WorldWideScience

Sample records for mexico coastal ocean

  1. The Gulf of Mexico Coastal Ocean Observing System: A Decade of Data Aggregation and Services.

    Science.gov (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Baum, S. K.; Currier, R. D.; Stoessel, M. M.

    2016-02-01

    The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) celebrated its 10-year anniversary in 2015. GCOOS-RA is one of 11 RAs organized under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) Program Office to aggregate regional data and make these data publicly-available in preferred forms and formats via standards-based web services. Initial development of GCOOS focused on building elements of the IOOS Data Management and Communications Plan which is a framework for end-to-end interoperability. These elements included: data discovery, catalog, metadata, online-browse, data access and transport. Initial data types aggregated included near real-time physical oceanographic, marine meteorological and satellite data. Our focus in the middle of the past decade was on the production of basic products such as maps of current oceanographic conditions and quasi-static datasets such as bathymetry and climatologies. In the latter part of the decade we incorporated historical physical oceanographic datasets and historical coastal and offshore water quality data into our holdings and added our first biological dataset. We also developed web environments and products to support Citizen Scientists and stakeholder groups such as recreational boaters. Current efforts are directed towards applying data quality assurance (testing and flagging) to non-federal data, data archiving at national repositories, serving and visualizing numerical model output, providing data services for glider operators, and supporting marine biodiversity observing networks. GCOOS Data Management works closely with the Gulf of Mexico Research Initiative Information and Data Cooperative and various groups involved with Gulf Restoration. GCOOS-RA has influenced attitudes and behaviors associated with good data stewardship and data management practices across the Gulf and will to continue to do so into the next decade.

  2. The Gulf of Mexico Coastal Ocean Observing System: Building an MBON for the Florida Keys.

    Science.gov (United States)

    Howard, M.; Stoessel, M. M.; Currier, R. D.

    2016-02-01

    The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) Data Portal was designed to aggregate regional data and to serve it to the public through standards-based services in useful and desirable forms. These standards are established and sanctioned for use by the U.S. Integrated Ocean Observing System (IOOS) Program Office with inputs from experts on the Integrated Ocean Observation Committee and the RA informatics community. In 2012, with considerable input from staff from Ocean Biogeographical Information System USA (OBIS-USA), IOOS began to develop and adopt standards for serving biological datasets. GCOOS-RA applied these standards the following year and began serving fisheries independent data through an GCOOS ERDDAP server. In late 2014, GCOOS-RA partnered with the University of South Florida in a 5-year Marine Biodiversity Observing Network (MBON) Project sponsored by NOAA, NASA and BOEM. Work began in 2015. GCOOS' primary role is to aggregate, organize and serve data that are useful to an MBON for the Florida Keys National Marine Sanctuary. GCOOS, in collaboration with Axiom Data Science, will produce a decision support system (DSS) for stakeholders such as NOAA National Marine Sanctuaries Program managers. The datasets to be managed include environmental observations from: field surveys, fixed platforms, and satellites; GIS layers of: bathymetry, shoreline, sanctuary boundaries, living marine resources and habitats; outputs from ocean circulation models and ecosystem models (e.g., Ecopath/Ecosim) and Environmental DNA. Additionally, the DSS may be called upon to perform analyses, compute indices of biodiversity and present results in tabular, graphic and fused forms in an interactive setting. This presentation will discuss our progress to date for this challenging work in data integration.

  3. Gulf of Mexico Coastal Ocean Observing System: The Gulf Component of the U.S. Integrated Ocean Observing System

    Science.gov (United States)

    Bernard, L. J.; Moersdorf, P. F.

    2005-05-01

    The United States is developing an Integrated Ocean Observing System (IOOS) as the U.S. component of the international Global Ocean Observing System (GOOS). IOOS consists of: (1) a coastal observing system for the U.S. EEZ, estuaries, and Great Lakes; and (2) a contribution to the global component of GOOS focused on climate and maritime services. The coastal component will consist of: (1) a National Backbone of observations and products from our coastal ocean supported by federal agencies; and (2) contributions of Regional Coastal Ocean Observing Systems (RCOOS). The Gulf of Mexico Coastal Ocean Observing System (GCOOS) is one of eleven RCOOS. This paper describes how GCOOS is progressing as a system of systems to carry out data collection, analysis, product generation, dissemination of information, and data archival. These elements are provided by federal, state, and local government agencies, academic institutions, non-government organization, and the private sector. This end-to-end system supports the seven societal goals of the IOOS, as provided by the U.S. Commission on Ocean Policy: detect and forecast oceanic components of climate variability, facilitate safe and efficient marine operations, ensure national security, manage marine resources, preserve and restore healthy marine ecosystems, mitigate natural hazards, and ensure public health. The initial building blocks for GCOOS include continuing in situ observations, satellite products, models, and other information supported by federal and state government, private industry, and academia. GCOOS has compiled an inventory of such activities, together with descriptions, costs, sources of support, and possible out-year budgets. These activities provide information that will have broader use as they are integrated and enhanced. GCOOS has begun that process by several approaches. First, GCOOS has established a web site (www.gcoos.org) which is a portal to such activities and contains pertinent information

  4. Gulf of Mexico Coastal and Ocean Zones Strategic Assessment: Data Atlas 1985 (NODC Accession 0126646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlas contains metadata and shape files of 18 different species in the Gulf of Mexico as of 1985. The shapefiles display the spatial and temporal distribution of...

  5. The Gulf of Mexico Coastal Ocean Observing System: A Gulf Science Portal

    Science.gov (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Jochens, A. E.

    2013-12-01

    The Gulf of Mexico Coastal Ocean Observing System's (GCOOS) regional science portal (gcoos.org) was designed to aggregate data and model output from distributed providers and to offer these, and derived products, through a single access point in standardized ways to a diverse set of users. The portal evolved under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) program where automated largely-unattended machine-to-machine interoperability has always been a guiding tenet for system design. The web portal has a business unit where membership lists, new items, and reference materials are kept, a data portal where near real-time and historical data are held and served, and a products portal where data are fused into products tailored for specific or general stakeholder groups. The staff includes a system architect who built and maintains the data portal, a GIS expert who built and maintains the current product portal, the executive director who marshals resources to keep news items fresh and data manger who manages most of this. The business portal is built using WordPress which was selected because it appeared to be the easiest content management system for non-web programmers to add content to, maintain and enhance. The data portal is custom built and uses database, PHP, and web services based on Open Geospatial Consortium standards-based Sensor Observation Service (SOS) with Observations and Measurements (O&M) encodings. We employ a standards-based vocabulary, which we helped develop, which is registered at the Marine Metadata Interoperability Ontology Registry and Repository (http://mmisw.org). The registry is currently maintained by one of the authors. Products appearing in the products portal are primarily constructed using ESRI software by a Ph.D. level Geographer. Some products were built with other software, generally by graduate students over the years. We have been sensitive to the private sector when deciding which products to produce. While

  6. Monitoring Drought along the Gulf of Mexico and the Southeastern Atlantic Ocean Using the Coastal Salinity Index

    Science.gov (United States)

    Conrads, P. A.; Rouen, L.; Lackstrom, K.; McCloskey, B.

    2017-12-01

    Coastal droughts have a different dynamic than upland droughts, which are typically characterized by agricultural, hydrologic, meteorological, and (or) socio-economic impacts. Drought uniquely affects coastal ecosystems due to changes in salinity conditions of estuarine creeks and rivers. The location of the freshwater-saltwater interface in surface-water bodies is an important factor in the ecological and socio-economic dynamics of coastal communities. The location of the interface determines the freshwater and saltwater aquatic communities, fisheries spawning habitat, and the freshwater availability for municipal and industrial water intakes. The severity of coastal drought may explain changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. To address the data and information gap for characterizing coastal drought, a coastal salinity index (CSI) was developed using salinity data. The CSI uses a computational approach similar to the Standardized Precipitation Index (SPI). The CSI is computed for unique time intervals (for example 1-, 6-, 12-, and 24-month) that can characterize the onset and recovery of short- and long-term drought. Evaluation of the CSI indicates that the index can be used for different estuary types (for example: brackish, oligohaline, or mesohaline), for regional comparison between estuaries, and as an index of wet conditions (high freshwater inflow) in addition to drought (saline) conditions. In 2017, three activities in 2017 will be presented that enhance the use and application of the CSI. One, a software package was developed for the consistent computation of the CSI that includes preprocessing of salinity data, filling missing data, computing the CSI, post-processing, and generating the supporting metadata. Two, the CSI has been computed at sites along the Gulf of Mexico (Texas to Florida) and the Southeastern Atlantic Ocean (Florida to

  7. Near-coastal ocean variability off southern Tamaulipas - northern Veracruz, western Gulf of Mexico, during spring-summer 2013

    Science.gov (United States)

    Rivas, David

    2016-04-01

    Six months of observations from a near-coastal mooring deployed off southern Tamaulipas-northern Veracruz coast (western Gulf of Mexico) during spring-summer 2013 provides velocity, temperature, salinity, sea level, and dissolved oxygen series in a region which ocean dynamics is still poorly understood. As shown in a preceding analysis of this region's winter circulation for winter 2012-2013, coastal trapped motions associated with the regional invasion of synoptic cold fronts modulate the local variability; this pattern remains in the spring 2013, when even more intense events of alongshore flow (>50 cm/s) are observed. This intensified flow is associated with a significant decrease in the dissolved oxygen, most probably related to an influence of hypoxic waters coming from the northern Gulf. In late spring-mid summer, the wind pattern corresponds to persistent southeasterly winds that favor the occurrence of a local upwelling, which maintains a local thermal reduction (>3 degrees Celsius) and is associated with a persistent northward flow (>30 cm/s). The late summer was characterized by a significant tropical-cyclone activity, when a depression, a storm, and a hurricane affected the western Gulf. These tropical systems caused an intense precipitation and hence an important intensification of the local riverine discharge, and the winds enhanced the mixing of such riverine waters, via mostly kinetic stirring and Ekman pumping.

  8. Spatio-temporal variability of internal waves in the northern Gulf of Mexico studied with the Navy Coastal Ocean Model, NCOM

    Science.gov (United States)

    Cambazoglu, M. K.; Jacobs, G. A.; Howden, S. D.; Book, J. W.; Arnone, R.; Soto Ramos, I. M.; Vandermeulen, R. A.; Greer, A. T.; Miles, T. N.

    2016-02-01

    Internal waves enhance mixing in the upper ocean, transport nutrients and plankton over the water column and across the shelf from deeper waters to shallower coastal areas, and could also transport pollutants such as hydrocarbons onshore during an oil spill event. This study aims to characterize internal waves in the northern Gulf of Mexico (nGoM) and investigate the possible generation and dissipation mechanisms using a high-resolution (1-km) application of the Navy Coastal Ocean Model (NCOM). Three dimensional model products are used to detect the propagation patterns of internal waves. The vertical structure of internal waves is studied and the role of stratification is analyzed by looking at the temperature, salinity and velocity variations along the water column. The model predictions suggest the generation of internal waves on the continental shelf, therefore the role of ocean bottom topography interacting with tides and general circulation features such as the Loop Current Eddy front, on the internal wave generation will be discussed. The time periods of internal wave occurrences are identified from model predictions and compared to satellite ocean color imagery. Further data analysis, e.g. Fourier analysis, is implemented to determine internal wavelengths and frequencies and to determine if the response of internal waves are at tidal periods or at different frequencies. The atmospheric forcing provided to NCOM and meteorological data records are analyzed to define the interaction between wind forcing and internal wave generation. Wavelet analysis characterizes the ocean response to atmospheric events with periodic frequencies. Ocean color satellite imagery was used to visualize the location of the Mississippi river plume (and other oceanic features) and compared to the model predictions because the enhanced stratification from freshwater plumes which propagate across the Mississippi Bight can provide favorable conditions in coastal waters for internal wave

  9. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  10. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, May 6-8, 2008

    Science.gov (United States)

    Robbins, L.L.; Coble, P.G.; Clayton, T.D.; Cai, W.J.

    2009-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. In May 2008, the Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico was held in St. Petersburg, FL, to address the information gaps of carbon fluxes associated with the Gulf of Mexico and to offer recommendations to guide future research. The meeting was attended by over 90 participants from over 50 U.S. and Mexican institutions and agencies. The Ocean Carbon and Biogeochemistry program (OCB; http://www.us-ocb.org/) sponsored this workshop with support from the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the University of South Florida. The goal of

  11. Village Dogs in Coastal Mexico

    NARCIS (Netherlands)

    Ruiz Izaguirre, Eliza; Hebinck, P.G.M.; Eilers, C.H.A.M.

    2018-01-01

    Village dogs are important for households in coastal Mexico, yet they are seen as out of place by etic stakeholders (public health and wildlife experts, and animal welfarists). Caregivers of village dogs are considered irresponsible, a view that is reinforced by Mexican policy. We describe two

  12. Ocean and Coastal Law

    Science.gov (United States)

    Ross, David A.

    First of all, this is not the typical book that one expects to see reviewed in Eos, but, read on. It should be clear, by now, even to the most esoteric geophysicist, that lawyers and jurists are taking very close looks at many coastal zone and offshore marine activities. More importantly, there are a wide variety of laws (both at the state and the national levels) and international regulations that determine how we now use or will use our coastal region including how and where we will do marine scientific research. Recently, a Presidential Proclamation (March 1983) declared a 200-mile exclusive economic zone for the United States. The President, in the accompanying statements to the Proclamation, has called special attention to polymetallic sulfide deposits (Is someone in the White House reading Eos?) in what will now be U.S. waters (i.e., the Juan de Fuca region). Well, if you or your colleagues want to know more about U.S. and individual state rules for management and use of our marine areas, this might be the book for you.

  13. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  14. Open-Ocean and Coastal Properties of Recent Major Tsunamis

    Science.gov (United States)

    Rabinovich, A.; Thomson, R.; Zaytsev, O.

    2017-12-01

    The properties of six major tsunamis during the period 2009-2015 (2009 Samoa; 2010 Chile; 2011 Tohoku; 2012 Haida Gwaii; 2014 and 2015 Chile) were thoroughly examined using coastal data from British Columbia, the U.S. West Coast and Mexico, and offshore open-ocean DART and NEPTUNE stations. Based on joint spectral analyses of the tsunamis and background noise, we have developed a method to suppress the influence of local topography and to use coastal observations to determine the underlying spectra of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra were found to be in close agreement with the actual tsunami spectra evaluated from the analysis of directly measured open-ocean tsunami records. We have further used the spectral estimates to parameterize tsunamis based on their integral open-ocean spectral characteristics. Three key parameters are introduced to describe individual tsunami events: (1) Integral open-ocean energy; (2) Amplification factor (increase of the mean coastal tsunami variance relative to the open-ocean variance); and (3) Tsunami colour, the frequency composition of the open-ocean tsunami waves. In particular, we found that the strongest tsunamis, associated with large source areas (the 2010 Chile and 2011 Tohoku) are "reddish" (indicating the dominance of low-frequency motions), while small-source events (the 2009 Samoa and 2012 Haida Gwaii) are "bluish" (indicating strong prevalence of high-frequency motions).

  15. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    Science.gov (United States)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  16. Ocean City, Maryland Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Boundary Conditions, Data Assimilation, and Predictability in Coastal Ocean Models

    National Research Council Canada - National Science Library

    Samelson, Roger M; Allen, John S; Egbert, Gary D; Kindle, John C; Snyder, Chris

    2007-01-01

    ...: The specific objectives of this research are to determine the impact on coastal ocean circulation models of open ocean boundary conditions from Global Ocean Data Assimilation Experiment (GODAE...

  18. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  19. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  20. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes

  1. COPEPOD: The Coastal & Oceanic Plankton Ecology, Production, & Observation Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal & Oceanic Plankton Ecology, Production, & Observation Database (COPEPOD) provides NMFS scientists with quality-controlled, globally distributed...

  2. Developments in Coastal Ocean Modeling

    Science.gov (United States)

    Allen, J. S.

    2001-12-01

    Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.

  3. New satellite altimetry products for coastal oceans

    Science.gov (United States)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  4. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  5. 77 FR 39648 - Atlantic Highly Migratory Species; Commercial Gulf of Mexico Non-Sandbar Large Coastal Shark Fishery

    Science.gov (United States)

    2012-07-05

    ... Large Coastal Shark Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... commercial fishery for non-sandbar large coastal sharks (LCS) in the Gulf of Mexico region. This action is.... SUPPLEMENTARY INFORMATION: The Atlantic shark fisheries are managed under the 2006 Consolidated Atlantic Highly...

  6. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  7. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation

  8. U.S. Coastal Relief Model - Western Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  9. U.S. Coastal Relief Model - Central Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  10. Oceanographic and surface meteorological data collected from station fhp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118789)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118789 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  11. Oceanographic and surface meteorological data collected from station c21 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2014-12-14 (NODC Accession 0118788)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118788 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  12. Oceanic rafting by a coastal community.

    Science.gov (United States)

    Fraser, Ceridwen I; Nikula, Raisa; Waters, Jonathan M

    2011-03-07

    Oceanic rafting is thought to play a fundamental role in assembling the biological communities of isolated coastal ecosystems. Direct observations of this key ecological and evolutionary process are, however, critically lacking. The importance of macroalgal rafting as a dispersal mechanism has remained uncertain, largely owing to lack of knowledge about the capacity of fauna to survive long voyages at sea and successfully make landfall and establish. Here, we directly document the rafting of a diverse assemblage of intertidal organisms across several hundred kilometres of open ocean, from the subantarctic to mainland New Zealand. Multispecies analyses using phylogeographic and ecological data indicate that 10 epifaunal invertebrate species rafted on six large bull kelp specimens for several weeks from the subantarctic Auckland and/or Snares Islands to the Otago coast of New Zealand, a minimum distance of some 400-600 km. These genetic data are the first to demonstrate that passive rafting can enable simultaneous trans-oceanic transport and landfall of numerous coastal taxa.

  13. LAND COVER - CLASSIFICATION and Other Data from FIXED PLATFORM From Coastal Waters of Gulf of Mexico from 19880101 to 19891231 (NODC Accession 9100034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wetland Assessment Data was collected from Coastal waters of Gulf of Mexico by Louisiana State and the Louisiana Geological Service under MMS Cooperative Agreement...

  14. Elements of a coastal ocean forecasting system for India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Radhakrishnan, K.

    After about four decades of investment in infrastructure for ocean research, an appropriate initiative for India now would be to build a coastal ocean forecasting system to support the country's myriad activities in its Exclusive Economic Zone...

  15. IOCM Aerial Photography: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  16. Oceanic diffusion in the coastal area

    International Nuclear Information System (INIS)

    Rukuda, Masaaki

    1980-03-01

    Described in this paper is the eddy diffusion in the area off Tokai Village investigated by means of dye diffusion experiment and of oceanic observation. In order to assess the oceanic diffusion in coastal areas, improved methods effective in complex field were developed. The oceanic diffusion was separated in two groups, horizontal and vertical diffusion respectively. Both these diffusions are combined and their analysis together is difficult. The oceanic diffusion is thus considered separately. Instantaneous point release is the basis of horizontal diffusion analysis. Continuous release is then the overlap of numerous instantaneous releases. It was shown that the diffusion parameters derived from the results of diffusion experiment or oceanic observation vary widely with time and place and with sea conditions. A simple diffusion equation was developed from the equation of continuity. The results were in good agreement with seasonal mean horizontal distribution of river water in the sea area. The vertical observation in diffusion experiment is difficult and the vertical structure of oceanic condition is complex, so that the research on vertical diffusion generally is not advanced yet. With river water as the tracer, a method of estimating vertical diffusion parameters with a Gaussian model or one-dimensional model was developed. The vertical diffusion near sea bottom was numerically analized with suspended particles in seawater as the tracer. Diffusion was computed for each particle size, and by summing up the vertical distribution of beam attenuation coefficient was estimated. By comparing the results of estimation and those of observation the vertical diffusivity and the particle size distribution at sea bottom could be estimated. (author)

  17. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  18. Hyperspectral Imager for the Coastal Ocean (HICO): Overview, Operational Updates, and Coastal Ocean Applications

    Science.gov (United States)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.

  19. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 2: Overview and invited papers

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes.

  20. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    Science.gov (United States)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  1. Oceanic sharks clean at coastal seamount.

    Directory of Open Access Journals (Sweden)

    Simon P Oliver

    2011-03-01

    Full Text Available Interactions between pelagic thresher sharks (Alopias pelagicus and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by "circular-stance-swimming," presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays.

  2. MECHANISMS FOR THE SEASONAL CYCLE IN THE ANTARCTIC COASTAL OCEANS

    OpenAIRE

    オオシマ; Kay I., OHSHIMA

    1996-01-01

    Seasonal variations of the Antarctic coastal oceans has not been well understood owing to logistical difficulties in observations, especially during the ice-covered season. Recently, 'Weddell Gyre Study' and 'Japanese Antarctic Climate Research program' have revealed the following seasonal variations in the Antarctic coastal ocean. First, the thickness of the Winter Water (WW) layer, characterized by cold, fresh, oxygen-rich water, exhibits its maximum in the austral fall and its minimum in t...

  3. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, coastal North Carolina, 2008 (NODC Accession 0074382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a NOAA Integrated Ocean and Coastal Mapping (IOCM) Product collected from the coastal North Carolina (Pamlico Sound) region. Imagery products are true...

  4. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barrón, Cristina

    2015-10-21

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  5. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barró n, Cristina; Duarte, Carlos M.

    2015-01-01

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  6. Oceanographic and surface meteorological data collected from station tarponbay by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118785)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118785 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  7. Oceanographic and surface meteorological data collected from station redfishpass by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118783 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  8. Oceanographic and surface meteorological data collected from station gulfofmexico by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118782)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118782 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  9. Oceanographic and surface meteorological data collected from station fortmyers by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118739 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  10. Oceanographic and surface meteorological data collected from station c12 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-11 (NODC Accession 0118787)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118787 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  11. Study of Evacuation Behavior of Coastal Gulf of Mexico Residents

    OpenAIRE

    Bhattacharjee, Sanjoy; Petrolia, Daniel R.; Hanson, Terrill R.

    2009-01-01

    In this study, we investigate the link between hurricane characteristics, demographics of the Coastal Gulf of Mexico residents, including their household location, and their respective evacuation behavior. Our study is significantly different from the previously made studies on hurricane evacuation behavior in two ways. At first, the research data is collected through recording responses to a series of hypothetical situations which are quite identical to the set of information that people are...

  12. Hydrography and biogeochemistry of the coastal ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Unnikrishnan, A.S.

    especially when the period of maximal fresh- water discharge coincides with peak solar insolation (e.g., in summer off the mouths of the Mississippi and Atchafa- laya rivers in the Gulf of Mexico) [Rabalais et al., 2002]. Among other things, stagnation...

  13. Why is Coastal Community Resilience Important in the Gulf of Mexico Region?

    Science.gov (United States)

    The Gulf of Mexico Program supports the regional collaborative approach and efforts of the Coastal Community Resilience Priority Issue Team of the Gulf of Mexico Governors’ Alliance and its broad spectrum of partners and stakeholders.

  14. Fishprint of Coastal Fisheries in Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Myrna Leticia Bravo-Olivas

    2014-12-01

    Full Text Available Coastal fisheries contribute to global food security, since fish are an important source of protein for many coastal communities in the world. However, they are constrained by problems, such as weak management of fisheries and overfishing. Local communities perceive that they are fishing less, as in other fisheries in the world. The aim of this study was to evaluate the fisheries sustainability in the Jalisco coast through the fishing footprint, or fishprint (FP, based on the primary productivity required (PPR and the appropriated surface by the activity (biocapacity. The total catch was 20,448.2 metric tons from 2002–2012, and the average footprint was calculated to be 65,458 gha/year, a figure that quadrupled in a period of 10 years; the biocapacity decreased, and the average trophic level of catches was 3.1, which implies that it has remained at average levels, resulting in a positive balance between biocapacity and ecological footprint. Therefore, under this approach, the fishing activity is sustainable along the coast of Jalisco.

  15. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  16. Coastal Adaptation: The Case of Ocean Beach, San Francisco

    Science.gov (United States)

    Cheong, S.

    2012-12-01

    Coastal erosion, storms, sea-level rise, and tsunamis all lead to inundation that puts people and communities at risk. Adapting to these coastal hazards has gained increasing attention with climate change. Instead of promoting one particular strategy such as seawalls or defending against one type of hazard, scholars and practitioners encourage a combination of existing methods and strategies to promote synergistic effects. The recently published Intergovernmental Panel on Climate Change (IPCC) Special Report on climate extremes reflects this trend in the integration of disaster risk management and climate change adaptation. This paper focuses on the roles, compatibilities, and synergies of three coastal adaptation options - engineering, vegetation, and policy - in the case of Ocean Beach in San Francisco. Traditionally engineering approach and ecosystem conservation often have stood in opposition as hard shoreline structures destroy coastal habitats, worsen coastal erosion, divert ocean currents, and prevent the natural migration of shores. A natural migration of shores without structure translates into the abandonment of properties in the coastal zone, and is at odds with property rights and development. For example, policies of relocation, retreat, and insurance may not be popular given the concerns of infrastructure and coastal access. As such, engineering, natural defense, and policy can be more conflictual than complementary. Nonetheless, all these responses are used in combination in many locations. Complementarities and compatibilities, therefore, must be assessed when considering the necessity of engineering responses, natural defense capabilities, and policy options. In this light, the question is how to resolve the problem of mixed responses and short- and long-term interests and values, identify compatibilities, and generate synergies. In the case of Ocean Beach, recent erosions that endangered San Francisco's wastewater treatment system acted as major

  17. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  18. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  19. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    Science.gov (United States)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  20. Challenges and potential solutions for European coastal ocean modelling

    Science.gov (United States)

    She, Jun; Stanev, Emil

    2017-04-01

    Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT

  1. Accuracy assessment of satellite Ocean colour products in coastal waters.

    Science.gov (United States)

    Tilstone, G.; Lotliker, A.; Groom, S.

    2012-04-01

    The use of Ocean Colour Remote Sensing to monitor phytoplankton blooms in coastal waters is hampered by the absorption and scattering from substances in the water that vary independently of phytoplankton. In this paper we compare different ocean colour algorithms available for SeaWiFS, MODIS and MERIS with in situ observations of Remote Sensing Reflectance, Chlorophyll-a (Chla), Total Suspended Material and Coloured Dissolved Organic Material in coastal waters of the Arabian Sea, Bay of Bengal, North Sea and Western English Channel, which have contrasting inherent optical properties. We demonstrate a clustering method on specific-Inherent Optical Properties (sIOP) that gives accurate water quality products from MERIS data (HYDROPT) and also test the recently developed ESA CoastColour MERIS products. We found that for coastal waters of the Bay of Bengal, OC5 gave the most accurate Chla, for the Arabian Sea GSM and OC3M Chla were more accurate and for the North Sea and Western English Channel, MERIS HYDROPT were more accurate than standard algorithms. The reasons for these differences will be discussed. A Chla time series from 2002-2011 will be presented to illustrate differences in algorithms between coastal regions and inter- and intra-annual variability in phytoplankton blooms

  2. U.S. Coastal Relief Model - Florida and East Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  3. Oceanographic and surface meteorological data collected from station Middle Bay Light, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2008-01-01 to 2017-05-03 (NCEI Accession 0163754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163754 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  4. Oceanographic and surface meteorological data collected from station Perdido Pass, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-11-07 to 2017-04-30 (NCEI Accession 0163767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163767 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  5. Oceanographic and surface meteorological data collected from station Bon Secour, LA by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-01-01 to 2017-05-02 (NCEI Accession 0163204)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163204 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  6. Oceanographic and surface meteorological data collected from station Katrina Cut, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-04-15 to 2017-05-04 (NCEI Accession 0163673)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163673 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  7. Oceanographic and surface meteorological data collected from station Dauphin Island, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2008-01-01 to 2017-04-30 (NCEI Accession 0163672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163672 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  8. Mercury in the atmospheric and coastal environments of Mexico.

    Science.gov (United States)

    Ruelas-Inzunza, Jorge; Delgado-Alvarez, Carolina; Frías-Espericueta, Martín; Páez-Osuna, Federico

    2013-01-01

    In Mexico, published studies relating to the occurrence of Hg in the environment are limited. Among the main sources of Hg in Mexico are mining and refining of Auand Hg, chloralkali plants, Cu smelting, residential combustion of wood, carbo electric plants, and oil refineries. Hg levels are highly variable in the atmospheric compartment because of the atmospheric dynamics and ongoing metal exchange with the terrestrial surface. In atmospheric studies, Hg levels are usually reported as total gaseous Hg (TGM). In Mexico, TGM values ranged from 1.32 ng m-3 in Hidalgo state (a rural agricultural area) to 71.82 ng m-3 in Zacatecas state (an area where brick manufacturers use mining wastes as a raw material).Published information on mercury levels in the coastal environment comprise 21 studies, representing 21 areas, in which sediments constituted the substrate that was analyzed for Hg. In addition, water samples were analyzed for Hg in nine studies.Few studies exist on Hg levels in the Caribbean and in the southwest of the country where tourism is rapidly increasing. Hence, there is a need for establishing baseline levels of mercury in these increasingly visited areas. In regions where studies have been undertaken, Hg levels in sediments were highly variable. Variations in Hg sediment levels mainly result from geological factors and the varying degree of anthropogenic impacts in the studied areas. In areas that still have pristine or nearly pristine environments (e.g., coast, Baja California, Todos Santos Bay, and La Paz lagoon), sediment Hg levels ranged from Mexico, it is clear that Hg fluxes to sediments have increased from2- to 15-fold in recent years. Since the 1940s, historical increases of Hg fluxes have resulted from higher agricultural waste releases and exhaust from the thermo electric plants. The levels of Hg in water reveal a moderate to elevated contamination of some Mexican coastal sites. In Urias lagoon (NW Mexico), moderate to high levels were found in

  9. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Science.gov (United States)

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  10. Oceanographic and surface meteorological data collected from station wwef1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118767 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  11. Phenotypic variation in dorsal fin morphology of coastal bottlenose dolphins (Tursiops truncatus off Mexico

    Directory of Open Access Journals (Sweden)

    Eduardo Morteo

    2017-06-01

    Full Text Available Geographic variation in external morphology is thought to reflect an interplay between genotype and the environment. Morphological variation has been well-described for a number of cetacean species, including the bottlenose dolphin (Tursiops truncatus. In this study we analyzed dorsal fin morphometric variation in coastal bottlenose dolphins to search for geographic patterns at different spatial scales. A total of 533 dorsal fin images from 19 available photo-identification catalogs across the three Mexican oceanic regions (Pacific Ocean n = 6, Gulf of California n = 6 and, Gulf of Mexico n = 7 were used in the analysis. Eleven fin shape measurements were analyzed to evaluate fin polymorphism through multivariate tests. Principal Component Analysis on log-transformed standardized ratios explained 94% of the variance. Canonical Discriminant Function Analysis on factor scores showed separation among most study areas (p < 0.05 with exception of the Gulf of Mexico where a strong morphometric cline was found. Possible explanations for the observed differences are related to environmental, biological and evolutionary processes. Shape distinction between dorsal fins from the Pacific and those from the Gulf of California were consistent with previously reported differences in skull morphometrics and genetics. Although the functional advantages of dorsal fin shape remains to be assessed, it is not unlikely that over a wide range of environments, fin shape may represent a trade-off among thermoregulatory capacity, hydrodynamic performance and the swimming/hunting behavior of the species.

  12. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  13. Coastal Ocean Ecosystem Dynamics Imager Pointing Line-of-Sight Solution Development and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A stable pointing line of sight solution is developed and tested in support of the Coastal Ocean Ecosystem Dynamics Imager for the GEOstationary Coastal and Air...

  14. Organic carbon isotope ratios of recent sediments from coastal lagoons of the Gulf of Mexico, Mexico

    International Nuclear Information System (INIS)

    Botello, A.V.; Mandelli, E.F.; Macko, S.; Parker, P.L.

    1980-01-01

    The stable carbon isotope composition of sedimentary organic carbon was determined in the sediments of seven coastal lagoons of the Gulf of Mexico, Mexico. For most of the lagoons the delta 13 C values for sediments ranged from -20.1 to -23.9 parts per thousand. Anomalously low values, -26.8 to 29.3 parts per thousand were determined in sediments of two of the studied lagoons, probably due to the presence of organic carbon from anthropogenic sources, naturally absent in these environments. The delta 13 C values determined in the tissues of oysters collected at the same time in the different lagoons were very similar to those recorded in the sediments. (author)

  15. Integrated Ocean and Coastal Mapping (IOCM) Project FL1415: APALACHICOLA RIVER (MOUTH) TO SAUL CREEK, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  16. Integrated Ocean and Coastal Mapping (IOCM) Project FL1421: ST JOHNS RIVER, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  17. Integrated Ocean and Coastal Mapping (IOCM) Project WA1406: OLYMPIA, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  18. Integrated Ocean and Coastal Mapping (IOCM) Project WA1405: STRAIT OF JUAN DE FUCA, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  19. Integrated Ocean and Coastal Mapping (IOCM) Project FL1414: VENICE INLET - ICW, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  20. Integrated Ocean and Coastal Mapping (IOCM) Project WA1002: PUDGET SOUND - WHIDBEY ISLAND, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  1. 2011 NOAA Ortho-rectified Mosaic of Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. Integrated Ocean and Coastal Mapping (IOCM) Project OR1210: CAPE PERPETUA TO CLATSOP SPIT, OR.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  3. Coastal Ocean Observing Network - Open Source Architecture for Data Management and Web-Based Data Services

    Science.gov (United States)

    Pattabhi Rama Rao, E.; Venkat Shesu, R.; Udaya Bhaskar, T. V. S.

    2012-07-01

    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means.

  4. Ocean acidification 2.0: Managing our Changing Coastal Ocean Chemistry

    OpenAIRE

    Strong, AL; Kroeker, KJ; Teneva, LT; Mease, LA; Kelly, RP

    2014-01-01

    Ocean acidification (OA) is rapidly emerging as a significant problem for organisms, ecosystems, and human societies. Globally, addressing OA and its impacts requires international agreements to reduce rising atmospheric carbon dioxide concentrations. However, the complex suite of drivers of changing carbonate chemistry in coastal environments also requires regional policy analysis, mitigation, and adaptation responses. In order to fundamentally address the threat of OA, environmental manager...

  5. Sustainability of coastal resource use in San Quintin, Mexico.

    Science.gov (United States)

    Aguirre-Muñoz, A; Buddemeier, R W; Camacho-Ibar, V; Carriquiry, J D; Ibarra-Obando, S E; Massey, B W; Smith, S V; Wulff, F

    2001-05-01

    San Quintin, Mexico, provides a useful site for integrated analyses of material fluxes and socioeconomic constraints in a geographically isolated system. Natural resource utilization on the land is dominated by groundwater exploitation for cultivation of horticulture crops (primarily tomatoes). Irrigation exceeds water recharge minus export by a factor of 6. Resource utilization in the bay is dominated by oyster culture; food for the oysters is provided by tidal exchange of bay and ocean water. Consideration of oyster respiration and system respiration suggests that the present level of aquaculture is about 40% of the sustainable level. A "physical unsustainability index" (PhUI) was developed to measure the proportional departure of utilization of the most limiting resource for sustainability: 6 on land; 0.4 in the bay. Based on PhUI and measures of economic development, we conclude that aquaculture is more viable than agriculture.

  6. Towards a regional coastal ocean observing system: An initial design for the Southeast Coastal Ocean Observing Regional Association

    Science.gov (United States)

    Seim, H. E.; Fletcher, M.; Mooers, C. N. K.; Nelson, J. R.; Weisberg, R. H.

    2009-05-01

    A conceptual design for a southeast United States regional coastal ocean observing system (RCOOS) is built upon a partnership between institutions of the region and among elements of the academic, government and private sectors. This design envisions support of a broad range of applications (e.g., marine operations, natural hazards, and ecosystem-based management) through the routine operation of predictive models that utilize the system observations to ensure their validity. A distributed information management system enables information flow, and a centralized information hub serves to aggregate information regionally and distribute it as needed. A variety of observing assets are needed to satisfy model requirements. An initial distribution of assets is proposed that recognizes the physical structure and forcing in the southeast U.S. coastal ocean. In-situ data collection includes moorings, profilers and gliders to provide 3D, time-dependent sampling, HF radar and surface drifters for synoptic sampling of surface currents, and satellite remote sensing of surface ocean properties. Nested model systems are required to properly represent ocean conditions from the outer edge of the EEZ to the watersheds. An effective RCOOS will depend upon a vital "National Backbone" (federally supported) system of in situ and satellite observations, model products, and data management. This dependence highlights the needs for a clear definition of the National Backbone components and a Concept of Operations (CONOPS) that defines the roles, functions and interactions of regional and federal components of the integrated system. A preliminary CONOPS is offered for the Southeast (SE) RCOOS. Thorough system testing is advocated using a combination of application-specific and process-oriented experiments. Estimates of costs and personnel required as initial components of the SE RCOOS are included. Initial thoughts on the Research and Development program required to support the RCOOS are

  7. Uncertainties in Coastal Ocean Color Products: Impacts of Spatial Sampling

    Science.gov (United States)

    Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.

    2016-01-01

    With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R(sub rs) products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R(sub rs)(443), R(sub rs)(482), R(sub rs)(561), R(sub rs)(655), Chla, K(sub d)(482), and b(sub bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km × 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in-situ coastal stations provides an optimal sampling size for

  8. Coastal vulnerability index for the Tabasco State coast, Mexico

    Directory of Open Access Journals (Sweden)

    Juan Carlos Nuñez Gómez

    2016-11-01

    of the major lagoon system in the State of Tabasco, the Carmen-Pajonal-Machona and Mecoacan lagoons; being the last one the most vulnerable of all. It is worth pointing out that this zone is located within the influence zone of the Dos Bocas port where an intense anthropogenic activity occurs. It is also important to point out that this study is one of the first approaches to the estimation of coastal vulnerability in Mexico. The implementation and application of this model of coastal vulnerability evaluation are significant given the spatial scale of the study and that this is the first time that these variables have been collected for the state of Tabasco. Our results might inform decision-making processes on the proper management of the Tabasco coastline, thus benefiting the local communities.

  9. Geoid determination in the coastal areas of the Gulf of Mexico

    Science.gov (United States)

    Song, HongZhi

    Coastal areas of the Gulf of Mexico are important for many reasons. This part of the United States provides vital coastal habitats for many marine species; the area has seen-ever increasing human settlement along the coast, ever increasing infrastructure for marine transportation of the nation's imports and exports through Gulf ports, and ever increasing recreational users of coastal resources. These important uses associated with the Gulf coast are subject to dynamic environmental and physical changes including: coastal erosion (Gulf-wide rates of 25 square miles per year), tropical storm surges, coastal subsidence, and global sea level rise. Coastal land subsidence is a major component of relative sea level rise along the coast of the Gulf of Mexico. These dynamic coastal changes should be evident in changes to the geoid along the coast. The geoid is the equipotential gravity surface of the earth, which the best fits the global mean sea level. The geoid is not only been seen as the most natural shape of the Earth, but also it serves as the reference surface for most of the height systems. By using satellites (GRACE mission) scientists have been able to measure the large scale geoid for the Earth. A small scale geoid model is required to monitor local events such as flooding, for example, flooding created by storm surges from hurricanes such as Katrina (2005), Rita (2005), and Ike (2008). The overall purpose of this study is to evaluate the accuracy of the local coastal geoid. The more precise geoid will enable to improve coastal flooding predictions, and will enable more cost effective and accurate measurement of coastal topography using global navigation satellite systems (GNSS). The main objective of this study is to devise mathematical models and computational methods to achieve the best possible precision for evaluation of the geoid in the coastal areas of the Gulf of Mexico. More specifically, the numerical objectives of this study are 1) to obtain a

  10. Atmosphere-ocean feedbacks in a coastal upwelling system

    Science.gov (United States)

    Alves, J. M. R.; Peliz, A.; Caldeira, R. M. A.; Miranda, P. M. A.

    2018-03-01

    The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system is used in different configurations to simulate the Iberian upwelling during the 2012 summer, aiming to assess the atmosphere-ocean feedbacks in the upwelling dynamics. When model results are compared with satellite measurements and in-situ data, two-way coupling is found to have a moderate impact in data-model statistics. A significant reinforcement of atmosphere-ocean coupling coefficients is, however, observed in the two-way coupled run, and in the WRF and ROMS runs forced by previously simulated SST and wind fields, respectively. The increasing in the coupling coefficient is associated with slight, but potentially important changes in the low-level coastal jet in the atmospheric marine boundary layer. While these results do not imply the need for fully coupled simulations in many applications, they show that in seasonal numerical studies such simulations do not degrade the overall model performance, and contribute to produce better dynamical fields.

  11. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    Science.gov (United States)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  12. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, New Hampshire, 2008 (NODC Accession 0074094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are an Integrated Ocean and Coastal Mapping (IOCM) Product of coastal New Hampshire. The images were acquired from a nominal altitude of 5,000 feet above...

  13. Ocean model system for radionuclides - validation and application to the Rokkasho coastal area

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    2010-01-01

    Coastal areas have complex environmental systems and often a high influence from the atmosphere, rivers and the open sea. A nuclear fuel reprocessing plant in Japan releases liquid radioactive waste from a discharge pipe to such a complex coastal area. Consequently, the development of radionuclide migration forecast system in the ocean plays an important rule for assessing the behavior of radionuclides in the coastal area. The development of ocean model systems will be presented and model application will also be described. (author)

  14. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    Science.gov (United States)

    The Hyperspectral Imager for the Coastal Ocean (HICO) offers the coastal environmental monitoring community an unprecedented opportunity to observe changes in coastal and estuarine water quality across a range of spatial scales not feasible with traditional field-based monitoring...

  15. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  16. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  17. Coastal processes study at Ocean Beach, San Francisco, CA: summary of data collection 2004-2006

    Science.gov (United States)

    Barnard, Patrick L.; Eshleman, Jodi; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Ocean Beach in San Francisco, California, contains a persistent erosional section in the shadow of the San Francisco ebb tidal delta and south of Sloat Boulevard that threatens valuable public infrastructure as well as the safe recreational use of the beach. Coastal managers have been discussing potential mediation measures for over a decade, with little scientific research available to aid in decision making. The United States Geological Survey (USGS) initiated the Ocean Beach Coastal Processes Study in April 2004 to provide the scientific knowledge necessary for coastal managers to make informed management decisions. This study integrates a wide range of field data collection and numerical modeling techniques to document nearshore sediment transport processes at the mouth of San Francisco Bay, with emphasis on how these processes relate to erosion at Ocean Beach. The Ocean Beach Coastal Processes Study is the first comprehensive study of coastal processes at the mouth of San Francisco Bay.

  18. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    Science.gov (United States)

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  19. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments

    NARCIS (Netherlands)

    Thomas, H.; Schiettecatte, L.-S.; Suykens, K.; Koné, Y.J.M.; Shadwick, E.H.; Prowe, A.E.F.; Bozec, Y.; Baar, H.J.W. de; Borges, A.V.; Slomp, C.

    2009-01-01

    The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr) in the open oceans. Despite

  20. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2008-08-11 to 2011-06-30 (NCEI Accession 0144622)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144622 includes Surface underway data collected from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2008-08-11 to...

  1. Coastal ocean transport patterns in the central Southern California Bight

    Science.gov (United States)

    Noble, M.A.; Rosenberger, K.J.; Hamilton, P.; Xu, J. P.

    2009-01-01

    In the past decade, several large programs that monitor currents and transport patterns for periods from a few months to a few years were conducted by a consortium of university, federal, state, and municipal agencies in the central Southern California Bight, a heavily urbanized section of the coastal ocean off the west coast of the United States encompassing Santa Monica Bay, San Pedro Bay, and the Palos Verdes shelf. These programs were designed in part to determine how alongshelf and cross-shelf currents move sediments, pollutants, and suspended material through the region. Analysis of the data sets showed that the current patterns in this portion of the Bight have distinct changes in frequency and amplitude with location, in part because the topography of the shelf and upper slope varies rapidly over small spatial scales. However, because the mean, subtidal, and tidal-current patterns in any particular location were reasonably stable with time, one could determine a regional pattern for these current fields in the central Southern California Bight even though measurements at the various locations were obtained at different times. In particular, because the mean near-surface flows over the San Pedro and Palos Verdes shelves are divergent, near-surface waters from the upper slope tend to carry suspended material onto the shelf in the northwestern portion of San Pedro Bay. Water and suspended material are also carried off the shelf by the mean and subtidal flow fields in places where the orientation of the shelf break changes abruptly. The barotropic tidal currents in the central Southern California Bight flow primarily alongshore, but they have pronounced amplitude variations over relatively small changes in alongshelf location that are not totally predicted by numerical tidal models. Nonlinear internal tides and internal bores at tidal frequencies are oriented more across the shelf. They do not have a uniform transport direction, since they move fine sediment

  2. HYCOM Coastal Ocean Hindcasts and Predictions: Impact of Nesting in HYCOM GODAE Assimilative Hindcasts

    National Research Council Canada - National Science Library

    Halliwell, George R; Shay, Lynn K; Kourafalou, Villy; Weisberg, Robert H; Barth, Alexander; Hurlburt, Harley E; Hogan, Patrick J; Smedstad, Ole M; Cummings, James A

    2007-01-01

    The overarching goal is to determine how simulations and forecasts of currents and water properties in the coastal ocean, and the scientific results obtained from them, are influenced by the initial...

  3. Reactive silica fractions in coastal lagoon sediments from the northern Gulf of Mexico

    Science.gov (United States)

    Krause, Jeffrey W.; Darrow, Elizabeth S.; Pickering, Rebecca A.; Carmichael, Ruth H.; Larson, Ashley M.; Basaldua, Jose L.

    2017-12-01

    Continental-margin sediments account for 50% of the oceanic biogenic silica burial despite covering Gulf of Mexico (nGoM), we measured sediment biogenic silica at sites removed from major freshwater discharge sources using the traditional method and a method that has been modified for deltaic systems to quantify other reactive silica pools, specifically those involved in the process of reverse weathering. The magnitude of authigenically-altered biogenic silica during our study was significant and represented, on average, 33% of the total sediment biogenic silica among core depths and sites. Additionally, there was a significant relationship between the degree to which the biogenic silica pool was authigenically altered and the source of the sediment organic matter, with lower modification in sediments corresponding with higher terrestrial organic matter. We observed no positive correlation between the magnitude of authigenic modification and sediment clay content. Thus, our findings suggest that these processes may occur within a variety of sediment compositions and add to a growing body of evidence suggesting that reverse weathering of silica in coastal systems is a significant pathway in the global silica budget.

  4. Ocean and Coastal Acidification off New England and Nova Scotia

    Science.gov (United States)

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  5. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation

    Digital Repository Service at National Institute of Oceanography (India)

    Vialard, J.; Shenoi, S.S.C.; Mc; Shankar, D.; Durand, F.; Fernando, V.; Shetye, S.R.

    Author version: Geophys. Res. Lett.: 36(14); 2009; doi:10.1029/2009GL038450; 5 pp Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation J. Vialard 1 2 , S.S.C Shenoi 2 , J.P. McCreary 3 , D. Shankar 2... involving both equatorial wave dynamics and coastal wave propagation around the perimeter of the northern Indian Ocean [McCreary et al., 1993]. The East India Coastal Current (EICC), for example, is strongly influenced by remote wind forcing from...

  6. Perceptions of Village Dogs by Villagers and Tourists in the Coastal Region of Rural Oaxaca, Mexico

    NARCIS (Netherlands)

    Ruiz Izaguirre, E.; Eilers, C.H.A.M.

    2012-01-01

    The objective of this study was to gain an understanding of the village dog-keeping system, and of perceptions of dog-related problems by villagers and tourists, in the coastal region of Oaxaca, Mexico. We conducted a survey of the inhabitants of three villages (Mazunte, Puerto Angel, and Río Seco),

  7. Connecting Coastal Communities with Ocean Science: A Look at Ocean Sense and the Inclusion of Place-based Indigenous Knowledge

    Science.gov (United States)

    McLean, M. A.; Brown, J.; Hoeberechts, M.

    2016-02-01

    Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.

  8. A Real-Time Coastal Ocean Prediction Experiment for MREA04

    Science.gov (United States)

    2008-01-01

    coastal ocean prediction experiment for MREA04 Dong S. Ko *, Paul J. Martin, Clark D. Rowley, Ruth H. Preller Naval Research Laborator ,: S ’ntis Space...Jourml of Marine Svstem 69 t200S) 17 28 and various data streams for ocean bathymetry, clima - global ONFS or from a higher resolution regional ONFS

  9. Arabian Sea upwelling - A comparison between coastal and open ocean regions

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    The response of the eastern Arabian Sea to prevailing winds during an upwelling event, in the peak of southwest monsoon, was studied at both coastal and open ocean environment based on the data collected as a part of the Indian Joint Global Ocean...

  10. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee; Hardman-Mountford, Nick; Greenwood, Jim

    2017-01-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  11. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee

    2017-06-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  12. Sea surface temperature trends in the coastal ocean

    OpenAIRE

    Amos, C.L.; Al-Rashidi, Thamer B.; Rakha, Karim; El-Gamily, Hamdy; Nicholls, R.J.

    2013-01-01

    Sea surface temperature (SST) trends in the coastal zone are shown to be increasing at rates that exceed the global trends by up to an order of magnitude. This paper compiles some of the evidence of the trends published in the literature. The evidence suggests that urbanization in the coastal hinterland is having a direct effect on SST through increased temperatures of river and lake waters, as well as through heated run-off and thermal effluent discharges from coastal infrastructure. These l...

  13. Current practice and future prospects for social data in coastal and ocean planning.

    Science.gov (United States)

    Le Cornu, Elodie; Kittinger, John N; Koehn, J Zachary; Finkbeiner, Elena M; Crowder, Larry B

    2014-08-01

    Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well-established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation-oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social-ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision-support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem-based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. © 2014 Society for Conservation Biology.

  14. Verification of mid-ocean ballast water exchange using naturally occurring coastal tracers

    International Nuclear Information System (INIS)

    Murphy, Kathleen; Boehme, Jennifer; Coble, Paula; Cullen, Jay; Field, Paul; Moore, Willard; Perry, Elgin; Sherrell, Robert; Ruiz, Gregory

    2004-01-01

    We examined methods for verifying whether or not ships have performed mid-ocean ballast water exchange (BWE) on four commercial vessels operating in the Pacific and Atlantic Oceans. During BWE, a ship replaces the coastal water in its ballast tanks with water drawn from the open ocean, which is considered to harbor fewer organisms capable of establishing in coastal environments. We measured concentrations of several naturally occurring chemical tracers (salinity, six trace elements, colored dissolved organic matter fluorescence and radium isotopes) along ocean transects and in ballast tanks subjected to varying degrees of BWE (0-99%). Many coastal tracers showed significant concentration changes due to BWE, and our ability to detect differences between exchanged and unexchanged ballast tanks was greatest under multivariate analysis. An expanded dataset, which includes additional geographic regions, is now needed to test the generality of our results

  15. Verification of mid-ocean ballast water exchange using naturally occurring coastal tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Kathleen; Boehme, Jennifer; Coble, Paula; Cullen, Jay; Field, Paul; Moore, Willard; Perry, Elgin; Sherrell, Robert; Ruiz, Gregory

    2004-04-01

    We examined methods for verifying whether or not ships have performed mid-ocean ballast water exchange (BWE) on four commercial vessels operating in the Pacific and Atlantic Oceans. During BWE, a ship replaces the coastal water in its ballast tanks with water drawn from the open ocean, which is considered to harbor fewer organisms capable of establishing in coastal environments. We measured concentrations of several naturally occurring chemical tracers (salinity, six trace elements, colored dissolved organic matter fluorescence and radium isotopes) along ocean transects and in ballast tanks subjected to varying degrees of BWE (0-99%). Many coastal tracers showed significant concentration changes due to BWE, and our ability to detect differences between exchanged and unexchanged ballast tanks was greatest under multivariate analysis. An expanded dataset, which includes additional geographic regions, is now needed to test the generality of our results.

  16. New Orleans, Louisiana Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  17. Trends of coastal and oceanic ST along the Western Iberian Peninsula over the period 1975- 2006.

    Science.gov (United States)

    Santos, F.; Gómez-Gesteira, M.; deCastro, M.; Álvarez, I.; Sousa, M. C.

    2012-04-01

    Temperature is observed to have different trends at coastal and oceanic locations along the western Iberian Peninsula (from 43.25oN to 37.25oN and from 9.75°W to 14.75°W) from 1975 to 2006. This period corresponds with the last warming period in the area under study. The analysis was carried out by means of the Simple Ocean Data Assimilation (SODA) package. Reanalysis of ocean climate variability are available at monthly scale with a horizontal resolution of 0.5o- 0.5o and a vertical resolution of 40 levels which allows us to obtain information beneath the sea surface levels (http://www.atmos.umd.edu/~ocean/). Only the first 21 vertical levels (from 5.0 m to 729.35 m) were considered since the most important changes in the heat content observed in the world ocean during the last decades, correspond to the upper 700m (Levitus et al., 2009). Warming was observed to be considerably higher at ocean locations than at coastal ones at the same latitude. This behavior is observed throughout the water column. Ocean warming ranged from values on the order of 0.3 °C dec-1 near surface to 0.1 °C dec-1 at 500 m depth. On the contrary, the coastal warming is much smaller, reaching values close to 0.2 °C dec-1 near surface and decreasing rapidly at values below 0.1 °C dec-1 for depths on the order of 50 m. Actually, coastal warming is practically negligible under 50 m. The different warming rates near coast and at ocean locations have been previously described for SST by the authors (Santos et al, 2011, 2012). The weaker coastal warming compared with the ocean warming at the same latitude was related to the presence of coastal upwelling. Coastal upwelling is the most importing forcing mechanism in the western coast of the Iberian Peninsula pumping cold water from below to near surface layers. In this sense, the heat diffusion from the atmosphere is constrained to near surface area by advection, which mixes deeper colder water with warmer surface water. The heat content

  18. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives

    Science.gov (United States)

    Klingbeil, Knut; Lemarié, Florian; Debreu, Laurent; Burchard, Hans

    2018-05-01

    The state of the art of the numerics of hydrostatic structured-grid coastal ocean models is reviewed here. First, some fundamental differences in the hydrodynamics of the coastal ocean, such as the large surface elevation variation compared to the mean water depth, are contrasted against large scale ocean dynamics. Then the hydrodynamic equations as they are used in coastal ocean models as well as in large scale ocean models are presented, including parameterisations for turbulent transports. As steps towards discretisation, coordinate transformations and spatial discretisations based on a finite-volume approach are discussed with focus on the specific requirements for coastal ocean models. As in large scale ocean models, splitting of internal and external modes is essential also for coastal ocean models, but specific care is needed when drying & flooding of intertidal flats is included. As one obvious characteristic of coastal ocean models, open boundaries occur and need to be treated in a way that correct model forcing from outside is transmitted to the model domain without reflecting waves from the inside. Here, also new developments in two-way nesting are presented. Single processes such as internal inertia-gravity waves, advection and turbulence closure models are discussed with focus on the coastal scales. Some overview on existing hydrostatic structured-grid coastal ocean models is given, including their extensions towards non-hydrostatic models. Finally, an outlook on future perspectives is made.

  19. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  20. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    Science.gov (United States)

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  1. 2015 NOAA Ortho-rectified Color Mosaic of San Diego, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Empire, Louisiana 2010 (NODC Accession 0075830)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of the Mississippi -...

  3. 2015 NOAA Ortho-rectified Color Mosaic of Los Angeles and Long Beach, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    Science.gov (United States)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  5. Bromide in some coastal and oceanic waters of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Dalal, V.N.K.

    Bromide concentration and bromide/chlorinity ratio are estimated in coastal waters of Goa, Minicoy Lagoon, Western Arabian Sea and Western Bay of Bengal. The influence of precipitation and river runoff on bromide and bromide/chlorinity ratio...

  6. Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, A.; Markager, S.; Sand-Jensen, K.

    2004-01-01

    The influence of phytoplankton photoacclimation and adaptation to natural growth conditions on the chlorophyll a-specific in vivo absorption coefficient (a* ph) was evaluated for samples collected in estuarine, coastal and oceanic waters. Despite an overall gradient in the physio......-chemical environment from estuaries, over coastal, to oceanic waters, no clear relationships were found between a* ph and the prevailing light, temperature, salinity and nutrient concentrations, indicating that short-term cellular acclimation was of minor importance for the observed variability in a* ph. The clear...... decline in a* ph from oceanic, over coastal, to estuarine waters was, however, strongly correlated with an increase in cell size and intracellular chlorophyll a (chl a) content of the phytoplankton, and a reduction of photosynthetic carotenoids relative to chl a. Variations in photoprotective carotenoids...

  7. Persistent organochlorine pollutants (POP's) in coastal environments of Southeast Gulf of Mexico

    International Nuclear Information System (INIS)

    Vazquez-Botello, A.; Diaz-Gonzalez, G.; Rueda-Quintana, L.

    1999-01-01

    Analyses to determine the presence and concentrations of persistent organochlorine pollutants (POP's) were carried out in sediments and estuarine organisms (Crassostrea virginica) from five coastal lagoons of the Southeast Gulf of Mexico. The results of this study show high levels of POP's in sediments with high concentration of Heptachlor, Aldrin, Dieldrin and ppDDT, either in sediments or biological tissues. According to national regulations, the use and dispersion of these chemical have been severely restricted or totally prohibited in developed countries, however their presence in coastal areas indicate an extensive use and recent application of them. (author)

  8. Coordinated Regional Benefit Studies of Coastal Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Luger, Michael; Wieand, Ken; Pulsipher, Allan; Pendleton, Linwood; Wellman, Katherine; Pelsoci, Tom

    2003-01-01

    .... The authors will first produce regional "inventories" of ocean observation user sectors, including information about the physical and economic scale of their activities, how products from improved...

  9. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  10. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    Science.gov (United States)

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  11. Coastal change and hypoxia in the northern Gulf of Mexico: Part I

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The Committee on Environment and Natural Resources (CENR has identified the input of nutrient-rich water from the Mississippi/Atchafalaya River Basin (MARB as the prime cause of hypoxia in the northern Gulf of Mexico and the prime means for its control. A Watershed Nutrient Task Force was formed to solve the hypoxia problem by managing the MARB catchment. However, the hypoxic zone is also experiencing massive physical, hydrological, chemical and biological changes associated with an immense river-switching and delta-building event that occurs here about once a millennium. Coastal change induced hypoxia in the northern Gulf of Mexico prior to European settlement. It is recommended that for further understanding and control of Gulf hypoxia the Watershed Nutrient Task Force adopt a truly holistic environmental approach which includes the full effects of this highly dynamic coastal area.

  12. Differences in coastal and oceanic SST trends north of Yucatan Peninsula

    Science.gov (United States)

    Varela, R.; Costoya, X.; Enriquez, C.; Santos, F.; Gómez-Gesteira, M.

    2018-06-01

    The coastal area north of Yucatan has experienced a cooling SST trend from 1982 to 2015 during the upwelling season (May-September) that contrasts with the warming observed at the adjacent ocean area. Different drivers were analyzed to identify the possible causes of that unusual coastal cooling. Changes in coastal upwelling and in sea-atmosphere heat fluxes are not consistent with the observed coastal cooling. The eastward shift of the Yucatan Current observed over the last decades is hypothesized as the most probable cause of coastal cooling. This shift enhances the vertical transport of cold deeper water to the continental shelf from where it is pumped to the surface by upwelling favorable westerly winds.

  13. Ocean Observing Public-Private Collaboration to Improve Tropical Storm and Hurricane Predictions in the Gulf of Mexico

    Science.gov (United States)

    Perry, R.; Leung, P.; McCall, W.; Martin, K. M.; Howden, S. D.; Vandermeulen, R. A.; Kim, H. S. S.; Kirkpatrick, B. A.; Watson, S.; Smith, W.

    2016-02-01

    In 2008, Shell partnered with NOAA to explore opportunities for improving storm predictions in the Gulf of Mexico. Since, the collaboration has grown to include partners from Shell, NOAA National Data Buoy Center and National Center for Environmental Information, National Center for Environmental Prediction, University of Southern Mississippi, and the Gulf of Mexico Coastal Ocean Observing System. The partnership leverages complementary strengths of each collaborator to build a comprehensive and sustainable monitoring and data program to expand observing capacity and protect offshore assets and Gulf communities from storms and hurricanes. The program combines in situ and autonomous platforms with remote sensing and numerical modeling. Here we focus on profiling gliders and the benefits of a public-private partnership model for expanding regional ocean observing capacity. Shallow and deep gliders measure ocean temperature to derive ocean heat content (OHC), along with salinity, dissolved oxygen, fluorescence, and CDOM, in the central and eastern Gulf shelf and offshore. Since 2012, gliders have collected 4500+ vertical profiles and surveyed 5000+ nautical miles. Adaptive sampling and mission coordination with NCEP modelers provides specific datasets to assimilate into EMC's coupled HYCOM-HWRF model and 'connect-the-dots' between well-established Eulerian metocean measurements by obtaining (and validating) data between fixed stations (e.g. platform and buoy ADCPs) . Adaptive sampling combined with remote sensing provides satellite-derived OHC validation and the ability to sample productive coastal waters advected offshore by the Loop Current. Tracking coastal waters with remote sensing provides another verification of estimate Loop Current and eddy boundaries, as well as quantifying productivity and analyzing water quality on the Gulf coast, shelf break and offshore. Incorporating gliders demonstrates their value as tools to better protect offshore oil and gas assets

  14. Feeding ecology of juvenile marine fish in a shallow coastal lagoon of southeastern Mexico

    OpenAIRE

    Daniel Arceo-Carranza; Xavier Chiappa-Carrara

    2015-01-01

    Many species of marine fish use coastal lagoons during early stages of their life cycles due to the protection provided by their turbid waters and complex structure of the environment, such as mangroves and mudflats, and the availability of food derived from the high productivity of these sites. In this study, we analyzed the diet of six species of juvenile marine fishes that use a karstic lagoon system in the northwest portion of the Yucatan Peninsula, Mexico. Through stomach contents analys...

  15. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  16. A Multi-Process Test Case to Perform Comparative Analysis of Coastal Oceanic Models

    Science.gov (United States)

    Lemarié, F.; Burchard, H.; Knut, K.; Debreu, L.

    2016-12-01

    Due to the wide variety of choices that need to be made during the development of dynamical kernels of oceanic models, there is a strong need for an effective and objective assessment of the various methods and approaches that predominate in the community. We present here an idealized multi-scale scenario for coastal ocean models combining estuarine, coastal and shelf sea scales at midlatitude. The bathymetry, initial conditions and external forcings are defined analytically so that any model developer or user could reproduce the test case with its own numerical code. Thermally stratified conditions are prescribed and a tidal forcing is imposed as a propagating coastal Kelvin wave. The following physical processes can be assessed from the model results: estuarine process driven by tides and buoyancy gradients, the river plume dynamics, tidal fronts, and the interaction between tides and inertial oscillations. We show results obtained using the GETM (General Estuarine Transport Model) and the CROCO (Coastal and Regional Ocean Community model) models. Those two models are representative of the diversity of numerical methods in use in coastal models: GETM is based on a quasi-lagrangian vertical coordinate, a coupled space-time approach for advective terms, a TVD (Total Variation Diminishing) tracer advection scheme while CROCO is discretized with a quasi-eulerian vertical coordinate, a method of lines is used for advective terms, and tracer advection satisfies the TVB (Total Variation Bounded) property. The multiple scales are properly resolved thanks to nesting strategies, 1-way nesting for GETM and 2-way nesting for CROCO. Such test case can be an interesting experiment to continue research in numerical approaches as well as an efficient tool to allow intercomparison between structured-grid and unstructured-grid approaches. Reference : Burchard, H., Debreu, L., Klingbeil, K., Lemarié, F. : The numerics of hydrostatic structured-grid coastal ocean models: state of

  17. Intertidal zones as carbon dioxide sources to coastal oceans

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; Rajagopal, M.D.

    To understand the factors controlling carbon dioxide (CO sub(2)) exchanges near land-sea boundary diurnal observations have been made twice on CO sub(2) in the air and water in a coastal region. The results suggest that CO sub(2) enrichment...

  18. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  19. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    Science.gov (United States)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  20. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community

    NARCIS (Netherlands)

    Eberlein, Tim; Wohlrab, Sylke; Rost, Björn; John, Uwe; Bach, Lennart T.; Riebesell, U.; Van de Waal, D.B.

    2017-01-01

    We studied the effect of ocean acidification (OA) on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study). From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar

  1. The Smartfin: How Citizen Scientist Surfers Could Help Inform Coastal Ocean Science and Conservation.

    Science.gov (United States)

    Stern, A.

    2016-12-01

    Coastal marine ecosystems only represent a small percentage of the global ocean's surface area. However, these ecosystems are highly productive, rich in biodiversity, and are where the vast majority of human activity occurs. The complex interaction between seawater, land, and atmosphere makes coastal ecosystems some of the most dynamic in terms of seawater chemistry. In order to capture these dynamic changes in seawater chemistry across appropriate spatial and temporal scales requires a large amount of measurements. Unfortunately, it is often challenging to maintain an array of oceanographic sensors in coastal ecosystems, especially in high energy areas like the surf zone. Citizen science has the potential to increase the collection of oceanographic data from coastal systems where traditional methods are more difficult or expensive to implement. This talk will highlight the Smartfin, a surfboard mounted fin that measures seawater chemical parameters, physical wave characteristics, and GPS location during an ordinary surf session. Created by environmental non-profit Lost Bird, the Smartfin is a partnership between non-profits (Lost Bird and Surfrider Foundation), researchers (Scripps Institution of Oceanography), engineers (Board Formula), and the citizen science community. With an estimated 23 million surfers worldwide the Smartfin could greatly enhance vital data collection in coastal regions as well as raise awareness about our changing coastal and ocean ecosystems.

  2. A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean

    International Nuclear Information System (INIS)

    Dulaiova, H.; Peterson, R.; Burnett, W.C.

    2005-01-01

    Radon-222 is a good natural tracer of groundwater discharge and other physical processes in the coastal ocean. Unfortunately, its usefulness is limited by the time consuming nature of collecting individual samples and traditional analysis schemes. An automated multi-detector system is demonstrated that can be used in a continuous survey basis to assess radon activities in coastal ocean waters. The system analyses 222 Rn from a constant stream of water delivered by a submersible pump to an air-water exchanger where radon in the water phase equilibrates with radon in a closed air loop. The air stream is fed to 3 commercial radon-in-air monitors connected in parallel to determine the activity of 222 Rn. By running the detectors out of phase, it is possible to obtain as many as 6 readings per hour with a precision of approximately ±5-15% for typical coastal seawater concentrations. (author)

  3. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  4. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  5. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  6. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    Science.gov (United States)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  7. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    Science.gov (United States)

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  8. The growing human footprint on coastal and open-ocean biogeochemistry.

    Science.gov (United States)

    Doney, Scott C

    2010-06-18

    Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. Most of these perturbations, tied either directly or indirectly to human fossil fuel combustion, fertilizer use, and industrial activity, are projected to grow in coming decades, resulting in increasing negative impacts on ocean biota and marine resources.

  9. Terrestrial and coastal landscape evolution on tropical oceanic islands

    NARCIS (Netherlands)

    Viles, H.A.; Spencer, T.

    2011-01-01

    Tropical oceanic islands owe their origin to volcanic eruptions, their location to plate tectonics, and their morphology to the interplay over time between a range of constructional and erosional processes. A broad distinction can be made between high volcanic islands, with summits up to 4,000 m,

  10. Mobile, Alabama 1/3 MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  11. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems.

    Science.gov (United States)

    Rappé; Vergin; Giovannoni

    2000-09-01

    In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.

  12. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  13. Seasonality and flux estimates of dissolved organic carbon in tidal wetlands and estuaries in the U.S. Mid- Atlantic Bight and Gulf of Mexico from ocean color

    Science.gov (United States)

    Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.

    2016-02-01

    Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.

  14. The Hyperspectral Imager for the Coastal Ocean (HICO (trademark)) Provides a New View of the Coastal Ocean

    Science.gov (United States)

    2012-02-09

    The calibrated data are then sent to NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS...hyperspectral sensor in space we have not previously developed automated processing for hyperspectral ocean color data. The hyperspectral processing branch

  15. Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization

    Science.gov (United States)

    Feng, E. Y.; Koeve, W.; Keller, D. P.; Oschlies, A.

    2017-12-01

    The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature, and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 µm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 µm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim = 3.4) to 790 GtC (Ωlim = 9) and increase ocean carbon storage by 290 Gt (Ωlim = 3.4) to 913 Gt (Ωlim = 9) by year 2100.

  16. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The purpose of this project is to provide highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired on June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using

  17. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First Surface

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) elevation data were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The project provides highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system

  18. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    Full Text Available The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA. OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3 for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm in five of them while the other five served as controls (380 μatm. We found: (1 Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2 Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms while others (e.g. Synechococcus were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3 Picoeukaryotic phytoplankton (0.2-2 μm showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  19. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Science.gov (United States)

    Bach, Lennart T; Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  20. Simulated ocean acidification reveals winners and losers in coastal phytoplankton

    Science.gov (United States)

    Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean. PMID:29190760

  1. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic true color (RGB) and infrared (IR) image tiles, Kachemak Bay, Alaska, 2008 (NODC Accession 0074379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a NOAA National Ocean Service National Geodetic Survey (NOS/NGS) Integrated Ocean and Coastal Mapping (IOCM) Product. The images were acquired from a...

  2. Process studies of the carbonate system in coastal and ocean environments of the Atlantic Ocean

    NARCIS (Netherlands)

    Salt, L.A.

    2014-01-01

    The increase in anthropogenic, atmospheric carbon dioxide (CO2) has been largely mitigated by ocean uptake since the start of the Industrial Revolution, with the Atlantic Ocean providing the largest store of anthropogenic carbon. The thesis of Lesley Salt examines how the uptake of CO2 varies in

  3. Ocean Data Assimilation in the Gulf of Mexico Using 3D VAR Approach - Preliminary Results

    Science.gov (United States)

    Paturi, S.; Garraffo, Z. D.; Cummings, J. A.; Rivin, I.; Mehra, A.; Kim, H. C.

    2016-12-01

    Approaches to ocean data assimilation vary widely, both in terms of the sophistication of the method and the observations assimilated.A three-dimensional variational (3DVAR) data assimilation system, part of the Navy Coupled Ocean Data Assimilation (NCODA) system developed at Navy Research Laboratory (NRL), is used for assimilating Sea Surface Temperature (SST) and Sea Surface Height (SSH) in the Gulf of Mexico (GoM). The NCODA 3DVAR produces simultaneous analyses of temperature, salinity, and vector velocity and uses all possible sources of ocean data observations.The Hybrid Coordinate Ocean Model (HYCOM) is used for the simulations, at 1/25o grid resolution for July 2011 period. After successful implementation of NCODA 3DVAR in the GoM, the system will be extended to the global ocean with the intent of making it operational.

  4. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments

    Directory of Open Access Journals (Sweden)

    H. Thomas

    2009-02-01

    Full Text Available The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (AT and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.

  5. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Soumya, M.; Vethamony, P.; Vijaykumar, K.; Nair, T.M.B.; Agarvadekar, Y.; Jyoti, K.; Sudheesh, K.; Luis, R.; Lobo, S.; Halmalkar, B.

    –173, 2015 www.ocean-sci.net/11/159/2015/ doi:10.5194/os-11-159-2015 © Author(s) 2015. CC Attribution 3.0 License. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean P. Mehra1, M. Soumya1, P. Vethamony1, K. Vijaykumar1, T.... Note: sea level data at Colombo, Kochi, Karachi, Chabahar, Jask, Masirah, Minocoy and Hanimaadhoo are downloaded from www.gloss-sealevel.org and are shown with red stars. (Time is in Indian standard time (IST).) land locations of India are provided...

  6. Investigating the Eddy Diffusivity Concept in the Coastal Ocean

    Science.gov (United States)

    Rypina, I.; Kirincich, A.; Lentz, S. J.; Sundermeyer, M. A.

    2016-12-01

    We test the validity, utility, and limitations of the lateral eddy diffusivity concept in a coastal environment through analyzing data from coupled drifter and dye releases within the footprint of a high-resolution (800 m) high-frequency radar south of Martha's Vineyard, Massachusetts. Specifically, we investigate how well a combination of radar-based velocities and drifter-derived diffusivities can reproduce observed dye spreading over an 8-h time interval. A drifter-based estimate of an anisotropic diffusivity tensor is used to parameterize small-scale motions that are unresolved and under-resolved by the radar system. This leads to a significant improvement in the ability of the radar to reproduce the observed dye spreading. Our drifter-derived diffusivity estimates are O(10 m2/s), are consistent with the diffusivity inferred from aerial images of the dye taken using the quadcopter-mounted digital camera during the dye release, and are roughly an order of magnitude larger than diffusivity estimates of Okubo (O(1 m2/s)) for similar spatial scales ( 1 km). Despite the fact that the drifter-based diffusivity approach was successful in improving the ability of the radar to reproduce the observed dye spreading, the dispersion of drifters was, for the most part, not consistent with the diffusive spreading regime.

  7. Environmental monitoring of coastal and oceanic areas with orbital sensors

    Directory of Open Access Journals (Sweden)

    Patrícia Genovez

    2005-04-01

    Full Text Available PETROBRAS is using spaceborne multi-sensor remote sensing for its sea surface monitoring program at the Campos, Santos and Espírito Santo basins, southeastern Brazilian coast. Ocean color (SeaWiFS and MODIS, thermal infrared (NOAA/AVHRR, scatterometer (QuikSCAT and Synthetic Aperture Radar (RADARSAT-1 and ASAR/ENVISAT data were integrated in order to detect and characterize different sorts of marine pollution and meteo-oceanographic phenomena. The near real time processing and delivery of the radar data allowed the timely in-situ verification and sampling of the remotely detected events. The integrated analysis of these dataset presents an important decision tool for emergencies, as well for the elaboration of contingency plans and evaluation of the oil industry activity impacts.

  8. Estimation of the atmosphere-ocean fluxes of greenhouse gases and aerosols at the finer resolution of the coastal ocean.

    Science.gov (United States)

    Vieira, Vasco; Sahlée, Erik; Jurus, Pavel; Clementi, Emanuela; Pettersson, Heidi; Mateus, Marcos

    2016-04-01

    The balances and fluxes of greenhouse gases and aerosols between atmosphere and ocean are fundamental for Earth's heat budget. Hence, the scientific community needs to know and simulate them with accuracy in order to monitor climate change from Earth-Observation satellites and to produce reliable estimates of climate change using Earth-System Models (ESM). So far, ESM have represented earth's surface with coarser resolutions so that each cell of the marine domain is dominated by the open ocean. In such case it is enough to use simple algorithms considering the wind speed 10m above sea-surface (u10) as sole driver of the gas transfer velocity. The formulation by Wanninkhof (1992) is broadly accepted as the best. However, the ESM community is becoming increasingly aware of the need to model with finer resolutions. Then, it is no longer enough to only consider u10 when modelling gas transfer velocities across the coastal oceans' surfaces. More comprehensive formulations are required that adjust better to local conditions by also accounting for the effects of sea-surface agitation, wave breaking, atmospheric stability of the Surface Boundary Layer, current drag with the bottom, surfactants and rain. Accurate algorithms are also fundamental to monitor atmosphere and ocean greenhouse gas concentrations using satellite data and reverse modelling. Past satellite missions ERS, Envisat, Jason-2, Aqua, Terra and Metop, have already been remotely sensing the ocean's surface at much finer resolutions than ESM using instruments like MERIS, MODIS, AMR, AATSR, MIPAS, Poseidon-3, SCIAMACHY, SeaWiFS, and IASI. The planned new satellite missions Sentinel-3, OCO-2 and GOSAT will further increase the resolutions. We developed a framework to congregate competing formulations for the estimation of the solubility and transfer velocity of virtually any gas on the biosphere taking into consideration the atmosphere and ocean fundamental variables and their derived geophysical processes

  9. Offshore limit of coastal ocean variability identified from hydrography and altimeter data in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Swamy, G.N.; Somayajulu, Y.K.

    In this communication, we describe a hitherto-unknown offshore limit to the coastal ocean variability signatures away from the continental shelf in the eastern Arabian Sea, based on hydrographic observations and satellite altimeter (TOPEX...

  10. Sea truth validation of sea WiFS ocean colour sensor in the coastal waters of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Suresh, T.; Matondkar, S.G.P.; Desa, E.

    In this paper we report bio-optical measurements made during an ocean colour validation cruise SK 149C in November 1999 of the research vessel Sagar Kanya in the coastal waters of the Eastern Arabian Sea. The chlorophyll concentration...

  11. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    NARCIS (Netherlands)

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable

  12. Summary of Training Workshop on the Use of NASA tools for Coastal Resource Management in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Chaeli; Judd, Kathleen S.; Gulbransen, Thomas C.; Thom, Ronald M.

    2009-03-01

    A two-day training workshop was held in Xalapa, Mexico from March 10-11 2009 with the goal of training end users from the southern Gulf of Mexico states of Campeche and Veracruz in the use of tools to support coastal resource management decision-making. The workshop was held at the computer laboratory of the Institute de Ecologia, A.C. (INECOL). This report summarizes the results of that workshop and is a deliverable to our NASA client.

  13. Influence of salinity on bacterioplankton communities from the brazilian rain forest to the coastal Atlantic Ocean

    OpenAIRE

    Silveira, Cynthia Barbosa da; Vieira, Ricardo Pilz; Cardoso, Alexander Machado; Paranhos, Rodolfo Pinheiro da Rocha; Albano, Rodolpho Mattos; Martins, Orlando Bonifácio

    2011-01-01

    BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. MET...

  14. CURRENT DIRECTION, SALINITY - SURFACE WATER and other data from DRIFTING PLATFORM in the Gulf of Mexico and Coastal Waters of Gulf of Mexico from 1992-08-13 to 1995-08-05 (NODC Accession 9600132)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected in Gulf of Mexico as part of Louisiana-Texas (LATEX part C Lousiana and Texas: LaTex) Gulf of Mexico Eddy...

  15. Tidal influence on the sea-to-air transfer of CH4 in the coastal ocean

    International Nuclear Information System (INIS)

    Hahm, Doshik; Kim, Guebuem; Lee, Yong-Woo; Nam, Sungh-Yun; Kim, Kyung-Ryul; Kim, Kuh

    2006-01-01

    We obtained real-time monitoring data of water temperature, salinity, wind, current, CH 4 and other oceanographic parameters in a coastal bay in the southern sea of Korea from July 8 to August 15, 2003, using an environmental monitoring buoy. In general, the transfer velocity of environmental gases across the air-sea interface is obtained exclusively from empirical relationships with wind speeds. However, our monitoring data demonstrate that the agitation of the aqueous boundary layer is controlled significantly by tidal turbulence, similar to the control exercised by wind stress in the coastal ocean. The sea-to-air transfer of CH 4 is enhanced significantly during spring tide due to an increase in the gas transfer velocity and vertical CH 4 transport from bottom water to the surface layer. Thus, our unique time-series results imply that the sea-to-air transfer of gases, such as CH 4 , DMS, DMHg, N 2 O, CO 2 and 222 Rn, from highly enriched coastal bottom waters, is controlled not only by episodic wind events but also by regular tidal turbulence in the coastal ocean

  16. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  17. PRESSURE - WATER and Other Data from AIRCRAFT From Coastal Waters of Gulf of Mexico from 19941015 to 19941115 (NODC Accession 9500101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected in Gulf of Mexico as part of Louisiana-Texas (LATEX part C) Gulf of Mexico Eddy Circulation Study from aircraft...

  18. CDOM-DOC relationship in contrasted coastal waters : implication for DOC retrieval from ocean color remote sensing observation

    OpenAIRE

    Vantrepotte, V.; Danhiez, F. P.; Loisel, Hubert; Ouillon, Sylvain; Meriaux, X.; Cauvin, A.; Dessailly, D.

    2015-01-01

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the acdom(...

  19. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil.

    Science.gov (United States)

    Azevedo, Márcia Cristina Costa; Gomes-Gonçalves, Rafaela de Sousa; Mattos, Tailan Moretti; Uehara, Wagner; Guedes, Gustavo Henrique Soares; Araújo, Francisco Gerson

    2017-08-01

    Several species of marine fish use different coastal systems especially during their early development. However, these habitats are jeopardized by anthropogenic influences threatening the success of fish populations, and urgent measures are needed to priorize areas to protect their sustainability. We applied taxonomic (Δ+) and functional (X+) distinctiveness indices that represent taxonomic composition and functional roles to assess biodiversity of three different costal systems: bays, coastal lagoons and oceanic beaches. We hypothesized that difference in habitat characteristics, especially in the more dynamism and habitat homogeneity of oceanic beaches compared with more habitat diversity and sheltered conditions of bays and coastal lagoons results in differences in fish richness and taxonomic and functional diversity. The main premise is that communities phylogenetically and functionally more distinct have more interest in conservation policies. Significant differences (P PERMANOVA. Fish richness was higher in bays compared with the coastal lagoons and oceanic beaches. Higher Δ+ was found for the coastal lagoons compared with the bays and oceanic beaches, with the bays having some values below the confidence limit. Similar patterns were found for X+, although all values were within the confidence limits for the bays, suggesting that the absence of some taxa does not interfere in functional diversity. The hypothesis that taxonomic and functional structure of fish assemblages differ among the three systems was accepted and we suggest that coastal lagoons should be priorized in conservation programs because they support more taxonomic and functional distinctiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Using the Alaska Ocean Observing System to Inform Decision Making for Coastal Resiliency Relating to Inundation, Ocean Acidification, Harmful Algal Blooms, Navigation Safety and Impacts of Vessel Traffic

    Science.gov (United States)

    McCammon, M.

    2017-12-01

    State and federal agencies, coastal communities and Alaska Native residents, and non-governmental organizations are increasingly turning to the Alaska Ocean Observing System (AOOS) as a major source of ocean and coastal data and information products to inform decision making relating to a changing Arctic. AOOS implements its mission to provide ocean observing data and information to meet stakeholder needs by ensuring that all programs are "science based, stakeholder driven and policy neutral." Priority goals are to increase access to existing coastal and ocean data; package information and data in useful ways to meet stakeholder needs; and increase observing and forecasting capacity in all regions of the state. Recently certified by NOAA, the AOOS Data Assembly Center houses the largest collection of real-time ocean and coastal data, environmental models, and biological data in Alaska, and develops tools and applications to make it more publicly accessible and useful. Given the paucity of observations in the Alaska Arctic, the challenge is how to make decisions with little data compared to other areas of the U.S. coastline. AOOS addresses this issue by: integrating and visualizing existing data; developing data and information products and tools to make data more useful; serving as a convener role in areas such as coastal inundation and flooding, impacts of warming temperatures on food security, ocean acidification, observing technologies and capacity; and facilitating planning efforts to increase observations. In this presentation, I will give examples of each of these efforts, lessons learned, and suggestions for future actions.

  1. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    Science.gov (United States)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  2. Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico

    Directory of Open Access Journals (Sweden)

    Octavio Pérez-Maqueo

    2018-04-01

    Full Text Available Natural ecosystems are expected to reduce the damaging effects of extreme hydrometeorological effects. We tested this prediction for Mexico by performing regression models, with two dependent variables: the occurrence of deaths and economic damages, at a state and municipality levels. For each location, the explanatory variables were the Mexican social vulnerability index (which includes socioeconomic aspects, local capacity to prevent and respond to an emergency, and the perception of risk and land use cover considering different vegetation types. We used the hydrometeorological events that have affected Mexico from 1970 to 2011. Our findings reveal that: (a hydrometeorological events affect both coastal and inland states, although damages are greater on the coast; (b the protective role of natural ecosystems only was clear at a municipality level: the presence of mangroves, tropical dry forest and tropical rainforest was related to a significant reduction in the occurrence of casualties. Social vulnerability was positively correlated with the occurrence of deaths. Natural ecosystems, both typically coastal (mangroves and terrestrial (tropical forests, which are located on the mountain ranges close to the coast function for storm protection. Thus, their conservation and restoration are effective and sustainable strategies that will help protect and develop the increasingly urbanized coasts.

  3. Final Technical Report: DOE-Biological Ocean Margins Program. Microbial Ecology of Denitrifying Bacteria in the Coastal Ocean.

    Energy Technology Data Exchange (ETDEWEB)

    Lee Kerkhof

    2013-01-01

    The focus of our research was to provide a comprehensive study of the bacterioplankton populations off the coast of New Jersey near the Rutgers University marine field station using terminal restriction fragment polymorphism analysis (TRFLP) coupled to 16S rRNA genes for large data set studies. Our three revised objectives to this study became: (1) to describe bacterioplankton population dynamics in the Mid Atlantic Bight using TRFLP analysis of 16S rRNA genes. (2) to determine whether spatial and temporal factors are driving bacterioplankton community dynamics in the MAB using monthly samping along our transect line over a 2-year period. (3) to identify dominant members of a coastal bacterioplankton population by clonal library analysis of 16S rDNA genes and sequencing of PCR product corresponding to specific TRFLP peaks in the data set. Although open ocean time-series sites have been areas of microbial research for years, relatively little was known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35m (n=178). The data revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth (figure 2-next page). Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally

  4. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico

    International Nuclear Information System (INIS)

    Metcalfe, Chris D.; Beddows, Patricia A.; Bouchot, Gerardo Gold; Metcalfe, Tracy L.; Li Hongxia; Van Lavieren, Hanneke

    2011-01-01

    Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region. - Research highlights: → Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico is contaminating groundwater resources that discharge into Caribbean coastal ecosystems. → Passive sampling devices deployed in groundwater flowing through cave systems below two communities in the Riviera Maya accumulated: pharmaceuticals and personal care products originating from domestic sewage. → PAHs originating from runoff from highways and other impermeable surfaces; chlorophenoxy herbicides originating from pesticide applications to lawns and turf. → Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health in the region. - Contaminants accumulated in passive samplers deployed in flooded cave systems in the Yucatan Peninsula in Mexico indicate contamination by domestic sewage, runoff and applications of pesticides

  5. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Chris D., E-mail: cmetcalfe@trentu.ca [Worsfold Water Quality Centre, Trent University, Peterborough, ON, K9J 7B8 (Canada); Beddows, Patricia A. [Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL (United States); Bouchot, Gerardo Gold [Departemento de Recursos del Mar, CINVESTAV Unidad Merida, Yucatan (Mexico); Metcalfe, Tracy L.; Li Hongxia [Worsfold Water Quality Centre, Trent University, Peterborough, ON, K9J 7B8 (Canada); Van Lavieren, Hanneke [UN University Institute for Water, Environment and Health (UNU-INWEH), Hamilton, ON (Canada)

    2011-04-15

    Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region. - Research highlights: > Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico is contaminating groundwater resources that discharge into Caribbean coastal ecosystems. > Passive sampling devices deployed in groundwater flowing through cave systems below two communities in the Riviera Maya accumulated: pharmaceuticals and personal care products originating from domestic sewage. > PAHs originating from runoff from highways and other impermeable surfaces; chlorophenoxy herbicides originating from pesticide applications to lawns and turf. > Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health in the region. - Contaminants accumulated in passive samplers deployed in flooded cave systems in the Yucatan Peninsula in Mexico indicate contamination by domestic sewage, runoff and applications of

  6. Characteristics of the oceanic MCC, continental MCC, and coastal MCC over the Indonesian maritime continent

    Science.gov (United States)

    Trismidianto

    2018-05-01

    This study explains the comparison of mesoscale convective complexes (MCC) characteristics in the oceans, land and in the coast over Indonesian maritime continent (IMC). MCCs were identified and tracked during 15-years (2001-2015) over IMC by infrared satellite imagery using an algorithm that combines criteria of cloud coverage, eccentricity, and cloud lifetime. Infrared satellite imagery was obtained from Himawari generation satellite data. This study showed most of the continental MCC found near the mountains and the high elevation areas. The frequency of MCC occurrences was larger over the land than over the ocean. The oceanic MCCs, which lasted for more than 12 hours, were longer-lived than the continental MCCs. The MCCs with small size most frequently occurred in the continent, in contrast, the MCC with the medium and large size were most concentrated over the ocean. Generally, the continental and coastal MCC initiation occurs in the late afternoon and reach maximum size around midnight before decaying the next morning. In contrast, the oceanic MCC dominantly develops in midnight, and reach maximum size in the morning and then MCC decayed and dissipated from noon until afternoon. The evolution of MCC development in the ocean, land, and in the coast has almost the same stages and ways.

  7. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    Digital Repository Service at National Institute of Oceanography (India)

    Tholkapiyan, M.; Shanmugam, P.; Suresh, T.

    of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years...

  8. Irrigation and avifaunal change in coastal Northwest Mexico: has irrigated habit attracted threatened migratory species?

    Science.gov (United States)

    Grason, Emily; Navarro-Sigüenza, Adolfo G.

    2015-01-01

    Irrigation in desert ecosystems can either reduce or increase species diversity. Groundwater pumping often lowers water tables and reduces natural wetlands, whereas canal irrigation often creates mesic habitat, resulting in great increases in avian diversity from irrigation. Here we compare a dataset of potential natural vegetation to recent datasets from areal and satellite imagery to show that 60% of the land in the coastal plain of southern Sonora and northern Sinaloa lying below 200 m elevation has been converted by irrigation to more mesic habitats. We then use the record of bird specimens in the world’s museums from this same region of Mexico to examine the avian community before and after the development of extensive irrigation. In general these museum records show an increase in the abundance and diversity of breeding birds associated with mesic habitats. Although thorn forest birds have likely decreased in total numbers, most are common enough in the remaining thorn forest that collection records did not indicate their probable decline. Four migrants having most of their breeding ranges in the US or Canada, Yellow-billed Cuckoo, Cliff Swallow, Bell’s Vireo, and Orchard Oriole, apparently have increased dramatically as breeders in irrigated habitats of NW Mexico. Because these species have decreased or even largely disappeared as breeding birds in parts of the US or Canada, further research should assess whether their increases in new mesic habitats of NW Mexico are linked to their declines as breeding birds in Canada and the US For Bell’s Vireo recent specimens from Sinaloa suggest its new breeding population in NW Mexico may be composed partly of the endangered Least Bell’s Vireo. PMID:26312181

  9. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    Science.gov (United States)

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.

  10. The Baltic Sea as a time machine for the future coastal ocean

    DEFF Research Database (Denmark)

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are diff......Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...... are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history...... of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess...

  11. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  12. Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis

    Science.gov (United States)

    Liu, M.; Filina, I.

    2017-12-01

    Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of

  13. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    Science.gov (United States)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as

  14. The coastal ocean response to the global warming acceleration and hiatus.

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  15. The coastal ocean response to the global warming acceleration and hiatus

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  16. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Metcalfe, Chris D; Beddows, Patricia A; Bouchot, Gerardo Gold; Metcalfe, Tracy L; Li, Hongxia; Van Lavieren, Hanneke

    2011-04-01

    Intensive land development as a result of the rapidly growing tourism industry in the "Riviera Maya" region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. New Orleans, Louisiana 1/3 Arc-second MLLW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  18. Panama City, Florida 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  19. Mobile, Alabama 1/3 NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  20. Panama City, Florida 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  1. New Orleans, Louisiana 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  2. Ocean Response to Tropical Storms as Observed by a Moored Ocean Observing System in the Deep Gulf of Mexico

    Science.gov (United States)

    Oropeza, F.; Jaramillo, S.; Fan, S.

    2013-05-01

    As part of the support activities for a deepwater development in the Gulf of Mexico, a moored ocean observing system (OOS) was deployed in a water depth of approximately 2500m, 300km south of the Louisiana Coast. From June 2007 to May 2009, the system comprised seven single point Aanderaa Recording Current Meters (RCM), deployed at 450m, 700m, 1,100m, 1,500m, 2,000m, 2,400m and 2,490m below surface, and an RDI 75kHz Longranger Acoustic Doppler Current Profiler (ADCP), deployed between 249 and 373m below surface in upward-looking mode. Since May 2009, the OOS was upgraded to a Wavescan Buoy based moored system including meteorological sensors for: atmospheric pressure, air temperature, wind speed and direction; directional waves sensor; a Doppler Current Sensor (DCS) at 1.5 m depth for surface currents; and two downward-looking ADCP's covering the upper 1,000m of the water column. This OOS has been operating without interruptions from 2007 to the present and has registered data associated with nine tropical storms, including the direct passage of Hurricane Ike, in September of 2008, and loop current events with speeds of up to 4 knots. It has provided one of the most comprehensive set of velocity observations in the Gulf of Mexico, especially, the near surface currents, during pre-storm conditions, response, and ocean relaxation following hurricanes/tropical storms. Based on these observations the upper ocean responses to the energy input from tropical storms are characterized in terms of the associated mixing processes and momentum balances.

  3. Nutrient fluxes and net metabolism in a coastal lagoon SW peninsula of Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    Cervantes Duarte, R.

    2016-09-01

    Full Text Available Fluxes of nutrients and net metabolism were estimated in coastal lagoon Magdalena Bay using LOICZ biogeochemical model. In situ data were obtained from 14 sites in the lagoon and also from a fixed site in the adjacent ocean area. Intense upwelling (February to July and faint upwelling (August to January were analyzed from monthly time series. The Temperature, nitrite + nitrate, ammonium and phosphate within the lagoon showed significant differences (p<0.05 between the two periods. Salinity (p=0.408 was more homogeneous (no significantly different due to mixing processes. During the intense upwelling period, nutrients increased in and out of the lagoon due to the influence of Transitional Water and Subartic Water transported by the California Current. However, during the faint upwelling, from August to January, the Transition Water and Subtropical Surface Water were predominant. Magdalena Bay showed denitrification processes of throughout the year as it occurred in other semi-arid coastal lagoons. It also showed a net autotrophic metabolism during intense upwelling and heterotrophic metabolism during faint upwelling. Understanding nutrient flows and net metabolism through simple biogeochemical models can provide tools for better management of the coastal zone.

  4. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    Science.gov (United States)

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  5. Intercomparison of the Charnock and COARE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-08-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air–sea interface is vital for realistic simulation of the atmosphere–ocean system. In most modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of the instantaneous and long-term residual circulation, the surface mixed layer, and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress parameterisations widely used in the ocean circulation and the storm surge communities respectively are studied with focus on an application to the NW region of the UK. Model–observation validation is performed at two nearshore and one estuarine ADCP (acoustic Doppler current profiler stations in Liverpool Bay, a hypertidal region of freshwater influence (ROFI with vast intertidal areas. The period of study covers both calm and extreme conditions to test the robustness of the 10 m wind stress component of the Coupled Ocean–Atmosphere Response Experiment (COARE bulk formulae and the standard Charnock relation. In this coastal application a realistic barotropic–baroclinic simulation of the circulation and surge elevation is set-up, demonstrating greater accuracy occurs when using the Charnock relation, with a constant Charnock coefficient of 0.0185, for surface wind stress during this one month period.

  6. A miniaturized UV/VIS/IR hyperspectral radiometer for autonomous airborne and underwater imaging spectroscopy of coastal and oceanic environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing of optical properties of oceans and coastal waters provides essential information for various scientific questions and applications, including...

  7. The magnitude and origin of groundwater discharge to eastern U.S. and Gulf of Mexico coastal waters

    Science.gov (United States)

    Befus, Kevin; Kroeger, Kevin D.; Smith, Christopher G.; Swarzenski, Peter W.

    2017-01-01

    Fresh groundwater discharge to coastal environments contributes to the physical and chemical conditions of coastal waters, but the role of coastal groundwater at regional to continental scales remains poorly defined due to diverse hydrologic conditions and the difficulty of tracking coastal groundwater flow paths through heterogeneous subsurface materials. We use three-dimensional groundwater flow models for the first time to calculate the magnitude and source areas of groundwater discharge from unconfined aquifers to coastal waterbodies along the entire eastern U.S. We find that 27.1 km3/yr (22.8–30.5 km3/yr) of groundwater directly enters eastern U.S. and Gulf of Mexico coastal waters. The contributing recharge areas comprised ~175,000 km2 of U.S. land area, extending several kilometers inland. This result provides new information on the land area that can supply natural and anthropogenic constituents to coastal waters via groundwater discharge, thereby defining the subterranean domain potentially affecting coastal chemical budgets and ecosystem processes.

  8. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    OpenAIRE

    Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-01-01

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS A...

  9. Year Five of Southeast Atlantic Coastal Ocean Observing System (SEACOOS) Implementation

    Science.gov (United States)

    2008-09-30

    established the first network of subsurface observing locations (of temperature and salinity ) and shelf current observations. The program also initiated a...evolving, three-dimensional fields of the coastal ocean from the estuaries out to the boundaries of the EEZ was the ambitious goal of the SEACOOS...fiddler crab Uca minax, Marine Biology, 152:1283-1291, doi:10.1007/s00227-007-0777- y. Chassignet, E.P., H.E. Hurlburt, O.M. Smedstad, G.R

  10. Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatan, Mexico

    Science.gov (United States)

    Vega-Cendejas, Ma. Eugenia; Hernández de Santillana, Mireya

    2004-06-01

    Rio Lagartos, a tropical coastal lagoon in northern Yucatan Peninsula of Mexico, is characterized by high salinity during most of the year (55 psu annual average). Even though the area has been designated as a wetland of international importance because of its great biodiversity, fish species composition and distribution are unknown. To determine whether the salinity gradient was influencing fish assemblages or not, fish populations were sampled seasonally by seine and trawl from 1992 to 1993 and bimonthly during 1997. We identified 81 fish species, eight of which accounted for 53.1% considering the Importance Value Index ( Floridichthys polyommus, Sphoeroides testudineus, Eucinostomus argenteus, Eucinostomus gula, Fundulus majalis, Strongylura notata, Cyprinodon artifrons and Elops saurus). Species richness and density declined from the mouth to the inner zone where extreme salinity conditions are prominent (>80) and competitive interactions decreased. However, in Coloradas basin (53 average sanity) and in the inlet of the lagoon, the highest fish density and number of species were observed. Greater habitat heterogeneity and fish immigration were considered as the best explanation. Multivariate analysis found three zones distinguished by fish occurrence, abundance and distribution. Ichthyofaunal spatial differences were attributed to selective recruitment from the Gulf of Mexico due to salinity gradient and to changing climatic periods. Estuarine and euryhaline marine species are abundant, with estuarine dependent ones entering the system according to environmental preferences. This knowledge will contribute to the management of the Special Biosphere Reserve through baseline data to evaluate environmental and anthropogenic changes.

  11. A drifter for measuring water turbidity in rivers and coastal oceans.

    Science.gov (United States)

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Feeding ecology of juvenile marine fish in a shallow coastal lagoon of southeastern Mexico

    Directory of Open Access Journals (Sweden)

    Daniel Arceo-Carranza

    2015-09-01

    Full Text Available Many species of marine fish use coastal lagoons during early stages of their life cycles due to the protection provided by their turbid waters and complex structure of the environment, such as mangroves and mudflats, and the availability of food derived from the high productivity of these sites. In this study, we analyzed the diet of six species of juvenile marine fishes that use a karstic lagoon system in the northwest portion of the Yucatan Peninsula, Mexico. Through stomach contents analysis we determined the trophic differences among Caranx latus, Oligoplites saurus, Trachinotus falcatus, Synodus foetens, Lutjanus griseus, and Strongylura notata. C. latus, O. saurus, S. foetens, and S. notate, which are ichthyophagous species (>80% by number. L. griseus feeds mainly on crustaceans (>55% and fish (35%, while T. falcatus feeds on mollusks (>50% bivalves, >35% gastropods. The analysis of similarities (ANOSIM showed differences in the diet of all species. Cluster analysis, based on the Bray-Curtis similarity matrix revealed three groups; one characterized by the ichthyophagous guild (S. notata, S. foetens, C. latus, and O. saurus, other group formed by the crustacean consumers (L. griseus, and the third, composed by the mollusk feeder (T. falcatus. Species of the ichthyophagous guild showed overlap in their diets, which under conditions of low prey abundance may trigger competition, hence affecting juvenile stages of these marine species that use coastal lagoons to feed and grow.

  13. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  14. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Hood Canal - Port Townsend to Annas Bay, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  15. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Lake Charles, Louisiana 2009-2010 (NODC Accession 0075827)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Lake Charles,...

  16. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of the Port of Palm Beach, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  17. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Hampton Harbor to Frost Point and the Isle of Shoals, NH, 2011 (NODC Accession 0092292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains orthorectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. Data were collected at...

  18. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Merrimack River and Plum Island Sound, Massachusetts, June 2011 (NODC Accession 0103944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains both true color (RGB) and infrared (IR) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  19. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of Ports of Houston, Texas City, and Galveston, Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Baton Rouge to LaPlace, Louisiana 2010 (NODC Accession 0074374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of the Mississippi...

  1. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, LaPlace to Venice, Louisiana 2010 (NODC Accession 0075829)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Mississippi River -...

  2. 2011 NOAA Ortho-rectified Mosaic of Christiansted of St. Johns, U.S. Virgin Islands: Integrated Ocean and Coastal Mapping Product (NODC Accession 0086076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2013 NOAA Ortho-rectified Mean High Water Color Mosaic of Sequim Bay to Foulweather Bluff, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2014 NOAA Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of Hood Canal - Port Townsend to Annas Bay, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Puget Sound - Everett to Spring Beach, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  7. Towards Defining the Ecological Niches of Novel Coastal Gulf of Mexico Bacterial Isolates

    Science.gov (United States)

    Henson, M. W.; Thrash, C.; Nall, E.

    2016-02-01

    The study of microbial contributions to biogeochemistry is critical to understanding the cycles of fundamental compounds and gain predictive capabilities in a changing environment. Such study requires observation of microbial communities and genetics in nature, coupled with experimental testing of hypotheses both in situ and in laboratory settings. This study combines dilution-to-extinction based high-throughput culturing (HTC) with cultivation-independent and geochemical measurements to define potential ecological niches of novel bacterial isolates from the coastal northern Gulf of Mexico (cnGOM). Here we report findings from the first of a three-year project. In total, 43 cultures from seven HTC experiments were capable of being repeatedly transferred. Sanger sequencing of the 16S rRNA gene identified these isolates as belonging to the phyla Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Betaproteobacteria. Eight are being genome sequenced, with two selected for further physiological characterization due to their phylogenic novelty and potential ecological significance. Strain LSUCC101 likely represents a novel family of Gammaproteobacteria (best blast hit to a cultured representative showed 91% sequence identity) and strain LSUCC96 belongs to the OM252 clade, with the Hawaiian isolate HIMB30 as its closest relative. Both are small (0.3-0.5 µm) cocci. The environmental importance of both LSUCC101 and LSUCC96 was illustrated by their presence within the top 30 OTU0.03 of cnGOM 16S rRNA gene datasets as well as within clone libraries from coastal regions around the world. Ongoing work is determining growth efficiencies, substrate utilization profiles, and metabolic potential to elucidate the roles of these organisms in the cnGOM. Comparative genomics will examine the evolutionary divergence of these organisms from their closest neighbors, and metagenomic recruitment to genomes will help identify strain-based variation from different coastal regions.

  8. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico

    Science.gov (United States)

    Chuang, P.-C.; Young, M. B.; Dale, A. W.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.

    2017-05-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  9. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  10. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events.

    Science.gov (United States)

    Pahlevan, Nima; Lee, Zhongping; Hu, Chuanmin; Schott, John R

    2014-02-01

    Optical remote sensing systems aboard geostationary platforms can provide high-frequency observations of bio-optical properties in dynamical coastal/oceanic waters. From the end-user standpoint, it is recognized that the fidelity of daily science products relies heavily on the radiometric sensitivity/performance of the imaging system. This study aims to determine the theoretical detection limits for bio-optical properties observed diurnally from a geostationary orbit. The analysis is based upon coupled radiative transfer simulations and the minimum radiometric requirements defined for the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission. The diurnal detection limits are found for the optically active constituents of water, including near-surface concentrations of chlorophyll-a (CHL) and total suspended solids (TSS), and the absorption of colored dissolved organic matter (aCDOM). The diurnal top-of-atmosphere radiance (Lt) is modeled for several locations across the field of regard (FOR) to investigate the radiometric sensitivity at different imaging geometries. It is found that, in oceanic waters (CHL=0.07  mg/m3), detecting changes smaller than 0.01  mg/m3 in CHL is feasible for all locations and hours except for late afternoon observations on the edge of the FOR. For more trophic/turbid waters (0.6

  11. 78 FR 43146 - Gulf of Mexico Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC763 Gulf of Mexico Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS... d. Recommendation of ABC 4. Overview of ongoing Coastal Migratory Pelagics Amendments a. CMP...

  12. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    Science.gov (United States)

    2014-01-01

    the bands needed for atmospheric correction. Spectral definition files for AVIRIS, HYDICE, HYMAP, HYPERION, CASI, and AISA sensors are included as...Satellite Visible Imagery – A Review.” In Lecture Notes on Coastal and Estuarine Studies, edited by R. T. Barber, N. K. Mooers, M. J. Bowman, and B...In Proceedings of SPIE Coastal Ocean Remote Sensing, edited by Robert J. Frouin, ZhongPing Lee, Vol. 6680, 668013-1-668013-9. doi:10.1117/12.736845

  13. Oceanic Environmental data from the ALAMINOS and other platforms from the Gulf of Mexico and the Caribbean as part of the International Decade of Ocean Exploration (IDOE) from 1971-02-01 to 1971-12-01 (NCEI Accession 7200737)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanic Environmental data were collected from the ALAMINOS and other platforms from 01 February 1971 to 01 December 1971. Data were collected in the Gulf of Mexico...

  14. 77 FR 40586 - Coastal Programs Division

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coastal Programs Division AGENCY: Coastal Programs Division, Office of Ocean and Coastal Resource Management, National Ocean.... FOR FURTHER INFORMATION CONTACT: Kerry Kehoe, Coastal Programs Division (NORM/3), Office of Ocean and...

  15. Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control

    Science.gov (United States)

    Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.

    2016-02-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.

  16. The Hyperspectral Imager for the Coastal Ocean (HICO): Four Years Operating on the International Space Station (Invited)

    Science.gov (United States)

    Davis, C. O.; Nahorniak, J.; Tufillaro, N.; Kappus, M.

    2013-12-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne imaging spectrometer designed to sample the coastal ocean. HICO images selected coastal regions at 92 m spatial resolution with full spectral coverage (88 channels covering 400 to 900 nm) and a high signal-to-noise ratio to resolve the complexity of the coastal ocean. Under sponsorship of the Office of Naval Research, HICO was built by the Naval Research Laboratory, which continues to operate the sensor. HICO has been operating on the International Space Station since October 2009 and has collected over 8000 scenes for more than 50 users. As Project Scientist I have been the link to the international ocean optics community primarily through our OSU HICO website (http://hico.oregonstate.edu). HICO operations are now under NASA support and HICO data is now also be available through the NASA Ocean Color Website (http://oceancolor.gsfc.nasa.gov ). Here we give a brief overview of HICO data and operations and discuss the unique challenges and opportunities that come from operating on the International Space Station.

  17. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    Science.gov (United States)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  18. Increase in dimethylsulfide (DMS emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification.

    Directory of Open Access Journals (Sweden)

    Nathalie eGypens

    2014-04-01

    Full Text Available Available information from manipulative experiments suggested that the emission of dimethylsulfide (DMS would decrease in response to the accumulation of anthropogenic CO2 in the ocean (ocean acidification. However, in coastal environments, the carbonate chemistry of surface waters was also strongly modified by eutrophication and related changes in biological activity (increased primary production and change in phytoplankton dominance during the last 50 years. Here, we tested the hypothesis that DMS emissions in marine coastal environments also strongly responded to eutrophication in addition to ocean acidification at decadal timescales. We used the R-MIRO-BIOGAS model in the eutrophied Southern Bight of the North Sea characterized by intense blooms of Phaeocystis that are high producers of dimethylsulfoniopropionate (DMSP, the precursor of DMS. We showed that, for the period from 1951 to 2007, eutrophication actually led to an increase of DMS emissions much stronger than the response of DMS emissions to ocean acidification.

  19. 46 CFR 27.305 - What are the requirements for fire-extinguishing equipment on towing vessels in ocean or coastal...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false What are the requirements for fire-extinguishing equipment on towing vessels in ocean or coastal service whose construction was contracted for on or after... for fire-extinguishing equipment on towing vessels in ocean or coastal service whose construction was...

  20. Challenges and opportunities for implementing sustainable energy strategies in coastal communities of Baja California Sur, Mexico

    Science.gov (United States)

    Etcheverry, Jose R.

    This dissertation explores the potential of renewable energy and efficiency strategies to solve the energy challenges faced by the people living in the biosphere reserve of El Vizcaino, which is located in the North Pacific region of the Mexican state of Baja California Sur. This research setting provides a practical analytical milieu to understand better the multiple problems faced by practitioners and agencies trying to implement sustainable energy solutions in Mexico. The thesis starts with a literature review (chapter two) that examines accumulated international experience regarding the development of renewable energy projects as a prelude to identifying the most salient implementation barriers impeding this type of initiatives. Two particularly salient findings from the literature review include the importance of considering gender issues in energy analysis and the value of using participatory research methods. These findings informed fieldwork design and the analytical framework of the dissertation. Chapter three surveys electricity generation as well as residential and commercial electricity use in nine coastal communities located in El Vizcaino. Chapter three summarizes the fieldwork methodology used, which relies on a mix of qualitative and quantitative research methods that aim at enabling a gender-disaggregated analysis to describe more accurately local energy uses, needs, and barriers. Chapter four describes the current plans of the state government, which are focused in expanding one of the state's diesel-powered electricity grids to El Vizcaino. The Chapter also examines the potential for replacing diesel generators with a combination of renewable energy systems and efficiency measures in the coastal communities sampled. Chapter five analyzes strategies to enable the implementation of sustainable energy approaches in El Vizcaino. Chapter five highlights several international examples that could be useful to inform organizational changes at the federal

  1. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    Science.gov (United States)

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  2. Chemical, zooplankton, and phytoplankton data from CTD and other instruments in the Mississippi River and Gulf of Mexico as part of the Nutrient Enhanced Coastal Ocean Productivity (NECOP) project, from 1985-07-15 to 1993-05-12 (NODC Accession 9800129)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, zooplankton, and phytoplankton data were collected using bottle, CTD, fluorometer, oxygen meter, GPS, plankton trap, and sediment sampler from NOAA Ship...

  3. Smart Phone Application Development and Demonstration in Support of EPA HICO Imagery for Coastal and Ocean Protection

    Science.gov (United States)

    High resolution spectral data from the ISS Hyperspectral Imager of the Coastal Ocean (HICO) system has been used to map the spatial distribution of selected water quality indicators for four Florida Gulf Coast estuaries from 2010-2012. HICO is the first hyperspectral imager speci...

  4. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Markager, S.

    2004-01-01

    We evaluated models predicting the spectral chlorophyll-a (Chl a)-specific absorption coefficient (a*ph (¿)) from Chl a concentration [Chl a] on the basis of 465 phytoplankton absorption spectra collected in estuarine, coastal and oceanic waters. A power model on ln-transformed data provided...

  5. The Baltic Sea as a time machine for the future coastal ocean

    DEFF Research Database (Denmark)

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...... transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches...... of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess...

  6. The Baltic Sea as a time machine for the future coastal ocean

    DEFF Research Database (Denmark)

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure....... This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.......Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...

  7. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    Science.gov (United States)

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  8. Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Songjie He

    2018-06-01

    Full Text Available This study aims to evaluate recent total phosphorus (TP and dissolved inorganic phosphorus (DIP transport from three coastal rivers—the Calcasieu, Mermentau, and Vermilion Rivers—that drain watersheds with varied agriculture intensities (21%, 67%, and 61%, respectively into the northern Gulf of Mexico, one of the world’s largest summer hypoxic zones. The study also examined the spatial trends of TP and DIP from freshwater to saltwater along an 88-km estuarine reach with salinity increasing from 0.02 to 29.50. The results showed that from 1990–2009 to 2010–2017, the TP fluxes for one of the agriculture-intensive rivers increased while no significant change was found for the other two rivers. Change in river discharge was the main reason for this TP flux trend. The two more agriculture-intensive river basins showed consistently higher TP and DIP concentrations and fluxes, as well as higher DIP:TP ratios than the river draining less agriculture-intensive land, confirming the strong effect of land uses on phosphorus input and speciation. Longitudinal profiles of DIP along the salinity gradient of the estuarine reach displayed characteristic input behavior. Desorption of DIP from suspended solids and river bed sediments, urban inputs, as well as stronger calcium carbonate and phosphorus co-precipitation at the marine endmember could be the reasons for such mixing dynamics.

  9. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    Science.gov (United States)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and

  10. Influence of Salinity on Bacterioplankton Communities from the Brazilian Rain Forest to the Coastal Atlantic Ocean

    Science.gov (United States)

    Silveira, Cynthia B.; Vieira, Ricardo P.; Cardoso, Alexander M.; Paranhos, Rodolfo; Albano, Rodolpho M.; Martins, Orlando B.

    2011-01-01

    Background Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. Methodology/Principal Findings We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Conclusions/Significance Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters

  11. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Science.gov (United States)

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine

  12. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Cynthia B Silveira

    Full Text Available BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore and three freshwater (water spring, river, and mangrove environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%, whereas Cyanobacteria (30.5%, Alphaproteobacteria (25.5%, and Gammaproteobacteria (26.3% dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE: Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical

  13. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. L. Ramage

    2018-03-01

    Full Text Available Retrogressive thaw slumps (RTSs are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1 describe the evolution of RTSs between 1952 and 2011; (2 calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC and dissolved organic carbon (DOC; and (3 estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs and 14 % areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6×106 m3 of material, 53 % of which was ice, and mobilized 145.9×106 kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6×103 m3 yr−1 of material, adding 0.6 % to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean.

  14. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  15. Ocean Acidification May Aggravate Social-Ecological Trade-Offs in Coastal Fisheries

    Science.gov (United States)

    Voss, Rudi; Quaas, Martin F.; Schmidt, Jörn O.; Kapaun, Ute

    2015-01-01

    Ocean Acidification (OA) will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size), economic (profits), consumer-related (harvest) and social (employment) indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort) to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination), which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small scale local

  16. Ocean acidification may aggravate social-ecological trade-offs in coastal fisheries.

    Science.gov (United States)

    Voss, Rudi; Quaas, Martin F; Schmidt, Jörn O; Kapaun, Ute

    2015-01-01

    Ocean Acidification (OA) will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size), economic (profits), consumer-related (harvest) and social (employment) indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort) to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination), which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small scale local

  17. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.; Jung, Ki Won; Deng, Zhiqun

    2015-10-28

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3D sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.

  18. Mexico.

    Science.gov (United States)

    Semaan, Leslie

    The text explores Mexico's history, geography, art, religion, and lifestyles in the context of its complex economy. The text focuses on Mexico's economy and reasons for its current situation. Part I of this teaching unit includes: Teacher Overview, Why Study Mexico, Mexico Fact Sheet, Map of Mexico, the Land and Climate, History, Government,…

  19. Transport and deposition of plutonium in the ocean: Evidence from Gulf of Mexico sediments

    International Nuclear Information System (INIS)

    Scott, M.R.; Salter, P.F.; Halverson, J.E.

    1983-01-01

    A study of sediments in the Gulf of Mexico shows dramatic gradients in Pu content and isotope ratios from the continental shelf to the Sigsbee Abyssal Plain. In terms of predicted direct fallout inventory of Pu, one shelf core contains 745% of the predicted inventory, while abyssal plain sediments contain only 15-20% of the predicted value. Absolute Pu concentrations of shelf sediments are also conspicuously high, up to 110 dpm/kg, compared to 13.5 dpm/kg in Mississippi River suspended sediment. There is no evidence of Pu remobilization in Gulf of Mexico shelf sediments, based on comparison of Pu profiles with Mn/Al and Fe/Al profiles. Horizontal transport of fallout nuclides from the open ocean to removal sites in ocean margin sediments is concluded to be the source of both the high concentrations and high inventories of Pu reported here. The shelf sediments show 240 Pu/ 239 Pu ratios close to 0.179, the average stratospheric fallout value, but the ratios decrease progressively across the Gulf to low values of 0.06 in abyssal plain sediments. The source of low-ratio Pu in deep-water sediments may be debris from low yield tests transported in the troposphere. Alternatively, it may represent a fraction of the Pu from global stratospheric fallout which has been separated in the water column from the remainder of the Pu in the ocean. In either case, the low-ratio material must have been removed rapidly to the sea floor where it composes a major fraction of the Pu in abyssal plain sediments. Pu delivered by global atmospheric fallout from the stratosphere has apparently remained for the most part in the water or has been transported horizontally and removed into shallow-water sediments. (orig.)

  20. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters

    DEFF Research Database (Denmark)

    Passaro, Marcello; Kildegaard Rose, Stine; Andersen, Ole B.

    2018-01-01

    ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also......Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans...... the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean...

  1. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    Science.gov (United States)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  2. A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding

    Science.gov (United States)

    Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.

    2015-04-01

    Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of

  3. Coastal circulation and hydrography in the Gulf of Tehuantepec, Mexico, during winter

    Science.gov (United States)

    Barton, E. D.; Lavín, M. F.; Trasviña, A.

    2009-02-01

    Winter observations of shelf and slope hydrography and currents in the inner Gulf of Tehuantepec are analysed from two field studies in 1989 and 1996 to specify the variability of near-shore conditions under varying wind stress. During the winter period frequent outbursts of 'Norte' winds over the central Gulf result in persistent alongshore inflows along both its eastern and western coasts. Wind-induced variability on time scales of several days strongly influences the shelf currents, but has greater effect on its western coast because of the generation and separation of anticyclonic eddies there. The steadier inflow (˜0.2 m s -1) on the eastern shelf is evident in a strong down-bowing of shallow isosurfaces towards the coast within 100 km of shore, below a wedge of warmer, fresher and lighter water. This persistent entry of less saline (33.4-34.0), warmer water from the southeast clearly originates in buoyancy input by rivers along the Central American coast, but is augmented by a general shoreward tendency (0.2 m s -1) in the southeastern Gulf. The resultant shallow tongue of anomalous water is generally swept offshore in the head of the Gulf and mixed away by the strong outflow and vertical overturning of the frequent 'Norte' events but during wind relaxations the warm, low-salinity coastal flow may briefly extend further west. In the head of the Gulf, flow is predominantly offshore (depression, respectively, of the pycnocline against the shore. More saline, open ocean water is introduced from the north-western side of the Gulf by the inflow along the west coast. During extended wind relaxations, the flow becomes predominantly eastward beyond the shelf while nearshore the coastally trapped buoyant inflow from the southeast penetrates across the entire head of the gulf at least as far as its western limit. On the basis of these and other recent observations, it seems that the accepted view of a broad, persistent Costa Rica Coastal Current (CRCC) is the result

  4. Exopolymer Particles in the Sea Surface Microlayer (SML) of the Coastal Pacific Ocean

    Science.gov (United States)

    Thornton, D. C.; Brooks, S. D.; Chen, J.

    2015-12-01

    Exchanges of matter and energy between the ocean and atmosphere occur through the sea surface microlayer (SML). The SML is biogeochemically distinct from the underlying water and overlying atmosphere in terms of physical environment, chemical composition, and biological community. We sampled the Pacific Ocean in coastal waters off the state of Oregon (United States) along a seaward transect out from the mouth of the Columbia River (3 stations) and in deeper waters beyond the shelf break (2 stations) in July 2011. SML samples were collected using the glass plate method and the underlying water was sampled using a peristaltic pump from 1, 5 and 10 m depth. The samples were analyzed for carbohydrates and exopolymer particles. Carbohydrates were significantly enriched in the SML compared with the underlying water. The concentration of polysaccharides was higher than monosaccharides at all depths. We enumerated two classes of exopolymer particles: transparent exopolymer particles (TEP) and Coomassie staining particles (CSP). TEP are composed of acid polysaccharides and CSP are formed from proteins. While TEP have been widely studied, CSP are generally overlooked, despite the biogeochemical significance of proteins. Our data showed that TEP and CSP concentrations were enriched in the SML compared with the underlying waters in most cases. The ubiquitous presence of empty diatom frustules in the samples indicates that the collapse of a diatom bloom was the source of the exopolymers. Further, we conducted image analysis of particle size and abundance, which indicated that TEP and CSP are not the same particles and form distinct populations in the ocean. Our data confirm recent observations indicating that TEP are an important component of the SML. In addition, these data show that CSP are also important components of the SML.

  5. Oceanic gamefish/Skylab project field operating plan for operations 4, 5 August. [in Gulf of Mexico

    Science.gov (United States)

    1973-01-01

    The operation plans are presented for the oceanic Gamefish/Skylab Experiment 240, which was conducted to obtain fish catch data for the northeast area of the Gulf of Mexico. The plans for surface measurements, aerial observations, and communications are included.

  6. The Oceans 2015 Initiative, Part II - An updated understanding of the observed and projected impacts of ocean warming and acidification on marine and coastal socioeconomic activities/sectors

    International Nuclear Information System (INIS)

    Weatherdon, Lauren; Sumaila, Rashid; Cheung, William W.L.; Rogers, Alex; Magnan, Alexandre

    2015-01-01

    Between 1971 and 2010, the oceans have absorbed approximately 93% of the excess heat caused by global warming, leading to several major changes such as the increase in stratification, limitation in the circulation of nutrients from deep waters to the surface, and sea level rise. In addition, the oceans absorbed 26% of anthropogenic CO 2 emitted since the start of the Industrial Revolution, which resulted in ocean acidification. Together, these processes strongly affect marine and coastal species' geographic distribution, abundance, migration patterns and phenology. As a consequence of these complex environmental changes, marine and coastal human sectors (i.e., fisheries, aquaculture, coastal tourism and health) are in turn at risk. This report provides an updated synthesis of what the science tells us about such a risk, based upon IPCC AR5 (2013- 2014) and published scientific articles and grey literature that have been published between July 2013 and April 2015. Although uncertainty remains strong, there is growing scientific evidence that ocean warming and acidification will affect key resources for societies through ecosystems services. For example, while AR5 indicated that coral reefs had little scope for adaptation, recent research has suggested that there may be some capacity for some coral species to recover from climatic hocks and bleaching events, and to acquire heat resistance through acclimatization. This will have huge implications on many coastal economies in the developing and developed countries. More generally, key sectors will be affected. For example, while the fish catch potential is expected to decrease at the global scale, it will show diversified trends at the regional scale as fish stocks have started shifting in latitudes or by depth. This will impact regional to local fisheries systems. Also, climate and acidification-related impacts to existing aquaculture are expected to be generally negative, with impacts varying by location

  7. Exploring scenarios of light pollution from coastal development reaching sea turtle nesting beaches near Cabo Pulmo, Mexico

    Directory of Open Access Journals (Sweden)

    Gregory M. Verutes

    2014-12-01

    Full Text Available New coastal development may offer economic benefits to resort builders and even local communities, but these projects can also impact local ecosystems, key wildlife, and the draw for tourists. We explore how light from Cabo Cortés, a proposed coastal development in Baja California Sur, Mexico, may alter natural light cues used by sea turtle hatchlings. We adapt a viewshed approach to model exterior light originating from the resort under plausible zoning scenarios. This spatially explicit information allows stakeholders to evaluate the likely impact of alternative development options. Our model suggests that direct light’s ability to reach sea turtle nesting beaches varies greatly by source location and height—with some plausible development scenarios leading to significantly less light pollution than others. Our light pollution maps can enhance decision-making, offering clear guidance on where to avoid elevated lamps or when to recommend lighting restrictions. Communities can use this information to participate in development planning to mitigate ecological, aesthetic and economic impacts from artificial lighting. Though tested in Mexico, our approach and free, open-source software can be applied in other places around the world to better understand and manage the threats of light pollution to sea turtles. Keywords: Artificial light, Viewshed analysis, Sea turtle conservation, Coastal resort management, InVEST

  8. National Assessment of Shoreline Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico

    Science.gov (United States)

    Morton, Robert A.; Miller, Tara L.; Moore, Laura J.

    2004-01-01

    EXECUTIVE SUMMARY Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This report on states bordering the Gulf of Mexico (Florida, Alabama, Mississippi, Louisiana, and Texas) represents the first in a series that will eventually include the Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. The report summarizes the methods of analysis, interprets the results, provides explanations regarding the historical and present trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1970s, whereas the lidar shoreline is 1998-2002. Long-term rates of change are calculated using all four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for the most recent period (1970s to lidar shoreline). The historical rates of change presented in this report represent past conditions and therefore are not

  9. Submerged Aquatic Vegetation observations from Coastal Alabama, Gulf of Mexico from 2015-05-01 to 2016-06-21 (NCEI Accession 0161265)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of GIS data documenting the location, species composition, and other habitat characteristics of submerged aquatic vegetation (SAV) in coastal...

  10. Historical Submerged Aquatic Vegetation (SAV) Distributions from Coastal Alabama, Gulf of Mexico from 1940-01-01 to 1966-10-21 (NCEI Accession 0162477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historic black and white aerial photographs of coastal Alabama (Mobile Bay and adjacent waters) from 1940, 1955, and 1966 were digitized and georeferenced using Blue...

  11. Discharge of 210Po and 210Pb in coastal groundwater to the ocean

    International Nuclear Information System (INIS)

    Kim, Intae; Kim, Tae-hoon; Kim, Guebuem

    2013-01-01

    The activities of 210 Po and 210 Pb were measured for the truly dissolved (<10 kDa) and colloidal (10 kDa - 0.45 ìm) phases in coastal ground water in 2010 and 2011. The sampling sites include the coast of a large tidal flat (Hampyeong Bay) and a volcanic island, Jeju, Korea, where submarine groundwater discharge (SGD) were reported to be higher than typical continental margins. The total dissolved fraction was separated into the colloidal and truly dissolved fractions using a tangential flow filtration (TFF) system (PLCGC Pellicon). The total 210 Po and 210 Pb activities in ground water were 1.0 - 18.2 dpm/100L (9.7±7.6 dpm/100L) an 2.9 - 29.1 dpm/100L (16.8±10.7 dpm/100L) in the Hampyeong Bay and Jeju Island samples, respectively. The total 210 Po and 210 Pb activities in groundwater were similar to or even slightly lower than those in the typical seawater. These lower activities seem to be due to the rapid adsorption of Po and Pb on to particles in the subterranean estuary. The proportions of the truly dissolved and colloidal phases were, respectively, 73±5% and 27±5% for 210 Po, and 60±5% and 40±5% for 210 Pb. This result is consistent with the earlier study that more than half of the some dissolved trace metals in coastal ground water are in the colloidal form. Thus, our result implies that the colloidal forms are important in controlling the behaviour of Po, Pb, and other trace metals in the subterranean estuary and SGD-associated fluxes to the ocean. (author)

  12. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community.

    Directory of Open Access Journals (Sweden)

    Tim Eberlein

    Full Text Available We studied the effect of ocean acidification (OA on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study. From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2 of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.

  13. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A

    Science.gov (United States)

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.

    2008-01-01

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene–Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm3/g (as-analyzed or raw basis; 1.2 cm3/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm3/g (as-analyzed basis; 8.76 cm3/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m3 of gas/day and cumulative gas production from these wells is approximately 25 million m3 (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m3 (3.86 trillion ft3) of producible natural gas.To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average δ13CCH4 value of − 62.6‰ VPDB (relative to Vienna Peedee Belemnite) and an average δDCH4 value of − 199.9‰ VSMOW (relative to Vienna Standard Mean Ocean Water). Values of δ13CCO2 range from − 25.4 to 3.42‰ VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have δDH2O values that range from − 27.3 to − 18.0‰ VSMOW. These data suggest that the coal gases primarily are generated in saline formation water by bacterial reduction of CO2

  14. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Peter D.; Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Breland, F. Clayton Jr. [Louisiana Department of Natural Resources, 617 North 3rd Street, Baton Rouge, LA 70802 (United States)

    2008-10-02

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene-Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm{sup 3}/g (as-analyzed or raw basis; 1.2 cm{sup 3}/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm{sup 3}/g (as-analyzed basis; 8.76 cm{sup 3}/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m{sup 3} of gas/day and cumulative gas production from these wells is approximately 25 million m{sup 3} (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m{sup 3} (3.86 trillion ft{sup 3}) of producible natural gas. To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average {delta}{sup 13}C{sub CH4} value of - 62.6 permille VPDB (relative to Vienna Peedee Belemnite) and an average {delta}D{sub CH4} value of - 199.9 permille VSMOW (relative to Vienna Standard Mean Ocean Water). Values of {delta}{sup 13}C{sub CO2} range from - 25.4 to 3.42 permille VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have {delta}D{sub H2O} values that range from - 27.3 to - 18.0 permille VSMOW. These data suggest that the

  15. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico). WHITE SHRIMP.

    Science.gov (United States)

    1984-09-01

    regarding this report should be directed to one of the following addresses. Information Transfer Special ist National Coastal Ecosystems Team U.S. Fish and...snace not ’i Iled by, 7 rim, and thei, begin a henthic exi s- tier- a"jrias orua ntae lc tence. The timne )etween hatching and vih il th p ~ i p r i...Gulf of Mexico United States; a LTfe ist -y requirements of se- - regional management plan. Gulf lected finfish and shellfish in Coast Res. Lab. Tech

  16. Understanding the interactions between Social Capital, climate change, and community resilience in Gulf of Mexico coastal counties

    Science.gov (United States)

    Young, C.; Blomberg, B.; Kolker, A.; Nguyen, U.; Page, C. M.; Sherchan, S. P.; Tobias, V. D.; Wu, H.

    2017-12-01

    Coastal communities in the Gulf of Mexico are facing new and complex challenges as their physical environment is altered by climate warming and sea level rise. To effectively prepare for environmental changes, coastal communities must build resilience in both physical structures and social structures. One measure of social structure resilience is how much social capital a community possesses. Social capital is defined as the connections among individuals which result in networks with shared norms, values and understandings that facilitate cooperation within or among groups. Social capital exists in three levels; bonding, bridging and linking. Bonding social capital is a measure of the strength of relationships amongst members of a network who are similar in some form. Bridging social capital is a measure of relationships amongst people who are dissimilar in some way, such as age, education, or race/ethnicity. Finally Linking social capital measures the extent to which individuals build relationships with institutions and individuals who have relative power over them (e.g local government, educational institutions). Using census and American Community Survey data, we calculated a Social Capital index value for bonding, bridging and linking for 60 Gulf of Mexico coastal counties for the years 2000, and 2010 to 2015. To investigate the impact of social capital on community resilience we coupled social capital index values with physical datasets of land-use/land cover, sea level change, climate, elevation and surface water quality for each coastal county in each year. Preliminary results indicate that in Gulf of Mexico coastal counties, increased bonding social capital results in decreased population change. In addition, we observed a multi-year time lag in the effect of increased bridging social capital on population stability, potentially suggesting key linkages between the physical and social environment in this complex coupled-natural human system. This

  17. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  18. Autonomous Underwater Vehicle Data Management and Metadata Interoperability for Coastal Ocean Studies

    Science.gov (United States)

    McCann, M. P.; Ryan, J. P.; Chavez, F. P.; Rienecker, E.

    2004-12-01

    Data from over 1000 km of Autonomous Underwater Vehicle (AUV) surveys of Monterey Bay have been collected and cataloged in an ocean observatory data management system. The Monterey Bay Aquarium Institute's AUV is equipped with a suite of instruments that include a conductivity, temperature, depth (CTD) instrument, transmissometers, a fluorometer, a nitrate sensor, and an inertial navigation system. Data are logged on the vehicle and upon completion of a survey XML descriptions of the data are submitted to the Shore Side Data System (SSDS). Instrument data are then processed on shore to apply calibrations and produce scientifically useful data products. The SSDS employs a data model that tracks data from the instrument that created it through all the consuming processes that generate derived products. SSDS employs OPeNDAP and netCDF to provide data set interoperability at the data level. The core of SSDS is the metadata that is the catalog of these data sets and their relation to all other relevant data. The metadata is managed in a relational database and governed by a Enterprise Java Bean (EJB) server application. Cross-platform Java applications have been written to manage and visualize these data. A Java Swing application - the Hierarchical Ocean Observatory Visualization and Editing System (HOOVES) - has been developed to provide visualization of data set pedigree and data set variables. Because the SSDS data model is generalized according to "Data Producers" and "Data Containers" many different types of data can be represented in SSDS allowing for interoperability at a metadata level. Comparisons of appropriate data sets, whether they are from an autonomous underwater vehicle or from a fixed mooring are easily made using SSDS. The authors will present the SSDS data model and show examples of how the model helps organize data set metadata allowing for data discovery and interoperability. With improved discovery and interoperability the system is helping us

  19. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica

    Directory of Open Access Journals (Sweden)

    Guojie Xu

    2014-11-01

    Full Text Available Atmospheric aerosol samples were collected over the Southern Ocean (SO and coastal East Antarctica (CEA during the austral summer of 2010/11. Samples were analysed for trace elements, including Na, Mg, K, Al, Fe, Mn, Ni, Cd and Se, by inductively coupled plasma mass spectrometry (ICP-MS. The mean atmospheric concentrations over the SO were 1100 ng m−3 for Na, 190 ng m−3 for Mg, 150 ng m−3 for Al, 14 ng m−3 for Fe, 0.46 ng m−3 for Mn and 0.25 ng m−3 for Se. Over CEA, the mean concentrations were 990 ng m−3 for Na, 180 ng m−3 for Mg, 190 ng m−3 for Al, 26 ng m−3 for Fe, 0.70 ng m−3 for Mn and 0.29 ng m−3 for Se. Particle size distributions, enrichment factors (EFs and correlation analysis indicate that Na, Mg and K mainly came from the marine source, while Al, Fe and Mn were mainly from the crustal source, which also contributed to Mg and K over CEA. High EFs were associated with Ni, Cd and Se, suggesting likely contributions from mixed sources from the Antarctic continent, long-range transport, marine biogenic emissions and anthropogenic emissions. Sea-salt elements (Na, Mg, K were mainly accumulated in the coarse mode, and crustal elements (Al, Fe, Mn presented a bimodal size distribution pattern. Bioactive elements (Fe, Ni, Cd were enriched in the fine mode, especially with samples collected over the SO, possibly affecting biogeochemical cycles in this oceanic region.

  20. Convergence of marine megafauna movement patterns in coastal and open oceans

    KAUST Repository

    Sequeira, A. M. M.; Rodrí guez, J. P.; Eguí luz, V. M.; Harcourt, R.; Hindell, M.; Sims, D. W.; Duarte, C. M.; Costa, D. P.; Ferná ndez-Gracia, J.; Ferreira, L. C.; Hays, G. C.; Heupel, M. R.; Meekan, M. G.; Aven, A.; Bailleul, F.; Baylis, A. M. M.; Berumen, Michael L.; Braun, C. D.; Burns, J.; Caley, M. J.; Campbell, R.; Carmichael, R. H.; Clua, E.; Einoder, L. D.; Friedlaender, Ari; Goebel, M. E.; Goldsworthy, S. D.; Guinet, C.; Gunn, J.; Hamer, D.; Hammerschlag, N.; Hammill, M.; Hü ckstä dt, L. A.; Humphries, N. E.; Lea, M.-A.; Lowther, A.; Mackay, A.; McHuron, E.; McKenzie, J.; McLeay, L.; McMahon, C. R.; Mengersen, K.; Muelbert, M. M. C.; Pagano, A. M.; Page, B.; Queiroz, N.; Robinson, P. W.; Shaffer, S. A.; Shivji, M.; Skomal, G. B.; Thorrold, S. R.; Villegas-Amtmann, S.; Weise, M.; Wells, R.; Wetherbee, B.; Wiebkin, A.; Wienecke, B.; Thums, M.

    2018-01-01

    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

  1. Convergence of marine megafauna movement patterns in coastal and open oceans

    KAUST Repository

    Sequeira, A. M. M.

    2018-02-26

    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals\\' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

  2. Southeast Regional Implementation Manual for Requirements and Procedures for Evaluation of the Ocean Disposal of Dredged Material in Southeastern U.S. Atlantic and Gulf Coast Waters

    Science.gov (United States)

    This Regional Implementation Manual was prepared by EPA Region 4 to provide guidance for applicants proposing open-water disposal of dredged material in southeastern U.S. coastal waters of the Atlantic Ocean and the Gulf of Mexico.

  3. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  4. Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies.

    Science.gov (United States)

    Rönnback, Patrik; Bryceson, Ian; Kautsky, Nils

    2002-12-01

    This paper reviews the experience and status of coastal aquaculture of seaweeds, mollusks, fish and crustaceans in eastern Africa and the islands of the western Indian Ocean. In many respects, coastal aquaculture is still in its infancy in the region, and there is a pressing need to formulate development strategies aimed at improving the income and assuring the availability of affordable protein to coastal communities. This paper also draws from positive and negative experiences in other parts of the world. The requirements of feed and fry, and the conversion of mangroves are used to illustrate how some aquaculture activities constitute a net loss to global seafood production. The paper presents both general and specific sustainability guidelines based on the acknowledgement of aquaculture as an ecological process. It is concluded that without clear recognition of its dependence on natural ecosystems, the aquaculture industry is unlikely to develop to its full potential in the region.

  5. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  6. Coastal boundary layers in ocean modelling: an application to the Adriatic Sea

    International Nuclear Information System (INIS)

    Malanotte Rizzoli, P.; Dell'Orto, F.

    1981-01-01

    Boundary layers play an important role in modelling geophysical fluid-dynamical flows, in as much as they constitute regions of ageostrophic dynamics in which the physical balances characterizing the main interior of the water mass break down. A short synopsis is given of important boundary layers in ocean circulation modelling with specific emphasis drawn upon side wall boundary layers, namely those adjacent to the coastlines of the considered basin. Application of boundary layer analysis is thereafter made for one specific phenomenological situation, namely the Northern Adriatic Sea and the problem posed by its wintertime seasonal circulation. The analysis furnishes a mathematical model fo the coastal strip adjacent to the Italian shoreline, treated as a boundary layer in the density field, starting from general model equations valid throughout the interior of the Northern Adriatic. The boundary layer model is consequently used to modify the side wall boundary condition for the interior density field. Related numerical experiments are shown and compared with previous standard experiments in which the boundary layer contribution to the density field has not been considered. (author)

  7. Computational Fluid Dynamics and Visualisation of Coastal Flows in Tidal Channels Supporting Ocean Energy Development

    Directory of Open Access Journals (Sweden)

    Enayatollah Zangiabadi

    2015-06-01

    Full Text Available Flow characteristics in coastal regions are strongly influenced by the topography of the seabed and understanding the fluid dynamics is necessary before installation of tidal stream turbines (TST. In this paper, the bathymetry of a potential TST deployment site is used in the development of the a CFD (Computational Fluid Dynamics model. The steady state k-ϵ and transient Large Eddy Simulation (LES turbulence methods are employed and compared. The simulations are conducted with a fixed representation of the ocean surface, i.e., a rigid lid representation. In the vicinity of Horse Rock a study of the pressure difference shows that the small change in height of the water column is negligible, providing confidence in the simulation results. The stream surface method employed to visualise the results has important inherent characteristics that can enhance the visual perception of complex flow structures. The results of all cases are compared with the flow data transect gathered by an Acoustic Doppler Current Profiler (ADCP. It has been understood that the k-ϵ method can predict the flow pattern relatively well near the main features of the domain and the LES model has the ability to simulate some important flow patterns caused by the bathymetry.

  8. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  9. Optimization and Modeling of Extreme Freshwater Discharge from Japanese First-Class River Basins to Coastal Oceans

    Science.gov (United States)

    Kuroki, R.; Yamashiki, Y. A.; Varlamov, S.; Miyazawa, Y.; Gupta, H. V.; Racault, M.; Troselj, J.

    2017-12-01

    We estimated the effects of extreme fluvial outflow events from river mouths on the salinity distribution in the Japanese coastal zones. Targeted extreme event was a typhoon from 06/09/2015 to 12/09/2015, and we generated a set of hourly simulated river outflow data of all Japanese first-class rivers from these basins to the Pacific Ocean and the Sea of Japan during the period by using our model "Cell Distributed Runoff Model Version 3.1.1 (CDRMV3.1.1)". The model simulated fresh water discharges for the case of the typhoon passage over Japan. We used these data with a coupled hydrological-oceanographic model JCOPE-T, developed by Japan Agency for Marine-earth Science and Technology (JAMSTEC), for estimation of the circulation and salinity distribution in Japanese coastal zones. By using the model, the coastal oceanic circulation was reproduced adequately, which was verified by satellite remote sensing. In addition to this, we have successfully optimized 5 parameters, soil roughness coefficient, river roughness coefficient, effective porosity, saturated hydraulic conductivity, and effective rainfall by using Shuffled Complex Evolution method developed by University of Arizona (SCE-UA method), that is one of the optimization method for hydrological model. Increasing accuracy of peak discharge prediction of extreme typhoon events on river mouths is essential for continental-oceanic mutual interaction.

  10. Application of the Coastal and Marine Ecological Classification Standard to ROV Video Data for Enhanced Analysis of Deep-Sea Habitats in the Gulf of Mexico

    Science.gov (United States)

    Ruby, C.; Skarke, A. D.; Mesick, S.

    2016-02-01

    The Coastal and Marine Ecological Classification Standard (CMECS) is a network of common nomenclature that provides a comprehensive framework for organizing physical, biological, and chemical information about marine ecosystems. It was developed by the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, in collaboration with other feral agencies and academic institutions, as a means for scientists to more easily access, compare, and integrate marine environmental data from a wide range of sources and time frames. CMECS has been endorsed by the Federal Geographic Data Committee (FGDC) as a national metadata standard. The research presented here is focused on the application of CMECS to deep-sea video and environmental data collected by the NOAA ROV Deep Discoverer and the NOAA Ship Okeanos Explorer in the Gulf of Mexico in 2011-2014. Specifically, a spatiotemporal index of the physical, chemical, biological, and geological features observed in ROV video records was developed in order to allow scientist, otherwise unfamiliar with the specific content of existing video data, to rapidly determine the abundance and distribution of features of interest, and thus evaluate the applicability of those video data to their research. CMECS units (setting, component, or modifier) for seafloor images extracted from high-definition ROV video data were established based upon visual assessment as well as analysis of coincident environmental sensor (temperature, conductivity), navigation (ROV position, depth, attitude), and log (narrative dive summary) data. The resulting classification units were integrated into easily searchable textual and geo-databases as well as an interactive web map. The spatial distribution and associations of deep-sea habitats as indicated by CMECS classifications are described and optimized methodological approaches for application of CMECS to deep-sea video and environmental data are presented.

  11. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF COMMERCE National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS...

  12. Building Coastal Resilience to sea-level rise and storm hazards: supporting decisions in the NE USA, Gulf of Mexico, and eastern Caribbean

    Science.gov (United States)

    Shepard, C.; Beck, M. W.; Gilmer, B.; Ferdana, Z.; Raber, G.; Agostini, V.; Whelchel, A.; Stone, J.

    2012-12-01

    Coastal communities are increasingly vulnerable to coastal hazards including storm surge and sea level rise. We describe the use of Coastal Resilience, an approach to help support decisions to reduce socio-economic and ecological vulnerability to coastal hazards. We provide examples of this work from towns and cities around Long Island Sound (NY, CT) and the Gulf of Mexico (FL, AL, MS, LA, TX) in the USA and from the Eastern Caribbean (Grenada, St. Vincent and the Grenadines). All of these shores are densely populated and have significant coastal development only centimetres above the sea. This makes people and property very vulnerable and threatens coastal wetlands (marsh, mangrove) and reefs (oyster, coral) that provide habitat and natural buffers to storms while providing other ecosystem services. We describe this work specifically and then offer broader perspectives and recommendations for using ecological habitats to reduce vulnerability to coastal hazards. The Nature Conservancy's Coastal Resilience approach is driven by extensive community engagement and uses spatial information on storm surge, sea level rise, ecological and socio-economic variables to identify options for reducing the vulnerability of human and natural communities to coastal hazards (http://www.coastalresilience.org). We have worked with local communities to map current and future coastal hazards and to identify the vulnerable natural resources and human communities. Communities are able to visualize potential hazard impacts and identify options to reduce them within their existing planning and regulatory frameworks.

  13. Islands in the Stream 2001 on NOAA Ship Gordon Gunter in the North Atlantic Ocean and the Gulf of Mexico between 20010510 and 20011004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Islands in the Stream expedition explored protected and unprotected deep water coral reefs and hard-bottom communities throughout the Gulf of Mexico and South...

  14. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  15. Estimation of the Atmosphere-Ocean Fluxes of Greenhouse Gases and Aerosols at the Finer Resolution of the Coastal Ocean

    Czech Academy of Sciences Publication Activity Database

    Vieira, V.; Sahlée, E.; Juruš, Pavel; Clementi, E.; Pettersson, H.; Mateus, M.

    2016-01-01

    Roč. 18 (2016), EGU2016-1990-1 ISSN 1607-7962. [EGU General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985807 Keywords : greenhouse gases * carbon cycle * atmosphere- ocean interaction * atmosphere modelling * ocean modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  16. A new genus and species of cyclopoid (Crustacea, Copepoda, Cyclopinidae) from a coastal system in the Gulf of Mexico

    Science.gov (United States)

    Suárez-Morales, Eduardo; Almeyda-Artigas, Roberto Javier

    2015-01-01

    Abstract A new, monotypic genus of the interstitial marine cyclopoid copepod family Cyclopinidae G.O. Sars, 1913 is described from male and female specimens collected at Laguna de Términos, a large coastal lagoon system in the southern Gulf of Mexico. Mexiclopina campechana gen. et sp. n. cannot be adequately placed in any extant genus within the family. It differs from other cyclopinid genera in having a unique combination of characters including: 1) absence of modified brush-like seta on the mandibular exopod; 2) maxillule exopod with stout setal elements and brush-like setae absent; 3) basis of mandible with one seta; 4) presence of a modified seta on endopod of fourth leg; 5) fifth leg exopod unsegmented, armed with three elements in the female and five in the male; 6) intercoxal sclerite of first swimming leg with two medial spiniform processes on distal margin. The new genus is monotypic and appears to be most closely related to Cyclopina Claus, 1863 and Heptnerina Ivanenko & Defaye, 2004; the new species was compared with species of Cyclopina and it resembles Cyclopina americana Herbst, 1982 and Cyclopina caissara Lotufo, 1994. This is the second record of a species of Cyclopinidae in Mexico and the first in the Gulf of Mexico; the number of cyclopinid species recorded from the Americas is now 13. PMID:26668545

  17. CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation.

    Science.gov (United States)

    Vantrepotte, Vincent; Danhiez, François-Pierre; Loisel, Hubert; Ouillon, Sylvain; Mériaux, Xavier; Cauvin, Arnaud; Dessailly, David

    2015-01-12

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the a(cdom)(412) to DOC ratio (a*(cdom)(412)) can be depicted from the CDOM spectral slope in the UV domain (S(275-295)). They also evidenced that regional first order variation in both a*(cdom)(412) and S(275-295) are highly correlated to variation in a(cdom)(412). From these observations, generalized relationships for estimating a*(cdom)(412) from S(275-295) or a(cdom)(412) were parameterized from our development sites (N = 158; English Channel, French Guiana, Hai Phong Bay) and tested against an independent data set covering others coastal regions (N = 223; French Polynesia, Rhone River estuary, Gulf of Maine, Chesapeake Bay, Southern Middle Atlantic Bight) demonstrating the possibility to derive DOC estimates from in situ CDOM optical properties with an average accuracy of ~16% over very contrasted coastal environments (with DOC ranging from 50 to 250 µmol.L(-1)). The applicability of these generalized approaches was evaluated in the context of ocean color remote sensing observation emphasizing the limits of S(275-295)-based formulations and the potential for a(cdom)-based approaches to represent a compelling alternative for assessing synoptic DOC distribution.

  18. Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region

    Science.gov (United States)

    Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon...

  19. Sentinel-3 SAR Altimetry over Coastal and Open Ocean: performance assessment and improved retrieval methods in the ESA SCOOP Project.

    Science.gov (United States)

    Benveniste, J.; Cotton, D.; Moreau, T.; Raynal, M.; Varona, E.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Lazaro, C.; Restano, M.; Ambrózio, A.

    2017-12-01

    The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. The SRAL is operated in SAR mode over the whole ocean and promises increased performance w.r.t. conventional altimetry. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. In this presentation we present results from the SCOOP project that demonstrate the excellent performance of SRAL in terms of measurement precision, and we illustrate the development and testing of new processing approaches designed specifically to improve performance close to the coast. The SCOOP test data sets and relevant documentation are available to external researchers on application to the project team. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap.

  20. Linking 1D coastal ocean modelling to environmental management: an ensemble approach

    Science.gov (United States)

    Mussap, Giulia; Zavatarelli, Marco; Pinardi, Nadia

    2017-12-01

    The use of a one-dimensional interdisciplinary numerical model of the coastal ocean as a tool contributing to the formulation of ecosystem-based management (EBM) is explored. The focus is on the definition of an experimental design based on ensemble simulations, integrating variability linked to scenarios (characterised by changes in the system forcing) and to the concurrent variation of selected, and poorly constrained, model parameters. The modelling system used was previously specifically designed for the use in "data-rich" areas, so that horizontal dynamics can be resolved by a diagnostic approach and external inputs can be parameterised by nudging schemes properly calibrated. Ensembles determined by changes in the simulated environmental (physical and biogeochemical) dynamics, under joint forcing and parameterisation variations, highlight the uncertainties associated to the application of specific scenarios that are relevant to EBM, providing an assessment of the reliability of the predicted changes. The work has been carried out by implementing the coupled modelling system BFM-POM1D in an area of Gulf of Trieste (northern Adriatic Sea), considered homogeneous from the point of view of hydrological properties, and forcing it by changing climatic (warming) and anthropogenic (reduction of the land-based nutrient input) pressure. Model parameters affected by considerable uncertainties (due to the lack of relevant observations) were varied jointly with the scenarios of change. The resulting large set of ensemble simulations provided a general estimation of the model uncertainties related to the joint variation of pressures and model parameters. The information of the model result variability aimed at conveying efficiently and comprehensibly the information on the uncertainties/reliability of the model results to non-technical EBM planners and stakeholders, in order to have the model-based information effectively contributing to EBM.

  1. Impacts of the Nutrient Inputs from Riverine on the Dynamic and Community Structure of Fungal-like Protists in the Coastal Ocean Ecosystems

    Science.gov (United States)

    Duan, Y.; Wang, G.; Xie, N.

    2016-02-01

    The coastal ocean connects terrestrial (e.g., rivers and estuaries) with oceanic ecosystems and is considered as a major component of global carbon cycles and budgets. The coastal waters are featured with a high biodiversity and high primary production. Because of the excessive primary production, a large fraction of primary organic matter becomes available to consumers as detritus in the coastal waters. Bacterioplankton have long been known to play a key role in the degradation of this detritus, and export and storage of organic matter in the coastal ecosystems. However, the primary and secondary production and the carbon biogeochemical processes in the ecosystems are largely regulated by nutrient inputs from riverine and other anthropogenic activities through heterotrophic microbial communities. Thraustochytrids, commonly known as fungal-like protists, are unicellular heterotrophic protists and are recently acknowledged to play a significant role in ocean carbon cycling. Their abundance exceeds that of bacterioplankton in the most time of the year in the coastal waters of China. Also, their abundance and diversity are largely regulated by nutrients inputs from riverine and other anthropogenic activities. Our findings support that thraustochytrids are a dominant heterotrophic microbial group in the coastal waters. Evidently, thraustochytrids are an import, but neglected, component in microbial carbon biogeochemical processes of the coastal ocean.

  2. In the Land of the Sky: Recent Paleoenvironmental Research From Coastal Oaxaca, Mexico

    Science.gov (United States)

    Goman, M. F.; Joyce, A. A.; Mueller, R. G.

    2005-05-01

    The Lower Río Verde Valley of Oaxaca has had a long and complex cultural history in part shaped by significant landscape change that ocurred 2300 years ago, when the Río Verde river changed morphology from a meandering to a braided form. These changes were precipitated by anthropogenic landuse impacts in the highland valleys of Oaxaca over 125 linear km to the north. While the lower valley's geomorphic history is well studied, little is known of its paleoecology. In order to reconstruct the history of vegetation, climate, and associated land use change, sediment cores were raised from several sites throughout the region. We present stratigraphical, palynological, and charcoal data from three sites in the region. The lower drainage basin consists entirely of the Verde's coastal valley. The climate of the lower Río Verde Valley is hot and humid with mean annual rainfall of 1000 mm to 2000 mm and average temperatures range from 25°C to 28°C. We discuss the pollen and stratigraphic record from Laguna Pastoría which is a brackish estuary protected from the Pacific Ocean by a roughly east-west trending bay barrier. The bay barrier is about 500 m wide and 2 to 4 m high. Low scrub vegetation (cacti, thorny bushes, small trees and palms) grow on the barrier. The lagoon itself is approximately 9 km long and varies in depth with a 3-4 m maximum. Tides are microtidal (1 m). The lagoon supports a diverse array of mangroves (Rhizophora mangle, Laguncularia racemosa, Conocarpus erectus and Avicennia germinans). Two sediment cores were raised from the lagoon (LP1 and LP2) and provide a record of hurricane strikes and possible changes in the frequency of El Niño's. The LP1 core covers approximately the last 5000 yrs. Preliminary pollen analysis indicates that pollen is in excellent condition and is diverse (>60 taxa). Zea mays pollen was identified from sediments dating to the early Formative period (~ 3600 yr ago). The charcoal records analyzed from 2 paleomeanders of the

  3. Chemical composition of marine sediments in the Pacific Ocean from Sinaloa to Jalisco, Mexico

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Ramos, A.; Navarrete, M.; Mulller, G.

    2014-01-01

    Marine sediments from Mexico's West coast in the Pacific Ocean from Sinaloa to Jalisco were analyzed by energy-dispersive X-ray fluorescence technique. Ten sediment samples were collected in May, 2010 between 55.5 and 1264 m water depth with a Reinneck type box nucleate sampler. Sediments were dried and fractioned by granulometry. Their physical and chemical properties were determined in laboratory by standard methods, pH, and conductivity. Concentration and distribution of K, Ca, Ti Mn, Fe, Cu, Zn, Ga, Pb, Br and Sr were analyzed. In order to determine the status of the elements, enrichment factors were calculated. Total, organic carbon and CaCO 3 were also determined. Scanning electron microscopy and X-ray diffraction show predominant groups of compounds. As quality-control method, Certified Reference Material was both processed and analyzed at even conditions. Enrichment factors for K, Ca, Ti, Mn Fe, Cu, Zn, Ga, Ni, and Sr show they are conservative elements having concentrations in the range of unpolluted sites giving a base data line for the sampling zone In spite of moderately enrichment factors -1 ) and enrichment factor show the influence of anthropogenic sources with values between lowest effect level and a third part of 250 μg g -1 value, which is considered to have severe effect levels for aquatic life. (author)

  4. Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang

    2010-01-01

    Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolution (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.

  5. The role of the reef–dune system in coastal protection in Puerto Morelos (Mexico

    Directory of Open Access Journals (Sweden)

    G. L. Franklin

    2018-04-01

    Full Text Available Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef–dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH. Wave hindcast information, tidal level, and a measured beach profile of the reef–dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore

  6. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)

    Science.gov (United States)

    Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.

    2018-04-01

    Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.

  7. Estimating the value of the marine, coastal and ocean resources of Newfoundland and Labrador (for the period 1997 to 1999)

    International Nuclear Information System (INIS)

    2002-03-01

    More than 90 per cent of Newfoundland and Labrador's population lives adjacent to, or just a few kilometres from the ocean. An increased use of coastal resources has prompted this study which estimated the economic value of the oceans sector to Newfoundland and Labrador's economy. The study included the reference period 1997 to 1999 with private sector industries as well as federal and provincial public sector oceans-related departments and agencies. Private sector industries included oil and gas, fishery, aquaculture, shipbuilding, marine tourism, marine transportation and ocean technologies. Estimating the economic value of the oceans sector is important for policy development and management decisions at the federal and provincial level and for better understanding the contributions of industry. The indicators used in the study included the Gross Domestic Product (GDP) impact, labour income impact, and employment impact. The economic impacts were separated into direct, indirect and induced impacts. The primary data was used to determine direct economic impact of the oceans sector. Then, the Newfoundland and Labrador Econometric Model and the Input-Output Model was used to determine the indirect and induced impacts of the oceans sector. The total GDP impact averaged about $2.59 billion, or 26.5 per cent of total economic activity. The most significant private sector industries, in terms of total GDP impact were offshore oil at 11.9 per cent of GDP, and the fishery at 8.2 per cent. The direct employment impact of ocean-related activity averaged about 12.7 per cent of total employment. Data tables and data sources were included in the appendices. refs., tabs., figs., appendices

  8. Mexico Geoid Heights (MEXICO97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Mexico, and North-Central America, is the MEXICO97 geoid model. The computation used about one million terrestrial and marine gravity...

  9. Prospects for improving the representation of coastal and shelf seas in global ocean models

    Science.gov (United States)

    Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard

    2017-02-01

    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally refined model and that of

  10. Integrated Observations From Fixed and AUV Platforms in the Littoral Zone at the SFOMC Coastal Ocean Observatory

    Science.gov (United States)

    Dhanak, M. R.

    2001-12-01

    A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).

  11. Hydrographic processing considerations in the “Big Data” age: An overview of technology trends in ocean and coastal surveys

    Science.gov (United States)

    Holland, M.; Hoggarth, A.; Nicholson, J.

    2016-04-01

    The quantity of information generated by survey sensors for ocean and coastal zone mapping has reached the “Big Data” age. This is influenced by the number of survey sensors available to conduct a survey, high data resolution, commercial availability, as well as an increased use of autonomous platforms. The number of users of sophisticated survey information is also growing with the increase in data volume. This is leading to a greater demand and broader use of the processed results, which includes marine archeology, disaster response, and many other applications. Data processing and exchange techniques are evolving to ensure this increased accuracy in acquired data meets the user demand, and leads to an improved understanding of the ocean environment. This includes the use of automated processing, models that maintain the best possible representation of varying resolution data to reduce duplication, as well as data plug-ins and interoperability standards. Through the adoption of interoperable standards, data can be exchanged between stakeholders and used many times in any GIS to support an even wider range of activities. The growing importance of Marine Spatial Data Infrastructure (MSDI) is also contributing to the increased access of marine information to support sustainable use of ocean and coastal environments. This paper offers an industry perspective on trends in hydrographic surveying and processing, and the increased use of marine spatial data.

  12. Policy frameworks for adaptation to climate change in coastal zones. The case of the Gulf of Mexico

    International Nuclear Information System (INIS)

    Levina, E.; Jacob, J.S.; Ramos Bustillos, L.E.; Ortiz, I.

    2007-05-01

    This paper is the third in a series of AIXG (Annex I Expert Group on the United Nations Framework Convention on Climate Change (UNFCCC)) papers that analyse the roles that national policy frameworks of various sectors play in adaptation to climate change. Adaptation to climate change is unlikely to be a standalone process. It occurs within the existing sectoral and cross-sectoral policy frameworks, including legal provisions, institutional structures, policies and management practices, and is supported by the available information tools. The previous two papers focused on the water sector. The aim of this paper is to identify and analyse policy frameworks that are important for facilitating adaptation to climate change impacts in coastal zones. The paper is based on the analysis of the Gulf of Mexico. Two countries, the US and Mexico, are examined, with a focus on two aspects of coastal zones: wetlands and built environment. Next to these two sectors attention is paid to four components that construct policy frameworks, namely legal framework, institutional landscape, policies and management tools, and information. Following a brief introduction of the Gulf of Mexico region, its physical and economic characteristics, the paper takes a look at current climatic conditions and trends in the Gulf region and expected climate change impacts and the key vulnerabilities of the region to these changes (Section 2). The rational for the scope and focus of the sectoral analysis presented in this paper can also be found in Section 2. Section 3 focuses on the analysis of policy frameworks that govern wetlands in the US and Mexico and their links with adaptation. Section 4 focuses on the analysis of policy frameworks that govern the development of human settlements, and adaptation to climate change. Sections 3 and 4 follow a structure similar to the one that was used for the two previous papers on policy frameworks for adaptation in the water sector. Both sections examine

  13. 76 FR 60444 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coastal Migratory Pelagic...

    Science.gov (United States)

    2011-09-29

    ..., cobia, cero, little tunny, dolphin, and bluefish (Gulf only). At present, only king mackerel, Spanish... bluefish from the Coastal Migratory Pelagic FMP. The Councils and NMFS have determined these species are...

  14. 2008 NOAA Integrated Ocean and Coastal Mapping (IOCM) LIDAR: New Hampshire

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system on June 8,...

  15. 2008 NOAA/NGS Integrated Ocean and Coastal Mapping (IOCM) LIDAR: Kenai Peninsula Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system. The data...

  16. 78 FR 56217 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Shrimp Fisheries of the Gulf of...

    Science.gov (United States)

    2013-09-12

    ... Atlantic States AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... specified in 50 CFR part 622, Subparts A through R for reef fish, red drum, coastal migratory pelagics, and spiny lobster in the Gulf of Mexico, and snapper-grouper, coastal migratory pelagics, dolphin and wahoo...

  17. 75 FR 5950 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Snapper and Grouper Off the...

    Science.gov (United States)

    2010-02-05

    ... States AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... United States. This would include reef fish, red drum, coastal migratory pelagics, stone crab, and lobsters in the Gulf of Mexico, and snapper-grouper, coastal migratory pelagics, dolphin and wahoo, and...

  18. Use of a Land-Based, Dual-Parameter Analyzer for Tracking Ocean Acidification in Nearshore Coastal Habitats

    Science.gov (United States)

    Shea, M.; Alin, S. R.; Evans, W.; Sutton, A.; Hales, B. R.; Newton, J.; Feely, R. A.

    2016-12-01

    In 2007 to 2008, U.S. Pacific Northwest shellfish hatcheries experienced unprecedented larval mortality, attributed to upwelling along the Washington-Oregon coast that brought seawater enriched in anthropogenic CO2 and undersaturated with respect to aragonite to the surface. In response, several hatcheries have been outfitted with land-based analyzers to measure CO2 partial pressure (pCO2) and total dissolved CO2 (TCO2) through U.S. IOOS and NOAA OAP funding. This analyzer, developed at Oregon State University and known as the `Burke-O-Lator,' allows users to track CO2 system parameters in real-time. The data are available in near real-time on the IOOS Pacific Region Ocean Acidification (IPACOA) data portal, which feeds to the Global Ocean Acidification Observing Network (GOA-ON). Here, we explore the broader use of this system as an environmental monitoring tool. Most of the high-quality OA time-series locations in GOA-ON are in the open and coastal ocean, yet many areas of biological interest—such as shellfish hatcheries, shellfish farms, and coastal laboratories—are in the nearshore area of the coastal zone. A truly globally integrated assessment of OA must include nearshore conditions, which have been shown to be quite different in terms of variability, drivers, and range. We evaluated two pCO2 time-series from the coastal nearshore: the Taylor Shellfish Hatchery Burke-O-Lator system on the shore of Dabob Bay in Puget Sound, WA, and the nearby but offshore Dabob ORCA buoy MAPCO2 system within the bay. Preliminary comparison of three years of data reveals similar patterns despite differences in location and seawater intake depth, highlighting the opportunity for the addition of coupled nearshore biology and biogeochemistry measurements in GOA-ON. In addition, the well-calibrated, dual-parameter nature of the system is important for constraining nearshore chemistry, as biology, groundwater, and river inputs can lead to strong variability in carbonate

  19. Comparative age and growth of common snook Centropomus undecimalis (Pisces: Centropomidae from coastal and riverine areas in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Martha A. Perera-Garcia

    2013-06-01

    Full Text Available Common snook Centropomus unidecimalis is an important commercial and fishery species in Southern Mexico, however the high exploitation rates have resulted in a strong reduction of its abundances. Since, the information about its population structure is scarce, the objective of the present research was to determine and compare the age structure in four important fishery sites. For this, age and growth of common snook were determined from specimens collected monthly, from July 2006 to March 2008, from two coastal (Barra Bosque and Barra San Pedro and two riverine (San Pedro and Tres Brazos commercial fishery sites in Tabasco, Mexico. Age was determined using sectioned saggitae otoliths and data analyzed by von Bertalanffy and Levenberg-Marquardt among others. Estimated ages ranged from 2 to 17 years. Monthly patterns of marginal increment formation and the percentage of otoliths with opaque rings on the outer edge demonstrated that a single annulus was formed each year. The von Bertalanffy parameters were calculated for males and females using linear adjustment and the non-linear method of Levenberg-Marquardt. The von Bertalanffy growth equations were FLt=109.21(1-e-0.21(t+0.57 for Barra Bosque, FLt=94.56(1-e-0.27(t+0.48 for Barra San Pedro, FLt=97.15(1-e-0.17(t+1.32 for San Pedro and FLt=83.77(1-e-0.26(t+0.49 for Tres Brazos. According to (Hotelling’s T², p<0.05 test growth was significantly greater for females than for males. Based on the Chen test, von Bertalanffy growth curves were different among the study sites (RSS, p<0.05. Based on the observed differences in growth parameters among sampling sites (coastal and riverine environments future research need to be conducted on migration and population genetics, in order to delineate the stock structure of this population and support management programs.

  20. Nutrient enhanced coastal ocean productivity in the north Gulf of Mexico: understanding the effects of nutrients on a coastal ecosystem

    OpenAIRE

    1999-01-01

    The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near botto...

  1. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Brunswick, Kings Bay and Fernandina Beach, and Savannah and the Savannah River, Georgia, 2009-2010 (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains orthorectified true color (RGB) and infrared (IR) image mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  2. UV filters are an environmental threat in the Gulf of Mexico: a case study of Texas coastal zones

    Directory of Open Access Journals (Sweden)

    Hamidreza Sharifan

    2016-10-01

    Full Text Available UV filters are the main ingredients in many cosmetics and personal care products. A significant amount of lipophilic UV filters annually enters the surface water due to large numbers of swimmers and sunbathers. The nature of these compounds cause bioaccumulation in commercial fish, particularly in estuarine areas. Consequently, biomagnification in the food chain will occur. This study estimated the amount of four common UV filters (ethylhexyl methoxycinnamate, EHMC; octocrylene, OC; butyl methoxydibenzoylmethane, BM-DBM; and benzophenone-3, BP3, which may enter surface water in the Gulf of Mexico. Our data analysis was based on the available research data and EPA standards (age classification/human body parts. The results indicated that among the 14 counties in Texas coastal zones, Nueces, with 43 beaches, has a high potential of water contamination through UV filters; EHMC: 477 kg year−1; OC: 318 kg year−1; BM-DBM: 258 kg year−1; and BP by 159 kg year−1. Refugio County, with a minimum number of beaches, indicated the lowest potential of UV filter contamination. The sensitive estuarine areas of Galveston receive a significant amount of UV filters. This article suggests action for protecting Texas estuarine areas and controlling the number of tourists and ecotourism that occurs in sensitive areas of the Gulf of Mexico.

  3. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico

    Science.gov (United States)

    Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.

    2018-06-01

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  4. Assessment of economic impact of offshore and coastal discharge requirements on present and future operations in the Gulf of Mexico. Final report

    International Nuclear Information System (INIS)

    Lindsey, R.

    1996-06-01

    The high potential costs of compliance associated with new effluent guidelines for offshore and coastal oil and gas operations could significantly affect the economics of finding, developing, and producing oil and gas in the Gulf of Mexico. This report characterizes the potential economic impacts of alternative treatment and discharge regulations for produced water on reserves and production in Gulf of Mexico coastal, territorial and outer continental shelf (OCS) waters, quantifying the impacts of both recent regulatory changes and possible more stringent requirements. The treatment technologies capable of meeting these requirements are characterized in terms of cost, performance, and applicability to coastal and offshore situations. As part of this analysis, an extensive database was constructed that includes oil and gas production forecasts by field, data on existing platforms, and the current treatment methods in place for produced water treatment and disposal on offshore facilities. This work provides the first comprehensive evaluation of the impacts of alternative regulatory requirements for produced water management and disposal in coastal and offshore areas of the Gulf of Mexico

  5. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  6. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-23

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  7. Global land–ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge

    International Nuclear Information System (INIS)

    Beusen, A H W; Slomp, C P; Bouwman, A F

    2013-01-01

    The role of submarine groundwater discharge (SGD), the leakage of groundwater from aquifers into coastal waters, in coastal eutrophication has been demonstrated mostly for the North American and European coastlines, but poorly quantified in other regions. Here, we present the first spatially explicit global estimates of N inputs via SGD to coastal waters and show that it has increased from about 1.0 to 1.4 Tg of nitrate (NO 3 -N) per year over the second half of the 20th century. Since this increase is not accompanied by an equivalent increase of groundwater phosphorus (P) and silicon (Si), SGD transport of nitrate is an important factor for the development of harmful algal blooms in coastal waters. Groundwater fluxes of N are linked to areas with high runoff and intensive anthropogenic activity on land, with Southeast Asia, parts of North and Central America, and Europe being hot spots. (letter)

  8. Western Gulf of Mexico July 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jul_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  9. Western Gulf of Mexico May 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_May_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  10. Eastern Gulf of Mexico August 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Aug_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  11. Eastern Gulf of Mexico October 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Oct_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  12. Western Gulf of Mexico August 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Aug_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  13. Western Gulf of Mexico April 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Apr_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  14. Eastern Gulf of Mexico September 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Sep_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  15. Eastern Gulf of Mexico December 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Dec_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  16. Western Gulf of Mexico January 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jan_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  17. Eastern Gulf of Mexico June 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jun_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  18. Eastern Gulf of Mexico July 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jul_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  19. Western Gulf of Mexico March 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Mar_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  20. Western Gulf of Mexico September 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Sep_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  1. Western Gulf of Mexico February 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Feb_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  2. Western Gulf of Mexico October 1994 Ocean Currents, Geographic NAD83, MMS (1999)[ocean_currents_wgom_Oct_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  3. Eastern Gulf of Mexico May 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_May_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  4. Western Gulf of Mexico June 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jun_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  5. Eastern Gulf of Mexico April 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Apr_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  6. Eastern Gulf of Mexico November 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Nov_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  7. Eastern Gulf of Mexico February 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Feb_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  8. Eastern Gulf of Mexico March 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Mar_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  9. Western Gulf of Mexico November 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Nov_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  10. Eastern Gulf of Mexico January 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jan_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  11. Western Gulf of Mexico December 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Dec_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  12. 78 FR 42021 - Atlantic Highly Migratory Species; Commercial Gulf of Mexico Aggregated Large Coastal Shark and...

    Science.gov (United States)

    2013-07-15

    ... system by the dealer and received by NMFS no later than midnight, local time, of the first Tuesday... the Gulf of Mexico region that were harvested, off-loaded, and sold, traded, or bartered, prior to the..., or bartered from a vessel that fishes only in state waters and that has not been issued an Atlantic...

  13. The impact of weather and ocean forecasting on hydrocarbon production and pollution management in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Kaiser, Mark J.; Pulsipher, Allan G.

    2007-01-01

    Over the past 2 years, the vulnerability of offshore production in the Gulf of Mexico (GOM) has been brought to light by extensive damage to oil and gas facilities and pipelines resulting from Hurricanes Ivan, Katrina, and Rita. The occurrences of extreme weather regularly force operators to shut-down production, cease drilling and construction activities, and evacuate personnel. Loop currents and eddies can also impact offshore operations and delay installation and drilling activities and reduce the effectiveness of oil spill response strategies. The purpose of this paper is to describe how weather and ocean forecasting impact production activities and pollution management in the GOM. Physical outcome and decision models in support of production and development activities and oil spill response management are presented, and the expected economic benefits that may result from the implementation of an integrated ocean observation network in the region are summarized. Improved ocean observation systems are expected to reduce the uncertainty of forecasting and to enhance the value of ocean/weather information throughout the Gulf region. The source of benefits and the size of activity from which improved ocean observation benefits may be derived are estimated for energy development and production activities and oil spill response management

  14. Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA

    Directory of Open Access Journals (Sweden)

    John P. Ryan

    2014-01-01

    Full Text Available As a demonstrator for technologies for the next generation of ocean color sensors, the Hyperspectral Imager for the Coastal Ocean (HICO provides enhanced spatial and spectral resolution that is required to understand optically complex aquatic environments. In this study we apply HICO, along with satellite remote sensing and in situ observations, to studies of phytoplankton ecology in a dynamic coastal upwelling environment—Monterey Bay, CA, USA. From a spring 2011 study, we examine HICO-detected spatial patterns in phytoplankton optical properties along an environmental gradient defined by upwelling flow patterns and along a temporal gradient of upwelling intensification. From a fall 2011 study, we use HICO’s enhanced spatial and spectral resolution to distinguish a small-scale “red tide” bloom, and we examine bloom expansion and its supporting processes using other remote sensing and in situ data. From a spectacular HICO image of the Monterey Bay region acquired during fall of 2012, we present a suite of algorithm results for characterization of phytoplankton, and we examine the strengths, limitations, and distinctions of each algorithm in the context of the enhanced spatial and spectral resolution.

  15. Infuence of Averaging Method on the Evaluation of a Coastal Ocean Color Event on the U.S. Northeast Coast

    Science.gov (United States)

    Acker, James G.; Uz, Stephanie Schollaert; Shen, Suhung; Leptoukh, Gregory G.

    2010-01-01

    Application of appropriate spatial averaging techniques is crucial to correct evaluation of ocean color radiometric data, due to the common log-normal or mixed log-normal distribution of these data. Averaging method is particularly crucial for data acquired in coastal regions. The effect of averaging method was markedly demonstrated for a precipitation-driven event on the U.S. Northeast coast in October-November 2005, which resulted in export of high concentrations of riverine colored dissolved organic matter (CDOM) to New York and New Jersey coastal waters over a period of several days. Use of the arithmetic mean averaging method created an inaccurate representation of the magnitude of this event in SeaWiFS global mapped chl a data, causing it to be visualized as a very large chl a anomaly. The apparent chl a anomaly was enhanced by the known incomplete discrimination of CDOM and phytoplankton chlorophyll in SeaWiFS data; other data sources enable an improved characterization. Analysis using the geometric mean averaging method did not indicate this event to be statistically anomalous. Our results predicate the necessity of providing the geometric mean averaging method for ocean color radiometric data in the Goddard Earth Sciences DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni).

  16. Chemical, physical and profile oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-05-26 to 2010-05-30 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-05-26 to 2010-05-30 in response to the...

  17. Temperature profile data collected using BT and XBT casts in the Gulf of Mexico and TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER from 1985-10-20 to 1985-12-14 (NODC Accession 8700105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the Gulf of Mexico and TOGA Area - Pacific Ocean from 30 October 1985 to...

  18. Temperature profile and other data from CTD Casts in the Gulf of Mexico and TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1982-03-26 to 1983-11-26 (NODC Accession 8500267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER and other platforms in the Gulf of Mexico and TOGA Area - Pacific Ocean...

  19. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-07 to 2010-10-16 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-07 to 2010-10-16 in...

  20. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-30 to 2010-09-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069107)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-30 to 2010-09-03 in...

  1. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-19 to 2010-07-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-19 to 2010-07-23 in...

  2. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-06 to 2010-08-10 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-06 to 2010-08-10 in...

  3. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-18 to 2010-08-22 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-18 to 2010-08-22 in...

  4. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-25 to 2010-08-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069106)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-25 to 2010-08-29 in...

  5. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-19 to 2010-06-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-19 to 2010-06-23 in...

  6. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-07 to 2010-06-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-07 to 2010-06-11 in...

  7. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-01 to 2010-06-05 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-01 to 2010-06-05 in...

  8. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-12 to 2010-08-16 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069104)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-12 to 2010-08-16 in...

  9. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-07 to 2010-07-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-07 to 2010-07-11 in...

  10. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-25 to 2010-06-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-25 to 2010-06-29 in...

  11. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-26 to 2010-07-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-26 to 2010-07-29 in...

  12. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-29 to 2010-07-05 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-29 to 2010-07-05 in...

  13. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-31 to 2010-08-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069102)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-31 to 2010-08-03 in...

  14. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-11 to 2010-09-13 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-11 to 2010-09-13 in...

  15. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-13 to 2010-06-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-13 to 2010-06-17 in...

  16. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-03 to 2010-09-07 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-03 to 2010-09-07 in...

  17. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-23 to 2010-07-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-23 to 2010-07-17 in...

  18. Digital video collected during Pisces II submersible dive 880018 by Bureau of Ocean Energy Management (BOEM) in the Gulf of Mexico on 1988-07-28 (NCEI Accession 0164789)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Archival Information Package (AIP) contains videographic data of ocean floor biology and geology at a suspected hydrocarbon seep site in the Gulf of Mexico,...

  19. Temperature profile and chemical data from CTD casts in the North Atlantic Ocean and Gulf of Mexico from NOAA Ship RESEARCHER from 1976-10-08 to 1977-10-30 (NODC Accession 8000168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and chemical data were collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean and Gulf of Mexico from 08 October 1976 to...

  20. Chemical, physical, profile and other oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-22 to 2010-10-24 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069615)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis and sediment analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from...

  1. A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams

    Science.gov (United States)

    William R. Budnick; William E. Kelso; Susan B. Adams; Michael D. Kaller

    2018-01-01

    Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental...

  2. ENVIRONMENTAL EFFECTS OF A GOLF COMPLEX ON COASTAL WETLANDS IN THE GULF OF MEXICO

    Science.gov (United States)

    The increasing density of golf courses represents a potential source of contamination to nearby coastal wetlands and other near-shore areas. The chemical and biological magnitude of the problem is almost unknown. To provide perspective on this issue, the effects of golf complex r...

  3. Linking oceanic food webs to coastal production and growth rates of Pacific salmon ( Oncorhynchus spp.), using models on three scales

    Science.gov (United States)

    Aydin, Kerim Y.; McFarlane, Gordon A.; King, Jacquelynne R.; Megrey, Bernard A.; Myers, Katherine W.

    2005-03-01

    Three independent modeling methods—a nutrient-phytoplankton-zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon ( Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. The linked approach shows the importance of seasonal and ontogenetic prey switching for zooplanktivorous pink salmon, and illustrates the critical role played by lipid-rich forage species, especially the gonatid squid Berryteuthis anonychus, in connecting zooplankton to upper trophic level production in the subarctic North Pacific. The results highlight the need to uncover natural mechanisms responsible for accelerated late winter and early spring growth of salmon, especially with respect to climate change and zooplankton bloom timing. Our results indicate that the best match between modeled and observed high-seas pink salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic foraging costs for salmon as zooplankton are concentrated by the spring shallowing of pelagic mixed-layer depth and (2) the ontogenetic switch of salmon diets from zooplankton to squid. Finally, we varied the timing and input levels of coastal salmon production to examine effects of density-dependent coastal processes on ocean feeding; coastal processes that place relatively minor limitations on salmon growth may delay the seasonal timing of ontogenetic diet shifts and thus have a magnified effect on overall salmon growth rates.

  4. Scientific management of Mediterranean coastal zone: a hybrid ocean forecasting system for oil spill and search and rescue operations.

    Science.gov (United States)

    Jordi, A; Ferrer, M I; Vizoso, G; Orfila, A; Basterretxea, G; Casas, B; Alvarez, A; Roig, D; Garau, B; Martínez, M; Fernández, V; Fornés, A; Ruiz, M; Fornós, J J; Balaguer, P; Duarte, C M; Rodríguez, I; Alvarez, E; Onken, R; Orfila, P; Tintoré, J

    2006-01-01

    The oil spill from Prestige tanker showed the importance of scientifically based protocols to minimize the impacts on the environment. In this work, we describe a new forecasting system to predict oil spill trajectories and their potential impacts on the coastal zone. The system is formed of three main interconnected modules that address different capabilities: (1) an operational circulation sub-system that includes nested models at different scales, data collection with near-real time assimilation, new tools for initialization or assimilation based on genetic algorithms and feature-oriented strategic sampling; (2) an oil spill coastal sub-system that allows simulation of the trajectories and fate of spilled oil together with evaluation of coastal zone vulnerability using environmental sensitivity indexes; (3) a risk management sub-system for decision support based on GIS technology. The system is applied to the Mediterranean Sea where surface currents are highly variable in space and time, and interactions between local, sub-basin and basin scale increase the non-linear interactions effects which need to be adequately resolved at each one of the intervening scales. Besides the Mediterranean Sea is a complex reduced scale ocean representing a real scientific and technological challenge for operational oceanography and particularly for oil spill response and search and rescue operations.

  5. HYDROGEOLOGY AND CONCEPTUAL MODEL OF THE KARSTIC COASTAL AQUIFER IN NORTHERN YUCATAN STATE, MEXICO

    Directory of Open Access Journals (Sweden)

    Miguel J Villasuso-Pino

    2011-04-01

    Full Text Available The coastal zone of northern Yucatan Peninsula (YP is mainly constituted by Tertiary limestones, covered by Pleistocen limestones, where there exist swamps and estuary systems, locally called “rías”, with mouths connecting them to the sea and hence being a way for an important amount of groundwater to discharge, like in Ría Lagartos and Celestún. These limestones have karstic layers located at depths from 8 to 16 meters below terrain surface.  It is in these layers where groundwater mainly flows toward coast, passing below the sand dune and discharging in the sea in the form of submarine springs which in many cases manifest themselves on the marine surface depending on the hydraulic or piezometric fresh water head. The width of the superficial limestone within this coastal fringe, called “caliche”, varies from 5 to 10 kilometers in the study zone (Chuburna-Progreso-Chicxulub.  Its permeability is extremely low, so it constitutes a confining layer that impedes superficial waters to percolate toward groundwater.  The hydraulic head of the groundwater below this confining layer is over the mean sea level and also over the swamp water level, coastal lagoons and estuaries. There are two important hydrological phenomena that occur in this coastal fringe: 1 There is no recharge to the aquifer (groundwater due to limestone rock outcrops is impermeable or semipermeable; and 2 groundwater pressure is not lost, nor saline interfase is rised if the superficial layer is broken.  The groundwater pollution vulnerability within this coastal fringe is less than that for the superficial saline waters of swamps and estuaries, because of caliche’s low intrinsic permeability that impedes percolation.

  6. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype.

    Science.gov (United States)

    Yu, Lei

    2017-06-26

    A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.

  7. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, E.M.; Fenton, M.; Meredith, M.P.; Clargo, N.M.; Ossebaar, S.; Ducklow, H.W.; Venables, H.J.; De Baar, H.J.W.

    2017-01-01

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium

  8. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, Elizabeth M.; Fenton, Mairi; Meredith, Michael P.; Clargo, Nicola M.; Ossebaar, Sharyn; Ducklow, Hugh W.; Venables, Hugh J.; de Baar, Henricus

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Omega) for two biologically-important

  9. Modular System for Shelves and Coasts (MOSSCO v1.0 – a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Directory of Open Access Journals (Sweden)

    C. Lemmen

    2018-03-01

    Full Text Available Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de, a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF and on the Framework for Aquatic Biogeochemical Models (FABM. It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.

  10. Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Science.gov (United States)

    Lemmen, Carsten; Hofmeister, Richard; Klingbeil, Knut; Hassan Nasermoaddeli, M.; Kerimoglu, Onur; Burchard, Hans; Kösters, Frank; Wirtz, Kai W.

    2018-03-01

    Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de), a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF) and on the Framework for Aquatic Biogeochemical Models (FABM). It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.

  11. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  12. Coastal biogeochemical processes in the north Indian Ocean (14, S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Narvekar, P.V.; Desa, E.

    of the region are also shown with the numbers denoting the annual runoff in 10" m3. Due to the proximity to landmasses, the North Indian Ocean is probably af- fected by processes originating at the land-ocean boundary more than any other region. Lndeed... IN TIiE NORTH INDIAN OCEAN tion of contributions by the Indian oceanographic community, most of this infor- mation has been generated by scientists from countries outside this region under international efforts that started with the John Murray...

  13. Establishing a baseline of estuarine submerged aquatic vegetation resources across salinity zones within coastal areas of the northern Gulf of Mexico

    Science.gov (United States)

    Hillmann, Eva R.; DeMarco, Kristin; LaPeyre, Megan K.

    2016-01-01

    Coastal ecosystems are dynamic and productive areas that are vulnerable to effects of global climate change. Despite their potentially limited spatial extent, submerged aquatic vegetation (SAV) beds function in coastal ecosystems as foundation species, and perform important ecological services. However, limited understanding of the factors controlling SAV distribution and abundance across multiple salinity zones (fresh, intermediate, brackish, and saline) in the northern Gulf of Mexico restricts the ability of models to accurately predict resource availability. We sampled 384 potential coastal SAV sites across the northern Gulf of Mexico in 2013 and 2014, and examined community and species-specific SAV distribution and biomass in relation to year, salinity, turbidity, and water depth. After two years of sampling, 14 species of SAV were documented, with three species (coontail [Ceratophyllum demersum], Eurasian watermilfoil [Myriophyllum spicatum], and widgeon grass [Ruppia maritima]) accounting for 54% of above-ground biomass collected. Salinity and water depth were dominant drivers of species assemblages but had little effect on SAV biomass. Predicted changes in salinity and water depths along the northern Gulf of Mexico coast will likely alter SAV production and species assemblages, shifting to more saline and depth-tolerant assemblages, which in turn may affect habitat and food resources for associated faunal species.

  14. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    Science.gov (United States)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  15. Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico

    Science.gov (United States)

    2014-01-01

    Background Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels. PMID:24641695

  16. The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview

    Science.gov (United States)

    2010-01-20

    backscattering coefficients, and others. Several of these software modules will be developed within the Automated Processing System (APS), a data... Automated Processing System (APS) NRL developed APS, which processes satellite data into ocean color data products. APS is a collection of methods...used for ocean color processing which provide the tools for the automated processing of satellite imagery [1]. These tools are in the process of

  17. Phytoplankton variation and its relation to nutrients and allochthonous organic matter in a coastal lagoon on the Gulf of Mexico

    Science.gov (United States)

    Aké-Castillo, José A.; Vázquez, Gabriela

    2008-07-01

    In tropical and subtropical zones, coastal lagoons are surrounded by mangrove communities which are a source of high quantity organic matter that enters the aquatic system through litter fall. This organic matter decomposes, becoming a source of nutrients and other substances such as tannins, fulvic acids and humic acids that may affect the composition and productivity of phytoplankton communities. Sontecomapan is a coastal lagoon located in the southern Gulf of Mexico, which receives abundant litter fall from mangrove. To study the phytoplankton composition and its variation in this lagoon from October 2002 to October 2003, we evaluated the concentrations of dissolved folin phenol active substances (FPAS) as a measure of plant organic matter, salinity, temperature, pH, O 2, N-NH 4+, N-NO 3-, P-PO 43-, Si-SiO 2, and phytoplanktonic cell density in different mangrove influence zones including the three main rivers that feed the lagoon. Nutrients concentrations depended on freshwater from rivers, however these varied seasonally. Concentrations of P-PO 43-, N-NH 4+ and FPAS were the highest in the dry season, when maximum mangrove litter fall is reported. Variation of these nutrients seemed to depend on the internal biogeochemical processes of the lagoon. Blooms of diatoms ( Skeletonema spp., Cyclotella spp. and Chaetoceros holsaticus) and dinoflagellates ( Peridinium aff. quinquecorne, Prorocentrum cordatum) occurred seasonally and in the different mangrove influence zones. The high cell densities in these zones and the occurrence of certain species and its ordination along gradient of FPAS in a canonical correspondence analysis, suggest that plant organic matter (i.e. mangrove influence) may contribute to phytoplankton dynamics in Sontecomapan lagoon.

  18. National Oceanic and Atmospheric Administration Publishes Misleading Information on Gulf of Mexico "Dead Zone"

    OpenAIRE

    Courtney, Michael W.; Courtney, Joshua M.

    2013-01-01

    Mississippi River nutrient loads and water stratification on the Louisiana-Texas shelf contribute to an annually recurring, short-lived hypoxic bottom layer in areas of the northern Gulf of Mexico comprising less than 2% of the total Gulf of Mexico bottom area. Many publications demonstrate increases in biomass and fisheries production attributed to nutrient loading from river plumes. Decreases in fisheries production when nutrient loads are decreased are also well documented. However, the Na...

  19. Metal discharges by Sinaloa Rivers to the coastal zone of NW Mexico.

    Science.gov (United States)

    Frías-Espericueta, M G; Mejía-Cruz, R; Osuna López, I; Muy-Rangel, M D; Rubio-Carrasco, W; Aguilar-Juárez, M; Voltolina, D

    2014-02-01

    The aim of this work was to survey the discharges of dissolved and particulate Cd, Cu, Fe, Mn, Pb and Zn of the eight main rivers of Sinaloa State to the Mexican coastal environment. Zn was the most abundant dissolved metal and Fe was the most abundant particulate (8.02-16.90 and 51.8-1,140.3 μg/L, respectively). Only particulate Mn had significantly (p = 0.028) higher values in summer-fall (rainy season), whereas the significantly (p = 0.036) higher values of dissolved Zn were observed in winter and spring. The highest annual total discharges to Sinaloa coastal waters were those of the rivers San Lorenzo and Piaxtla (>2 × 10(3) m.t.) and the lowest those of rivers Baluarte and El Fuerte (349 and 119 m.t., respectively). Pb concentrations may become of concern, because they are higher than the value recommended for the welfare of aquatic communities of natural waters.

  20. Ensemble Kalman Filter Inference of Spatially-varying Manning’s n coefficients in the Coastal Ocean

    KAUST Repository

    Siripatana, Adil

    2018-05-16

    Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs can also be used for state-parameter estimation, using the so-called “Joint-EnKF” approach. The idea is simply to augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evolution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-varying Manning’s n coefficients used to define the bottom roughness in the Shallow Water Equations (SWEs) of a coastal ocean model.Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning’s n coefficients defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable ensemble size (O(10)), the filter’s estimate converges to the reference Manning’s field. To enhance performance, we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed roughness parameters in the context of coastal ocean modeling.

  1. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster

    Science.gov (United States)

    Zaron, Edward D.; Fitzpatrick, Patrick J.; Cross, Scott L.; Harding, John M.; Bub, Frank L.; Wiggert, Jerry D.; Ko, Dong S.; Lau, Yee; Woodard, Katharine; Mooers, Christopher N. K.

    2015-12-01

    In response to the Deepwater Horizon (DwH) oil spill event in 2010, the Naval Oceanographic Office deployed a nowcast-forecast system covering the Gulf of Mexico and adjacent Caribbean Sea that was designated Americas Seas, or AMSEAS, which is documented in this manuscript. The DwH disaster provided a challenge to the application of available ocean-forecast capabilities, and also generated a historically large observational dataset. AMSEAS was evaluated by four complementary efforts, each with somewhat different aims and approaches: a university research consortium within an Integrated Ocean Observing System (IOOS) testbed; a petroleum industry consortium, the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP); a British Petroleum (BP) funded project at the Northern Gulf Institute in response to the oil spill; and the Navy itself. Validation metrics are presented in these different projects for water temperature and salinity profiles, sea surface wind, sea surface temperature, sea surface height, and volume transport, for different forecast time scales. The validation found certain geographic and time biases/errors, and small but systematic improvements relative to earlier regional and global modeling efforts. On the basis of these positive AMSEAS validation studies, an oil spill transport simulation was conducted using archived AMSEAS nowcasts to examine transport into the estuaries east of the Mississippi River. This effort captured the influences of Hurricane Alex and a non-tropical cyclone off the Louisiana coast, both of which pushed oil into the western Mississippi Sound, illustrating the importance of the atmospheric influence on oil spills such as DwH.

  2. General Introduction: PREVIMER, a French pre-operational coastal ocean forecasting capability.

    OpenAIRE

    Dumas, Franck; Pineau-guillou, Lucia; Lecornu, Fabrice; Le Roux, Jean-francois; Le Squere, Bruno

    2014-01-01

    Pre-operational system PREVIMER provides with coastal observations and forecasts along French coasts: currents, waves, sea levels, temperature, salinity, primary production and turbidity. These marine environmental data come from in situ observations, satellite images, and numerical models. They are centralized and archived in PREVIMER databases, then published on website (real time and historical data), and freely available to users, private companies as well as public administrations. This ...

  3. Natural and Synthetic Estrogens in Wastewater Treatment Plant Effluent and the Coastal Ocean

    Science.gov (United States)

    2013-09-01

    isotopes (12C, 13C) is used routinely to identify synthetic steroid doping in athletics and livestock applications. 36 Chapter 4 will present...Suri (2009). "Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed- use areas." Environmental Monitoring...halogenated estrogens at picomolar levels in wastewater effluent and coastal seawater. The method was validated using treated effluent from the

  4. Nitrogen Cycling in Permeable Sediments: Process-based Models for Streams and the Coastal Ocean

    OpenAIRE

    Azizian, Morvarid

    2017-01-01

    Bioavailable forms of nitrogen, such as nitrate, are necessary for aquatic ecosystem productivity. Excess nitrate in aquatic systems, however, can adversely affect ecosystems and degrade both surface water and groundwater. Some of this excess nitrate can be removed in the sediments that line the bottom of rivers and coastal waters, through the exchange of water between surface water and groundwater (known as hyporheic exchange).Several process-based models have been proposed for estimating ni...

  5. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hurricane Ingrid and Tropical Storm Hanna's effects on the salinity of the coastal aquifer, Quintana Roo, Mexico

    Science.gov (United States)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Stastna, Marek; Coutino, Aaron; Werner, Christopher; Collins, Shawn V.; Devos, Fred; Le Maillot, Christophe

    2017-08-01

    There is a lack of information on aquifer dynamics in anchialine systems, especially in the Yucatán Peninsula of Mexico. Most of our knowledge is based on ;spot; measurements of the aquifer with no long-term temporal monitoring. In this study spanning four years (2012-2016), sensors (water depth and conductivity (salinity)) were deployed and positioned (-9 and -10 m) in the meteoric Water Mass (WM) close to the transition with the marine WM (halocline) in 2 monitoring sites within the Yax Chen cave system to investigate precipitation effects on the salinity of the coastal aquifer. The results show variation in salinity (95 mm) such as Hurricane Ingrid (2013) and Tropical Storm Hanna (2014) shows meteoric water mass salinity rapidly increasing (approx. 6.39 to >8.6 ppt), but these perturbations have a shorter duration (weeks and days). Wavelet analysis of the salinity record indicates seasonal mixing effects in agreement with the wet and dry periods, but also seasonal effects of tidal mixing (meteoric and marine water masses) occurring on shorter time scales (diurnal and semi-diurnal). These results demonstrate that the salinity of the freshwater lens is influenced by precipitation and turbulent mixing with the marine WM. The salinity response is scaled with precipitation; larger more intense rainfall events (>95 mm) create a larger response in terms of the magnitude and duration of the salinity perturbation (>1 ppt). The balance of precipitation and its intensity controls the temporal and spatial patterning of meteoric WM salinity.

  7. Microbial nitrogen sinks in the water column of a large coastal hypoxic area, the Gulf of Mexico "Dead Zone"

    Science.gov (United States)

    Rogener, M. K.; Roberts, B. J.; Rabalais, N. N.; Stewart, F. J.; Joye, S. B.

    2016-02-01

    Excess nitrogen in coastal environments leads to eutrophication, harmful algal blooms, habitat loss, oxygen depletion and reductions in biodiversity. As such, biological nitrogen (N) removal through the microbially-mediated process of denitrification is a critical ecosystem function that can mitigate the negative consequences of excess nitrogen loading. However, denitrification can produce nitrous oxide, a potent greenhouse gas, as a byproduct under some environmental conditions. To understand how excess nitrogen loading impacts denitrification, we measured rates of this process in the water column of the Gulf of Mexico "Dead Zone" three times over the summer of 2015. The Dead Zone is generated by excessive nitrogen loading from the Mississippi River co-occurring with strong water column stratification, which leads to a large summer-time hypoxic/anoxic area at the mouth of the river and along the coast of Louisiana. Rates of denitrification ranged from 31 to 153 nmol L-1 d-1. Dead Zone waters are also enriched in methane and aerobic methane oxidation rates ranged from 0.1 to 4.3 nmol L-1 d-1. Maximal denitrification rates were observed at stations with the lowest oxygen concentrations and highest methane oxidation rates, suggesting a potential coupling between nitrate reduction and methane oxidation which both scrubs reactive N and methane from the system, thus performing a duel ecosystem service.

  8. Toxicities of sediments below 10 effluent outfalls to near-coastal areas of the Gulf of Mexico

    International Nuclear Information System (INIS)

    Lewis, M.; Weber, D.; Stanley, R.

    1995-01-01

    The chemical quality and toxicities of sediments collected in the receiving waters below 10 wastewater outfalls to Northwest Florida coastal areas were evaluated at multiple stations during 1994--1996. Eight types of toxicity tests using 11 test species were used to assess acute and chronic toxicity of the sediments collected below industrial, municipal, power generation and pulp mill outfalls. The primary objectives of the study were to evaluate the relative ability of different assessment procedures to detect toxicity and to provide some much-needed perspective on the impact of major point sources on sediment quality in Gulf of Mexico estuaries. The major chemical contaminants were heavy metals and PAHs. Acute and chronic toxicities were noted. Results of tests with sediment collected at the same location but several months later often differed. The most sensitive species were mysids and an estuarine amphipod. The least sensitive species were fish and macrophyte seedlings. There was poor correlation of effluent toxicity to sediment toxicity in the receiving water. Toxicity of the effluents was greater than that of the sediments. Overall, the unavailability of relevant chronic toxicity methods, uncertain criteria for choice of control stations, lack of guidance on frequency of testing and the dynamic physical and chemical characteristics of sediments are factors that need consideration if sediment monitoring is to be part of the NPDES regulatory process

  9. Landscape changes in a coastal system undergoing tourism development: implications for Barra de Navidad Lagoon, Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Tara L. Holland

    2012-02-01

    Full Text Available In this study, changes in land cover and land use patterns that occurred between 1985 and 2000 in the surrounding basin of the Barra de Navidad coastal lagoon in Jalisco, Mexico are quantified and explained. Two satellite images from 1985 (Landsat TM and 2000 (Landsat ETM+ were analyzed with supervised classification and ground truthing to evaluate changes in six land use/cover categories: lagoon, agriculture, urban/tourist, tropical dry forest, mangrove and bare substratum. Changes in land use composition were evaluated using a transition matrix and changes to configuration were interpreted using landscape metrics. Results show that urban and tourist areas expanded between 1985 and 2000, mostly at the expense of forested and bare land. Mangroves showed a large relative decrease in area (-39% and experienced fragmentation. These changes appear to be related to increased sedimentation a fan progradation into Barra de Navidad lagoon. These results may serve as a model for comparison in other systems experiencing multiple stressors, especially changes related to tourism and the intensification of resource extraction.

  10. Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.

    Science.gov (United States)

    Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).

  11. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  12. Metazoan parasites of fishes from the Celestun coastal lagoon, Yucatan, Mexico.

    Science.gov (United States)

    Sosa-Medina, Trinidad; Vidal-Martínez, Víctor M; Aguirre-Macedo, M Leopoldina

    2015-08-31

    The aims of this study were to produce a checklist of the metazoan parasites of fishes from the Celestun coastal lagoon and to determine the degree of faunal similarity among the fishes based on the metazoan parasites they share. A checklist was prepared including all available records (1996-2014) of parasites of marine, brackish water and freshwater fishes of the area. All of these data were included in a presence/absence database and used to determine similarity via Jaccard's index. The results indicate the presence of 62 metazoan parasite species infecting 22 fish species. The number of metazoan parasite species found in the fishes from the Celestún lagoon is apparently the highest reported worldwide for a tropical coastal lagoon. The parasites included 12 species of adult digeneans, 27 digeneans in the metacercarial stage, 6 monogeneans, 3 metacestodes, 9 nematodes, 2 acanthocephalans, 2 crustaceans and 1 annelid. Forty parasite species were autogenic and 23 were allogenic and 1 unknown. The overall similarity among all of the species of fish with respect to the metazoan parasites they share was low (0.08 ± 0.12), with few similarity values above 0.4 being obtained. This low similarity was due primarily to the presence of suites of parasites exclusive to specific species of fish. The autogenic component of the parasite fauna (40 species) dominated the allogenic component (21 species). The most likely explanation for the large number of fish parasites found at Celestún is the good environmental condition of the lagoon, which allows the completion of parasite life cycles and free circulation of euryhaline fishes from the marine environment bringing marine parasites into the lagoon.

  13. Processes influencing the transport and fate of contaminated sediments in the coastal ocean: Boston Harbor and Massachusetts Bay

    Science.gov (United States)

    Alexander, P. Soupy; Baldwin, Sandra M.; Blackwood, Dann S.; Borden, Jonathan; Casso, Michael A.; Crusius, John; Goudreau, Joanne; Kalnejais, Linda H.; Lamothe, Paul J.; Martin, William R.; Martini, Marinna A.; Rendigs, Richard R.; Sayles, Frederick L.; Signell, Richard P.; Valentine, Page C.; Warner, John C.; Bothner, Michael H.; Butman, Bradford

    2007-01-01

    Most of the major urban centers of the United States including Boston, New York, Washington, Chicago, New Orleans, Miami, Los Angeles, San Francisco, and Seattle—are on a coast (fig. 1.1). All of these cities discharge treated sewage effluent into adjacent waters. In 2000, 74 percent of the U.S. population lived within 200 kilometers (km) of the coast. Between 1980 and 2002, the population density in coastal communities increased approximately 4.5 times faster than in noncoastal areas of the U.S. (Perkins, 2004). More people generate larger volumes of wastes, increase the demands on wastewater treatment, expand the area of impervious land surfaces, and use more vehicles that contribute contaminants to street runoff. According to the National Coastal Condition Report II (U.S. Environmental Protection Agency, 2005a), on the basis of coastal habitat, water and sediment quality, benthic index, and fish tissue, the overall national coastal condition is only poor to fair and the overall coastal condition in the highly populated Northeast is poor. Scientific information helps managers to prioritize and regulate coastal-ocean uses that include recreation, commercial fishing, transportation, waste disposal, and critical habitat for marine organisms. These uses are often in conflict with each other and with environmental concerns. Developing a strategy for managing competing uses while maintaining sustainability of coastal resources requires scientific understanding of how the coastal ocean system behaves and how it responds to anthropogenic influences. This report provides a summary of a multidisciplinary research program designed to improve our understanding of the transport and fate of contaminants in Massachusetts coastal waters. Massachusetts Bay and Boston Harbor have been a focus of U.S. Geological Survey (USGS) research because they provide a diverse geographic setting for developing a scientific understanding of the geology, geochemistry, and oceanography of

  14. Cloud-to-ground lightning over Mexico and adjacent oceanic regions. A preliminary climatology using the WWLLN dataset

    Energy Technology Data Exchange (ETDEWEB)

    Kucienska, B.; Raga, G.B. [Universidad Nacional Autonoma de Mexico (Mexico). Centro de Ciencias de la Atmosfera; Rodriguez, O. [Instituto Mexicano de Tecnologia del Agua, Morelos (Mexico)

    2010-07-01

    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from theWorldWide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation (''spherics'') associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Subtropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated

  15. Extraction of coastal ocean wave characteristics using remote sensing and computer vision technologies

    CSIR Research Space (South Africa)

    Johnson, M

    2017-05-01

    Full Text Available optical imagery from the RapidEye satellite can be used to extract ocean wave characteristics such as wave direction, wavelength, wave period and wave velocity. If successful, the advantage of the proposed remote sensing-based approach would...

  16. Development of SAR Altimetry Mode Studies and Applications over Ocean, Coastal Zones and Inland Water (SAMOSA)

    DEFF Research Database (Denmark)

    Stenseng, Lars

    The aim of the work presented in this technical note is to study and clarify the properties of data collected over the ocean with the ASIRAS instrument. Data acquired in high altitude mode over the Fram Strait, between Greenland and Svalbard, has been re-processed and is presented and analyzed us...

  17. Mexico.

    Science.gov (United States)

    1993-01-01

    The background notes on Mexico provide text and recent statistical information on the geography, population, government, economy, and foreign relations, specifically the North American Free Trade Agreement with US. The 1992 population is estimated at 89 million of which 60% are mestizo (Indian-Spanish), 30% are American Indian, 9% are Caucasian, and 1% are other. 90% are Roman Catholic. There are 8 years of compulsory education. Infant mortality is 30/1000 live births. Life expectancy for males is 68 years and 76 years for females. The labor force is comprised of 30% in services, 24% in agriculture and fishing, 19% in manufacturing, 13% in commerce, 7% in construction, 4% in transportation and communication, and .4% in mining. There are 31 states and a federal district. Gross domestic product (GDP) per capita was $3200 in 1991. Military expenditures were .5% of GDP in 1991. The average inflation rate is 19%. Mexico City with 20 million is the largest urban center in the world. In recent years, the economy has been restructured with market oriented reforms; the result has been a growth of GDP of 3.6% in 1991 from 2% in 1987. Dependence on oil exports has decreased. There has been privatization and deregulation of state-owned companies. Subsidies to inefficient companies have been stopped. Tariff rates were reduced. The financial debt has been reduced and turned into a surplus of .8% in 1992. Mexico's foreign debt has been reduced from its high in 1987 of $107 billion. Agricultural reforms have been ongoing for 50 years. Land was redistributed, but standards of living and productivity have improved only slightly. Rural land tenure regulations have been changed, and other economic reforms are expected. Mexico engages in ad hoc international groups and is selective about membership in international organizations.

  18. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget

    International Nuclear Information System (INIS)

    Borole, D.V.; Krishnaswami, S.; Somayajulu, B.L.K.

    1982-01-01

    The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 234 U/ 238 U activity ratios. The 238 U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, and with the HCO 3 - ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. In the estuaries, both 238 U and its great-grand daughter 234 U behave conservatively beyond chlorosities 0.14 g/l. A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238 U concentration of 0.22 μg/l with a 234 U/ 238 U activity ratio of 1.20 +-0.06. The residence time of uranium isotopes in the oceans estimated from the 238 U concentration and the 234 U/ 238 U A.R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234 U flux of about 0.25 dpm/cm 2 .10 3 yr into the oceans is necessitated. (author)

  19. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.

    2015-02-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  20. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  1. Empirical ocean color algorithms and bio-optical properties of the western coastal waters of Svalbard, Arctic

    Science.gov (United States)

    Son, Young-Sun; Kim, Hyun-cheol

    2018-05-01

    Chlorophyll (Chl) concentration is one of the key indicators identifying changes in the Arctic marine ecosystem. However, current Chl algorithms are not accurate in the Arctic Ocean due to different bio-optical properties from those in the lower latitude oceans. In this study, we evaluated the current Chl algorithms and analyzed the cause of the error in the western coastal waters of Svalbard, which are known to be sensitive to climate change. The NASA standard algorithms showed to overestimate the Chl concentration in the region. This was due to the high non-algal particles (NAP) absorption and colored dissolved organic matter (CDOM) variability at the blue wavelength. In addition, at lower Chl concentrations (0.1-0.3 mg m-3), chlorophyll-specific absorption coefficients were ∼2.3 times higher than those of other Arctic oceans. This was another reason for the overestimation of Chl concentration. OC4 algorithm-based regionally tuned-Svalbard Chl (SC4) algorithm for retrieving more accurate Chl estimates reduced the mean absolute percentage difference (APD) error from 215% to 49%, the mean relative percentage difference (RPD) error from 212% to 16%, and the normalized root mean square (RMS) error from 211% to 68%. This region has abundant suspended matter due to the melting of tidal glaciers. We evaluated the performance of total suspended matter (TSM) algorithms. Previous published TSM algorithms generally overestimated the TSM concentration in this region. The Svalbard TSM-single band algorithm for low TSM range (ST-SB-L) decreased the APD and RPD errors by 52% and 14%, respectively, but the RMS error still remained high (105%).

  2. Low-cost embedded systems for democratizing ocean sensor technology in the coastal zone

    Science.gov (United States)

    Glazer, B. T.; Lio, H. I.

    2017-12-01

    Environmental sciences suffer from undersampling. Enabling sustained and unattended data collection in the coastal zone typically involves expensive instrumentation and infrastructure deployed as cabled observatories or moorings with little flexibility in deployment location following initial installation. High costs of commercially-available or custom instruments have limited the number of sensor sites that can be targeted by academic researchers, and have also limited engagement with the public. We have developed a novel, low-cost, open-source sensor and software platform to enable wireless data transfer of biogeochemical sensors in the coastal zone. The platform is centered upon widely available, low-cost, single board computers and microcontrollers. We have used a blend of on-hand research-grade sensors and low-cost open-source electronics that can be assembled by tech-savvy non-engineers. Robust, open-source code that remains customizable for specific miniNode configurations can match a specific site's measurement needs, depending on the scientific research priorities. We have demonstrated prototype capabilities and versatility through lab testing and field deployments of multiple sensor nodes with multiple sensor inputs, all of which are streaming near-real-time data from Kaneohe Bay over wireless RF links to a shore-based base station.

  3. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    Science.gov (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  4. Legislation would establish commission to assess marine and coastal resources and develop national ocean policy

    Science.gov (United States)

    Showstack, Randy

    During 1998, internationally designated as the year of the ocean, perhaps more people are paying heed to the deep seas now than ever before.Transfixed to the big screen by this year's movie blockbuster, they anticipate when the Titanic will scrape into the iceberg and break apart, shiver when household-name heartthrobs Leonardo DiCaprio and Kate Winslet float on the freezing waters, and hum along to the theme sung by Celine Dion.

  5. What a Decade (2006–15 Of Journal Abstracts Can Tell Us about Trends in Ocean and Coastal Sustainability Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Murray A. Rudd

    2017-05-01

    Full Text Available Text mining and analytics may offer possibilities to assess scientists' professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Here I examine ecologically-oriented ocean and coastal science journal article abstracts published between 2006 and 2015. Informed by the Institutional Analysis and Development (IAD framework, I constructed a dictionary containing phrases associated with 40 ocean challenges and 15 solution-oriented instrument or investments. From 50,817 potentially relevant abstracts, different patterns of co-occurring text associated with challenges and potential solutions were discernable. Topics receiving significantly increased attention in the literature in 2014–15 relative to the 2006–13 period included: marine plastics and debris; environmental conservation; social impacts; ocean acidification; general terrestrial influences; co-management strategies; ocean warming; licensing and access rights; oil spills; and economic impacts. Articles relating to global environmental change were consistently among the most cited; marine plastics and ecosystem trophic structure were also focal topics among the highly cited articles. This exploratory research suggests that scientists' written outputs provide fertile ground for identifying and tracking important and emerging ocean sustainability issues and their possible solutions, as well as the organizations and scientists who work on them.

  6. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    Science.gov (United States)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  7. AMS Observations over Coastal California from the Biological and Oceanic Atmospheric Study (BOAS)

    Science.gov (United States)

    Bates, K. H.; Coggon, M. M.; Hodas, N.; Negron, A.; Ortega, A. M.; Crosbie, E.; Sorooshian, A.; Nenes, A.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    In July 2015, fifteen research flights were conducted on a US Navy Twin Otter aircraft as part of the Biological and Oceanic Atmospheric Study (BOAS) campaign. The flights took place near the California coast at Monterey, to investigate the effects of sea surface temperature and algal blooms on oceanic particulate emissions, the diurnal mixing of urban pollution with other airmasses, and the impacts of biological aerosols on the California atmosphere. The aircraft's payload included an aerosol mass spectrometer (AMS), a differential mobility analyzer, a cloud condensation nuclei counter, a counterflow virtual impactor, a cloudwater collector, and two instruments designed to detect biological aerosols - a wideband integrated biological spectrometer and a SpinCon II - as well as a number of meteorology and aerosol probes, two condensation particle counters, and instruments to measure gas-phase CO, CO2, O3, and NOx. Here, we describe in depth the objectives and outcomes of BOAS and report preliminary results, primarily from the AMS. We detail the spatial characteristics and meteorological variability of speciated aerosol components over a strong and persistent bloom of Pseudo-Nitzschia, the harmful algae that cause 'red tide', and report newly identified AMS markers for biological particles. Finally, we compare these results with data collected during BOAS over urban, forested, and agricultural environments, and describe the mixing observed between oceanic and terrestrial airmasses.

  8. Seasonality of coastal zone scanner phytoplankton pigment in the offshore oceans

    Science.gov (United States)

    Banse, K.; English, D. C.

    1994-01-01

    The NASA Global Ocean Data Set of plant pigment concentrations in the upper euphotic zone is evaluated for diserning geographical and temporal patterns of seasonality in the open sea. Monthly medians of pigment concentrations for all available years are generated for fields of approximately 77,000 sq km. For the climatological year, highest and lowest medians, month of occurence of the highest median, ratio of highest to lowest medians, and absolute range between the highest and lowest medians are mapped ocean-wide between 62.5 deg N and 62.5 deg S. Seasonal cycles are depicted for 48 sites. In much of the offshore ocean, seasonality of pigment is inferred to be driven almost equally by the interaction of the abiotic environment with phytoplankton physiology and the loss of cells from grazing. Special emphasis among natural domains or provinces is given to the Subantarctic water ring, with no seasonality in its low chlorophyll concentrations in spite of strong environmental forcing, and the narrow Transition Zones, a few degrees of latitude on the equatorial sides of the Subtropical Convergences of the southern hemisphere and their homologs in the northern hemisphere, which have late winter blooms caused by nutrient injection into the upper layers.

  9. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

    Science.gov (United States)

    2013-09-30

    site, compared with WaveCIS site in Gulf of Mexico . Two Neural Networks (NN) approaches are explored for the retrieval of chlorophyll concentration...AERONET-OC sites (Long Island Sound and Gulf of Mexico respectively) as well as OC retrievals of the MODIS sensor. The underlying cause of the...cases of water conditions ranging from clear oceanic waters to turbid coastal waters, while ξ for both types of particles is fixed at 4.0, and for

  10. Fates, Budgets, and Health Implications of Macondo Spill Volatile Hydrocarbons in the Ocean and Atmosphere of the Gulf of Mexico

    Science.gov (United States)

    Leifer, I.; Barletta, B.; Blake, D. R.; Blake, N. J.; Bradley, E. S.; Meinardi, S.; Lehr, B.; Luyendyk, B. P.; Roberts, D. A.; Rowland, F. S.

    2010-12-01

    The Macondo Oil Spill released unprecedented oil and gas to the ocean, estimated at 63000 bbl/day, which dispersed and dissolved during rise (Technical Flow Rate Team Report, 2010); yet, most of the oil reached the sea surface as oil slicks that then evolved due to weathering and dispersant application (Mass Balance Report, 2010). Remote sensing (near infrared imaging spectrometry) allowed quantification of thick surface oil, values of which were incorporated into an overall oil budget calculation. Remote sensing data, atmospheric samples, and numerical modeling, strongly suggest significant volatile loss during rise, yet measured atmospheric concentrations were high. Scaling atmospheric measurements to the total oil spill implies very high, extensive, and persistent levels of atmospheric petroleum hydrocarbon exposure with strong health implications to on-site workers and to coastal residents from wind advection.

  11. Mercury Bioaccumulation Response to Recent Hg Pollution Abatement in an Oceanic Predatory Fish, Blue Marlin, Versus the Response in a Coastal Predatory Species, Bluefish, in the Western North Atlantic Ocean

    Science.gov (United States)

    Barber, R. T.; Cross, F. A.

    2015-12-01

    The consumption of marine fish, especially predatory species high in the food chain, is the major route through which people in developed countries are exposed to mercury. Recent work on a coastal species, bluefish (Pomatomus saltatrix), determined that the mercury concentration in fish from the U. S. Mid-Atlantic coast decreased 43% from 1972 to 2011. This mercury decline in a coastal marine fish parallels the mercury decline in many freshwater fish in the U.S. and Canada during the same time period. The result heightens interest in determining whether or not there has been any change in mercury concentration in oceanic predatory fish species, that is, fish that are permanent residents of the open ocean, during the past four decades. To answer this question we compared mercury analyses we made in the 1970s on tournament-caught blue marlin (Makaira nigricans) with those we made from 1998 to 2013. This comparison indicates that from the 1970s to 2013 mercury concentration in blue marlin caught in the western North Atlantic Ocean off the U.S. east coast has declined about 45%, a decline that is remarkably similar to the decline reported in coastal bluefish. These results suggest that a large area of the western North Atlantic Ocean is responding to reductions in emissions of mercury in the U.S. and Canada with reduced mercury bioaccumulation in predatory fish.

  12. Synchronization of Long Ocean Waves by Coastal Relief on the Southeast Shelf of Sakhalin Island

    Science.gov (United States)

    Kovalev, Dmitry P.; Kovalev, Peter D.

    2017-12-01

    The phenomenon of synchronization (trapping) of coming waves by the resonant water area in a coastal zone of the sea found from the observed data is considered in the paper. Edge waves with the period of about 10.7 minutes are visually observed in sea level fluctuations near the village of Okhotskoye and the cape Ostri on the southeast coast of Sakhalin Island. These waves are synchronized with the resonance water area. It becomes apparent from the unlimited increase of a phase between the bottom stations installed at distance of about 7.5km. In relation to the phenomenon found, the problem of weak and periodic impact on regular self-oscillatory system — Van der Paul’s oscillator — is considered. Good compliance between theoretical model and data of experiments is obtained.

  13. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico coastal microbial communities after the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Anthony D. Kappell

    2014-05-01

    Full Text Available The Deepwater Horizon (DWH blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including PAHs, were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are primed for PAH

  14. Advanced data processing of airborne electromagnetic data for imaging hidden conduit networks in the coastal karst plain of Tulum (Mexico)

    International Nuclear Information System (INIS)

    Schiller, A.; Schattauer, I.; Ottowitz, D.

    2016-01-01

    This study is part of a series of international research cooperations which commenced in 2007 and are still ongoing. The study area is located on the east coast of the Yucatan Peninsula, Mexico, and comprises the northern most part of the Sian Kaan biosphere reserve, a coastal wetland of international importance, as well as the city of Tulum in the state of Quintana Roo, and part of the second largest barrier reef in the world some 300 metres to one kilometre off shore. Two airborne surveys, conducted in 2007 and 2008 by the Geological Survey of Austria, covered an area of some 200 square kilometres, including the well-known Ox Bel Ha cave system, already mapped by exploration divers. In order to get additional ground truth data and input for the hydrological model, extended ground geophysical campaigns have been conducted an - nually. The first processing of the airborne electromagnetic (AEM) data revealed not only a clear signature from known caves but also the image of a vast, unexplored, hidden conduit network. However, lateral and depth resolution was limited due to measurement drift and noise as well the specific behaviour of the ap - plied inversion technique. Newly developed algorithms for processing AEM data and inversion results have improved the signal-to-noise ratio significantly and enabled the imaging of well defined structures in the underground. Therefore, the AEM method is now capable of quickly deliver crucial structural information of karst-water regimes in difficult accessible areas with unique depth information compared to previous studies. (Author)

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from MOORING CoastalMS_88W_30N in the Coastal Waters of Louisiana and Gulf of Mexico from 2009-05-12 to 2014-05-03 (NODC Accession 0100068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0100068 includes chemical, meteorological, physical and time series data collected from MOORING CoastalMS_88W_30N in the Coastal Waters of Louisiana...

  16. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Science.gov (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  17. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler

    2018-01-01

    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  18. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation

    Directory of Open Access Journals (Sweden)

    G. G. Laruelle

    2017-10-01

    Full Text Available In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2, the air–sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled in both time and space and of surface pCO2 exhibiting much higher temporal and spatial variability in these regions compared to the open ocean. Here, we use a modified version of a two-step artificial neural network method (SOM-FFN; Landschützer et al., 2013 to interpolate the pCO2 data along the continental margins with a spatial resolution of 0.25° and with monthly resolution from 1998 to 2015. The most important modifications compared to the original SOM-FFN method are (i the much higher spatial resolution and (ii the inclusion of sea ice and wind speed as predictors of pCO2. The SOM-FFN is first trained with pCO2 measurements extracted from the SOCATv4 database. Then, the validity of our interpolation, in both space and time, is assessed by comparing the generated pCO2 field with independent data extracted from the LDVEO2015 database. The new coastal pCO2 product confirms a previously suggested general meridional trend of the annual mean pCO2 in all the continental shelves with high values in the tropics and dropping to values beneath those of the atmosphere at higher latitudes. The monthly resolution of our data product permits us to reveal significant differences in the seasonality of pCO2 across the ocean basins. The shelves of the western and northern Pacific, as well as the shelves in the temperate northern Atlantic, display particularly pronounced seasonal variations in pCO2,  while the shelves in the southeastern Atlantic and in the southern Pacific reveal a much smaller seasonality. The calculation of temperature normalized pCO2 for several latitudes in different oceanic basins confirms that the seasonality in shelf pCO2 cannot solely be explained by

  19. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  20. Ocean acidification changes the structure of an Antarctic coastal protistan community

    Science.gov (United States)

    Hancock, Alyce M.; Davidson, Andrew T.; McKinlay, John; McMinn, Andrew; Schulz, Kai G.; van den Enden, Rick L.

    2018-04-01

    Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose-response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( > 20 µm) increased in abundance with low to moderate fCO2 (343-634 µatm) but decreased at fCO2 ≥ 953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤ 20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

  1. Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages

    Science.gov (United States)

    Warnock, Jonathan P.; Scherer, Reed P.

    2015-07-01

    Taphonomic processes alter diatom assemblages in sediments, thus potentially negatively impacting paleoclimate records at various rates across space, time, and taxa. However, quantitative taphonomic data is rarely included in diatom-based paleoenvironmental reconstructions and no objective standard exists for comparing diatom dissolution in sediments recovered from marine depositional settings, including the Southern Ocean's opal belt. Furthermore, identifying changes to diatom dissolution through time can provide insight into the efficiency of both upper water column nutrient recycling and the biological pump. This is significant in that reactive metal proxies (e.g. Al, Ti) in the sediments only account for post-depositional dissolution, not the water column where the majority of dissolution occurs. In order to assess the range of variability of responses to dissolution in a typical Southern Ocean diatom community and provide a quantitative guideline for assessing taphonomic variability in diatoms recovered from core material, a sediment trap sample was subjected to controlled, serial dissolution. By evaluating dissolution-induced changes to diatom species' relative abundance, three preservational categories of diatoms have been identified: gracile, intermediate, and robust. The relative abundances of these categories can be used to establish a preservation grade for diatom assemblages. However, changes to the relative abundances of diatom species in sediment samples may reflect taphonomic or ecological factors. In order to address this complication, relative abundance changes have been tied to dissolution-induced morphological change to the areolae of Fragilariopsis curta, a significant sea-ice indicator in Southern Ocean sediments. This correlation allows differentiation between gracile species loss to dissolution versus ecological factors or sediment winnowing. These results mirror a similar morphological dissolution index from a parallel study utilizing

  2. September 1985 Mexico City, Mexico Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The magnitude 8.1 earthquake occurred off the Pacific coast of Mexico. The damage was concentrated in a 25 square km area of Mexico City, 350 km from the epicenter....

  3. Whole Community Resilience: Engaging Multiple Sectors with the Coastal Community Resilience Index and the Climate and Resilience Community of Practice in the Gulf of Mexico

    Science.gov (United States)

    Sempier, T.

    2017-12-01

    Communicating risk due to flooding, sea level rise, storm surge, and other natural hazards is a complex task when attempting to build resilience in coastal communities. There are a number of challenges related to preparing for, responding to, and recovering from coastal storms. Successful resilience planning must include a wide range of sectors including, but not limited to local government, business, non-profit, religious, academia, and healthcare. Years of experience working with communities in the Gulf of Mexico has helped create a process that is both inclusive and effective at bringing the right people to the table and gaining momentum towards resilience efforts. The Coastal Community Resilience Index (CRI), a self-assessment for community leaders, has been implemented in 54 Gulf communities with funding that provides small grant awards to help communities take action to address gaps and vulnerabilities identified in the assessment process. To maintain momentum with resilience actions, the Gulf Climate and Resilience Community of Practice (CoP) encourages local municipality participants to share lessons learned and best practices from their implementation projects in an annual symposium. Recently, both graduate and undergraduate students have been exposed to the CRI and CoP as avenues to work through solutions to complex problems at the local level. In addition, a new generation of high school students has been introduced to the CRI. Their engagement in the process is building a more informed citizenry that will take on the leadership and decision-making roles in the future. Investing in multiple age groups and sectors through the CRI and CoP is building capacity for whole community resilience in the Gulf of Mexico. This presentation will focus on methods that have been successful in the Gulf of Mexico for creating effective change in local municipalities towards resilience actions. Discussion will include decision support tools for engaging local

  4. Cordilleran Ice Sheet meltwater delivery to the coastal waters of the northeast Pacific Ocean

    Science.gov (United States)

    Hendy, I. L.; Taylor, M.; Gombiner, J. H.; Hemming, S. R.; Bryce, J. G.; Blichert-Toft, J.

    2014-12-01

    Cordilleran Ice Sheet (CIS) delivered meltwater to the NE Pacific Ocean off BC and WA via glacial lake outburst floods (GLOFs), ice rafting and subglacial meltwater discharge. A deglacial glaciomarine sedimentation record is preserved in the well dated ~50-kyr core MD02-2496 (48˚58.47' N, 127˚02.14' W, water depth 1243 m), collected off Vancouver Island. To understand the history of the relationship between the CIS, climate and meltwater discharge, high resolution, multi-proxy geochemical records from the interval that captures the Fraser Glaciation (~30-10 ka) were generated. These proxies include Mg/Ca temperatures and δ18Oseawater from planktonic foraminiferal sp. N. pachyderma and G. bulloides, elemental and organic carbon (Corg) geochemistry of bulk sediments, ɛNd and K/Ar dating of the rose by > 3°C to 10-12°C in association with an additional IRD event at ~14.8 ka sourced from a ~75 Ma felsic volcanic source, likely the Southern Coast Plutonic Complex. At no point in the δ18Oseawater reconstruction is an obvious meltwater isotopic signature recorded despite the sedimentary evidence for both ice rafting and outburst flooding. Thus CIS meltwater likely entered the NE Pacific Ocean via hyperpycnal flow.

  5. Mexico

    International Nuclear Information System (INIS)

    2003-06-01

    This document summarizes the key energy data for Mexico: 1 - energy organizations and policy: Ministry of energy (SENER), Comision Reguladora de Energia (CRE), Ministry of Finances, Ministry of trade and industrial development (SECOFI), national commission for energy savings (CONAE); 2 - companies: federal commission of electricity (CFE), Minera Carbonifera Rio Escondido (MICARE - coal), Pemex (petroleum); 3 - energy production: resources, electric power, petroleum, natural gas; 4 - energy consumption; 5 - stakes and perspectives. Some economic and energy indicators are summarized in a series of tables: general indicators, supply indicators (reserves, refining and electric capacity, energy production, foreign trade), demand indicators (consumption trends, end use, energy independence, energy efficiency, CO 2 emissions), energy status per year and per energy source. (J.S.)

  6. Isotopic niches of fishes in coastal, neritic and oceanic waters off Adélie land, Antarctica

    Science.gov (United States)

    Cherel, Yves; Koubbi, Philippe; Giraldo, Carolina; Penot, Florian; Tavernier, Eric; Moteki, Masato; Ozouf-Costaz, Catherine; Causse, Romain; Chartier, Amélie; Hosie, Graham

    2011-08-01

    We used the stable isotope method to investigate the ecological niches of Antarctic fishes, with δ 13C and δ 15N as proxies of fish habitats and dietary habits, respectively. Muscle isotopic signature was measured for each of 237 delipidated tissue samples from 27 fish species collected offshore Adélie Land, East Antarctica. Overall, δ 13C values ranged from -25.3‰ to -18.2‰, thus allowing characterizing of the fish habitats, with inshore/benthic species having more positive δ 13C signatures than offshore/pelagic ones. No clear difference in the δ 13C values of pelagic fishes was found between species living in neritic and oceanic waters. Overall, the δ 15N signatures of neritic pelagic and epibenthic fishes encompassed ˜1.0 trophic level (3.1‰), a higher difference than that (1.4‰) found within the oceanic assemblage. Fishes with the lowest and highest δ 15N values are primarily invertebrate- and fish-eaters, respectively. The isotopic niches of fishes illustrate the different mechanisms allowing coexistence, with most fishes segregating at least by one of the two niche axes (δ 13C and δ 15N). Muscle isotopic values also document interindividual foraging specialization over the long-term in coastal benthic fishes, but not in more offshore pelagic species. Finally, the δ 15N signatures of fishes overlap with those of penguins and seals, indicating that seabirds and marine mammals share the upper levels of the Antarctic pelagic ecosystem with some large fish species. In conclusion, the concept of isotopic niche is a powerful tool to investigate various aspects of the ecological niche of Antarctic fishes, thus complementing the use of other conventional and non-conventional approaches.

  7. Sedimentology of Coastal Deposits in the Seychelles Islands—Evidence of the Indian Ocean Tsunami 2004

    Science.gov (United States)

    Nentwig, Vanessa; Bahlburg, Heinrich; Monthy, Devis

    2015-03-01

    The Seychelles, an archipelago in the Indian Ocean at a distance of 4,500-5,000 km from the west coast of Sumatra, were severely affected by the December 26, 2004 tsunami with wave heights up to 4 m. Since the tsunami history of small islands often remains unclear due to a young historical record, it is important to study the geological traces of high energy events preserved along their coasts. We conducted a survey of the impact of the 2004 Indian Ocean tsunami on the inner Seychelles islands. In detail we studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond in the Curieuse Marine National Park on the east coast of Curieuse Island. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami in 2004 by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap and assuring a low energetic hydrodynamic environment for the protection of the mangroves. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The tsunami caused a change of habitat by the sedimentation of sand lobes in the mangrove forest. The dark organic rich mangrove soil (1.9 Φ) was covered by bimodal fine to medium carbonate sand (1.7-2.2 Φ) containing coarser carbonate shell fragments and debris. Intertidal sediments and the mangrove soil acted as sources of the lobe deposits. The sand sheet deposited by the tsunami is organized into different lobes. They extend landwards to different inundation distances as a function of the morphology of the onshore area. The maximum extent of 180 m from the shoreline indicates the minimum inundation distance to the tsunami. The top parts of the sand lobes cover the pneumatophores of the mangroves. There is no landward fining trend along the sand lobes and normal grading of the deposits is rare, occurring only in 1 of 7 sites. The sand lobe deposits also lack sedimentary structures. On the surface of the sand lobes numerous mostly fragmented shells of bivalves and

  8. Ocean acidification changes the structure of an Antarctic coastal protistan community

    Directory of Open Access Journals (Sweden)

    A. M. Hancock

    2018-04-01

    Full Text Available Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose–response experiment was conducted using 650 L incubation tanks (minicosms adjusted to a gradient in fugacity of carbon dioxide (fCO2 from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( >  20 µm increased in abundance with low to moderate fCO2 (343–634 µatm but decreased at fCO2  ≥  953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤  20 µm dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

  9. Modelling shelf-ocean exchange and its biogeochemical consequences in coastal upwelling systems

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar

    margin bathymetry, and 3) what processes determine the observed variability of total organic carbon (TOC) content in shelf sediments underlying the upwelling system, with implications for the formation of petroleum source rocks. Here, a numerical ocean modeling approach is used in this thesis to explore...... processes and the development of anoxia/euxinia under the present day or past geological conditions. Thirdly and last, processes controlling distribution of total organic carbon (TOC) content in sediments across the continental margin is evaluated by application of the model to the Benguela upwelling system....... In the model, biological primary production and shelf bottom-water anoxia result in enhanced sedimentary TOC concentrations on the mid shelf and upper slope. The simulated TOCs implicate that bottom lateral transport only has a significant effect on increasing the deposition of the organic carbon on the mid...

  10. Coastal zone color scanner pigment concentrations in the southern ocean and relationships to geophysical surface features

    Science.gov (United States)

    Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-01-01

    Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.

  11. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita.

    Science.gov (United States)

    Lohrenz, Steven E; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-07-10

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and

  12. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    Directory of Open Access Journals (Sweden)

    Merritt Tuel

    2008-07-01

    Full Text Available The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490 and chlorophyll (chlor_a from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies identified on the basis of sea surface height anomaly (SSHA. Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels

  13. Correction: Ryan, J., et al. Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA. Remote Sens. 2014, 6, 1007–1025

    Directory of Open Access Journals (Sweden)

    Marcos J. Montes

    2015-10-01

    Full Text Available Studies of phytoplankton ecology in Monterey Bay, CA, USA, using the Hyperspectral Imager for the Coastal Ocean (HICO and other satellite remote sensing and in-situ observations, were presented in [1]. [...

  14. What a Decade (2006–15) Of Journal Abstracts Can Tell Us about Trends in Ocean and Coastal Sustainability Challenges and Solutions

    OpenAIRE

    Rudd, Murray A.

    2017-01-01

    Text mining and analytics may offer possibilities to assess scientists' professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Her...

  15. Multivariate analysis of the influences of oceanic and meteorological processes on suspended particulate matter distributions in Mississippi coastal waters

    Science.gov (United States)

    O'Brien, S. J.; Fitzpatrick, P. J.; Dzwonkowski, B.; Dykstra, S. L.; Wallace, D. J.; Church, I.; Wiggert, J. D.

    2016-02-01

    The Mississippi Sound is influenced by a high volume of sediment discharge from the Biloxi River, Mobile Bay via Pas aux Herons, Pascagoula River, Pearl River, Wolf River, and Lake Pontchartrain through the Rigolets. The river discharge, variable wind speed, wind direction and tides have a significant impact on the turbidity and transport of sediments in the Sound. Level 1 Moderate Resolution Imaging Spectroradiometer (MODIS) data is processed to extract the remote sensing reflectance at the wavelength of 645 nm and binned into an 8-day composite at a resolution of 500 m. The study uses a regional ocean color algorithm to compute suspended particulate matter (SPM) concentration based on these 8-day composite images. Multivariate analysis is applied between the SPM and time series of tides, wind, turbidity and river discharge measured at federal and academic institutions' stations and moorings. The multivariate analysis also includes in situ measurements of suspended sediment concentration and advective exchanges through the Mississippi Sound's tidal inlets between the coastal shelf and the nearshore estuarine waters. Mechanisms underlying the observed spatiotemporal distribution of SPM, including material exchange between the Sound and adjacent shelf waters, will be explored. The results of this study will contribute to current understanding of exchange mechanisms and pathways with the Mississippi Bight via the Mississippi Sound's tidal inlets.

  16. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton

    2016-01-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  17. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.

    2016-06-21

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  18. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    Science.gov (United States)

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton H.

    2017-02-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d-1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  19. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  20. Dissolved carbon dynamics in the freshwater-saltwater mixing zone of a coastal river entering the Northern Gulf of Mexico

    Science.gov (United States)

    He, S.; Xu, Y. J.

    2017-12-01

    Estuaries play an important role in the dynamics of dissolved carbon from freshwater to marine systems. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations change along an 88-km long estuarine river with salinity ranging from 0.02 to 29.50. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary using mixing curves and stable isotope analyses. From November 2014 to February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during eighteen field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico in the southern United States. δ13CDIC and δ13CDOC were measured from May 2015 to February 2017 during five of the field trips. The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The DIC concentrations appeared to be largely influenced by conservative mixing. The δ13CDIC values were close to those suggested by the conservative mixing model for May 2015, June 2015 and November 2015, but lower than those for July 2015 and February 2016, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum. These findings suggest that riverine dissolved carbon undergoes a rapid change in freshwater-saltwater mixing, and that these dynamics should be taken into account in carbon processing and budgeting in the world's estuarine systems.

  1. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico.

    Science.gov (United States)

    Duran, R; Beron-Vera, F J; Olascoaga, M J

    2018-03-26

    We construct a climatology of Lagrangian coherent structures (LCSs)-the concealed skeleton that shapes transport-with a twelve-year-long data-assimilative simulation of the sea-surface circulation in the Gulf of Mexico (GoM). Computed as time-mean Cauchy-Green strain tensorlines of the climatological velocity, the climatological LCSs (cLCSs) unveil recurrent Lagrangian circulation patterns. The cLCSs strongly constrain the ensemble-mean Lagrangian circulation of the instantaneous model velocity, showing that a climatological velocity can preserve meaningful transport information. The quasi-steady transport patterns revealed by the cLCSs agree well with aspects of the GoM circulation described in several previous observational and numerical studies. For example, the cLCSs identify regions of persistent isolation, and suggest that coastal regions previously identified as high-risk for pollution impact are regions of maximal attraction. We also show that cLCSs are remarkably accurate at identifying transport patterns observed during the Deepwater Horizon and Ixtoc oil spills, and during the Grand LAgrangian Deployment (GLAD) experiment. Thus it is shown that computing cLCSs is an efficient and meaningful way of synthesizing vast amounts of Lagrangian information. The cLCS method confirms previous GoM studies, and contributes to our understanding by revealing the persistent nature of the dynamics and kinematics treated therein.

  2. Summary Report on Information Technology Integration Activities For project to Enhance NASA Tools for Coastal Managers in the Gulf of Mexico and Support Technology Transfer to Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gulbransen, Thomas C.

    2009-04-27

    Deliverable to NASA Stennis Space Center summarizing summarizes accomplishments made by Battelle and its subcontractors to integrate NASA's COAST visualization tool with the Noesis search tool developed under the Gulf of Mexico Regional Collaborative project.

  3. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from PELICAN in the Coastal Waters of Louisiana, Coastal Waters of Texas and Gulf of Mexico from 2013-09-09 to 2013-09-22 (NCEI Accession 0157461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157461 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from PELICAN in the Coastal Waters...

  4. Riverine inputs of polybrominated diphenyl ethers from the Pearl River Delta (China) to the coastal ocean.

    Science.gov (United States)

    Guan, Yu-Feng; Wang, Ji-Zhong; Ni, Hong-Gang; Luo, Xiao-Jun; Mai, Bi-Xian; Zeng, Eddy Y

    2007-09-01

    Riverine runoff is an important mode to transport anthropogenic pollutants from terrestrial sources to oceans. Polybrominated diphenyl ethers (PBDEs) were measured in riverine runoff samples from the eight major outlets within the Pearl River Delta (PRD), China, an economically fast developing region housing a vast number of electronics manufacturing and assembling plants. The sigma 17PBDEs (sum of 17 BDE congeners, i.e., BDE-28, -47, -66, -85, -99, -100, -138, -153, -154, -183, -196, -197, -203, -206, -207, -208, and -209) concentrations varied from 344 to 68,000 pg/L, with those of BDE-209, BDE-47, and BDE-99 being 335-65200, 3-143, and production of brominated fire retardants (approximately 10000 metric tons/year) and the annual riverine input of total PBDEs from the PRD, suggesting that the majority of PBDEs inventory has been accumulated from importation of e-wastes. Because of the continuous importation of e-wastes and strong demand for brominated fire retardants, the impact of PBDEs on China's and the world's environments is expected to persist for many years to come.

  5. Preventive methods for coastal protection towards the use of ocean dynamics for pollution control

    CERN Document Server

    Quak, Ewald

    2013-01-01

    The aim of the book is to present for non-specialist researchers as well as for experts a comprehensive overview of the background, key ideas, basic methods, implementation details and a selection of solutions offered by a novel technology for the optimisation of the location of dangerous offshore activities in terms of environmental criteria, as developed in the course of the BalticWay project.   The book consists of two parts. The first part introduces the basic principles of ocean modeling and depicts the long way from the generic principles to the practical modeling of oil spills and of the propagation of other adverse impacts. The second part focuses on the techniques for solving the inverse problem of the quantification of offshore areas with respect to their potential to serve as a source of environmental danger to vulnerable regions (such as spawning, nursing or also tourist areas).   The chapters are written in a tutorial style; they are mostly self-contained and understandable for non-specialist r...

  6. Twin predecessor of the 2004 Indian Ocean tsunami: Implications for rebuilt coastal communities

    Science.gov (United States)

    Sieh, K.; Daly, P.; McKinnon, E.; Chiang, H.; Pilarczyk, J.; Daryono, M. R.; Horton, B.; Shen, C.; Rubin, C. M.; Ismail, N.; Kelsey, H. M.

    2013-12-01

    We present stratigraphic, historical and archeological evidence for two closely timed predecessors of the giant 2004 tsunami on the northern coast of Aceh, northern Sumatra. Beachcliff exposures reveal two beds of tsunamigenic coral rubble within a small alluvial fan. Stratigraphical consistent radiocarbon and Uranium-Thorium disequilibrium dates indicate the the two beds were emplaced in the mid- to late 14th century, correlative with paleoseismic evidence of sudden uplifts of coral reefs on nearby Simeulue island in AD 1394 and, again in AD 1450. A nearby seacliff exposure contains evidence of nearly continuous settlement from ~AD 1240 to 1367, followed by tsunami destruction. Evidence of continuous settlement included South Asian ceramic and stoneware fragments, as well as a single Chinese coin dating to AD 1111-1118. Our data may solve the mysterious 15th century discontinuity in cultures along the northern Sumatran coast of the maritime silk route. This history of a doublet tsunami has implications for communities around the Indian Ocean that were rebuilt after the devastation of 2004, since reconstruction occurred with the tacit belief that such an event would not happen in the foreseeable future. History, geology and archeology hint that such a view may prove tragically incorrect.

  7. Statistical Models for Sediment/Detritus and Dissolved Absorption Coefficients in Coastal Waters of the Northern Gulf of Mexico

    National Research Council Canada - National Science Library

    Green, Rebecca E; Gould, Jr., Richard W; Ko, Dong S

    2008-01-01

    ... (CDOM) absorption coefficients from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data...

  8. Forecasting Ocean Acidification in the coastal waters of the Pacific Northwest

    Science.gov (United States)

    Siedlecki, S. A.; Alin, S. R.; Feely, R. A.; Hermann, A. J.; Bednarsek, N.; Nguyen, T.; Officer, S.; Kaplan, I.; Bond, N.; Newton, J.; Fisher, J. L.; Morgan, C.; Saenger, C.

    2016-12-01

    The co-occurrence of submarine landslides and hydrate-bearing sediment suggests that hydrates may play a role in landslide triggering and/or the mobility and dynamic characteristics of the submarine landslide. In turn, the removal of large sections of seafloor perturbs the hydrate stability field by removing overburden pressure and disturbing the temperature field. These potential hydrate-landslide feedbacks are not well understood. Here we combine three-dimensional seismic and petrophysical logs to characterize the deposits of submarine landslides that failed from hydrate-bearing sediments in the Orca Basin in the northern Gulf of Mexico. The Orca Basin contains a regionally mappable bottom simulating reflector, hydrate saturations within sands and muds, as well as numerous landslides. In addition, the Orca Basin features a well-known 123 km2 anoxic hypersaline brine pool that is actively being fed by outcropping salt. Lying at the bottom of the brine pool are deposits of submarine landslides. Slope instability in the Orca Basin is likely associated with near-seafloor salt tectonics. The most prominent landslide scar observable on the seafloor has a correlative deposit that now lies at the bottom of the brine pool 11.6 km away. The headwall is amphitheater-shaped with an average height of 80 meters and with only a minor amount of rubble remaining near the headwall. A total of 8.7 km3 of material was removed and deposited between the lower slopes of the basin and the base of the brine pool. Around the perimeter of the landslide headwall, two industry wells were drilled and well logs show elevated resistivity that are likely caused by gas hydrate. The slide deposits have a chaotic seismic facies with large entrained blocks and the headwall area does not retain much original material, which together suggests a relatively mobile style of landslide and therefore may have generated a wave upon impacting the brine pool. Such a slide-induced wave may have sloshed

  9. Oceanographic Data collected during the Islands in the Stream Expedition on NOAA Ship Gordon Gunter in the North Atlantic Ocean and the Gulf of Mexico between 2001-05-10 to 2001-10-04 (NCEI Accession 0104416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Islands in the Stream expedition explored protected and unprotected deep water coral reefs and hard-bottom communities throughout the Gulf of Mexico and South...

  10. Current meter and other data from FIXED PLATFORMS from the Gulf of Mexico and other locations as part of the Ocean Thermal Energy Conversion (OTEC) and other projects from 24 October 1964 to 01 November 1977 (NODC Accession 7800586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected from FIXED PLATFORMS from the Gulf of Mexico and Straits of Florida. Data were submitted by the Atlantic Oceanographic and...

  11. Current meter data from moored current meter casts in the Gulf of Mexico as part of the Ocean Thermal Energy Conversion (OTEC) project from 18 October 1977-10-18 to 1979-07-01 (NODC Accession 8000284)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Gulf of Mexico from October 18, 1977 to June 1, 1979. Data were submitted by Atlantic...

  12. Oceanographic Data collected during the Florida Shelf Edge Expedition (FLoSEE) (CIOERT2010) on RV Seward Johnson in the Gulf of Mexico and North Atlantic Ocean between July 9, 2010 - August 9, 2010 (NODC Accession 0074541)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A science team on the research vessel Seward Johnson left from Fort Pierce, Fla. in early July to go to the eastern Gulf of Mexico. The researchers used a...

  13. Comparative age and growth of common snook Centropomus undecimalis (Pisces: Centropomidae from coastal and riverine areas in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Martha A. Perera-Garcia

    2013-06-01

    Full Text Available Common snook Centropomus unidecimalis is an important commercial and fishery species in Southern Mexico, however the high exploitation rates have resulted in a strong reduction of its abundances. Since, the information about its population structure is scarce, the objective of the present research was to determine and compare the age structure in four important fishery sites. For this, age and growth of common snook were determined from specimens collected monthly, from July 2006 to March 2008, from two coastal (Barra Bosque and Barra San Pedro and two riverine (San Pedro and Tres Brazos commercial fishery sites in Tabasco, Mexico. Age was determined using sectioned saggitae otoliths and data analyzed by von Bertalanffy and Levenberg-Marquardt among others. Estimated ages ranged from 2 to 17 years. Monthly patterns of marginal increment formation and the percentage of otoliths with opaque rings on the outer edge demonstrated that a single annulus was formed each year. The von Bertalanffy parameters were calculated for males and females using linear adjustment and the non-linear method of Levenberg-Marquardt. The von Bertalanffy growth equations were FLt=109.21(1-e-0.21(t+0.57 for Barra Bosque, FLt=94.56(1-e-0.27(t+0.48 for Barra San Pedro, FLt=97.15(1-e-0.17(t+1.32 for San Pedro and FLt=83.77(1-e-0.26(t+0.49 for Tres Brazos. According to (Hotelling’s T², pEl robalo blanco Centropomus undecimalis representa un ingreso monetario significativo y un recurso alimentario para todas las comunidades rurales cercanas a su distribución. Se determinó la edad y crecimiento de esta especie. Los organismos se recolectaron mensualmente en los desembarcos de la pesca artesanal de las cooperativas de mayor contribución en la zona costera (Barra Bosque y San Pedro y ribereña (San Pedro y Tres Brazos entre julio 2006 y marzo 2008. La edad se determinó mediante otolitos seccionados. La edad estimada fue de 2 a 17 años. Mensualmente se estableció la

  14. Development and Application of Percent Annual Chance Coastal Inundation Maps to Support Decision-Making in the Northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, M. V.; Hagen, S. C.; Irish, J. L.; Yoskowitz, D.; Del Angel, D. C.

    2017-12-01

    Rising sea levels increase the vulnerability, exposure, probability, and thus risk associated with hurricane storm surge flooding across low-gradient coastal landscapes. In the U.S., flood risk assessments commonly employ the delineation of the 1% annual chance flood (100-year return period) that guide coastal policy and planning. As many coastal communities now include climate change effects on future development activities, the need to provide scientifically sound and scenario-based data products are becoming increasingly essential. Implementing bio-geo-physical models to study the effects of sea level rise (SLR) on coastal flooding under a variety of scenarios can be a powerful tool. However, model results alone are not appropriate for use by the broader coastal management community and thus must be further refined. For example, developing return period inundations maps or examining the potential economic damages are vital to translate scientific finding and extend their practicality to coastal resources managers, stakeholders, and governmental agencies. This work employs a collection of high-resolution wind-wave and hurricane storm surge models forced by a suite of synthetic storms to derive the 1% and 0.2% annual chance floodplain under four SLR scenarios (0.2, m, 0.5 m, 1.2 m, and 2.0 m) across the northern Gulf of Mexico (NGOM) coast, which include Mississippi, Alabama, and the Florida panhandle. The models represent the potential outlook of the coastal landscape for each of the scenarios and contains changes to the salt marsh, barrier islands, shoreline position, dune elevations, and land use land cover. Simulated surge data are fed into a hazard assessment tool that provides estimates of potential future damages and costs for each SLR scenario. Results provide evidence that the present 500-year floodplain becomes the 100-year floodplain under the 0.5 m SLR scenario by the end of the century along the Alabama and the Florida panhandle coast. Across

  15. Unexpected source of Fukushima-derived radiocesium to the coastal ocean of Japan

    Science.gov (United States)

    Sanial, Virginie; Buesseler, Ken O.; Charette, Matthew A.; Nagao, Seiya

    2017-12-01

    Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 109 g V/y) and extraction and combustion of fossil fuels (600 × 109 g V/y), humans are the predominant force in the geochemical cycle of V at Earth’s surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced—with about 40 × 109 g V/y to 50 × 109 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.

  16. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation.

    Science.gov (United States)

    Herrera-Silveira, Jorge A; Morales-Ojeda, Sara M

    2009-01-01

    The coastal environment of the Yucatan Peninsula (SE, Mexico) includes a wide variety of ecosystems ranging from mangroves to coral reefs, resulting in a heterogeneous landscape. Specifically, the marine system is characterized by environmental differences which respond to regional and local forcing functions such as marine currents and groundwater discharges (GD). Such functional characteristics were used here to define four subregions across the Yucatan coast and diagnose the health status of this coastal marine ecosystem. To achieve this goal, we conducted an analysis and integration of water quality variables, an eutrophic assessment, evaluated changes in submerged aquatic vegetation (SAV), and analyzed the community structure and distribution of harmful phytoplankton. The first step was to determine the reference values for each subregion based on data previously collected from 2002 to 2006 along the coast of Yucatan, 200m offshore. The trophic index (TRIX) and Canadian index for aquatic life (CCMEWQI) were used to diagnose each subregion and then the ASSETS approach was conducted for Dzilam and Progreso, sampling localities on each end of the health status continuum (those with the best and worst conditions). Overall, results indicated that the marine coastal ecosystem of Yucatan is in good condition; however, differences were observed between subregions that can be attributed to local forcing functions and human impacts. Specifically, the central region (zone HZII, Progreso-Telchac) showed symptoms of initial eutrophication due to nutrient inputs from human activities. The eastern region (zone HZ III, Dzilam-Las Bocas) showed a meso-eutrophic condition linked to natural groundwater discharges, while the other two subregions western (zone HZI Celestun-Palmar) and caribbean (zone HZ IV Ria Lagartos-El Cuyo) exhibited symptoms of oligo-mesotrophic condition. These findings may be considered baseline information for coastal ecosystem monitoring programs in

  17. Tide Gauge Records Reveal Improved Processing of Gravity Recovery and Climate Experiment Time-Variable Mass Solutions over the Coastal Ocean

    Science.gov (United States)

    Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.

    2018-05-01

    Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.

  18. Cybernetic group method of data handling (GMDH) statistical learning for hyperspectral remote sensing inverse problems in coastal ocean optics

    Science.gov (United States)

    Filippi, Anthony Matthew

    For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables

  19. Current, CTD, and other data from the YAQUINA and other platforms from the coastal waters of Washington/Oregon as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 1975-01-28 to 1975-09-01 (NODC Accession 7800403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current, CTD, and other data were collected from the YAQUINA and other platforms from the coastal waters of Washington/Oregon from 28 January 1975 to 01 September...

  20. Physical, chemical, and other data from bottle casts from the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 1973-07-11 to 1973-07-21 (NODC Accession 7601145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and other data were collected from bottle casts in the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON from 11 July 1973 to 21...

  1. A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, M. [Departamento de Meteorologia, Universidade Federal de Pelotas, Pelotas RS (Brazil)]. E-mail: marcelo_dourado@ufpel.edu.br; Pereira de Oliveira, A. [Departamento de Ciencias Atmosfericas, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, (Brazil)

    2008-01-15

    An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees Celsius S, 42 degrees Celsius 08' W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 m s-1, increases the atmospheric boundary layer in 214 m when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 m. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 m and 5.4 m for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts

  2. Comparative analysis of bacterial community-metagenomics in coastal Gulf of Mexico sediment microcosms following exposure to Macondo oil (MC252)

    KAUST Repository

    Koo, Hyunmin

    2014-09-10

    The indigenous bacterial communities in sediment microcosms from Dauphin Island (DI), Petit Bois Island (PB) and Perdido Pass (PP) of the coastal Gulf of Mexico were compared following treatment with Macondo oil (MC252) using pyrosequencing and culture-based approaches. After quality-based trimming, 28,991 partial 16S rRNA sequence reads were analyzed by rarefaction, confirming that analyses of bacterial communities were saturated with respect to species diversity. Changes in the relative abundances of Proteobacteria, Bacteroidetes and Firmicutes played an important role in structuring bacterial communities in oil-treated sediments. Proteobacteria were dominant in oil-treated samples, whereas Firmicutes and Bacteroidetes were either the second or the third most abundant taxa. Tenericutes, members of which are known for oil biodegradation, were detected shortly after treatment, and continued to increase in DI and PP sediments. Multivariate statistical analyses (ADONIS) revealed significant dissimilarity of bacterial communities between oil-treated and untreated samples and among locations. In addition, a similarity percentage analysis showed the contribution of each species to the contrast between untreated and oil-treated samples. PCR amplification using DNA from pure cultures of Exiguobacterium,  Pseudoalteromonas,  Halomonas and Dyadobacter, isolated from oil-treated microcosm sediments, produced amplicons similar to polycyclic aromatic hydrocarbon-degrading genes. In the context of the 2010 Macondo blowout, the results from our study demonstrated that the indigenous bacterial communities in coastal Gulf of Mexico sediment microcosms responded to the MC252 oil with altered community structure and species composition. The rapid proliferation of hydrocarbonoclastic bacteria suggests their involvement in the degradation of the spilt oil in the Gulf of Mexico ecosystem.

  3. Petrology and geochemistry of meta-ultramafic rocks in the Paleozoic Granjeno Schist, northeastern Mexico: Remnants of Pangaea ocean floor

    Science.gov (United States)

    Torres-Sánchez, Sonia Alejandra; Augustsson, Carita; Jenchen, Uwe; Rafael Barboza-Gudiño, J.; Alemán Gallardo, Eduardo; Ramírez Fernández, Juan Alonso; Torres-Sánchez, Darío; Abratis, Michael

    2017-08-01

    The Granjeno Schist is a meta-volcanosedimentary upper Paleozoic complex in northeastern Mexico. We suggest different tectonic settings for metamorphism of its serpentinite and talc-bearing rocks based on petrographic and geochemical compositions. According to the REE ratios (LaN/YbN = 0.51 -20.0 and LaN/SmN = 0.72-9.1) and the enrichment in the highly incompatible elements Cs (0.1 ppm), U (2.8 ppm), and Zr (60 ppm) as well as depletion in Ba (1 - 15 ppm), Sr (1 -184 ppm), Pb (0.1 -14 ppm), and Ce (0.1 -1.9 ppm) the rocks have mid-ocean ridge and subduction zones characteristics. The serpentinite contains Al-chromite, ferrian chromite and magnetite. The Al-chromite is characterized by Cr# of 0.48 to 0.55 suggesting a MORB origin, and Cr# of 0.93 to 1.00 for the ferrian chromite indicates a prograde metamorphism. We propose at least two serpentinization stages of lithospheric mantle for the ultramafic rock of the Granjeno Schist, (1) a first in an ocean-floor environment at sub-greenschist to greenschist facies conditions and (2) later a serpentinization phase related to the progressive replacement of spinel by ferrian chromite and magnetite at greenschist to low amphibolite facies conditions during regional metamorphism. The second serpentinization phase took place in an active continental margin during the Pennsylvanian. We propose that the origin of the ultramafic rocks is related to an obduction and accretional event at the western margin of Pangea.

  4. Petrology and geochemistry of meta-ultramafic rocks in the Paleozoic Granjeno Schist, northeastern Mexico: Remnants of Pangaea ocean floor

    Directory of Open Access Journals (Sweden)

    Torres-Sánchez Sonia Alejandra

    2017-08-01

    Full Text Available The Granjeno Schist is a meta-volcanosedimentary upper Paleozoic complex in northeastern Mexico. We suggest different tectonic settings for metamorphism of its serpentinite and talc-bearing rocks based on petrographic and geochemical compositions. According to the REE ratios (LaN/YbN = 0.51 –20.0 and LaN/SmN = 0.72–9.1 and the enrichment in the highly incompatible elements Cs (0.1 ppm, U (2.8 ppm, and Zr (60 ppm as well as depletion in Ba (1 – 15 ppm, Sr (1 –184 ppm, Pb (0.1 –14 ppm, and Ce (0.1 –1.9 ppm the rocks have mid-ocean ridge and subduction zones characteristics. The serpentinite contains Al-chromite, ferrian chromite and magnetite. The Al-chromite is characterized by Cr# of 0.48 to 0.55 suggesting a MORB origin, and Cr# of 0.93 to 1.00 for the ferrian chromite indicates a prograde metamorphism. We propose at least two serpentinization stages of lithospheric mantle for the ultramafic rock of the Granjeno Schist, (1 a first in an ocean-floor environment at sub-greenschist to greenschist facies conditions and (2 later a serpentinization phase related to the progressive replacement of spinel by ferrian chromite and magnetite at greenschist to low amphibolite facies conditions during regional metamorphism. The second serpentinization phase took place in an active continental margin during the Pennsylvanian. We propose that the origin of the ultramafic rocks is related to an obduction and accretional event at the western margin of Pangea.

  5. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  6. Assimilation of coastal acoustic tomography data using an unstructured triangular grid ocean model for water with complex coastlines and islands

    Science.gov (United States)

    Zhu, Ze-Nan; Zhu, Xiao-Hua; Guo, Xinyu; Fan, Xiaopeng; Zhang, Chuanzheng

    2017-09-01

    For the first time, we present the application of an unstructured triangular grid to the Finite-Volume Community Ocean Model using the ensemble Kalman filter scheme, to assimilate coastal acoustic tomography (CAT) data. The fine horizontal and vertical current field structures around the island inside the observation region were both reproduced well. The assimilated depth-averaged velocities had better agreement with the independent acoustic Doppler current profiler (ADCP) data than the velocities obtained by inversion and simulation. The root-mean-square difference (RMSD) between depth-averaged current velocities obtained by data assimilation and those obtained by ADCPs was 0.07 m s-1, which was less than the corresponding difference obtained by inversion and simulation (0.12 and 0.17 m s-1, respectively). The assimilated vertical layer velocities also exhibited better agreement with ADCP than the velocities obtained by simulation. RMSDs between assimilated and ADCP data in vertical layers ranged from 0.02 to 0.14 m s-1, while RMSDs between simulation and ADCP data ranged from 0.08 to 0.27 m s-1. These results indicate that assimilation had the highest accuracy. Sensitivity experiments involving the elimination of sound transmission lines showed that missing data had less impact on assimilation than on inversion. Sensitivity experiments involving the elimination of CAT stations showed that the assimilation with four CAT stations was the relatively economical and reasonable procedure in this experiment. These results indicate that, compared with inversion and simulation, data assimilation of CAT data with an unstructured triangular grid is more effective in reconstructing the current field.

  7. Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change

    Science.gov (United States)

    Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.

    2016-12-01

    To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  8. Oceanographic data collected from Seaside High School by Center for Coastal Margin Observation and Prediction (CMOP) and assembled by Northwest Association of Networked Ocean Observation Systems (NANOOS) in the Columbia River Estuary and North East Pacific Ocean from 2004-02-03 to 2008-03-19 (NCEI Accession 0162187)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162187 contains navigational and physical data collected at Seaside High School, a fixed station in the Coastal Waters of Washington/Oregon. These...

  9. CTD Niskin bottle data from the R/V WECOMA in the North Pacific Ocean in support of the National Science Foundation Coastal Ocean Processes program River Influences on Shelf Ecosystems (NSF CoOP RISE), cruise RISE05W3, from 20040708 to 20060613 (NODC Accession 0051411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program was designed to determine the impact of large river discharge on coastal shelf ecosystems. Macronutrient and chlorophyll data were collected as...

  10. Temperature profile and other data collected using bottle and CTD casts from the MELVILLE in the Coastal Waters of California for the International Decade of Ocean Exploration / Geochemical Ocean Section Study (IDOE/GEOSECS) project from 19 May 1979 to 23 May 1979 (NODC Accession 8800233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data, temperature, and other data were collected using CTD and bottle casts from MELVILLE from the Coastal Waters of California from May 19,...

  11. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  12. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  13. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  14. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Directory of Open Access Journals (Sweden)

    Julia A F Langer

    Full Text Available The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta. Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  15. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Science.gov (United States)

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  16. New Hampshire / Southern Maine Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  17. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA is regulated by physical and biogeochemical processes on multiple timescales.

    Directory of Open Access Journals (Sweden)

    Zackary I Johnson

    Full Text Available Increasing atmospheric carbon dioxide (CO2 from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days is further influenced by water mass movement (e.g. tides and stochastic events (e.g. storms. Both annual (~0.3 units and diurnal (~0.1 units variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and

  18. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.; Murray, Christopher S.; Feldheim, Kevin A.; DiBattista, Joseph; Garant, Dany; Gobler, Christopher J.; Chapman, Demian D.; Baumann, Hannes

    2015-01-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive

  19. Validation Test Report for the 1/8 deg Global Navy Coastal Ocean Model Nowcast/Forecast System

    National Research Council Canada - National Science Library

    Barron, Charlie N; Kara, A. B; Rhodes, Robert C; Rowley, Clark; Smedstad, Lucy F

    2007-01-01

    .... Global NCOM supports predictions of ocean currents, temperatures, salinity, sea surface height, and sound speed both directly and by providing initial and boundary conditions for higher-resolution nested ocean models...

  20. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Science.gov (United States)

    Nelson, Joanna L; Zavaleta, Erika S

    2012-01-01

    Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4)NO(3))-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.