure artificial graphite@plasma nano-silicon@carbon (AG@PNSi@C) composite, applying as lithium ion battery anode material, has been prepared via spray drying method. The plasma nano-silicon (<100 nm), which contained amorphous silicon, was synthesized by radio frequency induction plasma system with the high temperatures processing capability and high quench rates. The artificial graphite in the composite acts as the core which supports the particle and provides electroconductivity, while PNSi attached on the surface of the core, enhances the specific capacity of the composite. The as prepared composite shows superior performance as anode in lithium-ion batteries, regarding to the initial Coulombic efficiency and cycle life. The initial Coulombic efficiency of AG@PNSi@C electrode is 81.0% with a discharge capacity of 553 mAh g −1 and a recharge capacity of 448 mAh g −1 . During cycling, AG@PNSi@C exhibits excellent performance with a very low capacity fading that the discharge capacity maintains 498.2 mAh g −1 and 449.4 mAh g −1 after 250 cycles and 500 cycles. AG@PNSi@C also shows enhanced resistance against high current density. Besides the remarkable electrochemical performances, the facile and mass-producible synthesis process makes the AG@PNSi@C composite very promising for its application in lithium-ion batteries.

  7. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Hui; Wu, Ping; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming; Lu, Tianhong

    2014-01-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO 2 spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g −1 after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g −1 ), which is much higher than that of bare Si spheres (430.7 mA h g −1 )

  8. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.

    Science.gov (United States)

    Chung, Sheng-Heng; Manthiram, Arumugam

    2014-06-01

    Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320 mA h g(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98 %, low capacity fade of 0.18 % per cycle, and good long-term cyclability over 150 cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

    2013-10-15

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

  10. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    International Nuclear Information System (INIS)

    Wei, Ying; Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2013-01-01

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery

  11. New Environmentalconditions Responsible for the amount of mg Incorporated in Biogenic Carbonates

    Science.gov (United States)

    Zuddas, P.; Cherchi, A.; DeGiudici, G. B.; Buosi, C.

    2012-12-01

    The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. Several kinetic laboratory investigations have suggested that the temperature is kinetically responsible for the amount of Mg incorporated in both abiotic and biogenic calcites and that variation of kinetic reaction mechanism resulting from the temperature changes are correlated with the variable amount of Mg incorporated in calcites. These results explain why in present-day marine carbonates low-Mg calcite cements are mainly associated with cool water while high-Mg carbonates are dominantly found in warm-water environments. An apparent inverse relationship between the global average paleo-temperature and the Mg/Ca ratio is however observed in the past formed marine carbonate. This apparent contradiction has been interpreted as resulting from a possible changing in the relative seawater geochemical cycles of these cations. Recent monitoring of costal areas in presence of heavy metals and CO2 released from industrial polluted area reveals the presence of porcelanaceous miliolids infested by microscopic boring microflora (cyanobacteria, algae and fungi). Here, benthonic foraminifera have Mg/Ca molar ratio by one order of magnitude higher when compared to the average value of the same genus living under uncontaminated environments. A similar behaviour has been found for Zn, Cd and Pb. In these contaminated environments, temperature and average major seawater composition remain constant, while PCO2 partial pressure (estimated by pH and alkalinity using the ion pairing model) is 3-5 times higher than the average for the open sea nearby. Geochemical models predicts that CO2 increase is affecting carbonate saturation state of surface water in the twenty-first century indicating that calcareous organisms may have difficulty calcifying leading to production of weaker skeletons and greater vulnerability to erosion. The

  12. Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage

    International Nuclear Information System (INIS)

    Geng, Hongbo; Ming, Hai; Ge, Danhua; Zheng, Junwei; Gu, Hongwei

    2015-01-01

    Graphical abstract: Hollow TiO 2 with mesoporous shell (MHTO) was successfully fabricated by a novel and controllable route, followed by fluorine-doped carbon coating the MHTO (MHTO-C/F), with the aim of enhancing the conductivity and stability of structures. - Highlights: • Anatase TiO 2 hollow spheres with mesoporous shells (MHTO) was fabricated via a facile and controllable route, to improve the lithium ion mobility as well as the stability of the architecture. • Fluorine-doped carbon derived from polyvinylidene difluoride was further encapsulated onto TiO 2 hollow spheres to improve the conductivity. • The composites could provide excellent electrochemical performance, which was desirable for the application of TiO 2 as an anode material in lithium ion batteries. - Abstract: In this manuscript, we demonstrated a facile route for the controllable design of “Fluorine (F)-doped carbon” (C/F)-treated TiO 2 hollow spheres with mesoporous shells (MHTO-C/F). The fabrication of this distinct mesoporous hollow structures and the C/F coating could effectively improve the electrolyte permeability and architectural stability, as well as electrical conductivity and lithium ion mobility. As anticipated, MHTO-C/F has several remarkable electrochemical properties, such as a high specific reversible capacity of 252 mA h g −1 , outstanding cycling stability of more than 210 mA h g −1 after 100 cycles at 0.5 C, and good rate performance of around 123 mA h g −1 at 5 C (1 C = 168 mA g −1 ). These properties are highly beneficial for lithium storage

  13. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. 3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zheng

    2014-01-01

    Full Text Available A 3D hollow Sn@C-graphene hybrid material (HSCG with high capacity and excellent cyclic and rate performance is fabricated by a one-pot assembly method. Due to the fast electron and ion transfer as well as the efficient carbon buffer structure, the hybrid material is promising in high-performance lithium-ion battery.

  15. Electrode materials and lithium battery systems

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Belharouak, Ilias [Westmont, IL; Liu, Jun [Naperville, IL

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  16. Synthesis of lithium niobate and monocrystal growth by Czochralski method

    International Nuclear Information System (INIS)

    Balzuweit, K.

    1988-01-01

    The qualitative analysis of lithium niobate by x-ray analysis and optical microscopy is presented. The lithium niobate compound was obtained by synthesis using niobium oxides and lithium carbonates. The lithium niobate monocrystal growth was done by Czochralski method. (M.C.K.)

  17. Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Shuankui; Zuo, Shiyong; Wu, Zhiguo; Liu, Ying; Zhuo, Renfu; Feng, Juanjuan; Yan, De; Wang, Jun; Yan, Pengxun

    2014-01-01

    A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg −1 at a current of 100mAg −1 as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li + ions diffusion and large electrode-electrolyte contact area for high Li + ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries

  18. Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Aiguo, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Fan, Xiaohong; Chen, Aoling [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhang, Hengiang [School of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde 067000 (China); Shan, Yongkui, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2017-02-15

    An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2′-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg{sup 2+} and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance. - Graphical abstract: Mesoporous nitrogen-doped carbon microfibers with efficient oxygen electroreduction activity were prepared by thermal conversion of new Mg-biquinoline-based coordination compound microfibers.

  19. Mesoporous wormholelike carbon with controllable nanostructure for lithium ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Li, Xinxi; Li, Zhenghui; Zhang, Guoqing; Wu, Dingcai

    2015-01-01

    Highlights: • Wormholelike carbon (WMC) with controllable nanostructure is prepared by sol–gel method. • The reversible capacity of WMC is much higher than that of many other reported nanocarbons. • The effect of pore diameter on Li storage capacity is investigated. - Abstract: A class of mesoporous wormholelike carbon (WMC) with controllable nanostructure was prepared by sol–gel method and then used as the anode material of lithium-ion batteries. Based on the experimental results, it is found that the nanostructure of the as-prepared WMC plays an important role in the electrochemical performances. A suitable mesopore size is necessary for a high performance carbon-based anode material since it can not only guarantee effective mass transport channels but also provide large surface area. As a result, F30 with a mesopore size of 4.4 nm coupled with high surface area of 1077 m 2 g −1 shows a reversible capacity of 630 mAh g −1 , much higher than commercial graphite and many other reported nanocarbons

  20. Comparison of Vitros Dry Slide Technology for Determination of Lithium Ions with Other Methods

    Directory of Open Access Journals (Sweden)

    Nafija Serdarević

    2006-05-01

    Full Text Available The lithium ions concentration in human serum was determined using Dry-slide technology Vitros 250 Analyser (Ortho Clinical Diagnostic, atomic absorption spectrometry (AAS method Perkin Elmer 403 and ion-selective electrode (ISE potentiometry AVL 9181. We compared lithium ions results in sample sera between these methods. Our reference method was AAS. We analyzed lithium ions concentration in 23 sera samples of patients after oral administration of lithium carbonate (3x 300mg Jadran, Galen Laboratory Rijeka, by dry-slide technology, AAS and ISE methods. The quality control, precision, reproducibility and accuracy for Vitros dry slide technology were assessed. We established that the main difference between AAS method and dry slide technology was not statistically significant at p< 0.05 according to Student t-test. Therefore, the dry slide technology may be a useful alternative or it may even replace other methods, such as AAS. The main difference between dry slide technology and ISE methods was statistically significant at p<0.05 using Student t-test. By ISE method, we obtained considerably higher results, which may be explained by the presence of electrolytes or medicaments interfering with lithium ions.

  1. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  2. Hydrogen Adsorption in Flame Synthesized and Lithium Intercalated Carbon Nanofibers--A Comparative Study.

    Science.gov (United States)

    Dhand, Vivek; Prasad, J Sarada; Rao, Venkateswer M; Kalluri, Sujith; Jain, Pawan Kumar; Sreedhar, B

    2015-01-01

    Carbon nanofibers (CNF) have been synthesized under partial combustion conditions in a flame reactor using different mixtures of hydrocarbon gases in the presence and absence of precursors. The hydrogen (H2) adsorption studies have been carried out using a high pressure Sievert's apparatus maintained at a constant temperature (24 degrees C). The flame synthesized CNFs showed high degree of H2 adsorption capacities at 100 atm pressure. The highest H2 capacities recorded have been 4.1 wt% [for CNF produced by liquefied petroleum gas (LPG)-Air (E-17)], 3.7 wt% [for nano carbons produced by Methane-Acetylene-Air (EMAC-4)] and 5.04 wt% for [Lithium intercalated sample (Li-EMAC-4)] respectively.

  3. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt

    Science.gov (United States)

    Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T.

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  4. Hydrothermal replacement of calcite by Mg-carbonates

    Science.gov (United States)

    Jonas, Laura; Mueller, Thomas; Dohmen, Ralf

    2014-05-01

    The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product

  5. Graphene Carbon Nanotube Carpets Grown Using Binary Catalysts for High-Performance Lithium-Ion Capacitors.

    Science.gov (United States)

    Salvatierra, Rodrigo Villegas; Zakhidov, Dante; Sha, Junwei; Kim, Nam Dong; Lee, Seoung-Ki; Raji, Abdul-Rahman O; Zhao, Naiqin; Tour, James M

    2017-03-28

    Here we show that a versatile binary catalyst solution of Fe 3 O 4 /AlO x nanoparticles enables homogeneous growth of single to few-walled carbon nanotube (CNT) carpets from three-dimensional carbon-based substrates, moving past existing two-dimensional limited growth methods. The binary catalyst is composed of amorphous AlO x nanoclusters over Fe 3 O 4 crystalline nanoparticles, facilitating the creation of seamless junctions between the CNTs and the underlying carbon platform. The resulting graphene-CNT (GCNT) structure is a high-density CNT carpet ohmically connected to the carbon substrate, an important feature for advanced carbon electronics. As a demonstration of the utility of this approach, we use GCNTs as anodes and cathodes in binder-free lithium-ion capacitors, producing stable devices with high-energy densities (∼120 Wh kg -1 ), high-power density capabilities (∼20,500 W kg -1 at 29 Wh kg -1 ), and a large operating voltage window (4.3 to 0.01 V).

  6. Characterization lithium mineralized pegmatite

    International Nuclear Information System (INIS)

    Pereira, E.F.S.; Luz Ferreira, O. da; Cancado, R.Z.L.

    1986-01-01

    Lithium economic importance has increased in the last years. In Brazil its reserves, generally pegmatites bodies, are found in Itinga-Aracuai-MG. This study of characterization belongs to a global plan of lithium mineralized bodies research of 'Arqueana de Minerios e Metais Ltda', which purpose is to give subsidies for implementation of pegmatite unit, in order to make better use of them. (F.E.) [pt

  7. An improved high-performance lithium-air battery.

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-06-10

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  8. Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Smith, Kiah A. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick Charles (Inventor)

    2014-01-01

    The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.

  9. Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane.

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).

  10. Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Cedric; Crosnier, Olivier; Schleich, Donald M.; Brousse, Thierry [Laboratoire de Genie des Materiaux et Procedes Associes (LGMPA), Ecole Polytechnique de l' Universite de Nantes, Rue Christian Pauc, BP50609, 44306 Nantes Cedex 3 (France); Retoux, Richard [Laboratoire CRISMAT-CNRS/UMR 6508, ENSICAEN, Universite de Caen Basse-Normandie, 6 bd Marechal Juin, 14050 Caen (France); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada)

    2011-09-23

    Multi-walled carbon nanotube (MWCNT)/silicon nanocomposites obtained by a grafting technique using the diazonium chemistry are used to prepare silicon negative electrodes for lithium-ion batteries. The covalent bonding of the two compounds is obtained via mono- and multi-layers of phenyl bridges, leading to an ideal dispersion of MWCNTs and silicon nanoparticles that are bound together. The presence of MWCNTs close to silicon nanoparticles enhances the electronic pathway to the active material particles and probably helps to prevent silicon decrepitation upon repeated lithium insertion/extraction by improving the mechanical stability of the electrode at a nanoscale level. This effect results in the enhancement of cycling ability and capacity, which are demonstrated by comparing the nanocomposite electrode to a simple mixture of the two compounds. This technique can be applied to other carbon conductive additives together with silicon or other nanosized active compounds. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design.

    Science.gov (United States)

    Ren, Jing; Ren, Rui-Peng; Lv, Yong-Kang

    2018-05-04

    Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite-based anodes in lithium-ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp 2 -carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high-performance carbon-based anode materials. Herein, we employed flexible single-walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip-coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron-/ion-transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium-ion batteries, the SWCNT-GF electrode delivered a specific capacity of 953 mA h g -1 at a current density of 0.1 A g -1 and a high reversible capacity of 606 mA h g -1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g -1 and 189 mA h g -1 after 2200 cycles at 5 A g -1 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  13. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  14. Carbon encapsulated ultrasmall SnO2 nanoparticles anchoring on graphene/TiO2 nanoscrolls for lithium storage

    International Nuclear Information System (INIS)

    Li, Xinlu; Zhang, Yonglai; Li, Tongtao; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-01-01

    Highlights: • Highly-dispersive ultrasmall SnO 2 nanoparticles (4∼8 nm) are anchored on the substrate of graphene/TiO 2 nanoscrolls. • The encapsulated glucose-derived carbon layer effectively immobilizes SnO 2 nanoparticles. • The enhanced cycling performance is owing to the synergetic effects between the multicomposites. - Abstract: Amorphous carbon is coated on the surface of ultrasmall SnO 2 nanoparticles which are anchored on graphene/TiO 2 nanoscrolls via hydrothermal treatment, followed by annealing process. Transmission electron microscope images show that ultrasmall SnO 2 nanoparticles are anchored on graphene/TiO 2 nanoscrolls and further immobilized by the outermost amorphous carbon layer. The carbon encapsulated SnO 2 @graphene/TiO 2 nanocomposites deliver high reversible capacities around 1131, 793, 621 and 476 mAh g −1 at the current densities of 100, 250, 500, and 1000 mA g −1 , respectively. It is found that SnO 2 nanoparticles play a dominant role in the contributions of reversible capacity according to the cyclic voltammetry curves, voltage-capacity curves and dQ/dV vs. potential curves. The substrate of graphene/TiO 2 nanoscrolls provides sufficient transport channels for lithium ions and high electron conductivity. While the outermost amorphous carbon layer prevents the peeling of SnO 2 nanoparticles from the substrate, therefore making them desirable alternative anode materials for lithium ion batteries

  15. Carbon/Sulfur Composite Cathodes for Flexible Lithium/Sulfur Batteries: Status and Prospects

    International Nuclear Information System (INIS)

    Zhao, Yan; Zhang, Yongguang; Bakenova, Zagipa; Bakenov, Zhumabay

    2015-01-01

    High specific energy and low cost flexible lithium/sulfur batteries have attracted significant attention as a promising power source to enable future flexible and wearable electronic devices. Here, we review recent progress in the development of free-standing sulfur composite cathodes, with special emphasis on electrode material selectivity and battery structural design. The mini-review is organized based on the dimensionality of different scaffold materials, namely one-dimensional carbon nanotube (CNT), two-dimensional graphene, and three-dimensional CNT/graphene composite, respectively. Finally, the opportunities and perspectives of the future research directions are discussed.

  16. Amyloid beta 25-35 impairs reconsolidation of object recognition memory in rats and this effect is prevented by lithium carbonate.

    Science.gov (United States)

    Álvarez-Ruíz, Yarummy; Carrillo-Mora, Paul

    2013-08-26

    Previous studies in transgenic mice models of Alzheimer's disease (AD) have demonstrated an age dependent memory reconsolidation failure, suggesting that this may be an additional mechanism that contributes to the memory impairment observed in AD. However, so far it is unknown whether this effect can be caused by exogenous administration of amyloid beta (Aβ). The purpose was to determine the effects of soluble Aβ 25-35 on reconsolidation of object recognition memory (ORM) in rats, and assess whether these effects can be prevented by lithium carbonate (LiCa). In this study, male Wistar rats were used and the following groups were formed (N=6-13): (a) control, given saline solution; (b) [NMDA antagonist] MK-801 (0.1 mg/kg); (c) LiCa (350 mg/kg); (d) Aβ 25-35 (100 μM) injected into both hippocampi; and (e) Aβ 25-35+LiCa. In all cases, treatments were administered with or without reactivation of memory. The results showed that soluble Aβ 25-35 produces ORM impairment similar to MK-801 when given shortly after memory reactivation, and this effect is prevented by prior administration of LiCa. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yuan, Wei; Luo, Jian; Pan, Baoyou; Qiu, Zhiqiang; Huang, Shimin; Tang, Yong

    2017-01-01

    Highlights: •The composite anode is composed of CuO nanowire shell and carbon fiber core. •The composite anode avoids completely the use of binders. •Synergistic effect of carbon fibers and CuO nanowires enhances performance. •Carbon fibers improve electrical conductivity and buffer volume change. •CuO nanowires shorten diffusion length and alleviate structural strain. -- Abstract: Developing high-performance electrode structures is of great importance for advanced lithium-ion batteries. This study reports an efficient method to fabricate hierarchical shell/core CuO nanowire/carbon fiber composites via electroless plating and thermal oxidation processes. With this method, a binder-free CuO nanowire/carbon fiber shell/core hierarchical network composite anode for lithium-ion batteries is successfully fabricated. The morphology and chemical composition of the anode are characterized, and the electrochemical performance of the anode is investigated by standard electrochemical tests. Owing to the superior properties of carbon fibers and the morphological advantages of CuO nanowires, this composite anode still retains an excellent reversible capacity of 598.2 mAh g −1 with a capacity retention rate above 86%, even after 50 cycles, which is much higher than the CuO anode without carbon fibers. Compared to the typical CuO/C electrode systems, the novel binder-free anode yields a performance close to that of the typical core/shell electrode systems and a much higher reversible capacity and capacity retention than the similar shell/core patterns as well as the anodes with binders. It is believed that this novel anode will pave the way to the development of binder-free anodes in response to the increasing demands for high-power energy storage.

  18. Hierarchical N-Rich Carbon Sponge with Excellent Cycling Performance for Lithium-Sulfur Battery at High Rates.

    Science.gov (United States)

    Zhen, Mengmeng; Wang, Juan; Wang, Xin; Wang, Cheng

    2018-04-17

    Lithium-sulfur batteries (LSBs) are receiving extensive attention because of their high theoretical energy density. However, practical applications of LSBs are still hindered by their rapid capacity decay and short cycle life, especially at high rates. Herein, a highly N-doped (≈13.42 at %) hierarchical carbon sponge (HNCS) with strong chemical adsorption for lithium polysulfide is fabricated through a simple sol-gel route followed by carbonization. Upon using the HNCS as the sulfur host material in the cathode and an HNCS-coated separator, the battery delivers an excellent cycling stability with high specific capacities of 424 and 326 mA h g -1 and low capacity fading rates of 0.033 % and 0.030 % per cycle after 1000 cycles under high rates of 5 and 10 C, respectively, which are superior to those of other reported carbonaceous materials. These impressive cycling performances indicate that such a battery could promote the practical application prospects of LSBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carbonation of Mg(OH){sub 2} in a pressurised fluidised bed for CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Fagerlund, J.

    2012-07-01

    To date, a number of methods to accelerate natural weathering or in other words increase the CO{sub 2} uptake rate of various minerals have been suggested; commonly this is known as mineral carbonation or CO{sub 2} mineralisation. A brief literature review of recently published articles in this field is presented, showing that the interest in mineral carbonation is increasing. However, it should be noted that mineral carbonation is only one option in a larger portfolio of various carbon dioxide capture and storage (CCS) alternatives. Unlike many other options, the CO{sub 2} mineralisation option considered in this thesis is largely founded on the possibility to utilise the exothermic nature of magnesium carbonation and based on this notion, it has been divided into three steps. The first two steps are energy demanding, while the third step is energy 'negative', and in theory, the source of the energy required in the first two steps. Unfortunately, however, the energy demanded by the first two steps, Mg extraction and Mg(OH){sub 2} production, is (currently) much higher than what could be generated by the subsequent Mg(OH){sub 2} carbonation step. Nevertheless, opportunities to reduce the energy intensity of the process in question are still being investigated, and while an energy-neutral carbonation process might be difficult to achieve, energy requirements can still be rendered industrially acceptable (and comparable to or even better than for other CCS methods). The main focus of this thesis lies with the third step, Mg(OH){sub 2} carbonation, which is performed using a pressurised fluidised bed (PFB). The elevated CO{sub 2} pressure conditions (typically approx 20 bar) allow for the carbonation reaction to take place at higher temperatures (typically approx 500 deg C) than otherwise due to thermodynamic constraints on carbonate stability. The increase in reaction rate as a function of temperature follows the Arrhenius equation of exponential increase

  20. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})

  1. On-line monitoring of lithium carbonate dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo [National Engineering Research Center for Integrated Utilization Salt Lake Resources, East China University of Science and Technology, Shanghai (China)

    2009-11-15

    Dissolution of lithium carbonate (Li{sub 2}CO{sub 3}) in aqueous solution was investigated using three on-line apparatuses: the concentration of Li{sub 2}CO{sub 3} was measured by electrical conductivity equipment; CLD (Chord Length Distribution) was monitored by FBRM (Focused Beam Reflectance Measurement); crystal image was observed by PVM (Particle Video Microscope). Results show dissolution rate goes up with a decrease of particle size, and with an increase in temperature; stirring speed causes little impact on dissolution; ultrasound facilitates dissolution obviously. The CLD evolution and crystal images of Li{sub 2}CO{sub 3}powders in stirred fluid were observed detailedly by FBRM and PVM during dissolution. Experimental data were fitted to Avrami model, through which the activation energy was found to be 34.35 kJ/mol. PBE (Population Balance Equation) and moment transform were introduced to calculate dissolution kinetics, obtaining correlation equations of particle size decreasing rate as a function of temperature and undersaturation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB 2 ) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB 2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp 3 -hybridized carbon radicals were detected. A strong reduction in the critical temperature T c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  3. Problem of the lithium peroxide thermal stability

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    The behavior of lithium peroxide and lithium peroxide monohydrate samples under heating in atmospheric air was studied by the method of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It was found that in the temperature range of 32°C to 82°C the interaction of lithium peroxides and steam with the formation of lithium peroxide monohydrate occurs, which was confirmed chemically and by X-ray Single-qualitative analysis. It was experimentally found that lithium peroxide starts to decompose into the lithium oxide and oxygen in the temperature range of 340 ÷ 348°C. It was established that the resulting thermal decomposition of lithium oxide, lithium peroxide at the temperature of 422°C melts with lithium carbonate eutecticly. The manifestation of polymorphism was not marked(seen or noticed) under the heating of studied samples of lithium peroxide and lithium peroxide monohydrate in the temperature range of 25°C ÷ 34°C. (paper)

  4. An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries

    KAUST Repository

    Yang, Zichao; Shen, Jingguo; Archer, Lynden A.

    2011-01-01

    Transition metal oxides are actively investigated as anode materials for lithium-ion batteries (LIBs), and their nanocomposites with carbon frequently show better performance in galvanostatic cycling studies, compared to the pristine metal oxide

  5. The reaction of lithium metal vapor with single walled carbon nanotubes of large diameters

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 246, 11-12 (2009), s. 2428-2431 ISSN 0370-1972 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : lithium * single walled carbon nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2009

  6. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  8. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  9. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    Science.gov (United States)

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Wilson Greatbatch, Ltd., Clarence, NY (United States); Shui, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  11. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  12. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.

    Science.gov (United States)

    Xiao, Jiefeng; Li, Jia; Xu, Zhenming

    2017-10-17

    Lithium is a rare metal because of geographical scarcity and technical barrier. Recycling lithium resource from spent lithium ion batteries (LIBs) is significant for lithium deficiency and environmental protection. A novel approach for recycling lithium element as Li 2 CO 3 from spent LIBs is proposed. First, the electrode materials preobtained by mechanical separation are pyrolyzed under enclosed vacuum condition. During this process the Li is released as Li 2 CO 3 from the crystal structure of lithium transition metal oxides due to the collapse of the oxygen framework. An optimal Li recovery rate of 81.90% is achieved at 973 K for 30 min with a solid-to-liquid ratio of 25 g L -1 , and the purity rate of Li 2 CO 3 is 99.7%. The collapsed mechanism is then presented to explain the release of lithium element during the vacuum pyrolysis. Three types of spent LIBs including LiMn 2 O 4 , LiCoO 2 , and LiCo x Mn y Ni z O 2 are processed to prove the validity of in situ recycling Li 2 CO 3 from spent LIBs under enclosed vacuum condition. Finally, an economic assessment is taken to prove that this recycling process is positive.

  13. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, S.H.; Wang, X.H.; Xia, X.H.; Wang, Y.D.; Wang, X.L.; Tu, J.P.

    2017-01-01

    Tailored design/construction of high-quality sulfur/carbon composite cathode is critical for development of advanced lithium-sulfur batteries. We report a powerful strategy for integrated fabrication of sulfur impregnated into three-dimensional (3D) multileveled carbon nanoflake-nanosphere networks (CNNNs) by means of sacrificial ZnO template plus glucose carbonization. The multileveled CNNNs are not only utilized as large-area host/backbone for sulfur forming an integrated S/CNNNs composite electrode, but also serve as multiple carbon blocking barriers (nanoflake infrastructure andnanosphere superstructure) to physically confine polysulfides at the cathode. The designedself-supported S/CNNNs composite cathodes exhibit superior electrochemical performances with high capacities (1395 mAh g −1 at 0.1C, and 769 mAh g −1 at 5.0C after 200 cycles) and noticeable cycling performance (81.6% retention after 200 cycles). Our results build a new bridge between sulfur and carbon networks with multiple blocking effects for polysulfides, and provide references for construction of other high-performance sulfur cathodes.

  14. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min

    2018-01-17

    Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.

  15. Sorption of atmospheric gases by bulk lithium metal

    Energy Technology Data Exchange (ETDEWEB)

    Hart, C.A. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2016-01-15

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H{sub 2}O, CO, CO{sub 2}) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ∼1 cm{sup 2} surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. A 9 mg sample achieved a final mass gain corresponding to complete conversion to Li{sub 2}CO{sub 3} after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components. - Highlights: • Li in tokamaks will react with air during maintenance and exposure to residual gases in the vacuum vessel. • The mass gain of Li samples upon exposure to ambient air indicates conversion to Li{sub 2}CO{sub 3.} • Exposure to dry air resulted in a 30 times lower rate of mass gain. • A rule of thumb for lithium passivation at 26 °C and 45% relative humidity is proposed.

  16. A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu

    2017-08-25

    Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.

  17. Lithium carbonate as a treatment for paliperidone extended-release-induced leukopenia and neutropenia in a patient with schizoaffective disorder; a case report.

    Science.gov (United States)

    Matsuura, Hiroki; Kimoto, Sohei; Harada, Izumi; Naemura, Satoshi; Yamamuro, Kazuhiko; Kishimoto, Toshifumi

    2016-05-26

    Antipsychotic drug treatment can potentially lead to adverse events such as leukopenia and neutropenia. Although these events are rare, they represent serious and life-threatening hematological side effects. We present a case study of a patient with schizoaffective disorder in a 50-year-old woman. We report a case of paliperidone extended-release (ER)-induced leukopenia and neutropenia in a female patient with schizoaffective disorder. Initiating lithium carbonate treatment and decreasing the dose of valproic acid improved the observed leukopenia and neutropenia. This treatment did not influence psychotic symptoms. The combination of paliperidone ER and valproic acid induces increased paliperidone ER plasma levels. Lithium carbonate was successfully used to treat paliperidone ER-induced leukopenia and neutropenia.

  18. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  19. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    Science.gov (United States)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  20. Large scale synthesis of TiO{sub 2}–carbon nanocomposites using cheap raw materials as anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Tao, E-mail: taotao@nxu.edu.cn [Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021 (China); He, Lijun [Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021 (China); Li, Jin, E-mail: li-jin@163.com [Key Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021 (China); Zhang, Yanhua [Research Institute of New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160 (China)

    2014-12-05

    Highlights: • Natural ilmenite is used as raw materials for preparing TiO{sub 2}–carbon nanocomposites. • TiO{sub 2}–carbon nanocomposite is a spherical material. • TiO{sub 2}–carbon nanocomposite anode shows excellent lithium storage properties. - Abstract: Low cost and abundant natural ilmenite (FeTiO{sub 3}) is used as raw materials for preparing TiO{sub 2}–carbon nanocomposites. A new method combining several traditional techniques (ball milling, high-temperature annealing and chemical leaching) is proposed in this paper. The resulting composite is a spherical material, consisting of nanosized TiO{sub 2} particles (with a size range of 5–80 nm) homogeneously distributed in carbon (amorphous) matrix. Its electrochemical performance is evaluated by using coin-type cells versus metallic lithium in an enlarged potential window of 0.01–3.0 V. A high specific charge capacity of 722 mA h g{sup −1} is obtained at a current density of 33.6 mA g{sup −1}. Moreover, the TiO{sub 2}–carbon nanocomposite exhibits excellent rate capability, even at a high current density of 10.8 A g{sup −1}, the specific charge capacity is 41 mA h g{sup −1}.

  1. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao; Song, Bo, E-mail: bosong@hust.edu.cn; Fan, Wenrui; Zhang, Yuanjie; Shi, Yusheng

    2016-04-25

    Carbon nanotubes/AlSi10Mg composites has drawn lots of attention in structural engineering and functional device applications due to its extraordinary high elastic modulus and mechanical strength as well as excellent electrical and thermal conductivities. In this study, the CNTs/AlSi10Mg composites was firstly prepared and then processed by selective laser melting. The powder preparation, SLM process, and microstructure evolution, properties were clarified. The results showed that CNTs were decomposed due to the direct interaction with the laser beam. The SLMed composites displayed a similar microstructure to that of SLMed AlSi10Mg. The common brittleness phase Al{sub 4}C{sub 3} didn't form, and the carbon dispersion strengthening was observed. The electrical resistivity of the composites was reduced significantly and the hardness was improved. - Highlights: • Carbon nanotubes/AlSi10Mg powder were prepared by slurry ball milling process. • Carbon nanotubes/AlSi10Mg composites were firstly prepared by SLM. • The electrical resistivity of the composites was significantly reduced and hardness was improved.

  2. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

    Science.gov (United States)

    Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim

    2014-12-01

    The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.

  3. Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic lateral sclerosis (LiCALS) [Eudract number: 2008-006891-31].

    Science.gov (United States)

    Al-Chalabi, Ammar; Shaw, Pamela J; Young, Carolyn A; Morrison, Karen E; Murphy, Caroline; Thornhill, Marie; Kelly, Joanna; Steen, I Nicholas; Leigh, P Nigel

    2011-09-21

    Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disorder characterised by loss of motor neurons leading to severe weakness and death from respiratory failure within 3-5 years. Riluzole prolongs survival in ALS. A published report has suggested a dramatic effect of lithium carbonate on survival. 44 patients were studied, with 16 randomly selected to take LiCO3 and riluzole and 28 allocated to take riluzole alone. In the group treated with lithium, no patients had died (i.e., 100% survival) at the end of the study (15 months from entry), compared to 71% surviving in the riluzole-only group. Although the trial can be criticised on several grounds, there is a substantial rationale from other laboratory studies that lithium is worth investigating therapeutically in amyotrophic lateral sclerosis. LiCALS is a multi-centre double-blind randomised parallel group controlled trial of the efficacy, safety, and tolerability of lithium carbonate (LiCO3) at doses to achieve stable 'therapeutic' plasma levels (0.4-0.8 mmol/L), plus standard treatment, versus matched placebo plus standard treatment, in patients with amyotrophic lateral sclerosis. The study will be based in the UK, in partnership with the MND Association and DeNDRoN (the Dementias and Neurodegnerative Diseases Clinical Research Network). 220 patients will be recruited. All patients will be on the standard treatment for ALS of riluzole 100 mg daily. The primary outcome measure will be death from any cause at 18 months defined from the date of randomisation. Secondary outcome measures will be changes in three functional rating scales, the ALS Functional Rating Scale-Revised, The EuroQOL (EQ-5D), and the Hospital Anxiety and Depression Scale.Eligible patients will have El Escorial Possible, Laboratory-supported Probable, Probable or Definite amyotrophic lateral sclerosis with disease duration between 6 months and 36 months (inclusive), vital capacity ≥ 60% of predicted within 1 month prior to

  4. Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic Lateral Sclerosis (LiCALS [Eudract number: 2008-006891-31

    Directory of Open Access Journals (Sweden)

    Kelly Joanna

    2011-09-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disorder characterised by loss of motor neurons leading to severe weakness and death from respiratory failure within 3-5 years. Riluzole prolongs survival in ALS. A published report has suggested a dramatic effect of lithium carbonate on survival. 44 patients were studied, with 16 randomly selected to take LiCO3 and riluzole and 28 allocated to take riluzole alone. In the group treated with lithium, no patients had died (i.e., 100% survival at the end of the study (15 months from entry, compared to 71% surviving in the riluzole-only group. Although the trial can be criticised on several grounds, there is a substantial rationale from other laboratory studies that lithium is worth investigating therapeutically in amyotrophic lateral sclerosis. Methods/Design LiCALS is a multi-centre double-blind randomised parallel group controlled trial of the efficacy, safety, and tolerability of lithium carbonate (LiCO3 at doses to achieve stable 'therapeutic' plasma levels (0.4-0.8 mmol/L, plus standard treatment, versus matched placebo plus standard treatment, in patients with amyotrophic lateral sclerosis. The study will be based in the UK, in partnership with the MND Association and DeNDRoN (the Dementias and Neurodegnerative Diseases Clinical Research Network. 220 patients will be recruited. All patients will be on the standard treatment for ALS of riluzole 100 mg daily. The primary outcome measure will be death from any cause at 18 months defined from the date of randomisation. Secondary outcome measures will be changes in three functional rating scales, the ALS Functional Rating Scale-Revised, The EuroQOL (EQ-5D, and the Hospital Anxiety and Depression Scale. Eligible patients will have El Escorial Possible, Laboratory-supported Probable, Probable or Definite amyotrophic lateral sclerosis with disease duration between 6 months and 36 months (inclusive, vital

  5. Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries.

    Science.gov (United States)

    Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J

    2015-05-04

    A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.

  6. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO{sub 2}/graphite lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia; Wang, Guangxu; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • The idea of “waste + waste → resources.” was used on this study. • Based on thermodynamic analysis, the possible reaction between LiCoO{sub 2} and graphite was obtained. • The residues of oxygen-free roasting are cobalt, lithium carbonate and graphite. • The recovery rate of Co and Li is 95.72% and 98.93% after wet magnetic separation. • It provides the rationale for environmental-friendly recycling spent LIBs in industrial-scale. - Abstract: The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of “waste + waste → resources.” After mechanical scraping the mixed electrode materials enrich powders of LiCoO{sub 2} and graphite. The possible reaction between LiCoO{sub 2} and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO{sub 2} and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs.

  7. Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1979-06-01

    This report describes the facilities and experiments and presents test results of a program being conducted at the hanford Engineering Development Laboratory (HEDL) in support of the fusion reactor development effort. This experimental program is designed to characterize the interaction of liquid lithium with various atmospheres, concretes, and insulating materials. Lithium-atmosphere reaction tests were conducted in normal humidity air, pure nitrogen, and carbon dioxide. These tests are described and their results, such as maximum temperatures, aerosol generated, and reaction rates measured, are reported. Initial lithium temperatures for these tests ranged between 224 0 C and 843 0 C. A lithium-concrete reaction test, using 10 kg of lithium at 327 0 C, and lithium-insulating materials reaction tests, using a few grams of lithium at 350 0 C and 600 0 C, are also described and results are presented. In addition, a lithium-aerosol filter loading test was conducted to determine the mass loading capacity of a commercial high efficiency particulate air (HEPA) filter. The aerosol was characterized, and the loading-capacity-versus-pressure-buildup across the filter is reported

  8. Maximum Recommended Dosage of Lithium for Pregnant Women Based on a PBPK Model for Lithium Absorption

    Directory of Open Access Journals (Sweden)

    Scott Horton

    2012-01-01

    Full Text Available Treatment of bipolar disorder with lithium therapy during pregnancy is a medical challenge. Bipolar disorder is more prevalent in women and its onset is often concurrent with peak reproductive age. Treatment typically involves administration of the element lithium, which has been classified as a class D drug (legal to use during pregnancy, but may cause birth defects and is one of only thirty known teratogenic drugs. There is no clear recommendation in the literature on the maximum acceptable dosage regimen for pregnant, bipolar women. We recommend a maximum dosage regimen based on a physiologically based pharmacokinetic (PBPK model. The model simulates the concentration of lithium in the organs and tissues of a pregnant woman and her fetus. First, we modeled time-dependent lithium concentration profiles resulting from lithium therapy known to have caused birth defects. Next, we identified maximum and average fetal lithium concentrations during treatment. Then, we developed a lithium therapy regimen to maximize the concentration of lithium in the mother’s brain, while maintaining the fetal concentration low enough to reduce the risk of birth defects. This maximum dosage regimen suggested by the model was 400 mg lithium three times per day.

  9. Low hydrogen containing amorphous carbon films - Growth and electrochemical properties as lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, V.; Masarapu, Charan; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716 (United States); Karabacak, Tansel [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Teki, Ranganath [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-04-02

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of {proportional_to}810 mAh g{sup -1}, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed. (author)

  10. Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes

    Science.gov (United States)

    Subramanian, V.; Karabacak, Tansel; Masarapu, Charan; Teki, Ranganath; Lu, Toh-Ming; Wei, Bingqing

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of ∼810 mAh g -1, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed.

  11. Complexing Agents on Carbon Content and Lithium Storage Capacity of LiFePO4/C Cathode Synthesized via Sol-Gel Approach

    Directory of Open Access Journals (Sweden)

    C. Guan

    2016-01-01

    Full Text Available Olivine-structured LiFePO4 faces its intrinsic challenges in terms of poor electrical conductivity and lithium-ion diffusion capability for application to lithium-ion batteries. Cost-effective sol-gel approach is advantageous to in situ synthesize carbon-coated LiFePO4 (LiFePO4/C which can not only improve electronic conductivity but also constrain particle size to nanometer scale. In this study, the key parameter is focused on the choice and amount of chelating agents in this synthesis route. It was found that stability of complexing compounds has significant impacts on the carbon contents and electrochemical properties of the products. At the favorable choice of precursors, composition, and synthesis conditions, nanocrystalline LiFePO4/C materials with appropriate amount of carbon coating were successfully obtained. A reversible capacity of 162 mAh/g was achieved at 0.2C rate, in addition to good discharge rate capability.

  12. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes.

    Science.gov (United States)

    Loftager, Simon; García-Lastra, Juan María; Vegge, Tejs

    2017-01-18

    Lithium iron borate (LiFeBO 3 ) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and small volume change during operation. Yet, challenges related to severe air- and moisture-induced degradation have prompted the utilization of a protective coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating-electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO 3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO 3 and LiFeBO 3 electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration in which the coating layers were anchored normal to the electrode surface at B and O atoms was found to be most stable. Nudged elastic band (NEB) calculations of the lithium diffusion barriers across the interface between the optimally oriented coating layers and the electrode show no kinetic limitations for lithium extraction and insertion. Additionally, this graphite-coating configuration showed partial blocking of electrode-degrading species.

  13. Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi; Yoshizawa, Noriko

    2015-02-01

    MgO-templated mesoporous carbons were fabricated by annealing trimagnesium dicitrate nonahydrate at various temperatures from 700 to 1000 °C with subsequent acid leaching of MgO. The obtained carbons contained a large amount of mesopores. Performances of electric double-layer capacitors using these carbons were examined for propylene carbonate electrolyte containing 1 M tetraethylammonium tetrafluoroborate. The mesoporous carbons synthesized at higher temperatures showed better rate capabilities. AC impedance measurements indicated that high-temperature annealing of the carbon precursors and the presence of mesopores were important for high rate performance. In addition, the contribution of mesopores to capacitance was more significant at higher current densities of 30 A g-1.

  14. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  15. A sulfur–microporous carbon composite positive electrode for lithium/sulfur and silicon/sulfur rechargeble batteries

    Directory of Open Access Journals (Sweden)

    Takuya Takahashi

    2015-12-01

    Full Text Available Sulfur is an advantageous material as a promising next-generation positive electrode material for high-energy lithium batteries due to a high theoretical capacity of 1672 mA h g−1 although its discharge potential is somewhat modest: ca. 2 V vs Li/Li+. However, a sulfur positive electrode has some crucial problems for practical use, which are mainly attributed to the dissolution of its intermediate products in charge–discharge processes. In order to resolve the dissolution problem of lithium polysulfide, we attempted to synthesize a sulfur–microporous activated carbon (AC composite positive electrode. Moreover, we have systematically researched the battery performance of sulfur–microporous AC positive electrode with variations of electrolytes as well as negative electrodes, and found its promising positive electrode performance for a next-generation rechargeable battery.

  16. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  17. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  18. Recovery of lithium from waste materials

    Czech Academy of Sciences Publication Activity Database

    Jandová, J.; Dvořák, P.; Kondás, J.; Havlák, Lubomír

    2012-01-01

    Roč. 56, č. 1 (2012), s. 50-54 ISSN 0862-5468 Institutional research plan: CEZ:AV0Z10100520 Keywords : alkaline wastewater * laboratory scale * lithium carbonates * lithium metal s * precipitation efficiency * reduced pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_01_50.pdf

  19. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  20. Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jiayu; Peng, Changqing; Zhang, Lili; Fu, Yongsheng; Li, Hang; Zhao, Xianmin; Zhu, Junwu; Wang, Xin

    2017-01-01

    Highlights: •N-doped carbon@MoSe 2 core/branch was prepared via a facile calcining method. •N-doped carbon core and MoSe 2 branch can be simultaneously constructed. •PANI played vital roles in the reduction of MoO 3 and elemental Se. •The core/branch structure remarkably improved the lithium storage performance. -- Abstract: Here, we report a one-step simultaneous-construction approach to synthesize N-doped carbon@MoSe 2 core/branch nanostructures by heating a mixture of MoO 3 /PANI hybrids and Se powders in argon atmosphere, without requiring a cumbersome multi-step process or highly toxic reducing agents. It is found that in the construction process, PANI played a crucial role in the reduction of MoO 3 and Se to form MoSe 2 nanosheet branches, while PANI itself was decomposed and carbonized into N-doped carbon nanorod cores. Interestingly, the coexistence of 1D and 2D nanostructures in the N-doped carbon@MoSe 2 core/branch system leads to excellent lithium storage performance, including a large discharging capacity of 1275 mA h g −1 , a high reversible lithium extraction capacity of 928 mA h g −1 and a coulombic efficiency of 72.8%. After 100 cycles, the NDC@MS electrode still delivers a reversible capacity of 906 mA h g −1 with a capacity retention ratio of 97.6%. The superior electrochemical properties can be attributed to the unique core/branch nanostructure of NDC@MS and the synergistic effect between the N-doped carbon nanorod cores and MoSe 2 nanosheet branches.

  1. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Fei; Song, Xiaoping; Yao, Gang; Zhao, Mingshu; Liu, Rui; Xu, Minwei; Sun, Zhanbo

    2012-01-01

    In this paper mesoporous SnO 2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO 2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO 2 /C nanocomposites exhibit a markedly improved cycling performance.

  2. Facile Synthesis of Carbon-Coated Spinel Li4Ti5O12/Rutile-TiO2 Composites as an Improved Anode Material in Full Lithium-Ion Batteries with LiFePO4@N-Doped Carbon Cathode.

    Science.gov (United States)

    Wang, Ping; Zhang, Geng; Cheng, Jian; You, Ya; Li, Yong-Ke; Ding, Cong; Gu, Jiang-Jiang; Zheng, Xin-Sheng; Zhang, Chao-Feng; Cao, Fei-Fei

    2017-02-22

    The spinel Li 4 Ti 5 O 12 /rutile-TiO 2 @carbon (LTO-RTO@C) composites were fabricated via a hydrothermal method combined with calcination treatment employing glucose as carbon source. The carbon coating layer and the in situ formed rutile-TiO 2 can effectively enhance the electric conductivity and provide quick Li + diffusion pathways for Li 4 Ti 5 O 12 . When used as an anode material for lithium-ion batteries, the rate capability and cycling stability of LTO-RTO@C composites were improved in comparison with those of pure Li 4 Ti 5 O 12 or Li 4 Ti 5 O 12 /rutile-TiO 2 . Moreover, the potential of approximately 1.8 V rechargeable full lithium-ion batteries has been achieved by utilizing an LTO-RTO@C anode and a LiFePO 4 @N-doped carbon cathode.

  3. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling

    DEFF Research Database (Denmark)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong

    2017-01-01

    A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na2CO3 and Na3PO4 as precipitants, lithium is recovered as raw Li2CO3 and pure Li3PO4...... of Na2CO3 is used to prepare LiMn2O4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na2CO3 in raw Li2CO3 is controlled less than 10%, the Mn corrosion percentage of LiMn2......O4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g-1. The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li2CO3 in the field of lithium ion sieve....

  4. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodan, E-mail: xiaodan_li@yeah.net [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Wu, Gaoxiang, E-mail: wgxjimmy@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chen, Jiewei, E-mail: kzscjw@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chongqing Materials Research Institute, Chongqing 400707 (China); Li, Wei, E-mail: wei.li@inl.int [International Iberian Nanotechnology Laboratory (INL), Braga 4715-330 (Portugal); Wang, Tianyue, E-mail: 1355796015@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Jiang, Bing, E-mail: BingJiang@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); He, Yue, E-mail: 947667748@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Mai, Liqiang, E-mail: mlq518@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2017-01-15

    Highlights: • Low-crystallinity molybdenum sulfide coated on carbon nanotubes were synthesized. • This anode material has unusual electrochemical behaviors compared to typical MoS{sub 2}. • It exhibits noticable ascending trends in capacity and superior rate performance. • The ascending performance can effectively extend the circulation life of batteries. - Abstract: Low-crystallinity molybdenum sulfide (LCMS, Mo:S = 1:2.75) nanosheets synthesized by a facile and low temperature solvothermal method is now reported. The as-prepared LCMS anode material is composited of MoS{sub 2} layers mixed with amorphous MoS{sub 3}, which leads to an unusual electrochemical process for lithium storage compared to typical MoS{sub 2} anode. The existence of MoS{sub 3} and Mo (VI) provide strong adsorption and binding sites for polar polysulphides, which compels abundant sulfur to turn into new-formed MoS{sub 3} rather than diffuse into electrolyte. To fully utilize this novel electrochemical process, LCMS is decorated on carbon nanotubes, obtaining well-dispersed CNTs@LCMS. As electrode material for lithium storage, CNTs@LCMS exhibits a noticable ascending trend in capacity from 820 mA h g{sup −1} to 1350 mA h g{sup −1} at 100 mA g{sup −1} during 130 cycles. The persistent ascending capacity is ascribed to the increasing lithium storage caused by new-formed MoS{sub 3}, combined with the reduced volume change benifiting from well-dispersed CNTs@LCMS. Furthermore, the ascending performance is proved to be able to effectively extend the circulation life (up to 200%) for lithium-ion batteries by mathematical modeling and calculation. Accordingly, the CNTs@LCMS composite is a promising anode material for long-life lithium-ion batteries.

  5. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  6. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  7. Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiaoyang Li

    2018-01-01

    Full Text Available Serving as conductive matrix and stress buffer, the carbon matrix plays a pivotal role in enabling red phosphorus to be a promising anode material for high capacity lithium ion batteries and sodium ion batteries. In this paper, nitrogen-doping is proved to effective enhance the interface interaction between carbon and red phosphorus. In detail, the adsorption energy between phosphorus atoms and oxygen-containing functional groups on the carbon is significantly reduced by nitrogen doping, as verified by X-ray photoelectron spectroscopy. The adsorption mechanisms are further revealed on the basis of DFT (the first density functional theory calculations. The RPNC (red phosphorus/nitrogen-doped carbon composite material shows higher cycling stability and higher capacity than that of RPC (red phosphorus/carbon composite anode. After 100 cycles, the RPNC still keeps discharge capacity of 1453 mAh g−1 at the current density of 300 mA g−1 (the discharge capacity of RPC after 100 cycles is 1348 mAh g−1. Even at 1200 mA g−1, the RPNC composite still delivers a capacity of 1178 mAh g−1. This work provides insight information about the interface interactions between composite materials, as well as new technology develops high performance phosphorus based anode materials.

  8. Reactivity of lithium exposed graphite surface

    International Nuclear Information System (INIS)

    Harilal, S.S.; Allain, J.P.; Hassanein, A.; Hendricks, M.R.; Nieto-Perez, M.

    2009-01-01

    Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air.

  9. Heteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries.

    Science.gov (United States)

    Pappas, George S; Ferrari, Stefania; Huang, Xiaobin; Bhagat, Rohit; Haddleton, David M; Wan, Chaoying

    2016-01-09

    Long cycle performance is a crucial requirement in energy storage devices. New formulations and/or improvement of "conventional" materials have been investigated in order to achieve this target. Here we explore the performance of a novel type of carbon nanospheres (CNSs) with three heteroatom co-doped (nitrogen, phosphorous and sulfur) and high specific surface area as anode materials for lithium ion batteries. The CNSs were obtained from carbonization of highly-crosslinked organo (phosphazene) nanospheres (OPZs) of 300 nm diameter. The OPZs were synthesized via a single and facile step of polycondensation reaction between hexachlorocyclotriphosphazene (HCCP) and 4,4'-sulphonyldiphenol (BPS). The X-ray Photoelectron Spectroscopy (XPS) analysis showed a high heteroatom-doping content in the structure of CNSs while the textural evaluation from the N₂ sorption isotherms revealed the presence of micro- and mesopores and a high specific surface area of 875 m²/g. The CNSs anode showed remarkable stability and coulombic efficiency in a long charge-discharge cycling up to 1000 cycles at 1C rate, delivering about 130 mA·h·g -1 . This study represents a step toward smart engineering of inexpensive materials with practical applications for energy devices.

  10. Split Sn-Cu Alloys on Carbon Nanofibers by One-step Heat Treatment for Long-Lifespan Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Shen, Zhen; Hu, Yi; Chen, Renzhong; He, Xia; Chen, Yanli; Shao, Hanfeng; Zhang, Xiangwu; Wu, Keshi

    2017-01-01

    Highlights: • Spilt Sn–Cu alloys and amorphous CNF anodes are introduced. • Sn–Cu–CNFs were prepared by one-step carbonization-alloying reactions. • The spilt Sn–Cu alloys consist of Cu 6 Sn 5 and Cu 3 Sn. • The coexistence of Cu 6 Sn 5 and Cu 3 Sn led to the enhanced cycle durability. - Abstract: To develop next-generation lithium-ion batteries (LIBs) with novel designs, reconsidering traditional materials with enhanced cycle stability and excellent rate performance is crucial. We herein report the successful preparation of three-dimensional (3D) composites in which spilt Sn–Cu alloys are uniformly dispersed in an amorphous carbon nanofiber matrix (Sn–Cu–CNFs) via one-step carbonization-alloying reactions. The spilt Sn–Cu alloys consist of active Cu 6 Sn 5 and inactive Cu 3 Sn, and are controllable by optimization of the carbonization-alloying reaction temperature. The 3D carbon nanofiber framework allowed the Sn–Cu–CNFs to be used directly as anodes in lithium-ion batteries without the requirement for polymer binders or electrical conductors. These composite electrodes exhibited a stable cyclability with a discharge capacity of 400 mA h g −1 at a high current density of 1.0 A g −1 after 1200 cycles, as well as an excellent rate capability, which could be attributed to the improved electrochemical properties of the Sn–Cu–CNFs provided by the buffering effect of Cu 3 Sn and the 3D carbon nanofiber framework. This one-step synthesis is expected to be widely applicable in the targeted structural design of traditional tin-based anode materials.

  11. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    International Nuclear Information System (INIS)

    Sharif, M.; Faghihi-Sani, M.A.; Golestani-Fard, F.; Saberi, A.; Soltani, Ali Khalife

    2010-01-01

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 o C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  12. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koc University, RumelifeneriYolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, 79104 Freiburg (Germany); Acar, Selcuk; Kokal, Ilkin [Pavezyum Kimya Sanayi Dış Ticaret LTD. ŞTI., Tuzla, Istanbul (Turkey); Häßler, Wolfgang [Leibniz Institute for Solid State and Materials Research Dresden (IFW), P.O. Box 270116, 01171 Dresden (Germany)

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  13. Biotechnology humic acids-based electrospun carbon nanofibers as cost-efficient electrodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Pin-Yi; Guo, Yan; Yu, Bao-Jun; Zhang, Jie; Wang, Cheng-Yang

    2016-01-01

    Bio-based, cost-effective carbon nanofibers are fabricated from polyacrylonitrile (PAN) – refined biotechnology humic acids (RB) via simple eletrospinning after stabilization and carbonization. The influence of PAN/RB mass ratios and heat-treatment temperatures (HTTs) on structure and morphology is systematically studied. Excitingly, a first discharge/charge capacity of 937.9/613.4 mAh g −1 (coulombic efficiency of 65.4%) is achieved at 20 mA g −1 for PB7/3-800 in lithium-ion batteries (LIBs). Meanwhile, a charge capacity of 348.2 mAh g −1 (about 89% retention ratio) remains even after 100 cycles at 0.1 A g −1 . It is demonstrated that biomass humic acids can be applied as a promising precursor to fabricate high performance, low-cost, as well as “green” carbon electrode material for LIBs.

  14. One-step synthesis of SnCo nanoconfined in hierarchical carbon nanostructures for lithium ion battery anode.

    Science.gov (United States)

    Qin, Jian; Liu, Dongye; Zhang, Xiang; Zhao, Naiqin; Shi, Chunsheng; Liu, En-Zuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; He, Chunnian

    2017-10-26

    A new strategy for the one-step synthesis of a 0D SnCo nanoparticles-1D carbon nanotubes-3D hollow carbon submicrocube cluster (denoted as SnCo@CNT-3DC) hierarchical nanostructured material was developed via a simple chemical vapor deposition (CVD) process with the assistance of a water-soluble salt (NaCl). The adopted NaCl not only acted as a cubic template for inducing the formation of the 3D hollow carbon submicrocube cluster but also provides a substrate for the SnCo catalysts impregnation and CNT growth, ultimately leading to the successful construction of the unique 0D-1D-3D structured SnCo@CNT-3DC during the CVD of C 2 H 2 . When utilized as a lithium-ion battery anode, the SnCo@CNT-3DC composite electrode demonstrated an excellent rate performance and cycling stability for Li-ion storage. Specifically, an impressive reversible capacity of 826 mA h g -1 after 100 cycles at 0.1 A g -1 and a high rate capacity of 278 mA h g -1 even after 1000 cycles at 5 A g -1 were achieved. This remarkable electrochemical performance could be ascribed to the unique hierarchical nanostructure of SnCo@CNT-3DC, which guarantees a deep permeation of electrolytes and a shortened lithium salt diffusion pathway in the solid phase as well as numerous hyperchannels for electron transfer.

  15. Progress in Application of CNTs in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described, and its future development is put forward from its two aspects of being not only the anodic conductive reinforcing material and the cathodic energy storage material but also the electrically conductive framework material.

  16. Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol-formaldehyde precursor microspheres and applications in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haijiao, E-mail: seaboyfang@163.com [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China); Xu Huifang, E-mail: xuhf@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 (China); Zhao Can [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Resorcinol-formaldehyde hollow particles could be obtained by inverse suspension method. Black-Right-Pointing-Pointer The morphologies of RF carbon precursor particles could be controlled by adjusting the pH values of the RF precursor. Black-Right-Pointing-Pointer The prepared carbon hollow particles, which derived from resorcinol-formaldehyde, exhibited microporous properties. Black-Right-Pointing-Pointer The RF carbon microcapsules displayed excellent power property and cycle durability. - Abstract: The morphology-controlled carbon hollow particles, derived from resorcinol-formaldehyde (RF) particles, were prepared by using an (oil phase) O/(water phase) W/(oil phase) O inverse-emulsion system which was formed by adding RF precursor (water phase) to n-hexane (oil phase) with Span-80 as surfactant and the following carbonization. This simple method led to the formation of various morphologies of RF carbon precursor particles such as hollow spheres, bowl-like hollow structures, microcapsules, or solid microspheres by adjusting the pH values of the RF precursor. The synthesized carbon particles exhibited porous characters with the surface area of 659 m{sup 2} g{sup -1} and the total pore volume of 0.44 cm{sup 3} g{sup -1}. Additionally, the electrochemical behavior of the typical RF carbon particles in lithium-ion batteries revealed that the RF carbon microcapsules displayed a high initial discharge capacity of 1059 mAh g{sup -1} and stabilized at about 330 mAh g{sup -1}, indicating its excellent power property and cycle durability.

  17. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  18. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 ?m thickness formed within the

  19. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  20. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    Science.gov (United States)

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nanocarbon networks for advanced rechargeable lithium batteries.

    Science.gov (United States)

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  2. Porous Carbon Spheres Doped with Fe_3C as an Anode for High-Rate Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Wu, Jiafeng; Zhou, Rihui; Zuo, Li; Li, Ping; Song, Yonghai; Wang, Li

    2015-01-01

    Highlights: • Novel porous carbon spheres doped with Fe_3C was prepared via hydrothermal reaction. • The resulted material was fabricated as an anode for high-rate lithium-ion batteries. • A stepwise increase profile was shown in the discharge/charge process. • Pseudocapacity was one of the properties owned by the as-prepared anode. - Abstract: The search of advanced anodes has been an important way to satisfy the ever-growing demands on high rate performance lithium-ion batteries (LIBs). It was observed that the capacity of Fe_3C as an anode is larger than its theoretical one, which might be attributed to the pseudocapacity on the interface between the carbide and electrolyte. In this work, a novel carbon sphere doped with Fe_3C nanoparticles was fabricated and tested as the anode in LIBs. In the first place, iron precursors were embedded in the cross-link polymer resorcinol-formaldehyde (RF) spheres via a facile hydrothermal reaction, in which RF served as the carbon source and ethanol as a dispersant agent. Consequently, the hydrothermal products were carbonized successively at 700 °C under inert atmosphere to obtain porous carbon spheres doped with Fe_3C. When the composite severed as an anode in LIBs, its discharge capacity increased to the largest during the first 250-400 cycles, then dropped down to a similar level of that after 1000 cycles at different current rates. The discharge capacity of the composite increased from ∼300 mAh g"−"1 to ∼540 mAh g"−"1 at the current of 100 mA g"−"1 during the initial hundreds cycles, and even a discharge capacity of ∼230 mAh g"−"1 at the current of 2000 mA g"−"1. Moreover, it was observed that a discharge plateau gradually appeared between 0.7∼1.1 V during the first hundreds of cycles. The electrochemical behaviors of the anode before 1000 discharge/charge cycles were compared with that after 1000 discharge/charge cycles by cyclic voltammetry and electrochemical impedance spectroscopy to find

  3. Carbonized polydopamine coated single-crystalline NiFe2O4 nanooctahedrons with enhanced electrochemical performance as anode materials in a lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Xinxin; Zhang, Tong; Qu, Yue; Tian, Ge; Yue, Huijuan; Zhang, Dong; Feng, Shouhua

    2017-01-01

    Graphical abstract: NiFe 2 O 4 @ NCweresuccessfullyfabricatedviaasubsequentcarbonizationofpolydopamine.(*) A nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance. - Highlights: • NiFe 2 O 4 nanooctahedrons were synthesized by a facile hydrothermal process. • A phase formation mechanism was studied by time-dependent experiments. • NiFe 2 O 4 with N-doped carbon shell was fabricated via carbonization of polydopamine. • NiFe 2 O 4 @NC 20 showed the best rate capability and cycle stability. - Abstract: Combining nanostructure engineering with conductive carbonaceous material is a promising strategy to obtain high-performance lithium ion batteries (LIBs). In this work, spinel NiFe 2 O 4 nanooctahedrons were initially synthesized at a low temperature without further annealing. We investigated the phase formation mechanism by time-dependent experiments. Next, octahedral NiFe 2 O 4 with a nitrogen-doped carbon shell (NiFe 2 O 4 @NC) were successfully fabricated via a subsequent carbonization of polydopamine (PDA). We systematically varied the dopamine content in the NiFe 2 O 4 /carbon nanocomposites and found that a nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance compared with the pure material. Remarkably, the hybrid nanocomposite delivered a high reversible capacity of 1297 mAh g −1 even after 50 cycles at a current density of 100 mA g −1 . Additionally, a high capacity of 1204 mAh g −1 was retained at a high current density of 500 mA g −1 after 300 cycles. This improvement in electrochemical performance is attributed to the enhanced structural stability and electrical conductivity caused by the carbon layer, and is supported by TEM and EIS measurements.

  4. Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers.

    Science.gov (United States)

    Liu, Mengting; Xie, Wenhe; Gu, Lili; Qin, Tianfeng; Hou, Xiaoyi; He, Deyan

    2016-01-01

    A novel network of spindle-like carbon nanofibers was fabricated via a simplified synthesis involving electrospinning followed by preoxidation in air and postcarbonization in Ar. Not only was the as-obtained carbon network comprised of beads of spindle-like nanofibers but the cubic MnO phase and N elements were successfully anchored into the amorphous carbon matrix. When directly used as a binder-free anode for lithium-ion batteries, the network showed excellent electrochemical performance with high capacity, good rate capacity and reliable cycling stability. Under a current density of 0.2 A g -1 , it delivered a high reversible capacity of 875.5 mAh g -1 after 200 cycles and 1005.5 mAh g -1 after 250 cycles with a significant coulombic efficiency of 99.5%.

  5. Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Xiao-Bo Chen

    2018-03-01

    Full Text Available High corrosion kinetics and localised corrosion progress are the primary concerns arising from the clinical implementation of magnesium (Mg based implantable devices. In this study, a binary Mg-lithium (Li alloy consisting a record high Li content of 14% (in weight was employed as model material aiming to yield homogenous and slow corrosion behaviour in a simulated body fluid, i.e. minimum essential medium (MEM, in comparison to that of generic Mg alloy AZ31 and biocompatible Mg-0.5Zn-0.5Ca counterparts. Scanning electron microscopy examination reveals single-phase microstructural characteristics of Mg-14Li (β-Li, whilst the presence of insoluble phases, cathodic to α-Mg matrix, in AZ31 and Mg-0.5Zn-0.5Ca. Though slight differences exist in the corrosion kinetics of all the specimens over a short-term time scale (no longer than 60 min, as indicated by potentiodynamic polarisation and electrochemical impedance spectroscopy, profound variations are apparent in terms of immersion tests, i.e. mass loss and hydrogen evolution measurements (up to 7 days. Cross-sectional micrographs unveil severe pitting corrosion in AZ31 and Mg-0.5Zn-0.5Ca, but not the case for Mg-14Li. X-ray diffraction patterns and X-ray photoelectron spectroscopy confirm that a compact film (25 μm in thickness consisting of lithium carbonate (Li2CO3 and calcium hydroxide was generated on the surface of Mg-14Li in MEM, which contributes greatly to its low corrosion rate. It is proposed therefore that the single-phase structure and formation of protective and defect-free Li2CO3 film give rise to the controlled and homogenous corrosion behaviour of Mg-14Li in MEM, providing new insights for the exploration of biodegradable Mg materials.

  6. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation

    Science.gov (United States)

    Tutolo, Benjamin M.; Tosca, Nicholas J.

    2018-03-01

    Despite their clear economic significance, Cretaceous presalt carbonates of the South Atlantic continental margins are not well-described by published facies models. This knowledge gap arises, in part, because the chemical processes that generate distinctive sedimentary products in alkaline, non-marine environments are poorly understood. Here, we use constraints inferred from reported mineralogical and geochemical features of presalt carbonate rocks to design and perform a suite of laboratory experiments to quantify the processes of alkaline chemical sedimentation. Using real-time observations of in-situ fluid chemistry, post-experiment analysis of precipitated solids, and geochemical modeling tools, we illustrate that spherulitic carbonates and Mg-silicate clays observed in presalt carbonates were likely precipitated from elevated pH (∼10-10.5) waters with high concentrations of silica and alkali cations typical of intermediate to felsic rocks, such as Na+ and K+. Charge balance constraints require that these cations were not counterbalanced to any significant degree by anions typical of seawater, such as Cl- and SO4-, which implies minimal seawater involvement in presalt deposition. Experimental data suggest that, at this alkaline pH, only modest concentrations (i.e., ∼0.5-1 mmol/kg) of Ca++ would have been required to precipitate spheroidal CaCO3. Given the rapid rates of CaCO3 nucleation and growth under such conditions, it is unlikely that Ca++ concentrations in lake waters ever exceeded these values, and sustained chemical fluxes are therefore required for extensive sediment accumulation. Moreover, our experiments indicate that the original mineralogy of presalt CaCO3 could have been calcite or aragonite, but the differing time scales of precipitation between CaCO3 and Mg-silicates would have tended to skew the Mg/Ca ratio in solution towards elevated values which favor aragonite. Mg-silicate nucleation and growth rates measured during our experiments

  7. Lithium as an Alternative Option in Graves Thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    Ishita Prakash

    2015-01-01

    Full Text Available A 67-year-old woman was admitted with signs and symptoms of Graves thyrotoxicosis. Biochemistry results were as follows: TSH was undetectable; FT4 was >6.99 ng/dL (0.7–1.8; FT3 was 18 pg/mL (3–5; TSI was 658% (0–139. Thyroid uptake and scan showed diffusely increased tracer uptake in the thyroid gland. The patient was started on methimazole 40 mg BID, but her LFTs elevated precipitously with features of fulminant hepatitis. Methimazole was determined to be the cause and was stopped. After weighing pros and cons, lithium was initiated to treat her persistent thyrotoxicosis. Lithium 300 mg was given daily with a goal to maintain between 0.4 and 0.6. High dose Hydrocortisone and propranolol were also administered concomitantly. Free thyroid hormone levels decreased and the patient reached a biochemical and clinical euthyroid state in about 8 days. Though definitive RAI was planned, the patient has been maintained on lithium for more than a month to control her hyperthyroidism. Trial removal of lithium results in reemergence of thyrotoxicosis within 24 hours. Patient was maintained on low dose lithium treatment with lithium level just below therapeutic range which was sufficient to maintain euthyroid state for more than a month. There were no signs of lithium toxicity within this time period. Conclusion. Lithium has a unique physiologic profile and can be used to treat thyrotoxicosis when thionamides cannot be used while awaiting elective radioablation. Lithium levels need to be monitored; however, levels even at subtherapeutic range may be sufficient to treat thyrotoxicosis.

  8. MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhang, Hui; Wang, Yunsong; Zhao, Wenqi; Zou, Mingchu; Chen, Yijun; Yang, Liusi; Xu, Lu; Wu, Huaisheng; Cao, Anyuan

    2017-11-01

    Metal-organic frameworks (MOFs) have many promising applications in energy and environmental areas such as gas separation, catalysis, supercapacitors, and batteries; the key toward those applications is controlled pyrolysis which can tailor the porous structure, improve electrical conductivity, and expose metal ions in MOFs. Here, we present a systematic study on the structural evolution of zeolitic imidazolate frameworks hybridized on carbon nanotubes (CNTs) during the carbonization process. We show that a number of typical products can be obtained, depending on the annealing time, including (1) CNTs wrapped by relatively thick carbon layers, (2) CNTs grafted by ZnO nanoparticles which are covered by thin nitrogen-doped carbon layers, and (3) CNTs grafted by aggregated ZnO nanoparticles. We also investigated the electrochemical properties of those hybrid structures as freestanding membrane electrodes for lithium ion batteries, and the second one (CNT-supported ZnO covered by N-doped carbon) shows the best performance with a high specific capacity (850 mA h/g at a current density of 100 mA/g) and excellent cycling stability. Our results indicate that tailoring and optimizing the MOF-CNT hybrid structure is essential for developing high-performance energy storage systems.

  9. Intraband scattering studies in carbon- and aluminium-doped MgB2

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Hol'anova, Z.; Bud'ko, S.; Canfield, P.

    2006-01-01

    Magnetic field effect on the point-contact spectra of the Al- and C-substituted MgB 2 is presented. It is shown that suppression of the π-band contribution to the spectrum is different in the aluminium- and carbon-doped samples. The carbon substitution leads to a stronger enhancement of the π-band scattering while the Al-doping does not change the ratio between the π and σ scatterings

  10. Environmentally-friendly lithium recycling from a spent organic li-ion battery.

    Science.gov (United States)

    Renault, Stéven; Brandell, Daniel; Edström, Kristina

    2014-10-01

    A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced superconducting properties of MgB2 by carbon substitution using carbon containing nano additives

    International Nuclear Information System (INIS)

    Devadas, K.M.; Varghese, Neson; Vinod, K.; Rahul, S.; Thomas, Syju; Anooja, J.B.; Syamaprasad, U.; Sundaresan, A.; Roy, S.B.

    2010-01-01

    A comparative study on the effect of doping of nano carbon, nano diamond and nano SiC in MgB 2 is carried out. The J c (H) is significantly enhanced for all doped samples compared to the pure sample among which MgB 1.9 C 0.1 (nano C) exhibits the best J c (H) performance. The enhanced performance is due to the effective substitution of C at B site which is confirmed by the systematic decrease in both α axis and T c . (author)

  12. Properties of lithium aluminate for application as an OSL dosimeter

    International Nuclear Information System (INIS)

    Twardak, A.; Bilski, P.; Marczewska, B.; Lee, J.I.; Kim, J.L.; Gieszczyk, W.; Mrozik, A.; Sądel, M.; Wróbel, D.

    2014-01-01

    Several samples of undoped and carbon or copper doped lithium aluminate (LiAlO 2 ) were prepared in an attempt to achieve a material, which can be applicable in optically stimulated luminescence (OSL) dosimetry. All investigated samples are highly sensitive to ionizing radiation and show good reproducibility. The undoped and copper doped samples exhibit sensitivity several times higher than that of Al 2 O 3 :C, while sensitivity of the carbon doped samples is lower. The studied samples exhibit significant fading, but dynamics of signal loss is different for differently doped samples, what indicates a possibility of improving this characteristic by optimizing dopant composition. - Highlights: • OSL properties of lithium aluminate for personal dosimetry. • Doping influence on OSL fading of lithium aluminate. • Application of lithium aluminate in thermal neutron measurements

  13. Chronic Microdose Lithium Treatment Prevented Memory Loss and Neurohistopathological Changes in a Transgenic Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Nunes, Marielza Andrade; Schöwe, Natalia Mendes; Monteiro-Silva, Karla Cristina; Baraldi-Tornisielo, Ticiana; Souza, Suzzanna Ingryd Gonçalves; Balthazar, Janaina; Albuquerque, Marilia Silva; Caetano, Ariadiny Lima; Viel, Tania Araujo; Buck, Hudson Sousa

    2015-01-01

    The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer's disease (AD) patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd)20Lms/2J) and their non-transgenic litter mate genetic controls were treated with lithium carbonate (0.25mg/Kg/day in drinking water) for 16 or 8 months starting at two and ten months of age, respectively [corrected]. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer's disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained.

  14. Chronic Microdose Lithium Treatment Prevented Memory Loss and Neurohistopathological Changes in a Transgenic Mouse Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Marielza Andrade Nunes

    Full Text Available The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer's disease (AD patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd20Lms/2J and their non-transgenic litter mate genetic controls were treated with lithium carbonate (0.25mg/Kg/day in drinking water for 16 or 8 months starting at two and ten months of age, respectively [corrected]. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer's disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained.

  15. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  16. Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes

    International Nuclear Information System (INIS)

    Tao, Ran; Bi, Xuanxuan; The Ohio State University, Columbus, OH; Li, Shu; Yao, Ying

    2017-01-01

    Lithium batteries are one of the most advance energy storage devices in the world and have attracted extensive research interests. However, lithium dendrite growth was a safety issue which handicapped the application of pure lithium metal in the negative electrode. In this paper, two solvents, propylene carbonate (PC) and 2-methyl-tetrahydrofuran (2MeTHF), and four Li"+ salts, LiPF_6, LiAsF_6, LiBF_4 and LiClO_4 were investigated in terms of their effects on the kinetics of lithium dendrite formation in eight electrolyte solutions. The kinetic parameters of charge transfer step (exchange current density, j_0, transfer coefficient, α) of Li"+/Li redox system, the mass transfer parameters of Li"+ (transfer number of Li"+, t_L_i_+, diffusion coefficient of Li"+, D_L_i_+), and the conductivity (κ) of each electrolyte were studied separately. The results demonstrate that the solvents play a critical role in the measured j_0, t_L_i_+, D_L_i_+, and κ of the electrolyte, while the choice of Li"+ salts only slightly affect the measured parameters. Finally, the understanding of the kinetics will gain insight into the mechanism of lithium dendrite formation and provide guidelines to the future application of lithium metal.

  17. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: Sharif_m@metaleng.iust.ac.i [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Faghihi-Sani, M.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saberi, A. [Tabriz University (Iran, Islamic Republic of); Soltani, Ali Khalife [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-06-18

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 {sup o}C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  18. [Lithium carbonate-induced hyperparathyroidism in a patient after removal of a parathyroid adenoma].

    Science.gov (United States)

    Krysiak, Robert; Okopień, Bogusław

    2015-01-01

    Lithium compounds are widely used and effective drugs in the treatment of mood disorders. However, despite their efficacy, the use of lithium salts is limited by their narrow therapeutic window. Treatment with lithium salts may be associated with the risk of development of numerous adverse effects. Endocrine complications include: thyroid dysfunction, nephrogenic diabetes insipidus and hyperparathyroidism. Because symptoms of lithium-induced hyperparathyroidism may resemble those of the underlying disorder, hyperparathyroidism sometimes remains undetected. The pathogenic mechanism for parathyroid dysfunction in lithium-treated patients is still unclear. We report a patient who had undergone removal of a parathyroid adenoma and later developed lithium-induced hyperparathyroidism. Cessation of lithium treatment normalised parathyroid function. The described case suggests that patients with pre-existing parathyroid disorders may be particularly susceptible to the development of lithium-induced hyperparathyroidism.

  19. Use of the anion gap and intermittent hemodialysis following continuous hemodiafiltration in extremely high dose acute-on-chronic lithium poisoning: A case report.

    Science.gov (United States)

    Komaru, Yohei; Inokuchi, Ryota; Ueda, Yoshihiro; Nangaku, Masaomi; Doi, Kent

    2018-01-01

    A 35-year-old woman intentionally took 40,000 mg of lithium carbonate, and she was transferred to our hospital with nausea, vomiting, and diarrhea. She was diagnosed as having bipolar disorder 10 years ago and was receiving oral lithium therapy. Blood test results on arrival were remarkable for a negative anion gap of -2.1 and later, the serum lithium level turned out to be as high as 15.4 mEq/L. Intubation was required because of disrupted consciousness, and continuous hemodiafiltration (CHDF) was immediately started in the intensive care unit to obtain constant removal of lithium. After adding intermittent hemodialysis (IHD) twice during the daytime to accelerate the lithium clearance, CHDF became unnecessary on day 4, and she was extubated on day 6 with complete recovery of consciousness. Close monitoring of the patient data showed recovery of the decreased anion gap as indicator of the serum lithium level reduction. On day 36, she was discharged without any complication and sequela. The current case highlighted the effective use of CHDF between IHD sessions to prevent the rebound elevation of lithium and the role of the anion gap as a surrogate marker of serum lithium concentration during the treatment. © 2017 International Society for Hemodialysis.

  20. Recovery of Lithium from Geothermal Fluid at Lumpur Sidoarjo by Adsorption Method

    Directory of Open Access Journals (Sweden)

    Lukman Noerochim

    2016-05-01

    Full Text Available The recovery of lithium from geothermal fluid at Lumpur Sidoarjo, Indonesia was investigated employing an adsorption method with polymer membrane as container. The lithium concentration in geothermal fluid from Lumpur Sidoarjo used in the present study was about 5 mg/l. Lithium manganese oxide (LMO was selected as a promising adsorbent material due to its non-toxic, topotactical behavior and low cost. In this study, LMO with single Li/Mn mole ratio was prepared, i.e. Li1.6Mn1.6O4. The adsorbent was synthesized by solid state reaction at 500 °C for 5 hrs. A lithium uptake yield from the geothermal fluid of around 6.6 mg/g was obtained.

  1. Evaluation of carbon incorporation and strain of doped MgB2 superconductor by Raman spectroscopy

    International Nuclear Information System (INIS)

    Yeoh, W.K.; Zheng, R.K.; Ringer, S.P.; Li, W.X.; Xu, X.; Dou, S.X.; Chen, S.K.; MacManus-Driscoll, J.L.

    2011-01-01

    Raman spectroscopy is employed to study both the strain and the carbon substitution level in SiC-doped MgB 2 bulk samples. Raman spectroscopy was demonstrated to be a better method to distinguish the individual influences of strain and carbon than standard X-ray diffraction. It is found that the lattice parameter correlation method for C content determination is invalid for highly strained samples. Our result also provides an alternative explanation for lattice variation in non-carbon-doped MgB 2 , which is basically due to lattice strain.

  2. Chemical processing of liquid lithium fusion reactor blankets

    International Nuclear Information System (INIS)

    Weston, J.R.; Calaway, W.F.; Yonco, R.M.; Hines, J.B.; Maroni, V.A.

    1979-01-01

    A 50-gallon-capacity lithium loop constructed mostly from 304L stainless steel has been operated for over 6000 hours at temperatures in the range from 360 to 480 0 C. This facility, the Lithium Processing Test Loop (LPTL), is being used to develop processing and monitoring technology for liquid lithium fusion reactor blankets. Results of tests of a molten-salt extraction method for removing impurities from liquid lithium have yielded remarkably good distribution coefficients for several of the more common nonmetallic elements found in lithium systems. In particular, the equilibrium volumetric distribution coefficients, D/sub v/ (concentration per unit volume of impurity in salt/concentration per unit volume of impurity in lithium), for hydrogen, deuterium, nitrogen and carbon are approx. 3, approx. 4, > 10, approx. 2, respectively. Other studies conducted with a smaller loop system, the Lithium Mini-Test Loop (LMTL), have shown that zirconium getter-trapping can be effectively used to remove selected impurities from flowing lithium

  3. Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lanyan; Wang, Xin, E-mail: wangxin@scnu.edu.cn [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics (China); Yin, Fuxing [Synergy Innovation Institute of GDUT (China); Zhang, Chengwei [Hebei University of Technology, Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology (China); Gao, Jinwei; Liu, Junming [South China Normal University, Institute of Advanced Materials, South China Academy of Advanced Optoelectronics (China); Zhou, Guofu [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics (China); Zhang, Yongguang, E-mail: yongguangzhang@hebut.edu.cn; Bakenov, Zhumabay [Synergy Innovation Institute of GDUT (China)

    2017-02-15

    Three-dimensional ZnO nanorod arrays on flexible high surface area carbon cloth were successfully synthesized and directly used as negative electrodes for lithium-ion batteries without using any binder additive. The structure and morphology of the as-prepared hybrid ZnO electrode were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). When tested as anodes in a lithium cell, the hybrid electrode demonstrated a high discharge capacity along with excellent rate capability and good cycling stability, delivering a reversible capacity of 891 mAh g{sup −1} at the second cycle and retaining a capacity of 469 mAh g{sup −1} after 100 cycles.

  4. An innovative technique to synthesize C-doped MgB2 by using chitosan as the carbon source

    International Nuclear Information System (INIS)

    Bovone, G; Kawale, S; Siri, A S; Vignolo, M; Bernini, C

    2014-01-01

    Here, we report a new technique to synthesize carbon-doped MgB 2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB 2 , in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB 2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB 2 powder. Mono-filamentary MgB 2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB 2 and pure MgB 2 powders. Transport property measurements on these wires were made and compared with MgB 2 wire produced using commercial boron. (fast track communication)

  5. Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature

    NARCIS (Netherlands)

    Romanek, Christopher S.; Jiménez-López, Concepción; Navarro, Alejandro Rodriguez; Sánchez-Román, Monica; Sahai, Nita; Coleman, Max

    2009-01-01

    A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 °C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid

  6. A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hojun; Yoo, Jung-Keun; Jung, Yeon Sik [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Park, Jong-Hyun [Material R and D Department, LG Display Co., Ltd., Paju-si, Gyeonggi-do (Korea, Republic of); Kim, Jin Ho [Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon-si, Gyeonggi-do (Korea, Republic of); Kang, Kisuk [Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2012-08-15

    Flexible energy-storage devices have attracted growing attention with the fast development of bendable electronic systems. However, it still remains a challenge to find reliable electrode materials with both high mechanical flexibility/toughness and excellent electron and lithium-ion conductivity. This paper reports the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. The systematic optimization of the porous morphology is performed by controllably inducing the phase separation of polymethylmethacrylate (PMMA) in polydimethylsiloxane (PDMS) and removing PMMA, in order to generate well-controlled pore networks. It is demonstrated that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. The optimization of the pore size and the volume fraction provides higher capacity by nearly seven-fold compared to a nonporous nanocomposite. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.

    Science.gov (United States)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-05

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  8. Heteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    George S. Pappas

    2016-01-01

    Full Text Available Long cycle performance is a crucial requirement in energy storage devices. New formulations and/or improvement of “conventional” materials have been investigated in order to achieve this target. Here we explore the performance of a novel type of carbon nanospheres (CNSs with three heteroatom co-doped (nitrogen, phosphorous and sulfur and high specific surface area as anode materials for lithium ion batteries. The CNSs were obtained from carbonization of highly-crosslinked organo (phosphazene nanospheres (OPZs of 300 nm diameter. The OPZs were synthesized via a single and facile step of polycondensation reaction between hexachlorocyclotriphosphazene (HCCP and 4,4′-sulphonyldiphenol (BPS. The X-ray Photoelectron Spectroscopy (XPS analysis showed a high heteroatom-doping content in the structure of CNSs while the textural evaluation from the N2 sorption isotherms revealed the presence of micro- and mesopores and a high specific surface area of 875 m2/g. The CNSs anode showed remarkable stability and coulombic efficiency in a long charge–discharge cycling up to 1000 cycles at 1C rate, delivering about 130 mA·h·g−1. This study represents a step toward smart engineering of inexpensive materials with practical applications for energy devices.

  9. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage.

    Science.gov (United States)

    Wang, Hongkang; Yang, Xuming; Wu, Qizhen; Zhang, Qiaobao; Chen, Huixin; Jing, Hongmei; Wang, Jinkai; Mi, Shao-Bo; Rogach, Andrey L; Niu, Chunming

    2018-04-24

    To address the volume-change-induced pulverization problems of electrode materials, we propose a "silica reinforcement" concept, following which silica-reinforced carbon nanofibers with encapsulated Sb nanoparticles (denoted as SiO 2 /Sb@CNFs) are fabricated via an electrospinning method. In this composite structure, insulating silica fillers not only reinforce the overall structure but also contribute to additional lithium storage capacity; encapsulation of Sb nanoparticles into the carbon-silica matrices efficiently buffers the volume changes during Li-Sb alloying-dealloying processes upon cycling and alleviates the mechanical stress; the porous carbon nanofiber framework allows for fast charge transfer and electrolyte diffusion. These advantageous characteristics synergistically contribute to the superior lithium storage performance of SiO 2 /Sb@CNF electrodes, which demonstrate excellent cycling stability and rate capability, delivering reversible discharge capacities of 700 mA h/g at 200 mA/g, 572 mA h/g at 500 mA/g, and 468 mA h/g at 1000 mA/g each after 400 cycles. Ex situ as well as in situ TEM measurements confirm that the structural integrity of silica-reinforced Sb@CNF electrodes can efficiently withstand the mechanical stress induced by the volume changes. Notably, the SiO 2 /Sb@CNF//LiCoO 2 full cell delivers high reversible capacities of ∼400 mA h/g after 800 cycles at 500 mA/g and ∼336 mA h/g after 500 cycles at 1000 mA/g.

  10. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Lu, Mingjie; Yu, Wenhua; Shi, Jing; Liu, Wei; Chen, Shougang; Wang, Xin; Wang, Huanlei

    2017-01-01

    Highlights: •Self-doped carbon architectures with nitrogen, oxygen, and sulfur are derived from Carrageen. •The obtained carbon materials exhibit excellent electrochemical property. •The strategy provides a one-step synthesis route to design advanced anodes for batteries. -- Abstract: Nitrogen, oxygen and sulfur tridoped porous carbons have been successfully synthesized from natural biomass algae-Carrageen by using a simultaneous carbonization and activation procedure. The doped carbons with sponge-like interconnected architecture, partially ordered graphitic structure, and abundant heteroatom doping perform outstanding features for electrochemical energy storage. When tested as lithium-ion battery anodes, a high reversible capacity of 839 mAh g −1 can be obtained at the current density of 0.1 A g −1 after 100 cycles, while a high capacity of 228 mAh g −1 can be maintained at 10 A g −1 . Tested against sodium, a high specific capacity of 227 can be delivered at 0.1 A g −1 after 100 cycles, while a high capacity of 109 mAh g −1 can be achieved at 10 A g −1 . These results turn out that the doped carbons would be potential anode materials for lithium- and sodium-ion batteries, which can be achieved by a one-step and large-scale synthesis route. Our observation indicates that heteroatom doping (especially sulfur) can significantly promote ion storage and reduce irreversible ion trapping to some extent. This work gives a general route for designing carbon nanostructures with heteroatom doping for efficient energy storage.

  11. A three-dimensional interlayer composed of graphene and porous carbon for Long-life, High capacity Lithium-Iron Fluoride Battery

    International Nuclear Information System (INIS)

    Yang, Juan; Xu, Zhanglin; Sun, Hongxu; Zhou, Xiangyang

    2016-01-01

    We design a macroscopic structure composing of porous carbon and graphene sheets, which are coated onto a cellulose paper as an interlayer inserted between electrode and separator. The interlayer mainly acts as a divertor to accommodate the discharge products breaking away from the electrode by mechanical degradation or cathode dissolution during cycling and keeps the close contact with current collector. Iron fluoride is a new-type lithium storage material developed in recent years, which can act as a cathode material candidate for the rechargeable lithium ion battery due to their large theoretical capacity and relatively high operating potential. Specifically, FeF 3 ·0.33H 2 O, which possesses unusual tunnel structure, is attracting more and more attentions. However, FeF 3 ·0.33H 2 O suffers from the poor electronic conductivity and volume effect during cycling, causing the large capacity fading. In this study, we design a macroscopic structure composing of porous carbon and graphene sheets, which are coated onto a cellulose paper as an interlayer inserted between electrode and separator. The interlayer can not only enhance the electronic conductivity, but also absorb the FeF 3 ·0.33H 2 O nanoparticles breaking away from the Al foil due to the volume effect upon cycling. When the interlayer is applied in battery, discharge capacities of 600 and 460 mAh g −1 can be achieved at the rates of 100 and 600 mA g −1 after 60 cycles, respectively. Furthermore, the capacity of 435 mAh g −1 can be still retained at a high rate of 1000 mA g −1 after 250 cycles. The results demonstrate a potential feasibility for the porous carbon/graphene sheets to be applied to obtain a high-performance lithium-iron fluoride battery.

  12. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, R.; Bel, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density

  13. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, Rajesh; Bell, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.P.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Raman, R.; Roquemore, A.L.; Ross, P.W.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Timberlake, J.; Wampler, W.R.; Wilgen, John B.; Zakharov, L.E.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

  14. Effects of Lithium Dopant on Size and Morphology of Magnesium Oxide Nano powders

    International Nuclear Information System (INIS)

    Mohd Sufri Mastuli; Siti Nur Hazlinda Hasbu; Noraziahwati Ibrahim; Mohd Azizi Nawawi; Mohd Sufri Mastuli

    2014-01-01

    Lithium doped of magnesium oxide powders have been synthesized using the sol-gel method with magnesium acetate tetrahydrate, oxalic acid dihydrate and lithium acetate dihydrate used as the starting materials. The dried sol-gel products were calcined at 950 degree Celsius for 36 h to form the Li doped-MgO samples. The calcined samples were characterized using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The present work is investigated the effect of lithium ion on the band gap energy of studied samples. The band gap energies were obtained from a Tauc plot that drawn based on absorption edge of each sample that measured using a UV-Vis spectrophotometer. It is found that the doped and undoped MgO samples showed a slightly different in their band gap energies. The lithium ion that present in the MgO as a dopant affects the crystallite size and morphology of the final products. Our study shows that the lithium dopant can modified optical properties of the metal oxide which to be beneficial in some industrial applications. (author)

  15. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  16. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.

    Science.gov (United States)

    Ren, Yameng; Zhang, Juan; Liu, Yanyan; Li, Hongbian; Wei, Huijuan; Li, Baojun; Wang, Xiangyu

    2012-09-26

    In this article, TiO(2)-Carbon-rGO (GCT) three-component composite material has been constructed by anchoring TiO(2) nanoparticles (NPs) encapsulated in carbon shells onto reduced graphene oxide (rGO) sheets. The structure of GCT was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N(2) adsorption-desorption isotherms, and transmission electron microscopy (TEM). This material shows a superior retention as the anode materials in lithium ion battery with a specific discharge capacity of 188 mA h g(-1) in the initial cycle and 158 mA h g(-1) after 100 cycles.

  17. Investigation of lithium forward scattering for the analysis of carbon and oxygen in human amniotic fluid

    International Nuclear Information System (INIS)

    Liendo, J.A.; Instituto Venezolano de Investigaciones Cientificas, Caracas; Florida State University, Tallahasse, FL; Gonzalez, A.C.; Rojas, A.; Instituto Venezolano de Investigaciones Cientificas, Caracas; Fletcher, N.R.; Caussyn, D.D.; Barber, P.

    2006-01-01

    Lithium forward elastic scattering is investigated as an additional method for Z 6,7 Li beams and the elastically scattered beam is detected at 16.45 deg, 20.45 deg and 28.0 deg simultaneously. The quality of elastic spectra improves with sample dilution. The content of C and O in the backing is subtracted. Carbon and oxygen concentrations of the non-diluted AF sample are determined by assuming that elemental concentration varies linearly with dilution. (author)

  18. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries.

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O D; Jagannath; Bashiri, Parisa; Nazri, G A; Naik, Vaman M; Naik, Ratna

    2017-10-14

    A series of porous Li 2 Fe 1-x Mg x SiO 4 /C (x = 0, 0.01, 0.02, 0.04) nanocomposites (LFS/C, 1Mg-LFS/C, 2Mg-LFS and 4Mg-LFS/C) have been synthesized via a solvo-thermal method using the Pluronic P123 polymer as an in situ carbon source. Rietveld refinement of the X-ray diffraction data of Li 2 Fe 1-x Mg x SiO 4 /C composites confirms the formation of the monoclinic P2 1 structure of Li 2 FeSiO 4 . The addition of Mg facilitates the growth of impurity-free Li 2 FeSiO 4 with increased crystallinity and particle size. Despite having the same percentage of carbon content (∼15 wt%) in all the samples, the 1Mg-LFS/C nanocomposite delivered the highest initial discharge capacity of 278 mA h g -1 (∼84% of the theoretical capacity) at the C/30 rate and also exhibited the best rate capability and cycle stability (94% retention after 100 charge-discharge cycles at 1C). This is attributed to its large surface area with a narrow pore size distribution and a lower charge transfer resistance with enhanced Li-ion diffusion coefficient compared to other nanocomposites.

  19. Chemical properties of various organic electrolytes for lithium rechargeable batteries. Pt. 1.. Characterization of passivating layer formed on graphite in alkyl carbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoichiro; Asahina, Hitoshi; Suzuki, Hitoshi; Yonei, Ayako; Yokoto, Kiyomi [Tsukuba Research Center, Mitsubishi Chemical Corporation, Ibaraki (Japan)

    1997-09-01

    The characteristics and reaction mechanisms of the passivating film formed on the surface of graphite were investigated in ethylene carbonate-diethyl carbonate solutions containing LiClO{sub 4}, LiPF{sub 6} and LiN(SO{sub 2}CF{sub 3}){sub 2}. The electron consumption resulting on the irreversible capacity of graphite was almost equivalent to that used in the one-electron reduction of Li{sup +} found in the film. The electrochemical reactions in the first discharge process may be divided into the following steps: (i) `initial film formation step` from 1.4 to 0.55 V; (ii) `main film formation step` from 0.55 to 0.2 V, and (iii) `lithium intercalation step from 0.2 to 0.0 V. Most of the passivating film is formed together with the lithium intercalation reaction at step (ii). The passivating film formed at this step contained a significant amount of organic film such as EtOCO{sub 2}Li, (CH{sub 2}OCO{sub 2}Li){sub 2}, etc. Through the consecutive formation of passivating film at steps (i) and (ii), lithium intercalation into graphite proceeds smoothly without further decomposition of organic electrolyte. (orig.)

  20. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte

    International Nuclear Information System (INIS)

    Decaux, C.; Lota, G.; Raymundo-Piñero, E.; Frackowiak, E.; Béguin, F.

    2012-01-01

    A hybrid LiC capacitor combining a lithium-ion battery type (graphite) electrode and an electrical double-layer (activated carbon) one has been developed by preloading graphite from 2 mol L −1 lithium bis(trifluoromethane)sulfonimide (LiTFSI) organic electrolyte. The graphite intercalation compound was formed by applying ca. 10 successive charge/self-discharge pulses. The optimized hybrid device operates in the voltage range from 1.5 to 4.2 V and displays 60% higher gravimetric capacitance than an electric double-layer (EDL) capacitor using the same activated carbon for both electrodes. As a result, the energy density reaches 80 Wh kg −1 , which is four times higher than the value for the EDL capacitor with the same total mass of carbon.

  1. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Xia, Yuan; Wang, Beibei; Zhao, Xiaojun; Wang, Gang; Wang, Hui

    2016-01-01

    In this work, a core-shell composite composed of MoS 2 nanosheets grown on hollow carbon microspheres is synthesized by a hydrothermal and a subsequent annealing route. The result shows that well-graphitized hollow-carbon@highlycrystallineMoS 2 (HC@MoS 2 ) was obtained after the four-step reaction. And it is found that the synthesized MoS 2 is consist of 2H and 1T phases. The lithium storage property of the composite is investigated as an anode material for lithium-ion batteries. Benefited from the special morphology and structure, a stable capacity of 970 mAh g −1 for over 100 cycles at a current density of 0.25 A g −1 is realized on the material. Even at a high current density of 4 A g −1 , a reversible capacity as high as 560 mAh g −1 is delivered. Moreover, the reasons for the excellent electrochemical performance of the material are explored and discussed in detail.

  3. Lithium storage into carbonaceous materials obtained from sugarcane bagasse

    International Nuclear Information System (INIS)

    Matsubara, Elaine Y.; Lala, Stella M.; Rosolen, Jose Mauricio

    2010-01-01

    Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g -1 . The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)

  4. Effect of strontium on the grain refining efficiency of Mg-3Al alloy refined by carbon inoculation

    International Nuclear Information System (INIS)

    Du Jun; Yang Jian; Kuwabara, Mamoru; Li Wenfang; Peng Jihua

    2009-01-01

    The effect of Sr on the grain refining efficiency of the Mg-3Al alloy refined by carbon inoculation has been investigated in the present study. A significant grain refinement was obtained for the Mg-3Al alloy treated with either 0.2% C or 0.2% Sr. The Al-C-O particles were found in the sample refined by 0.2% C, and the element O should come from reaction between Al 4 C 3 nuclei of Mg grains and water during the process of sample preparation. The grain size of the sample refined by carbon inoculation was further decreased after the combined addition of Sr. The grain size decreased with increasing Sr content. Much higher refining efficiency was obtained when the Sr addition was increased to 0.5%. Sr is an effective element to improve the grain refining efficiency for the Mg-Al alloys refined by carbon inoculation. The number of Al 4 C 3 particles in the sample refined by the combination of carbon and Sr was more than that in the sample refined by only carbon. No Al-C-O-Sr-rich particles were obviously found in the sample refined by the combination of carbon and a little (<0.5%) Sr addition

  5. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  6. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  7. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes

    International Nuclear Information System (INIS)

    Li, Juan; Ru, Qiang; Hu, Shejun; Sun, Dawei; Zhang, Beibei; Hou, Xianhua

    2013-01-01

    A novel multi-step design of spherical nano-SnSb/MCMB/carbon core–shell composite for high stability and long life lithium battery electrodes has been introduced. The core–shell composite was successfully synthesized via co-precipitation and subsequent pyrolysis. The resultant composite sphere consisted of nanosized SnSb alloy and mesophase carbon microbeads (MCMB, 10 μm) embedded in a carbon matrix pyrolyzed from glucose and petroleum pitch, in which the MCMB was treated to be the inner core to offer mechanical support and efficient electron conducting pathway. The composite material exhibited a unique stability with a retention discharge capacity rate of 83.52% with reversible capacity of 422.5 mAh g −1 after 100 cycles and a high initial coulombic efficiency of 83.53%. The enhanced electrochemical performance is attributed to the structural stability of the composite sphere during the charging–discharging process

  8. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  9. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice.

    Science.gov (United States)

    Hong, Namgue; Choi, Yun-Sik; Kim, Seong Yun; Kim, Hee Jung

    2017-01-01

    Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.

  10. 2D Space-Confined Synthesis of Few-Layer MoS2 Anchored on Carbon Nanosheet for Lithium-Ion Battery Anode.

    Science.gov (United States)

    Zhou, Jingwen; Qin, Jian; Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-04-28

    A facile and scalable 2D spatial confinement strategy is developed for in situ synthesizing highly crystalline MoS2 nanosheets with few layers (≤5 layers) anchored on 3D porous carbon nanosheet networks (3D FL-MoS2@PCNNs) as lithium-ion battery anode. During the synthesis, 3D self-assembly of cubic NaCl particles is adopted to not only serve as a template to direct the growth of 3D porous carbon nanosheet networks, but also create a 2D-confined space to achieve the construction of few-layer MoS2 nanosheets robustly lain on the surface of carbon nanosheet walls. In the resulting 3D architecture, the intimate contact between the surfaces of MoS2 and carbon nanosheets can effectively avoid the aggregation and restacking of MoS2 as well as remarkably enhance the structural integrity of the electrode, while the conductive matrix of 3D porous carbon nanosheet networks can ensure fast transport of both electrons and ions in the whole electrode. As a result, this unique 3D architecture manifests an outstanding long-life cycling capability at high rates, namely, a specific capacity as large as 709 mAh g(-1) is delivered at 2 A g(-1) and maintains ∼95.2% even after 520 deep charge/discharge cycles. Apart from promising lithium-ion battery anode, this 3D FL-MoS2@PCNN composite also has immense potential for applications in other areas such as supercapacitor, catalysis, and sensors.

  11. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  12. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes

    Science.gov (United States)

    Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya

    2017-03-01

    We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.

  13. Lithium adsorptive properties of a new selective adsorbent derived from Li1.33Mn1.67O4

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Ooi, Kenta; Nishimura, Tomonobu; Kumamoto, Jyunji.

    1994-01-01

    A new selective adsorbent was prepared by the acid treatment of Li 1.33 Mn 1.67 O 4 with spinel structure, followed by granulation with PVC as a binder. The adsorbent showed the highest capacities for lithium from seawater ; the equilibrium lithium uptakes reached 25.5 mg·g -1 by the powdered adsorbent and 18 mg·g -1 by the granulated one at 25degC. The column adsorption study with the granulated adsorbent (diameter 0.7-1.4mm) showed that the lithium uptake reached about 14 mg·g -1 by passing seawater for 30 days. This lithium content is nearly equal to that of lithium ore. Although the lithium adsorption capacity of the granulated adsorbent decreased slightly by repeating the adsorption-desorption cycle, it kept a high capacity as well as a high strength abrasion during the repetition of 10 cycles. (author)

  14. Superior critical current density obtained in MgB_2 bulks via employing carbon-coated boron and minor Cu addition

    International Nuclear Information System (INIS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-01-01

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB_2 grain connectivity, leading to higher J_c at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J_c. - Abstract: High performance Cu doped MgB_2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB_2 grains, as well as a high level of homogeneous carbon doping in the MgB_2 samples, which significantly enhance the J_c in both Cu doped and undoped bulks compared to MgB_2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB_2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J_c) at self fields and low fields (the best values are 7 × 10"5 A/cm"2 at self fields, and 1 × 10"5 A/cm"2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J_c at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB_2 bulks or wires with excellent J_c on an industrial scale.

  15. Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic Lateral Sclerosis (LiCALS) [Eudract number: 2008-006891-31

    OpenAIRE

    Kelly Joanna; Thornhill Marie; Murphy Caroline; Morrison Karen E; Young Carolyn A; Shaw Pamela J; Al-Chalabi Ammar; Steen I Nicholas; Leigh P Nigel

    2011-01-01

    Abstract Background Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disorder characterised by loss of motor neurons leading to severe weakness and death from respiratory failure within 3-5 years. Riluzole prolongs survival in ALS. A published report has suggested a dramatic effect of lithium carbonate on survival. 44 patients were studied, with 16 randomly selected to take LiCO3 and riluzole and 28 allocated to take riluzole alone. In the group treated with lithium, n...

  16. One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gao, Hongxu; Hou, Feng; Wan, Zhipeng; Zhao, Sha; Yang, Deming; Liu, Jiachen; Guo, Anran; Gong, Yuxuan

    2015-01-01

    Highlights: • CNTs/TiO 2 compoiste films synthesized are continuous and free-standing. • The film can be directly used as flexible, binder-free Lithium-Ion Battery electrode. • The CNTs/TiO 2 electrodes exhibit excellent rate capacity and cyclic stability. • Our strategy is readily applicable to fabricate other CNTs-based composite films. - Abstract: Continuous free-standing Carbon Nanotubes (CNTs)/Titanium oxide (TiO 2 ) composite films were fabricated in a vertical CVD gas flow reactor with water sealing by the One-Step Chemical Vapor Deposition (CVD) approach. The composite films consist of multiple layers of conductive carbon nanotube networks with titanium oxide nanoparticles decorating on carbon nanotube surface. The as-synthesized flexible and transferrable composite films show excellent electrochemical properties, when the content of tetrabutyl titanate is 19.0 wt.%, which can be promising as binder-free anodes for Lithium-Ion Battery (LIB) applications. It demonstrates remarkably high rate capacity of 150 mAh g −1 , as well as excellent high rate cyclic stability over 500 cycles (current density of 3000 mA g −1 ). Such observations can be attributed to the relatively larger surface area and pore volume comparing with pristine CNT films. Great potentials of CNTs/TiO 2 composite films for large-scale production and application in energy devices were shown

  17. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.

    Science.gov (United States)

    Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi

    2018-03-01

    The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage

    International Nuclear Information System (INIS)

    Sher Shah, Md. Selim Arif; Lee, Jooyoung; Park, A. Reum; Choi, Youngjin; Kim, Woo-Jae; Park, Juhyun; Chung, Chan-Hwa; Kim, Jaeyun; Lim, Byungkwon; Yoo, Pil J.

    2017-01-01

    SnO 2 is a well-studied anode material for lithium ion batteries (LIBs). However, it undergoes severe capacity fading because of a large volume change (∼300%) during cycling. Composites of SnO 2 with electro-conductive graphene would deliver improved capacity and rate performance. Nevertheless, achieving the theoretical capacity of SnO 2 is still elusive, mainly because of disintegration of the active material from graphene and severe aggregation of SnO 2 , or Sn nanoparticles produced upon cycling. To surmount these limitations, in this work, nanocomposites containing ultra-fine sized SnO 2 nanoparticles (UFSN) with reduced graphene oxide and amorphous carbon were synthesized in a single step at low temperature and environmentally benign way, in which ascorbic acid was employed as the carbon source and reducing agent. UFSN could decrease the lithium ion diffusion path length. As a result of effective buffering effect afforded by the mesoporous structure against volume change and improved lithium ion diffusivity, the ternary nanocomposite achieves ultra-high capacity of 1245 mAh g −1 after 210 cycles at 100 mA g −1 and excellent cycling stability. Since the proposed approach is facile, straightforward, and highly reproducible, it is anticipated that this system would be a potential alternative to the conventional graphite anode for LIBs.

  19. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  20. Lithium based alloy-thionyl chloride cells for applications at temperatures to 200 C

    Science.gov (United States)

    Kane, P.; Marincic, N.; Epstein, J.; Lindsey, A.

    A long-life lithium battery for industrial applications at temperatures up to 200 C was developed by combining Li-based alloy anodes with oxyhalide electrolytes. Cathodes were fabricated by rolling the blend of polycarbonomonofluoride, a conductive carbon additive, and a binder, while anodes were fabricated as those used in oxyhalide cells, incorporating a modified anode current collector designed to prevent the formation of 'lithium islands' at the end of discharge; nonwoven glass fiber separators were pretreated to remove excessive binders and lubricants. Various active electrode surface areas were combined with a corresponding thickness of electrodes and separators, matched in capacity. Tests of the high-rate electrode structure, using Li-Mg alloy anode in conjunction with thionyl chloride electrolyte, have demonstrated that the battery with this anode can be used under abusive conditions such as short circuit and external heating (at 175 C). Raising the operating temperature to 200 C did require some modifications of regular cell hardware.

  1. Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Yue, Jie; Gu, Xin; Jiang, Xiaolei; Chen, Liang; Wang, Nana; Yang, Jian; Ma, Xiaojian

    2015-01-01

    Highlights: • MnO 2 @N-dopedcarbonnanotube(N-CNT) composites are prepared by a facile process. • MnO 2 @N-CNT anodes exhibit better electrochemical properties than MnO 2 @CNT. • MnO 2 @N-CNT anodes show a capacity of 1415 mAh g −1 at 100 mA g −1 after 150 cycles. - Abstract: Carbon nanotube (CNT) has been widely applied to transition metal oxides anodes for lithium ion batteries, acting as a buffer, hollow backbone and conductive additive. Since the presence of N in carbon materials can enhance the reactivity and electrical conductivity, N-doped carbon nanotube (N-CNT) might be a better choice than pure CNT, which is exemplified by coaxial manganese dioxide@N-doped carbon nanotubes as a superior anode. The electrochemical properties of MnO 2 @N-CNT are investigated in terms of cycling stability and rate capability. The nanocomposite can deliver a specific capacity of 1415 mAh g −1 after 100 cycles at the current density of 100 mA g −1 , which is better than that of MnO 2 @commercial CNT and MnO 2 . The excellent performance might be related to the integration of hollow structure, one-dimensional nanoscale size as well as combination with N-doped carbon materials.

  2. Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae-Woo [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Lim, Hyung-Seok [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Seong-Jin [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Sun, Yang-Kook [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Suh, Kyung-Do, E-mail: kdsuh@hanyang.ac.kr [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2017-01-01

    In this work, we report the fabrication of the flower-like tin/carbon (Sn/C) composite microspheres using sulfonated semi-interpenetrating polystyrene (SPS) microspheres as a carbon precursor. The sulfonation degree of SPS has great effects on the resulting particle size, morphology, amount of introduced Sn, and the carbonization yield of the microspheres after heat treatment. The obtained Sn/C composite microspheres were characterized by scanning electron microscopy (SEM), focused-ion beam SEM, and X-ray diffraction. The flower-like Sn/C composite electrodes exhibited higher charge-discharge capacities than those of graphite as an anode material for a lithium ion battery. In addition, they show a long lasting cyclability, even through 400 cycles. - Highlights: • Tin nanocrystals are introduced in flower-like carbon spheres with many ripples. • Long lasting cyclability is exhibited at 1 C rate up to 400 cycles. • Tin content of composite spheres depends on chemical treatment of polymer microspheres.

  3. Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available The Ni/MgO and Ni-Cu/MgO catalysts were prepared by sol-gel method and used as the catalysts for synthesis of carbon nanotubes by thermal chemical vapor deposition. The effect of Cu on the carbon yield and structure was investigated, and the effects of calcination temperature and reaction temperature were also investigated. The catalysts and synthesized carbon materials were characterized by temperature programmed reduction (TPR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. Results showed that the addition of Cu promoted the reduction of nickel species, subsequently improving the growth and yield of CNTs. Meanwhile, CNTs were synthesized by the Ni/MgO and Ni-Cu/MgO catalysts with various calcination temperatures and reaction temperatures, and results suggested that the obtained CNTs on Ni-Cu/MgO catalyst with the calcination temperature of 500°C and the reaction temperature of 650°C were of the greatest yield and quantity of 927%.

  4. Renal failure in lithium-treated bipolar disorder: a retrospective cohort study.

    Directory of Open Access Journals (Sweden)

    Helen Close

    Full Text Available Lithium users are offered routine renal monitoring but few studies have quantified the risk to renal health. The aim of this study was to assess the association between use of lithium carbonate and incidence of renal failure in patients with bipolar disorder.This was a retrospective cohort study using the General Practice Research Database (GPRD and a nested validation study of lithium exposure and renal failure. A cohort of 6360 participants aged over 18 years had a first recorded diagnosis of bipolar disorder between January 1, 1990 and December 31, 2007. Data were examined from electronic primary care records from 418 general practices across the UK. The primary outcome was the hazard ratio for renal failure in participants exposed to lithium carbonate as compared with non-users of lithium, adjusting for age, gender, co-morbidities, and poly-pharmacy.Ever use of lithium was associated with a hazard ratio for renal failure of 2.5 (95% confidence interval 1.6 to 4.0 adjusted for known renal risk factors. Absolute risk was age dependent, with patients of 50 years or older at particular risk of renal failure: Number Needed to Harm (NNH was 44 (21 to 150.Lithium is associated with an increased risk of renal failure, particularly among the older age group. The absolute risk of renal failure associated with lithium use remains small.

  5. High-rate and ultralong cycle-life LiFePO{sub 4} nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinpeng, E-mail: goldminer@sina.com; Wang, Youlan

    2016-12-30

    Highlights: • B-doped carbon decorated LiFePO{sub 4} has been fabricated for the first time. • The LiFePO{sub 4}@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO{sub 4}@C. • The LiFePO{sub 4}@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO{sub 4}. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO{sub 4} is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO{sub 4}@B{sub 0.4}-C can reach 164.1 mAh g{sup −1} at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g{sup −1}). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g{sup −1} and can be maintained at 124.5 mAh g{sup −1} after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO{sub 4}@B-C composite for high-performance lithium-ion batteries.

  6. Chemistry of carbon nanomaterials: Uses of lithium nanotube salts in organic syntheses and functionalization of graphite

    Science.gov (United States)

    Chattopadhyay, Jayanta

    The effective utilization of carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs) and graphite, has been hindered due to difficulties (poor solubility, poly-dispersity) in processing. Therefore, a high degree of sidewall functionalization, either covalent or non-covalent, is often required to overcome these difficulties as the functionalized nanomaterials exhibit better solubility (either in organic solvents or in water), dispersity, manipulation, and processibility. This thesis presents a series of convenient and efficient organic synthetic routes to functionalize carbon nanomaterials. Carbon nanotube salts, prepared by treating SWNTs with lithium in liquid ammonia, react readily with aryl halides to yield aryl-functionalized SWNTs. These arylated SWNTs are soluble in methanol and water upon treatment with oleum. Similarly, SWNTs can be covalently functionalized by different heteroatoms (nitrogen, oxygen, and sulfur). Using the reductive alkylation approach, a synthetic scheme is designed to prepare long chain carboxylic acid functionalized SWNTs [SWNTs-(RCOOH)] that can react with (1) amine-terminated polyethylene glycol (PEG) chains to yield water-soluble biocompatible PEGylated SWNTs that are likely to be useful in a variety of biomedical applications; (2) polyethyleneimine (PEI) to prepare a SWNTs-PEI based adsorbent material that shows a four-fold improvement in the adsorption capacity of carbon dioxide over commonly used materials, making it useful for regenerable carbon dioxide removal in spaceflight; (3) chemically modified SWNTs-(RCOOH) to permit covalent bonding to the nylon matrix, thus allowing the formation of nylon 6,10 and nylon 6,10/SWNTs-(RCOOH) nanocomposites. Furthermore, we find that the lithium salts of carbon nanotubes serve as a source of electrons to induce polymerization of simple alkenes and alkynes onto the surface of carbon nanotubes. In the presence of sulfide/disulfide bonds, SWNT salts can initiate the single electron

  7. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  8. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  9. Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boli; Li, Dan; Liu, Zhengjiao; Gu, Lili; Xie, Wenhe; Li, Qun; Guo, Pengqian; Liu, Dequan; He, Deyan, E-mail: hedy@lzu.edu.cn

    2017-02-01

    Highlights: • The C-MnO/rGO composites were anchored on nickel foam by a facile vacuum filtration and a subsequent thermal treatment. • The novel architecture of anodes effectively improved the electrochemical performance of lithium ion battery. • The active MnO nanodendrites became smaller nanoparticles still wrapped in graphene sheets after cycles. - Abstract: Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets (C-MnO/rGO) were prepared on nickel foam by a facile vacuum filtration and a subsequent thermal treatment. As a binder-free anode of lithium-ion battery, the nanodendritic structure of C-MnO accommodates the huge volume expansion and shortens the diffusion length for lithium ion and electron, rGO sheets prevent C-MnO nanodendites from aggregation and offer a good electronic conduction. As a result, the electrode with such a novel architecture delivers superior electrochemical properties including high reversible capacity, excellent rate capability and cycle stability. Moreover, MnO nanodendrites change to nanoparticles wrapped in graphene sheets during the lithiation/delithiation process, which is a more beneficial microstructure to further increase the specific capacity and cycle life of the electrode.

  10. Electrochemical evaluation of the a carbon-paste electrode modified with spinel manganese(IV) oxide under flow conditions for amperometric determination of lithium

    International Nuclear Information System (INIS)

    Raymundo-Pereira, Paulo A.; Martin, Cibely S.; Bergamini, Marcio F.; Bocchi, Nerilso; Teixeira, Marcos F.S.

    2011-01-01

    The participation of cations in redox reactions of manganese oxides provides an opportunity for development of chemical sensors for non-electroactive ions. This paper describes the amperometric determination of lithium ions using carbon-paste electrode modified with spinel manganese(IV) oxide under flow conditions. Systematic investigations were made to optimize the experimental parameters for lithium sensor by flow injection analysis. The detection was based on the measurement of anodic current generated by oxidation of Mn(III) to Mn(IV) at the surface of the electrode and consequently the lithium ions extraction into the spinel structure. An operating potential of 0.50 V (vs. Ag/AgCl/3 KCl mol/L) was exploited for amperometric monitoring. The amperometric signal was linearly dependent on the lithium ions concentration over the range 4.0 x 10 -5 to 1.0 x 10 -3 mol L -1 . The equilibrium constant of insertion/extraction of the lithium ion in the spinel structure, apparent Gibbs energy of insertion, and surface coverage of the electrode with manganese oxide, were calculated by peak charge (Q) in different concentration under flow conditions. Considering selectivity, the peak charge of the sensor was found to be linearly dependent on the ionic radius of the alkaline and earth-alkaline cations.

  11. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.

    Science.gov (United States)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong; Tian, Qinghua; Sun, Hongyu

    2017-08-01

    A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na 2 CO 3 and Na 3 PO 4 as precipitants, lithium is recovered as raw Li 2 CO 3 and pure Li 3 PO 4 , respectively. Under the best reaction condition (both the amounts of Na 2 CO 3 and Li 3 PO 4 vs. the theoretical ones are about 1.1), the corresponding recovery rates of lithium (calculated based on the concentration of the previous stage) are 74.72% and 92.21%, respectively. The raw Li 2 CO 3 containing the impurity of Na 2 CO 3 is used to prepare LiMn 2 O 4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na 2 CO 3 in raw Li 2 CO 3 is controlled less than 10%, the Mn corrosion percentage of LiMn 2 O 4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g -1 . The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li 2 CO 3 in the field of lithium ion sieve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Renjie, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Zhao, Teng [Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tian, Tian; Fairen-Jimenez, David [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Cao, Shuai; Coxon, Paul R.; Xi, Kai, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Vasant Kumar, R.; Cheetham, Anthony K. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-12-01

    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C{sub ZIF8-D}) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C{sub ZIF8-D}) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C{sub ZIF8-D} sample, Li-S batteries with the GS-S/C{sub ZIF8-D} composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  13. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Directory of Open Access Journals (Sweden)

    Renjie Chen

    2014-12-01

    Full Text Available A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D composite for use in a cathode for a lithium sulfur (Li-S battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8, a typical zinc-containing metal organic framework (MOF, which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  14. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  15. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  16. A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry

    Science.gov (United States)

    Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei

    2018-04-01

    Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.

  17. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    Science.gov (United States)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  18. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  19. Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Peng; Qiu, Jingxia; Zheng, Zhanfeng; Liu, Gao; Ling, Min; Martens, Wayde; Wang, Haihui; Zhao, Huijun; Zhang, Shanqing

    2013-01-01

    Carbon nanotube (CNT) and TiO 2 nanofibre composite films are prepared and used as anode materials for lithium ion batteries (LIBs) without the use of binders and conventional copper current collector. The preliminary experimental results from X-ray diffraction, scanning electron microscopy and transmission electron microscopy suggest that the TiO 2 nanofibres were well-dispersed and interwoven by the CNTs, forming freestanding, bendable and light weighted composite. In comparison with TiO 2 nanofibre based LIBs, the CNTs could significantly improve the battery performance due to their high conductivity property and 3D network morphology. In both 1–3 V and 0.01–3 V testing voltage ranges, the as-prepared composites show excellent reversible capacity and capacity retention. The superior lithium storage capacity of the CNT/TiO 2 composite was mainly attributed to dual functions of the CNTs – the CNTs not only provide conductive networks to assist the electron transfer but also facilitate lithium ion diffusion between the electrolyte and the TiO 2 active materials by preventing agglomeration of TiO 2 nanofibres. This work demonstrates that the CNT–TiO 2 composite film could be one type of potential electrode material for large-scale LIB applications

  20. Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity

    International Nuclear Information System (INIS)

    Zhu, Jiadeng; Lu, Yao; Chen, Chen; Ge, Yeqian; Jasper, Samuel; Leary, Jennifer D.; Li, Dawei; Jiang, Mengjin; Zhang, Xiangwu

    2016-01-01

    Hematite iron oxide (α-Fe_2O_3) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g"−"1), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe_2O_3 hinder its use in practical batteries. In this study, carbon-coated α-Fe_2O_3 nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g"−"1 even at superior high current density of 1000 mA g"−"1 after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe_2O_3 nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs. - Graphical abstract: Carbon-coated α-Fe_2O_3 nanofibers are employed as anode material to achieve high and stable electrochemical performance for lithium-ion batteries, enhancing their commercial viability. - Highlights: • α-Fe_2O_3/C nanofibers were fabricated by electrospinning and thermal treatment. • α-Fe_2O_3/C nanofibers exhibit stable cyclability and good rate capability. • α-Fe_2O_3–C nanofibers maintain high capacity at 1000 mA g"−"1 for 200 cycles. • A capacity retention of 99.2% is achieved by α-Fe_2O_3–C nanofibers after 200 cycles.

  1. Properties of the lithium carbonate for to be used as thermal neutrons detector

    International Nuclear Information System (INIS)

    Herrera A, E.; Urena N, F.

    2003-01-01

    In this work the dosimetric properties of the lithium carbonate used as detecting of thermal neutrons and by means of free radicals is evaluated and presented. The studied parameters that were carried out for this detector were: intensity of the Electron paramagnetic resonance signal (EPR); reproducibility, fading of the signal to ambient temperature, stability of the signal to low temperature (0 degrees); answer of zero dose and homogeneity or reliability of the data of the detector, humidity, solar light, temperature and radio sensitivity. These parameters indicate the utility that have the detectors for the estimation of fields of neutron fluences that are applicable to capture therapies by neutron-boron and, nuclear reactors. (Author)

  2. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    Science.gov (United States)

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  3. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  4. Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahendiran, C.; Maiyalagan, T.; Scott, K.; Gedanken, A.

    2011-01-01

    Highlights: → Carbon coated on NiO/MgO in a core/shell nanostructure is synthesized by RAPET. → The carbon-coated NiO/MgO is supported by Pd. → The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation studied. - Abstract: Carbon coated on NiO/MgO in a core/shell nanostructure was synthesized by the single-step RAPET (reaction under autogenic pressure at elevated temperatures) technique, and the obtained formation mechanism of the core/shell nanocomposite was presented. The carbon-coated NiO/MgO and its supported Pd catalyst, Pd/(NiO/MgO-C), were characterized by SEM, HR-TEM, XRD and cyclic voltammetry. The X-ray diffraction patterns confirmed the face-centered cubic crystal structure of NiO/MgO. Raman spectroscopy measurements provided structural evidence for the formation of a NiO/MgO composite and the nature of the coated carbon shell. The high-resolution transmission electron microscopy images showed the core and shell morphologies individually. The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation were investigated in an alkaline solution. The results indicated that the prepared Pd-NiO/MgO-C catalyst has excellent electrocatalytic activity and stability.

  5. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste

    Science.gov (United States)

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A.

    2013-01-01

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  6. An improved charging/discharging strategy of lithium batteries considering depreciation cost in day-ahead microgrid scheduling

    International Nuclear Information System (INIS)

    Zhang, Zhong; Wang, Jianxue; Wang, Xiuli

    2015-01-01

    Highlights: • A quantitative depreciation cost model is put forward for lithium batteries. • A practical charging/discharging strategy is applied to battery management. • The depth of discharge of the battery storage is scheduled more rationally. • The proposed strategy improves the cost efficiency of lithium batteries in MGs. - Abstract: An energy storage system is critical for the safe and stable operation of a microgrid (MG) and has a promising prospect in future power system. Economical and safe operation of storage system is of great significance to MGs. This paper presents an improved management strategy for lithium battery storage by establishing a battery depreciation cost model and employing a practical charging/discharging strategy. Firstly, experimental data of lithium battery cycle lives, which are functions of the depth of discharge, are investigated and synthesized. A quantitative depreciation cost model is put forward for lithium batteries from the perspective of cycle life. Secondly, a practical charging/discharging strategy is applied to the lithium battery management in MGs. Then, an optimal scheduling model is developed to minimize MG operational cost including battery depreciation cost. Finally, numerical tests are conducted on a typical grid-connected MG. Results show that the depth of discharge of storage is scheduled more rationally, and operational cost is simultaneously saved for MG under the proposed management strategy. This study helps to improve the cost efficiency and alleviate the aging process for lithium batteries.

  7. Aerosol assisted synthesis of hierarchical tin–carbon composites and their application as lithium battery anode materials

    KAUST Repository

    Guo, Juchen

    2013-01-01

    We report a method for synthesizing hierarchically structured tin-carbon (Sn-C) composites via aerosol spray pyrolysis. In this method, an aqueous precursor solution containing tin(ii) chloride and sucrose is atomized, and the resultant aerosol droplets carried by an inert gas are pyrolyzed in a high-temperature tubular furnace. Owing to the unique combination of high reaction temperature and short reaction time, this method is able to achieve a hetero-structure in which small Sn particles (15 nm) are uniformly embedded in a secondary carbon particle. This procedure allows the size and size distribution of the primary Sn particles to be tuned, as well as control over the size of the secondary carbon particles by addition of polymeric surfactant in the precursor solution. When evaluated as anode materials for lithium-ion batteries, the resultant Sn-C composites demonstrate attractive electrochemical performance in terms of overall capacity, electrochemical stability, and coulombic efficiency. © 2013 The Royal Society of Chemistry.

  8. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    Science.gov (United States)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering

  9. New Insights into Understanding Irreversible and Reversible Lithium Storage within SiOC and SiCN Ceramics.

    Science.gov (United States)

    Graczyk-Zajac, Magdalena; Reinold, Lukas Mirko; Kaspar, Jan; Sasikumar, Pradeep Vallachira Warriam; Soraru, Gian-Domenico; Riedel, Ralf

    2015-02-24

    Within this work we define structural properties of the silicon carbonitride (SiCN) and silicon oxycarbide (SiOC) ceramics which determine the reversible and irreversible lithium storage capacities, long cycling stability and define the major differences in the lithium storage in SiCN and SiOC. For both ceramics, we correlate the first cycle lithiation or delithiation capacity and cycling stability with the amount of SiCN/SiOC matrix or free carbon phase, respectively. The first cycle lithiation and delithiation capacities of SiOC materials do not depend on the amount of free carbon, while for SiCN the capacity increases with the amount of carbon to reach a threshold value at ~50% of carbon phase. Replacing oxygen with nitrogen renders the mixed bond Si-tetrahedra unable to sequester lithium. Lithium is more attracted by oxygen in the SiOC network due to the more ionic character of Si-O bonds. This brings about very high initial lithiation capacities, even at low carbon content. If oxygen is replaced by nitrogen, the ceramic network becomes less attractive for lithium ions due to the more covalent character of Si-N bonds and lower electron density on the nitrogen atom. This explains the significant difference in electrochemical behavior which is observed for carbon-poor SiCN and SiOC materials.

  10. New Insights into Understanding Irreversible and Reversible Lithium Storage within SiOC and SiCN Ceramics

    Directory of Open Access Journals (Sweden)

    Magdalena Graczyk-Zajac

    2015-02-01

    Full Text Available Within this work we define structural properties of the silicon carbonitride (SiCN and silicon oxycarbide (SiOC ceramics which determine the reversible and irreversible lithium storage capacities, long cycling stability and define the major differences in the lithium storage in SiCN and SiOC. For both ceramics, we correlate the first cycle lithiation or delithiation capacity and cycling stability with the amount of SiCN/SiOC matrix or free carbon phase, respectively. The first cycle lithiation and delithiation capacities of SiOC materials do not depend on the amount of free carbon, while for SiCN the capacity increases with the amount of carbon to reach a threshold value at ~50% of carbon phase. Replacing oxygen with nitrogen renders the mixed bond Si-tetrahedra unable to sequester lithium. Lithium is more attracted by oxygen in the SiOC network due to the more ionic character of Si-O bonds. This brings about very high initial lithiation capacities, even at low carbon content. If oxygen is replaced by nitrogen, the ceramic network becomes less attractive for lithium ions due to the more covalent character of Si-N bonds and lower electron density on the nitrogen atom. This explains the significant difference in electrochemical behavior which is observed for carbon-poor SiCN and SiOC materials.

  11. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  13. Toward High-Performance Lithium-Sulfur Batteries: Upcycling of LDPE Plastic into Sulfonated Carbon Scaffold via Microwave-Promoted Sulfonation.

    Science.gov (United States)

    Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G

    2018-05-02

    Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.

  14. Clinical research on radioiodine addition of low-doses of lithium carbonate in short-term treatment of Graves hyperthyroidism

    International Nuclear Information System (INIS)

    Zha Jinshun; Jiang Yan; Xu Yuan; Lin Qinxiu; Huang Chunling; Jiang Tingyin

    2014-01-01

    Objective: To explore the effect of lithium carbonate plus 131 I in the treatment of Graves hyperthyroidism. Methods: One hundred patients with Graves hyperthyroidism were enrolled in this study. All of them were randomly divided in to 2 groups: group Ⅰ with 50 patients treated with 131 I and group Ⅱ with 50 patients treated with lithium carbonate plus 131 I. Patients in group Ⅱ were treated with a dose of 0.5 g per day (2×0.25 g) of lithium carbonate for 15 days before and after the administration of 131 I. Thyroid weight was estimated by ultrasonography and careful palpation of the thyroid before treatment, and no significance were found between this two groups. Radiation absorbed dose rate in the front of neck was measured respectively 15, 30 and 45 d after the administration of 131 I. Serum concentrations of TSH, free triiodothyrosine (fT 3 ) and free thyroxine (fT 4 ) were tested respectively before and 30, 45, 90, 180 days after administration of 131 I. Results: The radiation absorbed dose rate in the front of neck were decreased gradually as time went on after 131 I therapy in each group. In general, the difference of radiation absorbed dose rate among different monitor term were significant (H=132.46, and 132.47, all P<0.01) in same group. The difference of radiation absorbed dose rate between each other at 15, 30 and 45 d were significant (t=88.51, 113.7, 59.42 in group Ⅰ, and 83.44, 112.76, 70.18 in group Ⅱ, all P<0.01), all of which in same monitor term were significantly higher in group Ⅱ than those in group Ⅰ (t=8.81, 15.18, 10.10, all P<0.01). The mean serum TSH of each group before and all different time periods after treatment were below the normal range(0.55∼4.78 mIU/L) without significant difference (F=1.23, P>0.05). In general, the differences of fT 3 and fT 4 values in all groups were significant (F fT3 =9.65, F fT4 =22.45, all P<0.01) before and after treatment. The fT 3 and fT 4 values in both groups rose significantly 30 days

  15. Contribution to the study of Li{sub x}(Co,M)O{sub 2} phases used as cathodes in Li-ion batteries. Combined effects of the lithium sur-stoichiometry and of the substitution (M = Ni, Mg); Contribution a l'etude des phases Li{sub x}(Co,M)O{sub 2} en tant que materiaux d'electrode positive des batteries Li-ion. Effets combines de la surstoechiometrie en lithium et de la substitution (M = Ni, Mg)

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, St.

    2001-12-01

    Li{sub x0}(Co,M)O{sub 2} (M = Ni, Mg; x0 {<=} 1.0) materials used as positive electrode for Li-ion batteries have been prepared at high temperature (900 degrees C) and characterized by X-ray diffraction, galvano-static measurements, {sup 7}Li MAS NMR spectroscopy and electrical properties measurements. If the results on the LiCoO{sub 2} phase agree with the literature, the adding of an excess of lithium during synthesis leads to the presence in the actual materials to the presence of oxygen vacancies and intermediate spin Co{sup 3+} ions (Co{sup 3+(IS)}) in a square-based environment. This defect suppresses all the phase transitions usually observed upon lithium de-intercalation in Li{sub x}CoO{sub 2}. The partial substitution by Ni ions allows us to separate the relative contribution of Ni(III) and Co{sup 3+(IS)} ions in the suppression of the various phase transitions upon cycling. Mg doping, even without any lithium excess, systematically induces some oxygen vacancies and Co{sup 3+(IS)} ions in the material. This observation had been correlated to the behaviour of the Li{sub x}(Co,Mg)O{sub 2} system upon cycling. (author)

  16. Lithium extraction from orthorhombic lithium manganese oxide and the phase-transformation to spinel

    CSIR Research Space (South Africa)

    Gummow, RJ

    1993-12-01

    Full Text Available Orthorhombic LiMnO2 products, synthesised by the reaction of gamma-MnO2 and LiOH in argon at 600-620 degrees C using carbon as a reducing agent, have been evaluated as electrode materials in lithium cells. Products that contained a minor proportion...

  17. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries.

    Science.gov (United States)

    Reddy, M Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A M

    2016-01-07

    With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g(-1), 1255 mA h g(-1) and 1360 mA h g(-1) that decrease to 750 mA h g(-1), 643 mA h g(-1) and 560 mA h g(-1) depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.

  18. Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage.

    Science.gov (United States)

    Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin

    2017-04-25

    In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.

  19. Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ding, Y.; Li, G.R.; Xiao, C.W.; Gao, X.P.

    2013-01-01

    Li 4 Ti 5 O 12 /carbon composites have shown promising high rate capability as anode materials for lithium ion batteries. In this paper, unique effects of graphene in Li 4 Ti 5 O 12 /carbon composites on electrochemical performances are focused by means of comparing Li 4 Ti 5 O 12 /graphene with Li 4 Ti 5 O 12 /conductive carbon black (CCB) and Li 4 Ti 5 O 12 . The investigated anode materials are synthesized by a facile hydrothermal method. The amount of graphene or CCB in the Li 4 Ti 5 O 12 /carbon composites is about 3 wt% measured by thermogravimetric (TG) analysis. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that Li 4 Ti 5 O 12 /graphene consists of small sized Li 4 Ti 5 O 12 nanocrystals supported on graphene nanosheets, while Li 4 Ti 5 O 12 /CCB comprises Li 4 Ti 5 O 12 nanocrystal aggregates coated nearly by graphited carbon. The electrochemical performances of these samples as anode materials for lithium ion batteries are investigated by galvanostatic charge–discharge method. Li 4 Ti 5 O 12 /graphene provides a superior rate capability. At the high current density of 1600 mA g −1 , the reversible capacity after 200 cycles is still more than 120 mAh g −1 , which is about 40% higher than that of Li 4 Ti 5 O 12 /CCB. Cyclic voltammetry (CV) demonstrates that stronger pseudocapacitive effect occurs on Li 4 Ti 5 O 12 /graphene than on Li 4 Ti 5 O 12 /CCB. This derived from the structure features that graphene-supported small Li 4 Ti 5 O 12 nanocrystals provide more surface active sites for the lithium ion insertion/extraction. The strong pseudocapacitive effect is responsible for the improvements of capacity and high-rate capability. Further, electrochemical impedance spectra (EIS) show that Li 4 Ti 5 O 12 /graphene electrode have lower charge transfer resistance and smaller diffusion impedance, indicating the obvious advantages in electrode kinetics over Li 4 Ti 5 O 12 and Li 4 Ti 5 O 12

  20. Electrospun N-doped Hierarchical Porous Carbon Nanofiber with Improved Graphitization Degree for High Performance Lithium Ion Capacitor.

    Science.gov (United States)

    Li, Baohua; Shi, Ruiying; Han, Cuiping; Xu, Xiaofu; Qing, Xianying; Xu, Lei; Li, Hongfei; Li, Junqin; Wong, Ching-Ping

    2018-05-14

    Lithium ion capacitor (LIC) has been regarded as a promising device to combine the merits of lithium ion batteries and supercapacitors, which can meet the requirements for both high energy and power density. The development of advanced electrode is the key. Herein, we demonstrate the bottom-up synthesis of activated carbon nanofiber (a-PANF) with hierarchical porous structure and high graphitization degree. Electrospinning is employed to prepare interconnected fiber network with macropores and ferric acetylacetonate is introduced as both mesopore creating agent and graphitic catalyst to increase the graphitization degree. Furthermore, chemical activation enlarges the specific surface area by producing rich micropores. Half cell evaluation of the as-prepared a-PANF displays a discharge capacity of 80 mAh g-1 at 0.1 A g-1 within 2~4.5 V and no capacity fading after 1000 cycles at 2 A g-1, which is significantly higher than conventional activated carbon. Furthermore, the as-assembled LIC with a-PANF cathode and Fe3O4 anode achieves a superior energy density of 124.6 Wh kg-1 at a specific power of 93.8 W kg-1, and remains 103.7 Wh kg-1 at 4687.5 W kg-1, demonstrating the promising application of a-PANF as potential electrode candidates for efficient energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    International Nuclear Information System (INIS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M; Hossain, Al; Kim, Jung Ho; Dou, Shi Xue; Acar, S

    2015-01-01

    High performance MgB 2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB 2 grains with a high level of homogeneous carbon doping were formed in these MgB 2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (J c ) in the as-prepared samples. In particular, the value of J c for the carbon-coated (Mg 1.1 B 2 )Cu 0.05 sample prepared here is even above 1 × 10 5 A cm −2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB 2 bulks or wires with excellent J c , as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive. (paper)

  2. Ultrathin MoS{sub 2} sheets supported on N-rich carbon nitride nanospheres with enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenrayan, Senthil; Chandra, Kishore S.; Manickam, Sasidharan, E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-07-15

    Graphical abstract: We report the construction of N-rich C{sub 3}N{sub 4}/MoS{sub 2} nanospheres from 2D layered materials that serve as potential anode materials for lithium-ion battery delivering a reversible capacity of 857 mAh g{sup −1} at 0.1 C rate and superior rate performance of 383 mAh g{sup −1} at 10 C rate. - Highlights: • 3D N-rich C{sub 3}N{sub 4}@MoS{sub 2} nanospheres scaffolds reported from 2D layered g–C{sub 3}N{sub 4}. • TEM confirmed N-rich spheres coated by MoS{sub 2} sheets forming an interconnected architecture. • N-rich C{sub 3}N{sub 4}@MoS{sub 2} scaffolds were explored as potential anode material for lithium ion batteries. • The electrode exhibited a high reversible discharge capacity of 857 mAh g{sup −1} after 50 repeated cycles. • At 10 C, the electrodes deliver capacity of 383 mAh {sup g−1}, which is superior to the pristine graphite anode. - Abstract: Deciphering the structural and volume changes occurring during electrode reactions in lithium-ion batteries is perhaps a boon for high energy density batteries. Here, we report the synthesis of 3D network of dichalcogenide molybdenum disulfide (MoS{sub 2}) encapsulated over nitrogen rich graphitic carbon nitride nanosphere (g-C{sub 3}N{sub 4}) forming an interconnected and uniform g-C{sub 3}N{sub 4}/MoS{sub 2} scaffolds. The crystallinity, phase purity, morphological features and elemental composition were evaluated through XRD, FESEM, TEM, HRTEM, BET and XPS analyses. The electrochemical properties of N-rich g-C{sub 3}N{sub 4}/MoS{sub 2} scaffolds were investigated as potential anode materials for lithium-ion batteries. Electrochemical testing of the g-C{sub 3}N{sub 4}/MoS{sub 2} constructured electrode delivered reversible capacity of 857 mAh g{sup −1}at 0.1 C rate after fifty cycles and exhibited a high rate performance with reversible capacity of 383 mAh g{sup −1} at 10 C rate (higher than theoretical capacity of graphite, 372 mAh g{sup −1}). The superior

  3. Preparation and electrochemical properties of core-shell carbon coated Mn–Sn complex metal oxide as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing; Liu, Weiwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Xia, Bingbo; Sun, Hongdan; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China)

    2014-02-15

    In this study, we synthesized a carbon coated Mn–Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g{sup −1} after 200 cycles at a current density of 100 mA g{sup −1}. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  4. Preparation and electrochemical properties of core-shell carbon coated Mn–Sn complex metal oxide as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-01-01

    In this study, we synthesized a carbon coated Mn–Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g −1 after 200 cycles at a current density of 100 mA g −1 . The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  5. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries

    Science.gov (United States)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-02-01

    In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  6. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen

    2018-06-13

    Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.

  7. Improving lithium therapeutics by crystal engineering of novel ionic cocrystals.

    Science.gov (United States)

    Smith, Adam J; Kim, Seol-Hee; Duggirala, Naga K; Jin, Jingji; Wojtas, Lukasz; Ehrhart, Jared; Giunta, Brian; Tan, Jun; Zaworotko, Michael J; Shytle, R Douglas

    2013-12-02

    Current United States Food and Drug Administration (FDA)-approved lithium salts are plagued with a narrow therapeutic window. Recent attempts to find alternative drugs have identified new chemical entities, but lithium's polypharmacological mechanisms for treating neuropsychiatric disorders are highly debated and are not yet matched. Thus, re-engineering current lithium solid forms in order to optimize performance represents a low cost and low risk approach to the desired therapeutic outcome. In this contribution, we employed a crystal engineering strategy to synthesize the first ionic cocrystals (ICCs) of lithium salts with organic anions. We are unaware of any previous studies that have assessed the biological efficacy of any ICCs, and encouragingly we found that the new speciation did not negatively affect established bioactivities of lithium. We also observed that lithium ICCs exhibit modulated pharmacokinetics compared to lithium carbonate. Indeed, the studies detailed herein represent an important advancement in a crystal engineering approach to a new generation of lithium therapeutics.

  8. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  9. Synthesis of CNTs via chemical vapor deposition of carbon dioxide as a carbon source in the presence of NiMgO

    Energy Technology Data Exchange (ETDEWEB)

    Allaedini, Ghazaleh, E-mail: jiny_ghazaleh@yahoo.com [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Tasirin, Siti Masrinda [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Aminayi, Payam [Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI (United States)

    2015-10-25

    Carbon nanotubes were synthesized via the chemical vapor deposition (CVD) method, using Ni/MgO as a catalyst and CO{sub 2} as a nontoxic, abundant, and economical carbon source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), along with the results from Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, confirmed the successful formation of CNTs. Energy-dispersive X-ray spectroscopy (EDX) was performed to investigate the weight percentage of the present elements in the synthesized powder, and a significant yield of 27.38% was confirmed. The reaction mechanism was discussed, and the role of the carbon source, catalyst support, and presence of H{sub 2} in the reaction environment was elaborated. - Highlights: • CO{sub 2} was used as a nontoxic and economical carbon source for CNT production. • A novel Ni supported MgO has been synthesized and employed in the CVD process. • CNTs were produced with a significant yield of 27.38%.

  10. Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    rehman, Wasif ur; Xu, Youlong; Du, Xianfeng; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Jin, Yanling; Zhang, Baofeng; Li, Xifei

    2018-07-01

    Derived from avocado fruit, a three dimension (3D) carbon is prepared via a hydrothermal/pyrolysis process followed by embedding with MnO nanoparticles by a wet chemical method and coating with Al2O3 through an atomic layer deposition technique. The obtained material presents a hierarchical structure that MnO nanocrystals wrapped in 3D carbon and then encapsulated in a uniform Al2O3 layer with a thickness of about 5 nm. Benefiting from this hierarchical structure in which 3D carbon offers numerous electronic pathways to enhance the conductivity and Al2O3 nanolayer provide a shelter to keep away from dissolution of Mn4+ and volume changes during charge/discharge process. This material (marked as C/MnO@Al2O3) has exhibited high rate performance and excellent cyclability as an anode for lithium ion batteries. A high specific capacity of about 600 mA h g-1 is achieved at a current density of 1000 mA g-1 and the electrode can still deliver a high specific capacity of about 1165 mA h g-1 at 150 mA g-1 after 100 cycles. These results facilitate a green and high potential of anode materials towards promising devices for advance performance of lithium-ion batteries.

  11. Lithium tantalate single crystal for pyroelectricity-based laser energy-meter: growth, application and phase transition study

    International Nuclear Information System (INIS)

    Bhaumik, Indranil; Ganesamoorthy, S.; Bhatt, R.; Karnal, A.K.; Gupta, P.K.

    2009-01-01

    Single crystals of lithium tantalate have been grown. Dielectric-spectroscopy study reveals phase transition in congruent lithium tantalate (CLT) single crystal is diffusive and frequency dependent in contrast to that in near stoichiometric lithium tantalate where it is sharper. The ac conductivity measurements show that the conductivity is lower for 0.5Mg-SLT as compared to 1.0Mg-SLT. This is explained in terms of a Li-vacancy model. Calculation of activation energy from the lnσ vs. 1000/T plot reveals that hopping of Li + ions becomes difficult for 0.5 Mg-SLT. The pyroelectric response of CLT for pulsed Nd:YAG laser output has been tested. (author)

  12. Concentrations of lithium in Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhuang; Li, Yanheng; Zhao, Cunliang; Lin, Mingyue; Wang, Jinxi; Qin, Shenjun [Hebei University of Engineering, Handan (China). Key Laboratory of Resource Exploration Research of Hebei Province

    2010-04-15

    Lithium is an important energy metal. Its concentrations in coals have been studied by many geologists. Its average content is only 14 mg/kg in the coals of the world. Lithium has never been reported as a coal associated deposit before. In order to study the concentrations in Chinese coals, 159 coal and gangue samples were taken from six coal mines and were determined by ICP-MS and the minerals in the samples were identified by X-ray powder diffraction. The results indicate that the Li contents in the coal samples from the Antaibao Coal Mine have reached the industry grade of coal associated deposits. In Tongxing Coal Mine, Li contents in the coal floor rock samples have reached the industry grade of independent lithium deposits. Main minerals are polylithionite, triphylite, zinnwaldite, lithionite and cookeite, which were transported into the peats. Therefore, lithium enriched is most likely in the synsedimentary stage in both coal mines. Furthermore, a revised average Li content in Chinese coals was given.

  13. Sandwich-like graphene-mesoporous carbon as sulfur host for enhanced lithium-sulfur batteries

    Science.gov (United States)

    Tian, Ting; Li, Bin; Zhu, Mengqi; Liu, Jianhua; Li, Songmei

    2017-10-01

    Graphene-mesoporous carbon/sulfur composites (G-MPC/S) were constructed by melt-infiltration of sulfur into graphene-mesoporous carbon which was synthesized by soft template method. The SEM and BET results of the graphene-mesoporous carbon show that the as-prepared sandwich-like G-MPC composites with a unique microporous-mesoporous structure had a high specific surface area of 554.164 m2 · g-1 and an average pore size of about 13 nm. The XRD analysis presents the existence of orthorhombic sulfur in the G-MPC/S composite, which indicates the complete infiltration of sulfur into the pores of the G-MPC. When the graphene-mesoporous carbon/surfur composites (G-MPC/S) with 53.9 wt.% sulfur loading were used as the cathode for lithium-sulfur (Li-S) batteries, it exhibited an outstanding electrochemical performance including excellent initial discharge specific capacity of 1393 mAh · g-1 at 0.1 °C, high cycle stability (731 mAh · g-1 at 200 cycles) and good rate performance (1038 mAh · g-1, 770 mAh · g-1, 518 mAh · g-1 and 377 mAh · g-1 at 0.1 °C, 0.2 °C, 0.5 °C and 1 °C, respectively), which suggested the important role of the G-MPC composite in providing more electrons and ions channels, in addition, the shuttle effect caused by the dissolved polysulfide was also suppressed.

  14. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-01-01

    Highlights: • Three-dimensional porous LiFePO 4 /N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO 4 electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO 4 /N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO 4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO 4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  15. A lithium-oxygen battery with a long cycle life in an air-like atmosphere.

    Science.gov (United States)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin

    2018-03-21

    Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  16. Superconducting and normal state properties of carbon doped and neutron irradiated MgB2

    International Nuclear Information System (INIS)

    Wilke, R.H.T.; Samuely, P.; Szabo, P.; Holanova, Z.; Bud'ko, S.L.; Canfield, P.C.; Finnemore, D.K.

    2007-01-01

    Current research in MgB 2 focuses on the effects various types of perturbations have on the superconducting properties of this novel two-gap superconductor. In this article we summarize the effects of carbon doping and neutron irradiation in bulk MgB 2 . Low levels of carbon doping and light neutron irradiation result in significant enhancements in H c2 . At high fluences, where superconductivity is nearly fully suppressed, superconductivity can be restored through post exposure annealing. However, this results in a change in the interdependencies of the normal state and superconducting properties (ρ 0 , T c , H c2 ), with little or no enhancement in H c2

  17. Noise Analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2008-01-01

    Full Text Available Noise characteristics of second-harmonic generation (SHG in periodically poled lithium niobate (PPLN using the quasiphase matching (QPM technique are analyzed experimentally. In the experiment, a0.78 μm second-harmonic (SH wave was generated when a 1.56 μm fundamental wave passed through a PPLN crystal (bulk or waveguide. The time-domain and frequency-domain noise characteristics of the fundamental and SH waves were analyzed. By using the pump-probe method, the noise characteristics of SHG were further analyzed when a visible light (532 nm and an infrared light (1090 nm copropagated with the fundamental light, respectively. The noise characterizations were also investigated at different temperatures. It is found that for the bulk and waveguide PPLN crystals, the SH wave has a higher relative noise level than the corresponding fundamental wave. For the same fundamental wave, the SH wave has lower noise in a bulk crystal than in a waveguide, and in MgO-doped PPLN than in undoped PPLN. The 532 nm irradiation can lead to higher noise in PPLN than the 1090 nm irradiation. In addition, increasing temperature of device can alleviate the problem of noise in conjunction with the photorefractive effect incurred by the irradiation light. This is more significant in undoped PPLN than in MgO-doped one.

  18. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Atikah Kadri

    2015-06-01

    Full Text Available Mg (MgH2-based composites, using carbon nanotubes (CNTs and pre-synthesized vanadium-based complex (VCat as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time are better to enhance the hydrogen sorption performance.

  19. Interfacial reactions in lithium batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Amine, Khalil; Amine, Rachid; Ma, Zi-Feng

    2017-01-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented. (topical review)

  20. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.