WorldWideScience

Sample records for mexico geothermal fluids

  1. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Partida, E.; Carrillo-Chavez, A.; Levresse, G.; Tello-Hinojosa, E.; Venegas-Salgado, S.; Ramirez-Silva, G.; Pal-Verma, M.; Tritlla, J.; Camprubi, A.

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T mi ) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T h ) = 325 ± 5 deg C. The boiling zone shows T h = ±300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO 2 . Positive clathrate melting temperatures (fusion) with T h = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO 2 (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ 18 O-δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ 18

  2. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Partida, E. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico)]. E-mail: egp@geociencias.unam.mx; Carrillo-Chavez, A. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Levresse, G. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Tello-Hinojosa, E. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Venegas-Salgado, S. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Ramirez-Silva, G. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Pal-Verma, M. [Instituto de Investigaciones Electricas, A.P. 1-475, C.P. 62001 Cuernavaca, Morelos (Mexico); Tritlla, J. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Camprubi, A. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico)

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T{sub mi}) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T{sub h}) = 325 {+-} 5 deg C. The boiling zone shows T{sub h} = {+-}300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO{sub 2}. Positive clathrate melting temperatures (fusion) with T{sub h} = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO{sub 2} (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions ({delta}{sup 18}O-{delta}D) of the geothermal brine indicate mixing between meteoric water and a

  3. Hydro-geochemical and isotopic fluid evolution of the Los Azufres caldera geothermal field, Central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Partida, E [Centro de Geociencias, Campus Juriquilla-UNAM, Queretaro (Mexico); Viggiano-Guerra, J C [Subgerencia de Estudios C.F.E., Morelia. Michocan (Mexico); Perez, R J [Universidad de Calgary (Canada)], E-mail: egp@geociencias.unam.mx, E-mail: cesar.viggiano@cfe.gob.mx, E-mail: rene@geochemicalengineering.com

    2008-10-01

    Hydrothermal alteration at Los Azufres geothermal held is mostly propylitic showing progressive dehydration with depth, and temperature increase. The evolution of this system is inferred to be related to deep liquid water, boiling when ascending through fractures connected to the surface.

  4. Hydro-geochemical and isotopic fluid evolution of the Los Azufres caldera geothermal field, Central Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Partida, E; Viggiano-Guerra, J C; Perez, R J

    2008-01-01

    Hydrothermal alteration at Los Azufres geothermal held is mostly propylitic showing progressive dehydration with depth, and temperature increase. The evolution of this system is inferred to be related to deep liquid water, boiling when ascending through fractures connected to the surface.

  5. New Mexico Geothermal Data Base

    International Nuclear Information System (INIS)

    Witcher, J.C.; Whittier, J.; Morgan, R.

    1990-01-01

    This paper reports on the New Mexico Geothermal Data Base (NMGDB) which is a comprehensive public-domain data base of low-temperature geothermal resource information for New Mexico that is designed to assist researchers and developers. A broad range of geoscience, engineering, climatic, economic, and land status information are complied in the dBASE III PLUS data base management system for use on an IBM or IBM-compatible personal computer. A user friendly menu format with on-screen prompts allows easy and convenient use

  6. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  7. Origin and evolution of geothermal fluids from Las Tres Vírgenes and Cerro Prieto fields, Mexico – Co-genetic volcanic activity and paleoclimatic constraints

    International Nuclear Information System (INIS)

    Birkle, Peter; Marín, Enrique Portugal; Pinti, Daniele L.; Castro, M. Clara

    2016-01-01

    Major and trace elements, noble gases, and stable (δD, δ 18 O) and cosmogenic ( 3 H, 14 C) isotopes were measured from geothermal fluids in two adjacent geothermal areas in NW-Mexico, Las Tres Vírgenes (LTV) and Cerro Prieto (CP). The goal is to trace the origin of reservoir fluids and to place paleoclimate and structural-volcanic constraints in the region. Measured 3 He/ 4 He (R) ratios normalized to the atmospheric value (R a  = 1.386 × 10 −6 ) vary between 2.73 and 4.77 and are compatible with mixing between a mantle component varying between 42 and 77% of mantle helium and a crustal, radiogenic He component with contributions varying between 23% and 58%. Apparent U–Th/ 4 He ages for CP fluids (0.7–7 Ma) suggest the presence of a sustained 4 He flux from a granitic basement or from mixing with connate brines, deposited during the Colorado River delta formation (1.5–3 Ma). Radiogenic in situ 4 He production age modeling at LTV, combined with the presence of radiogenic carbon (1.89 ± 0.11 pmC – 35.61 ± 0.28 pmC) and the absence of tritium strongly suggest the Quaternary infiltration of meteoric water into the LTV geothermal reservoir, ranging between 4 and 31 ka BP. The present geochemical heterogeneity of LTV fluids can be reconstructed by mixing Late Pleistocene – Early Holocene meteoric water (58–75%) with a fossil seawater component (25–42%), as evidenced by Br/Cl and stable isotope trends. CP geothermal water is composed of infiltrated Colorado River water with a minor impact by halite dissolution, whereas a vapor-dominated sample is composed of Colorado River water and vapor from deeper levels. δD values for the LTV meteoric end-member, which are 20‰–44‰ depleted with respect to present-day precipitation, as well as calculated annual paleotemperatures 6.9–13.6 °C lower than present average temperatures in Baja California point to the presence of humid and cooler climatic conditions in the Baja California peninsula

  8. Update of Geothermics in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Negrin, Luis C.A.; Quijano Leon, Jose Luis [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2004-12-01

    Four geothermal fields are currently operating in Mexico (Cerro Prieto, Los Azufres, Los Humeros and Las Tres Virgenes), with a total installed geothermal-electric capacity of 953 megawatts (MW). This means the country is located in third place, worldwide, just behind the USA and Philippines. Thirty-six power plants of several types (condensing, back pressure and binary cycle), between 1.5 and 110 MW, operate in the fields, fed by 197 wells with a combined production of 7,700 metric tons of steam per hour (t/h). These production wells have depths between 600 and 4,400 meters. Steam comes with 8,750 t/h of brine that is injected through 19 injection wells or treated in a solar evaporation pond of 14 km2 in Cerro Prieto. During 2003, steam produced in those fields equaled 67.5 million metric tons, and the power plants generated 6,282 gigawatt-hours (GWh), which represented 3.1% of the electric energy produced in Mexico. All the power plants and the geothermal fields are operated bye the public utility, the Comision Federal de Electricidad (Comision Federal de Electricidad (CFE)). [Spanish] Actualmente se operan en Mexico cuatro campos geotermicos (Cerro Prieto, Los Azufres, Los Humeros y Las Tres Virgenes), con una capacidad geotermoelectrica total de 953 megawatts (MW). Esto coloca al pais en el tercer lugar mundial, detras de Estados Unidos y Filipinas. En esos campos operan treinta y seis unidades de tipos diversos (a condensacion, a contrapresion y de ciclo binario), entre 1.5 y 110 MW, alimentadas por 197 pozos con una produccion combinada de 7,700 toneladas de vapor por hora (t/h). Estos pozos productores tienen profundidades entre 600 y 4,400 metros. El vapor sale acompanado por 8,750 t/h de salmuera, que se inyecta en 19 pozos inyectores o se trata en una laguna de evaporacion solar de 14 km2 en Cerro Prieto. Durante 2003 el vapor producido en los campos sumo 67.5 millones de toneladas y las unidades generaron 6,282 gigawatts-hora (GWh), lo que represento el

  9. Using noble gases and 87Sr/86Sr to constrain heat sources and fluid evolution at the Los Azufres Geothermal Field, Mexico

    Science.gov (United States)

    Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.

    2017-12-01

    Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.

  10. Thermodynamics of geothermal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  11. Status of geothermal resources in Mexico

    International Nuclear Information System (INIS)

    Le-Bert, G.

    1990-01-01

    Except for some isolated instances with tourist or therapeutic objectives and some attempts in the Cerro Prieto geothermal field, there are no projects for direct heat utilization of geothermal resources in Mexico. Therefore, all places that are studied are studied with geothermal-electric objectives. It is convenient to keep in mind that in Mexico, by law, the Comision Federal de Electricidad (CFE) is the public utility in charge of electrical energy service. This institution is directly responsible for the exploration, development and commercial use of geothermal energy for electrical generation. Therefore, this paper includes the present and planned exploration and utilization of geothermal resources only for electricity generation for the period 1985 to the present. Likewise, starting 5 years ago, the CFE efforts have been directed toward the development of high enthalpy fields

  12. Fluid circulation and structural system of Cerritos Colorados geothermal field in La Primavera volcanic caldera (Mexico) inferred from geophysical surveys

    Science.gov (United States)

    Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.

    2017-12-01

    Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to

  13. Thermodynamic state updated of the volcanic caldera and geothermal reservoir of Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Reyes, Jose; Gonzalez Partida, Eduardo; Jorge, A [Centro de Geociencias, Universidad National Autonoma de Mexico Campo de Juriquilla, Qro., Mexico, apartado postal 76230 (Mexico); Perez, Renee J [Department of Chemical and Petroleum Engineering, University of Calgary, 500 University Drive, Calgary Alberta, T2N 1N4 (Canada); Tinoco, Michel

    2008-10-01

    Based on information of enthalpies of the fluids of wells from the geothermal reservoir of Los Humeros, Puebla, Mexico, we determined the thermodynamic conditions of the reservoir comparing the values of enthalpies of the fluids of discharge of the wells with the values published in the literature for different thermodynamic state of fluids.

  14. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  15. Lithium Isotopes in Geothermal Fluids from Iceland

    Science.gov (United States)

    Millot, R.; Asmundsson, R.; Sanjuan, B.

    2008-12-01

    One of the main objectives of the HITI project (HIgh Temperature Instruments for supercritical geothermal reservoir characterization and exploitation), partially funded by the European Union, is to develop methods to characterize the reservoir and fluids of deep and very high temperature geothermal systems. The chemical composition of geothermal waters in terms of major and trace elements is related to the temperature, the degree of water/rock interaction and the mineralogical assemblage of the bedrock. Traditional geothermometers, such as silica, Na-K, Na-K-Ca or K-Mg applied to geothermal waters, make it possible to estimate the temperature at depth of the reservoir from which the waters are derived. However, the values estimated for deep temperature are not always concordant. The chemical geothermometer Na/Li which presents the singularity of associating two chemical elements, one a major element (sodium) and the other a trace element (Li), can be also used and gives an additional temperature estimation. The primary objective of this work was to better understand the behavior of this last geothermometer using the isotopic systematics of Li in order to apply it at very high temperature Icelandic geothermal systems. One particularly important aspect was to establish the nature, extent and mechanism of Li isotope fractionation between 100 and 350°C during water/rock interaction. For that purpose, we measured Li isotopes of about 25 geothermal waters from Iceland by using a Neptune MC-ICP-MS that enabled the analysis of Li isotopic ratios in geothermal waters with a level of precision of ±0.5‰ (2 standard deviations) on quantities of 10-50 ng of Li. Geothermal waters from Reykjanes, Svartsengi, Nesjavellir, Hveragerdi, Namafjall and Krafla geothermal systems were studied and particular emphasis was placed on the characterization of the behavior of Li isotopes in this volcanic context at high temperature with or without the presence of seawater during water

  16. Geothermal resources of the northern gulf of Mexico basin

    Science.gov (United States)

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  17. New Mexico statewide geothermal energy program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Icerman, L.; Parker, S.K. (ed.)

    1988-04-01

    This report summarizes the results of geothermal energy resource assessment work conducted by the New Mexico Statewide Geothermal Energy Program during the period September 7, 1984, through February 29, 1988, under the sponsorship of the US Dept. of Energy and the State of New Mexico Research and Development Institute. The research program was administered by the New Mexico Research and Development Institute and was conducted by professional staff members at New Mexico State University and Lightning Dock Geothermal, Inc. The report is divided into four chapters, which correspond to the principal tasks delineated in the above grant. This work extends the knowledge of the geothermal energy resource base in southern New Mexico with the potential for commercial applications.

  18. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  19. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off

  20. Clay-based geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  1. New Mexico geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, P.; Scudella, G.; Fedor, D.

    1979-06-01

    The market potential for geothermal energy development in New Mexico is estimated. Barriers to market penetration and geothermal development initiatives were identified. Statutes and regulations affecting geothermal development are appended.

  2. Soil degassing at the Los Humeros geothermal field (Mexico)

    Science.gov (United States)

    Peiffer, Loïc; Carrasco-Núñez, Gerardo; Mazot, Agnès; Villanueva-Estrada, Ruth Esther; Inguaggiato, Claudio; Bernard Romero, Rubén; Rocha Miller, Roberto; Hernández Rojas, Javier

    2018-05-01

    The Los Humeros geothermal field is the third most important producer of geothermal electricity (70 MW) in Mexico. Geothermal fluids are hosted in fractured andesitic lavas and mostly consist of high enthalpy steam with limited water content (vapor fraction > 0.9). Despite the high reservoir temperature ( 300-400 °C), thermal manifestations at the surface are scarce and locally appear as steaming grounds, weak steam vents and advanced argillic alteration. Geothermal fluid upflow from the reservoir towards the surface is limited by welded ignimbrite deposits that act as a low-permeability barrier. In this study, we present the first measurements of CO2, CH4 and H2S degassing rates from the soil performed at Los Humeros. Flux measurements were complemented with δ13C composition of degassing CO2 and soil temperatures to discuss gas origin and thermal anomalies. We measured high soil degassing rates (up to 7530 g m-2 d-1 CO2, 33 g m-2 d-1 CH4 and 22 g m-2 d-1 H2S) in three localized areas (Humeros North - HN, Humeros South - HS and Xalapazco - XA) as well as high soil temperatures reaching the boiling temperature at the local altitude (90.6 °C). The particular location of these three areas suggests that the steam-dominated reservoir degases to the surface through permeable faults crossing the ignimbritic deposits. The remaining surveyed areas are characterized by weak CO2 fluxes (≤44 g m-2 d-1), non-detectable CH4 and H2S fluxes, and lower soil temperatures (5-21 °C). The compositions in δ13CCO2 from HN-HS-XA areas (δ13CCO2 = -7.94 to -2.73‰) reflect a magmatic source with some possible contribution from the sedimentary basement, as well as fractionation induced by boiling and CO2 dissolution in shallow water bodies. We also discuss the processes causing the spread in CO2/CH4 flux ratios. Finally, we estimate the heat output from the three high degassing areas to a value of 16.4 MWt.

  3. Geothermal Exploration of the Winston Graben, Central New Mexico, USA

    Science.gov (United States)

    Sophy, M. J.; Kelley, S. A.

    2011-12-01

    We are assessing the geothermal potential of the Winston Graben of central New Mexico using borehole temperature logs and geophysical data. The Winston Graben is a late Cenozoic rift basin, part of the larger Rio Grande rift, which is 5 to 10 km wide and 56 km long with northern and southern termini occurring at accommodation zones that coincide with late Cenozoic volcanic lineaments. The graben is interpreted to be symmetric based on geologic mapping, with 2 km of stratigraphic offset on both the western and eastern margins. The graben is bordered by the Black Range to the west and is separated from the Rio Grande valley by the Sierra Cuchillo, a horst block made of Paleozoic rocks intruded by a laccolith. Geothermal and geophysical data, including water table measurements, well temperature logs, thermal conductivity samples, bottom hole temperatures, water chemistry, and gravity data have been extracted from the New Mexico Geothermal Database, part of the National Geothermal Database, and the Geonet Gravity and Magnetic Dataset Repository. Combined with existing geologic maps of the Winston Graben and surroundings, these data help to identify spatial relationships between geologic structures and groundwater parameters and distribution. Geothermal gradients from industry temperature-depth well profiles range from 20°C/km to 60°C/km with a spatial distribution of higher gradients located on the eastern side of the Sierra Cuchillo horst, which is where a mapped warm spring is located. Lower thermal gradients were observed to the west in the groundwater recharge area of the basin. Analysis of Bouguer gravity data indicate a gravity low coinciding with the center of the Winston Graben, which is attributed to be the deepest part of the basin, symetrically surrounded by gravity highs. Gravity highs coincide with the middle Cenozoic Morenci and Chise volcanic lineaments along the northern and southern ends of the graben. The mapped warm spring occurs at the

  4. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  5. Geochemical and isotopic behavior of fluids from wells in Los Humeros geothermal field, Puebla, Mexico; Comportamiento geoquimico e isotopico del fluido de los pozos del campo geotermico Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tovar Aguado, Rigoberto; Lopez Romero, Oscar [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico)

    1999-12-01

    In general the wells in Los Humeros geothermal fields produce sodium bicarbonate water with a low salinity because the fluids are produced from the shallow part of the reservoir. The fluids in wells H-33 and H-6 are sodium chloride: the first influenced by fluids from deep levels in the reservoir and the second by fluids coming only from the deeps part of the reservoir. Fluid mixture for other wells depends on operating conditions. To date, it has been difficult with the geothermetric temperatures to establish the underground flow directions and whether or not an infiltration of shallow low-temperature fluids occurs. Well H-16 has the lowest-temperature fluid in the liquid phase, which suggests infiltration of shallow local fluids-a result corroborated by an isotopic study. Using the methodology of Giggenbach and Goguel, we found that the gases are in equilibrium with the liquid phase at temperatures between 275 and 325 Celsius degrees. The maximum temperature is measured in wells H-12 and H-9, where good agreement exists between this temperature and those calculated with a geothermometer of CO{sub 2}/H{sub 2} . Isotopic results show, in general, that the wells with the highest levels of oxygen-18 are those with the highest geothermetric temperatures (CO{sub 2}/H{sub 2})- both in the north (H-35 and H-9) and in the south (H-6 and H-12)-results that agree with the temperatures measured in the field. The initial thermodynamic conditions of the wells show that they produce fluids from the liquid region. This fact, together with the low salinity, permit the application of the D' Amore methodology, with which the estimations of vapor fractions in the reservoir are relatively low. [Spanish] En general, los pozos del campo geotermico de Los Humeros producen agua del tipo bicarbonato sodico con baja salinidad. Esto se debe a que extraen fluidos de la parte somera del yacimiento. Los pozos H-33 y H-6 son clorurados sodicos; el primero por cierta influencia de la zona

  6. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  7. Systems and methods for multi-fluid geothermal energy systems

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  8. Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico

    Science.gov (United States)

    Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.

    2000-01-01

    The Jemez Mountains in north-central New Mexico are volcanic in origin and have a large central caldera known as Valles Caldera. The mountains contain the Valles geothermal system, which was investigated during 1970-82 as a source of geothermal energy. This report describes the geothermal hydrology of the Jemez Mountains and presents results of an earlier 1972-75 U.S. Geological Survey study of the area in light of more recent information. Several distinct types of thermal and nonthermal ground water are recognized in the Jemez Mountains. Two types of near-surface thermal water are in the caldera: thermal meteoric water and acid sulfate water. The principal reservoir of geothermal fluids is at depth under the central and western parts of the caldera. Nonthermal ground water in Valles Caldera occurs in diverse perched aquifers and deeper valley-fill aquifers. The geothermal reservoir is recharged by meteorically derived water that moves downward from the aquifers in the caldera fill to depths of 6,500 feet or more and at temperatures reaching about 330 degrees Celsius. The heated geothermal water rises convectively to depths of 2,000 feet or less and mixes with other ground water as it flows away from the geothermal reservoir. A vapor zone containing steam, carbon dioxide, and other gases exists above parts of the liquid-dominated geothermal zone. Two subsystems are generally recognized within the larger geothermal system: the Redondo Creek subsystem and the Sulphur Creek subsystem. The permeability in the Redondo Creek subsystem is controlled by stratigraphy and fault-related structures. Most of the permeability is in the high-angle, normal faults and associated fractures that form the Redondo Creek Graben. Faults and related fractures control the flow of thermal fluids in the subsystem, which is bounded by high-angle faults. The Redondo Creek subsystem has been more extensively studied than other parts of the system. The Sulphur Springs subsystem is not as well

  9. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    Science.gov (United States)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  10. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Ahmad [United Technologies Research Center, East Hartford, CT (United States)

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  11. Tracing fluid flow in geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.E.; Adams, M.C. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.

  12. Innovative exploration technologies in the Jemez Geothermal Project, New Mexico, USA; Innovative Explorationstechniken im Jemez Geothermal Projekt, New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Michael [TBAPower Inc., Salt Lake City, UT (United States); Tenzer, Helmut; Sperber, Axel; Bussmann, Werner [uutGP GmbH, Geeste (Germany)

    2012-10-16

    First geothermal explorations were carried out in the year 1989 in the sovereign Indian Reservation situated nearly 70 km northwest of Albuquerque. (New Mexico, United States of America). In 1991, an exploration drilling at a depth of 80 meter supplied artesian 52 Celsius hot water with xx L/s. Different feasibility studies on the geothermal utilization and on different utilization concepts were established. The economic situation of the region has to be improved by means of a coupled geothermal utilization. The region was explored by means of magnetotellurics (up to depth of 8 kilometre) and reflection seismics (up to a depth of 2.2 kilometre). A graben structure between the Indian Spring fault in the west and the Vallecitos fault in the east are indicative of a geothermal convection zone. Subsequently, an innovative seismic data analysis by means of Elastic Wave Reverse-Time Migration and Wavefield-Separation Imaging Condition was performed. The previous model could be improved considerably. A preliminary drilling program up to a depth of 2,000 meter with Casing design and planning of the borepath occurred. Under socio-economic aspects, up to nine members of the tribe enjoyed an education or further training to engineers under the control of TBA Power Inc. (Salt Laky City, Utah, United State of America).

  13. Radon studies for extending Los Azufres geothermal energy field in Mexico

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Camacho, M.E.; Chavez, A.; Perez, H.; Gomez, J.

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m -3 were considered anomalous and indicative of geothermal anomalies

  14. Radon studies for extending Los Azufres geothermal energy field in Mexico

    CERN Document Server

    Tavera, L; Camacho, M E; Chavez, A; Pérez, H; Gómez, J

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m sup - sup 3 were considered anomalous and indicative of geothermal anomalies.

  15. Mexico's Geothermal Market Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Sarah [Booth Clean Energy LLC, Denver, CO (United States); Graves, Andrew [Dept. of Energy (DOE), Washington DC (United States)

    2017-03-29

    This report is intended to help U.S. companies in the geothermal sector understand potential business opportunities created by recent changes in the Mexican energy market and regulatory environment. can also provide a variety of technology products and services for export into the Mexican market. This report will help U.S. companies identify the many public and private sector stakeholders in the United States and Mexico, which can help U.S. companies navigate the new regulatory and permitting environment, build new partnerships, and identify vehicles for financial assistance and risk mitigation.

  16. Geothermal potential in Mexico; Potencial geotermico de la republica mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Ordaz Mendez, Christian Arturo; Flores Armenta, Magaly; Ramirez Silva, German [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: christian.ordaz@cfe.gob.mx

    2011-01-15

    Globally, Mexico is the fourth largest generator of geothermal electricity with an installed capacity of 958 MWe. The Gerencia de Proyectos Geotermoelectricos (GPG, Geothermal-electric division of the Federal Commision for Electricity -CFE) is responsible for using geothermal resources. The GPG calculated the country's geothermal potential as part of CFE's strategy to increase power generation through non-conventional sources. The calculation departed from the GPG's national inventory of thermal manifestations, which is composed of 1380 manifestations scattered throughout the country. At each, surface temperatures were measured and subsurface temperatures estimated by geo-thermometers. The calculation of the geothermal potential was based on the classifying these manifestations by geo-thermometric temperature ranges, providing for high, medium and low enthalpy resources. The volumetric method was used to obtain the national geothermal potential. The results indicate that the Potential Reserves of high-enthalpy resources amounts to 5691 MWe; of moderate-enthalpy resources, 881 MWe; and of low-enthalpy resources, 849 MWe -a total of 7422 MWe. Moreover, the Probable Reserves for high-enthalpy resources amounts to 1643 MWe; of moderate-enthalpy resources, 220 MWe; and of low-enthalpy resources, 212 MWe -a total of 2077 MWe. Finally the Proved Reserves were considered, defined as the additional capacity able to be installed in each known geothermal field, for a total of 186 MWe. All the information was processed and integrated using the Geographic Information System (GIS) ArcGis 9.2 (copyright), resulting in the CFE's intranet publication of the Geothermal Potential Map of Mexico. [Spanish] A nivel mundial, Mexico ocupa el cuarto lugar como generador de electricidad por medio de la energia geotermica con una capacidad instalada de 958 MWe. La Gerencia de Proyectos Geotermoelectricos (GPG) es la responsable del aprovechamiento de estos recursos y como

  17. Drilling fluids and lost circulation in hot-dry-rock geothermal wells at Fenton Hill

    Energy Technology Data Exchange (ETDEWEB)

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.

    1981-01-01

    Geothermal hot dry rock drilling at Fenton Hill in northern New Mexico encountered problems of catastrophic lost circulation in cavernous areas of limestones in the Sandia Formation, severe corrosion due to temperatures of up to 320/sup 0/C, and torque problems caused by 35/sup 0/ hole angle and the abrasiveness of Precambrian crystalline rock. The use of polymeric flocculated bentonite fluid, clear water, fibrous material, dry drilling, oxygen scavengers, a biodegradable lubricant mixture of modified triglicerides and alcohol, and maintenance of a high pH, were some of the approaches taken toward solving these problems.

  18. Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

    1981-01-01

    An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

  19. New Mexico low-temperature geothermal resources and economic development programs

    International Nuclear Information System (INIS)

    Whittier, J.; Schoenmackers, R.

    1990-01-01

    This paper reports on New Mexico's low-temperature geothermal resources which have been utilized to promote economic development initiatives within the state. Public funds have been leveraged to foster exploration activities which have led to the establishment of several direct-use projects at various sites within New Mexico. State policies have focused on attracting one business sector, the commercial greenhouse industry, to expand and/or relocate in New Mexico. Geothermal-related promotional activities have begun to show success in achieving economic growth. New Mexico now has almost half of the geothermally-heated greenhouse space in the nation. It is anticipated that the greenhouse sector will continue to grow within the state. Future economic development activities, also relying upon the geothermal resource base, will include vegetable dehydration and aquaculture with a focus on the microalgae sector

  20. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  1. Investigation and assessment of natural radionuclides in groundwater and geothermal fluid of Tianjin city

    International Nuclear Information System (INIS)

    Wang Xiao; Duan Xigui; Gao Liang; Yang Yuxin

    2012-01-01

    Investigation on the specific activities of natural radionuclides in the groundwater and geothermal fluids of Tianjin city were conducted. Based on the investigation, internal dose level posed by drinking the water and fluid to local public was evaluated. Results show the specific activities of natural radionuclides in the groundwater and geothermal fluid of Tianjin city is under control, no abnormal radioactivity discovered. (authors)

  2. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    Science.gov (United States)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  3. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Bernard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-21

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magnetic iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.

  4. Modeling and optimization of geothermal power plants using the binary fluid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Walter, R.A.

    1976-09-01

    A computer simulation of a binary fluid cycle power plant for use with geothermal energy sources, and the subsequent optimization of this power plant type over a range of geothermal source conditions are described. The optimization technique employed for this analysis was based upon the principle of maximum use of geothermal energy.

  5. Exploration and comparison of geothermal areas in Indonesia by fluid-rock geochemistry

    NARCIS (Netherlands)

    Deon, F.; Barnhoorn, A.; Lievens, C.; Saptadij, N.; Sutopo, S.; van der Meer, F; den Hartog, T.; Brehmer, M; Bruhn, D.F.; de Jong, M; Ryannugroho, R.; Hutami, R.; Sule, R.; Hecker, C.; Bonté, D

    2016-01-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research.
    This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an

  6. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    Science.gov (United States)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a

  7. Productive fluid intervals in wells H-35 and H-39, Los Humeros geothermal field, Puebla (Mexico); Intervalos productores de fluidos en los pozos H-35 y H-39 del campo geotermico Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Medina Martinez, Moises [Comision Federal de Electridad, Perote, Veracruz (Mexico)

    2000-12-01

    This paper presents the results of log interpretations using the percentage method to define the productive fluid intervals in wells H-35 and H-39. These were identified with pressure, temperature and flow rate (PTS) electronic logs, used for the first time in this field. The test were carried out with the well integrated to the electrical generation units. Well H-35 fed steam to Units 1, 4, 5 and 7 through a plate with a restriction orifice diameter of 50.8 mm (2 inches), a well head pressure of 45 bars and a mass flow rate of 40 t/h. Well H-39 fed steam to Unit 3 through plate with a restriction orifice diameter of 50.8 mm (2 inches), a well head pressure of 27 bars and a mass flow rate of 30 t/h. [Spanish] Se presenta la intervencion realizada por el metodo de porcentajes para definir los intervalos productores de fluidos en los pozos H-35 y H-39. El estudio se hizo a partir de datos obtenidos con una sonda electronica de presion, temperatura y velocidad de flujo (PTS), utilizada por primera vez en este campo. En ambos casos se realizaron las pruebas con el pozo integrado a las unidades de generacion electrica, el primero suministra vapor para las Unidades 1, 4, 5 y 7 a traves de una placa de orificio de restriccion de 50.8 mm (2 pulgadas) de diametro, con presion de cabezal de 45 bar manometricos y un gasto de mezcla de 40 t/h. El segundo alimenta a la Unidad 3, fluye por orificio de 50.8 mm (2 pulgadas) de diametro y produce 30 t/h de mezcla con una presion en la cabeza de 27 bar.

  8. Geothermal heat exchanger with coaxial flow of fluids

    Directory of Open Access Journals (Sweden)

    Pejić Dragan M.

    2005-01-01

    Full Text Available The paper deals with a heat exchanger with coaxial flow. Two coaxial pipes of the secondary part were placed directly into a geothermal boring in such a way that geothermal water flows around the outer pipe. Starting from the energy balance of the exchanger formed in this way and the assumption of a study-state operating regime, a mathematical model was formulated. On the basis of the model, the secondary circle output temperature was determined as a function of the exchanger geometry, the coefficient of heat passing through the heat exchange areas, the average mass isobaric specific heats of fluid and mass flows. The input temperature of the exchanger secondary circle and the temperature of the geothermal water at the exit of the boring were taken as known values. Also, an analysis of changes in certain factors influencing the secondary water temperature was carried out. The parameters (flow temperature of the deep boring B-4 in Sijarinska Spa, Serbia were used. The theoretical results obtained indicate the great potential of this boring and the possible application of such an exchanger.

  9. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  10. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  11. Sampling and analysis methods for geothermal fluids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.C.

    1978-07-01

    The sampling procedures for geothermal fluids and gases include: sampling hot springs, fumaroles, etc.; sampling condensed brine and entrained gases; sampling steam-lines; low pressure separator systems; high pressure separator systems; two-phase sampling; downhole samplers; and miscellaneous methods. The recommended analytical methods compiled here cover physical properties, dissolved solids, and dissolved and entrained gases. The sequences of methods listed for each parameter are: wet chemical, gravimetric, colorimetric, electrode, atomic absorption, flame emission, x-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, ion exchange chromatography, spark source mass spectrometry, neutron activation analysis, and emission spectrometry. Material on correction of brine component concentrations for steam loss during flashing is presented. (MHR)

  12. Extraction of gold and silver from geothermal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.L.; Roberts, P.J. (Geothermal Research Center, Wairakei (New Zealand); Spectrum Resources Ltd., Auckland (New Zealand))

    1988-11-10

    This paper describes the results of five experiments of the extraction of gold and silver from hydrothermal fluids with a experimental vessel settled up at KA35 well at the Kawerau geothermal field in New Zealand. The experimental vessel was designed to absorb the fluids from orifice plate controlled to be low pressure and had a chamber having within many collecting plates. The first experiment is a fundamental one in which a mild steel was used as metal collector plate. The rates of deposition of gold and silver on the plate were estimated. The second experiment showed that the rate on deposition of gold on the mild steel plate was controlled by the flux rate of hydrothermal fluid. The third experiment showed that a mild steel seemed to be better for the collection plate of gold and silver than copper and aluminium. The fourth experiment clarified that the activated charcoal was not suitable for the collector plate for gold and silver. The fifth experiment showed that a mild steel was better for metal collector than activated charcoal. 1 ref., 4 figs.

  13. Research and technological development on heat pumps in Mexico operating with geothermal energy; Investigacion y desarrollo tecnologico sobre bombas de calor en Mexico operando con energia geotermica

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, Alfonso; Barragan Reyes, Rosa Maria; Arellano Gomez, Victor Manuel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    The Instituto de Investigaciones Electricas (IIE) and the Comision Federal de Electricidad (CFE) carried out in the past an extensive work of research and development (R&D) on heat pumps (HP). The systems tried on include heat pumps by mechanical compression, thermal absorption and thermal transformers. This paper briefly describes the main aspects of R&D on heat pumps and presents a more detailed description of three of the main studies: a) a Heat Pump (HP) by mechanical compression water-water type, designed for brine purification, operating with low pressure geothermal steam at the geothermal field Los Azufres, Michoacan, Mexico; b) a HP by absorption for cooling and refrigeration, operating with ammoniac/water and low enthalpy geothermal energy, which was tested in the geothermal fields of Los Azufres, Michoacan and Cerro Prieto, Baja California, and c) a thermal transformer by absorption, named Heat Pump by Absorption Type 2, which was tested to evaluate the behavior of diverse ternary solutions as working fluids. To date, there are plans to install and test a geothermal heat pump (connected to the subsoil), in Cerro Prieto, Mexicali, Baja California, Mexico. [Spanish] El Instituto de Investigaciones Electricas (IIE) y la Comision Federal de Electricidad (CFE) realizaron un trabajo extenso de investigacion y desarrollo (I&D) sobre bombas de calor (BC) en el pasado. Los sistemas que se probaron incluyen bombas de calor por compresion mecanica, absorcion y transformadores termicos. Este trabajo describe brevemente los principales aspectos de I&D sobre bombas de calor y se da una descripcion mas detallada de tres de los principales estudios: a) una Bomba de Calor (BC) por compresion mecanica tipo agua-agua, disenada para purificacion de salmueras, operando con vapor geotermico de baja presion en el campo geotermico de Los Azufres, Michoacan; b) una BC por absorcion para enfriamiento y refrigeracion, operando con amoniaco/agua y energia geotermica de baja entalpia

  14. Geothermal development of the Salton Trough, California and Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Howard, J.H.; Lande, D.P. (eds.)

    1975-04-01

    A geological description is given of the Salton Trought followed by a chronological history of attempts to exploit the area's geothermal resources. In addition, detailed descriptions are given of all ongoing geothermal projects in the area and the organizations conducting them.

  15. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  16. Direct application of geothermal energy at the L'eggs Product Plant, Las Cruces, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpm flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.

  17. Results of Geothermal Exploitation in Mexico During 1996; Resultados de la explotacion geotermica en Mexico en 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Negrin, Luis C. A. [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1997-01-01

    During 1996, 56.2 million tons of steam were produced, at an average annual rate of 6,416 tons per hour (t/h), to supply enough steam to operate of 26 geothermal-electric plants in three geothermal fields, which represent an installed capacity of 743 MW. To accomplish that production, 177 geothermal wells were operated at an average annual production of 36 t/h of steam. Electricity generation was 5,737 gigawatts-hour, which represent 3.8% of the whole electrical energy generated in Mexico in 1996. Production of steam and generation of electricity were increased in 1996, comparing with 1994 and 1995. However, unitary costs were practically the same between 1995 and 1996. The Comision Federal de Electricidad (Federal Commission for Electricity, or CFE) has programmed several geothermal- electric projects to increase the installed capacity in the fields under exploitation in new fields. Also, the CFE has some non electrical projects to reach an integral use of geothermics in Mexico. [Espanol] A fin de suministrar el vapor necesario para la generacion de 26 plantas geotermoelectricas instaladas en tres campos geotermicos, con una capacidad total de 743 megawatts (MW) durante 1996 se produjeron 56.2 millones de toneladas de vapor, a una tasa media anual de 6,416 toneladas por hora (t/h). Ello implico la operacion de 177 pozos productores, con una produccion de la energia electrica generada en Mexico en 1996. Tanto la produccion de vapor como la generacion de electricidad en 1996 se incrementaron con respecto a los anos precedentes de 1994 y 1995, pese a que los costos unitarios se mantuvieron practicamente constantes entre 1995 y 1996. La Comision Federal de Electricidad (CFE) tiene en programa varios proyectos geotermoelectricos para incrementar la capacidad instalada en los campos en explotacion y para iniciar el aprovechamiento en campos nuevos, asi como proyectos no electricos para conseguir un aprovechamiento integral de la geotermia en Mexico.

  18. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    Science.gov (United States)

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  19. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    Science.gov (United States)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  20. Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico; FINAL

    International Nuclear Information System (INIS)

    James C. Witcher

    2002-01-01

    Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State

  1. The Potential Impacts on Aquatic Ecosystems from the Release of Trace Elements in Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2000-03-14

    Geothermal energy will likely constitute an increasing percentage of our nation's future energy ''mix,'' both for electrical and nonelectrical uses. Associated with the exploitation of geothermal resources is the handling and disposal of fluids which contain a wide variety of potentially toxic trace elements. We present analyses of 14 trace elements found in hydrothermal fluids from various geothermal reservoirs in the western United States. The concentrations of these elements vary over orders of magnitude between reservoirs. Potential impacts are conservatively assessed on the basis of (1) toxicity to freshwater biota, and (2) bioaccumulation in food fish to the point where consumption might be hazardous to human health. Trace element concentrations generally range from benign levels to levels which might prove toxic to freshwater biota and contaminate food fisheries. We stress the need for site-specific analyses and careful handling of geothermal fluids in order to minimize potential impacts.

  2. Geothermal well log interpretation state of the art. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  3. Synopsis of oxygen isotopes in geothermal solids and fluids of New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.

    1982-01-01

    Geothermal minerals serve as downhole probes of oxygen isotope compositions and thus of parameters of geothermal hydrology. ''Deep'' wells (2500 m) in New Zealand show no sign of Δ 18 O values ''bottoming out''. Ngawha differs from other systems both in the level and profile details of Δ 18 O values. The reservoir fluid at Ngawha hydrogeology may or may not be suited for development of a high-throughput surface recharge system

  4. Geothermal application feasibility study for the New Mexico Institute of Mining and Technology Campus

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.R.

    1978-04-01

    This study was limited to determining the economic feasibility of providing the space heating, water heating, space cooling, and electrical power needs of New Mexico Tech from geothermal energy. The means of obtaining the required heat and water from the earth, and the possibility of corrosive effects were not part of this study. The results indicate that space heating and water heating are economically feasible if the cost of developing a geothermal source is not included. The major expense then is the pipeline used to convey the energy to the campus. calculations show that this cost is approximately two to three times our current annual heating bill, The study also showed that it would not be economically feasible to provide our relatively small space cooling and electrical energy needs from geothermal energy.

  5. On Fluid and Thermal Dynamics in a Heterogeneous CO2 Plume Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Tianfu Xu

    2017-01-01

    Full Text Available CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve both the energy exploitation and CO2 geological sequestration. The migration pathway and the process of fluid flow within the reservoirs affect significantly a CO2 plume geothermal (CPG system. In this study, we built three-dimensional wellbore-reservoir coupled models using geological and geothermal conditions of Qingshankou Formation in Songliao Basin, China. The performance of the CPG system is evaluated in terms of the temperature, CO2 plume distribution, flow rate of production fluid, heat extraction rate, and storage of CO2. For obtaining a deeper understanding of CO2-geothermal system under realistic conditions, heterogeneity of reservoir’s hydrological properties (in terms of permeability and porosity is taken into account. Due to the fortissimo mobility of CO2, as long as a highly permeable zone exists between the two wells, it is more likely to flow through the highly permeable zone to reach the production well, even though the flow path is longer. The preferential flow shortens circulation time and reduces heat-exchange area, probably leading to early thermal breakthrough, which makes the production fluid temperature decrease rapidly. The analyses of flow dynamics of CO2-water fluid and heat may be useful for future design of a CO2-based geothermal development system.

  6. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  7. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  8. Recovery of Lithium from Geothermal Fluid at Lumpur Sidoarjo by Adsorption Method

    Directory of Open Access Journals (Sweden)

    Lukman Noerochim

    2016-05-01

    Full Text Available The recovery of lithium from geothermal fluid at Lumpur Sidoarjo, Indonesia was investigated employing an adsorption method with polymer membrane as container. The lithium concentration in geothermal fluid from Lumpur Sidoarjo used in the present study was about 5 mg/l. Lithium manganese oxide (LMO was selected as a promising adsorbent material due to its non-toxic, topotactical behavior and low cost. In this study, LMO with single Li/Mn mole ratio was prepared, i.e. Li1.6Mn1.6O4. The adsorbent was synthesized by solid state reaction at 500 °C for 5 hrs. A lithium uptake yield from the geothermal fluid of around 6.6 mg/g was obtained.

  9. Helium and carbon isotope systematics of Rungwe geothermal gases and fluids; southern Tanzania

    Science.gov (United States)

    Barry, P. H.

    2009-12-01

    P. H. BARRY1*, D. R. HILTON1, T. P. FISCHER2, J. M. DE MOOR2, F. MANGASINI3 C. RAMIREZ4 1 Geosciences Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California 92093-0244, USA (*Correspondence: pbarry@ucsd.edu) 2 Department of Earth and Planetary Sciences, MSC 03 2040, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA. 3 Department of Mining and Mineral Processing Engineering, University of Dar Es Salaam, PO Box 35131, Dar Es Salaam, Tanzania. 4 Centro de Investigaciones en Ciencias Geologicas, Escuela Centroamericana de Geologia, Universidad de Costa Rica. The East African Rift (EAR) is the largest modern example of continental rifting, extending from the Afar depression in the north to the Rungwe region in southern Tanzania. EAR volcanism is attributed to the presence of one or more mantle plumes [1]. Late Miocene to recent volcanism and geothermal activity mark the Rungwe region [2], with mafic eruptions as recently as 200 years ago. Our aim is to delineate the southern geographical extent of plume influence on the propagating EAR by investigating the He-CO2 characteristics of geothermal fluids in the Rungwe region. We report new helium (He) and carbon (C) isotopes (3He/4He, δ13C) and relative abundance (CO2/3He) characteristics for a suite of 20 geothermal gas and fluid samples from 11 different localities in the Rungwe region. He-isotopes are in good agreement with previous reports [3], and range from ~1 RA to ~7 RA (MORB-like values), indicating admixture between upper mantle He and variable proportions of radiogenic He. C-isotopes ranges from -2.8 to -6.5 ‰ (vs. PDB) with all falling in the MORB range (~4.5 ± 2‰). CO2/3He ratios vary over 5 orders of magnitude from ~3 x 10^9 (MORB-like) to higher values (up to ~3 x 10^13) normally associated with crustal lithologies. Taken together, the He-CO2 data can be explained by 2-component mixing of a deep-seated mantle source with crustal component(s). There are no

  10. Recovery of Lithium From Geothermal Fluid at Lumpur Sidoarjo by Adsorption Method

    OpenAIRE

    Noerochim, Lukman; Satriawangsa, Gita Akbar; Widodo, Amien

    2016-01-01

    The recovery of lithium from geothermal fluid at Lumpur Sidoarjo, Indonesia was investigated employing an adsorption method with polymer membrane as container. The lithium concentration in geothermal fluid from Lumpur Sidoarjo used in the present study was about 5 mg/l. Lithium manganese oxide (LMO) was selected as a promising adsorbent material due to its non-toxic, topotactical behavior and low cost. In this study, LMO with single Li/Mn mole ratio was prepared, i.e. Li1.6Mn1.6O4. The adsorb...

  11. A new method of damage determination in geothermal wells from geothermal inflow with application to Los Humeros, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Moya, S. L [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico); Garcia-Gutierrez, A; Arellano, V [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-10-15

    Geothermal inflow type curves were obtained for different values of well damage (i.e., inflow performance relationships). The method was evaluated by diagnosing the damage of thirteen producing wells in the Los Humeros, Puebla, Mexico geothermal field. Permeability determinations were carried out for these wells and their productivity indices were estimated. Comparison of the diagnoses made via damage effects against the results of field pressure tests showed that the maximum difference between both approaches is on the order of 0.7 damage units. The methodology allows reservoir characterization along its productive life, since several production tests are carried out while the reservoir is producing. The data obtained from production tests are used to determine the damage effect and permeability of the rock formation. Previously the damage (skin factor) could only be determined from the analyses of transient pressure tests. [Spanish] Se presenta la obtencion de curvas-tipo de influjo geotermico para diferentes valores de dano, y se demuestra su aplicacion en los analisis de produccion de pozos geotermicos determinando el dano en trece pozos del campo geotermico de Los Humeros, Puebla, Mexico. Tambien se hicieron determinaciones de la permeabilidad en las zonas de produccion de estos pozos y de sus respectivos indices de productividad. Se compararon los resultados del valor de dano obtenido con la metodologia propuesta, con los valores de dano obtenidos a partir de pruebas de presion, encontrando que las diferencias maximas entre ambas tecnicas es del orden de 0.7 unidades de dano. La presente metodologia permite la caracterizacion del yacimiento a lo largo de su vida productiva a partir de las mediciones de las pruebas de produccion efectuadas en los pozos. La metodologia propuesta es innovadora porque anteriormente el dano solamente se podia determinar a partir de los analisis de las mediciones de la pruebas de presion.

  12. Experimental evaluation of a non-azeotropic working fluid for geothermal heat pump system

    International Nuclear Information System (INIS)

    Zhao, L.

    2004-01-01

    Geothermal energy resources are found in many countries. A reasonable and efficient utilization of these resources has been a worldwide concern. The application of geothermal heat pump systems (GHPS) can help increase the efficiency of using geothermal energy and reduce the thermal pollution to the earth surface. However, this is only possible with a proper working fluid. In this paper, a non-azeotropic working fluid (R290/R600a/R123) is presented for a GHPS where geothermal water at 40-45 deg. C and heating network water at 70-80 deg. C serve as the low and high temperature heat sources. Experimental results show that the coefficient of performance (COP) of a GHPS using the working fluid is above 3.5 with the condensation temperature above 80 deg. C and the condensation pressure below 18 bar, while the temperature of the geothermal water is reduced from 40-46 deg. C to 31-36 deg. C

  13. Tracking Hydrothermal Fluid Pathways from Surface Alteration Mineralogy: The Case of Licancura Geothermal Field, Northern Chile

    Science.gov (United States)

    Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.

    2017-12-01

    In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid

  14. Quantitative Analysis of Existing Conditions and Production Strategies for the Baca Geothermal System, New Mexico

    Science.gov (United States)

    Faust, Charles R.; Mercer, James W.; Thomas, Stephen D.; Balleau, W. Pete

    1984-05-01

    The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximations is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.

  15. Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Thomas M. [ElectraTherm Inc., Reno, NV (United States); Erlach, Celeste [ElectraTherm Inc., Reno, NV (United States)

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  16. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol

  17. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  18. Selective Recovery of Critical Materials from Geothermal Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Halstenberg, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karamalidis, Athanasios [Anactisis, LLC, Pittsburgh, PA (United States); Noack, Clint [Anactisis, LLC, Pittsburgh, PA (United States)

    2018-03-08

    This project, funded by the DOE Small Business Voucher program, assisted the partner with the development of ion-imprinted adsorbents for the selective extraction of rare earth elements (REE) from geothermal brines. This effort seeks to utilize a currently untapped resource thus diversifying the U. S. REE market. The initial stage of the program focused on the adsorbent developed by partner and optimization of the adsorbent. The adsorbent was based upon an ion imprinted ligand that was copolymerized with a crosslinker to generate the REE selectivity. During this task, the adsorbents were irradiated via electron beam at the NEO Beam Electron Beam Crosslinking Facility (Mercury Plastics, Middlefield, OH) to induce further crosslinking. The irradiation crosslinked adsorbents exhibited no difference in the Fourier transform infrared spectroscopic (FTIR) analysis suggesting inefficiency in the crosslinking. In the later stage of the effort, a new method was proposed and studied at ORNL involving a new partnership between the partner and a commercial polymer vender. This resulted in a new material being developed which allows the partner to utilize a commercial support and integrate the synthesis into a production-ready product stream. This will enhance the route to commercialization for the partner resulting in a quicker market penetration for the product. The new adsorbent exhibits selectivity for REE over transition metals commonly found within geothermal brines. Further optimization is required for enhanced selectivity, capacity, and intra-lanthanide separations.

  19. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    Science.gov (United States)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.

  20. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Zeyghami, Mehdi

    2015-01-01

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  1. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China)

    Science.gov (United States)

    Wang, Peng; Chen, Xiaohong; Shen, Licheng; Wu, Kunyu; Huang, Mingzhi; Xiao, Qiong

    2016-06-01

    Mapamyum geothermal field (MGF) in western Tibet is one of largest geothermal areas characterized by the occurrence of hydrothermal explosions on the Tibetan Plateau. The geochemical properties of hydrothermal water in the MGF system were investigated to trace the origin of the solutes and to determine the equilibrium temperatures of the feeding reservoir. The study results show that the geochemistry of hydrothermal waters in the MGF system is mainly of the Na-HCO3 type. The chemical components of hydrothermal waters are mainly derived from the minerals in the host rocks (e.g., K-feldspar, albite, Ca-montmorillonite, and Mg-montmorillonite). The hydrothermal waters are slightly supersaturated or undersaturated with respect to aragonite, calcite, dolomite, chalcedony and quartz (saturation indices close to 0), but are highly undersaturated with respect to gypsum and anhydrite (saturation indices < 0). Mixing models and Na-K-Mg ternary diagrams show that strong mixing between cold meteoric water and deeply-seated thermal fluids occurred during the upward flowing process. δD and δ18O data confirm that the meteoric water acts as the water source of the geothermal waters. An 220 °C equilibrated reservoir temperature of hydrothermal spring waters was calculated via both the Na-K-Mg ternary diagrams and the cationic chemical geothermometers. The logpCO2 of hydrothermal waters in the MGF system ranges from - 2.59 to - 0.57 and δ13C of the total dissolved inorganic carbon ranges from - 5.53‰ to - 0.94‰, suggesting that the carrier CO2 in hydrothermal water are mainly of a magmatic or metamorphic CO2 origin.

  2. BDFGEOTHERM - A Swiss geothermal fluids database; BDFGEOTHERM - Base de donnees des fluides geothermiques de la Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Sonney, R.; Vuataz, F.-D.

    2007-07-01

    The motivation to build up the database BDFGeotherm was to put at the disposal of the geothermal community a comprehensive set of data on the deep fluids of Switzerland and of some neighbouring areas. Researchers, engineers and all persons wanting to know the type and properties of geothermal fluids existing in a given area or underground system can find in BDFGeotherm a wealth of information which are generally widely dispersed and often difficult to reach. The BDFGeotherm database has been built under Microsoft ACCESS code and consists of nine tables connected with a primary key: the field 'Code'. A selection of parameters has been chosen from the following fields: general and geographical description, geology, hydrogeology, hydraulics, hydrochemistry and isotopes and finally geothermal parameters. Data implemented in BDFGeotherm are in numerical or in text format. Moreover, in the field 'Lithological log', one can visualize and save bitmap images containing lithological logs of boreholes. A total of 203 thermal springs or deep boreholes from 82 geothermal sites are implemented in BDFGeotherm. Among the 68 Swiss sites, a large majority of them are located in the northern part of the Jura range and in the upper Rhone valley (Wallis). Some sites, in Germany (5), France (3) and Italy (6), were selected for the following reasons: located near Swiss hot springs or deep boreholes, having similar geological features or representing a significant geothermal potential. Many types of queries could be realised, using any fields of the database and the results can be put into tables and printed or exported and saved in other files. (author)

  3. Geothermal potential on Kirtland Air Force Base lands, Bernalillo County, New Mexico

    Science.gov (United States)

    Grant, P. R., Jr.

    1981-10-01

    Public policy expressed in a number of national directives in recent years stresses the conservation of conventional fuel supplies, a switch to alternative fuels, and the application of advanced energy technologies at federal installations. Natural gas currently furnishes 85 to 95 percent of the average 94 x 1,000,000 Btu/hr energy requirements for space heating and cooling at Kirtland Air Force Base. Studies of alternatives to the use of natural gas at the base include examination of the geothermal option. Four of North America's major physiographic provinces coalesce in central New Mexico on or near Kirtland AFB. Their junction is identified throughout much of this region by a tectonic depression occupied by the Rio Grande that is structurally complex, stratigraphically and hydrologically unique, and coincides with geologically recent volcanic centers. This trough, the Rio Grande rift, has been identified as a major geothermal resource area. The western part of Kirtland AFB is in the Albuquerque Basin segment of the Rio Grande rift. Extensive sampling and geochemical analysis of groundwater in and near the base disclosed no significant geothermal parameters. However, structural conditions and current hydrologics regimes strongly suggest that thermal waters would be masked by near surface, low temperature meteoric water originating as rain and snowfall in the nearby mountains.

  4. Geologic and preliminary reservoir data on the Los Humeros Geothermal System, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferriz, H.

    1982-01-01

    Exploratory drilling has confirmed the existence of a geothermal system in the Los Humeros volcanic center, located 180 km east of Mexico City. Volcanic activity in the area began with the eruption of andesites, followed by two major caldera-forming pyroclastic eruptions. The younger Los Potreros caldera is nested inside the older Los Humeros caldera. At later stages, basaltic andesite, dacite, and olivine basalt lavas erupted along the ring-fracture zones of both calderas. Geologic interpretation of structural, geophysical, and drilling data suggests that: (1) the water-dominated geothermal reservoir is hosted by the earliest andesitic volcanic pile, is bounded by the ring-fracture zone of the Los Potreros caldera, and is capped by the products of the oldest caldera-forming eruption; (2) permeability within the andesitic pile is provided by faults and fractures related to intracaldera uplift; (3) the geothermal system has potential for a large influx of meteoric water through portions of the ring-fracture zones of both calderas; and (4) volcanic centers with similar magmatic and structural conditions can be found in the eastern Cascades, USA.

  5. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids

    International Nuclear Information System (INIS)

    Liu, Qiang; Duan, Yuanyuan; Yang, Zhen

    2013-01-01

    ORC (organic Rankine cycles) are promising systems for conversion of low temperature geothermal energy to electricity. The thermodynamic performance of the ORC with a wet cooling system is analyzed here using hydrocarbon working fluids driven by geothermal water from 100 °C to 150 °C and reinjection temperatures not less than 70 °C. The hydrocarbon working fluids are butane (R600), isobutane (R600a), pentane (R601), isopentane (R601a) and hexane. For each fluid, the ORC net power output first increases and then decreases with increasing turbine inlet temperature. The turbine inlet parameters are then optimized for the maximum power output. The ORC net power output increases as the condensation temperature decreases but the circulating pump power consumption increases especially for lower condensation temperatures at higher cooling water flow rates. The optimal condensation temperatures for the maximum plant power output are 29.45–29.75 °C for a cooling water inlet temperature of 20 °C and a pinch point temperature difference of 5 °C in the condenser. The maximum power is produced by an ORC using R600a at geothermal water inlet temperatures higher than 120 °C, followed by R245fa and R600 for reinjection temperatures not less than 70 °C. R600a also has the highest plant exergetic efficiency with the lowest turbine size factor. - Highlights: • ORC (organic Rankine cycles) using geothermal water from 100 to 150 °C and reinjection temperatures not less than 70 °C are analyzed. • Condensation temperatures optimized to maximize the plant power output. • An IHE (internal heat exchanger) gives higher plant power at low geothermal water temperatures and high reinjection temperatures. • ORC performance optimized considering the condensation and reinjection temperature. • R600a gives the best performance at the optimal turbine operating parameters

  6. Invasion of geothermal fluids into hydrocarbon reservoirs; La invasion de fluidos geotermicos en yacimientos de hidrocarburos

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Arriaga, Mario Cesar [Universidad Michoacana, Facultad de Ciencias, Morelia, Michoacan (Mexico)]. E-mail: msuarez@umich.mx

    2009-01-15

    Oil reservoirs beneath the coast of the Gulf of Mexico contain geothermal brine at 150 degrees Celsius and produce a mixture of hot brine and oil. Water from an aquifer 6000 m deep flows vertically through conductive faults. These nonisothermal conditions affect the effective saturations and the relative permeability of the immiscible phases. Dynamic viscosities of oil and water diminish, affecting the displacement of both fluids. Studied wells produce from the oil-saturated zone above the aquifer, yet the total volume of produced water can equal or exceed the volume of oil. The presence of water is a severe problem. We produced an original numerical model able to predict the critical production when the wells start to be invaded by geothermal brine. The model has a single equation in partial derivatives, of a parabolic and nonlineal type, which is a function of water saturation, three-dimension space and time. A gas phase can be included in the model. This equation is a generalization of the classic isothermal result of Buckley-Leverett, in a single dimension. The model is solved numerically by using the Finite Element method on a nonstructured network. The historic effect of water invasion observed in some critical cases is reproduced. After production with both phases stable, a sudden brine invasion can occur with a sharp reduction of the oil volume produced. The immediate objective is to optimize the production so the well will be able to produce a stable water-oil mix where oil always prevails. [Spanish] Se reportan reservorios de aceite situados en la costa del Golfo de Mexico que son invadidos por salmuera geotermica con una temperatura de 150 grados centigrados, produciendo una mezcla variable de agua caliente y aceite. El agua de un acuifero, a 6000 metros de profundidad, fluye verticalmente por fallas conductivas. Estas condiciones no isotermicas afectan las saturaciones efectivas y las permeabilidades relativas de las fases inmiscibles. Las viscosidades

  7. Thermodynamic evolution of the Los Azufres, Mexico, geothermal reservoir from 1982 to 2002

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Victor Manuel; Barragan, Rosa Maria [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Torres, Marco Antonio [Comision Federal de Electricidad, Residencia Los Azufres, Campamento Agua Fria, Los Azufres, Michoacan (Mexico)

    2005-10-01

    An investigation has been made of the response of the Los Azufres geothermal reservoir to 20 years of development, beginning in 1982. The simulator WELFLO was used to characterize the thermodynamic conditions of the reservoir fluids. The first response to exploitation consisted of a decrease in pressure and an increase in enthalpy. Small decreases in reservoir pressure associated with large increases in fluid enthalpy characterize the long-term response in the northern production area. In the southern production area, long-term changes include decreases in pressure and mass flow rate, increases in steam production and, in wells affected by injection, increases in both pressure and total mass flow rate. These changes reflect the effects of boiling, cooling and fluid mixing, processes resulting from large-scale fluid production. (author)

  8. a Matlab Toolbox for Basin Scale Fluid Flow Modeling Applied to Hydrology and Geothermal Energy

    Science.gov (United States)

    Alcanie, M.; Lupi, M.; Carrier, A.

    2017-12-01

    Recent boosts in the development of geothermal energy were fostered by the latest oil crises and by the need of reducing CO2 emissions generated by the combustion of fossil fuels. Various numerical codes (e.g. FEHM, CSMP++, HYDROTHERM, TOUGH) have thus been implemented for the simulation and quantification of fluid flow in the upper crust. One possible limitation of such codes is the limited accessibility and the complex structure of the simulators. For this reason, we began to develop a Hydrothermal Fluid Flow Matlab library as part of MRST (Matlab Reservoir Simulation Toolbox). MRST is designed for the simulation of oil and gas problems including carbon capture storage. However, a geothermal module is still missing. We selected the Geneva Basin as a natural laboratory because of the large amount of data available in the region. The Geneva Basin has been intensely investigated in the past with exploration wells, active seismic and gravity surveys. In addition, the energy strategy of Switzerland promotes the development of geothermal energy that lead to recent geophysical prospections. Previous and ongoing projects have shown the geothermal potential of the Geneva Basin but a consistent fluid flow model assessing the deep circulation in the region is yet to be defined. The first step of the study was to create the basin-scale static model. We integrated available active seismic, gravity inversions and borehole data to describe the principal geologic and tectonic features of the Geneva Basin. Petrophysical parameters were obtained from available and widespread well logs. This required adapting MRST to standard text format file imports and outline a new methodology for quick static model creation in an open source environment. We implemented several basin-scale fluid flow models to test the effects of petrophysical properties on the circulation dynamics of deep fluids in the Geneva Basin. Preliminary results allow the identification of preferential fluid flow

  9. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    Science.gov (United States)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  11. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  12. Rankine cycle generators using geothermal fluids. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Rankine Cycle generator was delivered and installed at Gila Hot Springs. Trial runs were made at that time, using Freon 12 as the expansion fluid. These tests showed that the boiler capacity was inadequate. It could not extract enough heat to generate sufficient volumes of Freon gas at the heat and pressure necessary to operate the system at an acceptable level. Increasing and decreasing the flow of hot water had a direct influence on efficiency, but it was not a linear relationship. Added amounts of hot water increased the power very little, but raised the water temperature at the discharge point. This implied that the heat exchange capacity of the boiler was saturated. The reverse was found in the condenser system. There was little increase in pressure of the condenser when we switched from static to run mode. Efficiency was maintained even when the cold water flow was reduced as much as 40%. The tests using Freon 12 resulted in the conclusion that the boiler volume needs to be increased and/or the configuration changed to radically increase its efficiency.

  13. Dating and tracing of fluids using 129I and 36Cl: results from geothermal fluids, oil field brines and formation waters

    International Nuclear Information System (INIS)

    Fehn, U.; Moran, J.E.; Teng, R.T.D.; Rao, U.

    1994-01-01

    Preliminary results are presented for 129 I/I and 36 Cl/Cl ratios in formation waters from the KTB project in Germany, geothermal waters from the Salton Sea Geothermal System in California and oilfield brines from the Anadarko Basin in Oklahoma. The results demonstrate the use of these isotopic systems to determine residence times, source formations and pathways of fluids in different geologic situations. ((orig.))

  14. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Directory of Open Access Journals (Sweden)

    Liu Yan-Na

    2015-06-01

    Full Text Available In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  15. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  16. Clay minerals related to the circulation of geothermal fluids in boreholes at Rittershoffen (Alsace, France)

    Science.gov (United States)

    Vidal, Jeanne; Patrier, Patricia; Genter, Albert; Beaufort, Daniel; Dezayes, Chrystel; Glaas, Carole; Lerouge, Catherine; Sanjuan, Bernard

    2018-01-01

    Two geothermal wells, GRT-1 and GRT-2, were drilled into the granite at Rittershoffen (Alsace, France) in the Upper Rhine Graben to exploit geothermal resources at the sediment-basement interface. Brine circulation occurs in a permeable fracture network and leads to hydrothermal alteration of the host rocks. The goal of the study was to characterize the petrography and mineralogy of the altered rocks with respect to the permeable fracture zones in the granitic basement. As clay minerals are highly reactive to hydrothermal alteration, they can be used as indicators of present-day and paleo-circulation systems. Special attention has been paid to the textural, structural and chemical properties of these minerals. The fine-grained clay fraction (smectite ( 10% smectite) provide a promising guide for identifying the fracture zones that control the present-day circulation of geothermal fluids in the Rittershoffen wells. However, multistage paleo-circulation systems could lead to an abundance of heterogeneous and fine-grained illitic minerals that could plug the fracture system. The permeability of fracture zones in the GRT-1 well was likely reduced because of an intense illitization, and the well was stimulated. The occurrence of chlorite in the permeable fracture zones of GRT-2 is indicative of less intense illitization, and the natural permeability is much higher in GRT-2 than in GRT-1.

  17. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system

    International Nuclear Information System (INIS)

    Guo, T.; Wang, H.X.; Zhang, S.J.

    2011-01-01

    Highlights: → Performances of a novel cogeneration system using low-temperature geothermal sources under disturbance conditions were investigated. → It aimed at identifying appropriate fluids yielding high PPR and QQR values. → Fluids group presenting higher normal boiling point values showed averagely 7.7% higher PPR with a larger variation than QQR values under disturbance conditions. → Smaller T P value, higher η t value, higher geothermal source parameters and lower heating supply parameters led to higher PPR values but lower QQR values. -- Abstract: A novel cogeneration system driven by low-temperature geothermal sources was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The main purpose is to identify appropriate fluids which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Performances of the novel cogeneration system under disturbance conditions have also been studied. Results indicate that fluids group presenting higher normal boiling point values shows averagely 7.7% higher PPR values and R236ea and R245ca outstand among the group. ΔT P (pinch temperature difference in heat exchangers) and η t (turbine efficiency) values play more important roles on the variation of PPR values. QQR values change slightly with various ΔT P , η t and η rp (refrigerant pump efficiency) values while the variation range is larger under various geothermal source and heating supply parameters. Smaller ΔT P value, higher η t value, higher geothermal source parameters and lower heating supply parameters lead to higher PPR values but lower QQR values.

  18. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200°C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200°C and 40 bar was found to be acceptable after 399

  19. Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand

    International Nuclear Information System (INIS)

    Werner, Cynthia; Cardellini, Carlo

    2006-01-01

    During 2002 and 2003, carbon dioxide fluxes were measured across the Rotorua geothermal system in the Taupo Volcanic Zone (TVZ), New Zealand. The results of a 956-measurement survey and of modeling studies show that CO 2 fluxes could be used to determine the main hot fluid upflow areas in Rotorua, and perhaps in undeveloped geothermal regions. Elevated degassing was observed along inferred fault traces and structures, lending confidence to their existence at depth. Degassing was also observed along lineaments that were consistent with the alignment of basement faulting in the TVZ. Areas where elevated degassing was spatially extensive typically overlapped with known regions of hot ground; however, elevated CO 2 fluxes were also observed in isolated patches of non-thermal ground. The total emission rate calculated from sequential Gaussian simulation modeling of CO 2 fluxes across the geothermal system was 620td -1 from an 8.9-km 2 area. However, because approximately one-third of the geothermal system is known to extend beneath Lake Rotorua, we expect the emissions could be minimally on the order of 1000td -1 . Comparing the emission rate with geochemical analyses of geothermal fluids and estimated upflows suggests that the majority of deep carbon reaches the surface in the form of carbon dioxide gas, and that less than one tenth of the CO 2 emissions is dissolved in, or released from, the fluids at depth. Thus, the geothermal reservoir exerts very little control on deep degassing of CO 2 . Carbon isotopic analyses of soil gases suggest a primarily magmatic source for the origin of the CO 2 . The total Rotorua emission rate is comparable to those from active volcanoes such as at White Island, New Zealand, and, when normalized by geothermal area, is comparable to other volcanic and hydrothermal regions worldwide. (author)

  20. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part I)

    Science.gov (United States)

    Fernandez, C. A.; Jung, H. B.; Shao, H.; Bonneville, A.; Heldebrant, D.; Hoyt, D.; Zhong, L.; Holladay, J.

    2014-12-01

    Cost-effective yet safe creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the viability of enhanced geothermal systems and unconventional oil/gas recovery. Current reservoir stimulation processes utilize brute force (hydraulic pressures in the order of hundreds of bar) to create/propagate fractures in the bedrock. Such stimulation processes entail substantial economic costs ($3.3 million per reservoir as of 2011). Furthermore, the environmental impacts of reservoir stimulation are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To reduce the costs and environmental impact of reservoir stimulation, we developed an environmentally friendly and recyclable hydraulic fracturing fluid that undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at temperatures relevant for reservoir stimulation in Enhanced Geothermal System (EGS). The volume expansion, which will specifically occurs at EGS depths of interest, generates an exceptionally large mechanical stress in fracture networks of highly impermeable rock propagating fractures at effective stress an order of magnitude lower than current technology. This paper will concentrate on the presentation of this CO2-triggered expanding hydrogel formed from diluted aqueous solutions of polyallylamine (PAA). Aqueous PAA-CO2 mixtures also show significantly higher viscosities than conventional rheology modifiers at similar pressures and temperatures due to the cross-linking reaction of PAA with CO2, which was demonstrated by chemical speciation studies using in situ HP-HT 13C MAS-NMR. In addtion, PAA shows shear-thinning behavior, a critical advantage for the use of this fluid system in EGS reservoir stimulation. The high pressure/temperature experiments and their results as well

  1. Research on the availability and environmental aspects of geothermal electric power plants in Mexico

    International Nuclear Information System (INIS)

    Mulas, P.; Mercado, S.

    1984-01-01

    Although geothermal electric power plants will make only a modest contribution to annual power generation in Mexico until the year 2000 (at present there is a capacity of 205 MW(e) in operation and 440 MW(e) under construction), new areas are being developed and, in the plants that have been in operation for several years, criteria such as the capacity factor (>85%) and the cost per kW.h generated are favourable. The main problem lies in determining the generation capacity which should be installed at the end of the exploration period. There is an economic risk here since the generation capacity is extremely uncertain and in order to reduce this risk the well production record must be carefully studied. Considerable research is being carried out in this area to improve the physical and numerical techniques available. Research is also being conducted to improve the cementing quality of the well pipes and to try to prevent or eliminate corrosion of these pipes. Study of the problem of silica incrustation has led to the adoption of economic techniques for its prevention or removal. Possibilities for the commercial utilization of waste have been studied for brine and are about to be started for gases. Heat exchangers which could turn the heat at present being wasted to account for electricity generation are also being investigated. (author)

  2. Stable isotopes as signposts of fluid throughput in Rotokawa and other geothermal fields, and the difficulty of identifying magmatic fingerprints

    International Nuclear Information System (INIS)

    Blattner, P.; Woldemichael, S.; Auckland Univ.; Browne, P.R.L.; Auckland Univ.

    1994-01-01

    We present a background for water-rock interaction generally, and new data on the Rotokawa geothermal field. The oxygen isotope shift of total rock samples allow the deduction of past flowpaths and total fluid throughput. Estimates of any input true exsolved magmatic water are difficult as the lithosphere can act as an effective isotopic screen. (authors). 1 fig., 6 refs

  3. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  4. A reconnaissance geochemical study of La Primavera geothermal area, Jalisco, Mexico

    Science.gov (United States)

    Mahood, G.A.; Truesdell, A.H.; Templos, M.L.A.

    1983-01-01

    The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, Me??xico, contains fumaroles and large-discharge 65??C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central. The Comisio??n Federal de Electricidad de Me??xico (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285??C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307??C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100??C near the surface and decreased to 80??C at 2000 m. Various geothermometers (quartz conductive, Na/K, Na-K-Ca, ??18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ?? 20??C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10-20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from ???170??C to 65??C by conduction during the 5-7 km of lateral flow to the hot springs. ?? 1983.

  5. Isotopic Evolution of Wells in the Geothermal Field of Los Azufres, Michoacan, Mexico; Evolucion isotopica de fluidos de pozos del campo geotermico de Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Portugal Marin, Enrique; Arellano Gomez, Victor Manel; Aragon Aguilar, Alfonso [Instituto de Investigaciones Electricas (Mexico); Sandoval Medina, Fernando [Comision Federal de Electricidad (Mexico)

    2002-12-01

    Isotopic ({delta}{sup 1}8 O and {delta}D) data from production and reinjection web fluids from the Los Azufres geothermal field were interpreted in order to define reservoir evolution and the occurrence of physical processes as a result of exploitation. The study included data of 30 wells, which were sampled in September, 2000. General results indicate that different phenomena seem to occur in both zones of the field. In the southern zone there are two different trends of behavior: a mixture of fluids evidenced by the {delta}D versus {delta}{sup 1}8 O trend with a positive slope, was interpreted as the result of reservoir vapor separation at a temperature above 220 Celsius degrees, since for temperatures above 220 Celsius degrees deuterium behaves as a volatile component. No well-defined {delta}{sup D} vs {delta}{sup 1}8 O trend was found for the northern zone, but some points seem to fit the same negative slope trend found in the souther zone. The study of reservoir temperatures estimated by different approaches for particular wells through time, as well as temperature results obtained with a heat and flow well simulator, suggest that reservoir boiling occurs in localized areas in both zone of the field. This process is probably due to exploitation. [Spanish] Se interpretaron datos isotopicos ({delta}{sup 1}8 O y {delta}D) de fluidos de pozos productores y de reinyeccion del campo geotermico de Los Azufres, Michoacan, Mexico, para definir la evolucion del yacimiento y la ocurrencia de procesos fisicos como resultado de la explotacion. En el estudio se consideran datos de treinta pozos segun el muestreo realizado en septiembre de 2000. El estudio de la evolucion en el tiempo de las estimaciones de temperatura de yacimiento mediante diferentes tecnicas, asi como la temperatura obtenida de simulacion de pozos, sugiere que ocurre ebullicion en areas localizadas en ambas zonas del campo debido a la explotacion. Los resultados generales indican la existencia de

  6. Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry

    Science.gov (United States)

    Lu, Yi-Chia; Song, Sheng-Rong; Wang, Pei-Ling; Wu, Chung-Che; Mii, Horng-Sheng; MacDonald, John; Shen, Chuan-Chou; John, Cédric M.

    2017-11-01

    The Chingshui geothermal field, a moderate-temperature and water-dominated hydrothermal system, was the site of the first geothermal power plant in Taiwan. Many geological, geophysical and geochemical studies using more than 21 drilled wells have been performed since the 1960s. However, there are still controversies regarding the heat and fluid sources due to the tectonically complicated geological setting. To clarify the heat and fluid sources, we analyzed clumped isotopes with carbon and oxygen isotopic compositions of calcite scaling in geothermal wells and veins on outcrops and calculated the δ18O values of the source fluids. Two populations of δ18O values were calculated: -5.8 ± 0.8‰ VSMOW from scaling in the well and -1.0 ± 1.6‰ to 10.0 ± 1.3‰ VSMOW from outcropping calcite veins, indicative of meteoric and magmatic fluid sources, respectively. Meanwhile, two hydrothermal reservoirs at different depths have been identified by magnetotelluric (MT) imaging with micro-seismicity underneath this area. As a result, we propose a two-reservoir model: the shallow reservoir provides fluids from meteoric water for the scaling sampled from wells, whereas the deep reservoir provides magmatic fluids from deep marble decarbonization recorded in outcropping calcite veins.

  7. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    Science.gov (United States)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  8. Standard Test Method for Testing Nonmetallic Seal Materials by Immersion in a Simulated Geothermal Test Fluid

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers a procedure for a laboratory test for performing an initial evaluation (screening) of nonmetallic seal materials by immersion in a simulated geothermal test fluid. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6 and 11.7.

  9. Consumer-behavorial analysis of alternate-energy adoption: the case of geothermal energy in New Mexico. Final report, 6/1/80-8/1/81

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.; Pratt, E.; Michie, D.

    1981-08-01

    The overall objectives of the research described here are the determination of the market penetration prospects of geothermal energy in New Mexico and the identification of the key determinants of geothermal adoption by prospective consumers. The resources considered are intermediate temperature (65/sup 0/C less than or equal to T less than or equal to 150/sup 0/C) hydrothermal resources, and the applications examined are direct (non-electric) uses. In order to achieve the overall research objectives, four specific work tasks were undertaken: the design of a marketing research instrument for investigating prospects for the market penetration of geothermal energy; the implementation of the marketing research instrument through a pilot study of adoption behavior of prospective consumers of geothermal energy in the state of New Mexico; the identification and evaluation of market considerations which will affect the commercialization of direct geothermal applications within the state; and the design of a comprehensive marketing program to maximize the commercialization of geothermal energy in New Mexico.

  10. Effects of natural increase in temperature on clay formations and determination of the course and the effects of geothermal fluids

    International Nuclear Information System (INIS)

    Polizzano, C.; Benvegnu, F.; Giannotti, G.; Brandimarte, U.

    1986-01-01

    The behaviour of clay cover towards the geothermal fluids rising up to the surface may represent an excellent natural analogue of the potential migration processes from deep waste repositories in clay formations. The ENEA is conducting research in an appropriate area near M. Amiata in southern Tuscany in order to contribute to solving the problem of the expected impermeability of clay formations. Geothermal fields may namely give an opportunity of studying a case of clay behaviour at a scale corresponding to size and time considered in waste disposal. In the considered area a relevant geothermal field is still active. A clay complex represents the impermeable cover of the local geothermal field. Several endogenous phenomena indicate the preferential ways of migrations of fluids from the basement throughout the cover. The data obtained by the present research prove that the upward flow of fluids, is possible only in the points of reduced thickness of the cover where very important faulting or granulometric discontinuity occur. This situation typically occurs at the border and not in the central part of the clay basins

  11. Flow Characterization of Vapor Phase of Geothermal Fluid in Pipe Using Isotope 85Kr and Residence Time Distribution Modeling

    Directory of Open Access Journals (Sweden)

    S. Sugiharto

    2014-08-01

    Full Text Available Measurement of vapor flow in geothermal pipe faces great challenges due to fast fluids flow in high-temperature and high-pressure environment. In present study the flow rate measurement has been performed to characterization the geothermal vapor flow in a pipe. The experiment was carried out in a pipe which is connected to a geothermal production well, KMJ-14. The pipe has a 10” outside diameter and contains dry vapor at a pressure of 8 kg/cm2 and a temperature of 170 oC. Krypton-85 gas isotope (85Kr has been injected into the pipe. Three collimated radiation detectors positioned respectively at 127, 177 and 227m from injection point were used to obtain experimental data which represent radiotracer residence time distribution (RTD in the pipe. The last detector at the position of 227 m did not respond, which might be due to problems in cable connections. Flow properties calculated using mean residence time (MRT shows that the flow rate of the vapor in pipe is 10.98 m/s, much faster than fluid flow commonly found in various industrial process plants. Best fitting evaluated using dedicated software developed by IAEA expert obtained the Péclet number Pe as 223. This means that the flow of vapor of geothermal fluids in pipe is plug flow in character. The molecular diffusion coefficient is 0.45 m2/s, calculated from the axial dispersion model.

  12. The Significance of Acid Alteration in the Los Humeros High-Temperature Geothermal Field, Puebla, Mexico.

    Science.gov (United States)

    Elders, W. A.; Izquierdo, G.

    2014-12-01

    The Los Humeros geothermal field is a high-enthalpy hydrothermal system with more than 40 drilled deep wells, mostly producing high steam fractions at > 300oC. However, although it has a large resource potential, low permeability and corrosive acid fluids have hampered development so that it currently has an installed electrical generating capacity of only 40 MWe. The widespread production of low pH fluids from the reservoir is inconsistent with the marked absence in the reservoir rocks of hydrothermal minerals typical of acid alteration. Instead the hydrothermal alteration observed is typical of that due to neutral to alkaline pH waters reacting with the volcanic rocks of the production zones. Thus it appears that since the reservoir has recently suffered a marked drop in fluid pressure and is in process of transitioning from being water-dominated to being vapor-dominated. However sparse examples of acid leaching are observed locally at depths of about 2 km in the form of bleached, intensely silicified zones, in low permeability and very hot (>350oC) parts of reservoir. Although these leached rocks retain their primary volcanic and pyroclastic textures, they are altered almost entirely to microcrystalline quartz, with some relict pseudomorphs of plagioclase phenocrysts and traces of earlier-formed hydrothermal chlorite and pyrite. These acid-altered zones are usually only some tens of meters thick and deeper rocks lack such silicification. The acid fluids responsible for their formation could either be magmatic volatiles, or could be formed during production (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that their ultimate source is most likely magmatic gases. However, these acid gases did not react widely with the rocks. We suggest that the silicified zones are forming locally where colder descending waters are encountering

  13. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    Science.gov (United States)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  14. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X

  15. Petrographic study and preliminary conceptual model of the Ixtlan de los Hervores geothermal zone, Michoacan, Mexico; Estudio petrografico y modelo conceptual preliminar de la zona geotermica de Ixtlan de los Hervores, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano-Guerra, Julio C; Gutierrez-Negrin, Luis C.A [Comision Federal de Electricidad (Mexico)

    2007-10-15

    Petrographic studies of cuttings from the shallow well Ixtlan 2, drilled in the Ixtlan de los Hervores geothermal zone, State of Michoacan, Mexico, at a maximum depth of 159 meters, together with results of previous exploration studies, allow to delineate a preliminary conceptual model of the probable geothermal system. It is formed by a wide-fracture zone system, with low topographic relief and shallow water level. Its hydrothermal fluids are of sodium-chloride type, neutral pH, silica oversaturated in the discharge and with temperatures between 125 and 225 degrees Celsius, based on the geothermometry and the hydrothermal mineral assemblage encountered in the well. The assemblage of laumontite + quartz + calcite + chlorite/smectite + pyrite is typical for the zeolitic facies, beneath of which it is possible to encounter the epidote-wairakite facies, with higher temperatures. The favorable conditions of the zone allow to recommend continuation of exploration in the same. [Spanish] El estudio petrografico de muestras de canal de la perforacion del pozo somero Ixtlan 2, con una profundidad maxima de 159 metros y ubicado en la zona geotermica de Ixtlan de Los Hervores, Michoacan, Mexico, aunado a los resultados de estudios previos de exploracion superficial, han permitido la configuracion de un modelo conceptual preliminar del probable yacimiento geotermico. Se trata de un sistema zona de fractura ancha, bajo relieve y nivel freatico somero, con fluidos hidrotermales de tipo clorurado-sodico, pH neutro, sobresaturados de silice en la descarga, y con temperatura entre 125 y 225 grados Celsius, de acuerdo con la geotermometria + cuarzo + calcita + clorita/esmectita + pirita es tipica de la facies zeolitica, debajo de la cual podria hallarse la facies de epidota-wairakita, con temperaturas mas altas. Las condiciones favorables de la zona permiten recomendar la continuacion de la exploracion en la misma.

  16. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Geothermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equipment

    International Nuclear Information System (INIS)

    Nancy Moller Weare

    2006-01-01

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  17. Seismic monitoring at the geothermal zone of Acoculco, Pue., Mexico; Monitoreo sismico en la zona geotermica de Acoculco, Pue., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lermo, Javier; Antayhua, Yanet; Bernal, Isabel [Universidad Nacional Autonoma de Mexico (UNAM), Instituto de Ingenieria Mexico, D.F. (Mexico); Venegas, Saul; Arredondo, Jesus [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: jles@pumas.iingen.unam.mx

    2009-01-15

    Results are presented of a research project to study seismic activity in the Acoculco geothermal zone, Puebla, Mexico. Geological and geophysical information was collected for the zone and a seismic network composed of seven digital seismographs was installed over four months (August-November 2004). Of the 30 regional earthquakes located by the National Seismological Service, 14 were at the subduction zone, 7 in the intra-plate zone, 6 of cortical type were in the Mexican Volcanic Belt, and 3 had deep origins in the Veracruz and Chiapas regions. Although there were no local earthquakes, probably due to the short monitoring span or lack of currently active zones, velocity models were defined near the springs of Los Azufres and Alcaparrosa, with lineal arrangements of wide-band seismic stations (SPAC) and strata identified in the exploratory well EAC-1, drilled by the Comision Federal de Electricidad. By using the registers of regional earthquakes, the site-effects were estimated on the six temporary seismic stations, whose empirical transfer functions were used to validate a velocities model proposed for the endhoreic basin. The proposed velocity models, both for the endhoreic basin and outside it, enhance the previous interpretations. They confirm the geo-electrical model proposed for the zone is adequate and they provide dynamic conditions for the model, such as propagation velocities of the P and S waves and densities and attenuation. [Spanish] Se presentan los resultados de un proyecto de investigacion para estudiar la actividad sismica de la zona geotermica de Acoculco, Puebla, Mexico. Con este fin se recopilo informacion geologica y geofisica de la zona y se instalo durante cuatro meses (de agosto a noviembre de 2004) una red sismica conformada por siete sismografos digitales. Se registraron 30 sismos regionales que fueron localizados por el Servicio Sismologico Nacional en la zona de subduccion (14), en la zona de intraplaca (7), de tipo cortical del Eje

  18. Geothermal application feasibility study for the New Mexico State University campus. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gunaji, N.N.; Thode, E.F.; Chaturvedi, L.; Walvekar, A.; LaFrance, L.; Swanberg, C.A.; Jiracek, G.R.

    1978-12-01

    The following are covered: a geothermal prospect conceptual study for NMSU campus, geothermal resources on and near NMSU land, present campus heating and cooling system, conceptual design and preliminary cost estimates - alternative systems, economic analysis, and legal and environmental considerations. (MHR)

  19. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  20. Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia

    Science.gov (United States)

    Joseph, Erouscilla P.; Fournier, Nicolas; Lindsay, Jan M.; Robertson, Richard; Beckles, Denise M.

    2013-03-01

    Sulphur Springs is a vigorous, geothermal field associated with the active Soufrière Volcanic Centre in southern Saint Lucia, Lesser Antilles island arc. The 'Sulphur Springs Park' is an important tourist attraction (touted as the 'world's only drive-through volcano') with some of the hot pools being developed into recreational pools. Some 200,000 people visit the park each year. Since 2001, the hydrothermal fluids of Sulphur Springs have been sampled as part of an integrated volcanic monitoring programme for the island. Gas and water samples were analysed to characterise the geochemistry of the hydrothermal system, and to assess the equilibrium state and subsurface temperatures of the reservoir. This has also enabled us, for the first time, to establish baseline data for future geochemical monitoring. The gases are of typical arc-type composition, with N2 excess and low He and Ar content. The dry gas composition is dominated by CO2 (ranging from 601-993 mmol/mol), with deeper magmatic sourced H2S-rich vapour undergoing boiling and redox changes in the geothermal reservoir to emerge with a hydrothermal signature in the fumarolic gases. Fluid contributions from magmatic degassing are also evident, mainly from the moderate to high contents of HCl and deeply-sourced H2S gas, respectively. Sulphur Springs hydrothermal waters have acid-sulphate type compositions (SO4 = 78-4008 mg/L; pH = 3-7), and are of primarily meteoric origin which have been affected by evaporation processes based on the enrichment in both δ18O and δD (δ18O = - 1 to 15‰ and δD = - 9 to 14‰ respectively) in relation to the global meteoric water line (GMWL). These waters are steam-heated water typically formed by absorption of H2S-rich gases in the near surface oxygenated groundwaters. Reservoir temperatures calculated from the evaluation of gas equilibria in the CO2-CH4-H2 system reveal higher temperatures (190 to 300 °C) than those derived from quartz geothermometry (95 to 169 °C), which

  1. Convection of geothermal fluids in the Timanfaya volcanic area, Lanzarote, Canary Islands

    Energy Technology Data Exchange (ETDEWEB)

    Arana, V.; Diez, J.L.; Ortiz, R.; Yuguero, J.

    1984-01-01

    A mathematical model has been derived to study the superficial thermal anomalies to be found in Lanzarote (605 C at 13 m depth) in association with the convection of geothermal fluids. The model is valid for a wide range of conditions, in particular for those found beneath the Timanfaya volcano (active between 1730 and 1736). Geological and geophysical data suggest that the heat source is related to a cylindrical magma body with a radius of 200 +/- 100 m and a top temperature of 850 +/- 100 C at a depth of 4 +/- 1 km. Energy is transported through fractures by magmatic volatiles and/or by water vapor coming from a deeply located water table: in such a convection system, a fluid flow of 10 1/m/sup 2/ day, which corresponds to a thermal flux of 130 W/m/sup 2/, is sufficient to explain the temperature anomalies observed at the surface. The relationships between gas flow and the surface temperatures, as well as the thermal gradients in the conducting fracture are also discussed. 27 references.

  2. Characterization of the paleo-hydrothermal fluids flow in the geothermal province of Limagne. (French Massif Central).

    Science.gov (United States)

    Fréville, K.; Sizaret, S.

    2017-12-01

    Exploitation of the geothermal energy is a prime target to future energy supply. Understanding the nature and the flow of geothermal fluids is a key objective for describe the functioning of current hydrothermal systems. Located in the French Massif Central, the Limagne basin is a tertiary hemi-graben characterized by a high thermal gradient with numerous occurrences of CO2-rich thermo-mineral waters. This basin has potential for high-temperature geothermal energy, expressed by numerous natural high temperature water sources, as well as at Royat and Vichy were the surface temperature of the water can reach 33°C and 27°C, respectively. In order to better localize this potential, the geological evolution has to be deciphered. In this aim we study the flow processes of the paleo-fluids and estimate the direction and the velocity of the hydrothermal flow from the studies of the growth bands of comb quartz grain localized in vein. In a second time, the studies fluids inclusions within the quartz grain are used to characterize the nature of the fluids involved. Preliminary results show that the flow is discontinuous over the time with changes in velocities and directions during the growth of a single quartz grain. Two main flows were identified, i) a relatively fast upward flow at 10-6,-5 m.s-1; ii) a downward flow at about 10-5,-4 m.s-1. The results allow: (i) to discuss the processes controlling the fluids flow in the Limagne basin; and (ii) to suggest to delimitate the areas with high geothermal potential which integrate the flow variation in time.

  3. Lichens as biological monitors in the Los Azufres geothermal field, Michoacan, Mexico; Liquenes como indicadores biologicos en el campo geotermico Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Peralta, Marlene; Chavez Carmona, Arturo [Universidad Michoacana de San Nicolas de Hidalgo, Morelia (Mexico)

    1995-09-01

    The results obtained in the monitoring of the atmospheric emissions of the Los Azufres geothermal field in Michoacan State, Mexico utilizing lichens as monitors of the presence of sulphur and arsenic, at the areas near geothermal sites, both under evaluation and production, are presented. The results are based on symptoms which included: chlorosis, necrosis, brown and reddish spots, loss of adherence to substrate, thalli disintegration and disappearance of sensitive species; and also on the amounts of sulphur and arsenic contained in the lichens thallus. [Espanol] Se presentan los resultados obtenidos en el monitoreo de las emisiones atmosfericas del campo geotermico Los Azufres, Michoacan, Mexico en el que se utilizaron liquenes como indicadores de la presencia de azufre y arsenico, en las areas cercanas a los sitios de pozos geotermicos tanto en evaluacion como en produccion. Los resultados estan basados en sintomas que incluyen clorosis, necrosis, manchas cafes y rojizas, perdida de adherencia al sustrato, desintegracion del talo y desaparicion de especies sensibles; asi como en los contenidos de azufre y arsenico en los talos liquenicos.

  4. Application of ethanol as a geothermal tracer: a field-test in the Los Azufres geothermal field, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tello Hinojosa, Enrique [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Pal Verma, Mahendra [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Suarez Arriaga, Mario C. [Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan (Mexico); Barrera Conzalez, Victor; Sandoval Medina, Fernando [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-12-01

    The thermal decomposition rate of ethanol, rhodamine WT and fluoroscein was determined from laboratory data obtained under conditions of temperature and pressure that simulated a geothermal reservoir. It was found that ethylic alcohol had better thermal stability rhodamine and fluoroscein. Using data obtained from de-ionized water experiments after 168 hours and 200 degree centigrade of temperature, the rhodamine WT and fluoroscein presented a degradation of 99.4% and 99.7%, respectively, while for the ethanol the degradation percentage under the same conditions was only of 44.6%. According to this, ethylic alcohol can be used as a conservative tracer up to about 250 degree centigrade, while rhodamine WT and fluoroscein can be used only at less than 200 degree centigrade, and only where the transit return time is expected to be less than 7 days. Ethanol was used as a conservative tracer in a field test in the southern zone of the Los Azufres geothermal field. The highest concentration was detected in a monitoring well in the steam phase 15 days after the injection, and in the liquid phase, or brine, 34 days after the injection. This suggests that alcohol fractionates preferentially in the steam phase and moves or migrates twice as fast than it does in the liquid phase. The tracer speed can be calculated in 176 m/day in the steam phase and 77.5 m/day in the brine. The ethanol presents good enough characteristics to be used as a tracer in both phases in geothermal environments. [Spanish] Se determino la velocidad de descomposicion termica del etanol, la rodamina y la fluoresceina a partir de datos de laboratorio obtenidos bajo condiciones de presion y de temperatura que simulan las de un yacimiento geotermico. Se encontro que el alcohol etilico presenta una mayor estabilidad termica que la rodamina y la fluoresceina. Empleando los datos obtenidos de experimentos con agua de-ionizada despues de 168 horas y a 200 grados centigrados de temperatura, la rodamina y la

  5. Chemical variation in hydrothermal minerals of the Los Humeros geothermal system, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Serrano, R.G. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico). Insituto de Geofisica

    2002-10-01

    The Los Humeros geothermal system is composed of more than 2200 m of Quaternary altered volcanic rocks and an underlying Cretaceous sedimentary sequence. The low salinity of the fluids discharged at present (Na{sup +} and Cl{sup -} concentrations <500 ppm), and the excess steam, indicate that the reservoir contains a mixture of steam and dilute groundwater. Water-rock equilibrium is not attained. Hydrothermal minerals are present in veinlets, vugs, and replacing primary minerals. Three mineral zones are recognized: 1) a shallow argillic zone (<400 m depth), 2) a propylitic zone (ranging between 500 and 1800 m) and 3) a skarn zone (>1800 m). Petrographic examination of cuttings from five wells and temperature data indicate at least two stages of hydrothermal activity. Temperature is the main factor that affects the chemical composition of chlorite, epidote and biotite. Fe{sup 2+} and Al{sup IV} increase in chlorite with temperature [from 1.4 formula position unit (fpu) to 2.8, and from 0.7 to 2.4 fpu, respectively]. The pistacite content of epidote varies from 18 to 33 mol% in high-temperature regions (>270 {sup o}C) and from 13 to 26 mol% in low-temperature regions (<250 {sup 0}C). Biotite displays a slight increase in Al{sup IV} contents (1.55-2.8) and octahedral occupancy (5.93-6.0 fpu) with temperature. Whole rock composition and variations in oxygen fugacity condition are factors that also affect the concentrations of Fe, Al and Mg in the octahedral sites of chlorite, epidote, biotite and amphiboles. Chemical variations observed in alteration minerals at different depths in the Colapso Central-Xalapazco region could be used as indicator of relict physico-chemical conditions in the reservoir, before the present economic exploitation. (author)

  6. Numerical Study on CO2-Brine-Rock Interaction of Enhanced Geothermal Systems with CO2 as Heat Transmission Fluid

    Directory of Open Access Journals (Sweden)

    Wan Yuyu

    2016-01-01

    Full Text Available Enhanced Geothermal Systems (EGS with CO2 instead of water as heat transmission fluid is an attractive concept for both geothermal resources development and CO2 geological sequestration. Previous studies show that CO2 has lots of favorable properties as heat transmission fluid and also can offer geologic storage of CO2 as an ancillary benefit. However, after CO2 injection into geological formations, chemical reaction between brine and rock can change chemical characteristics of saline and properties of rock such as porosity and permeability. Is this advantage or disadvantage for EGS operating? To answer this question, we have performed chemically reactive transport modeling to investigate fluid-rock interactions and CO2 mineral carbonation of Enhanced Geothermal Systems (EGS site at Desert Peak (Nevada operated with CO2. The simulation results show that (1 injection CO2 can create a core zone fulfilled with CO2 as main working domain for EGS, and (2 CO2 storage can induced self-enhancing alteration of EGS.

  7. Oxygen isotope fine structure and fluid throughput of the Tongonan geothermal field, Philippines

    International Nuclear Information System (INIS)

    Scott, G.L.; Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1986-01-01

    Oxygen isotope ratios for 40 reservoir rocks from the plutonic basement and overlying andesitic rocks, and 14 separated geothermal quartz samples from the volcanics, range from 2.5 to 9.9 per mil. The lowest δ 18 O values (average 2.9 per mil) in diorite cores from wells 401, 407 and 410 are located in the most productive northwest (Mahiao) sector of the field. In the Malitbog sector, the average δ 18 O values for basement rocks are higher (c. 4.6 per mil). Plutonic rock samples from the Mamban (well MN1) sector, located outside the present-day field margin, are only slightly altered (6 per mil) except possibly near the contact zone between the basement and overlying volcanics. The highest cumulative fluid/rock ratios are calculated for the Mahiao sector, whereas Malitbog is possibly a relatively recent extension of the field. Relatively shallow (Bao Formation) quartz has δ 18 O values suggesting past tectonic uplift

  8. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  9. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-19

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.

  10. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas

    International Nuclear Information System (INIS)

    Guo, Qi; Pang, Zhonghe; Wang, Yingchun; Tian, Jiao

    2017-01-01

    High-temperature geothermal systems hold an enormous capacity for generating geothermal energy. The Kangding area is a typical high-temperature geothermal field in the Himalayan Geothermal Belt. Hydrogeochemical, gas geochemical and isotopic investigations were performed to identify and qualify the main hydrogeochemical processes affecting thermal water composition, including mixing and degassing, and then to estimate a reliable reservoir temperature. Nine water samples and four geothermal gas samples were collected and analysed for chemical and isotopic components. The results demonstrate the alkaline deep geothermal water is the mixtures of approximately 75% snow-melt water and 25% magmatic water. It is enriched in Na, K, F, Li and other trace elements, indicating the granite reservoir nature. The shallow geothermal water is the mixtures of approximately 30% upward flow of deep geothermal water and 70% meteoric cold water. High concentrations of Ca, Mg and HCO_3 indicate the limestone reservoir nature. There is no remarkable oxygen isotope shift in the geothermal water since the rapid circulation is difficult to trigger off strong water-rock interaction. CO_2 is the predominant geothermal gas, accounting for more than 97% of total gases in volume percentage. The concentration of CO_2 degassing ranged from 0.4 mol L"−"1 to 0.8 mol L"−"1 via geothermometrical modelling. As a result, the geothermal water pH increased from 6.0 to 9.0, and approximately 36% of the total SiO_2 re-precipitate. The sources of CO_2 are the metamorphism of limestone and magmatic degassing based on the composition of carbon isotope. The appropriate geothermometers of Na-K and Na-Li yield reservoir temperature of 280 °C. The geothermometrical modelling, developed to eliminate the effects of CO_2 degassing, yields temperature of 250 °C. The silica-enthalpy mixing model yields temperature of 270 °C with no steam separation before mixing. - Highlights: • Water and gas

  11. Estimation of the resource and technological prospective of geothermal energy in Mexico (Annexe 3 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Estimacion del recurso y prospectiva tecnologica de la geotermia en Mexico (Anexo 3 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias R, Eduardo; Arellano G, Victor; Torres R, Rodolfo Joaquin [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-08-15

    Due to its individual geologic-structural characteristics, Mexico counts on abundant geothermal resources. At the moment we count on a database that includes 2,332 geothermal manifestations distributed in 27 of the 32 Mexican states, the geothermal resources are classified as high temperature and intermediate or low temperature resources. Those of high temperature can be used for the generation of electrical energy. Those of intermediate to low temperature are more appropriate for direct applications of the geothermal heat. As of today, in Mexico exist four geothermal fields of high temperature that are being exploded for the electrical generation. [Spanish] Debido a sus particulares caracteristicas geologico-estructurales, Mexico cuenta con abundantes recursos geotermicos. Actualmente contamos con una base de datos que incluye 2,332 manifestaciones geotermicas distribuidas en 27 de los 32 estados mexicanos, los recursos geotermicos se clasifican en de alta temperatura y recursos de temperatura intermedia a baja. Los de alta temperatura pueden utilizarse para la generacion de energia electrica. Los de temperatura intermedia a baja son mas apropiados para aplicaciones directas del calor geotermico. Actualmente en Mexico existen cuatro campos geotermicos de alta temperatura que estan siendo explotados para la generacion electrica.

  12. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines

    2018-02-14

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.

  13. Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (São Miguel, Azores)

    Science.gov (United States)

    Carvalho, M. R.; Forjaz, V. H.; Almeida, C.

    2006-08-01

    The Ribeira Grande geothermal field is a water-dominated geothermal system, located within Água de Pau/Fogo Volcano in the central part of the São Miguel Island. This geothermal system is exploited for energy production by wells sustaining two power plants. The wells produce from a formation of pillow lavas divided into different aquifers, with a fairly isothermal zone from 800 to 1300 m in depth, where reservoir temperature reaches 230 to 245 °C. Below the depth of 1300 m there is a slight temperature reversal. The fluid produced has excess enthalpy and, separated at atmospheric pressure, is characterized by mineralization of sodium-chloride type up to 6-7 g/l, the concentration of dissolved silica varies between 450 and 650 mg/l and the pH ranges between 8 and 8.6. The gas phase is dominantly CO 2, at a concentration of 98% of NCG. The composition of the deep geothermal fluid was obtained by computer simulation, using the WATCH program, and was compared with the composition of the bottom-hole samples. The approximations, in this simulation, were considered the single- and multi-step steam separation. The reference temperatures were based on: (i) the measured temperature in wells; (ii) the Na/K geothermometric temperature and (iii) the enthalpy-saturation temperature. According to both the measured and geothermometric temperatures, the deep fluid of the wells has two phases with a steam fraction up to 0.34, at higher well discharges. The measured enthalpy is always greater than the calculated enthalpy. The calcite equilibrium indicates scaling, since the fluid is flashing, around 2.28 mg/l CaCO 3 at the maximum discharge. The geothermal wells exploit three different aquifers, the lower of which is liquid and slightly colder than the upper ones. The intermediate is a two-phase aquifer with a steam fraction up to 0.081. The upper aquifer is probably of steam phase. The main differences between the aquifers are the temperature and boiling; both enthalpy and

  14. Capital cost models for geothermal power plants and fluid transmission systems. [GEOCOST

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.

    1977-09-01

    The GEOCOST computer program is a simulation model for evaluating the economics of developing geothermal resources. The model was found to be both an accurate predictor of geothermal power production facility costs and a valid designer of such facilities. GEOCOST first designs a facility using thermodynamic optimization routines and then estimates costs for the selected design using cost models. Costs generated in this manner appear to correspond closely with detailed cost estimates made by industry planning groups. Through the use of this model, geothermal power production costs can be rapidly and accurately estimated for many alternative sites making the evaluation process much simpler yet more meaningful.

  15. METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES

    Science.gov (United States)

    This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...

  16. First research coordination meeting for the coordinated research programme on the use of isotope techniques in investigating acidic fluids in geothermal exploitation. Report

    International Nuclear Information System (INIS)

    Gerardo-Abaya, J.

    1998-02-01

    Geothermal exploration and development for electrical and non-electrical applications is taking place in more than 36 countries worldwide. Although the technology has fully emerged, there are still hindrances to the full exploitation of the available heat. Most of the high temperature geothermal areas are situated in volcanic environments that produce acidic fluids which are corrosive for wells, as well as pipelines. Incidental drilling in those areas, for lack of better data, cause high economic losses ar a cost of about US D 2 million per well. In addition, a potential natural resource for electricity remains untapped. In realization of the problems associated with with geothermal exploitation and the potential role that isotope techniques could provide for a greater understanding of the complex behavior of geothermal systems, particularly those affected by acidic fluids, the Coordinated Research Programme (CRP) on the Use of Isotope Techniques in Problems Associated with Geothermal Exploitation is implemented in 1997-2000. An understanding of the phenomena will assist the scientific community involved in geothermal development. The information generated from the scientific investigations will be an input to management of the resource as well as to decision-making for monitoring and development of geothermal areas. The First Research Coordination Meeting for this CRP was held on 21-23 October 1997 in the IAEA Headquarters, Vienna, Austria. The results of the current investigations relating to acid fluids in the various geothermal systems were presented by the participants. The report provides the hydrological concept on which research on acid fluids is based. The report includes also the summaries of the researches under the CRP as well as the agreed actions for follow-up work

  17. Research on heat pumps in Mexico operating with geothermal energy and waste heat; Investigacion sobre bombas de calor en Mexico operando con energia geotermica y calor de desecho

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, A; Barragan-Reyes, R.M; Arellano-Gomez, V [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: aggarcia@iie.org.mx

    2008-01-15

    The Instituto de Investigaciones Electricas and the Comision Federal de Electricidad have done research and development (R&D) on heat pumps (HP) in past years. Tested systems include mechanical compression, absorption and heat-transformers. The main R&D aspects on HP are briefly described, and also a more detailed description about three of the main studies is presented: (a) a mechanical compression HP of the water-water type operated with low-pressure geothermal steam at the Los Azufres; Mich., geothermal field, and designed for purification of brine; (b) an absorption HP for cooling and refrigeration operating with ammonia-water and low-enthalpy geothermal energy, which was tested in the Los Azufres and Cerro Prieto, BC, geothermal fields; and (c) a heat-transformer by absorption-Absorption Heat Pump Type II-tested to assess the performance of several ternary solutions as work fluids. Plans exist to install and test a geothermal heat pump at Cerro Prieto or Mexicali, BC. [Spanish] El Instituto de Investigaciones Electricas y la Comision Federal de Electricidad han realizado trabajo de investigacion y desarrollo (I&D) sobre bombas de calor (BC) en el pasado. Los sistemas probados incluyen compresion mecanica, absorcion y transformadores termicos. Este trabajo describe brevemente los principales aspectos de I&D sobre bombas de calor en forma general, y se da una descripcion mas detallada de tres de los principales estudios: (a) una BC por compresion mecanica tipo agua-agua disenada para purificacion de salmueras operando con vapor geotermico de baja presion en el campo geotermico de Los Azufres, Mich.; (b) una BC por absorcion para enfriamiento y refrigeracion operando con amoniaco-agua y energia geotermica de baja entalpia, la cual fue probada en los campos geotermicos de Los Azufres y Cerro Prieto, BC; y (c) un transformador termico por absorcion -llamado Bomba de Calor por Absorcion Tipo II--, el cual fue probado para evaluar el comportamiento de diversas

  18. Mineralogical and micro-thermometric features of the Los Humeros geothermal reservoir, Pue., Mexico; Caracteristicas mineralogicas y microtermometricas del yacimiento geotermico de Los Humeros, Pue., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Georgina; Arellano, Victor M; Aragon, Alfonso [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: gim@iie.org.mx

    2008-07-15

    Studies on many topics have been undertaken during the exploratory and exploitation stages of the development of Los Humeros geothermal field. From a geochemical and mineralogical view-including hydrothermal mineralogy and fluid-inclusion micro-thermometry, features have been reported differing from those observed in other geothermal fields. Sometimes this has led to ambiguous conclusions. Studies of fluid-inclusion micro-thermometry have shown low-salinity and high-temperature fluids, suggesting a slight temperature decrease in the deepest portion associated with a boiling process rather than a cooling process. In 1998, Arellano et al. performed a multi-disciplinary study and proposed the existence of at least two, distinct reservoirs at depth. Mineralogical data from wells drilled at the Colapso Central zone tend to support this idea. However wells drilled in the zone known as Corredor Mastaloya seemingly show evidence of a single reservoir. [Spanish] Durante las etapas de exploracion y explotacion del campo geotermico de Los Humeros se han realizado diversos estudios cubriendo distintos topicos. Desde el punto de vista geoquimico y mineralogico (mineralogia hidrotermal y microtermometria de inclusiones fluidas) se han reportado comportamientos diferentes a los observados en otros campos del mundo, los que en ocasiones han llevado a conclusiones imprecisas. La microtermometria de inclusiones fluidas ha mostrado fluidos poco salinos de alta temperatura, asi como una ligera disminucion de temperatura en la parte profunda la cual se asocia a un proceso de ebullicion mas que a un enfriamiento del sistema. En 1998 Arellano et al realizaron un estudio multidisciplinario proponiendo la existencia de al menos dos reservorios. La informacion mineralogica de pozos perforados en la zona del Colapso Central fortalece esta propuesta. Sin embargo, para pozos localizados en la zona conocida como Corredor Mastaloya se tiene evidencia de lo que parece ser un solo yacimiento.

  19. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  20. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  1. Origin of rainwater acidity near the Los Azufres geothermal field, Mexico

    International Nuclear Information System (INIS)

    Verma, M.P.; Arellano, V.; Quijano, J.L.; Johnson, C.; Gerardo, J.Y.

    2000-01-01

    The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May-September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl - , SO 4 2- and NO 3 - were measured in about 350 samples and found to be generally - , SO 4 2- and delta 34 S also suggests an industrial source for the rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H 2 CO 3 * . Values of alkalinity were found to range from 10 -4 to 10 -6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO 4 2- and NO 3 - are in general not in acidic form (i.e. balanced by Na + Ca 2+ etc. rather than H + ). Sulfate delta 34 S values were about -1.5 per mille in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2 per mille for Guadalajara. The delta 34 S values for H 2 S from the Los Azufres geothermal wells are in the range -3.4 to 0.0 per mille. Thedelta 34 S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of delta 34 S at Los Azufres and Morelia (85km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (Author)

  2. A multi-objective optimization approach for the selection of working fluids of geothermal facilities: Economic, environmental and social aspects.

    Science.gov (United States)

    Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María

    2017-12-01

    The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  4. Summary of the 2010 assessment on medium- to low-temperature geothermal resources in Mexico; Resumen de la evaluacion 2010 de los recursos geotermicos mexicanos de temperatura intermedia a baja

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Eduardo R.; Torres, Rodolfo J.; Martinez Estrella, J. Ignacio; Reyes Picasso, Neftali [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: iglesias@iie.org.mx

    2011-07-15

    In 2003 we published our first assessment of the medium- to low-temperature (T {<=} 200 degrees Celsius) Mexican geothermal resources. The assessment was based on a database of 1,358 geothermal manifestations (surface manifestations, e.g. springs, fumaroles, water wells, etc.) identified at that time. Due to a lack of information on one or more relevant parameters, such as geographical coordinates, reservoir or surface temperatures, types of fluid, etc., that assessment included only about 30% of the geothermal manifestations in the database. Since then our group has increased significantly the amount of information in the database, using field work and data compilation from different sources. We have developed a database linked with a Geographical Information System (GIS). This work presents an updated assessment of the medium- to low-temperature Mexican geothermal resources based on our current database, which includes 2,361 geothermal manifestations. As before, we have relied on the volume method and Montecarlo simulations to estimate geothermal resources and their uncertainties for each identified geothermal system. These geothermal systems very often include more than one geothermal manifestation, generally increasing the reliability of the individual estimations. In all, we estimated the geothermal resources of 918 individual geothermal systems which included 1,797 geothermal manifestations (as before, a significant fraction of the identified manifestations lack relevant information) located in 26 of the 32 Mexican States. In most cases these resources would be classified as inferred resources, according to the Australian Geothermal Code. We then added the inferred thermal-energy statistical distributions of the 918 geothermal systems by Montecarlo simulation, obtaining the total estimated geothermal resources of the 26 Mexican States and its uncertainty. With the resulting statistical distribution, we estimated the total-thermal energy stored in the 918

  5. A geothermal resource in the Puna plateau (Jujuy Province, Argentina): New insights from the geochemistry of thermal fluid discharges

    Science.gov (United States)

    Peralta Arnold, Yesica; Cabassi, Jacopo; Tassi, Franco; Caffe, Pablo; Vaselli, Orlando

    2017-04-01

    Several hydrothermal mineralization and thermal fluid discharges are distributed in the high altitude Puna plateau at the eastern border of the Central Volcanic Zone of the Andes in the Jujuy Province, a region where volcanic explosive activity developed from Oligocene-Miocene to Neogene produced giant calderas and huge ignimbrite deposits. This study presents the geochemical and isotopic composition of thermal fluids discharged from Granada, Vilama, Pairique, Coranzulì and Olaroz zones, which are located between S 22°20'- 23°20' and W 66°- 67°. This aim is to provide insights into the physicochemical features of the deep fluid circulating system in order to have a preliminary indication about the geothermal potential in this area. The occurrence of partially mature Na+-Cl- waters suggests that a deep (>5,000 m b.g.l.) hydrothermal reservoir, hosted within the Paleozoic crystalline basement, represents the main fluid source. Regional tectonics, dominated by S-oriented faulting systems that produced a horst and graben tectonics, as well as NE-, NW- and WE-oriented transverse structures, favour the uprising of the deep-originated fluids, including a significant amount (up to 16%) of mantle He. The dry gas phase mainly consists of CO2 mostly produced from subducted C-bearing organic-rich material. The interaction between meteoric water and Cretaceous, Palaeogene to Miocene sediments at shallow depth gives rise to relatively cold Na+-HCO3-type aquifers. Dissolution of evaporitic surficial deposits (salares), produced by the arid climate of the region, strongly affects the chemistry of the thermal springs in the peripheral zones of the study area. Geothermometry in the Na-K-Ca-Mg system suggests equilibrium temperatures up to 200 °C for the deep aquifer, whereas the H2 geothermometer equilibrates at lower temperatures (from 105 to 155 °C), likely corresponding to those of the shallower aquifer. Although the great depth of the main fluid reservoir represents a

  6. Shallow geothermal investigations into the existence of the Valles Caldera outflow plume near Ponderosa and Jemez Pueblo, north-central, New Mexico

    Science.gov (United States)

    Salaz, Robert Ezekiel

    Geothermal research within the Jemez Mountains spans several decades and is documented in many papers. This study serves to extend the research boundary to the south and east outside of Valles caldera and Canon de San Diego, where the main occurrences of geothermal activity are located. The focus of this investigation is to test for a deep ~900 m, stratigraphically-bound thermal aquifer within the Madera Limestone along the western margin of the Santo Domingo basin transition zone near Ponderosa and Jemez Pueblo, in north-central New Mexico. Numerous springs were sampled for aqueous geochemistry to identify leakage of a deeper geothermal aquifer into shallow aquifers. Wells were sampled for temperature anomalies. In addition, two travertine deposits were analyzed for stable isotope composition and one deposit was dated using U-Series techniques to assess the timing and origin of deposition. This study is important because researchers in other extensional basins have identified reasonably good geothermal reservoirs in deep carbonate aquifers that are similar in geologic setting to the Madera Limestone aquifer of this study. The existence of a deep geothermal aquifer near Ponderosa and Jemez Pueblo, New Mexico could prove to be another prospect for geothermal exploration in the Jemez Mountains. Aqueous geochemistry of springs are plotted on ternary Piper diagrams to help classify similar geochemical trends and group these trends into recognizable patterns. These data indicate calcium carbonate rich waters in the north that may gradationally change to alkaline type waters as they flow south through the study area. Contrasting this data, SiO2 and TDS concentrations show two separate systems that may indicate separate confined aquifers. Two distinct TDS regions are observed, one with higher concentrations (>1000 ppm) shows a decrease from N-S and one with lower concentrations (<600 ppm) shows an increase from N-S. The data indicate that the waters can be classified as

  7. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  8. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    Science.gov (United States)

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  9. Descriptions of therapeutic arthrocenthesis and of synovial fluid in a Nahuatl text from prehispanic Mexico.

    Science.gov (United States)

    Alarcon-Segovia, D

    1980-06-01

    Paracelsus is considered to have been the first to record the viscid quality of the synovial fluid. However, his contemporary Bernardino de Sahagún, a Franciscan friar who came to Mexico shortly after the Spanish conquest, obtained from elderly Aztec Indians who spoke only Nahuatl the descriptions of therapeutic arthrocentesis and of the viscid nature of the synovial fluid. They compared the fluid from the knee joint to the viscid fluid from the leaves of the nopal cactus (Opuntia sp.). We here record their description and confirm the accuracy of their comparison.

  10. Gas geochemistry of Los Humeros geothermal field, Mexico; Geoquimica de gases del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan R, Rosa Maria; Arellano G, Victor M; Nieva G, David; Portugal M, Enrique; Garcia G, Alfonso; Aragon A, Alfonso [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Torres A, Ignasio S [Centro de Investigacion en Energia, Temixco, Morelos (Mexico); Tovar A, Rigoberto [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico)

    1999-12-01

    Gas data of Los Humeros geothermal field were analyzed. A new method, which is based on the Fischer-Tropch reactions and on the combined pyrite-magnetite mineral equilibrium, was used. Reservoir temperature and reservoir excess steam were estimated for the starting stage of the field by using early data taken from producing wells at controlled conditions. The same parameters were also obtained for the present stage by using 1997 gas data. Reservoir temperatures ranged from 275 and 337 Celsius degrees and positive values for reservoir excess steam fractions were obtained for the starting stage. For well H-1 no excess steam was found since this well was fed by the shallower liquid-dominated reservoir. Results for 1997 showed lower scattering compared to early data and the possible occurrence of a heating process in the shallower stratum which could due to exploitation. [Spanish] En este articulo se presenta un analisis de datos de la fase gaseosa producida por pozos productores del campo geotermico de Los Humeros mediante un metodo que considera el equilibrio de la reaccion de Fischer-Tropsh y el equilibrio de minerales pirita-hematia y pirita-magnetita. Este metodo provee la temperatura del yacimiento y el exceso de vapor presente en la descarga total de los pozos. Los resultados se discuten tanto para el estado inicial del yacimiento utilizando los primeros datos de produccion en los que el flujo del pozo estuvo controlado y los obtenidos en 1997 que representan el estado actual del yacimiento. En el estado inicial se estimaron temperaturas de yacimiento de entre 275 y 337 grados Celsius y excesos de vapor positivos, con excepcion del pozo H-1 que se alimenta del estrato somero dominado por liquido. Los resultados obtenidos para 1997 muestran una dispersion menor y la probable ocurrencia de un proceso de calentamiento del estrato somero propiciado por la explotacion.

  11. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  12. The indication of geothermal events by helium and carbon isotopes of hydrothermal fluids in south China

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xumei; Wang, Yanxin; Yuan, Jianfei [National Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2013-07-01

    Helium and carbon isotopes are important indicators for identifying the origin of volatiles dissolved in groundwater. Four thermal springs and another twelve normal springs are hosted by local deep faults in south China, which are considered to have significant connection to deep geothermal activity. Between 4% and 6% mantle He in thermal springs reveals that significant mantle He migration in deep faults can bring a certain amount of energy, along with thermal volatiles, and contribute to thermal spring formation according to {sup 3}He/{sup 4}He. While δ{sup 13}C reveals that dissolved inorganic carbon in thermal springs is from rock metamorphism that occurred in certain deep crust as geothermal activity, which is potentially the main energy source of the thermal springs. (authors)

  13. The indication of geothermal events by helium and carbon isotopes of hydrothermal fluids in south China

    International Nuclear Information System (INIS)

    Mao, Xumei; Wang, Yanxin; Yuan, Jianfei

    2013-01-01

    Helium and carbon isotopes are important indicators for identifying the origin of volatiles dissolved in groundwater. Four thermal springs and another twelve normal springs are hosted by local deep faults in south China, which are considered to have significant connection to deep geothermal activity. Between 4% and 6% mantle He in thermal springs reveals that significant mantle He migration in deep faults can bring a certain amount of energy, along with thermal volatiles, and contribute to thermal spring formation according to 3 He/ 4 He. While δ 13 C reveals that dissolved inorganic carbon in thermal springs is from rock metamorphism that occurred in certain deep crust as geothermal activity, which is potentially the main energy source of the thermal springs. (authors)

  14. Implementation of the BDFGEOTHERM Database (Geothermal Fluids in Switzerland) on Google Earth - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sonney, R.; Vuataz, F.-D.; Cattin, S.

    2008-12-15

    The database BDFGeotherm compiled in 2007 on ACCESS code was modified to improve its availability and attractivity by using Google Earth free software and the CREGE web site. This database allows gathering existing geothermal data, generally widely dispersed and often difficult to reach, towards a user's friendly tool. Downloading the file 'BDFGeotherm.kmz' from the CREGE web site makes possible to visualize a total of 84 geothermal sites from Switzerland and neighbouring areas. Each one is represented with a pinpoint of different colour, for different temperature ranges. A large majority of sites is located in the northern part of the Jura Mountain and in the upper Rhone Valley. General information about water use, geology, flow rate, temperature and mineralization are given in a small window by clicking on the desired pinpoint. Moreover, two links to an Internet address are available for each site in each window, allowing returning to the CREGE web site and providing more details on each sampling point such as: geographical description, reservoir geology, hydraulics, hydrochemistry, isotopes and geothermal parameters. For a limited number of sites, photos and a geological log can be viewed and exported. (author)

  15. Assessment of stream water chemistry and impact of geothermal fluid in the up-Buyuk Menderes Basin, Turkey.

    Science.gov (United States)

    Davraz, Aysen; Aksever, Fatma; Afsin, Mustafa

    2017-12-01

    The discharge of geothermal fluid into the natural water environment may lead to serious damages. In this study, the impact of geothermal waste water on surface water has been investigated in the up-Buyuk Menderes River, Turkey. Thermal return water from district heating and from thermal bath in the Sandıklı region were the most important source of major solutes and trace elements to the up-Buyuk Menderes River and tributaries. The thermal contribution causes a drastic increase in Na, SO 4 ions, EC, and temperature of surface waters. The concentrations of As, Al, B, Fe, Cr, Li, S, P, Pb, U, Mn, and Zn are increasing dramatically downstream of thermal water inputs in the Kufi Creek tributary. In addition to natural thermal water inputs, water quality was impacted by anthropogenic trace and major element inputs from surface waters. The increased of some trace elements (Al, As, B, Cu, Cd, Fe, Mn, P, U) in surface water are related to anthropogenic activities such as agricultural activities, sewage effluents, and stockyards in the study area. Additionally, surface water quality of the up-Buyuk Menderes River and tributaries was evaluated according to standards given by the Environmental Protection Agency of both Turkey and USA. Our study demonstrates the influence of thermal water inputs on water quality of surface waters.

  16. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong

    2016-04-25

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  17. Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.

    Energy Technology Data Exchange (ETDEWEB)

    Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S

    2011-03-03

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

  18. Fluid flow evolution in petroleum reservoirs with a complex diagenetic history: An example from Veracruz, Mexico

    NARCIS (Netherlands)

    Ferket, H.; Swennen, R.; Ortuno-Arzate, S.; Roure, F.

    2006-01-01

    This paper discusses the fluid flow evolution in the Veracruz petroleum province of eastern Mexico based on results of an integrated diagenetic, sedimentological and structural analysis. The area progressively changed from passive foreland towards an active fold-and-thrust belt into a passive belt

  19. Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location, Location, Location

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Paul [Gas Equipment Engineering Corp., Milford, CT (United States); Selman, Nancy [Gas Equipment Engineering Corp., Milford, CT (United States); Volpe, Anthony Della [Gas Equipment Engineering Corp., Milford, CT (United States); Moss, Deborah [Gas Equipment Engineering Corp., Milford, CT (United States); Mobley, Rick [Plasma Energy Services, LLC, Putnam, CT (United States); Dickey, Halley [Turbine Air Systems, Houston, TX (United States); Unruh, Jeffery [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Hitchcock, Chris [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Tanguay, Jasmine [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Larsen, Walker [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Sanyal, Sabir [GeothermEx, Inc., San Pablo, CA (United States); Butler, Steven [GeothermEx, Inc., San Pablo, CA (United States); Stacey, Robert [GeothermEx, Inc., San Pablo, CA (United States); Robertson-Tait, Ann [GeothermEx, Inc., San Pablo, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gutoski, Greg [Fairbanks Morse Engines (FME), Beloit, WI (United States); Fay, Jamie M. [Fort Point Associates, Boston, MA (United States); Stitzer, John T. [Fort Point Associates, Boston, MA (United States); Oglesby, Ken [Impact Technologies LLC, Tulsa, OK (United States)

    2012-04-30

    Substantial unexploited opportunity exists for the US, and the world, in Enhanced Geothermal Systems (EGS). As a result of US DOE investment, new drilling technology, new power generation equipment and cycles enable meaningful power production, in a compact and modular fashion; at lower and lower top side EGS working fluid temperatures and in a broader range of geologies and geographies. This cost analysis effort supports the expansion of Enhanced Geothermal Systems (EGS), furthering DOE strategic themes of energy security and sub goal of energy diversity; reducing the Nation's dependence on foreign oil while improving the environment.

  20. New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cunniff, R.A.; Ferguson, E.; Archey, J.

    1981-07-01

    A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

  1. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    Science.gov (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  2. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    Science.gov (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  3. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Alan D. [GreenFire Energy, Emeryville, CA (United States)

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  4. A Brief History With Lessons Learned From The Hot Dry Rock Geothermal Energy Program At Fenton Hill, New Mexico, USA

    Science.gov (United States)

    Kelkar, S.; Woldegabriel, G. W.; Rehfeldt, K. R.

    2009-12-01

    Important lessons were learned that continue to be relevant today from the world’s first successful demonstration of a Hot Dry Rock (HDR) system for extracting underground geothermal energy conducted at Fenton Hill, New Mexico. This experiment, conducted in hot, low-permeability, low-water context, crystalline basement rock was fundamentally different from the Enhanced Geothermal Systems (EGS) development currently underway at several sites in the U.S. and world. The HDR concept was developed in 1970’s at Los Alamos National Laboratory (LANL). Two HDR reservoirs with two wells each were created and tested at the Fenton Hill site. In spite of its proximity to the Valles caldera and the Rio Grande rift, geological information and heat-flow data were used successfully to select the Fenton Hill experimental site within a block of intact crystalline basement rocks. Deep crystalline basement rocks marginal to active fault/recent volcanic centers were good candidates for HDR systems: these rocks had high heat content, and low matrix permeability leading to low water losses. Reconnaissance surveys indicated significant potential HDR geothermal resources through out the USA. Drilling and completion operations in hot crystalline rocks were challenging requiring further R&D. Hydraulic stimulation activities were carried out successfully in deep, hot crystalline rocks. Logging tools and instruments were developed that could operate successfully in the ~250oC environment. Development of techniques and tools for microseismic data monitoring, analysis, and interpretation was found to be enormously valuable. It was found that the systematic process that should be followed in developing HDR reservoirs is to drill and stimulate the first well, use the microseismic data to locate the target zone, and then complete the additional wells. The largest fraction of the flow impedance was found to be near the production well. Combined interpretation of the pressure testing, microseismic

  5. Applied Horizontal and Vertical Geothermal Heat Exchanger with Heat Pump System to Provide Air Conditioning for an Academic Facility in Mexico

    Directory of Open Access Journals (Sweden)

    Daniel Alcantar Martínez

    2017-07-01

    Full Text Available At present in Mexico, the renewable energy has become more important due to the great dependence of the country for fossil fuels. Within the several applications of renewable energy, there are the geothermal applications for the air conditioning of spaces. This technology employs heat pumps that interexchange heat with the ground. This technology is relatively young in Mexico, leaving a large field for study and application throughout the country. In this way, to calculate the correct sizing of geothermal heat exchangers, it is necessary to calculate the thermal loads of the complex in which this technology of geothermal heat pumps using vertical heat exchangers type U will be installed, to perform the calculation of thermal loads Autodesk Revit® software was used, with which was possible to make a virtual model in detail of the botanical center that is located in Morelia, Michoacán, Mexico and belongs to the Universidad Michoacana de San Nicolás de Hidalgo (UMNSH. This study shows the results of the analysis of the installations and determination of the thermal loads of the complex due to this type of infrastructure. By obtaining the values of the thermal loads, the dimensioning of the heat exchanger was archived, which will have to be installed to cover the thermal requirement of this system and his installation, in addition to the selection of the heat pump. This complex of 2 levels, where, on the first floor there are cubicles and laboratories and on the second floor, several common areas. The design was developed in detail in Autodesk Revit 2015. After obtaining the thermal loads, the GLHEPro software was used for dimensioning the Vertical heat exchangers with the number and depth of the exchangers was obtained. the GLD 2014 software was used for dimensioning the Horizontal heat exchangers with the number and depth of the exchangers was obtained.

  6. An application of neural network in geophysical prospecting. Electrical resistivity at Las Virgenes geothermal field, Baja California Sur, Mexico; Una aplicacion de las redes neuronales a la prospeccion geofisica. Resistividad electrica en las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palma Guzman, Sergio Hugo [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2000-12-01

    The technology of the neural network is presented with geophysical focus in the Las Virgenes geothermal field, Baja California Sur, Mexico. The results obtained when extrapolating the associative data of the prospecting magnetoteluria and Vertical Electric Sounding, on the area of the geothermal wells to the rest of the area, allows to classify zones of interest for the geothermal exploitation. Also, the use of these associative parameters with the information of the stabilized temperature of the wells, they allow to predict temperatures for the rest of the area. [Spanish] Se presenta una aplicacion de la tecnologia de las redes neuronales con enfoque geofisico en el campo geotermico de Las Virgenes, Baja California Sur, Mexico. Los resultados obtenidos al extrapolar los datos asociativos de las prospecciones geoelectricas de magnetoteluria y sondeos electricos verticales, en la zona de los pozos geotermicos al resto del area, permiten clasificar zonas de interes para la explotacion geotermica. Tambien, la utilizacion de estos parametros asociativos con la informacion de la temperatura estabilizada de los pozos, permiten predecir temperaturas para la misma area.

  7. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  8. Ultra high-temperature solids-free insulating packer fluid for oil and gas production, steam injection and geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, R.G.; Harrison, D.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Uncontrolled heat transfer from production/injection tubing during thermal oil recovery via steam injection can be detrimental to the integrity of the casing and to the quality of the steam that is injected into the reservoir. An aqueous-based insulating packer fluid (IPF) was introduced to improve the steam injection process by controlling the total heat loss from the produced fluids to the surrounding wellbore, internal annuli and formation. The IPF was developed for elevated temperature environments through extensive investigation across multidisciplinary technology. The innovative system delivers performance beyond conventional systems of comparable thermal conductivity. Its density range and conductivity measurements were presented in this paper. High-temperature static aging tests showed superior gel integrity without any phase separation after exposure to temperatures higher than 260 degrees C. The new fluids are hydrate inhibitive, non-corrosive and pass oil and grease testing. They are considered to be environmentally sound by Gulf of Mexico standards. It was concluded that the new ultra high-performance insulating packer fluid (HTIPF) reduced the heat loss significantly by both conduction and convection. Heat transfer within the aqueous-based HTIPF was 97 per cent less than that of pure water. It was concluded that the HTIPF can be substituted for conventional packer fluids without compromising any well control issues. 21 refs., 1 tab., 4 figs.

  9. Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Callender, J.F.

    1985-04-01

    A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

  10. Evaluation of saponite and saponite/sepiolite fluids for geothermal drilling

    Energy Technology Data Exchange (ETDEWEB)

    Guven, N.; Panfil, D.J.; Carney, L.L. (Texas Tech Univ., Lubbock, TX (USA). Dept. of Geosciences)

    1991-02-01

    The rheology and other properties of drilling fluids containing saponite and a saponite-sepiolite mixture as the main vicosifier have been systematically evaluated in the temperature range of 300-600{degree}F under appropriate confining pressures up to 16,000 psi. Saponite represents the magnesium analog of the clay mineral montmorillonite, which is the main constituent in conventional bentonite-based fluids. The fluid with 6% saponite exhibits a prominent viscosity enhancement at temperatures above 250{degree}F. This viscosity enhancement is easily controlled by salts and hydroxides of Na and K. The addition of Na-polyacrylates (low- and high-molecular weight polymers) eliminates the viscosity anomaly of pure saponite fluids. These polymers also increase the filtration control of saponite. The anomalous viscosity enhancement of saponite is significantly reduced by the addition of sepiolite (a clay mineral with a fibrous morphology). 12 refs., 31 figs., 26 tabs.

  11. Radon-222 as an indicator of geothermal reservoirs behaviour

    International Nuclear Information System (INIS)

    Segovia, N.; De La Cruz-Reyna, S.; Mena, M.; Seidel, J.L.; Monnin, M.

    1991-01-01

    Radon-222 concentration in soils at shallow depth was measured at the ''Los Azufres'' geothermal field, Michoacan State, Mexico, in order to observe possible temporal variations in relation to the peculiar conditions of the area. A four years' survey is reported using the SSNTD technique. The data obtained indicate the feasibility of the technique for this type of investigation and illustrate the role of Radon-222 as a tracer of pore fluids motion in the substratum. (author)

  12. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001

    Energy Technology Data Exchange (ETDEWEB)

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-02-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

  13. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001; FINAL

    International Nuclear Information System (INIS)

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-01-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well

  14. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  15. Free-convective flow of fluid in a thin porous contour and geothermal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Magomedbekov Kh.G.; Ramazanov, M.M.; Vagabov, M.V.

    1996-01-24

    The problem of free convection in a thin porous contour, placed in uniform impermeable massif is considered. The approximate analitical solution of conjugate problem is obtained. The critical Rayleigh number is determined, by exceeding of which the steady fluid circulation in an annulus is established. The computations of abnormal heat flow near surface are carried out, stipulated by thermoconvection in a contour.

  16. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  17. Fracture Network and Fluid Flow Imaging for Enhanced Geothermal Systems Applications from Multi-Dimensional Electrical Resistivity Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wannamaker, Philip E. [Univ. of Utah, Salt Lake City, UT (United States)

    2016-03-26

    We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity model based upon the finite element method. Hexahedral edge finite elements are implemented to accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate topographic variations. All matrices are reduced and solved using direct solution modules which avoids ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the finite element system and PLASMA for the parameter step estimate. Large model parameterizations can be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward problem and jacobians has been checked by comparison to integral equations results and by limiting asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most capable yet for forming 3D images of earth resistivity structure and their implications for geothermal fluids and pathways.

  18. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  19. Geochemical and isotopic features of geothermal fluids around the Sea of Marmara, NW Turkey

    Science.gov (United States)

    Italiano, Francesco; Woith, Heiko; Seyis, Cemil; Pizzino, Luca; Sciarra, Alessandra

    2016-04-01

    Earthquake processes provoke modifications of the crust affecting the fluid regime with changes in water level in wells, in temperature and/or chemical composition of groundwaters, in the flow-rate of gas discharges and in their chemical and isotopic composition. In the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417) the relationship between fluids and seismogenesis has been approached collecting geochemical data of local significance and evaluating them in geochemical interpretative models of fluids circulation and interactions as well as defining their behaviour over a seismic-prone area. During three fluid sampling campaigns in 2013, 2014, and 2015 a suite of 120 gas samples were collected from 72 thermal and mineral water springs/wells in the wider Marmara region along the Northern and Southern branches of the North Anatolian Fault Zone (NAFZ). Bubbling gases were collected if available, in all other cases the gas phase was extracted from water samples collected on that purpose. Gas samples were analyzed for the main chemical composition as well as their isotopic composition (He and C). The results highlight that the vented gases are a binary mixture of two end-members having nitrogen and carbon dioxide as main components. The geochemical features of the gas phase are the result of several processes that have modified their pristine composition. Atmospheric and deep-originated volatiles mix at variable extents and interact with cold and hot groundwaters. CO2 is normally the main gas species. But it's concentration may decrease due to gas-water interactions (GWI) increasing the relative concentration of N2 and other less soluble gases. A high CO2 content indicates minor interactions. Thus, the easier and faster the pathways are from the deep layers toward the Earth's surface, the lower are the interactions. The volatiles keep

  20. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  1. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    Science.gov (United States)

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  2. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  3. Quaternary tectonics from seismic interpretation and its potential relation with deep geothermal fluids in the Marche (Central Italy).

    Science.gov (United States)

    Chicco, Jessica; Invernizzi, Chiara; Pierantoni, Pietro Paolo; Costa, Mario

    2017-04-01

    Knowledge of the structural features is fundamental in evaluating geothermal exchange potential and in modelling geothermal systems. In particular, faults and fractures play an important role for the circulation of fluids in the crust, and structural setting can influence groundwater flow, its regime, chemistry and electrical conductivity. In this context, data coming from accurate studies of groundwater physical properties in the Marche region (Central Italy), concerning electrical conductivity above all, revealed some anomalies in several localities that could be ascribed to a strong structural control. Data acquisition and interpretation of some SW-NE seismic reflection profiles crossing the Apennine chain to the Adriatic sea and kindly provided by ENI S.p.A, highlight important deep Plio-Quaternary structures connected with minor surface ones and to hydrogeological conditions. Seismic profiles interpretation allowed to reconstruct the structural setting and to identify the recent evolution of the Apennine Marche sector in more detail with respect to what is already known. In fact, some high angle structures affecting the whole sedimentary sequence and routing at high depth were labelled. These are NW-SE sub-parallel transpressive structures bounded by SW and NE-dipping high-angle reverse faults reaching > 10 km depth (positive flower structures), and probably involving the upper crust basement. Three main alignments were identified from W to the coast line. In some cases, flower nucleation gives rise to the lifting and counter-clockwise rotation of the Pre-Pliocene substratum blocks, with the upwelling and outcropping of Upper Miocene (Messinian) evaporite deposits along the axial zone of the transpressive structural highs. Noting the analyses of groundwater properties coming from wells placed in proximity of these structures or located along the analysed seismic profiles, anomalies in electrical conductivity are relevant. The activity of the deep rooting

  4. A preliminary interpretation of gas composition in the CP IV sector wells, Cerro Prieto geothermal field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor M; Portugal Marin, Enrique [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Morelos (Mexico)]. E-mail: rmb@iie.org.mx; Perez Hernandez, Alfredo; Rodriguez Rodriguez, Marco Helio; Leon Vivar, Jesus de [Comision Federal de Electricidad, Residencia General Cerro Prieto, B.C. (Mexico)

    2007-07-15

    To increase the electrical generation capacity of the Cerro Prieto geothermal field from 620 MW to 720 MW, the Cerro Prieto IV (CP IV) sector of the field was developed in the NE portion of the exploited field. Fourteen new wells have been drilled there since 2000. The wells in CP IV zone produce two-phase fluids at wellhead with heterogeneous steam fraction characteristics: at the central zone and towards the NW, the wells are liquid-dominated while those towards the E and S produce a relatively high steam fraction. This work studies the gas compositions of produced fluids to obtain reservoir parameters such as temperature and steam fraction and identify different sources of fluids in the wells. A method was used based on the Fischer Tropsch reaction and H{sub 2}S equilibria with pyrite-pyrrhotite as a mineral buffer (FT-HSH3). The results for the natural state showed the presence of fluids with reservoir temperatures from 275 to 310 degrees Celsius and excess steam values from -1 to 50%. Data are aligned in a FT-HSH3 trend, suggesting that the well discharges consist of a mixture in different proportions of the two end members. One seems to be a liquid with a temperature of over 300 degrees Celsius with negative or negligible excess steam. The other seems to be a two-phase fluid with a temperature of about 275 degrees Celsius and an excess steam fraction of about 0.5. According to the data for single wells and depending on the production conditions of the wells, reservoir fluid mixtures could occur in different proportions of liquid and steam. Data for 2005 that included wells drilled after 2000 suggest the presence of a steam phase in the reservoir. The steam could be generated with the boiling of deep reservoir fluid from a pressure drop. The mixing trend obtained for the natural state was also seen for 2005 data but lower temperatures (from 265 to 295 degrees Celsius) were obtained compared with those for natural conditions. The entry of lower

  5. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten

    2007-11-01

    This paper summarizes our research to date into operatingEGS with CO2. Our modeling studies indicate that CO2 would achieve morefavorable heat extraction than aqueous fluids. The peculiarthermophysicalproperties of CO2 give rise to unusual features in the dependence ofenergy recovery on thermodynamic conditions and time. Preliminarygeochemical studies suggest that CO2 may avoid unfavorable rock-fluidinteractions that have been encountered in water-basedsystems. To morefully evaluate the potential of EGS with CO2 will require an integratedresearch programme of model development, and laboratory and fieldstudies.

  6. Mexico.

    Science.gov (United States)

    Semaan, Leslie

    The text explores Mexico's history, geography, art, religion, and lifestyles in the context of its complex economy. The text focuses on Mexico's economy and reasons for its current situation. Part I of this teaching unit includes: Teacher Overview, Why Study Mexico, Mexico Fact Sheet, Map of Mexico, the Land and Climate, History, Government,…

  7. Geothermal power plants around the world. A sourcebook on the production of electricity from geothermal energy, draft of Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1979-02-01

    This report constitutes a consolidation and a condensation of several individual topical reports dealing with the geothermal electric power stations around the world. An introduction is given to various types of energy conversion systems for use with geothermal resouces. Power plant performance and operating factors are defined and discussed. Existing geothermal plants in the following countries are covered: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, the Philippines, Turkey, the Union of Soviet Socialist Republics, and the United States. In each case, the geological setting is outlined, the geothermal fluid characteristics are given, the gathering system, energy conversion system, and fluid disposal method are described, and the environmental impact is discussed. In some cases the economics of power generation are also presented. Plans for future usage of geothermal energy are described for the above-mentioned countries and the following additional ones: the Azores (Portugal), Chile, Costa Rica, Guatemala, Honduras, Indonesia, Kenya, Nicaragua, and Panama. Technical data is presented in twenty-two tables; forty-one figures, including eleven photographs, are also included to illustrate the text. A comprehensive list of references is provided for the reader who wishes to make an in-depth study of any of the topics mentioned.

  8. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  9. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H. II; Polka, R.; Schoenmackers, R.

    1995-12-04

    Aquaculture, the farming and husbandry of freshwater and marine organisms, is the newest and fastest growing US agricultural sector. In New Mexico, low winter temperatures and limited freshwater sources narrow culture production possibilities; however, it has long been recognized that the state has abundant supplies of both saline and geothermal ground waters. The purpose of this project was to demonstrate the achievable energy savings and value enhancement of the byproduct geothermal energy by cascading fluids for the production of commercial aquaculture species. Specifically the project involved evaluating the heating systems performance in terms of heating budget for the geothermal assist, determine the total quantity of water used for culture and heating, amount of geothermal byproduct heat extracted, and ability of the system to maintain culture water temperatures during critical heating periods of the year. In addition, an analysis was conducted to determine the compatibility of this new system with existing greenhouse heating requirements.

  10. Evaluation of the energy potential, biogenesis and essential characteristics of the geothermal submarine systems in Mexico; Evaluacion del potencial, biogenesis y caracteristicas esenciales de los sistemas geotermicos submarinos en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Arriaga, Mario Cesar [Universidad Michoacana de San Nicolas Hidalgo, Morelia, Michoacan (Mexico)

    2004-12-01

    Geothermal energy in Mexico embraces both near-surface traditional reservoirs located between 500 and 3000 meters depth, and deep geothermal resources over 3000 meters in depth. Non-traditional geothermal energy sources in Mexico include the deep portions and boundaries of traditional hydrothermal reservoirs, systems in hot dry or wet rock, geo-pressured reservoirs in the Gulf of Mexico and hydrothermal submarine systems mainly located close to the northern Mexican coast of the Pacific Ocean. Deep submarine energy is related to the existence of hydrothermal vents emerging in many places along the oceanic spreading centers between tectonic plates. These systems have a total length of about 65,000 km in the Earth's oceanic crust. There are two kinds of ocean systems in the Gulf of California: deep resources, located along the rifts between tectonic plates of oceanic crust over 2000 m below sea level, and shallow resources near continental platforms at 20-50 m depth. The shallow, submarine heat is related to faults and fractures in the sea bottom close to some coasts. This type of shallow, sub-sea system is found offshore at Punta Banda in Ensenada, Baja California. The preliminary energy potential of such reservoirs is estimated at an average of 1120 MWt per cubic kilometer of sub-sea rock. The specific chemical characteristics of the submarine hydrothermal waters found in those systems indicate that water-oceanic rock interactions occur under high-temperature and high-pressure conditions. At the same time, submarine geothermal energy supports rich biological communities at depths where living organisms find no sunlight for photosynthesis. Recent research suggests that possible locations for the synthesis of chemical needed for the origin of life include submarine hydrothermal systems. [Spanish] La energia geotermica en Mexico abarca todos los tipos de sistemas conocidos. Desde los grandes reservorios tradicionales, localizados entre 500 y 3000 metros de

  11. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  12. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  13. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  14. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  15. Structural Controls on Helium, Nitrogen and Carbon Isotope Signatures in Geothermal Fluids Along the Liquiñe-Ofqui Fault System, Southern Chile.

    Science.gov (United States)

    Tardani, D.; Reich, M.; Roulleau, E.; Sano, Y.; Takahata, N.; Perez-Flores, P.; Sanchez-Alfaro, P.; Cembrano, J. M.; Arancibia, G.

    2016-12-01

    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are spatially controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, d13C-CO2 and d15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), d13C-CO2 values (-7.44‰ to -49.41‰) and d15N values (0.02‰to 4.93‰). The regional variations in 3He/4He, d13C-CO2 and d15N values are consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are controlled by the regional faults distribution. Two samples associated with the northern transtensional termination of the LOFS are the only datapoints showing pure MORB-like helium signatures. Whereas, towards the south the mantle-derived helium mixed with radiogenic component derived from magmatic assimilation of 4He-rich country rocks or contamination during the passage of the fluids through the upper crust. The degree of 4He contamination is related with the faults controlling the occurrence of volcanic and geothermal systems, with the most contaminated values associated with NW-striking structures. This is confirmed by d15N values that show increased mixing with crustal sediments and meteoric waters along NW faults (AFLS), while d13

  16. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  17. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  18. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  19. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  20. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  1. Engineering and economic analysis for the utilization of geothermal fluids in a cane sugar processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Humme, J.T.; Tanaka, M.T.; Yokota, M.H.; Furumoto, A.S.

    1979-07-01

    The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from the binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.

  2. Chemical changes in well fluids from the Los Humeros geothermal field: Evidences for deep recharge; Cambios quimicos en fluidos de pozos del campo geotermico de Los Humeros: Evidencia de recarga profunda

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor Manuel [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: rmb@iie.org.mx; Flores Armenta, Magaly [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Tovar Aguado, Rigoberto [Comision Federal de Electricidad (Mexico)

    2008-07-15

    Fluid (water and steam) chemical changes over time were studied in 20 wells in the Los Humeros, Mexico, geothermal field for the purpose of correlating such changes with physical processes occurring in the reservoir due to exploitation. Most wells (except well H-1) produce high-enthalpy fluids with almost no liquid, making gas geochemistry important in this field. Liquid-phase studies include fluid classification, determination of water-rock equilibrium state, and reservoir-temperature estimates. Changes in gas composition through time were studied using the Fischer-Tropsch (FT) reaction and the combined balance pyrite-hematite-magnetite (HSH2) as the buffer controlling H{sub 2}S fluid concentration. Data for most wells from 1987-1995 and 2000-2005 indicate the presence of deeper-fluid recharge, with maximum temperatures occurring in 1994-95 and 2005. The estimated temperature in well H-1 in 1994 was 305 degrees Celsius and the estimated temperature in well H-7 was 338 degrees Celsius in 1995. Temperature estimations from 2005 data were 222 degrees Celsius in well H-1D and 350 degrees Celsius in well H-7. These results are considered caused by the entrance of deeper fluids due to the increase of secondary permeability, which in turn is related to the seismicity increase in the zone. At the same time, re-injection returns in the steam phase were identified in well discharges during 1995-2000 by means of the FT-HSH2 diagram. [Spanish] Se realizo un estudio de los cambios quimicos ocurridos en fluidos (liquido y vapor) de veinte pozos del campo geotermico de Los Humeros, Pue., Mexico, con objeto de investigar la ocurrencia de procesos del yacimiento relacionados con la explotacion. La mayoria de los pozos (excepto el pozo H-1) se caracterizan por producir descargas de alta entalpia con escasa produccion de liquido, por lo que en este campo la geoquimica de gases juega un papel importante. El estudio de la fase liquida incluyo la clasificacion de los fluidos, la

  3. DYNAMIC MIXING MODEL OF THE CHIGNAHUAPAN THERMAL SPRING IN THE GEOTHERMAL ZONE OF THE ACOCULCO CALDERA, PUEBLA, MEXICO

    Science.gov (United States)

    Gutierrez-Cirlos, A.; Torres-Rodriguez, V.

    2009-12-01

    The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.

  4. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  5. Panel discussion on exploitation of geothermal resources in thermal zones

    Energy Technology Data Exchange (ETDEWEB)

    Viramonte, J G; Mange, J; Stefani, G

    1978-03-01

    The topics discussed include the major known geothermal resources, varying ways of exploiting geothermal resources, technical and economic difficulties in the exploitation, the place of geothermal energy in the total energy policy of a given country, advanced exploration techniques, and indications of needed areas of study. The panelists represented most of the South American countries, Mexico, and Italy. (JSR)

  6. Seismologic study of Los Hum eros geothermal field, Pueblo, Mexico. Part I: Seismicity, source mechanisms and stress distribution; Estudio sismologico del campo geotermico de Los Humeros, Puebla, Mexico. Parte I: Sismicidad, mecanismos de fuente y distribucion de esfuerzos

    Energy Technology Data Exchange (ETDEWEB)

    Lermo, Javier; Antayhua, Yanet [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico)]. E-Mail: jles@pumas.iingen.unam.mx; Quintanar, Luis [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico); Lorenzo, Cecilia [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad, Michoacan (Mexico)

    2008-01-15

    The distribution of earthquakes at the surface and at depth in the Los Humeros geothermal field, Puebla (Mexico), is analyzed from 1997-2004. Data for 95 earthquakes were registered at more than five permanent and temporary stations installed by the Comision Federal de Electricidad and the Instituto de Ingenieria of the Universidad Nacional Autonoma de Mexico. The duration magnitudes of the quakes are equal to or lower than 3.6 Md and the focal depths do not exceed 4.0 km. Simple focal mechanisms and moment tensor inversions were made, and the number of earthquakes registered by two stations of the permanent network (numbers S05, S06) was compared with water-injection and steam-production volumes over a certain period. The results at the surface and at depth show seismic activity occurring in the northern zone of the field around injection wells I29 (well H-29) and I38 (well H-38); whereas, the simple focal mechanisms and moment tensors demonstrate stresses of heterogeneous origin, suggesting that part of the seismic activity in Los Humeros is probably induced, mainly by injecting water. [Spanish] Se analiza la distribucion en superficie y en profundidad de los sismos ocurridos en el campo geotermico de Los Humeros, Puebla (Mexico), durante el periodo 1997-2004. Los datos corresponden a 95 sismos registrados por mas de cinco estaciones permanentes y temporales instaladas por la Comision Federal de Electricidad y el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico, cuyas magnitudes de duracion son menores o iguales a 3.6 Md y profundidades focales que no sobrepasan los 4.0 km. Asimismo, se realizaron mecanismos focales simples y de inversion de tensor de momento, y se comparo el numero de sismos registrados por dos estaciones de la red permanente (numeros S05, S06) con la inyeccion de agua y la produccion de vapor durante cierto tiempo. Los resultados en superficie y en profundidad muestran actividad sismica en la zona norte del campo, alrededor

  7. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  8. Geochemistry of thermal fluids in NW Honduras: New perspectives for exploitation of geothermal areas in the southern Sula graben

    Science.gov (United States)

    Capaccioni, Bruno; Franco, Tassi; Alberto, Renzulli; Orlando, Vaselli; Marco, Menichetti; Salvatore, Inguaggiato

    2014-06-01

    The results of a geochemical survey on thermal waters and, for the first time for this site, gas discharges in five geothermal sites (Azacualpa "La Cueva", Río Ulua, Río Gualcarque, El Olivar and Laguna de Agua Caliente) in NW Honduras are here presented and discussed. El Olivar and Laguna de Agua Caliente, in the southern part of the Sula graben are very close to a Quaternary basaltic field, whereas Azacualpa "La Cueva", Río Ulua and Río Gualcarque, located to the southwest of the Yojoa Lake, direcly emerge from the Cretaceous limestone deposits. The measured temperatures range between 37.5 and 104.8 °C. "Mature", alkaline, Na-SO4 thermal waters discharge from Azacualpa "La Cueva", while those from El Olivar and Laguna de Agua Caliente are "immature" and show a Na-HCO3 composition. Chemical equilibria of waters and gases from the Azacualpa "La Cueva" thermal springs indicate temperatures ranging from 150 to 200 °C. Conversely, gas discharges from El Olivar and Laguna de Agua Caliente have attained a partial chemical equilibrium in the liquid phase at slightly higher temperatures (200-250 °C), although gas-gas faster reactions involving CO seem to be adjusted in an isothermally separated vapor phase. Unlike Azacualpa, SiO2 geothermometer at El Olivar and Laguna de Agua Caliente indicates equilibrium temperatures for the liquid phase much lower than those calculated for the gas phase (≤ 120 °C). We conclude that thermal waters from the Azacualpa area likely represent the direct emergence of a water dominated reservoir having temperatures ≤ 150-200 °C. By contrast, at El Olivar and Laguna de Agua Caliente hot springs are supplied by a boiling shallow aquifer fed by a vapor phase rising from a steam-dominated zone. The above geochemical model is consistent with a geothermal reservoir hosted within the Cretaceous carbonate sequences of the Yojoa Group in the whole investigated sites. The reservoir extensively crops out in the Azacualpa area whereas the

  9. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  10. Synthesis of gravity, magnetic and thermal studies at the Las Tres Virgenes geothermal zone, Baja California Sur, Mexico. Sintesis de los estudios de gravimetria, magnetometria y termometria en la zona geotermica de Las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Estrada, Gerardo (Departamento de Exploracion, Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)); Gonzalez Lopez, Macario (Residencia General de Cerro Prieto, Mexicali (Mexico))

    1998-01-15

    Las Tres Virgenes geothermal zone is located in the NE-SW central sector of a sigmoidal basin that regionally has a NW-SE trend. In the local deepest zone there is a NE-SE granodioritic basement horst acting as hydrologic barrier, that makes the fluids flow up. After moving in a direction parallel to the local horst, waters continue its regional SE-NW movement controlled by regional tectonics. The flanks of the granodioritic basement horst, and local N-S faulting act as fluid paths in the hydrothermal zone, but regional NW-SE regional faults determine the general flow direction. Both regional and local tectonics show magnetic evidences of the emplacement of magmatic bodies of intermediate to basic composition. Those along NW-SE trends are more noticeable but we consider they are not the present day heat source. Intermediate magmatism along NE-SW local trend seems to be less extensive but it is younger, so, we consider it constitutes the heat source of the hydrothermal system. Thermal data suggest that the heat source is located below the volcanic chain toward the S or SW of the wells, phenomena related with the general displacement of magmatism from NE to SW along the volcanic chain. However, recent intensive faulting permits a higher permeability in the northern sector in which there are slightly smaller temperatures but at shallower depths and with higher flow rates.

  11. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes

    Science.gov (United States)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego

    2017-07-01

    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process

  12. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  13. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    Science.gov (United States)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  14. Initial thermal state of the Los Humeros, Puebla, Mexico, geothermal field; Estado termico inicial del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, Alfonso [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: aggarcia@iie.org.mx

    2009-01-15

    The initial temperatures field is presented for 40 wells in the Los Humeros geothermal reservoir, along with an elevation curve based on the formation temperature or the most probable reservoir temperature. Stabilized temperatures were estimated using the Radial Spherical Heat Flow method, chosen over the Horner method based on the numerical simulation of the circulation and stop processes of well H-26. In this well, the last temperature log series was reproduced, considering circulation losses. The temperatures were used to produce isothermal curves over three geological sections of the field, which represent the initial distribution of temperatures in the reservoir and show the thermal characteristics and the relationships among thermal anomalies and faults in the reservoir. The elevation curve plotted against the initial temperature of the formation was generated based on detection of the main feed zones at each well, which in turn was developed using detailed analyses of diverse information, such as temperature logs, circulation losses, lithology, well completion, and heat velocities. Based on the results, two groups of wells may be distinguished: one between 1000 and 1600 masl with temperatures from 290 to 330 degrees Celsius, and one between 900 and 0 masl with temperatures from 300 to 400 degrees Celsius. [Spanish] En este trabajo se presenta el campo de temperatura inicial del yacimiento geotermico de Los Humeros y una curva de elevacion contra la temperatura de formacion o temperatura mas probable del yacimiento, obtenida para 40 pozos del campo. Las temperaturas estabilizadas se estimaron mediante el metodo de Flujo de Calor Esferico Radial, y su eleccion sobre las temperaturas del metodo de Horner se soporta con simulacion numerica de los procesos de circulacion y paro del pozo H-26, en la cual la ultima serie de registros se reprodujo considerando perdidas de circulacion. Con estas temperaturas se generaron curvas isotermicas para tres secciones

  15. Initial Pressure Distribution in the Geothermal Field of Los Humeros, Puebla, Mexico; Distribucion de presion inicial en el campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Victor M.; Izquierdo, Georgina; Aragon, Alfonso; Barragan, Rosa Maria; Garcia, Alfonso [Instituto de Investigaciones Electricas (Mexico); Pizano, Arturo [Comision Federal de Electricidad (Mexico)

    2001-09-01

    To obtain the undisturbed distribution of pressures of a field flow, a significant amount of data concerning geological, geochemical, geophysical, and field drilling and engineering aspects, from 42 wells located at the geothermal field of Los Humeros, was analysed. Based on the studied data, models of the field pressure distribution in its initial state were developed. The models reveal the existence of at least two deposits. One of them, the most superficial, is located between 1025 and 1600 meters over the sea level, and from its excellent congruence with the pressure profile of a boiling water column, it may be considered as a predominantly liquid field. The pressure profile of this field is that of a boiling water column, at a temperature of about 300-330 Celsius degrees. The second field is below 850 meters over the sea level and from the known data it reaches at least 100 meters over the sea level. It is considered a low-liquid saturated field. The temperatures of the wells supplied by this field were estimated to be about 300-40 Celsius degrees. [Spanish] Para inferir las distribuciones de presion no perturbadas del fluido del yacimiento, se analizo una considerable cantidad de informacion relacionada con los aspectos geologicos, geoquimicos, geofisicos, de perforacion e ingenieria de yacimientos, correspondiente a 42 pozos del camo geotermico de Los Humeros, Puebla. Sobre la base de los datos analizados se desarrollaron modelos de distribucion de la presion del yacimiento en su estado inicial. Dichos modelos revelan la existencia de, cuando menos, dos yacimientos. El primero y mas superficial se encuentra localizado entre 1,600 y 1,025 metros sobre el nivel del mar (msnm), y dada su excelente concordancia con el perfil de presion correspondiente a una columna de agua en ebullicion, puede afirmarse que se trata de un yacimiento de liquido dominante. El perfil de presion de este yacimiento corresponde a una columna de agua en ebullicion de 300 a 330

  16. Response to exploitation (1982-2002) of the Los Azufres, Michoacan (Mexico) geothermal field. Part II: South Zone; Respuesta a la explotacion (1982-2003) del yacimiento geotermico de Los Azufres, Michoacan (Mexico). Parte II: Zona Sur

    Energy Technology Data Exchange (ETDEWEB)

    Arellano G, Victor Manuel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos, (Mexico); Torres R, Marco Antonio [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Barragan R, Rosa Maria [Instituto de Investigaciones Electricas, Cuernavaca, Morelos, (Mexico); Sandoval M, Fernando [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-06-01

    The paper describes the thermodynamic evolution of fluids in the Los Azufres geothermal field's southern zone reservoir, as a response to exploitation from 1982 to 2002. Thermodynamic conditions for the reservoir fluids were estimated with production data using the WELFLO heat-and-flow well simulator. In the southern zone, initial fluid thermodynamic conditions indicated that compressed liquid, two-phase fluids and vapor occurred in the reservoir, depending on the well depths. The fist response to exploitation consisted in a pressure drop an enthalpy increase. For the long term, the following patterns have been identified: pressure and mass flow-rate drop, boiling, cooling, vapor production and in some wells affected by injection an increase in both pressure and mass flow rate. The isotopic results of well fluids in the southern zone showed the occurrence of two processes. The first, with a positive slope, indicates a mixing of reservoir and injection fluids and mainly affects wells Az-2, Az-16, Az-33, Az-36 and Az-46. The second, with a negative slope, results from the original processes of reservoir steam separation and partial condensation. [Spanish] En este trabajo se presenta un estudio sobre la evolucion termodinamica de los fluidos de la zona sur del yacimiento de Los Azufres, como respuesta a la extraccion e inyeccion de fluidos, desde el inicio de su explotacion en 1982 hasta el ano 2002. Las condiciones termodinamicas de los fluidos del yacimiento se estimaron mediante el simulador de flujo de fluidos y calor en pozos WELFLO, a partir de datos de produccion. Las condiciones termodinamicas iniciales de los fluidos de la zona sur, indicaron la existencia de liquido comprimido, dos fases con liquido dominante y dos fases con vapor dominante, dependiendo de la profundidad de los pozos. La respuesta inicial de la zona sur a la explotacion consistio en una disminucion de la presion y un aumento en la entalpia mientras que a mas largo plazo se han observado

  17. Seismicity, focal mechanisms, and stress distribution in the Tres Virgenes volcanic and geothermal region, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Victor; Munguia, Luis [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico)

    2006-01-15

    In October 1993 we carried out a seismic monitoring in the Tres Virgenes volcanic region in order to record the background seismicity associated with the volcanic structures, the geothermal field and the tectonic features of the area. Hypocenters for 257 microearthquakes were located in the volcanic edifices and along the northwest right-lateral, strike-slip La Virgen fault. Focal depths range from close to the Earth surface to about 8 km. Shallow depths occur mainly in the volcanic edifices. Deeper seismic events occurred outside the volcanic area. The duration magnitudes of the located microearthquakes range between 1 and 3. The Vp/Vs ratio and the low-Q values estimated suggest heterogeneous material properties in the volcanic structures mainly toward the El Azufre fault and the El Aguajito Caldera, where hydrothermal activity has been reported. The P- and T-axes of focal mechanisms for 90 microearthquakes suggest that the region is under N-S compression and E-W extension, in agreement with the regional tectonic stress field of the NW-SE right-lateral strike-slip transform fault system of the Gulf of California. [Spanish] En octubre de 1993 se llevo a cabo un monitoreo sismico en la region volcanica Las Tres Virgenes con el proposito de registrar la actividad sismica asociada a las estructuras volcanicas, al campo geotermico y a la tectonica local. Se localizaron 257 microsismos con hipocentros en los edificios volcanicos y a lo largo de la falla de rumbo, lateral derecha conocida como falla La Virgen. La profundidad focal de los sismos varia desde los muy cercanos a la superficie de la Tierra hasta los 8 km. Las profundidades someras ocurren principalmente en los edificios volcanicos. Los sismos mas profundos ocurren fuera del area volcanica. La magnitud de duracion de los microsismos localizados varia entre 1 y 3. La razon Vp/Vs y los valores bajos de Q que se estimaron en la zona sugieren un material con propiedades heterogeneas bajo las estructuras

  18. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  19. The geothermal system of Caviahue-Copahue Volcanic Complex (Chile-Argentina): New insights from self-potential, soil CO2 degassing, temperature measurements and helium isotopes, with structural and fluid circulation implications.

    Science.gov (United States)

    Roulleau, Emilie; Bravo, Francisco; Barde-Cabusson, Stephanie; Pizarro, Marcela; Muños, Carlos; Sanchez, Juan; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; de Cal, Federico; Esteban, Carlos

    2016-04-01

    Geothermal systems represent natural heat transfer engines in a confined volume of rock which are strongly influenced by the regional volcano-tectonic setting controlling the formation of shallow magmatic reservoirs, and by the local faults/fracture network, that permits the development of hydrothermal circulation cells and promote the vertical migration of fluids and heat. In the Southern Volcanic Zone of Chile-Argentina, geothermal resources occur in close spatial relationship with active volcanism along the Cordillera which is primarily controlled by the 1000 km long, NNE Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropy of overall NE-SW (extensional) and NW-SE orientation (compressional). However there is still a lack of information on how fault network (NE and WNW strinking faults) and lithology control the fluid circulation. In this study, we propose new data of dense self-potential (SP), soil CO2 emanation and temperature (T) measurements within the geothermal area from Caviahue-Copahue Volcanic Complex (CCVC), coupled with helium isotopes ratios measured in fumaroles and thermal springs. We observe that inside the geothermal system the NE-striking faults, characterized by a combination of SP-CO2 and T maxima with high 3He/4He ratios (7.86Ra), promote the formation of high vertical permeability pathways for fluid circulation. Whereas, the WNW-striking faults represent low permeability pathways for hydrothermal fluids ascent associated with moderate 3He/4He ratios (5.34Ra), promoting the infiltration of meteoric water at shallow depth. These active zones are interspersed by SP-CO2- T minima, which represent self-sealed zones (e.g. impermeable altered rocks) at depth, creating a barrier inhibiting fluids rise. The NE-striking faults seem to be associated with the upflow zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the

  20. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  1. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  3. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  4. Gaseous equilibrium in sector CP IV of the Cerro Prieto, B.C. Mexico geothermal field; Equilibrio gaseoso en el sector CP IV del campo geotermico Cerro Prieto, B.C., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor Manuel; Portugal Marin, Enrique [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); De Leon Vivar, Jesus [Comision Federal de Electricidad, Campo Geotermico Cerro Prieto, Cerro Prieto, B. C. (Mexico)

    2007-07-01

    Sector CP IV is located in the NE portion of the Cerrro Prieto geothermal field. The wells of this zone produce two-phase fluids, with different characteristics as far as their steam fraction content; in the central part and towards the NW the fluids are of dominant liquid type whereas towards the E and the S, the fluid contains a relatively higher steam fraction. The results of gaseous equilibrium FT- HSH3 showed that the fluids in the deposit are at temperatures between 275 Celsius degrees and 310 Celsius degrees and contain steam fractions between 0.01 and 0.5. The data found for the natural state are aligned in a tendency defined in the diagram FT- HSH3, that suggest the wells receive different proportions from preexisting steam in the deposit, which are mixed with the liquid phase to produce the observed discharges. The present data, besides showing the presence of deposit steam, also indicates the entrance of lower temperature fluid in the central part of sector CP IV. [Spanish] El sector CP IV se localiza en la porcion NE del campo geotermico Cerro Prieto. Los pozos de esta zona producen fluidos bifasicos, con diferentes caracteristicas en cuanto a su contenido de fraccion de vapor: en la parte central y hacia el NW los fluidos son de tipo liquido dominante mientras que hacia el E y hacia el S, el fluido contiene una fraccion relativamente alta de vapor. Los resultados de equilibrio gaseoso FT-HSH3 mostraron que los fluidos en el yacimiento se encuentran a temperaturas de entre 275 grados Celsius y 310 grados Celsius y contienen fracciones de vapor de entre -.01 y .5. Los datos hallados para el estado natural se alinean en una tendencia definida en el diagrama FT-HSH3, que sugiere que los pozos reciben diferentes proporciones de vapor pre-existente en el yacimiento, que se mezclan con fase liquida para producir las descargas que se observan. Los datos actuales, ademas de mostrar la presencia de vapor de yacimiento, tambien indican la entrada de fluidos de

  5. Geochronology and Fluid-Rock Interaction Associated with the Nopal I Uranium Deposit, Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Fayek, M.; Goodell, P.; Ren, M.; Simmons, A.

    2005-01-01

    The Nopal I uranium (U) deposit, Pena Blanca District, Mexico, largely consists of secondary U 6+ minerals, which occur within a breccia pipe mainly hosted by the 44 Ma Nopal and Colorados volcanic formations. These two units overly the Pozos conglomerate formation and Cretaceous limestone. Three new vertical diamond drill holes (DDHs) were recently drilled at Nopal I. DDH-PB1 with continuous core was drilled through the Nopal I deposit and two additional DDHs were drilled ∼50 m on either side of the cored hole. These DDHs terminate 20 m below the current water table, thus allowing the detection of possible gradients in radionuclide contents resulting from transport from the overlying uranium deposit. Primary uraninite within the main ore body is rare and fine-grained (∼50 micrometers), thus making geochronology of the Nopal I deposit very difficult. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few (micro)m. Preliminary U-Pb results show that uraninite from the main ore body gives an age of 32 ± 8 Ma, whereas uraninite from the uraniferous Pozos conglomerate that lies nearly 100 m below the main ore body and 25 meters above the water table, gives a U-Pb age that is 18 O = -10.8(per t housand), whereas the uraninite within the Pozos conglomerate has a (delta) 18 O = +1.5(per t housand). If it is assumed that both uraninites precipitated from meteoric water ((delta) 18 O = -7(per t housand)), then calculated precipitation temperatures are 55 C for the uraninite from the ore body and 20 C for uraninite hosted by the Pozos conglomerate. These temperatures are consistent with previous studies that calculated precipitation temperatures for clay minerals associated with uraninite

  6. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  7. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  8. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  9. The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity

    Science.gov (United States)

    Diehl, T.; Kraft, T.; Kissling, E.; Wiemer, S.

    2017-09-01

    In July 2013, a sequence of more than 340 earthquakes was induced by reservoir stimulations and well-control procedures following a gas kick at a deep geothermal drilling project close to the city of St. Gallen, Switzerland. The sequence culminated in an ML 3.5 earthquake, which was felt within 10-15 km from the epicenter. High-quality earthquake locations and 3-D reflection seismic data acquired in the St. Gallen project provide a unique data set, which allows high-resolution studies of earthquake triggering related to the injection of fluids into macroscopic fault zones. In this study, we present a high-precision earthquake catalog of the induced sequence. Absolute locations are constrained by a coupled hypocenter-velocity inversion, and subsequent double-difference relocations image the geometry of the ML 3.5 rupture and resolve the spatiotemporal evolution of seismicity. A joint interpretation of earthquake and seismic data shows that the majority of the seismicity occurred in the pre-Mesozoic basement, hundreds of meters below the borehole and the targeted Mesozoic sequence. We propose a hydraulic connectivity between the reactivated fault and the borehole, likely through faults mapped by seismic data. Despite the excellent quality of the seismic data, the association of seismicity with mapped faults remains ambiguous. In summary, our results document that the actual hydraulic properties of a fault system and hydraulic connections between its fault segments are complex and may not be predictable upfront. Incomplete knowledge of fault structures and stress heterogeneities within highly complex fault systems additionally challenge the degree of predictability of induced seismicity related to underground fluid injections.

  10. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  11. Geochronology and Fluid-Rock Interaction Associated with the Nopal I Uranium Deposit, Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    M. Fayek; P. Goodell; M. Ren; A. Simmons

    2005-07-11

    The Nopal I uranium (U) deposit, Pena Blanca District, Mexico, largely consists of secondary U{sup 6+} minerals, which occur within a breccia pipe mainly hosted by the 44 Ma Nopal and Colorados volcanic formations. These two units overly the Pozos conglomerate formation and Cretaceous limestone. Three new vertical diamond drill holes (DDHs) were recently drilled at Nopal I. DDH-PB1 with continuous core was drilled through the Nopal I deposit and two additional DDHs were drilled {approx}50 m on either side of the cored hole. These DDHs terminate 20 m below the current water table, thus allowing the detection of possible gradients in radionuclide contents resulting from transport from the overlying uranium deposit. Primary uraninite within the main ore body is rare and fine-grained ({approx}50 micrometers), thus making geochronology of the Nopal I deposit very difficult. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few {micro}m. Preliminary U-Pb results show that uraninite from the main ore body gives an age of 32 {+-} 8 Ma, whereas uraninite from the uraniferous Pozos conglomerate that lies nearly 100 m below the main ore body and 25 meters above the water table, gives a U-Pb age that is <1 Ma. Oxygen isotopic analyses show that uraninite from the ore body has a {delta}{sup 18}O = -10.8{per_thousand}, whereas the uraninite within the Pozos conglomerate has a {delta}{sup 18}O = +1.5{per_thousand}. If it is assumed that both uraninites precipitated from meteoric water ({delta}{sup 18}O = -7{per_thousand}), then calculated precipitation temperatures are 55 C for the uraninite from the ore body and 20 C for uraninite hosted by the Pozos conglomerate. These temperatures are consistent with previous studies that calculated precipitation

  12. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  13. Mexico.

    Science.gov (United States)

    1993-01-01

    The background notes on Mexico provide text and recent statistical information on the geography, population, government, economy, and foreign relations, specifically the North American Free Trade Agreement with US. The 1992 population is estimated at 89 million of which 60% are mestizo (Indian-Spanish), 30% are American Indian, 9% are Caucasian, and 1% are other. 90% are Roman Catholic. There are 8 years of compulsory education. Infant mortality is 30/1000 live births. Life expectancy for males is 68 years and 76 years for females. The labor force is comprised of 30% in services, 24% in agriculture and fishing, 19% in manufacturing, 13% in commerce, 7% in construction, 4% in transportation and communication, and .4% in mining. There are 31 states and a federal district. Gross domestic product (GDP) per capita was $3200 in 1991. Military expenditures were .5% of GDP in 1991. The average inflation rate is 19%. Mexico City with 20 million is the largest urban center in the world. In recent years, the economy has been restructured with market oriented reforms; the result has been a growth of GDP of 3.6% in 1991 from 2% in 1987. Dependence on oil exports has decreased. There has been privatization and deregulation of state-owned companies. Subsidies to inefficient companies have been stopped. Tariff rates were reduced. The financial debt has been reduced and turned into a surplus of .8% in 1992. Mexico's foreign debt has been reduced from its high in 1987 of $107 billion. Agricultural reforms have been ongoing for 50 years. Land was redistributed, but standards of living and productivity have improved only slightly. Rural land tenure regulations have been changed, and other economic reforms are expected. Mexico engages in ad hoc international groups and is selective about membership in international organizations.

  14. Mineralogy of the silica-epidote mineralized zone (SEMZ) in the Cerro Prieto geothermal reservoir, B.C., Mexico; Mineralogia de la zona mineralizada de silice-epidota (ZMSE) del yacimiento geotermico de Cerro Prieto, B.C., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Georgina; Aragon, Alfonso; Portugal, Enrique; Arellano; Victor M [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: gim@iie.org.mx; Leon, Jesus de; Alvarez, Julio [Comision Federal de Electricidad, B.C. (Mexico)

    2006-07-15

    The distribution of hydrothermal minerals, mineral assemblages and fluid inclusion data were taken from drill cuttings from the production zone of wells all over the Cerro Prieto geothermal field. The production zone has been termed the silica-epidote mineralized zone (SEMZ), and is located in the deep part of the gray shale where thick layers of sandstone are found. Common mineral assemblages show three temperature ranges in the SEMZ: <200 degrees Celsius, 200-250 degrees Celsius and 250-300 degrees Celsius. The first range is characterized by clays, calcite and quartz; the second by quartz, epidote, chlorite and mica, and the third by epidote, amphibole, illite and chlorite. The study of fluid inclusions in authigenic grain quartz has shown two-phase fluid inclusions (liquid + vapor) of different salinities. A wide range exists of homogenization temperatures (Th) and for some wells there is a good agreement between Th and direct temperature measurements. [Spanish] Se determino la distribucion de minerales hidrotermales y las asociaciones parageneticas y se realizo el estudio microtermometrico de inclusiones fluidas a partir de recortes de perforacion de pozos de las distintas areas del campo geotermico de Cerro Prieto. Las muestras de recortes y nucleos de perforacion estudiados provienen de la zona de produccion a la que se le ha denominado Zona Mineralizada de Silice-Epidota (ZMSE), que se encuentra en la parte profunda de la lutita gris con importantes horizontes de areniscas. En esta zona las asociaciones parageneticas mas comunes han mostrado tres intervalos de temperatura para la ZMSE: <200 degrees Celsius, 200-250 degrees Celsius, 250-300 degrees Celsius. El primer intervalo esta caracterizado principalmente por arcillas, calcita y cuarzo; el segundo por cuarzo, epidota, clorita y micas, y el tercero por epidota, anfiboles, illita y clorita. El estudio de inclusiones fluidas en fragmentos de cuarzo autigenico mostro la presencia de inclusiones de dos fases

  15. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  16. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  17. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  18. Honey Lake Geothermal Project, Lassen County, California

    Science.gov (United States)

    1984-11-01

    The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.

  19. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  20. Exploration and development of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  1. Isotope study in geothermal fields in Java Island

    International Nuclear Information System (INIS)

    Wandowo, Z.A.

    1995-01-01

    Study in two geothermal fields, Dieng and Kamojang, in Java island by utilizing isotope technique has been carried out. Isotopic data of wells, springs and other geothermal manifestations providing informations on the recharge area of precipitation contributed to geothermal resources, flow paths and origin of geothermal fluids. The data of oxygen shift has also provided information on the characteristic the fields. (author). 8 refs, 5 figs, 3 tabs

  2. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  3. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  4. Geothermal overviews of the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N.; Axtell, L.H. (comps.)

    1972-01-01

    This compendium presents data on geothermal resources for all those western states with geothermal potential. Individual sections, which have been processed separately for inclusion in the EDB data base, are devoted to each of the following states: Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. A separate section is also devoted to the U.S. Bureau of Reclamation Imperial Valley Project. Maps and references are included for each section. (JGB)

  5. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  6. Mexico

    International Nuclear Information System (INIS)

    2003-06-01

    This document summarizes the key energy data for Mexico: 1 - energy organizations and policy: Ministry of energy (SENER), Comision Reguladora de Energia (CRE), Ministry of Finances, Ministry of trade and industrial development (SECOFI), national commission for energy savings (CONAE); 2 - companies: federal commission of electricity (CFE), Minera Carbonifera Rio Escondido (MICARE - coal), Pemex (petroleum); 3 - energy production: resources, electric power, petroleum, natural gas; 4 - energy consumption; 5 - stakes and perspectives. Some economic and energy indicators are summarized in a series of tables: general indicators, supply indicators (reserves, refining and electric capacity, energy production, foreign trade), demand indicators (consumption trends, end use, energy independence, energy efficiency, CO 2 emissions), energy status per year and per energy source. (J.S.)

  7. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  8. Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows

    Science.gov (United States)

    Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James

    2016-04-01

    In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all

  9. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M. [Hattenburg Dilley & Linnell, LLC, Anchorage, AL (United States)

    2015-04-13

    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded by fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO2-rich and contain low concentrations of light gases (i.e. H2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to

  10. Energia geotermica at the present time: Geothermal Today (Spanish version); La energia geotermica en la actualidad

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    This outreach publication highlights federal program milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. This is a special 8-page Spanish supplement for the audience at the Geothermal Resources Council/Geothermal Energy Association Annual Meeting and Industry Exhibit, Morelia, Mexico.

  11. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  12. Aspiration toward geothermal energy utilization in regional development plan. Part 6. ; Hydrothermal fluid utilization business in Matsuo-mura of Iwate prefecture. Chiiki keikaku ni okeru 'chinetsu riyo' eno hofu. 6. ; Iwateken Matsuomura no chinetsu nessui riyo jigyo

    Energy Technology Data Exchange (ETDEWEB)

    Otobe, Y; Furutate, E

    1992-10-31

    Twenty six years have passed since the first geothermal power station was constructed in Matsuo-mura of Iwate Prefecture, Japan. This paper describes the history, the present situation and the future conception of the geothermal energy utilization in this village. This village includes Hachimantai of a vantage ground in the center and has the gross area of 233.8km[sup 2], the annual average temperature of 8.3 centigrade and the continuous snow cover period of about 100 days. The hot water leading facility was cooperatively constructed by Japan Metals and Chemicals, Hachimantai Hot Spring Development and Matsuo-mura. The total working expense is 539.3 million yen. Hot water sources are the condensate from the condenser of geothermal power plant and hot spring. This mixed hot water of 4.3 t/min is led to respective facilities. The hot water supplying channel has the length of 12.8km from the power station through the Hachimantai hot spring resort, Kamiyogi to Takaishino. Respective total areas of greenhouses using hydrothermal fluid in both districts are 1,075ha and the inlet temperature of hot water is 60 centigrade and kinds of crop are 5 like green pepper and others. Takaishino agricultural park has selected flower and ornamental plant culture such as poppy anemone, stock and statice which are suitable for this district of low temperature and insufficient sunshine. The planted area is 10,700m[sup 2]. 2 refs., 9 figs., 4 tabs.

  13. Chemical conditions of the Japanese neutral geothermal reservoirs

    International Nuclear Information System (INIS)

    Chiba, H.

    1991-01-01

    The aqueous speciation were calculated for fluids of seven Japanese geothermal systems. The aqueous composition as well as CO 2 partial pressure of fluid in neutral pH geothermal reservoir are controlled by silicate, calcite and anhydrite minerals. The chemical composition of neutral pH geothermal reservoir can be predictable if two parameters (e.g. temperature and one of the cation activities) are provided. (author)

  14. Geochemistry and isotopic characterization of rain in the zones of Los Azufres, Michoacan and Los Humeros, Puebla and its relation with geothermal fluids; Caracterizacion geoquimica e isotopica de lluvia en las zonas de Los Azufres, Michoacan y Los Humeros, Puebla y su relacion con fluidos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Mahendra P; Santoyo, Socrates; Aragon, Alfonso [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Fernandez, Ma. Elena [Comision Federal de Electricidad Morelia, Michoacan (Mexico); Tovar, Rigoberto [Comision Federal de Electricidad, Los Azufres (Mexico); Casimiro, Emigdio; Sandoval, Fernando [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico); Johnson, Craig [USGS, Denver, Colorado, (United States); Gerardo-Abaya, Jane [IAEA, Viena (Austria)

    1999-12-01

    , whereas there is less then 10% sea spray sulfate at Los Azufres. The {delta}{sup 3}4S values of H{sub 2}S of geothermal fluid are very similar to those of rainwater. A compilation of {delta}{sup 3}4S values for different sources of sulfur emissions indicates that it is practically impossible to define the origin of sulfur in rainwater, but the combined results of chemical and isotopic monitoring suggest that the geothermal emissions have no contribution to rainwater acidity. [Spanish] Se presentan los resultados preliminares obtenidos del estudio de monitoreo quimico e isotopico de las precipitaciones pluviales en los campos geotermicos de Los Humeros, Los Azufres y sus zonas de referencia durante el periodo de lluvia 1995-1998. Se recolectaron las muestras de lluvia en siete de los sitios de Los Humeros y ocho de Los Azufres. Los valores de la alcalinidad resultaron positivos para casi todas las muestras de lluvia en Los Humeros, lo que indica que en esta zona no existe acidez. Algunos valores de alcalinidad en los sitios Vivero y Guadalajara de Los Azufres fueron negativos, aunque muy pequenos, por lo que se concluye que existe poca acidez en la lluvia en Los Azufres. En el caso de Los Humeros se encontro buena correlacion entre la alcalinidad y la concentracion de calcio, lo que sugiere que las muestras puedan estar afectadas probablemente por el polvo de la zona. La concentracion de aniones, Cl{sup -}, SO{sub 4} y NO{sub 3} es baja en ambos campos y con una tendencia bien definida. La concentracion de NO{sub 3} y SO{sub 4} en las lluvias de Los Azufres disminuye con el avance de la temporada. En el caso de Los Humeros casi no existe NO{sub 3} y SO{sub 4} en las lluvias de Los Azufres disminuye con el avance de la temporada. En el caso de Los Humeros casi no existe NO{sub 3}. Como referencia cabe senalar que los valores de NO{sub 3} en las lluvias de la ciudad de Mexico son superiores a 10 ppm e indican una relacion con la contaminacion industrial. Esto sugiere que el

  15. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  16. Criteria to determine the depth of the production interval in wells of the Cerro Prieto geothermal field, Mexico; Criterios para determinar la profundidad del intervalo productor en pozos del campo geotermico de Cerro Prieto, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Leon Vivar, Jesus Saul de [Comision Federal de Electricidad, Residencia General de Cerro Prieto, Mexicali, B.C. (Mexico)]. E-mail: jesus.deleon@cfe.gob.mx

    2006-07-15

    Ways to select the depth of the production interval or to complete wells in the Cerro Prieto geothermal field have changed during the development of the field. From 1961 when drilling began to the middle of 2005, a total of 325 wells were drilled. The paper compares the approaches used in the past with those of the last ten years. The Cerro Prieto system has been classified as being of liquid-dominated and high-temperature. Today, after 33 years of commercial exploitation, it has experienced a series of thermal and geochemical fluid changes making it necessary to modify the ways to select the depth of the well production intervals, according to the observed behavior of the reservoir. The new criteria include the thermal approach, the geological approach, the geochemical approach and a comparative approach with neighboring wells. If most of these criteria are interpreted correctly, the success of a well is ensured. [Spanish] Los criterios para seleccionar la profundidad del intervalo productor o la terminacion de los pozos en el campo geotermico de Cerro Prieto han cambiado durante el desarrollo del mismo. De 1961, cuando se perforaron los primeros pozos, hasta mediados del 2005 se han perforado un total de 325 pozos. En el presente articulo se hara una breve revision de cuales han sido los criterios usados en el pasado y los que se han venido empleando en los ultimos diez anos. El yacimiento de Cerro Prieto ha sido clasificado como de liquido dominante, de alta temperatura, pero actualmente, despues de 33 anos de explotacion comercial, ha sufrido una serie de cambios termicos y geoquimicos en sus fluidos, por lo que ha sido necesario modificar los criterios para seleccionar la profundidad del intervalo productor de los pozos de acuerdo al comportamiento observado en el yacimiento. Los criterios actuales se dividen en cuatro: 1. Criterio termico, 2. Criterio geologico, 3. Criterio geoquimico y 4. Criterio comparativo de los pozos vecinos. Cuando la mayoria de estos

  17. Microearthquakes in the ahuachapan geothermal field, el salvador, central america.

    Science.gov (United States)

    Ward, P L; Jacob, K H

    1971-07-23

    Microearthquakes occur on a steeply dipping plane interpreted here as the fault that allows hot water to circulate to the surface in the geothermal region. These small earthquakes are common in many geothermal areas and may occur because of the physical or chemical effects of fluids and fluid pressure.

  18. Assessing geothermal energy potential in upstate New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  19. Status on high enthalpy geothermal resources in Greece

    International Nuclear Information System (INIS)

    Koutinas, G.A.

    1990-01-01

    Greece is privileged to have many high and medium enthalpy geothermal resources. Related activities during the last 5 years were conducted mainly on the previously discovered geothermal fields of Milos, Nisyros and Lesvos islands, without any deep geothermal drilling. Most efforts were focused on the demonstration of a high enthalpy geothermal reservoir on Milos, by generating electricity from high salinity fluid, with a 2 MW pilot plant. Significant experience has been gained there, by solving technical problems, but still site specific constraints have to be overcome in order to arrive at a comprehensive feasibility study, leading to the development phase. A pre-feasibility study has been carried out in the Nisyros geothermal field. Moreover, a detailed geoscientific exploration program has been completed on Lesvos island, where very promising geothermal areas have been identified. In this paper, reference is made to the most important data concerning high enthalpy geothermal resources by emphasizing the Milos geothermal field

  20. Experiences in the use of an electronic tool to measure pressure, temperature and spinner logs in the Mexican geothermal fields; Experiencias en el uso de sondas electronicas de presion, temperatura y flujo en campos geotermicos de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly; Jaimes Maldonado, Guillermo [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    1999-08-01

    In this article are exposed the results of an electronic tool to measure pressure-temperature and spinner profiles in the geothermal wells of Mexico, utilized in order to identify unobservable phenomena with traditional Kuster type pressure and temperature logs. Some examples of the applications are the identifications of production zones, interaction from between two or more zones of contribution under several conditions of operation, casing damages and apparition of sink flow intervals into the formation in producer wells. It is also presented the quantitative method utilized to calculate the masic contribution of the intervals of interest. [Spanish] En este articulo se exponen los resultados obtenidos mediante el uso de una sonda electronica para la medicion de presion-temperatura y flujo en los pozos geotermicos de Mexico, utilizada para identificar fenomenos que no son observables con las mediciones tradicionales tipo Kuster de presion y temperatura. Se ejemplifican algunas de las aplicaciones hechas, tales como la identificacion de zonas de produccion, forma de interaccion entre dos o mas zonas de aporte bajo diferentes condiciones de operacion, roturas en tuberias y aparicion de zonas ladronas en pozos. Se presenta brevemente el metodo cuantitativo utilizado para calcular el aporte masico de las intervalos de interes.

  1. Geothermal energy geopressure subprogram

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  2. State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Icerman, L.; Starkey, A.; Trentman, N. (eds.)

    1980-10-01

    The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

  3. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  4. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  5. Hydrogeology of the Krafla geothermal system, northeast Iceland

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, D. K.; Arnórsson, S.

    2016-01-01

    The Krafla geothermal system is located in Iceland's northeastern neovolcanic zone, within the Krafla central volcanic complex. Geothermal fluids are superheated steam closest to the magma heat source, two-phase at higher depths, and sub-boiling at the shallowest depths. Hydrogen isotope ratios...... of geothermal fluids range from -87‰, equivalent to local meteoric water, to -94‰. These fluids are enriched in 18O relative to the global meteoric line by +0.5-3.2‰. Calculated vapor fractions of the fluids are 0.0-0.5 wt% (~0-16% by volume) in the northwestern portion of the geothermal system and increase...... the benefits of combining phase segregation effects in two-phase systems during analysis of wellhead fluid data with stable isotope values of hydrous alteration minerals when evaluating the complex hydrogeology of volcano-hosted geothermal systems....

  6. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  7. Combining ammonium mapping and short-wave infrared (SWIR) reflectance spectroscopy to constrain a model of hydrothermal alteration for the Acoculco geothermal zone, Eastern Mexico

    OpenAIRE

    Canet Miquel, Carles; Hernández-Cruz, B; Jiménez Franco, Abigail; Pi, Teresa; Peláez, B; Villanueva Estrada, Ruth Esther; Alfonso Abella, María Pura; González Partida, Eduardo; Salinas, S.

    2015-01-01

    The Acoculco geothermal system is hosted by a caldera complex located at the eastern portion of the Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of low temperature, bubbling, acid–sulfate springs that are concentrated in two zones separated from each other by ~1750 m. In the northernmost one, there are conspicuous features suggesting recent, explosive, hydrothermal activity. Most of the rocks that crop out are tuffs and breccias that show pervasive hydrothermal a...

  8. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-07-01

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  9. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  10. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yi [Colorado School of Mines, Golden, CO (United States); Fakcharoenphol, Perapon [Colorado School of Mines, Golden, CO (United States); Wang, Shihao [Colorado School of Mines, Golden, CO (United States); Winterfeld, Philip H. [Colorado School of Mines, Golden, CO (United States); Zhang, Keni [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States)

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

  11. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Fakcharoenphol, Perapon [Colorado School of Mines, Golden, CO (United States); Xiong, Yi [Colorado School of Mines, Golden, CO (United States); Hu, Litang [Colorado School of Mines, Golden, CO (United States); Winterfeld, Philip H. [Colorado School of Mines, Golden, CO (United States); Xu, Tianfu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States)

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  12. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  13. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  14. First assessment of low- to medium-temperature geothermal reserves in 20 Mexican states; Primera estimacion de las reservas geotermicas de temperatura intermedia a baja en veinte estados de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Eduardo R.; Torres, Rodolfo J. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: iglesias@iie.org.mx

    2009-07-15

    A first, partial, assessment is included of the low- to medium-temperature geothermal reserves in 20 Mexican States and their aggregate value. The assessment covers about 29.16% of the identified geothermal-surface manifestations in the public database. For reserve assessments, we use the volumetric method, supplemented with Montecarlo simulations and statistics, to quantify inherent uncertainties. Our estimations are presented on a state-by-state basis. We estimate the aggregated reserves of the 20 states as between 7.7 x 1016 and 8.6 x 1016 kJ, with 90% confidence. The most likely reservoir temperatures range between 60-180 degrees Celsius, with a mean of 111 degrees Celsius. Such massive amounts of recoverable energy-and the associated temperatures-are potentially important for the economic development of nearby localities and the nation. [Spanish] En este trabajo se hace una primera estimacion, parcial, de las reservas geotermicas de temperatura intermedia a baja de Mexico. La estimacion incluye 29.16% de las manifestaciones geotermicas identificadas en la base de datos publica utilizada. Para estimar las reservas se utilizo el metodo de volumen, suplementado con simulaciones por el metodo de Montecarlo, con el fin de cuantificar las incertidumbres inherentes. Las estimaciones se presentan estado por estado. Estos resultados indican que las reservas agregadas de los 20 estados considerados estan entre 7.7 x 1016 y 8.6 x 1016 kJ, con 90% de confianza. La distribucion de las temperaturas de yacimiento mas probables varia entre aproximadamente 60 y 180 grados centigrados, con un valor medio de 111 grados centigrados. La enorme magnitud de estas reservas, y sus temperaturas asociadas, son potencialmente importantes para el desarrollo economico de las poblaciones ubicadas en su cercania.

  15. Greece, Milos Island Geothermal Project

    International Nuclear Information System (INIS)

    Delliou, E.E.

    1990-01-01

    On Milos island (Aegean Sea) a high enthalpy, water dominated geothermal field of high salinity exists. At 1985, a 2MW geothermoelectric pilot plant was installed on the island. This plant has been provided by Mitsubishi Heavy Industries of Japan under a contract with Public Power Corporation of Greece. Due to high salinity of the geothermal fluid, unforeseen problems (scaling mainly) arisen in both steam and brine cycles. As a consequence, the operation (trial mainly) of the power plant have been interrupted several times for long periods, in order to identify the arisen, each time, problems and find the most appropriate technical solution. The above fact, as well as, some unfortunate coincidences described in this paper, led Milos people to react against geothermal development in their island. The sequence of the events, technical and non-technical, their approach and the relevant conclusions are reported in this presentation

  16. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  17. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  18. Geothermal resources of low enthalpy as an energy alternative; Recursos geotermicos de baixa entalpia como alternativa energetica

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Marieta C [Ministerio das Minas e Energia, Sao Paulo, SP (Brazil); Frangipani, Alcides; Furumoto, Shintaro [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1985-12-31

    In this work an preliminary economic analysis is carried out to show the advantage of using geothermal fluids as a substitute for heating. Specific cases for potential and immediate use of geothermal fluids as a substitute for heating oil industrial process heating. Specific cases for potential and immediate use of geothermal fluids in Brazil are analysed. These include geothermal refrigeration, agroindustrial uses, tourism and therapeutic purposes. 7 refs., 2 tabs

  19. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  20. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  1. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water-steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  2. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water--steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling, and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  3. Outline of geothermal power generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, Y

    1960-01-01

    The utilization of geothermal energy in electrical power generation throughout the world is described. Details of generating capacity and cost are given for Larderello, Italy; Wairakei, New Zealand: and the Geysers, USA. In Japan three types of conversion systems are used. These include the direct use of steam, direct use of hot water and binary fluid type systems. The history of Japanese investigation and exploitation of geothermal energy is reviewed and the status of the Matsukawa, Hakone, Otake and Takenoyu geothermal power plants is discussed. It is recommended that laws be enacted in Japan to encourage the development of this form of energy conversion.

  4. Fiscal 1995 verification survey of geothermal exploration technology. Report on a deep geothermal resource survey; 1995 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    For the purpose of reducing the risk of deep geothermal resource development, the paper investigated three factors for the formation of geothermal resource in the deep underground, that is, heat supply from heat source, supply of geothermal fluids, and the developmental status of fracture systems forming reservoir structures. The survey further clarified the status of existence of deep geothermal resource and the whole image of the geothermal system including shallow geothermal energy in order to research/study usability of deep geothermal resource. In the deep geothermal resource survey, drilling/examination were made of a deep geothermal exploration well (`WD-1,` target depth: approximately 3,000-4,000m) in the already developed area, with the aim of making rationalized promotion of the geothermal development. And the status of existence of deep geothermal resource and the whole image of the geothermal system were clarified to investigate/study usability of the geothermal system. In fiscal 1995, `WD-1` in the Kakkonda area reached a depth of 3,729m. By this, surveys were made to grasp the whole image of the shallow-deep geothermal system and to obtain basic data for researching usability of deep geothermal resource. 22 refs., 531 figs., 136 tabs.

  5. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  6. Geothermal Modesty

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the uses for radioactivity, the future of the green electricity, the energy policy of Rhone-alps region, the end of the nuclear in Belgium, the nuclear propulsion to explore the solar system, the involvement of the Unites States in the hydrogen development, the gas exportation of China. A special part is devoted to the possibility of the geothermal energy. (A.L.B.)

  7. Southwest regional geothermal operations research program. Summary report. First project year, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.T.; Davidson, R.

    1978-12-01

    A summary report is given of the information, data, and results presented by New Mexico Energy Institute and the five State Teams in their separate draft reports. The objective is to develop scenarios for the development of each identified geothermal resource area in Arizona, Colorado, Nevada, New Mexico and Utah. Included are an overview; an economic analysis; institutitional procedures, contraints, and incentives; location of geothermal resources in the southwest; geothermal development postulations, state by state; and recommended actions for promoting and accelerating geothermal development. (MHR)

  8. Economic, environmental and social impacts of geothermal development, and energy savings and efficient use of power in Baja California, Mexico; Impactos economicos, ambientales y sociales del desarrollo geotermico y del ahorro y uso eficiente de la electricidad en Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Campbell R, Hector E.; Montero A, Gisela [Universidad Autonoma de Baja California, Instituto de Ingenieria, Mexicali, Baja California (Mexico)]. E-mail: hecr@iing.mxl.uabc.mx; Lambert A., Alejandro A. [Universidad Autonoma de Baja California, Facultad de Ingenieria, Mexicali, Baja California (Mexico)

    2011-01-15

    This essay of electrical planning for Baja California, Mexico, includes diagnosis of power production and consumption from 1994-2005, prospective to 2025 if historical trends are maintained, discussion of a systemic plan and its impact on the prospective through energy savings and energy efficient use, combined with an increase of the geothermal energy share. Diagnosis indicates that geothermal capacity in 1998 accounted for 57% of total electric capacity in Baja California, and by 2004 73% of this total electric capacity was based on natural gas, increasing energy dependence on fossil fuels. During this period, electric generation changed from a ratio of 2 to 1 (geothermal steam to fuel oil) to 1 to 1 (geothermal steam to natural gas). The unit cost of natural gas energy with an efficiency of 50% is 24 times the cost of the same unit of geothermal steam with 16% efficiency. Power generation, with fuel oil or simple cycle turbines firing natural gas, costs twice that of combined cycle turbines, while the costs are three times less with geothermal steam. In 2005, as a consequence of a minor contribution of geothermal energy to the power-generation total, production costs increased, reaching $122.80 USD/MWh. The replacement of fuel oil, as power fuel, decreased the SO{sub x} emissions from 4.16 kg/MWh to 0.19 kg/MWh. The combined-cycle fired by natural gas diminished the relative emissions of NO{sub x} and CO{sub 2} by 30%, but the 2.6 million tons of CO{sub x} given off each year did no vary significantly. Using geothermal energy avoids burning 20 million barrels of oil equivalent annually. The Prospective 2005-2025 indicates Baja California requires the installation of an additional 4500 MW to reach 7200 MW. The energy portfolio will become more dependent on natural gas increasing its share from 60% to 86%. Geothermal energy will decrease its share in installed capacity to 10%, eliminating the damping effect on the cost of production. SO{sub x} emissions will

  9. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  10. Models of Geothermal Brine Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare; John H. Weare

    2002-03-29

    Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

  11. Investigations on the application of zeotropic fluid mixtures in the organic rankine cycle for the geothermal power generation; Untersuchung zum Einsatz von zeotropen Fluidgemischen im Organic Rankine Cycle fuer die geothermische Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian

    2013-04-01

    The organic rankine cycle is a thermodynamic cycle process which uses an organic fluid working fluid instead of water in comparison to the commercial rankine process. The organic rankine cycle facilitates sufficiently high pressures at moderate temperatures. The organic rankine cycle significantly expands the technically possible and economically feasible ranges of application of such heat and power processes. The geothermal power is a very attractive field of application. Thermal water with a temperature of nearly 100 Celsius can be used for the power generation by means of the organic rankine cycle. Especially zeotropic mixtures are interesting as a working fluid. This is due to a non-isothermal phase change to a temperature glide which adapts very well to the temperature progress of the heat source. The author of the book under consideration reports on the application of different mixtures in the organic rankine cycle. The evaluation is based on a thermodynamic analysis and considers also toxicological, ecologic, technical as well as economic aspects.

  12. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  13. Proposal to neutralize acid fluids from wells in the Los Humeros, Pue., geothermal field; Propuesta para la neutralizacion de fluidos acidos provenientes de pozos del campo geotermico de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly del Carmen; Ramirez Montes, Miguel; Garcia Cuevas, Juan Manuel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: magaly.flores@cfe.gob.mx

    2009-07-15

    Neutralizing an acidic fluid consists of adding a sodium hydroxide solution to neutralize the H group of acids, therefore increasing the pH. The injection of sodium hydroxide has to be continuous and at a proper depth inside the well to protect against the corrosion of casing and surface equipment. Neutralization is a common practice used in geothermal fields, such as at The Geysers in the US and Miravalles in Costa Rica-places where aggressive fluids cause problems for extracting and using geothermal fluids commercially. A zone surrounding wells H-4, H-16 and H-29 in the northern section of the Los Humeros, Pue., geothermal field, known as the Colapso Central, has shown evidence of aggressively acidic fluids. Several wells drilled in the area had to be repaired, thus plugging and isolating the deepest production zones. Well H-43 was drilled two years ago in the northern zone of the field, and even though it is not located in the aggressive-fluid zone, the well presents mineralogical features possibly indicating the presence of acidic fluids. Therefore, before producing this well it has been proposed we install a neutralization system with general characteristics presented in this paper. The system will prevent corrosion that up to now has prevented exploitation of the deep portion of Colapso Central, helping to develop the field in a more profitable way. [Spanish] Neutralizar un fluido acido consiste en agregarle una solucion de hidroxido de sodio. Esto neutraliza el grupo de acidos H y en consecuencia aumenta el pH. La inyeccion de hidroxido de sodio se realiza de manera continua y a una profundidad adecuada dentro del pozo para proteger a la tuberia y a todo el equipo superficial contra la corrosion. La neutralizacion es una practica comun que se viene realizando en campos como Los Geysers en Estados Unidos y en Miravalles, Costa Rica, donde la presencia de fluidos agresivos causa problemas en la extraccion y aprovechamiento del fluido geotermico con fines

  14. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  15. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  16. Present situation and future of utilization of geothermal energy in China

    International Nuclear Information System (INIS)

    Huang, Z.; Zhi, W.F.

    1998-01-01

    From the 1970s, the Chinese government increased investment in the development of geothermal resources and other new energy, and some experimental geothermal power stations have been built successfully. In the late 1980s, the exploration of high temperature geothermal resources was increased. Geothermal fluid with temperatures over 200 C was measured in several boreholes. In ZK4002 well, Yangbajing, the temperature is even as high as 329.8 C. By the year 2010, several geothermal power plants with high temperatures and great capacity will be built, so that great advances will be made in the development of geothermal energy in China

  17. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  18. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  19. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  20. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  1. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2007-10-01

    The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in

  2. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  3. Evolution of the geothermal system in Acoculco, Pue., Mexico: Study based on petrography of well EAC-2 and other information; Evolucion del sistema geotermico de Acoculco, Pue., Mexico: un estudio con base en estudios petrograficos del pozo EAC-2 y en otras consideraciones

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano Guerra, Julio Cesar [Universidad Michoacana de San Nicolas de Hidalgo, Michoacan (Mexico)]. E-mail: cesar.viggiano@live.com; Flores Armenta, Magaly; Ramirez Silva, German R. [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)

    2011-01-15

    Acoculco, Pue., geothermal area is located 180 km away from Mexico City. It includes two hydrothermally altered areas with acid sulfate cold springs and some mofettes, associated with a complex structural framework presented in an area 2000 m thick of Tertiary-Quaternary volcanic rocks, Cretaceous metamorphized limestone and even Cretaceous granite. The field seems to resemble kaipohan type geothermal fields. Two exploratory wells have been drilled in the area. In 1995, well EAC-1 was drilled to a depth of 1810 m and in 2008 well EAC-2 was drilled to a depth of 1900 m. We discuss results and interpretations of petrographic studies made on the second well, and how some information from the first well is used to interpret the evolution of the hydrothermal system. It can be concluded the Acoculco geothermal area is in its final hydrothermal stage, since a change in the hydrothermal regime from convective to forced-convective or conductive has occurred, according to studies of hydrothermal mineralogy and other considerations. It is notable that the system is not recycling, perhaps because the rocks have not allowed it to, and therefore is ending. This, of course, has not been an obstacle to the presence of large volumes of hot (300 degrees Celsius) hornfels and granite opening up possibilities for the exploitation of an Enhanced (or Engineered) Geothermal System (EGS). The possibility of improving reservoir rocks permeability (hornfels and granite) by conventional means remains to be investigated. [Spanish] La zona geotermica de Acoculco, Pue., se localiza a 180 km de distancia de la ciudad de Mexico, D.F. Exhibe dos areas alteradas hidrotermalmente con descargas acido-sulfatadas frias y algunas mofetas, asociadas a una red estructural compleja configurada en un espesor de 2000 m de rocas volcanicas del Cuaternario-Terciario, calizas metamorfizadas del Cretacico e incluso granitos del Cretacico. Esta particularidad parece encajar conceptualmente en los denominados

  4. Geothermal Energy

    Science.gov (United States)

    1975-11-15

    Mexican Institute de Investigaciones de la Industria Electrica is actively participating. The program is itself a part of a natural resources study in...brtlan de Los Hervores geothermax area. Michoacan. Mexico. IN: ibid., v. 2, pt. 1, 381-398. 215. Mercado , S. Hißh activ.dy...indiciated that in the volcanic environment of the Taupo graben the most useful technique is de -resistivity profiling using linear arrays. 58

  5. Performance of deep geothermal energy systems

    Science.gov (United States)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  6. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  7. Isotopic and noble gas geochemistry in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B.M.; DePaolo, D.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  8. Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger

    OpenAIRE

    Xiao-Hui Sun; Hongbin Yan; Mehrdad Massoudi; Zhi-Hua Chen; Wei-Tao Wu

    2018-01-01

    It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turb...

  9. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  10. The use of residual geothermal energy in an edible mushroom production plant, Los Humeros geothermal fields (Mexico): Achievements and alternatives; El uso de la energia geotermica residual en la planta productora de hongos comestibles del campo geotermico Los Humeros (Mexico): Logros y alternativas

    Energy Technology Data Exchange (ETDEWEB)

    Rangel Rangel, Maria Elena [Proteccion ambiental, Puebla (Mexico)

    2000-12-01

    A plant for raising edible mushrooms with residual geothermal energy is a project of the Comision Federal de Electricidad (CFE). The results reflect important achievements in the development of technology for the productions of wholesome and available food with geothermal heat instead of conventional energy sources. The installations have an enormous technological and commercial potential- demonstrated by the cultivation of oyster mushrooms (Pleurotus ostreatus), which success has awakened the interest of research institutions. The Instituto of Ecologia, A.C., has begun a joint project with CFE cultivating shiitake mushrooms (Lentinula edodes) with geothermal energy. These achievements mark a clear trend toward the integral use of facilities, the establishment of a crop with greater economic advantages, and the diffusion of this project. [Spanish] La planta productora de hongos comestibles es un proyecto de la Comision Federal de Electricidad (CFE) para dar un uso alterno a la energia geotermica residual. Los resultados obtenidos hasta el momento reflejan logros importantes en la generacion de tecnologia propia para la produccion de un alimento sano y accesible, sustituyendo la energia proveniente de combustibles convencionales por calor geotermico. Las instalaciones creadas cuentan con un enorme potencial tecnologico y comercial demostrando con el cultivo de las setas (Pleurotus ostreatus) con un exito tal que ha despertado el interes de instituciones dedicadas a la investigacion. Tal es el caso de Instituto de Ecologia, A.C que acualmente se encuentra involucrado en un proyecto conjunto sobre el cultivo del hongo Lentinula edodes (shiitake) utilizando energia geotermica en su proceso productivo. Con lo anterior, se esta marcando una clara tendencia hacia el aprovechamiento integral de las instalaciones, el establecimiento de un cultivo con mayores ventajas economicas y la difusion de este proyecto.

  11. Microbiological Monitoring in Geothermal Plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  12. Work for the International Energy Agency's Geothermal Implementing Agreement (GIA) in 2006; Arbeiten fuer das IEA Geothermal Implementing Agreement (GIA) 2006 - Jahresbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.; Megel, T.

    2006-12-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) discusses work done in 2006 within the framework of the International Energy Agency's Geothermal Implementing Agreement (GIA). Information exchange with representatives of countries where geothermal energy is used is discussed as are the contributions made in this area by Swiss representatives. In particular, comprehensive appendices to the report present the Swiss Country Report, a basic paper on geothermal sustainability, comments on the environmental impact of geothermal energy development and risks posed by fluid injection in enhanced geothermal systems.

  13. Exergoeconomic optimization of integrated geothermal system in Simav, Kutahya

    International Nuclear Information System (INIS)

    Arslan, Oguz; Kose, Ramazan

    2010-01-01

    The aim of this study is to investigate the integrated use of the geothermal resources in the Kutahya-Simav region, Turkey. Although geothermal energy has been in use for years in the others countries, the integrated use of the geothermal fluid is new in Turkey. The high temperature level of the geothermal fluid in the Simav field makes it possible to utilize it for electricity generation, space heating and balneology. In this regard, a multiple complex has been proposed there in order to use the energy of the geothermal fluid more efficiently. Therefore, the possibility of electricity generation by a binary cycle has been preliminarily researched. After the electricity generation process, the waste geothermal fluid has been conducted to residences and greenhouses later for heating purpose in the field. In this regard, twenty one different models have been formed and analyzed using exergy and LCC methods. As a conclusion, the pre-feasibility study indicates that utilization of this geothermal capacity for multiple uses would be an attractive investment for Simav region.

  14. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331).

    Science.gov (United States)

    Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-10-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    Energy Technology Data Exchange (ETDEWEB)

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  16. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    Science.gov (United States)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  17. Geothermal progress monitor: Report No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

  18. The economics of Plowshare geothermal power

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, J B; Stewart, D H [Battelle-Northwest (United States)

    1970-05-15

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application.

  19. The economics of Plowshare geothermal power

    International Nuclear Information System (INIS)

    Burnham, J.B.; Stewart, D.H.

    1970-01-01

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application

  20. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  1. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  2. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  3. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  4. Initial temperature distribution in Los Humeros, Mexico, geothermal field; Distribucion de temperatura inicial en el campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A; Arellano, V; Aragon, A; Barragan, R.M; Izquierdo, G [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Pizano, A [Comision federal de Electricidad, Los Humeros, Puebla (Mexico)

    2000-12-01

    The initial formation temperatures surrounding 40 wells from the Los Humeros geothermal field are presented. These temperatures were estimated using the Horner and the sphere methods. A brief discussion on the applicability of each method is presented and previous applications are detailed. Then the more likely reservoir temperature of each well versus elevation is plotted based on the estimations about the main feed zone and the temperature of each well. The boiling with depth curve for pure water is also included. Two longitudinal and one traverse geological sections are presented to illustrate the field initial temperature distribution, the lithology and layers thickness, the basement topography and the wells traversed along each sections. Also, the main feed zones of the wells are indicated. Finally, the last series of measured temperature logs in well H-26 are produced by numerical simulation. This considers the well circulation losses and an assumed initial temperature profile. This profile iteratively modified until the computed profiles match the measured temperature profiles. The last assumed temperature profile is then considered as the best approximation to the undisturbed formation temperature around well H-26 and it is then compared with the stabilized temperatures obtained via the Horner and Sphere methods. [Spanish] Se presentan las temperaturas iniciales o estabilizadas de la formacion circundante a 40 pozos del campo geotermico Los Humeros, las cuales se estimaron mediante los metodos de Horner y el metodo de la esfera. Se presenta una discusion sobre la aplicacion de cada metodo y se detallan las aplicaciones previas del metodo de la esfera. Posteriormente y con base en las estimaciones de las principales zonas de aporte de cada pozo y sus correspondientes temperaturas se grafican las temperaturas mas probables de yacimiento para cada pozo contra la elevacion y se incluye en la misma grafica la curva de ebullicion del agua contra la elevacion. Se

  5. Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-01

    Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

  6. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  7. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  8. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields

    Science.gov (United States)

    Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon

    2017-01-01

    Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

  9. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  10. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  11. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  12. Two-phase characteristics of the feeding fluid of Cerro Prieto IV wells (Mexico) obtained by gas equilibrium; Caracteristicas bifasicas del fluido de alimentacion de pozos de Cerro Prieto IV (Mexico), obtenidas por equilibrio gaseoso

    Energy Technology Data Exchange (ETDEWEB)

    Barragan-Reyes, Rosa Maria; Arellano-Gomez, Victor Manuel; Portugal-Marin, Enrique [Instituto de Investigaciones Electricas (Mexico); De Leon-Vivar, Jesus [Comision Federal de Electricidad, Residencia General de Cerro Prieto, B.C (Mexico)

    2008-10-15

    The gas composition of fluids produced by CP IV geothermal wells from the Cerro Prieto field was studied in order to identify different types of fluids entering the wells by estimating their temperature and excess steam. A method based on the Fischer Tropsch reaction and H2S equilibrium with pyrite-pyrrhotite as mineral buffer (FTHSH3) was used. The results for the reservoir natural state indicated the presence of fluids with heterogeneous reservoir temperature (between 275 and 310 degrees Celsius) and excess steam values, which were found from negative (boiled liquid that has lost steam when flowing to the well) to one (steam phase with zero liquid saturation). The study for individual wells in which boiling processes were identified, showed that through time, the feeding fluids consist of a two-phase mixture with different liquid/steam proportions. Also, the results suggested that a steam phase could occur at CP IV which is added to the feeding fluid, depending on the operation conditions of the wells. The origin of this steam could be the boiling of the deeper liquid due to a pressure drop. [Spanish] Se estudio la composicion gaseosa de los fluidos producidos por pozos geotermicos del sector CP IV del campo de Cerro Prieto para tratar de distinguir aportes de fluidos diferentes mediante la estimacion de su temperatura de yacimiento y del exceso de vapor. Se utilizo un metodo de equilibrio gaseoso basado en la reaccion de Fischer Tropsch y el equilibrio combinado pirita-pirrotita (FT-HSH3). Los resultados obtenidos indican que en el estado inicial del yacimiento existen fluidos que muestran heterogeneidad en los valores de temperatura de yacimiento (entre 275 y 310 grados Celsius), asi como en el exceso de vapor con valores desde negativos (liquido que despues de ebullir ha perdido vapor en su trayecto hacia el pozo) hasta uno (vapor con cero saturacion de liquido). El estudio individual de los pozos con fenomenos de ebullicion muestra que a traves del tiempo

  13. Geophysical exploration with transient electromagnetic soundings in three geothermal zones of Baja California, Mexico: Tres Virgenes, Puertecitos and Bahia Concepcion; Exploracion geofisica con sondeos electromagneticos transitorios en tres zonas geotermicas de Baja California, Mexico: Tres Virgenes, Puertecitos y Bahia Concepcion

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Carlos; Vazquez, Rogelio; Gonzalez, Carlos A; Romo, Jose M; Velasco, Nector; Lopez, Addier [CICESE, Ensenada, B.C. (Mexico)

    1999-04-01

    The results obtained from transient electromagnetic soundings (TDEM) applied to three geothermal zones are briefly commented, emphasizing instead the out of contract work done by the Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), both in the application of other geophysical techniques and the subsequent data analysis. This work includes several VLF (very low frequency) electromagnetic profiles in Bahia Concepcion and a magnetotelluric profile in Puertecitos. Regarding the data analysis, an algorithm to assess stratified models was constructed and applied to several Bahia Concepcion soundings and to the TDEM and Schlumberger data from Tres Virgenes in order to compare the resolving powers of these methods. Finally an imaging procedure based on smoothness constraints is being applied nowadays to characterize the geometry of the electric conductors under the Tres Virgenes hot springs. [Spanish] Se comentan los resultados de la aplicacion del modo de sondeo electromagnetico transitorio (TDEM) en tres zonas geotermicas, dando enfasis al trabajo realizado fuera de contrato por el Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), tanto en la aplicacion de otras tecnicas geofisicas como en el analisis posterior de los datos. Estos trabajos comprenden el levantamiento de perfiles electromagneticos con el metodo VLF (very low frequency) en Bahia Concepcion y de un perfil magnetotelurico en Puertecitos. En relacion con analisis de los datos, se implemento un algoritmo de evaluacion de modelos estratificados, usandose en sondeos de Bahia Concepcion. Esta tecnica se aplico a los datos TDEM y Schlumberger de Tres Virgenes para comparar sus poderes de resolucion. Finalmente, un procedimiento de construccion de imagenes de resistividad, basado en condiciones de suavidad, se esta aplicando actualmente a los datos de Tres Virgenes para caracterizar la geometria de los conductores electricos bajo las manifestaciones

  14. Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

    Directory of Open Access Journals (Sweden)

    Xiuhua Zheng

    2017-02-01

    Full Text Available The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.

  15. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  16. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  17. Brine history indicated by argon, krypton, chlorine, bromine, and iodine analyses of fluid inclusions from the Mississippi Valley type lead-fluorite-barite deposits at Hansonburg, New Mexico

    Science.gov (United States)

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Argon, krypton, chlorine, bromine, and iodine were measured in a homogeneous population of high-salinity hydrothermal fluid inclusions from the Tertiary-age Mississippi Valley-type (MVT) lead-fluorite-barite deposits at Hansonburg, New Mexico to establish new types of evidence for the history of both the fluid and the major dissolved salts. Noble gases and halogens in fluid inclusions containing 10−10–10−9 L of brine (Cl= 3 molal) were analyzed by laser microprobe noble-gas mass spectrometry (lmngms) on neutron-irradiated samples.The concentrations of36Ar (4.7 × 10−8 molal) and84Kr1.8 × 10−9 molal) in the fluid inclusions are equal to those of fresh surface waters in equilibrium with air at approximately20 ± 5°. The mole ratios ofBr/Cl (1.2 × 10−4) andI/Cl (1–2 × 10−6) are among the lowest measured in any natural waters, similar to those of modern brines formed by dissolution of Permian NaCl-bearing evaporites in southeast New Mexico.40Ar/36Ar ratios (600) are twice that of air, and indicate that the fluid inclusions had excess radiogenic40Ar (1.4 × 10−5 molal) when trapped. The amount of excess40Ar appears to be too large to have been acquired with Cl by congruent dissolution of halite-bearing evaporites, and possibly too small to have been acquired with Pb by congruent dissolution of granitic basement rocks with Proterozoic KAr ages.From thelmngms data, combined with published Pb and S isotope data, we infer the following sequence of events in the history of the Hansonburg MVT hydrothermal brine: (1) the brine originated as relatively dilute meteoric water, and it did not gain or lose atmospheric Ar or Kr after recharge; (2) the originally dilute fluid acquired the bulk of its Cl and sulfate in the subsurface after recharge by dissolving halite-bearing Permian? marine evaporites; (3) the high salinity brine then acquired most of its Pb and excess radiogenic40Ar from interactions with aquifer rocks other than evaporites, possibly clastic

  18. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhiyao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jan-Mou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproduced water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.

  19. Initial isotopic geochemistry ({delta} 18 O, {delta} D) of fluids from wells of the Los Humeros, Pue., geothermal field; Geoquimica isotopica ({delta} 18 O, {delta} D) inicial de fluidos de pozos del campo geotermico de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor Manuel [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: rmb@iie.org.mx; Ramirez Montes, Miguel; Tovar Aguado, Rigoberto [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)

    2010-01-15

    Isotopic data ({delta} 18 O, {delta} D) from fluids from production wells at the Los Humeros, Pue., geothermal field were analyzed to investigate the possible origin of these fluids and the dominant processes of the reservoir at its initial state. According to pre-exploitation data, it is suggested the Los Humeros reservoir fluids are made of a mixture of meteoric water of very light isotopic composition (paleo-fluids) and andesitic water. The relationship {delta} D vs {delta} 18 O from pre-exploitation data indicates the produced fluids are composed of a mixture of (at least) two fluids with distinct isotopic compositions. At the more enriched end of the mixing relationship are the isotopic compositions of the wells H-23 and H-18 (located in the southern area of the field), while the lighter fluids were found in well H-16 (originally) and then in well H-16 (repaired). It was found that the liquid phases of deep wells are more enriched in {delta} 18 O while the shallow wells present lower values, suggesting a convection process at the initial state. Based on this isotopic profile, it is considered that even the production depths of the wells H-1, H-12 and H-16 (repaired) are just about the same, but their respective isotopic compositions are quite different. The {delta} 18 O value for well H-16 (repaired) seems to be that of condensate steam, while the corresponding values for wells H-1 and H-12 fall within the value interval of the deep wells (H-23). This suggests wells H-1 and H-12 are collecting very deep fluids enriched in {delta} 18 O. These results could be useful in creating a conceptual model of the reservoir. [Spanish] Se analizaron datos isotopicos ({delta}18 O, {delta}D) de los fluidos de pozos productores del campo geotermico de Los Humeros, Pue., para investigar el posible origen de los fluidos asi como los procesos dominantes del yacimiento en su estado inicial. De acuerdo con datos previos a la explotacion, se plantea que los fluidos del yacimiento

  20. Development of drilling foams for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  1. Update of the basement model of the Cerro Prieto, B. C., geothermal field, Mexico; Actualizacion del modelo del basamento en el campo geotermico de Cerro Prieto, B.C., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, Macario [Residencia General de Cerro Prieto, Comision Federal de Electricidad, Mexicali, Baja California (Mexico)

    1999-04-01

    With the aim to actualize the basement model of the Cerro Prieto Geothermal Field, a gravity interpretation has been held. We modeled in 2.5 D, nine profiles traced over the Bouguer anomaly map. Well data concerning lithology and density changes were used to fit the gravity models. Results of this work confirm that the geometry of the basement of Cerro Prieto, corresponds to a structural sequence. From west to east it starts as a big depression, continues with a strong uplift of the basement in the middle sector and finally deepens eastward in steps. The basement model proposed in the present work, defines a similar trend to that established by Fonseca y Razo (1980), but there are differences in basement depth in some areas. In the present model we interpret basement depths between 200 and 400 m deeper than in previous models to the south and northwest of the actual exploitation zone. [Spanish] Con el fin de actualizar el modelo del basamento en el Campo Geotermico de Cerro Prieto, se realizo una reinterpretacion gravimetrica, modelando en 2.5 D, 9 perfiles trazados sobre el mapa de anomalia de Bouguer. Utilizando la informacion litologica obtenida a traves de numerosas perforaciones profundas, se hicieron coincidir, dentro de los mofelos gravimetricos, las principales variaciones litologicas con cambios en la densidad. Los resultados de este trabajo reiteran que la geometria del basamento del Campo de Cerro Prieto, vista de W a E, corresponde con una secuencia estructural que se inicia con una gran depresion en el W, continua con un fuerte levantamiento y finalmente se extiende con una tendencia a profundizarse hacia el E de forma escalonada. El modelo de basamento derivado del presente trabajo, define una tendencia muy similar al modelo de basamento establecido (Fonseca y Razo, 1980), pero difiere en cuanto a la profundidad en algunos sectores del campo. En el actual trabajo se interpreta una profundidad entre 200 y 400 m mayor hacia el sur y noroeste de la

  2. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Boles, James R. [Univ. of California, Santa Barbara, CA (United States); Garven, Grant [Tufts Univ., Medford, MA (United States)

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  3. Fault-Related CO2 Degassing, Geothermics, and Fluid Flow in Southern California Basins--Physiochemical Evidence and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garven, Grant [Tufts Univ., Medford, MA (United States)

    2015-08-11

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  4. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    OpenAIRE

    D. K. Djavatov; A. A. Azizov

    2017-01-01

    Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS). There i...

  5. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  6. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  7. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  8. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  9. Twelfth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting

  10. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  11. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  12. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  13. Report on survey in fiscal 1999 for promotion of geothermal development. Supplementary survey on data processing (fluid inclusion test) for Tsujinodake Area No. B-6; 1998 nendo chinetsu kaihatsu sokushin chosa hokokusho. Data shori ni kakawaru hosoku chosa (ryutai gan'yubutsu shiken nado) No.B-6 Tsujinodake chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    This paper reports the fluid inclusion test in the Tsujinodake area in fiscal 1998 for the survey on promotion of geothermal development. The fluid inclusions were classified into three types: those with the maximum value or the average value of the homogenizing temperature agreeing nearly with the saturated boiling curve, those with the homogenizing temperature showing the interim temperature between the present well temperature and the saturated boiling curve, and those agreeing nearly with the present well temperature. It is presumed that the bed temperatures in depths of 1,125.30 m and 1,427.50 m have changed very little since after formation of the present circulating and flowing systems of geothermal waters until now. In contrast at the depth of 1,691.75 m, the bed temperature was estimated to have fallen slightly from that in the most active period of the geothermal water activities. As a result of the rock age measurement, it is estimated that, in the Nansatsu bed groups distributing around the N10-TD-1 well, the temperature has fallen gradually after having been subjected to hot water alteration actions at higher than 200 degrees C, and cooling has taken place down to 200 to 250 degrees C as the fission track date temperature of zircon in the relatively late period (about several hundred thousand years before). There should have been no thermal change that affects the age measurement up to now since then. (NEDO)

  14. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    Science.gov (United States)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  15. The Parisian basin, birthplace of geothermics

    International Nuclear Information System (INIS)

    Jeanson, E.

    1995-01-01

    The exploitation of low energy geothermics in France is mainly localized in the Parisian Basin. About 40 geothermal plants are established in urbanized areas for heating and sanitary hot water supplies and also for air conditioning. Each plant can supply about 2500 to 5000 lodgings of collective buildings. Excluding drilling costs, urban investments can reach 70% of the total operating cost. Most of the exploitations draw the geothermal fluids from the Dogger reservoir located at a 1500-2000 m depth using double-well technique. Water temperature is about 60 to 85 C and solutes (salts and sulfides) represent 15 to 35 g/l. The deeper Albian and Neocomian drinking water reservoirs are exceptionally used due to their strategic nature. The corrosion problems and the age of the installations are the principal problems of the existing installations but the operating costs remain competitive with other energy sources. (J.S.). 3 figs., 9 photos

  16. Report of the seismic activity at the Cerro Prieto B.C., Mexico, geothermal field during 1996; Reporte de la actividad sismica registrada en el campo geotermico de Cerro Prieto, B.C., Mexico, durante 1996

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla Hernandez, Abelardo [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1997-05-01

    In February 1996 started the operation of the Seismic Network of Cerro Prieto Geothermal Field (RESICP). It is constituted by five digital stations with velocity sensors of three components and a natural period of one second. The network worked continuously until December 2, 1996. During this period, we located 270 events in the field area and its neighborhood, with coda-length magnitude 1

  17. Chemical and isotopic characteristics of rainwater at Los Humeros geothermal field, Puebla, Mexico and surrounding areas; Caracteristicas quimicas e isotopicas del agua de lluvia en el campo geotermico de Los Humeros, Puebla, Mexico y zonas aledanas

    Energy Technology Data Exchange (ETDEWEB)

    Tovar Aguado, Rigoberto; Cruz Grajales, Irma [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico)

    2000-12-01

    A study of chemical and isotopic characteristics of rainwater at Los Humeros geothermal field was undertaken for the second consecutive year. Samples were collected in seven stations-two inside the field and five on the periphery. In 1996, a total of 99 samples were collected and 104 were collected in 1997. Of these, 19-18.26% of the total-had a negative alkalinity. The Atempan (No.5) and Campamento (No.1) stations showed the highest number of anomalous samples (31.25 and 27.8%, respectively). Anomalous samples in Perote station were not observed a result that we attribute to the predominant wind direction. The results for the Campamento station are attributed to the thermal inversion phenomena occurring when the samples with negative alkalinity were obtained. Concentrations of cations in some samples were relatively high, with the maximum concentration of calcium in the Los Humeros station (79.7 ppm) . Other significantly high values were found in the Texcal station (34.8 ppm) and Perote (33.8 ppm) due to the presence of dust particles scattered in the air and because of the lack of pavement where the sampling stations are located. Another factor affecting these figures could be the presence of block and lime factories in the neighborhood. Although measured concentrations may seem high, reports exist with similar concentrations in nongeothermal areas. Oxygen-18 and deuterium contents were determined for each stations, mixing anomalous samples. The results show that the most enriched samples correspond to the San Juan Xiutetelco, Puebla (No. 6) station and the minimum to the Perote Veracruz (No. 7) station. The concentration of SO{sub 4} has marine and industrial origins, with a contribution of the first source ranging between 10 and 25 percent. [Spanish] En el campo geotermico de Los Humeros, Puebla se realizo, por segundo ano consecutivo, la caracterizacion quimica e isotopica de agua de lluvia en muestras colectadas en siete estaciones, dos localizadas dentro

  18. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  19. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  20. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  1. Estimation of the Energy Content in Maritaro; Northern Sector of the Los Azufres, Michoacan, Mexico Geothermal Field; Estimacion de la energia contenida en Maritaro, sector norte del campo geotermico de Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Arriaga, Mario Cesar [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1997-05-01

    The methodology, the conceptual synthetic model and results obtained during the modeling and numerical simulation of Maritaro, northern sector of the Los Azufres, Michoacan, Mexico hydrothermal system, are reported. A Central objective of this work, was to carry out an updated evaluation of the reservoir`s energy content and to estimate, between tolerable margins of error, the longevity and approximate amount of useful energy that could be transformed in electricity. The probable initial state and the period of exploitation 1980-1996 were satisfactorily reproduced by the numerical model. The natural thermodynamic state, estimated for the reservoir before its commercial exploitation begun, corresponds to the compressed liquid region, at 92 bar of average pressure, an average temperature of 301 degrees celsius, with an enthalpy of 1 344 kj/kg. The hottest zones are located toward the center and eastern portions of the field, and the colder regions, at the western periphery. It was considered a minimum volume of exploitable reservoir equal to 49 km{sup 3}, and a maximum volume, including a possible western reserve zone, of 74 km{sup 3}. Several scenarios were numerically studied, including the installation from 75 MWe up to 400 MWe. The 280 MWe power is considered to be the maximum feasible capacity to be installed in the minimum presently known volume. The 400 MWe power characterize the upper, hypothetical limit capacity, assuming that the reserve zone is variable. This last stage having the highest risk. [Espanol] En este documento se reporta la metodologia sintetico conceptual y los resultados obtenidos mediante el modelado matematico y la simulacion numerica de Maritaro, sector norte del sistema hidrotermal de Los Azufres, Michoacan, Mexico. El objetivo central del trabajo fue realizar una evaluacion actualizada de la capacidad energetica contenida en este reservorio y estimar, dentro de margenes tolerables de error, la longevidad y cantidad aproximada de energia

  2. Response to exploitation (1982-2002) of the Los Azufres, Michoacan (Mexico) geothermal field. Part I: North Zone; Respuesta a la explotacion (1982-2003) del yacimiento geotermico de Los Azufres, Michoacan (Mexico). Parte I: Zona Norte

    Energy Technology Data Exchange (ETDEWEB)

    Arellano G, Victor Manuel; Barragan R, Rosa Maria [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Torres R, Marco Antonio; Sandoval M, Fernando [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2004-12-01

    This work studies the thermodynamic evolution of the Los Azufres northern zone reservoir fluids as a response of exploitation since 1982 to 2002 is presented. Thermodynamic conditions for reservoir fluids were estimated using the WELFLO heat-and flow-well simulator, using production data as the input. The initial thermodynamic conditions of the north zone wells indicated the presence of compressed liquid; also it was noticed that the first response to exploitation was a pressure drop and an enthalpy increase, while the long term response indicated a very small pressure change but a high enthalpy increment. The analysis of production, chemical and isotopic (d18O, dD) data in this zone showed interference effects of fluids reinjected in well Az-52 on well Az-5; and in well Az-15 on wells Az-13, Az-28 and Az-43. At the present time due to the low injection flow rates, this effect is minimal. [Spanish] En este trabajo se presenta un estudio sobre la evolucion termodinamica de los fluidos de la zona norte del yacimiento de Los Azufres desde el inicio de su explotacion en 1982 hasta el ano 2002, considerando las condiciones de fondo de pozos del campo, como respuesta a la extraccion e inyeccion de fluidos. Las condiciones termodinamicas de los fluidos del yacimiento se estimaron mediante el simulador del flujo de fluidos y calor en pozos {sup W}ELFLO{sup ,} a partir de datos de produccion. Las condiciones termodinamicas iniciales de los fluidos de la zona norte de campo se encontraron en la region de liquido comprimido; la primera respuesta a la explotacion consistio en una disminucion de presion y un incremento en la entalpia. A largo plazo, se observaron cambios muy pequenos en la presion y grandes incrementos en la entalpia. El analisis de datos quimicos, isotopicos (d18O, dD) y de produccion de pozos en la zona norte evidencio la ocurrencia de interferencia de fluidos de reinyeccion del pozo Az-52 con el pozo Az-5 y del pozo Az-15 con los pozos Az-13, Az-28 y Az 43

  3. Water Intensity of Electricity from Geothermal Resources

    Science.gov (United States)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  4. Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program

    Energy Technology Data Exchange (ETDEWEB)

    Ruscetta, C.A. (ed.)

    1982-07-01

    Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

  5. Geothermal Progress Monitor. Report No. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  6. Retrospective examination of geothermal environmental assessments

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J.W.; Eddlemon, G.K.; Reed, A.W.

    1984-03-01

    Since 1976, the Department of Energy (DOE) has supported a variety of programs and projects dealing with the exploration, development, and utilization of geothermal energy. This report presents an overview of the environmental impacts associated with these efforts. Impacts that were predicted in the environmental analyses prepared for the programs and projects are reviewed and summarized, along with measures that were recommended to mitigate these impacts. Also, for those projects that have gone forward, actual impacts and implemented mitigation measures are reported, based on telephone interviews with DOE and project personnel. An accident involving spills of geothermal fluids was the major environmental concern associated with geothermal development. Other important considerations included noise from drilling and production, emissions of H/sub 2/S and cooling tower drift, disposal of solid waste (e.g., from H/sub 2/S control), and the cumulative effects of geothermal development on land use and ecosystems. Mitigation measures were frequently recommended and implemented in conjunction with noise reduction; drift elimination; reduction of fugitive dust, erosion, and sedimentation; blowout prevention; and retention of wastes and spills. Monitoring to resolve uncertainties was often implemented to detect induced seismicity and subsidence, noise, drift deposition, concentrations of air and water pollutants, and effects on groundwater. The document contains an appendix, based on these findings, which outlines major environmental concerns, mitigation measures, and monitoring requirements associated with geothermal energy. Sources of information on various potential impacts are also listed.

  7. Realizing the geothermal electricity potential—water use and consequences

    Science.gov (United States)

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  8. Realizing the geothermal electricity potential-water use and consequences

    International Nuclear Information System (INIS)

    Mishra, Gouri Shankar; Yeh, Sonia; Glassley, William E

    2011-01-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh -1 ) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  9. Geothermal energy and its application opportunities in Serbia

    Directory of Open Access Journals (Sweden)

    Andrić Nenad M.

    2015-01-01

    Full Text Available Geothermal energy is accumulated heat in the fluid and rock masses in the Earth 's crust. The natural decay of radioactive elements (uranium, thorium and potassium in rocks produces heat energy. The simplest use of geothermal energy for heating is by heat pump. Geothermal energy can be used for production of electricity. It uses hot water and steam from the earth to run the generator. Serbia has significant potential for geothermal energy. The total amount of accumulated heat in geothermal resources in a depth of 3 km is two times higher than the equivalent thermal energy that could be obtained by burning all types of coal from all their sites in Serbia! The total abundance of geothermal resources in Serbia is 4000 l/s. Abundance of wells in Vojvodina is 10-20 l/s, and the temperature is from 40 to 60°C. Exploitation of thermal waters in Mačva could cause heating of following cities: Bogatić, Šabac, Sremska Mitrovica and Loznica, with a total population of 150.000 people. The richest hydrogeothermal resources are in Mačva, Vranje and Jošanička Banja. Using heat pumps, geothermal water can be exploited on the entire territory of Serbia! Although large producer, Serbia is importing food, ie., fruits and vegetables. With the construction of greenhouses, which will be heated with geothermal energy, Serbia can become an exporting country.

  10. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  11. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  12. Performance test of a bladeless turbine for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Steidel, R.; Weiss, H.

    1976-03-24

    The Possell bladeless turbine was tested at the LLL Geothermal Test Facility to evaluate its potential for application in the total flow process. Test description and performance data are given for 3000, 3500, 4000, and 4500 rpm. The maximum engine efficiency observed was less than 7 percent. It is concluded that the Possell turbine is not a viable candidate machine for the conversion of geothermal fluids by the total flow process. (LBS)

  13. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  14. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  15. Application of SPCALC for chemical and thermodynamic speciation of fluids -example for wells LV-4A, LV-11 and LV-13, Las Tres Virgenes geothermal field, BCS; Aplicacion del SPCALC en la especiacion quimica y termodinamica de fluidos: ejemplo del caso de los pozos LV-4A, LV-11 y LV-13, del campo geotermico de Las Tres Virgenes, BCS

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano Guerra, J.C.; Sandoval Medina, F.; Flores Armenta, M.C. [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: fernando.sandoval@cfe.gob.mx, E-mail: magaly.flores@cfe.gob.mx; Perez, R.J. [Universidad de Calgary (Canada); Gonzalez Partida, E. [Universidad Nacional Autonoma de Mexico, Centro de Geociencias, Mexico, D.F. (Mexico)

    2009-01-15

    SPCALC is an excellent software application providing chemical and multi-phase speciation for geothermal fluids. Recently it was acquired by the Comision Federal de Electricidad (CFE) through a contract with the National Autonomous University of Mexico (UNAM) and the University of Calgary, Canada. Software methodology consists of calculating thermodynamic variables, such as activity (a) and fugacity (f) of chemical species, as well as the saturation indices (log Q/K) of mineral phases of the reservoir. In other words, it models the thermodynamic conditions of the reservoir (pH among other) and simulates the fluid-corrosion rate. This allows the software to foresee scaling and corrosion. In this paper, pervasive fluids in Cretaceous granitic rocks penetrated by wells LV-4A, LV-11 and LV-13 in Las Tres Virgenes geothermal field, BCS, are modeled, starting with chemical analyses. The more important ratios among activities [those which influence the fluid-rock interaction (i.e. {sup a}K{sup +}/{sup a}H{sup +}, {sup a}Ca{sup ++}/{sup a}H{sup +}, {sup a}Na{sup +}/{sup a}H{sup +}, {sup a}Mg{sup ++}/{sup a}H{sup +}) and whose results are the minerals visible under a microscope] are graphed in balance diagrams compatible with the pressure (P) and temperature (T) conditions in the reservoir. Epidote (zoisite) is the mineral found in congruent equilibrium with the system. The main mineral association at those conditions (200-250 degrees Celsius and {approx}18 bar), as observed in the well cuttings, is calcite+illite-quartz{+-}epidote, which is explained by the hydrolithic reactions that form replacement calcite in the presence of CO{sub 2}, thus restricting the formation of epidote and eventually eliminating it. The process enhances the CO{sub 2} molarity in the residual fluid, even up to {sup m}CO{sub 2} 1, which means the CO{sub 2} can be diluted back into fluid and intervene again in the process of calcite formation (2HCO{sub 3}{sup -} + Ca{sup ++} = calcite + H{sub 2}O

  16. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  17. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  18. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  19. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  20. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  1. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  2. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  3. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  4. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H., II; Polka, R.; Schoenmackers

    1996-04-01

    A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

  5. Geothermal Direct Heat Applications Program Summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for

  6. An Investigation of the 3D Electrical Resistivity Structure in the Chingshui Geothermal Area, NE Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chiang

    2015-01-01

    Full Text Available The Chingshui geothermal area southwest of the Ilan plain is identified as a western extension of the Okinawa Trough in the northern Taiwan subduction system. Numerous geophysical, geological and geochemical investigations have been conducted since the 1970s by the Industrial Technology Research Institute, the Chinese Petroleum Corporation of Taiwan and the National Science Council of Taiwan. These studies indicated that the Chingshui stream is one of the largest geothermal areas for electricity generation in Taiwan. However, the power generation efficiency has not met initial expectations. Magnetotelluric (MT data analyses show that the Chingshui geothermal region is a geologically complex area. A full three-dimensional (3D inversion was therefore applied to reprocess the MT data and provide the detailed electrical structure beneath the Chingshui geothermal region. The 3D geoelectrical model displays an improved image that clearly delineates the Chingshui geothermal system geometry. Two conductive anomalies are imaged that possibly indicate high potential areas for geothermal energy in the Chingshui geothermal system. One of the potential areas is located in the eastern part of the Chingshui Fault at shallow depths. A significant conductive anomaly is associated with high heat flow and fluid content situations southwest of the geothermal manifest area at depth. A higher interconnected fluid indicates that this area contains the highest potential for geothermal energy in the Chingshui geothermal system.

  7. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  8. Results of test of acid fluids neutralization in the well H-43, Los Humeros geothermal field, Puebla; Resultados de la prueba de neutralizacion de fluidos acidos en el pozo H-43, campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly del Carmen; Ramirez Montes, Miguel; Sandoval Medina, Fernando; Rosales Lopez, Cesar [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: magaly.flores@cfe.gob.mx

    2011-07-15

    The well H-43 was drilled in Los Humeros Geothermal Field, Pue., in 2007 and 2008. When well production was measured, it was found the well produced acid fluids with high corrosion potential. Then it was decided to try to neutralize the acidity of the H-43 fluids by adding a solution of sodium hydroxide. This is a basic substance used to neutralize mainly the acid groups H+, and the goal was to raise the pH of the fluids to minimize its corrosive features. First sodium hydroxide was injected into the well to protect the casing of 244.4 mm (9 5/8 in) against corrosion and then all the surface installations. It was possible to increase the pH of the well fluid from 5.2 up to 6.8 without altering the steam production, thus demonstrating the neutralization procedure is feasible. The approximate costs of the neutralization tests performed, including equipment for the proposed neutralization system, the neutralizer (NaOH), and drilling the well are about 71.4 million pesos (around 5.5 million USD). We estimate a benefit/cost ratio of 1.5 and a return on investment in five years, considering the income from energy sales at present value. [Spanish] El pozo H-43 fue perforado en el campo de Los Humeros, Pue., en 2007-2008, y al evaluar su produccion se encontro que producia fluidos acidos de alto potencial corrosivo. Se decidio por tanto realizar una prueba para neutralizar la acidez de los fluidos de este pozo, que consistio en agregarle una solucion de hidroxido de sodio. Esta es una sustancia basica que neutraliza principalmente los grupos acidos H+, con lo que se buscaba aumentar el pH del fluido lo necesario para reducir al maximo su caracter corrosivo. La inyeccion del hidroxido de sodio se realizo dentro del pozo a fin de proteger de la corrosion a la tuberia de revestimiento de 244.4 mm (9 5/8 pulgadas), y posteriormente a todos los equipos superficiales. Como resultado de la prueba, se logro aumentar el pH del fluido producido por el pozo de 5.2 a un maximo de 6

  9. Environmental Report Utah State Prison Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  10. Eleventh workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

    1986-01-23

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  11. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  12. Energy efficient data center liquid cooling with geothermal enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2017-11-07

    A data center cooling system is operated in a first mode, and has an indoor portion wherein heat is absorbed from components in the data center by a heat transfer fluid, and an outdoor heat exchanger portion and a geothermal heat exchanger portion. The first mode includes ambient air cooling of the heat transfer fluid in the outdoor heat exchanger portion and/or geothermal cooling of the heat transfer fluid in the geothermal heat exchanger portion. Based on an appropriate metric, a determination is made that a switch should be made from the first mode to a second mode; and, in response, the data center cooling system is switched to the second mode. The second mode is different than the first mode.

  13. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  14. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  15. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  16. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  17. Geothermal survey handbook

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.

  18. Worldwide installed geothermal power

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo

  19. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  20. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  1. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    Science.gov (United States)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  2. Hydrogeochemistry of high-temperature geothermal systems in China: A review

    International Nuclear Information System (INIS)

    Guo, Qinghai

    2012-01-01

    As an important part of the Mediterranean-Himalayas geothermal belt, southern Tibet and western Yunnan are the regions of China where high-temperature hydrothermal systems are intensively distributed, of which Rehai, Yangbajing and Yangyi have been investigated systematically during the past several decades. Although much work has been undertaken at Rehai, Yangbajing and Yangyi to study the regional geology, hydrogeology, geothermal geology and geophysics, the emphasis of this review is on hydrogeochemical studies carried out in these geothermal fields. Understanding the geochemistry of geothermal fluids and their environmental impact is critical for sustainable exploitation of high-temperature hydrothermal resources in China. For comparison, the hydrogeochemistry of several similar high-temperature hydrothermal systems in other parts of the world are also included in this review. It has been confirmed by studies on Cl − and stable isotope geochemistry that magma degassing makes an important contribution to the geothermal fluids from Rehai, Yangbajing and Yangyi, though meteoric water is still the major source of recharge for these hydrothermal systems. However, the mechanisms of magma heat sources appear to be quite different in the three systems, as recorded by the 3 He/ 4 He ratios of escaping geothermal gases. A mantle-derived magma intrusion to shallow crust is present below Rehai, although the intruding magma has been heavily hybridized by crustal material. By contrast, the heat sources below Yangbajing and Yangyi are inferred to be remelted continental crust. Besides original sources, the geochemistry of characteristic constituents in the geothermal fluids have also been affected by temperature-dependent fluid–rock interactions, boiling and redox condition changes occurring in the upper part of hydrothermal systems, and mixing with cold near-surface waters. The geothermal fluids from Rehai, Yangbajing and Yangyi contain very high concentrations of some

  3. Basic overview towards the assessment of landslide and subsidence risks along a geothermal pipeline network

    NARCIS (Netherlands)

    Astisiasari, Astisiasari; Van Westen, C.J.; Jetten, V.; Van Der Meer, F.D.; Hizbaron, Dyah Rahmawati

    2018-01-01

    An operating geothermal power plant consists of installation units that work systematically in a network. The pipeline network connects various engineering structures, e.g. well pads, separator, scrubber, and power station, in the process of transferring geothermal fluids to generate electricity.

  4. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  5. Submarine geothermal resources

    Science.gov (United States)

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (characteristics of these systems before they can be considered a viable resource. Until several of the most promising areas are carefully defined and drilled, the problem will remain unresolved. ?? 1976.

  6. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones

  7. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    Science.gov (United States)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  8. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  9. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  10. NGDC Geothermal Data Bases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geothermics is the study of heat generated in Earth's interior and its manifestation at the surface. The National Geophysical Data Center (NGDC) has a variety of...

  11. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  12. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  13. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  14. A complementary geothermal application

    International Nuclear Information System (INIS)

    Bedard, R.

    1998-01-01

    A geothermal project for air conditioning and heating at four health centres in Quebec was presented. The four health centres are: le centre Dominique-Tremblay, le centre Cardinal-Villeneuve, le centre Louis-Hebert, et le centre Francois-Charon. The investment made to install the geothermal heating and cooling system, the cost of operating the system, and energy savings resulting from the investment were discussed

  15. Feasibility study and energy efficiency estimation of geothermal power station based on medium enthalpy water

    Directory of Open Access Journals (Sweden)

    Borsukiewicz-Gozdur Aleksandra

    2007-01-01

    Full Text Available In the work presented are the results of investigations regarding the effectiveness of operation of power plant fed by geothermal water with the flow rate of 100, 150, and 200 m3/h and temperatures of 70, 80, and 90 °C, i. e. geothermal water with the parameters available in some towns of West Pomeranian region as well as in Stargard Szczecinski (86.4 °C, Poland. The results of calculations regard the system of geothermal power plant with possibility of utilization of heat for technological purposes. Analyzed are possibilities of application of different working fluids with respect to the most efficient utilization of geothermal energy. .

  16. Geothermal energy: opportunities for California commerce. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  17. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Elzie Lynn [Surprise Valley Electrification Corp., Alturas, CA (United States)

    2016-01-12

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges a small rural electric cooperative encountered and managed to develop a geothermal generating plant.

  18. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  19. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  20. Characterisation of induced fracture networks within an enhanced geothermal system using anisotropic electromagnetic modelling

    Czech Academy of Sciences Publication Activity Database

    MacFarlane, J.; Thiel, S.; Pek, Josef; Peacock, J.; Heinson, G.

    2014-01-01

    Roč. 288, November (2014), s. 1-7 ISSN 0377-0273 Institutional support: RVO:67985530 Keywords : geothermal systems * magnetotellurics * fluid injection Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.543, year: 2014

  1. Geothermal technology development program. Annual progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1982-09-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology.

  2. FY 1998 report on the verification survey of geothermal exploration technology, etc. 2/2. Survey of deep geothermal resource; 1998 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 2/2. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    For the purpose of commercializing deep geothermal resource, a deep exploration well of 4000m class was drilled in the existing geothermal development area to survey the situation of deep geothermal resource existence and the availability. Concretely, the deep geothermal exploration well was drilled for study in the Kakkonda area, Shizukuishi town, Iwate prefecture, to clarify the situation of deep geothermal resource existence and the whole image of geothermal system. Consideration was made of the deep geothermal exploration method, systematization of deep high temperature drilling technology, and availability of deep geothermal resource. The results of the survey were summed up as follows: 1) general remarks; 2) deep exploration well drilling work; 3) details of the study. This report contained 3). In 3), the items were as follows: heightening of accuracy of the deep geothermal resource exploration method, making of a geothermal model in the Kakkonda area, study of deep drilling technology, study of deep fluid utilization technology, and making of a guide for deep geothermal resource exploration/development in the Kakkonda area. As to the technology of high temperature deep geothermal well drilling, studies were made of the borehole cooling method, mud water cooling method, survey of deterioration of casing with age, etc. (NEDO)

  3. Twentieth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  4. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, Varun; Hogue, Michael

    2015-07-17

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positive economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.

  5. Groundwater contributions to Waikite geothermal fluids

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1994-01-01

    Isotopic data are reported for hot springs in the Waikite area. The data, along with chemical data, are used to produce a consistent interpretation of mixing between deep chloride water and groundwater, with some samples being affected by evaporation after rising to the surface. The constant ratio between chloride and bicarbonate concentrations shows that mixing takes place at depth before any boiling occurs. Reservoir temperatures are assessed using the KMg geothermometer. Tritium concentrations in springs with the highest temperature reservoirs are non-zero indicating a small input of 1960's water. Groundwater downflow from the nearby Paeroa Range is inferred. The weight of evidence supports the springs being a peripheral outflow on the margin of the Waiotapu system rather than being genetically related to Te Kopia. (author). 6 figs., 1 tab., 10 refs

  6. Utilising geothermal energy in Victoria

    International Nuclear Information System (INIS)

    Driscoll, Jim

    2006-01-01

    Geothermal energy is generated from the radioactive decay of naturally occurring isotopes and about 20% is generated from primordial heat associated with the formation of the earth. Geothermal project reduce energy and water cost and reduces greenhouse gas emissions

  7. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned

  8. Enthalpy restoration in geothermal energy processing system

    Science.gov (United States)

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  9. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    OpenAIRE

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-01-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK “hot dry rock” experimental geothermal...

  10. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  11. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie; Á rnadó ttir, Thó ra; Jonsson, Sigurjon; Decriem, Judicaë l; Hooper, Andrew John

    2010-01-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  12. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  13. Design and optimization of geothermal power generation, heating, and cooling

    Science.gov (United States)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  14. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  15. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  16. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1994-01-20

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who

  17. Use of environmental radioactive isotopes in geothermal prospecting

    International Nuclear Information System (INIS)

    Balcazar, M.; Lopez M, A.; Huerta, M.; Flores R, J. H.; Pena, P.

    2010-10-01

    Oil resources decrease and environmental impact of burning fossil fuels support the use of alternative energies around the world. By far nuclear energy is the alternative which can supply huge amount of clean energy. Mexico has two nuclear units and has also explored and exploited the use of other complementary renewal energies, as wind and geothermal. Mexico is the third geothermal-energy producer in the world with an installed capacity of 960 MW and is planning the installation of 146 MW for the period 2010-2011, according to information of the Mexican Federal Electricity Board. This paper presents a study case, whose goal is to look for areas where the heat source can be located in geothermal energy fields under prospecting. The method consist in detecting a natural radioactive tracer, which is transported to the earth surface by geo-gases, generated close to the heat source, revealing areas of high permeability properties and open active fractures. Those areas are cross correlated to other resistivity, gravimetric and magnetic geophysical parameters in the geothermal filed to better define the heat source in the field. (Author)

  18. Cerro Prieto geothermal field: exploration during exploitation

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  19. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  20. First geothermal pilot power plant in Hungary

    Directory of Open Access Journals (Sweden)

    Tóth Anikó

    2007-01-01

    Full Text Available The Hungarian petroleum industry has always participated in the utilization of favourable geothermal conditions in the country. Most of the Hungarian geothermal wells were drilled by the MOL Ltd. as CH prospect holes. Accordingly, the field of geothermics belonged to the petroleum engineering, although marginally. It was therefore a surprise to hear of the decision of MOL Ltd. to build a geothermal power plant of about 2-5 MW. The tender was published in 2004.The site selected for the geothermal project is near the western border of an Hungarian oilfield, close to the Slovenian border. The location of the planned geothermal power plant was chosen after an analysis of suitable wells owned by the MOL Rt. The decision was made on the bases of different reservoir data. The existence of a reservoir of the necessary size, temperature, permeability, productivity and the water chemistry data was proved. The wells provide an enough information to understand the character of the reservoir and will be the production wells used by the planned power plant.The depth of the wells is about 2930 - 3200 m. The Triassic formation is reached at around 2851 m. The production and the reinjection wells are planned. The primary objective of the evaluation is to further learn the nature of the geothermal system. First a one-day discharge test is carried out. If this short-term test is successful, a six-months long-term discharge test will follow. The first period of the test is a transient phenomenon. Within the well test, the wellhead pressure, the flow rate, the outflowing water temperature, the dynamic fluid level, and the chemical components will be measured. The heat transfer around the bore-hole is influenced by the flow rate and the time. For the right appreciation of the measured data, it is very important to analyse the heat transfer processes around the bore-hole. The obtained data from the experiments must be also fitted into the framework of a mathematical

  1. Eastern Mediterranean geothermal resources and subduction dynamics

    Science.gov (United States)

    Roche, Vincent; Sternai, Pietro; Guillou-Frottier, Laurent; Jolivet, Laurent; Gerya, Taras

    2017-04-01

    The Aegean-Anatolian retreating subduction and collision zones have been investigated through 3D numerical geodynamic models involving slab rollback/tearing/breakoff constrained by, for instance, seismic tomography or anisotropy and geochemical proxies. Here, we integrate these investigations by using the well documented geothermal anomalies geothermal anomalies. First, we use 3D high-resolution thermo-mechanical numerical models to quantify the potential contribution of the past Aegean-Anatolian subduction dynamics to such present-day measured thermal anomalies. Results suggest an efficient control of subduction-related asthenospheric return flow on the regional distribution of thermal anomalies. Our quantification shows that the slab-induced shear heating at the base of the crust could partly explain the high heat flow values above the slab tear (i.e. in the Menderes Massif, Western Turkey). Second, the associated thermal signature at the base of the continental crust is used as basal thermal boundary condition for 2D crustal-scale models dedicated to the understanding of heat transfer from the abnormally hot mantle to the shallow geothermal reservoir. These models couple heat transfer and fluid flow equations with appropriate fluid and rock physical properties. Results suggest that permeable low-angle normal faults (detachments) in the back-arc region can control the bulk of the heat transport and fluid circulation patterns. We suggest that detachments can drain crustal and/or mantellic fluids up to several kilometers depths. At the basin-scale, we show that the permeability of detachments may control the reservoirs location. Temperatures at the base of detachments may be subject to protracted increase (due to anomalously high basal heat flow) through time, thereby generating dome-shaped thermal structures. These structures, usually with 20km characteristic wavelength, may reach the Moho involving lateral rheological contrasts and possibly crustal

  2. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  3. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  4. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    Science.gov (United States)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  5. FY 1993 report on the survey of geothermal development promotion. Survey of geothermal water (No.36 - Amemasu-dake area); 1993 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.36 Amemasu dake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    As a part of the survey of geothermal development promotion in FY 1993, survey of geothermal fluid was made using a precise structure drilling well N5-AM-5 as exploration well in the Amemasu-dake area, Hokkaido. The induced jetting of geothermal fluid was carried out by the Swabbing method in the total number of times of 185 in 11 days at 10-20 times/day, but did not result in the jetting of geothermal water. The sampling of geothermal water was conducted by guiding the geothermal water that overflowed the guide pipe to the tank. The temperature of geothermal water indicated approximately 20 degrees C in the 1st time and 40-60 degrees C in and after the 2nd time every day. The electric conductivity of geothermal water was 2.033 mS/cm, chlorine ion concentration was 420-500 ppm, and pH value was 7.17-7.72. As a result of the survey, it was presumed that the geothermal water of this well originated in the meteoric water around the area and formed slightly supported by emitted volcanic matters. As to the geochemical temperature, the silica temperature indicated about 120 degrees C and the alkali ratio temperature did about 180 degrees C. It was considered that there possibly existed geothermal reservoirs of approximately 180 degrees C in alkali ratio temperature around the well. (NEDO)

  6. Seismic characterization of geothermal reservoirs by application of the common-reflection-surface stack method and attribute analysis

    OpenAIRE

    Marcin Pussak

    2015-01-01

    An important contribution of geosciences to the renewable energy production portfolio is the exploration and utilization of geothermal resources. For the development of a geothermal project at great depths a detailed geological and geophysical exploration program is required in the first phase. With the help of active seismic methods high-resolution images of the geothermal reservoir can be delivered. This allows potential transport routes for fluids to be identified as well as regions with h...

  7. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    Energy Technology Data Exchange (ETDEWEB)

    Jim, Nichols [Truckee Meadows Community College, Reno, NV (United States)

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students also participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.

  8. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)

    Science.gov (United States)

    Barberi, Franco; Carapezza, Maria Luisa; Cioni, Roberto; Lelli, Matteo; Menichini, Matia; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca

    2013-05-01

    Platanares and Azacualpa geothermal sites of Honduras are located in an inner part of the Caribbean Plate far from the active volcanic front of Central America. Here geology indicates that there are not the conditions for the occurrence of shallow magmatic heat sources for high-enthalpy geothermal resources. Geothermal perspectives are related to the possibility of a deep circulation of meteoric water along faults and the storage of the heated fluid in fractured permeable reservoirs. Geochemical geothermometers indicate a temperature for the deeper part of the geothermal reservoir close to 200 °C for Platanares and of 150-170 °C for Azacualpa. Calcite scaling, with subordinate silica deposition has to be expected in both sites. CO2 soil flux investigations have been carried out in both areas and reveal the presence of positive anomalies likely corresponding to the presence at depth of fractured degassing geothermal reservoirs. Compared with the geothermal areas of Central Italy whose reservoirs are hosted in carbonate rocks, e.g. Latera (Chiodini et al., 2007), the CO2 soil flux measured in Honduras is significantly lower (mean of 17 g/m2day at Platanares and of 163 g/m2day at Azacualpa) probably because of the dominant silicate nature of the deep reservoirs.

  9. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  10. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  11. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  12. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  13. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [ed.; Maddi, Phillip [ed.

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  14. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    Science.gov (United States)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  15. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  16. GEODAT. Development of thermodynamic data for the thermodynamic equilibrium modeling of processes in deep geothermal formations. Combined report

    International Nuclear Information System (INIS)

    Moog, Helge C.; Regenspurg, Simona; Voigt, Wolfgang

    2015-02-01

    The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.

  17. Fiscal 1997 verification and survey of geothermal prospecting technology etc. 1/2. Survey report on deep-seated geothermal resources; 1997 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 1/2. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    For the purpose of reducing the risk to accompany the exploitation of deep-seated geothermal resources, investigations are conducted into the three factors that govern the formation of geothermal resources at deep levels, that is, the supply of heat from heat sources, the supply of geothermal fluids, and the development of fracture systems contributing to the constitution of reservoir structures. In fiscal 1997, a fumarolic gas test is conducted at the deep-seated geothermal well WD-1b which was drilled in the preceding fiscal year. In the test, chemical and isotopic characteristics are compared between the fluids of the WD-1b and the other existing deep-seated wells, and it is found that the fluids from the WD1b originates in surface water just like the fluids from the others and that the constitution of its gas is not greatly affected by magmatic fluids. A PTS (Pressure, Temperature, Spinner flowmeter) logging is performed to observe conditions in the well with the fluids being discharged and to know the inflow point and rate the fumarolic fluids, and the result is utilized to presume the 3-dimensional stress in the vicinity of the WD-1. An isotopic measurement of water included in the fluids is conducted to examine the origin of the geothermal fluids, constant observation and analysis of micro-earthquakes are carried out, and the fluid flow and fluid hydraulic characteristics are also studied. (NEDO)

  18. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    Science.gov (United States)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  19. <