WorldWideScience

Sample records for mev deuteron energy

  1. Deuteron stripping on beryllium target in the 100-2300 MeV energy range

    International Nuclear Information System (INIS)

    Lecolley, J.F.; Varignon, C.; Durand, D.; Le Brun, C.; Lecolley, F.R.; Lefebvres, F.; Louvel, M.; Thun, J.; Borne, F.; Martinez, E.; Menard, S.; Pras, P.; Boudard, A.; Duchazeaubeneix, J.C.; Durand, J.M.; Frehaut, J.; Hanappe, F.; Ledoux, X.; Legrain, R.; Leray, S.; Milleret, G.; Patin, Y.; Stuttge, L.; Terrien, Y.

    1999-01-01

    Cross sections for stripping and dissociation of deuterons interacting with Be targets in the 100-2300 MeV energy range have been measured. Comparisons with model calculations suggest a dominant contribution of the stripping process. It is also shown that the deuteron break-up cross section exhibits the same energy dependence as the nucleon-nucleon cross section. (orig.)

  2. Target asymmetry measurement of deuteron photodisintegration at a photon energy of 550 MeV

    International Nuclear Information System (INIS)

    Althoff, K.H.; Anton, G.; Bock, B.; Bour, D.; Erbs, P.; Ferber, W.; Gelhausen, H.; Haertel, U.; Havenith, W.; Jahnen, T.; Kaufmann, H.P.; Kaul, O.; Luecking, B.; Menze, D.; Meyer, W.; Miczaika, T.; Rennings, K.; Riechert, H.; Roderburg, E.; Ruhm, W.; Schenuit, E.; Schilling, E.; Schwille, W.; Sternal, G.; Sundermann, D.; Thiel, W.; Thiesmeyer, D.; Wagener, K.

    1984-01-01

    The target asymmetry of the deuteron photodisintegration was measured at a photon energy of 550+-50 MeV and at proton center-off-mass angles between 25 and 155 degrees. D-butanol and ND 3 were used as target material yielding a maximum deuteron polarization of 41%. Proton and neutron were detected in coincidence. The data show a structure which cannot be described by the existing analyses. (orig.)

  3. Alpha-deuteron elastic scattering around 40 MeV

    International Nuclear Information System (INIS)

    De, A.; Karmakar, S.; Roychaudhury, T.; Dasgupta, S.S.; Chintalapudi, S.N.; Ismail, M.; Banerjee, S.R.; Divatia, A.S.

    1989-01-01

    Differential cross section for alpha-deuteron elastic scattering has been measured at several energies around 40 MeV incident alpha. General behaviour of angular distributions remaining close to that predicted by Faddeev type calculations, a sharp energy dependence is observed. (author). 8 refs

  4. The thick-target 9Be(d,n) neutron spectra for deuteron energies between 2.6 and 7.0-MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1991-11-01

    The measurement of the zero deg. neutron spectra and yields from deuterons incident on thick beryllium metal targets is described. 235 U and 238 U fission ion chambers were used as neutron detectors to span the neutron energy range above 0.05-MeV with a time resolution of ≤ 3 nanosec. Measurements were made for incident deuteron energies from 2.6 to 7.0-MeV, at 0.4-MeV intervals, using time-of-flight techniques with flight paths of 2.7 and 6.8 meters. The results are presented in graphical form and in tables

  5. Calculation of nucleon production cross sections for 200 MeV deuterons

    International Nuclear Information System (INIS)

    Ridikas, D.; Mittig, W.

    1997-01-01

    The differential neutron and proton production cross sections have been investigated for 200 MeV incident deuterons on thin and thick 9 Be, 56 Fe and 238 U targets using the LAHET code system. The examples of the deuteron beam on different target materials are analysed to determine the differences of converting the energy of the beam into the nucleons produced. Both double differential, energy and angle integrated nuclear production cross sections are presented together with the average nucleon multiplicities per incident deuteron. (K.A.)

  6. Calculation of nucleon production cross sections for 200 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, D.; Mittig, W.

    1997-12-31

    The differential neutron and proton production cross sections have been investigated for 200 MeV incident deuterons on thin and thick {sup 9}Be, {sup 56}Fe and {sup 238}U targets using the LAHET code system. The examples of the deuteron beam on different target materials are analysed to determine the differences of converting the energy of the beam into the nucleons produced. Both double differential, energy and angle integrated nuclear production cross sections are presented together with the average nucleon multiplicities per incident deuteron. (K.A.). 31 refs.

  7. Measurement of neutron activation cross sections in the energy range between 2 and 7 MeV by using a Ti-deuteron target and a deuteron gas target

    Energy Technology Data Exchange (ETDEWEB)

    Senga, T.; Sakane, H.; Shibata, M.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Kasugai, Yoshimi; Ikeda, Yujiro; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    Using a Ti-deuteron target in the neutron energy range between 2 and 4.5 MeV and a deuteron gas target between 4.5 and 7 MeV, mono-energetic neutrons could be generated enough for activation cross section measurements. The KN-3750 Van de Grraff accelerator at Nagoya University and the Fusion Neutronics Source (FNS) at Japan Atomic Energy Research Institute (JAERI) were used. Preliminary results of activation cross sections were obtained for reactions of {sup 27}Al(n,p){sup 27}Mg, {sup 47}Ti(n,p){sup 47}Sc, {sup 58}Ni(n,p){sup 58}Co. The evaluation data of JENDL-3.2 showed reasonable agreement with our results. (author)

  8. The 270 MeV deuteron beam polarimeter at the Nuclotron Internal Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Kurilkin, P.K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Ladygin, V.P., E-mail: vladygin@jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Uesaka, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Suda, K. [RIKEN Nishina Center, Saitama (Japan); Gurchin, Yu.V.; Isupov, A.Yu. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Itoh, K. [Department of Physics, Saitama University, Saitama (Japan); Janek, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Physics Department, University of Zilina, 010 26 Zilina (Slovakia); Karachuk, J.-T. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Advanced Research Institute for Electrical Engineering, Bucharest (Romania); Kawabata, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Khrenov, A.N.; Kiselev, A.S.; Kizka, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kliman, J. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia); Krasnov, V.A.; Livanov, A.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Nuclear Research, Moscow (Russian Federation); Maeda, Y. [Kyushi University, Hakozaki (Japan); Malakhov, A.I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Matousek, V.; Morhach, M. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia)

    2011-06-21

    A deuteron beam polarimeter has been constructed at the Internal Target Station at the Nuclotron of JINR. The polarimeter is based on spin-asymmetry measurements in the d-p elastic scattering at large angles and the deuteron kinetic energy of 270 MeV. It allows to measure vector and tensor components of the deuteron beam polarization simultaneously.

  9. Experimental study of the deuteron induced deuteron break-up at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Cocu, F.; Ambrosino, G.; Guerreau, D.; Lachkar, J.

    1974-07-01

    The quasi-free scattering process has been studied from the d + D -> n + p + D reaction at 6 deuteron energies between 6.77 MeV to 11.7 MeV in steps of 1 MeV. Coincident events between neutron and charged-particle pulses (emitted protons or deuterons) have been recorded at angles of {theta}{sub p} = {theta}{sub d} = 19 deg 5 and {theta}{sub n} = 330 deg. Some calculations using the plane wave approximation account for the shape of the experimental cross sections but not for their magnitude. Two kinds of nucleon-nucleon forces are used and discussed.

  10. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  11. Confinement of 2,4 MeV deuterons by plasmoids and focalization of electron beams in plasma focus discharges

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.; Prior, W.; Feugeas, J.; Bortolotti, A.

    1982-01-01

    A detailed analysis has been completed on the internal structure of ions and electron beams which are efected, along the system axis, in opposite directions (0 0 and 180 0 ). An image (contact print) of plasmoids which emit MeV deuterons is formed by the deuteron emission and it is revealed by etching deuteron tracks in a target of plastic material (CR-39). Ion-imaging with different energy filters discriminates between tracks of plasmoid ions and tracks of charged products of D-D fusion reactions. Ions-imaging can also discriminate plasmoid deuterons from MeV deuterons of a directed beam. (L.C.) [pt

  12. Fast neutron distributions from Be and C thick targets bombarded with 80 and 160 MeV deuterons

    International Nuclear Information System (INIS)

    Pauwels, N.; Laurent, H.; Clapier, F.; Brandenburg, S.; Beijers, J. P .M.; Zegers, R. G. T.; Lebreton, H.; Saint-Laurent, M.G.; Mirea, M.

    2001-01-01

    Production of fast neutron studies have come to the fore in the past few years because of the great interest for the possible applications of induced fission to produce neutron rich ion beams. In this context, the main objective of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) and PARRNe (Production d'Atomes Radioactifs Riches en Neutrons) R and D projects is the investigation of the feasibility and of the optimum parameters for a neutron rich isotope source. Special attention is dedicated to the energy and angular distributions of the neutrons obtained through deuteron break--up in different types of converters and different incident energies. Analysis and modelling of such behaviors, together with the study of the yields of neutron induced fission, can be used to optimize the productivity of the fissioning target its geometry and designing it accordingly. The present report continues our previous studies realised for 17, 20, 28 and 200 MeV deuteron energies and it is focused on deuteron incident energies of 80 and 160 MeV. In the experiment, the double differential cross section for neutron production induced by 80 and 160 MeV deuterons impinging on thick C and Be targets, in which the incident deuterons were complete stopped, have been measured. The energy of the neutrons was determined from the time--of--flight (TOF) measurement. To obtain an energy resolution of about 4% for the fastest, forward--emitted neutrons, which have approximately beam velocity, the length of the flightpath for the detectors at angles up to 30 angle was chosen to be 6 m. At backward angles, where the neutron energies are lower, a shorter flightpath was chosen. A schematic drawing of the setup is shown. A 100 mm thick Be target and a 70 mm thick C target were used. Results are exemplified with the angular and energy distributions of neutron obtained for Be target at 80 MeV. (authors)

  13. Activation cross sections of deuteron induced reactions on niobium in the 30–50 MeV energy range

    International Nuclear Information System (INIS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A.V.

    2016-01-01

    Highlights: • Deuteron induced nuclear reactions on natural niobium up to 50 MeV. • Stacked foil irradiation technique. • Comparison of results with the ALICE-D, EMPIRE-D and TENDL-2015 calculations. • Application of radioisotopes in medicine and industry. - Abstract: Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of "9"3Nb(d,x)"9"3"m","9"0Mo, "9"2"m","9"1"m","9"0Nb, "8"9","8"8Zr and "8"8","8"7"m","8"7"gY in the energy range of 30–50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  14. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, Philippe

    2004-04-01

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects.

  15. Determination of the light response of BC-404 plastic scintillator for protons and deuterons with energies between 1 and 11 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Saraf, S.K.; Brient, C.E.; Egun, P.M.; Grimes, S.M.; Mishra, V.; Pedroni, R.S.

    1988-05-10

    The response of BC-404 plastic scintillator is measured up to 11 MeV for protons and up to 8 MeV for deuterons using a time-of-flight spectrometer. It is shown that the response is nonlinear in this energy range and can be described very well using a four-term polynomial in energy. Earlier response curves which were extrapolated from high energy data and from interpolation of low energy data at widely separated energies are nearly linear in the low energy region. A comparison has been made between our new measured data and the existing curves.

  16. Deuterium microscopy using 17 MeV deuteron–deuteron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Reichart, Patrick, E-mail: patrick.reichart@unibw.de; Moser, Marcus; Greubel, Christoph; Peeper, Katrin; Dollinger, Günther, E-mail: guenther.dollinger@unibw.de

    2016-03-15

    Using 17 MeV deuterons as a micrometer focused primary beam, we performed deuterium microscopy by using the deuteron–deuteron (dd) scattering reaction. We describe our new box like detector setup consisting of four double sided silicon strip detectors (DSSSD) with 16 strips on each side, each covering up to 0.5 sr solid angle for coincidence detection. This method becomes a valuable tool for studies of hydrogen incorporation or dynamic processes using deuterium tagging. The background from natural hydrocarbon or water contamination is reduced by the factor 150 ppm of natural abundance of deuterium in hydrogen. Deuterium energies of up to 25 MeV, available at the microprobe SNAKE, are ideal for the analysis of thin freestanding samples so that the scattered particles are transmitted to the detector. The differential cross section for the elastic scattering reaction is about the same as for pp-scattering (~100 mb/sr). The main background due to nuclear reactions is outside the energy window of interest. Deuteron–proton (dp) scattering events give an additional signal for hydrogen atoms, so the H/D-ratio can be monitored in parallel. A deuterium detection limit due to accidental coincidences of 3 at-ppm down to less than 1 at-ppm is demonstrated on deuterated polypropylen sheets as well as thick polycarbonate sheets after various stages of coincidence filtering that is possible with our granular detector.

  17. Energy dependence of the cross section of fast deuteron knock-out from Li, Be, and C by 380 to 665 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, V I; Kosarev, G E; Reshetnikov, G P; Savchenko, O V; Tesh, Z

    1974-12-31

    The high energy parts of the spectra of fast deuterons, which are knocked out from Li, Be and C targets by protons at a 5.5 deg lab. angle with proton energies of 666, 578, 484 and 382 MeV were measured. The cross sections of quasi-elastic deuteron knock-out obtained are compared with the corresponding cross sections of elastic pd-scattering at energies mentioned above. The evaluations of the effective number of two-nucleon clusters are discussed, which have been obtained taking into account (in the Glauber approximation) the incident proton and knocked-out deuteron interactions with nuclear nucleons. The results show the common behavior of the scattering mechanism responsible for elastic pd- and quasi-elastic proton backward scattering with large momentum transfer to two-nucleon clusters. The energy dependence of the deuteron production cross section at the energy kinematically corresponding to the p + N yields d + pi process on tanget nucleons is close to that of the cross section for the p + p yields d + pi /sup +/ process. (auth)

  18. A miniature small size 3 MeV deuteron linear accelerator

    International Nuclear Information System (INIS)

    Baranov, L.N.; Bryzgalov, G.A.; Verbovskij, V.V.; Kovpak, N.E.; Onoprienko, V.T.; Papkovich, V.G.; Khizhnyak, N.A.; Shulika, N.G.; Yashin, V.P.

    1975-01-01

    Basic characteristics are presented of the small-size linear deuteron accelerator for 3 MeV, the accelerating system of which operates at H-wave. It is shown that the usage of such accelerating systems makes it possible to reduce the resonator volume by more than 30 times, whereas the capacity of the evacuating devices as well as the total HF supply power are decreased. Owing to a relatively large wave length, particle injection energy may be reduced to 100-150 keV

  19. The investigation of deuteron production double differential cross section induced by 392 MeV protons

    International Nuclear Information System (INIS)

    Kin, Tadahiro; Nakano, Masahiro; Imamura, Minoru

    2006-01-01

    We have investigated the deuteron productions from 392 MeV proton induced reaction for target nuclei of 12 C, 27 Al, 93 Nb. Deuteron production double differential cross sections were determined over a broad energy range and scattered angles from 20 to 105 degrees in laboratory system. Those spectra were compared with two theoretical models; Quantum Molecular Dynamics model and Intranuclear Cascade model. We developed the code of Intra Nuclear Cascade model and we've got good results to reproduce the experimental data. (author)

  20. Deuteron breakup mechanism in the intermediate-energy region

    International Nuclear Information System (INIS)

    Divadeenam, M.; Ward, T.E.

    1991-01-01

    In an earlier investigation, we have explored the possibility of explaining the deuteron breakup mechanism in terms of the Udagawa and Tannura (UT) formalism of the breakup-fusion process. The experimental doubly differential data were very well reproduced for the test case studies. However, the application of UT formalism of the spirit of DWBA involves the use of optical-model parameters for different nuclei and at different energies. The optical model parameters are not always unique. In the present study we investigate the deuteron breakup mechanism in terms of the semiclassical models of Serber (for the nuclear interaction part) and Dancoff (for the electromagnetic dissociation). In the case of Serber model the modification due to the finite range of the deuteron and the Glauber correction for the diffractive disassociation are considered. The modified deuteron breakup cross section either for the (d,p) or the (d,n) process is proportional to the product of the target radius and the deuteron radius (R target · R deuteron ). The predicted proton/neutron spectrum is centered around 1/2 E d and forward peaked. The Coulomb dissociation of deuteron is attributed to the deuteron dipole excitation in the presence of the nuclear Coulomb field. The neutron/proton spectrum, resulting from the Coulomb breakup of the deuteron, is highly forward peaked and also centered around 1/2 E d . The systematics of the deuteron breakup neutron/proton spectra are investigated for medium to heavy target nuclei at 50--200 MeV deuteron energies. 10 refs., 4 figs

  1. Study of inclusive proton spectra from 20 MeV deuteron breakup by bismuth

    International Nuclear Information System (INIS)

    Badiger, N.M.; Hallur, B.R.; Madhusoodhanan, T.; Sathyavathiamma, M.P.; Puttaswamy, N.G.; Darshan, V.P.; Sharma, H.; Chintalapudi, S.N.

    1997-01-01

    The breakup of deuteron into proton and neutron has been studied earlier to understand the breakup mechanism. Inclusive measurements show the expected broad bumps near the beam velocity. In the present experiment, the breakup of 20 MeV deuterons by bismuth target has been investigated

  2. On the theory for Coulomb break-up of deuterons by atomic nuclei at low energy

    International Nuclear Information System (INIS)

    Grantsev, V.I.; Evlanov, M.V.

    1982-01-01

    The influence of a finite range of nuclear forces between nucleons in the deuteron on angular and energy distributions for products of deuteron disintegration by the Coulomb field of nucleus is investigated. This effect leads to the difference of differential cross sections of Coulomb deuteron disintegration from differential cross sections obtained in the framework of the approximation of the zero-radius interaction. Angular and energy dependences of differential cross sections of deuteron disintegration with the energy of 13.6 MeV on the 208 Pb nucleus are given [ru

  3. Reorientation effects for 52 MeV vector polarized deuterons

    International Nuclear Information System (INIS)

    Nurzynski, J.; Kihm, T.; Knopfle, K.T.; Mairle, G.; Clement, H.

    1987-01-01

    The differential cross sections and the vector analysing powers were measured for the elastic and inelastic scattering of 52 MeV vector polarized deuterons from 20 Ne, 22 Ne, 26 Mg, 28 Si, 32 S, 34 S, 36 Ar and 40 Ar nuclei. Coupled channels analysis was carried out using an axially symmetric rotational model with either prolate or oblate quadrupole deformations for each isotope. Calculations assuming harmonic vibrator model were also carried out. In general, reorientation effects were found to be weak. A global optical model potential containing an imaginary spin-orbit component was found to be the most suitable in describing the experimental data at this energy

  4. The local distribution of radiation quality of a collimated fast neutron beam from 15 MeV deuterons on beryllium

    International Nuclear Information System (INIS)

    Fidorra, J.; Booz, J.

    1978-01-01

    The local distribution of radiation quality (ysub(F), ysub(D)) of a collimated fast neutron beam from 14 MeV deuterons on Beryllium was studied with a spherical 1/2 inch EG and G proportional counter simulating a diameter of 2μm. The deuterons were accelerated by the compact cyclotron CV-28 of the Kernforschungsanlage Juelich. The collimator was constructed by the Cyclotron Corporation. The mean neutron energy was 6 MeV. The measurements were performed in air and in a water phantom at a target skin distance of 125 cm. The energy deposition spectra of fast neutrons obtained at various positions were separated into three components of different radiation quality: the gamma component, the recoil proton component, and the heavy ion component

  5. Determination of neutron spectra formed by 40-MeV deuteron bombardment of a lithium target with multi-foil activation technique

    CERN Document Server

    Maekawa, F; Wada, M; Wilson, P P H; Ikeda, Y

    2000-01-01

    Neutron flux spectra at an irradiation field produced by a 40-MeV deuteron bombardment on a thick lithium-target at Forschungszentrum Karlsruhe, Germany, have been determined by the multi-foil activation technique. Twenty-seven dosimetry reactions having a wide energy range of threshold energies up to 38 MeV were employed as detectors for the neutron flux spectra extending to 55 MeV. The spectra were adjusted with the SAND-II code with the experimental reaction rates based on an iterative method. The adjusted spectra validated quantitatively the Monte Carlo deuteron-lithium (d-Li) neutron source model code (M sup C DeLi) which was used to calculate initial guess spectra and also has been used for IFMIF nuclear designs. Accuracy of the adjusted spectra was approx 10% that was suitable for successive integral tests of activation cross section data.

  6. Deuteron-nucleus scattering at Ed = 34 and 80 MeV

    International Nuclear Information System (INIS)

    Rahman, M.A.; Kumar Sarker, S.; Sen Gupta, H.M.

    1992-03-01

    34 and 80 MeV deuterons scattered elastically from some nuclei between 12 C and 208 Pb are analysed using the 3-parameter strong absorption model due to Frahn and Venter. The interaction radius, surface diffuseness and the reaction cross section have been determined from the best fit values of T,Δ and μ. The inelastic scattering of deuterons from even-even nuclei 12 C, 58 Ni, 68 Zn and 120 Sn exciting to 2 + state are also analysed giving the deformation parameter. (author). 9 refs, 5 figs, 3 tabs

  7. Proton continuum spectra from deuteron break-up at 56 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, N.; Kondo, M.; Shimizu, A.; Saito, T.; Nagamachi, S. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Sakaguchi, H.; Ohtani, F.; Goto, A.; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Proton continuum spectra from deuteron break-up have been measured for 14 elements at 56 MeV. Each spectrum shows a prominent bump at forward angles. Projectile break-up calculations reproduce well the spectral shapes and the angular dependence of the bump spectra. The break-up cross section is nearly proportional to (A sup(1/3) + 0.8)/sup 2/. The total break-up cross section amounts to 24 - 35% of the deuteron total reaction cross section.

  8. Measurements of neutron-deuteron breakup cross sections at 13.0 MeV

    International Nuclear Information System (INIS)

    Setze, H.R.; Howell, C.R.; Tornow, W.

    1993-01-01

    The discrepancy between low-energy nucleon-deuteron breakup cross-section data and calculations, which do not include three-nucleon forces, has been cited as a possible signature of the influence of three-nucleon forces section. The comparison between data and calculations is difficult to interpret because there are significant disagreements between the data. To help clarify the situation we have made kinematically complete cross-section measurements for n-d breakup at an incident neutron energy of 13.0 MeV. The experimental techniques and data analysis method will be described. Preliminary results will be presented in comparison to calculations and previous data

  9. Deuteron interaction with 124Sn nuclei at sub-barrier energies

    Directory of Open Access Journals (Sweden)

    Yu.N. Pavlenko

    2015-04-01

    Full Text Available The measurements of cross sections for deuteron elastic scattering and (d,p reaction on 124Sn nuclei have been performed with aim to study the features of sub-barrier deuteron interaction with heavy nuclei. Experimental data were obtained on the electrostatic Tandem accelerator EGP-10K of the Institute for Nuclear Research (Kyiv at the deuteron beam energies Ed = 4.0; 5.0 and 5.5 MeV. Cross sections of deuteron elastic scattering were calculated in approach where the deuteron interaction potential with heavy nuclei at sub-barrier energies has been constructed in the framework of single folding model using the complex dynamic polarization potential. It is shown that the account of finite deuteron size leads to the increasing the nuclear potential in outer region of interaction and significantly improves the description of the experimental data. The calculations of elastic scattering cross sections were performed without any variations of the nuclear potential parameters. The analysis of measured integral cross sections of the 124Sn(d,p reaction and calculated cross sections of deuteron breakup reaction 124Sn(d,pn124Sn shows the dominant contribution of the neutron transfer reaction in the processes of the formation of protons and elastic scattering cross sections.

  10. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Secondary electron emission from 0.5--2.5-MeV protons and deuterons

    International Nuclear Information System (INIS)

    Thornton, T.A.; Anno, J.N.

    1977-01-01

    Measurement of the secondary electron currents leaving Al, V, Fe, 316 stainless steel, Nb, and Mo foils undergoing 0.5--2.5-MeV proton and deuteron bombardment were made to determine the secondary electron emission ratios for these ions. The measured secondary electron yields were of the order of 1.0, with the deuterons producing generally higher yields than the protons

  12. Neutron-deuteron analyzing power data at 19.0 MeV

    International Nuclear Information System (INIS)

    Weisel, G. J.; Tornow, W.; Crowe, B. J. III; Crowell, A. S.; Esterline, J. H.; Howell, C. R.; Kelley, J. H.; Macri, R. A.; Pedroni, R. S.; Walter, R. L.; Witala, H.

    2010-01-01

    Measurements of neutron-deuteron (n-d) analyzing power A y (θ) at E n =19.0 MeV are reported at 16 angles from θ c.m. =46.7 to 152.0 deg. The objective of the experiment is to better characterize the discrepancies between n-d data and the predictions of three-nucleon calculations for neutron energies above 16.0 MeV. The experiment used a shielded neutron source, which produced polarized neutrons via the 2 H(d-vector,n-vector) 3 He reaction, a deuterated liquid scintillator center detector (CD) and liquid-scintillator neutron side detectors. A coincidence between the CD and the side detectors isolated the elastic-scattering events. The CD pulse height spectrum associated with each side detector was sorted by using pulse-shape discrimination, time-of-flight techniques, and by removing accidental coincidences. A Monte Carlo computer simulation of the experiment accounted for effects due to finite geometry, multiple scattering, and CD edge effects. The resulting high-precision data (with absolute uncertainties ranging from 0.0022 to 0.0132) have a somewhat lower discrepancy with the predictions of three-body calculations, as compared to those found at lower energies.

  13. Excitation functions of deuteron induced nuclear reactions on natMo up to 21 MeV. An alternative route for the production of 99mTc and 99Mo

    International Nuclear Information System (INIS)

    Sonck, M.; Hermanne, A.; Takacs, S.; Szelecsenyi, F.; Tarkanyi, F.

    1999-01-01

    Cross sections of deuteron induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 92m,95 Nb-, 93,94g,94m,95g,95m,96,99m Tc- and 99 Mo were measured up to 21 MeV deuteron energy by using stacked foil technique and activation method. The goal of this work was to study the production possibility of the medical important 94m,99m Tc- and 99 Mo-nuclides. Production of 99m Tc and 99 Mo is of importance for their use in nuclear medicine, whereas 94m Tc is of interest regarding quantification of kinetics of well-established 99m Tc-radiopharmaceuticals. The production possibilities of 99m Tc and 99 Mo above 20 MeV deuteron energies up to 50 MeV were estimated and was found that beside the proton induced reactions the deuteron induced reactions on enriched molybdenum target are very promising. (author)

  14. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons; Produccion de {sup 62} Cu y {sup 64} Cu con deuterones de 4,2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Mario; Morales, J R; Riquelme, H O [Chile Univ., Santiago (Chile). Facultad de Ciencias. Dept. de Fisica

    1997-12-31

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, {beta}{sup +}) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 {+-} 0,1 MeV energy has been obtained total yields of 1,103 {+-} 0,011 {mu}Cl/{mu}Ah medium for 62 Cu and of 0,148 {+-} 0,015 {mu}Cl/{mu}Ah for 64 Cu.

  15. Neutron-deuteron analyzing power data at En = 21 MeV and the energy dependence of the three-nucleon analyzing power puzzle

    Science.gov (United States)

    Weisel, G. J.; Tornow, W.; Esterline, J. H.

    2015-08-01

    We present measurements of n-d analyzing power, {A}y(θ ), at En = 21.0 MeV. The experiment produces neutrons via the 2H(d, n)3He reaction and uses a deuterated liquid-scintillator center detector and six pairs of liquid-scintillator neutron side detectors. Elastic neutron scattering events are identified by using time-of-flight techniques and by setting a gate in the center-detector pulse-height spectrum. Beam polarization is monitored by using a high-pressure helium gas scintillator. The n-d {A}y(θ ) data at 21.0 MeV show a significant discrepancy with the results of rigorous three-body calculations and are consistent with data taken previously by us at 19.0 and 22.5 MeV. We review the overall energy dependence of the three-nucleon analyzing power puzzle in neutron-deuteron elastic scattering, using the best data available. We find that the relative difference between calculations and data is nearly constant at 25% up to En = 22.5 MeV.

  16. Tensor analyzing powers in deuteron--proton elastic scattering and the breakup reaction at 45.4 MeV

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1978-08-01

    Recently the tensor analyzing powers in vector d + p elastic scattering and in the breakup reaction at E/sub d/ = 45.4 MeV were measured. The elastic results now establish a rather complete set of polarization data in nucleon--deuteron scattering at E/sub N/ = 22.7 MeV, which consists of the proton analyzing power, the deuteron vector and tensor analyzing powers, and vector polarization transfer measurements, as well. 8 references

  17. Neutron production by deuteron breakup on 4He

    International Nuclear Information System (INIS)

    Schmidt, D.

    1994-10-01

    Neutron spectra of the deuteron breakup on 4 He have been measured at eight deuteron incident energies between 4.7 MeV and 12.1 MeV using the TOF method. The measurements carried out at angles of 0 deg, 5 deg and 10 deg were completed by measurements at 2.5 deg and 7.5 deg at some energies. The cross sections for these angles were reliably interpolated for the other energies. The normalization to absolute cross sections was carried out by reference to the well known data of the DD reaction. When a relative energy scale is introduced the spectral shape is almost angle-independent. It is shown that the use of the deuteron breakup on 4 He can considerably refine the correction for the deuteron breakup on deuterium in scattering experiments made with Monte Carlo simulations. (orig.)

  18. Nuclear photofissility in the quasi-deuteron energy region

    International Nuclear Information System (INIS)

    Paiva, E. de; Tavares, O.A.P.; Terranova, M.L.

    2001-04-01

    A two hundred experimental photofissility data obtained in the quasi-deuteron region (∼ 30 - 140 MeV) of photonuclear absorption covering the target nuclei 27 Al, n at Ti, 51 V, 154 Sm, 174 Yb, n at T Hf, 181 Ta, n a t W, nat Re, nat Os, n a t Pt, 197 Au, na t Tl, 208 Pb, nat Pb and 209 Bi have been analysed in the framework of the current, two-step model for intermediate-energy photofission reactions. The incoming photon is assumed to be absorber by a neutron-proton pair (Levinger's quasi-deuteron model), followed by a mechanism of evaporation-fission competition for the excited residual nuclei. The experimental features of photofissility have been reproduced successfully by the model. (author)

  19. Calculation of Ax for the Proton–Deuteron Breakup Reaction at 135 MeV

    International Nuclear Information System (INIS)

    Eslami-Kalantari, M.; Amir-Ahmadi, H.R.; Biegun, A.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Mardanpour, H.; Messchendorp, J.G.; Moeini, H.; Shende, S.V.; Ramazani-Moghaddam-Arani, A.; Shafaei, M.A.; Mehmandoost-Khajeh-Dad, A.A.; Gašparic, I.; Kistryn, St.; Sworst, R.; Kozela, A.; Stephan, E.

    2013-01-01

    Observables in proton–deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects (3NF). Several facilities in the world, including Kernfysisch Versneller Instituut (KVI), allow a detailed study a few-nucleon interaction below the pion-production threshold exploiting polarized proton and deuteron beams. In this contribution we explored 3NF effects in the break-up scattering process by performing a measurement of differential cross section and the analyzing power, especially the x component of the analyzing power, using a 135 MeV polarized-proton beam impinging on a liquid-deuteron target. The proton–deuteron breakup reaction leads to a final state with three free particles and a rich phase space that allows us to study observables for continuous set of kinematical configurations of the outgoing nucleons. The results are interpreted with the help of state-of-the-art Faddeev calculations. (author)

  20. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  1. Low energy pion--nucleon and pion--deuteron interactions

    International Nuclear Information System (INIS)

    Burman, R.L.

    1975-01-01

    This survey concentrates upon current experiments in the fields of pion-nucleon and pion-deuteron interactions, for low-energy incident pions--below 300 MeV. The discussion is restricted to very recent work. The topics to be covered are: π +- p → π +- p, Elastic Scattering; π +- p → π +- pγ, Bremsstrahlung; π + d → pp, Absorption; π d → π + d, Elastic Scattering; and π + d → π + pn, Breakup. (14 figures) (U.S.)

  2. Proton-deuteron phase-shift analysis above the deuteron breakup threshold

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics]|[Triangle Universities Nuclear Laboratory, Box 90308, Durham, NC (United States); Witala, H. [Institute of Physics, Jagellonian University, Reymonta 4, 30059 Cracow (Poland)

    1998-03-02

    We have performed single-energy phase-shift analyses of proton-deuteron elastic scattering data in the proton energy range from 3.5 to 10 MeV. The resulting values for the {sup 2}S{sub 1/2} and {sup 4}P{sub 1/2}, {sup 4}P{sub 3/2}, and {sup 4}P{sub 5/2} phase shifts are important benchmark values for three-nucleon calculations based on nucleon-nucleon potential models (with and without three-nucleon forces) aimed at describing the triton binding energy and at resolving the nucleon-deuteron A{sub y}({theta}) and iT{sub 11}({theta}) puzzles, respectively. (orig.) 7 refs.

  3. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons

    International Nuclear Information System (INIS)

    Avila, Mario; Morales, J.R.; Riquelme, H.O.

    1996-01-01

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, β + ) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 ± 0,1 MeV energy has been obtained total yields of 1,103 ± 0,011 μCl/μAh medium for 62 Cu and of 0,148 ± 0,015 μCl/μAh for 64 Cu

  4. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  5. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  6. Extension of activation cross section data of deuteron induced nuclear reactions on rhodium up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussels (Belgium); Tárkányi, F.; Takács, S.; Ditrói, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary)

    2015-11-01

    In the frame of the systematical study of light ion induced nuclear reactions activation cross sections for deuteron induced reactions on monoisotopic {sup 103}Rh were extended to 50 MeV incident energy. Excitation functions were measured in the 49.8–36.6 MeV energy range for the {sup 103}Rh(d,xn){sup 100,101}Pd, {sup 103}Rh(d,pxn){sup 99m,99g,100,101m,101g,102m,102g}Rh and {sup 103}Rh(d,x){sup 97,103}Ru reactions by using the stacked foil irradiation technique and off-line high resolution γ-ray spectrometry. The experimental results are compared to our previous results and to the theoretical predictions in the TENDL-2014 library (TALYS 1.6 code).

  7. DUBNA: Relativistic deuterons in the Nuclotron

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    At the Laboratory of High Energies of the Joint Institute for Nuclear Research - JINR, Dubna - 17-29 March saw the first physics run of the superconducting Nuclotron (July/August 1993, page 9). The run began just after completion of a synchrophasotron polarized deuteron run. In accordance with the programme, a polarized deuteron beam was injected and accelerated up to 100 MeV nucleon. Subsequently the ''Polaris'' polarized deuteron source was replaced by the duoplasmatron (providing unpolarized particles) and Nuclotron operation continued for physics

  8. First calculation of the deuteron binding energy

    International Nuclear Information System (INIS)

    Schaegger, B.

    2012-01-01

    No universal constant characterizing the nuclear force has yet been found as for gravity and electromagnetism. The neutron is globally neutral with a zero net charge. The charges contained in a neutron may be separated by the electric field of a nearby proton and therefore being attracted by electrostatic induction in the same way as a rubbed plastic pen attracts small pieces of paper. There is also a magnetic force that may repel the nucleons like magnets in the proper relative orientation. In the deuteron, the heavy hydrogen nucleus, the induced electrostatic attraction is equilibrated by the magnetic repulsion between the opposite and colinear moments of the nucleons. Equilibrium is calculated by minimizing the electromagnetic interaction potential, giving a binding energy of 1.6 MeV, not much lower than the experimental value, 2.2 MeV. No fitting parameter is used: it is a true ab initio calculation

  9. Experimental study of deuteron production in α-particle collisions with C, Cu and Pb target nucleus at energies ranging from 200 to 800 A. MeV

    International Nuclear Information System (INIS)

    Montarou, G.

    1988-01-01

    Deuteron production in collisions between alpha-particle and carbon, copper or lead target nuclei at 200, 400, 600 and 800 MeV (Mega-electron Volt) per nucleon have been measured by using the large solid angle detector DIOGENE. Nucleus-nucleus collisions at intermediate energies offer the possibility of studying the properties of highly excited nuclear matter at high density and temperature. Among the different observables measured for the determination of the nuclear matter equation of state, light fragment production measurements has raised considerable interest during the last years because of the close relationship between entropy and nuclear cluster formation. In chapter 1, a general presentation of the main experimental and theoretical aspects of the relativistic heavy ion collision is presented. Chapter 2 is devoted to the description of the detector DIOGENE used at the SATURNE (Saclay-France) accelerator. This detector can measure simultaneously the momenta, masses and emission angles of most of the particles (pions, protons, deuterons ...) emitted in each collision. The chapter 3 describes the method used in order to extract from the raw data the momentum, mass and emission angles of each particle measured in the detector. The deuteron production in central relativistic heavy ion collision is reviewed in chapter 4. Then we present the results of deuteron production measurements, using the DIOGENE detector. In chapter 5 deuteron differential cross-sections are compared with theoretical predictions obtained with intra-nuclear cascade model. In chapter 6 deuteron differential cross-sections are presented for the most central reactions. These spectra are investigated in order to extract the size of the interaction region at the end of the collision. Finally the deuteron-to-proton ratio is studied in relationship with the proton number measured in each event; this ratio is used to evaluate the entropy per nucleon in the most central collisions [fr

  10. Measurement of the high-energy neutron flux on the surface of the natural uranium target assembly QUINTA irradiated by deuterons of 4- and 8-GeV energy

    International Nuclear Information System (INIS)

    Adam, J.; Baldin, A.A.; Chilap, V.

    2014-01-01

    Experiments with a natural uranium target assembly QUINTA exposed to 4- and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The 129 I, 232 Th, 233 U, 235 U, nat U, 237 Np, 238 Pu, 239 Pu and 241 Am radioactive samples were installed on the surface of the QUINTA set-up and irradiated with secondary neutrons. The neutron flux through the RA samples was monitored by Al foils. The reaction rates of 27 Al(n, y 1 ) 24 Na, 27 Al(n, y 2 ) 22 Na and 27 Al(n, y 3 ) 7 Be reactions with the effective threshold energies of 5, 27 and 119 MeV were measured at both 4- and 8-GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for energy of 4- or 8-GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with MCNPX2.7 and MARS15 codes.

  11. The energy spectrum of neutrons from 7Li(d,n)8Be reaction at deuteron energy 2.9 MeV

    Science.gov (United States)

    Mitrofanov, Konstantin V.; Piksaikin, Vladimir M.; Zolotarev, Konstantin I.; Egorov, Andrey S.; Gremyachkin, Dmitrii E.

    2017-09-01

    The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n)3He, D(d,n)3He, 7Li(p,n)7Be, T(d,n)4He, 7Li(d,n)8Be, 9Be(d,n)10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n)8Be and 9Be(d,n)10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n)8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC "SSC RF - IPPE") using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n)8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p)27Mg, 27Al(n,α)24Na, 113In(n,n')113mIn, 115In(n,n')115mIn, 115In(n,γ)116mIn, 58Ni(n,p)58mCo, 58Ni(n,2n)57Ni, 197Au(n,γ)198Au, 197Au(n,2n)196Au, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo, 59Co (n,g)60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  12. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  13. Neutron-deuteron elastic scattering and breakup reactions below 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Howell, C.R.; Tornow, W.; Pfuetzner, H.G.; Roberts, M.L.; Murphy, K.; Felsher, P.D.; Weisel, G.J.; Mertens, G.; Walter, R.L. (Duke Univ. and Triangle Universities Nuclear Lab., Durham, NC (USA)); Lambert, J.M.; Treado, P.A. (Physics Dept., Georgetown Univ., Washington, DC (USA)); Slaus, I. (Rudjer Boskovic Inst., Zagreb (Yugoslavia))

    1991-05-01

    In this paper we review the results of a series of high-accuracy measurements on the neutron-deuteron (n-d) scattering system at incident neutron energies below 20 MeV. These measurements were designed to: 1) provide data of sufficient accuracy to be used to refine the parametrization of the nucleon-nucleon force, 2) to test the reaction dynamics in the ''rigorous'' calculations of three-nucleon (3N) breakup reactions, and 3) identify 3N scattering observables that are specifically sensitive to three-nucleus forces and/or off-shell effects. At TUNL we have measured vector analyzing powers A{sub y}({theta}) for n-d elastic scattering and the breakup reaction to an accuracy better than {+-}0.005 and {+-}0.020, respectively. Recent results on items 1) and 2) will be presented. Also, results of cross-section measurements for n-d and p-d breakup will be compared to a ''rigorous'' 3N calculation. (orig.).

  14. Neutron-deuteron elastic scattering and breakup reactions below 20 MeV

    International Nuclear Information System (INIS)

    Howell, C.R.; Tornow, W.; Pfuetzner, H.G.; Roberts, M.L.; Murphy, K.; Felsher, P.D.; Weisel, G.J.; Mertens, G.; Walter, R.L.; Lambert, J.M.; Treado, P.A.; Slaus, I.

    1991-01-01

    In this paper we review the results of a series of high-accuracy measurements on the neutron-deuteron (n-d) scattering system at incident neutron energies below 20 MeV. These measurements were designed to: 1) provide data of sufficient accuracy to be used to refine the parametrization of the nucleon-nucleon force, 2) to test the reaction dynamics in the ''rigorous'' calculations of three-nucleon (3N) breakup reactions, and 3) identify 3N scattering observables that are specifically sensitive to three-nucleus forces and/or off-shell effects. At TUNL we have measured vector analyzing powers A y (θ) for n-d elastic scattering and the breakup reaction to an accuracy better than ±0.005 and ±0.020, respectively. Recent results on items 1) and 2) will be presented. Also, results of cross-section measurements for n-d and p-d breakup will be compared to a ''rigorous'' 3N calculation. (orig.)

  15. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1982-11-01

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  16. Experimental studies of fast deuterons, impurity- and admixture-ions emitted from a plasma focus

    International Nuclear Information System (INIS)

    Mozer, A.; Sadowski, M.; Herold, H.; Schmidt, H.

    1982-01-01

    The energy and mass analysis of ions emitted from a 50-kJ, 18-kV, plasma focus machine was performed with a Thomson analyzer. Energy distribution functions of fast deuterons (E> or =350 keV) and those of impurity ions have been determined. The energy distributions of the O, N, and C impurity ions in different ionization states have similar character. They usually increase exponentially and after reaching the maximum at E/Zroughly-equal1.0 MeV they decrease exponentially to E/Zroughly-equal1.8 MeV. For deuterons at lower operating pressures (p 0 + -Ar 7+ ions of energy from 0.5 to 14 MeV are produced

  17. Proton and deuteron production in neutron-induced reactions on carbon at En=42.5, 62.7, and 72.8 MeV

    International Nuclear Information System (INIS)

    Slypen, I.; Corcalciuc, V.; Meulders, J.P.

    1995-01-01

    Double-differential cross sections for proton and deuteron production in fast neutron induced reactions on carbon are reported for three incident neutron energies: 42.5, 62.7, and 72.8 MeV. Angular distributions were measured at laboratory angles between 20 degree and 160 degree. Procedures for data taking and data reduction are presented. Energy-differential cross sections and total cross sections are also reported. Experimental cross sections are compared with existing data and with theoretical calculations in the frame of the intranuclear cascade model

  18. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  19. Low-energy photodisintegration of the deuteron and Big-Bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Czakon, N.G.; Howell, C.R.; Hutcheson, A.; Kelley, J.H.; Litvinenko, V.N.; Mikhailov, S.F.; Pinayev, I.V.; Weisel, G.J.; Witala, H

    2003-11-06

    The photon analyzing power for the photodisintegration of the deuteron was measured for seven gamma-ray energies between 2.39 and 4.05 MeV using the linearly polarized gamma-ray beam of the high-intensity gamma-ray source at the Duke Free-Electron Laser Laboratory. The data provide a stringent test of theoretical calculations for the inverse reaction, the neutron-proton radiative capture reaction at energies important for Big-Bang nucleosynthesis. Our data are in excellent agreement with potential model and effective field theory calculations. Therefore, the uncertainty in the baryon density {omega}{sub B}h{sup 2} obtained from Big-Bang Nucleosynthesis can be reduced at least by 20%.

  20. Low-energy photodisintegration of the deuteron and Big-Bang nucleosynthesis

    International Nuclear Information System (INIS)

    Tornow, W.; Czakon, N.G.; Howell, C.R.; Hutcheson, A.; Kelley, J.H.; Litvinenko, V.N.; Mikhailov, S.F.; Pinayev, I.V.; Weisel, G.J.; Witala, H.

    2003-01-01

    The photon analyzing power for the photodisintegration of the deuteron was measured for seven gamma-ray energies between 2.39 and 4.05 MeV using the linearly polarized gamma-ray beam of the high-intensity gamma-ray source at the Duke Free-Electron Laser Laboratory. The data provide a stringent test of theoretical calculations for the inverse reaction, the neutron-proton radiative capture reaction at energies important for Big-Bang nucleosynthesis. Our data are in excellent agreement with potential model and effective field theory calculations. Therefore, the uncertainty in the baryon density Ω B h 2 obtained from Big-Bang Nucleosynthesis can be reduced at least by 20%

  1. Local and non-local potentials for deuteron elastic scattering

    International Nuclear Information System (INIS)

    Ramirez, J.A.

    1976-01-01

    The nucleon--nucleus local potential (central and spin--orbit) and the deuteron--nucleus nonlocal potential (central, spin--orbit, spin--radial tensor) are calculated by the folding-model (FM). Simple analytic expressions are obtained for the nucleon--nucleus potential by the use of Gaussians to represent the nucleon--nucleus potential and the charge and mass densities of the target. The analytic expressions give qualitative descriptions of phenomenological nucleon--nucleus interactions. A systematic target--mass dependence of realistic local FM deueron potentials is also included. Local-equivalent, energy-dependent, deuteron potentials are obtained from the nonlocal FM deuteron potentials and the energy dependence of the local potential parameters are presented. The local FM deuteron potential is tested for 60 Ni(d,d) 60 Ni at E/sub α/ = 15 MeV by comparing the predictions of the FM potentials with data in which all five polarization moments were measured. A qualitative fit to the data is obtained, but it overestimates the volume integral of the central potential by 7%. Energy-dependence effects are estimated by evaluating the local-equivalent potentials at E/sub α/ = 30 MeV and comparing the predictions to the E/sub α/ = 15 MeV potentials. The energy dependence of the central potential dominates the angular dependence of all five observables while the energy dependence of the spin--orbit and tensor potentials produces only scale changes (approx. 3%) in the vector and tensor analyzing powers. The scattering formalism for a spin-1 on a spin-0 target nucleus, and a description of the coupled--channels computer code DDUNC1 which treats the spin--radial tensor potential exactly, are included

  2. Extension of activation cross section data of long lived products in deuteron induced nuclear reactions on platinum up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ditrói, F., E-mail: ditroi@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Tárkányi, F.; Takács, S. [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussels (Belgium)

    2017-06-15

    Highlights: • Deuteron induced nuclear reactions on natural platinum up to 50 MeV. • Stacked foil irradiation technique. • Comparison with the TENDL-2014 and TENDL-2015 calculations. • Cross section of Au, Pt and Ir radioisotopes. • Application for Thin Layer Activation (TLA). - Abstract: In the frame of a systematical study of light ion induced nuclear reactions on platinum, activation cross sections for deuteron induced reactions were investigated. Excitation functions were measured in the 20.8–49.2 MeV energy range for the {sup nat}Pt(d,xn){sup 191,192,193,194,195,196m2,196g,198g,199}Au, {sup nat}Pt(d,x){sup 188,189,191,195m,197m,197g}Pt and {sup nat}Pt(d,x){sup 189,190,192,194m2}Ir reactions by using the stacked foil irradiation technique. The experimental results are compared with previous results from the literature and with the theoretical predictions in the TENDL-2014 and TENDL-2015 libraries. The applicability of the produced radio-tracers for wear measurements has been presented.

  3. Momentum transfer with light ions at energies from 70 MeV to 1000 MeV

    International Nuclear Information System (INIS)

    Saint Laurent, F.; Conjeaud, M.; Dayras, R.; Harar, S.; Oeschler, H.; Volant, C.

    1982-01-01

    Angular correlations of fission fragments induced by bombarding a 232 Th target with protons, deuterons and alpha particles of energies from 70 MeV to 1000 MeV have been measured. They give information about the forward momentum imparted to the fissioning nuclei. We present the average values of the transferred linear momentum ([p vertical stroke vertical stroke ]) as a function of the incident energy and propose a classification into three regimes of dominating processes leading to fission: (I) low-energy behaviour, for E/A less than 10 MeV/u [p vertical stroke vertical stroke ]/psub(i) approx. equal to 1. (II) Between 10 MeV/u and about 70 MeV/u, [p vertical stroke vertical stroke ]/psub(i) decreases progressively down to 0.5 but remains proportional to the projectile mass. (III) The region between 70 MeV/u and about 1000 MeV/u corresponds to a transition region where the projectiles, whatever their masses, tend to transfer the same momentum. (orig.)

  4. The nuclear spin response to intermediate energy protons and deuterons at low momentum transfer

    International Nuclear Information System (INIS)

    Baker, F.T.; Djalali, C.; Glashausser, C.; Lenske, H.; Love, W.G.; Tomasi-Gustafsson, E.; Wambach, J.

    1997-01-01

    Measurements of polarization transfer in the inelastic scattering of intermediate energy protons and deuterons have yielded a wealth of data on the spin response of nuclei. This work complements the well-known studies of Gamow-Teller strength in charge-exchange reactions. The emphasis here is on a consistent determination of the S=1, T=0 response, practical only with deuterons, and on the proper separation of S=0 and S=1 strength in proton spectra for appropriate comparison with sum rules. We concentrate on two nuclei, 40 Ca and 12 C, at momentum transfers below about 1 fm -1 and on excitations up to about 50 MeV. The continuum second random phase approximation provides the primary theoretical tool for calculating and interpreting the response in terms of properties of the nucleon-nucleon force inside the nuclear medium. The reaction mechanism is described by the DWIA, applied here to continuum proton scattering almost as rigorously as it is usually applied to low energy excitations. A new DWIA formalism for the description of spin observables in deuteron scattering is used. Comparison of the proton and deuteron data with each other and with RPA/DWIA calculations yields interesting insights into the current state of understanding of collectivity and the nuclear spin response. (orig.)

  5. Extension of the calibration of an NE-213 liquid scintillator based pulse height response spectrometer up to 18 MeV neutron energy and leakage spectrum measurements on bismuth at 8 MeV and 18 MeV neutron energies

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Valastyan, I.; Olah, L.; Csikai, J.; Plompen, A.; Jaime, R.; Loevestam, G.; Semkova, V.

    2011-01-01

    Monoenergetic neutrons were produced at the Van de Graaff accelerator of the EC-JRC-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium). An air-jet cooled D_2-gas target (1.2 bar, ΔE_d = 448 keV) was bombarded with E_d =4976 keV deuterons to produce neutrons up to E_n = 8 MeV energy via the D(d,n)"3He reaction. Higher energy neutrons up to E_n = 18 MeV were produced via the T(d,n)"4He reaction by bombarding a TiT target with E_d =1968 keV deuterons. Pulse height spectra were measured at different neutron energies from E_n = 8 MeV up to E_n = 18 MeV with the NE-213 liquid scintillator based Pulse Height Response Spectrometer (PHRS) of UD-IEP. The energy calibration of the PHRS system has been extended up to E_n = 18 MeV. Pulse height spectra induced by gamma photons have been simulated by the GRESP7 code. Neutron induced pulse height spectra have been simulated by the NRESP7 and MCNP-POLIMI codes. Comparison of the results of measurements and simulations enables the improvement of the parameter set of the function used by us to describe the light output dependence of the resolution of the PHRS system at light outputs of L > 2 light units. Also, it has been shown that the derivation method for unfolding neutron spectra from measured pulse height spectra performs well when relative measurements are done up to E_n = 18 MeV neutron energy. For matrix unfolding purposes, the NRESP7 code has to be preferred to calculate the pulse height response matrix of the PHRS system. Leakage spectra of neutrons behind bismuth slabs of different thicknesses have been measured with the PHRS system by using monoenergetic neutrons. The maximum slab thickness was d = 14 cm. Simulations of the measurements have been carried out with the MCNP-4c code. The necessary nuclear cross-sections were taken from the from the ENDF/B-VII and JEFF.3.1 data libraries. For both libraries, the agreement of measured and simulated neutron spectra is good for the 5 MeV ≤ En ≤ 18 MeV

  6. Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV

    International Nuclear Information System (INIS)

    Ditroi, F.; Tarkanyi, F.; Takacs, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2011-01-01

    Highlights: → Excitation function measurement of deuteron induced reactions on rhodium up to 40 MeV. → Model code calculations with EMPIRE, ALICE and TALYS. → Integral production yield calculation. → Thin layer activation (TLA) with the produced isotopes. - Abstract: In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103 Rh(d,x) 100,101,103 Pd, 100g,101m,101g,102m,102g Rh and 103g Ru reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.

  7. Proton and deuteron activation measurements at the NPI and future plans in SPIRAL2/NFS

    Science.gov (United States)

    Šimečková, Eva; Bém, Pavel; Mrázek, Jaromír; Štefánik, Milan; Běhal, Radomír; Gladolev, Vadim

    2017-09-01

    The proton- and deuteron-induced reactions are of a great interest for the assessment of induced radioactivity of accelerator components, target and beam stoppers as well as isotope production for medicine. In the present work, the deuteron-induced reaction cross sections on zinc were investigated by stacked-foil activation technique with deuteron beam of 20 MeV energy from the cyclotron U-120M of NPI CAS Řež. Also the proton activation cross section measurement of iron is presented. The comparison of present results to data of other authors and to predictions of evaluated data libraries is discussed. The investigation shall continue for higher proton and deuteron energy interval 20-35 MeV at SPIRAL2/NFS facility using a charged particle irradiation chamber with pneumatic transport system to measure isotopes and isomers with half-lives in minutes-regions.

  8. Measurements of pp→π+d between 398 MeV and 572 MeV

    International Nuclear Information System (INIS)

    Aebischer, D.; Favier, B.; Greeniaus, L.G.; Hess, R.; Junod, A.; Lechanoine, C.; Nikles, J.-C.; Rapin, D.; Werren, D.W.

    1976-01-01

    The reaction pp→π + d was studied at incident proton energies of 398, 455, 497, 530 and 572 MeV. Measurements of dsigma/dΩ at 455 and 572 MeV show the presence of pion d-waves in the pion-deuteron system. Asymmetry measurements yield similar conclusions. Total cross-section measurements agree with recent fits to earlier data. (Auth.)

  9. Proton angular distribution of {sup 16}O(d,p){sup 17}O{sup *} near a deuteron capture resonance; Evolution de la distribution angulaire des protons {sup 16}O(d,p){sup 17}O{sup *} au voisinage d'une resonance de capture du deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, R; Cohen, E; Cotton, H; Farraggi, T; Grjebine, A; Leveque, V; Naggiar, M; Roclawski-Conjeaud, D; Szteinsznaider, D [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1954-07-01

    The study of angular distributions of the protons from the reaction {sup 16}O(d,p){sup 17}O{sup *} (level at 875 keV) was made, using a photographic method, at seven different deuteron energies, from 1.66 to 2.20 MeV (obtained with the Saclay electrostatic generator). The analysis of results shows that the angular distribution for forward angles is for each chosen energy in good agreement with the stripping theory (l = 0), even at the maximum of the capture resonance of the deuteron, about 2.1 MeV. Moreover, the differential cross section at 7 deg reaches a maximum for this resonance energy. (author) [French] L'etude des distributions angulaires des protons emis au cours de la reaction {sup 16}O(d,p){sup 17}O{sup *} (niveau a 875 key) a ete effectuee, par une methode photographique, pour 7 energies differentes de deuterons comprises entre 1,66 et 2,20 MeV (obtenues grace a l'accelerateur electrostatique de Saclay). L'analyse des resultats montre que la distribution angulaire vers l'avant est, pour toutes ces energies, en bon accord avec la theorie du ''stripping'' ( 1=0), meme au maximum de la resonance de capture du deuteron situee vers 2,1 MeV. De plus, la section efficace differentielle a 7 deg passe par un maximum pour cette energie de resonance. (auteur)

  10. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  11. Compton Scattering from the Deuteron at Low Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Magnus [Lund Univ. (Sweden). Dept. of Physics

    2002-05-01

    A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 50 < E{sub g} < 70 MeV tagged photons were scattered from a liquid deuterium target and detected simultaneously in three (10{sup x}10{sup )} NaI detectors. The average laboratory angles investigated were 45, 125 and 135 deg. The influence of the inelastic contribution was minimized by implementing a narrow elastic fit-region in the missing energy spectra. Absolute cross sections were extracted for average photon energies of 55 and 66 MeV at each angle and for each experiment. The extracted cross sections are in good agreement with those measured at Illinois by Lucas et al. The difference between the electric and magnetic isospin-averaged polarizabilities of the nucleon inside the deuteron, was varied within the calculations of Levchuk and L'vov to best reproduce the data, holding the sum fixed at 14.6 (10{sup -4} fm{sup 3}). The result implies that the electric polarizability of the neutron is the same as that of the proton within the experimental uncertainties. The result also indicates that the magnetic polarizability of the neutron is larger than that of the proton.

  12. Tensor polarization in pion-deuteron elastic scattering

    International Nuclear Information System (INIS)

    Holt, R.J.; Freeman, W.S.; Geesaman, D.F.

    1985-01-01

    During this year the analysis of measurements of t 20 in π-d elastic scattering was completed and a final summary manuscript was prepared for publication. The results consists of angular distributions of the deuteron tensor polarization in π-d elastic scattering at pion energies of 140, 180, 220 and 256 MeV. Theoretical calculations in which the effects of pion absorption on the elastic channel are small reproduce the data. No rapid angular or energy dependence was found near a pion energy of 134 MeV, where another experiment at SIN has suggested the existence of dibaryon resonances

  13. Calibration of PM-355 nuclear track detectors for low-energy deuterons

    International Nuclear Information System (INIS)

    Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M.J.; Czaus, K.

    2008-01-01

    A dependence of track diameters on deuteron energy was investigated for PM-355 nuclear track detectors. Deuteron streams were obtained from RPI-IBIS facility at the pulsed injection of deuterium. Mass and energy analysis was performed with a Thomson-type spectrometer and PM-355 samples. An etched deuteron parabola extended from about 20 keV to about 500 keV. The energy resolution of measurements on the parabola at 20 keV was ±0.2keV, and at 500 keV amounted to ±50keV. Accuracy of the determination of deuteron energies decreased for higher energy values. Results are presented in diagrams showing the track diameters as a function of deuteron energy for chosen etching times (1-8 h)

  14. The Kemmer-Duffin-Petiau formalism and intermediate-energy deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Kozack, R.E.; Clark, B.C.; Hama, S.; Mishra, V.K.; Kaelbermann, G.; Mercer, R.L.; Ray, L.

    1988-01-01

    The spin-1 Kemmer-Duffin-Petiau (KDP) equations are described and applied to deuteron-nucleus scattering. Comparison with d + 58 Ni elastic scattering data at 400 MeV shows that the KDP model; reproduces experimental spin observables very well. 11 refs., 1 fig

  15. Tensor polarized deuteron targets for intermediate energy physics experiments

    International Nuclear Information System (INIS)

    Meyer, W.; Schilling, E.

    1985-03-01

    At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)

  16. The proton-induced collinear deuteron breakup at 7.5 MeV

    International Nuclear Information System (INIS)

    Lekkas, P.

    1985-01-01

    The aim of the present thesis was to study the proton-induced deuteron breakup at an incident energy of 7.5 MeV in collinear geometry. In kinematically complete experiments in which two of the three particles of the exit channel are detected in coincidence we determined in equal kinematics the breakup cross section of the three-particle reactions 2 H(p,pp)n and 2 H(p,np)p. In both cases we observed in the region of the collinearity point an - indeed only weak - increasement of the cross section. The collinearity occurs in the neighbourhood of the QFS. Faddeev calculations with two different nucleon-nucleon interactions describe in the collinearity point the shape of the spectra well. Also the absolute quantity of the measured data in this point is well confirmed for the reaction 2 H(p,pp)n, less well however for the reaction 2 H(p,np)p. If in the theory three-nucleon forces are implemented their influence in the collinearity point is proved to be quantitatively weak. The collinear region is from the results of the present thesis especially because of the closely adjacent QFS little significant for three-body forces. (orig./HSI) [de

  17. Elastic and inelastic electron scattering on tensor polarized deuteron

    International Nuclear Information System (INIS)

    Zevakov, S.A.; Barkov, L.M.; Arenkhovel', Kh.

    2006-01-01

    The components T 20 and T 21 of the tensor analysis capability of the elastic electron scattering on deuteron are measured in the momentum transfer range of 8.4-21.6 fm -2 . The form factors of deuteron G C and G Q are defined in the momentum transfer range where the monopole charge form factor G C turns into zero. The preliminary measuring results of T 20 , T 21 and T 22 of the deuteron photodisintegration reaction in the photon energy range of 25-500 MeV and the proton departure angles equal to 20 deg-40 deg and 75 deg-105 deg are presented. The experimental results are compared with the theoretical predictions [ru

  18. Angular distributions of the quasifree deuteron-proton and deuteron-neutron scattering in the reaction dd → dpn

    International Nuclear Information System (INIS)

    Schneider, H.

    1978-06-01

    The mechanism of the quasifree scattering (QFS) in the reaction dd → dpn has been investigated systematically by means of kinematically complete coincidence experiments using 52 MeV deuterons. In order to measure the angular distributions of the quasifree dp scattering and the quasifree dn scattering, the kinematical conditions were chosen to favour quasifree scattering of deuterons on bound nucleons of the target deuteron. (orig.) [de

  19. Particle correlation based measurement of the mean time between the deuteron and proton emissions

    International Nuclear Information System (INIS)

    Ghisalberti, C.; Lebrun, C.; Sezac, L.; Ardouin, D.; Erazmus, B.; Eudes, P.; Ghuilbault, F.; Lautridou, P.; Rahmani, J.A.; Reposeur, T.; Chbihi, A.; Galin, J.; Guerreau, D.; Morjean, M.; Peghaire, A.; Lednicky, R.; Pluta, J.; Quebert, J.; Siemssen, R.

    1997-01-01

    Proton-deuteron correlations at small relative momenta have been measured with the reaction 208 Pb + 93 Nb at 29 MeV per nucleon at GANIL using the ORION neutron calorimeter. By selecting the proton-deuteron pairs according to the angle between their relative velocity and the pair center of mass velocity of the emitting source one can determine the average value of the time delay between the emission of these particles. The results reported in this paper for the first time at GANIL energies agree with the values published before in the literature i.e. 600 and 1500 fm/c for deuteron and proton emission times, respectively, as obtained in the reactions Ar + Ag at E/A = 17 MeV. At higher energies measurements with a B.U.U. calorimeter recording the collisions 14 N + 27 Al at E/A = 75 MeV show that in this case the proton emission begins at 15 fm/c and decreases slowly in time, while the deuterons are emitted at 50 fm/c and present a steep falling. This result agrees with a negative average value of d - t p >. Thus, the method presented in this report for determining the order of emission is of great interest for checking the theoretical description of the particle emission all the way in the collision dynamical process

  20. Extension of the excitation functions of deuteron induced reactions on {sup nat}Sn up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A., E-mail: aherman@vub.ac.be [Cyclotron Laboratory, Vrije Universiteit Brussel, B1050 Brussels (Belgium); Tárkányi, F.; Ditrói, F.; Takács, S. [Institute of Nuclear Research of the Hungarian Academy of Sciences, H4026 Debrecen (Hungary)

    2017-01-15

    Using the stacked-foil activation technique, cross-sections of deuteron induced reactions on natural Sn targets were determined up to 50 MeV. Excitation functions are reported for the product nuclides {sup 116m}Sb, {sup 117}Sb, {sup 118m}Sb, {sup 120m}Sb {sup 122m+g}Sb, {sup 124m+g}Sb, {sup 110}Sn(cum), {sup 113m+g}Sn(cum), {sup 117m}Sn, {sup 110m}In(cum), {sup 110g}In, {sup 111m+g}In(cum), {sup 113m}In, {sup 114m}In {sup 115m}In. Comparison with earlier published data at lower energy is discussed. For all excitation functions a theoretical calculation using the TALYS 1.6 (on-line TENDL-2015 library) code is shown.

  1. Elastic scattering of deuterons from hydrogen at 2.0, 1.6 and 1.2 GeV, and search for critical opalescence in inelastic scattering of proton from carbon-12 at 800 MeV

    International Nuclear Information System (INIS)

    Haji-Saeid, S.M.

    1980-01-01

    Large deuteron vector and tensor asymmetries have been measured for the first time at intermediate energies. The polarized deuteron beam whose tensor and vector components were 0.75 and 0.25, respectively, were used at energies of 2.0, 1.6 and 1.2 GeV. The tensor and vector quantities Pyy and Py were extracted from the data obtained within beam polarization normal to the scattering plane, and Pxx was obtained when the polarization was precessed into the scattering plane. Analysis of the data using multiple scattering theory demonstrates the importance of the non-eikonal correction to the Glauber Model and also the sensitivity of the data to double-spin flip components of the NN amplitudes. In another experiment the differential cross section for the 12C(P,P')12C*(15.11 MeV, 1 + T = 1) reaction has been measured at 800 MeV; the range of the angular distribution corresponds to momentum transfers of 0.7 to 2.4 fm -1 (1 to 3.3 mπ). The cross section decreases almost exponentially at large angles; no maximum is observed in the region where nuclear critical opalescence might be expected. The cross sections which measured in parallel to the 15.11 MeV state were for the levels at 11.83 (2 - ), 12.71 (1 + ), 13.35 (2 - ), 16.1 (2 + ) and 16.58 (2 - ) MeV

  2. Quark-exchange effects in a deuteron breakup at intermediate energy

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.; Glozman, L.Ya.

    1995-01-01

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the '' internal momentum '' in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs

  3. Quark-exchange effects in a deuteron breakup at intermediate energy.

    Energy Technology Data Exchange (ETDEWEB)

    Kobushkin, A P; Syamtomov, A I; Glozman, L Ya

    1996-12-31

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the `` internal momentum `` in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs.

  4. Deuteron production in α-nucleus collisions from 200 to 800 MeV per nucleon

    International Nuclear Information System (INIS)

    Montarou, G.; Alard, J.P.; Augerat, J.; Fraysse, L.; Parizet, M.J.; Babinet, R.; Fodor, Z.; Girard, J.; Gosset, J.; Laspalles, C.; Lemaire, M.C.; L'Hote, D.; Lucas, B.; Poitou, J.; Schimmerling, W.; Terrien, Y.; Brochard, F.; Gorodetzky, P.; Racca, C.; Cugnon, J.; Vandermeulen, J.

    1991-01-01

    Deuteron spectra at laboratory angles from 30 degree to 90 degree were measured in α+(Pb, Cu, and C) collisions at 800, 600, and 200 MeV/nucleon, and α+(Pb and C) collisions at 400 MeV/nucleon. The coalescence relation between protons and deuterons was examined for the inclusive part of the spectra. The size of the interacting region was evaluated from the observed coalescence coefficients. The rms radius is typically 4--5 fm, depending of the target mass. The proton and deuteron energy spectra corresponding to central collisions were fitted assuming emission from a single source moving with a velocity intermediate between that of the projectile and the target. The extracted ''temperatures'' are independent of the nature of the emitted particle, indicating that the fragments have a common source. The best fits were achieved for 200- and 400-MeV/nucleon reactions. Spectra of deuteron-like pairs, including real deuterons and neutron-proton pairs that may be contained in a larger nuclear cluster, are compared to the prediction of an intranuclear cascade model incorporating a clustering algorithm based on a classical coalescence prescription. Best agreements between experimental and predicted deuteron-like spectra occur for 800- and 600-MeV/nucleon collisions

  5. Helicity dependence of the total inclusive cross section on the deuteron

    International Nuclear Information System (INIS)

    Ahrens, J.; Altieri, S.; Annand, J.R.M.; Arends, H.-J.; Beck, R.; Blackston, M.A.; Braghieri, A.; D'Hose, N.; Dutz, H.; Heid, E.; Jahn, O.; Klein, F.; Kondratiev, R.; Lang, M.; Lisin, V.; Martinez Fabregate, M.; McGeorge, J.C.; Meyer, W.; Panzeri, A.; Pedroni, P.

    2009-01-01

    A measurement of the helicity dependence of the total inclusive photoabsorption cross section on the deuteron was carried out at MAMI (Mainz) in the energy range 200 γ <800 MeV. The experiment used a 4π detection system, a circularly polarized tagged photon beam and a frozen spin target which provided longitudinally polarized deuterons. These new results are a significant improvement on the existing data and allow a detailed comparison with state-of-the-art calculations

  6. Helicity dependence of the total inclusive cross section on the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Altieri, S. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, I-27100 Pavia (Italy); Annand, J.R.M. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Arends, H.-J.; Beck, R. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Blackston, M.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); Braghieri, A. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); D' Hose, N. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette Cedex (France); Dutz, H. [Physikalisches Institut, Universitaet Bonn, D-53115 Bonn (Germany); Heid, E.; Jahn, O. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Klein, F. [Physikalisches Institut, Universitaet Bonn, D-53115 Bonn (Germany); Kondratiev, R. [INR, Academy of Science, Moscow (Russian Federation); Lang, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Lisin, V. [INR, Academy of Science, Moscow (Russian Federation); Martinez Fabregate, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); McGeorge, J.C. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Meyer, W. [Inst. fuer Experimentalphysik, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Panzeri, A. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, I-27100 Pavia (Italy); Pedroni, P. [INFN, Sezione di Pavia, I-27100 Pavia (Italy)], E-mail: pedroni@pv.infn.it (and others)

    2009-03-02

    A measurement of the helicity dependence of the total inclusive photoabsorption cross section on the deuteron was carried out at MAMI (Mainz) in the energy range 200MeV. The experiment used a 4{pi} detection system, a circularly polarized tagged photon beam and a frozen spin target which provided longitudinally polarized deuterons. These new results are a significant improvement on the existing data and allow a detailed comparison with state-of-the-art calculations.

  7. Near-threshold deuteron photodisintegration: An indirect determination of the Gerasimov-Drell-Hearn sum rule and forward spin polarizability (γ0) for the deuteron at low energies

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Blackston, M. A.; Perdue, B. A.; Tornow, W.; Weller, H. R.; Norum, B.; Sawatzky, B.; Prior, R. M.; Spraker, M. C.

    2008-01-01

    It is shown that a measurement of the analyzing power obtained with linearly polarized γ-rays and an unpolarized target can provide an indirect determination of two physical quantities. These are the Gerasimov-Drell-Hearn (GDH) sum rule integrand for the deuteron and the sum rule integrand for the forward spin polarizability (γ 0 ) near photodisintegration threshold. An analysis of data for the d(γ-vector,n)p reaction and other experiments is presented. A fit to the world data analyzed in this manner gives a GDH integral value of -603±43μb between the photodisintegration threshold and 6 MeV. This result is the first confirmation of the large contribution of the 1 S 0 (M1) transition predicted for the deuteron near photodisintegration threshold. In addition, a sum rule value of 3.75±0.18 fm 4 for γ 0 is obtained between photodisintegration threshold and 6 MeV. This is a first indirect confirmation of the leading-order effective field theory prediction for the forward spin-polarizability of the deuteron

  8. Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    International Nuclear Information System (INIS)

    Morozov, V.S.; Crawford, M.Q.; Etienne, Z.B.; Kandes, M.C.; Krisch, A.D.; Leonova, M.A.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V.A.; Meyer, H.O.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von

    2003-01-01

    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid's frequency through an rf-induced spin resonance and observed the effect on the beam's vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid's voltage to its maximum value, we obtained a spin-flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin-flip of the tensor polarization. We then used the rf-induced resonance to measure the vector and tensor polarizations' lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4

  9. Deuteron color degrees of freedom and deuteron break-up at high energy

    International Nuclear Information System (INIS)

    Kobushkin, A.P.

    1992-01-01

    Deuteron break-up reactions are analysed from a QCD-motivated point of view. Production of a nucleon with hard momentum is considered as a result of high gluon exchange between three quark clusters in hidden-color component of deuteron wave function. It is shown that the model reproduces well the nucleon momentum distribution extracted from (d,p)-reaction at high energy as well as the tensor analysing powers T 20 of this reaction and of the reaction of elastic pd-backward scattering. 19 refs.; 2 figs.; 1 tab. (author)

  10. On feasibility of the experiments with a polarized deuteron beam and a polarized target at Charles University in relation with polarized fusion

    International Nuclear Information System (INIS)

    Plis, Yu.A.

    2001-01-01

    There is an interest in the problem of polarized fusion with the neutron-free d 3 He reaction. Up to now, the experimental data on the cross sections of two dd reactions, which produce neutrons at once or through secondary dt reaction, are absent for polarized deuterons. There is a relatively cheap way to carry out the experiments with polarized deuterons at the Charles University in Prague. A polarized deuteron beam with energy from 100 keV up to approximately 1 MeV may be produced on the Van de Graaff accelerator by the channeling of a deuteron beam through magnetized Ni single crystal foil, according M. Kaminsky [Phys. Rev. Lett. 23, 819 (1969)]. This method permits to produce a polarized deuteron beam of an energy ≤1 MeV with a current of ∼1 nA, vector polarization P 3 up to 2/3 and tensor polarization P 33 =0. It will be necessary to modify the existing polarized target at Charles University for work with a low energy deuteron beam [N. S. Borisov et al., Nucl. Instr. and Meth. A 345, 421 (1994)

  11. Routes for the production of isotopes for PET with high intensity deuteron accelerators

    Science.gov (United States)

    Arias de Saavedra, F.; Porras, I.; Praena, J.

    2018-04-01

    Recent advances in accelerator science are opening new possibilities in different fields of physics. In particular, the development of compact linear accelerators that can provide charged particles of low-medium energy (few MeV) with high current (above mA) allows for the study of new possibilities in neutron production and for new routes for the production of radioisotopes. Keeping in mind how radioisotopes are actually produced in dedicated facilities, we have performed a study of alternative reactions to produce PET isotopes induced by low-energy deuterons. We have fitted the EXFOR cross sections data, used the fitted values of the stopping power by Andersen and Ziegler and calculated by numerical integration the production rate of isotopes for charged particles up to 20 MeV. The results for deuterons up to 3 MeV are compared with the ones from cyclotrons, which are able to provide higher energies to the charged projectiles but with lower intensities. Our results indicate that using linear accelerators may be a good alternative for producing PET isotopes, reducing the problem of neutron activation.

  12. Calculation of proton-deuteron phase parameters including the Coulomb force

    International Nuclear Information System (INIS)

    Alt, E.O.; Sandhas, W.; Ziegelmann, H.

    1985-04-01

    A previously proposed exact method for including the Coulomb force in three-body collisions is applied to proton-deuteron scattering. We present phase shifts for angular momenta up to L=9, from elastic threshold to 50 MeV proton laboratory energy. Separable rank-one potentials are taken for the nuclear interactions. A charge-independent and a charge-symmetric choise, while leading to different neutron-deuteron and proton-deuteron phase parameters, nevertheless yields practically the same Coulomb corrections. We, moreover, investigate the question of P-wave resonances.A critical comparison of our results with those obtained in a co-ordinate space formalism is performed. Furthermore, proposals for an approximate inclusion of the Coulomb potential are tested, and found unsatisfactory. (orig.)

  13. Elastic scattering of polarized deuterons from 40Ca and 58Ni at intermediate energies

    International Nuclear Information System (INIS)

    Sen, N. van; Arvieux, J.; Yanlin, Y.; Gaillard, G.; Bonin, B.; Boudard, A.; Bruge, G.; Lugol, J.C.; Babinet, R.; Hasegawa, T.; Soga, F.; Cameron, J.M.; Neilson, G.C.; Sheppard, D.M.

    1985-01-01

    Angular distributions of cross section, and Asub(y) and Asub(yy) analyzing powers were measured for polarized deuteron elastic scattering from 58 Ni at 200, 400 and 700 MeV, and 40 Ca at 700 MeV. Phenomenological potentials were obtained from an optical model analysis of the data. The total reaction cross sections deduced were compared to predictions from the Glauber theory optical limit. (orig.)

  14. Deuteron beam interaction with Li jet for a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1995-09-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (>14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities

  15. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  16. Cross-section measurements of neutron-deuteron breakup at 13.0 MeV

    International Nuclear Information System (INIS)

    Setze, H.R.; Howell, C.R.; Tornow, W.; Braun, R.T.; Gonzalez Trotter, D.E.; Hussein, A.H.; Pedroni, R.S.; Roper, C.D.; Salinas, F.; Slaus, I.; Vlahovic, B.; Walter, R.L.; Mertens, G.; Lambert, J.M.; Witala, H.; Gloeckle, W.

    2005-01-01

    Cross-section measurements of seven exit-channel configurations in the neutron-deuteron breakup at 13.0 MeV are reported and compared to rigorous calculations. Our data are consistent with those of previous measurements in four of six configurations. The present data for five configurations are in good agreement with theoretical predictions. The cross-section data for the space-star and another out-of-plane configuration are larger than the theoretical predictions by more than three standard deviations. The previously observed 20% discrepancy between theory and data for the space-star configuration is confirmed in the present work. The inclusion of the Tucson-Melbourne 2π-exchange three-nucleon force changes the predicted cross section by only 2% and in the wrong direction needed to bring theory into agreement with data

  17. Progress on using deuteron-deuteron fusion generated neutrons for 40Ar/39Ar sample irradiation

    Science.gov (United States)

    Rutte, Daniel; Renne, Paul R.; Becker, Tim; Waltz, Cory; Ayllon Unzueta, Mauricio; Zimmerman, Susan; Hidy, Alan; Finkel, Robert; Bauer, Joseph D.; Bernstein, Lee; van Bibber, Karl

    2017-04-01

    We present progress on the development and proof of concept of a deuteron-deuteron fusion based neutron generator for 40Ar/39Ar sample irradiation. Irradiation with deuteron-deuteron fusion neutrons is anticipated to reduce Ar recoil and Ar production from interfering reactions. This will allow dating of smaller grains and increase accuracy and precision of the method. The instrument currently achieves neutron fluxes of ˜9×107 cm-2s-1 as determined by irradiation of indium foils and use of the activation reaction 115In(n,n')115mIn. Multiple foils and simulations were used to determine flux gradients in the sample chamber. A first experiment quantifying the loss of 39Ar is underway and will likely be available at the time of the presentation of this abstract. In ancillary experiments via irradiation of K salts and subsequent mass spectrometric analysis we determined the cross-sections of the 39K(n,p)39Ar reaction at ˜2.8 MeV to be 160 ± 35 mb (1σ). This result is in good agreement with bracketing cross-section data of ˜96 mb at ˜2.45 MeV and ˜270 mb at ˜4 MeV [Johnson et al., 1967; Dixon and Aitken, 1961 and Bass et al. 1964]. Our data disfavor a much lower value of ˜45 mb at 2.59 MeV [Lindström & Neuer, 1958]. In another ancillary experiment the cross section for 39K(n,α)36Cl at ˜2.8 MeV was determined as 11.7 ± 0.5 mb (1σ), which is significant for 40Ar/39Ar geochronology due to subsequent decay to 36Ar as well as for the determination of production rates of cosmogenic 36Cl. Additional experiments resolving the cross section functions on 39K between 1.5 and 3.6 MeV are on their way using the LICORNE neutron source of the IPN Orsay tandem accelerator. Results will likely be available at the time of the presentation of this abstract. While the neutron generator is designed for fluxes of ˜109 cm-2s-1, arcing in the sample chamber currently limits the power—straightforwardly correlated to the neutron flux—the generator can safely be run at. Further

  18. Complete gas production data library for nuclides from Mg to Bi at neutron incident energies up to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Konobeyev, A.Yu.; Fischer, U.

    2015-07-01

    An evaluation of proton-, deuteron-, triton-, {sup 3}He-, and α-particles- production cross-sections was performed for 262 stable nuclides with atomic number from 12 to 83 at the energies of primary neutrons up to 200 MeV. The data were compiled in ENDF formatted data files.

  19. Improved proton-deuteron phase-shift analysis above the deuteron breakup threshold and the three-nucleon analyzing-power puzzle

    International Nuclear Information System (INIS)

    Tornow, W.; Kievsky, A.; Witala, H.

    2002-01-01

    Using the existing high-accuracy data for proton-deuteron and deuteron-proton elastic scattering, a phase-shift analysis has been performed in the laboratory proton energy range from E p = 4 to 10 MeV The AV 18-based proton-deuteron phase shifts were used as starting values in the phase-shift search procedure. The low-partial wave phase shifts, especially the 4 P j phase shifts have been determined very precisely, thus providing valuable guidance for theoretical approaches to tackle the quest for a successful description of three-nucleon bound-state and continuum observables in a more efficient and consistent way. Furthermore, it was found that the 4 P 1/2 phase shift and the mixing parameter ε 3/2 - determined in the present analysis cannot be generated by 3 P j nucleon-nucleon interactions which are consistent with two-nucleon analyzing power data. Therefore, three-nucleon forces must play an essential role in resolving the long-standing three-nucleon analyzing-power puzzle. Refs. 44 (author)

  20. States in 94Zr from 94Zr(d,d')94Zr* at 15.5 Mev

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.; Joffily, S.

    1986-01-01

    94 energy levels up to approx. 4.3 Mev excitation energy are studied in the 94 Zr(d,d') 94 Zr* reaction. Deuterons had a bombarding energy of 15.5 MeV. The emergent deuterons were analysed by a magnetic spectrograph and the detector was nuclear emulsion. The resolution in energy was about 11 KeV. The distorted-wave analysis was used to determine the l transferred, the β 2 l and J Π values for some 94 Zr excited states. These results are compared with previous ones. 32 levels of excitation energy in 94 Zr were found which did not appear in previous 94 Zr(d,d') reactions. 20 levels do not correspond to the ones. (Author) [pt

  1. Compton Scattering from the Deuteron at Low Energies

    International Nuclear Information System (INIS)

    Lundin, Magnus

    2002-05-01

    A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 50 g x 10 ) NaI detectors. The average laboratory angles investigated were 45, 125 and 135 deg. The influence of the inelastic contribution was minimized by implementing a narrow elastic fit-region in the missing energy spectra. Absolute cross sections were extracted for average photon energies of 55 and 66 MeV at each angle and for each experiment. The extracted cross sections are in good agreement with those measured at Illinois by Lucas et al. The difference between the electric and magnetic isospin-averaged polarizabilities of the nucleon inside the deuteron, was varied within the calculations of Levchuk and L'vov to best reproduce the data, holding the sum fixed at 14.6 (10 -4 fm 3 ). The result implies that the electric polarizability of the neutron is the same as that of the proton within the experimental uncertainties. The result also indicates that the magnetic polarizability of the neutron is larger than that of the proton

  2. Measurement of the pp → πd spin correlation parameters A/sub SL/ and A/sub LL/ at energies between 500 and 800 MeV

    International Nuclear Information System (INIS)

    Barlow, D.B.

    1984-11-01

    Angular distributions of the spin correlation parameters A/sub SL/ and A/sub LL/ for the inelastic reaction pp→πd have been measured at pion center-of-mass angles between 40 and 130 0 , at energies of 500, 650, and 800 MeV. Additional measurements of A/sub LL/(THETA) were made at 600, 700, and 750 MeV. The reaction was studied using an incident beam of either longitudinally polarized protons. Both the final state pion and deuteron were detected in a two-armed detector system. The momenta of particles detected in the deuteron arm were analyzed with a magnetic spectrometer which allowed the deuterons to be distinguished from particles produced by quasi-free, three-body, or other background reactions. A/sub SL/ was found to be negative (approx. = -0.5) at 500 MeV. It became increasingly more negative as energy increased, going down to as low as -0.88 at forward angles at 800 MeV. A/sub SL/ showed only a slight angular dependence in the entire energy range. The angular distribution of A/sub LL/ was found to be almost flat at 500 (approx. = -0.5) and 600 MeV (approx. = -0.4). As energy increased A/sub LL/ became less negative and began to peak at theta/sub cm/ = 90 0 . At 800 MeV A/sub LL/ was positive at almost all measured angles and had a well defined peak at theta/sub cm/ = 90 0 which reached a maximum of about +0.4. The data were compared to several partial wave analyses and to theoretical calculations based on unified theories of NN→NN, πd→πd, and NN→πd reactions. In general these later calculations were found to be unsuccessful in fitting our data. Partial wave analyses, which included the present data, fitted the data reasonably well and did not indicate the need for any unusual (dibaryon like) structures in any of the partial waves. 52 references

  3. Measurement of the response of the deuterated scintillators NE 232 and NE 230 to protons and deuterons

    International Nuclear Information System (INIS)

    Tornow, W.; Arnold, W.; Herdtweck, J.; Mertens, G.

    1986-01-01

    The response of the deuterated scintillators NE 232 and NE 230 to protons and deuterons has been measured via elastic neutron-proton and neutron-deuteron scattering using the two mixtures of C 6 H 12 /C 6 D 12 and C 6 H 6 /C 6 D 6 and ''pure'' scintillators. The energy range covered for protons and deuterons was about 1-16 MeV. The light output relation Lsub(p)(E)=(1/2)Lsub(d) (2E) has been observed. (orig.)

  4. Elastic scattering of polarized deuterons from hydrogen at 2.0, 1.6, and 1.2 GeV and search for critical opalescence in inelastic scattering of protons from carbon-12 at 800 MeV

    International Nuclear Information System (INIS)

    Haji-Saeid, S.M.

    1981-01-01

    Large deuteron vector and tensor asymmetries were measured for the first time at intermediate energies. The polarized deuteron beam (with tensor and vector components of 0.75 and 0.25, respectively) was used at energies of 2.0, 1.6, and 1.2 GeV. The tensor and vector quantities P/sub yy/ and P/sub y/ were extracted from the data obtained within beam polarization normal to the scattering plane, and P/sub xx/ was obtained when the polarization was precessed into the scattering plane. Analysis of the data using multiple scattering theory demonstrates the importance of the noneikona correction to the Glauber Model and also the sensitivity of the data to double-spin flip components of the NN amplitudes. The differential cross section for the 12 C(p,p') 12 C* (15.11 MeV, 1 + , T=1) reaction was measured at 800 MeV; the range of the angular distribution corresponds to momentum transfers of 0.7 to 2.4 fm -1 (1 to 3.3 m/sub π/). The cross section decreases almost exponentially at large angles; no maximum is observed in the region where nuclear critical opalescence might be expected. Cross sections measured in parallel to the 15.11-MeV state were for the levels at 11.83 (2 - ), 12.71 (1 + ), 13.35 (2 - ), 16.1 (2 + ), and 16.58 (2 - ) MeV. 86 figures 18 tables

  5. Physics design of a 70 MeV high intensity cyclotron, CYCIAE-70

    International Nuclear Information System (INIS)

    Zhang Tianjue; An Shizhong; Wang Chuan; Yin Zhiguo; Wei Sumin; Li Ming; Yang Jianjun; Ji Bin; Jia Xianlu; Zhong Junqing; Yang Fang

    2011-01-01

    This paper introduces the physics design of a 70 MeV high intensity cyclotron at China Institute of Atomic Energy (CIAE), which is aimed for multiple uses including radioactive ion-beam (RIB) production. The machine adopts a compact structure of four straight sectors, capable of accelerating two kinds of beams, i.e. H − and D − . The proton and deuteron beam will be extracted in dual opposite directions by charge exchange stripping devices. The energy of the extracted proton beam is in the range 35–70 MeV with an intensity up to 700 μA. The corresponding values for the deuteron beam are 18–33 MeV and 40 μA. This paper will present the main characteristics and parameters in the design of the 70 MeV cyclotron, the results of the basic beam dynamics study, as well as the physics in the design of the different systems, including the main magnet, RF, injection and extraction systems, etc.

  6. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States); Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Jarrott, L. C.; Tynan, G.; Beg, F. N. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Kodama, R.; Nakamura, H. [Institute of Laser Engineering, Osaka University, 2-5 Yamada-oka, Suita, Osaka 454-0871 (Japan); Lancaster, K. L. [STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11OQX (United Kingdom)

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  7. Pursuing nuclear energy with no nuclear contamination - from neutron flux reactor to deuteron flux reactor

    International Nuclear Information System (INIS)

    Li, X. Z.; Wei, Q. M.; Liu, B.; Zhu, X. G.; Ren, S. L.

    2007-01-01

    Pursuing nuclear energy with no nuclear contamination has been a long endeavor since the first fission reactor in 1942. Four major concepts have been the key issues: i.e. resonance, negative feed back, self-sustaining, nuclear radiation. When nuclear energy was just discovered in laboratory, the key issue was to enlarge it from the micro-scale to the macro-scale. Slowing-down the neutrons was the key issue to enhance the fission cross-section in order to build-up the neutron flux through the chain-reactions using resonance between neutron and fissile materials. Once the chain-reaction was realized, the negative feed-back was the key issue to keep the neutron flux at the allowable level. The negative reaction coefficient was introduced by the thermal expansion, and the resonant absorption in cadmium or boron was used to have a self-sustaining fission reactor with neutron flux. Then the strong neutron flux became the origin of all nuclear contamination, and a heavy shielding limits the application of the nuclear energy. The fusion approach to nuclear energy was much longer; nevertheless, it evolved with the similar issues. The resonance between deuteron and triton was resorted to enlarge the fusion cross section in order to keep a self-sustaining hot plasma. However, the 14 MeV neutron emission became the origin of all nuclear contamination again. Deuteron plus helium-3 fusion reaction was proposed to avoid neutron emission although there are two more difficulties: the helium-3 is supposed to be carried back from the moon; and much more higher temperature plasma has to be confined while 50 years needed to realized the deuteron-triton plasma already. Even if deuteron plus helium-3 fusion plasma might be realized in a much higher temperature plasma, we still have the neutron emission from the deuteron-deuteron fusion reaction in the deuteron plus helium-3 fusion plasma. Polarized deuteron-deuteron fusion reaction was proposed early in 1980's to select the neutron

  8. Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    DEFF Research Database (Denmark)

    Eriksson, J.; Nocente, M.; Binda, F.

    2015-01-01

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe......-ray spectroscopy based on a one-dimensional model and by a consistency check among the individual measurement techniques. A systematic difference is seen between the two lines of sight and is interpreted to originate from the sensitivity of the oblique detectors to the pitch-angle structure of the distribution...

  9. Tensor polarization in pion-deuteron elastic scattering

    International Nuclear Information System (INIS)

    Holt, R.J.

    1983-01-01

    The angular dependence of the tensor polarization t 20 /sup lab/ of recoiling deuterons in π-d elastic scattering was measured as a function of incident pion energy in the range 134 to 256 MeV. No evidence was found for rapid energy or angular dependences in t 20 /sup lab/. The results agree most favorably with theoretical calculations in which the P 11 π-N amplitude has been removed altogether. This agreement is consistent with a small effect of pion absorption on the elastic channel. 14 references

  10. Extension of activation cross-section data of deuteron induced nuclear reactions on cadmium up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A., E-mail: aherman@vub.ac.be [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussels (Belgium); Tárkányi, F.; Takács, S.; Ditrói, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary)

    2016-10-15

    The excitation functions for {sup 109,110g,111m+g,113m,114m,115m}In, {sup 107,109,115m,115g}Cd and {sup 105g,106m,110g,111}Ag are presented for stacked foil irradiations on {sup nat}Cd targets in the 49–33 MeV deuteron energy domain. Reduced uncertainty is obtained by determining incident particle flux and energy scale relative to re-measured monitor reactions {sup nat}Al(d,x){sup 22,24}Na. The results were compared to our earlier studies on {sup nat}Cd and on enriched {sup 112}Cd targets. The merit of the values predicted by the TALYS 1.6 code (resulting from a weighted combination of reaction cross-section data on all stable Cd isotopes as available in the on-line libraries TENDL-2014 and TENDL-2015) is discussed. Influence on optimal production routes for several radionuclides with practical applications ({sup 111}In, {sup 114m}In, {sup 115}Cd, {sup 109,107}Cd….) is reviewed.

  11. Neutron yield of thick {sup 12}C and {sup 13}C targets with 20 and 30 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Lhersonneau, G.; Fadil, M. [GANIL, Caen (France); Malkiewicz, T. [CSC - IT Center for Science Ltd., Espoo (Finland); Gorelov, D.; Sorri, J.; Trzaska, W.H. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Jones, P.; Ngcobo, P.Z. [iThemba Laboratory for Accelerator Based Science, Western Cape (South Africa)

    2016-12-15

    The neutron yield of thick targets of carbon, natural and enriched in {sup 13}C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a {sup 12}C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a {sup 13}C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the {sup 12}C and {sup 13}C targets. (orig.)

  12. Proton polarization in the photodisintegration of the deuteron by linearly polarized 400- and 500-MeV γ rays

    International Nuclear Information System (INIS)

    Bratashevskii, A.S.; Gorbenko, V.G.; Gushchin, V.A.

    1982-01-01

    The polarization of the recoil protons at the angle theta(/sub p/ = 90 0 has been measured in the photodisintegration of the deuteron by linearly polarized 400- and 500-MeV γ rays. For the first time, all of the following observables have been determined under identical experimental conditions: Σ, the asymmetry of the cross sections; P/sub y/, the polarization of the recoil proton; and T 1 , the asymmetry of the nucleon polarization for the case of linearly polarized γ rays

  13. Contribution to the study of light nuclei with polarized deuterons; Contribution a l'etude des noyaux legers au moyen de deutons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Arvieux, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-04-15

    We describe roughly the vector and tensor-polarized deuteron source associated with the Saclay fixed energy (22 MeV) cyclotron. This has been used to measure the deuteron asymmetry in d-{alpha} scattering (between 17.7 and 21.4 MeV) and in d-p scattering at 21.7 MeV. Then we develop the formalism of irreducible tensor operators used to describe the polarization of a particle of given spin and we study the helicity formalism used to describe the scattering amplitudes for scattering of deuterons by {alpha} (spin 0) and protons (spin 1/2). We apply the preceding results to the phase shift analysis of scattering cross-sections and: 1) deuteron polarization in d-{alpha} scattering from 10 to 27 MeV from which we obtain indications about the excited states of {sup 6}Li; 2) proton and deuteron polarizations in p-d (or d-p) scattering from 1.5 to 12 MeV so as to get the splitting (due to spin interactions) of P and D waves. (author) [French] On decrit sommairement la source de deutons polarises vectoriellement et tensoriellement associee au cyclotron a energie fixe de Saclay avec laquelle on a mesure l'asymetrie des deutons dans la diffusion d-{alpha} de 17,7 a 21,4 MeV et d-p a 21,7 MeV. Puis or developpe le formalisme des operateurs tensoriels irreductibles utilise pour decrire la polarisation d'une particule de spin quelconque. On etudie ensuite le formalisme de l'helicite dans lequel on etudie la diffusion elastique des deutons diffuses par des particules {alpha} (spin 0) et des protons (spin 1/2). On applique les resultats precedents a l'analyse en dephasages de la section efficace et des polarisations: 1 )des deutons dont la diffusion d-{alpha} de 10 a 27 MeV destinee a donner des indications sur les niveaux excites de {sup 6}Li; 2) des protons et des deutons dans la diffusion p-d de 1,5 a 12 MeV en vue de l'etude de la separation suivant les differentes valeurs du moment total J, des ondes P et D (separation due aux interactions de spin). (auteur)

  14. Improved proton-deuteron phase-shift analysis above the deuteron breakup threshold and the three-nucleon analyzing-power puzzle

    CERN Document Server

    Tornow, W; Witala, H

    2002-01-01

    Using the existing high-accuracy data for proton-deuteron and deuteron-proton elastic scattering, a phase-shift analysis has been performed in the laboratory proton energy range from E sub p = 4 to 10 MeV The AV 18-based proton-deuteron phase shifts were used as starting values in the phase-shift search procedure. The low-partial wave phase shifts, especially the sup 4 P sub j phase shifts have been determined very precisely, thus providing valuable guidance for theoretical approaches to tackle the quest for a successful description of three-nucleon bound-state and continuum observables in a more efficient and consistent way. Furthermore, it was found that the sup 4 P sub 1 sub / sub 2 phase shift and the mixing parameter epsilon sub 3 sub / sub 2 sub sup - determined in the present analysis cannot be generated by sup 3 P sub j nucleon-nucleon interactions which are consistent with two-nucleon analyzing power data. Therefore, three-nucleon forces must play an essential role in resolving the long-standing thre...

  15. Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering

    International Nuclear Information System (INIS)

    Fuchs, M.

    1993-01-01

    After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance

  16. Investigation of the nucleon structure and the nucleon-nucleon interaction by electron-deuteron scattering

    International Nuclear Information System (INIS)

    Simon, G.G.

    1978-01-01

    In this thesis results of measurements of the differential cross sections of the elastic and inelastic electron deuteron scattering are presented. The data were taken at several scattering angles and in the electron energy range of 150 MeV up to 320 MeV. The extracted form factors and structure functions are compared with theoretical results which are sensitive to details of nucleon structure and of the nucleon-nucleon forces. (FKS)

  17. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G. [CEA, DAM, DIF, Arpajon (France)

    2012-06-15

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C{sub 6}D{sub 6} detector as active deuterium target located at the center of a 4{pi} neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the {sup 2}H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  18. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.

    2012-01-01

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C 6 D 6 detector as active deuterium target located at the center of a 4π neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the 2 H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  19. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2011-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons ( 2 H + ) in the energy range 10 MeV -1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  20. Comparisons of vector analyzing-power data and calculations for neutron-deuteron elastic scattering from 10 to 14 MeV

    International Nuclear Information System (INIS)

    Howell, C.R.; Tornow, W.; Murphy, K.; Pfuetzner, H.G.; Roberts, M.L.; Li, A.; Felsher, P.D.; Walter, R.L.; Slaus, I.; Treado, P.A.; Koike, Y.

    1987-01-01

    High-accuracy analyzing-power A y (θ) data for n-d elastic scattering at 12 MeV have been measured using the polarized-neutron facilities at the Triangle Universities Nuclear Laboratory (TUNL). The present data have been combined with previous n-d measurements at 10, 12, and 14.1 MeV to form the highest-accuracy A y (θ) data set for n-d elastic scattering below 20 MeV. These data are compared to recent Faddeev-based neutron-deuteron (n-d) calculations which use the Paris and Bonn equivalent separable potentials PEST and BEST, as well as Doleschall's representation of the P- and D-wave nucleon-nucleon interactions. None of these models adequately describe the data in the angular region around the maximum of A y (θ). Possible reasons for the discrepancies are discussed. The sensitivity of the present Faddeev-based calculations to various angular momentum components of the nucleon-nucleon interaction are examined. (Auth.)

  1. K- and L-shell ionization cross sections for deuterons calculated in the ECPSSR theory

    International Nuclear Information System (INIS)

    Cohen, D.D.

    1989-01-01

    Ionization cross sections for K and L subshells are tabulated according to target atomic number and incident deuteron energy. Deuteron energies between 100 keV and 10 MeV and selected targets between C and Am for the K shell and between Ar and Am for the L subshells are used. The cross sections have been calculated in the plane-wave Born approximation (PWBA) with corrections for energy loss (E), Coulomb deflection (C), perturbed stationary states (PSS), and relativistic (R) effects (ECPSSR). Differences between the computational approach of Cohen and Harrigan and that of Brandt and Lapicki are delineated, and the ratios of the resulting cross sections are tabulated. Copyright 1989 Academic Press, Inc

  2. A new model for elastic deuteron-deuteron scattering

    International Nuclear Information System (INIS)

    Etim, E.; Satta, L.

    1988-01-01

    Straightforward application of the Glauber multiple scattering theory is drammatically challenged by data on elastic deuteron-deuteron scattering. The challenge has been argued to be met by an improved representation of the ground state wave function of the deuteron as an admixture of S-and D-waves. In the light of the failure of the Glauber and geometrical picture models in general, to explain proton-proton and proton-antiproton scattering data up to and including collider energies and for all momentum transfers, this argument becomes less and less compelling and more and more unconvincing. A model inspired by unitarity and which produces substantial elastic scattering through a unitarity sum over a specific class of intermediate states is presented. The model fits not only deuteron-deuteron, but also proton-proton, proton-antiproton and αN -> αN (N =α, d, He 3 ) data for all energies and momentum transfers. No detailed knowledge of ground state wave functions is required

  3. A deuteron linac for a high-intensity neutron source

    International Nuclear Information System (INIS)

    Staples, J.; Clark, D.; Grunder, H.; Lancaster, H.; Main, R.; Selph, F.; Smith, L.; Voelker, F.; Yourd, R.

    1976-01-01

    The preliminary design of an accelerator suitable to meet the flux and neutron energy requirements of a CTR materials test facility is presented. The specifications of such a facility call for a neutron flux of 10 14 n/cm 2 -sec distributed over an area of about 10 2 cm 2 with a neutron spectrum similar to that anticipated from a fusion reactor. A 30 MeV deuteron linac producing a CW beam of 125 mA, upgradable to 40 MeV at 250 mA at a later date, would produce the relatively broad spectrum of neutrons at the required intensity. Attention to the low-energy beam intercept on the drift tubes and diffusive losses producing neutrons and attendant activation problems are discussed

  4. Production of fast neutrons from deuteron beams in view of producing radioactive heavy ions beams; Etude de la production de neutrons rapides a partir de faisceaux de deutons en vue de la mise en oeuvre de faisceaux d'ions lourds radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N

    2000-11-01

    This thesis is part of two research and development programmes for the study of neutron rich radioactive nuclear beam production. The technique is based on the ISOL method and can be summarized as follows. Fast neutrons are generated by the break-up of deuterons in a thick target. These neutrons irradiate a fissionable {sup 238}U target. The resulting fission products are extracted from the target, ionised, mass selected and post-accelerated. The aim of the thesis is to study the neutron angular and energetic distributions. After a bibliographical research to justify the choice of deuterons as the best projectile, we developed more specifically three points: - the extension of the activation detector method for neutron spectroscopy to a wide energy range (1 to 150 MeV), - the experimental measurement of neutron angular and energetic distributions produced by deuterons on thick targets. The deuteron energy ranges from 17 to 200 MeV and the thick targets were Be, C and U, - the realization of a code based on Serber's theory to predict the neutron distribution for any couple (deuteron energy-thick target). We conclude that for our application the most suitable target is C and the best deuteron energy is about 100 MeV. (author)

  5. Two body photodisintegration of the deuteron from 100 to 800 MeV

    International Nuclear Information System (INIS)

    Crawford, R.; Annand, J.R.M.; Anthony, I.; Altieri, S.; Pavia Univ.; Audit, G.; D'Hose, N.

    1996-01-01

    The total and the differential cross sections for the D(γ,p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author)

  6. Energy behaviour of neutrons generated by Witch-type distributed axi-symmetrical deuteron beams accelerated onto plane tritium targets

    International Nuclear Information System (INIS)

    Timus, D.M.; Bradley, D.A.; Timus, B.D.; Kalla, S.L.; Srivastava, H.M.

    2000-01-01

    This paper is an analytical study of the spatial dependency of the d-T neutron energy in the vicinity of a homogeneous tritium-occluded plane target. Close to the target, and along the path of incidence of axially symmetric deuteron beams, the transverse density of accelerated deuterons is assumed to be governed by a law approximated by the 'Witch' function. In particular circumstances, the elementary neutron emission process in non-dispersive media can be considered to be omni-directional (due consideration being paid to collision kinetics, depending upon mass and kinetic energy of particles involved in the nuclear collision, nuclear reaction energy, etc.). Consequently, analytical expressions can be considerably simplified. By applying the classical kinetic energy and momentum conservation laws to nuclear processes, a theoretical description is obtained, taking into account the exoergic character of d-T fusion reaction. A number of expressions for energetic prediction of the fast neutron field are proposed. The associated relations, involving elementary functions, can be investigated using a desk-top computer. Computationally tractable tools are of importance in the study of diverse situations such as induced reactions and activation analysis using 14 MeV neutron generators, investigations in health-physics, radiation dose measurements, nuclear medicine, damage effects, and simulation studies

  7. Some new effects of the deuteron D state observed in (p,d) and (d,p) reactions

    International Nuclear Information System (INIS)

    Ohnuma, Hajime

    1980-01-01

    Two previously unexplored experiments have revealed the importance of the deuteron D-state effects on (p,d) and (d,p) reactions at moderate energies. Firstly, a clear indication of the deuteron D-state effects on the polarization of the residual nuclear state has been observed in the 58 Ni(p,dγ) angular correlation measurement at E sub(p) = 30 MeV. Secondly, a comparison of the vector analyzing power and vector polarization measured at E sub(d) = 22 MeV for an l = 0 (d,p) transition has shown that the D state has significant effects even on the first-rank polarization quantities. The experimental data and the results of exact-finite-range DWBA calculations with Reid soft-core potential are presented. (author)

  8. Coherent pion production induced by 300 MeV and 600 MeV deuterons

    International Nuclear Information System (INIS)

    Aslanides, E.; Bergdolt, A.M.; Bing, O.; Fassnacht, P.; Hibou, F.

    1982-01-01

    Experimental data on (d,π - ) reactions at 300 and 600 MeV incident energy are presented. Inclusive spectra on 6 Li, 9 Be and 10 B targets near the kinematical limit do not show the usual scaling behaviour. For the two-body reaction 6 Li (d,π - ) 8 B the lowest-energy discrete states of the final nucleus were clearly resolved and the cross sections for pion production leading to those states have been determined. (orig.)

  9. Two body photodisintegration of the deuteron from 100 to 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.; Annand, J.R.M.; Anthony, I. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Ahrens, J.; Beck, R. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Braghieri, A.; Pedroni, P. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy)]|[Pavia Univ. (Italy). Ist. di Fisica Nucleare; Audit, G.; D`Hose, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee] [and others

    1996-01-01

    The total and the differential cross sections for the D({gamma},p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author). Submitted to Nuclear Physics, B (NL); 23 refs.

  10. Estimation of PHI (γ,n) average probability for complex nuclei in the quasi-deuteron region

    International Nuclear Information System (INIS)

    Ferreira, M.C. da S.

    1977-01-01

    The average probabilities of (γ,n) reactions for complexe nuclei of 6 C 12 , 19 F 19 , 25 Mn 55 , 79 Au 197 and 92 U 238 , in the energy range from giant resonance end to photomesonic threshold (quasi-deuteron region), using values of cross sections per quantum equivalent to 300 Mev produced by Bremsstrahlung photons in the Frascati and Orsay accelerators were determined. The probabilities were also calculated using nuclear transparence for protons and neutrons, resultants from quasi-deuteron disintegration. The transparence formulaes were determined by optical model. (M.C.K.) [pt

  11. Activation cross-sections of deuteron induced nuclear reactions on manganese up to 40 MeV

    International Nuclear Information System (INIS)

    Ditroi, F.; Tarkanyi, F.; Takacs, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2011-01-01

    In the frame of a systematic study on activation cross-sections of deuteron induced reactions experimental excitation functions on 55 Mn were measured with the activation method using the stacked foil irradiation technique up to 40 MeV. By using high resolution γ-ray spectrometry, cross-section data for the production of 56,54,52 Mn and 51 Cr were determined. Comparison with the earlier published data and with the results predicted by the ALICE-IPPE and EMPIRE-II theoretical codes - improved for more reliable calculations for d-induced reactions - and with data in the TENDL 2010 libraries are also included. Thick target yields were calculated from a fit to our experimental excitation curves and implications for practical applications in industrial (Thin Layer Activation) accelerator technology are discussed.

  12. Investigation of the reaction {sup 4}He(γ, pn)d at energies below the meson-production threshold

    Energy Technology Data Exchange (ETDEWEB)

    Khodyachikh, A. F.; Gorbenko, E. S.; Murtazin, R. T., E-mail: rumurtazin@gmail.com [Kharkiv Institute of Physics and Technology: National Science Center (Ukraine)

    2017-01-15

    The momentum distributions of deuterons and nucleons from the reaction {sup 4}He(γ, pn)d induced by bremsstrahlung photons whose spectrum extends up to the endpoint energy of 150 MeV were measured by means of a diffusion chamber placed in a magnetic field. These measurements were performed in four photon-energy intervals for deuterons and in the energy range between 100 and 150 MeV for nucleons. Angular and energy correlations of nucleons were measured at photon energies in the interval between 50 and 70 MeV. The results obtained in this way were analyzed on the basis of the quasideuteron model. The probability for final-state nucleon–deuteron interaction was estimated.

  13. Approximate treatment of the deuteron+nucleus interaction in the resonating-group formulation

    International Nuclear Information System (INIS)

    Kaneko, T.

    1995-01-01

    A simplified version of the microscopic resonating-group method (RGM), called model K, is formulated for the deuteron+nucleus problem by making the simplifications of approximately treating the total center-of-mass motion and keeping only the direct and knockon-exchange terms. For these terms, the important point is that they can be analytically derived without much difficulty, with the consequence that the adoption of this model can enhance the general utility of the RGM by rendering the calculations feasible even in heavy nuclear systems. By utilizing the information obtained from previous investigations in the nucleon+nucleus case and by studying the analytical structure of the RGM kernel functions, it can be determined that this model for deuteron+nucleus scattering should work well when the nucleon-number ratio of the target and incident nuclei is larger than about 10 and when the scattering energy is higher than about 20 MeV/nucleon. A test comparison with exact RGM results for d+ 16 O scattering at 30 MeV and a fit to experiment for d+ 40 Ca scattering at 49.52 MeV yield rather convincing evidence that this model has great simplicity and generality, and can be employed to conduct a systematic and large-scale study of existing data on deuteron+nucleus scattering. (orig.)

  14. Enhancements observed in the two-proton invariant mass distribution in the pionless deuteron breakup at 3.3 GeV/c

    International Nuclear Information System (INIS)

    Dolidze, M.G.; Glagolev, V.V.; Kacharava, A.K.

    1986-01-01

    A sample of ''non-spectator'' events in the pionless deuteron breakup at a 3.3 Gev/c momentum has been investigated by means of a 1m hydrogen bubble chamber at JINR, Dubna. The two-proton invariant mass spectrum in the charge exchange channel exibits two enhancements for masses of 2010 MeV/c 2 and 2160 Mev/c 2 . Theoretical calculations taking into account one-pion exchange diagrams and virtual pion absorption by the deuteron have been carried out. It has been shown that the enhancement at Msub(pp) = 2010 MeV/c 2 can be explained if there is an irregularity in the behaviour of the off-energy-shell amplitude of the πsup(+)d→pp reaction near the threshold. The observed maximum at Msub(pp) = 2160 Mev/c 2 is caused mainly by intermediate Δ production and pion absorption on the deuteron

  15. Two-body photodisintegration of the deuteron from 100 to 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.; Ahrens, J.; Altieri, S.; Annand, J.R.M.; Anthony, I.; Audit, G.; Beck, R.; Braghieri, A.; D`Hose, N.; Hall, S.; Isbert, V.; Kellie, J.D.; Kerhoas, S.; MacCormick, M.; MacGeorge, J.C.; Medaglia, R.; Miller, G.J.; Murphy, L.Y.; Owens, R.O.; Pedroni, P.; Pinelli, T.; Tamas, G.; Wallace, P.A. [Glasgow Univ. (United Kingdom). Dept. of Phys. and Astron.]|[Mainz Univ. (Germany). Inst. fuer Kernphys.]|[INFN, Sezione di Pavia (Italy)]|[Pavia Univ. (Italy). Dipartimento di Fisica Nucleare e Teorica]|[CEA-DAPNIA/SPhN, 91 - Gif-sur-Yvette (France)

    1996-06-24

    The total and the differential cross sections for the D({gamma},p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. Using the large acceptance detector DAPHNE in conjunction with the Glasgow tagging spectrometer, high precision results with small systematic errors were obtained. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 {sup circle} -160 {sup circle} in 10 {sup circle} intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and comparison with some recent theoretical calculations. (orig.).

  16. Polarization observables in deuteron photodisintegration below 360 MeV

    International Nuclear Information System (INIS)

    2011-01-01

    High precision measurements of induced and transferred recoil proton polarization in d((rvec y), (rvec p))n have been performed for photon energies of 277-357 MeV and θcm = 20 o -120 o . The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

  17. Polarization observables in deuteron photodisintegration below 360 MeV

    Science.gov (United States)

    Glister, J.; Ron, G.; Lee, B. W.; Gilman, R.; Sarty, A. J.; Strauch, S.; Higinbotham, D. W.; Piasetzky, E.; Allada, K.; Armstrong, W.; Arrington, J.; Arenhövel, H.; Beck, A.; Benmokhtar, F.; Berman, B. L.; Boeglin, W.; Brash, E.; Camsonne, A.; Calarco, J.; Chen, J. P.; Choi, S.; Chudakov, E.; Coman, L.; Craver, B.; Cusanno, F.; Dumas, J.; Dutta, C.; Feuerbach, R.; Freyberger, A.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Holmstrom, T.; Hyde, C. E.; Ibrahim, H.; Ilieva, Y.; de Jager, C. W.; Jiang, X.; Jones, M. K.; Kang, Hyekoo; Kelleher, A.; Khrosinkova, E.; Kuchina, E.; Kumbartzki, G.; LeRose, J. J.; Lindgren, R.; Markowitz, P.; May-Tal Beck, S.; McCullough, E.; Meekins, D.; Meziane, M.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Norum, B. E.; Oh, Y.; Olson, M.; Paolone, M.; Paschke, K.; Perdrisat, C. F.; Potokar, M.; Pomatsalyuk, R.; Pomerantz, I.; Puckett, A.; Punjabi, V.; Qian, X.; Qiang, Y.; Ransome, R. D.; Reyhan, M.; Roche, J.; Rousseau, Y.; Saha, A.; Sawatzky, B.; Schulte, E.; Schwamb, M.; Shabestari, M.; Shahinyan, A.; Shneor, R.; Širca, S.; Slifer, K.; Solvignon, P.; Song, J.; Sparks, R.; Subedi, R.; Urciuoli, G. M.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhan, X.; Zhu, X.

    2011-03-01

    High precision measurements of induced and transferred recoil proton polarization in d(γ→,p→)n have been performed for photon energies of 277-357 MeV and θcm=20°-120°. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

  18. The energy spectrum of neutrons from 7Li(d,n8Be reaction at deuteron energy 2.9 MeV

    Directory of Open Access Journals (Sweden)

    Mitrofanov Konstantin V.

    2017-01-01

    Full Text Available The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n3He, D(d,n3He, 7Li(p,n7Be, T(d,n4He, 7Li(d,n8Be, 9Be(d,n10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n8Be and 9Be(d,n10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC “SSC RF – IPPE” using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p27Mg, 27Al(n,α24Na, 113In(n,n'113mIn, 115In(n,n'115mIn, 115In(n,γ116mIn, 58Ni(n,p58mCo, 58Ni(n,2n57Ni, 197Au(n,γ198Au, 197Au(n,2n196Au, 59Co(n,p59Fe, 59Co(n,2n58m+gCo, 59Co (n,g60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  19. Effect of Δ-isobar excitation on spin-dependent observables of elastic nucleon-deuteron scattering

    International Nuclear Information System (INIS)

    Nemoto, S.; Oryu, S.; Chmielewski, K.; Sauer, P.U.

    2000-01-01

    Δ-isobar excitation in the nuclear medium yields an effective three-nucleon force. A coupled-channel formulation with Δ-isobar excitation developed previously is used. The three-particle scattering equations are solved by a separable expansion of the two-baryon transition matrix for elastic nucleon-deuteron scattering. The effect of Δ-isobar excitation on the spin-dependent observables is studied at energies above 50 MeV nucleon lab energy. (author)

  20. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    Science.gov (United States)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  1. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the 15N(p,n) reaction as neutron source

    International Nuclear Information System (INIS)

    Poenitz, Erik

    2010-01-01

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The 15 N(p,n) 15 O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the 15 N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure 209 Bi and 181 Ta samples at 4 MeV incident neutron energy. Results are compared with other

  2. Two facets of the deuteron

    International Nuclear Information System (INIS)

    Holt, R.J.

    1992-01-01

    Two of the simplest nuclear reactions, electron deuteron elastic scattering and deuteron photodisintegration, will be discussed. In particular, measurements of the tensor analyzing power T 20 in e-d scattering performed with a polarized gas target in the VEPP-3 electron storage ring will be presented. In addition, measurements of deuteron photodisintegration at high energy performed at SLAC will be discussed. The meson-exchange calculations appear to agree well with al available data for electron-deuteron elastic scattering, while the constituent counting rules appear to describe the high-energy deuteron photodisintegration results at θcm = 90 degrees

  3. Superconducting sector magnet for the deuteron cyclotron DC-1

    International Nuclear Information System (INIS)

    Alenitskij, Y.G.; Vasilenko, A.T.; Zaplatin, N.L.; Mironov, S.V.; Morozov, N.A.; Pryanichnikov, V.I.; Samsonov, E.V.; Sukhanov, V.I.; Chesnov, A.F.; Chesnova, S.I.

    1992-01-01

    In this paper the results of calculations of a superconducting magnet with a cold pole for a cyclotron to deuteron energy 100 MeV are presented. The maximum induction in the magnet is 4.5 T, stored energy 5 MJ, mean current density in coil 9 · 10 7 A/m 2 . The scheme and main parameters of the magnet protection system and cryogenic provision system are described. The results of calculation of magnetic and thermal forces acting on the coil and its case are presented. The status of the manufacture of the magnetic system elements is considered

  4. The low-energy neutron-deuteron analyzing power and the sup 3 P sub 0,1,2 interactions of nucleon-nucleon potentials

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Howell, C.R.; Alohali, M.; Chen, Z.P.; Felsher, P.D.; Hanly, J.M.; Walter, R.L.; Weisel, G. (Duke Univ., Durham, NC (USA). Dept. of Physics Triangle Universities Nuclear Lab., Durham, NC (USA)); Mertens, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Witala, H.; Gloeckle, W. (Bochum Univ. (Germany, F.R.). Inst. fuer Theoretische Physik 2)

    1991-03-28

    Data for the analyzing power A{sub y}({theta}) for the elastic scattering of neutrons from deuterons have been measured at 5.0, 6.5 and 8.5 MeV to an accuracy of +-0.0035. Surprisingly large differences have been observed at these low energies between the data and rigorous Faddeev calculations using the Paris and Bonn B nucleon-nucleon potentials. The A{sub y}({theta}) data provide a stringent test for our present understanding of the on-shell and off-shell {sup 3}P{sub 0,1,2} nucleon-nucleon interactions. (orig.).

  5. Deuteron threshold electrodisintegration at high momentum transfer

    International Nuclear Information System (INIS)

    Schmitt, W.M.; Turchinetz, W.; Williamson, C.F.

    1997-01-01

    Absolute differential cross sections for the threshold electrodisintegration of the deuteron with good resolution were measured at a laboratory scattering angle of 160 degree for five values of Q 2 ranging from 8.66 to 42.4 fm -2 . Comparisons of the data averaged over E np from 0--3 MeV and 0--10 MeV are made with nonrelativistic meson-exchange calculations. These calculations are sensitive to the nucleon electromagnetic form factors, nucleon-nucleon potential, and relativistic effects. The data are also compared with a hybrid quark-hadron model calculation that describes the deuteron as a six-quark cluster for the short range part of the interaction. Some of these calculations can describe the data reasonably well over certain ranges of Q 2 ; however, none of these calculations can accurately describe the data over the entire measured Q 2 range

  6. Integral activation experiment of fusion reactor materials with d-Li neutrons up to 55 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Moellendorff, Ulrich von [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Wada, Masayuki [Business Automation Co., Ltd., Tokyo (Japan)

    2000-03-01

    An integral activation experiment of fusion reactor materials with a deuteron-lithium neutron source was performed. Since the maximum energy of neutrons produced was 55 MeV, the experiment with associated analysis was one of the first attempts for extending the energy range beyond 20 MeV. The following keywords represent the present study: d-Li neutrons, 55 MeV, dosimetry, SAND-II, spectrum adjustment, LA-150, MCNP, McDeLi, IFMIF, fusion reactor materials, integral activation experiment, low-activation, F82H, vanadium-alloy, IEAF, ALARA, and sequential charged particle reaction. (author)

  7. Fast neutron forward distributions from C, Be and U thick targets bombarded by deuterons

    International Nuclear Information System (INIS)

    Menard, S.; Clapier, F.; Pauwels, N.; Proust, J.; Donzaud, C.; Guillemaud-Mueller, D.; Lhenry, I.; Mueller, A.C.; Scarpaci, J.A.; Sorlin, O.; Mirea, M.

    1999-01-01

    In principle, to produce neutron rich radioactive beams with sufficient intensities, a source of isotopes far from the valley of β--stability can be obtained through the fission of 238 U induced by fast neutrons. A very promising way to assess the feasibility of these very intense neutron beams is to break an intense 2 H beam in a dedicated converter. The main objective of SPIRAL and PARRNe R - D projects is the investigation of the optimum parameters for a neutron rich isotope source in accordance with the scheme presented above. In such conditions, the charge particle energy loss can prevent the destruction of the fission target. In the frame of these project, a special attention is dedicated to the energetic and angular distributions of the neutrons emerging from a set of converters at a series of 2 H incident energies. Deuteron beams at energies less than 30 MeV are particularly interesting because it is expected that, after the decay in the 238 U target, the neutron rich radioactive fission products are cold enough, thus avoiding the evaporation of a too large number of neutrons. For such purposes, one needs experimental angular distributions at given energies for different types of converters and to elaborate a theoretical tool in order to estimate accurately the characteristics of the secondary neutron beam. In this paper, the experimental results were obtained with 17, 20 and 28 MeV deuteron energies on Be, C and U converters using the time of flight method. These data are compared to results given by a model valid at higher energy in order to obtain pertinent simulations in a large range of incident energies. Many theoretical tools were developed to characterize the properties of the neutron beams emerging from thick targets. In this contribution the Serber's model, considered with its improvements which account for the Coulomb deflection and the mean straggling of the beam in the material, is compared to experimental data in order to verify the validity

  8. Deuteron photo-disintegration at large energies

    International Nuclear Information System (INIS)

    Potterveld, D.H.

    1994-01-01

    Current proposals at CEBAF include the measurement of cross sections and polarization observables of exclusive photo-reactions such as deuteron photo-disintegration and pion photo-production from nucleons. At issue is the applicability of traditional meson-exchange models versus quark models of these reactions at photon energies of several GeV. Beam energies above 4 GeV at CEBAF could make possible the measurement of these reactions over a kinematic range sufficiently broad to distinguish between the models. Estimates of counting rates for a Hall-C experiment to measure the γd → pn cross section are presented

  9. Particle interaction with the deuteron

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1974-09-01

    A study of the particle deuteron interactions at low, intermediate and high energies is presented. The differential cross section for pion deuteron scattering, near the 33 resonance, is calculated considering the Fermi motion and the off energy shell effects. We present formulae for the calculation of correction to the incoherent production cross section on deuteron arising from the multiple scattering and interference; we apply them to the case K + → K 0 π + between 1. and 5 Gev/c. is introduced. A relativistic correction to the double scattering Glauber formula and is done an application to the rho photoproduction on deuteron at high energies

  10. KEK: Deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-05-15

    At the end of January, the 12 GeV Proton Synchrotron (PS) at the Japanese KEK Laboratory successfully accelerated deuterons to 11.2 GeV (5.6 GeV/nucleon), the limiting energy for deuterons with this ring. Beam intensity in this test exceeded 3 x 10{sup 11} particles per pulse.

  11. On deformed tensor potential for inelastic deuteron scattering

    International Nuclear Information System (INIS)

    Raynal, Jacques.

    1980-08-01

    Tensor analysing powers for inelastic deuteron scattering have been measured around 12 to 15 MeV. There is no problem to use such a tensor potential for the excited states in coupled channel calculations. However, for transition potentials, form factors are very different. A fit has been done with the first order vibrational model for 64 Ni(d,d') 64 Ni*, 2 + at 1,344 MeV

  12. Dynamic Isovector Reorientation of Deuteron as a Probe to Nuclear Symmetry Energy.

    Science.gov (United States)

    Ou, Li; Xiao, Zhigang; Yi, Han; Wang, Ning; Liu, Min; Tian, Junlong

    2015-11-20

    We present the calculations on a novel reorientation effect of deuteron attributed to isovector interaction in the nuclear field of heavy target nuclei. The correlation angle determined by the relative momentum vector of the proton and the neutron originating from the breakup deuteron, which is experimentally detectable, exhibits significant dependence on the isovector nuclear potential but is robust against the variation of the isoscaler sector. In terms of sensitivity and cleanness, the breakup reactions induced by the polarized deuteron beam at about 100 MeV/u provide a more stringent constraint to the symmetry energy at subsaturation densities.

  13. Deuteron threshold electrodisintegration at high momentum transfer

    International Nuclear Information System (INIS)

    Schmitt, W.M.; Turchinetz, W.; Williamson, C.F.; Yates, T.C.; Zumbro, J.D.; Lee, K.S.; Baghaei, H.; Churchwell, S.; Hicks, R.S.; Miskimen, R.; Peterson, G.A.; Wang, K.; Bosted, P.E.; Spengos, M.; Frois, B.; Martino, J.; Platchkov, S.; Hotta, A.

    1997-01-01

    Absolute differential cross sections for the threshold electrodisintegration of the deuteron with good resolution were measured at a laboratory scattering angle of 160 degree for five values of Q 2 ranging from 8.66 to 42.4fm -2 . Comparisons of the data averaged over E np from 0 to 3 MeV and from 0 to 10 MeV are made with nonrelativistic meson exchange calculations. These calculations are sensitive to the nucleon electromagnetic form factors, nucleon-nucleon potential, and relativistic effects. The data are also compared with a hybrid quark-hadron model calculation that describes the deuteron as a six-quark cluster for the short range part of the interaction. Some of these calculations can describe the data reasonably well over certain ranges of Q 2 ; however, none of these calculations can accurately describe the data over the entire measured Q 2 range. copyright 1997 The American Physical Society

  14. Neutron-deuteron breakup experiment at En=13 MeV: Determination of the 1S0 neutron-neutron scattering length ann

    International Nuclear Information System (INIS)

    Gonzalez Trotter, D.E.; Meneses, F. Salinas; Tornow, W.; Howell, C.R.; Chen, Q.; Crowell, A.S.; Roper, C.D.; Walter, R.L.; Schmidt, D.; Witala, H.; Gloeckle, W.; Tang, H.; Zhou, Z.; Slaus, I.

    2006-01-01

    We report on results of a kinematically complete neutron-deuteron breakup experiment performed at Triangle Universities Nuclear Laboratory using an E n =13 MeV incident neutron beam. The 1 S 0 neutron-neutron scattering length a nn has been determined for four production angles of the neutron-neutron final-state interaction configuration. The absolute cross-section data were analyzed with rigorous three-nucleon calculations. Our average value of a nn =-18.7±0.7 fm is in excellent agreement with a nn =-18.6±0.4 fm obtained from capture experiments of negative pions on deuterons. We also performed a shape analysis of the final-state interaction cross-section enhancements by allowing the normalization of the data to float. From these relative data, we obtained an average value of a nn =-18.8±0.5 fm, in agreement with the result obtained from the absolute cross-section measurements. Our result deviates from the world average of a nn =-16.7±0.5 fm determined from previous kinematically complete neutron-deuteron breakup experiments, including the most recent one carried out at Bonn. However, this low value for a nn is at variance with theoretical expectation and other experimental information about the sign of charge-symmetry breaking of the nucleon-nucleon interaction. In agreement with theoretical predictions, no evidence was found of significant three-nucleon force effects on the neutron-neutron final-state interaction cross sections

  15. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  16. Nucleon polarizabilities from deuteron Compton scattering within a Green's function hybrid approach

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, R.P.; Hemmert, T.R. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Griesshammer, H.W. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Universitaet Erlangen-Nuernberg, Institut fuer Theoretische Physik III, Naturwissenschaftliche Fakultaet I, Erlangen (Germany); The George Washington University, Center for Nuclear Studies, Department of Physics, Washington DC (United States)

    2010-10-15

    We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100MeV, using state-of-the-art deuteron wave functions and NN potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use the chiral effective field theory with explicit {delta} (1232) degrees of freedom within the small-scale expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic {gamma} d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find {alpha}{sub E}{sup s} = (11.3{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and {beta}{sub M}{sup s} = (3.2{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and conclude by comparison to the proton numbers that neutron and proton polarizabilities are the same within rather small errors. (orig.)

  17. Helicity-dependent reaction γd → π0d near the η-threshold and its contribution to the E-asymmetry and the GDH sum rule for the deuteron

    International Nuclear Information System (INIS)

    Darwish, Eed M.; Hemmdan, A.; El-Shamy, N.T.

    2015-01-01

    The helicity-dependent coherent π 0 -photoproduction in the reaction γd → π 0 d near the η-threshold is investigated. The calculations are performed within an approach which includes the reaction amplitudes of the impulse approximation (IA), two-step process with intermediate πN- and ηN-rescattering, and the higher order terms in the multiple scattering series for the intermediate ηNN interaction. The contribution of γd → π 0 d to the deuteron spin asymmetry is calculated and its contribution to the Gerasimov–Drell–Hearn (GDH) integral is explicitly evaluated by integration up to a photon energy of 900 MeV. In addition, the helicity E-asymmetry is calculated. The results revealed that the doubly polarized differential cross-sections and the helicity E-asymmetry are sensitive to the interference of rescattering effects, specially at photon energies 600–800 MeV and extreme backward pion angles. The sensitivity of the obtained results for the GDH integral to the choice of NN potential model governing the deuteron wave function is discussed. We find that the deviation among results obtained for the deuteron GDH integral using different deuteron wave functions is quite large. (author)

  18. Deuteron-induced activation data in EAF for IFMIF calculations

    International Nuclear Information System (INIS)

    Forrest, R.; Cook, I.

    2006-01-01

    The main type of activation calculations needed for fusion technology deals with the interaction of neutrons with materials. The road map for development of fusion as an electricity producing technology is based on ITER and IFMIF followed by DEMO. IFMIF is a materials testing facility that will enable materials planned to be used in DEMO to be irradiated to very high fluences, so providing the database of material properties required for the licensing of DEMO. IFMIF will use intense beams of high energy deuterons striking a flowing lithium target to produce the neutron field. Although the neutron spectrum is a good match to those produced in a D-T fusion device, there is a significant high energy tail extending up to 55 MeV. These high energy neutrons were the motivation for increasing the upper energy limit in the neutron-induced part of EAF-2005 so that activation calculations could be made in IFMIF. The deuterons themselves will also make a contribution to activation especially in the target where they strike the lithium but also due to beam losses in the accelerator. It was realised that because of corrosion in the lithium loop there is the potential for a wide range of elements to be present in the target region and it is therefore necessary to have a complete library of deuteron-induced cross section data, just as in the neutron case. A preliminary library based on model calculations with TALYS using global parameters was used to construct a deuteron-induced library and this was released as part of the maintenance release of EAF-2005.1 at the beginning of this year. This data library has been used with an updated version of the inventory code FISPACT to calculate the activation in the lithium target due to reactions of the deuterons with the corrosion products. These calculations show that deuterons are much more important than neutrons (about a factor of 70) in activating the elements other than lithium. This work shows the importance of the effect and means

  19. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the {sup 15}N(p,n) reaction as neutron source; Messung von Wirkungsquerschnitten fuer die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der {sup 15}N(p,n)-Reaktion als Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, Erik

    2010-04-26

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The {sup 15}N(p,n){sup 15}O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the {sup 15}N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure {sup 209}Bi and {sup 181}Ta samples at 4 MeV incident neutron energy

  20. Computer studies of the field for the superconducting magnetic system of the deuteron cyclotron DC-1

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.; Dudareva, T.N.; Zaplatin, N.L.; Samsonov, E.V.

    1983-01-01

    The calculation results are presented concerning the magnetic system parameters for the 90 MeV deuteron cyclotron (DC-1). Dynamic characteristics of the equilibrium orbits have been calculated too. It is shown that stability of the circUlation frequency in the 15-103 MeV energy range is maintained with the accuracy +-2x10 -3 or +-0.03 MHz. Calculations of the pondermotive forces affecting the coil showed that the maximum density of normal and axial forces equals 2.7 MN/m and 0.5 MN/m respectively

  1. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    International Nuclear Information System (INIS)

    Blideanu, Valentin; Garcia, Mauricio; Joyer, Philippe; Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco; Ortiz, Felix; Sanz, Javier; Sauvan, Patrick

    2011-01-01

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  2. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    Energy Technology Data Exchange (ETDEWEB)

    Blideanu, Valentin [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Garcia, Mauricio [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Joyer, Philippe, E-mail: philippe.joyer@cea.fr [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Ortiz, Felix [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Sanz, Javier; Sauvan, Patrick [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain)

    2011-10-01

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  3. Anomalous heat evolution of deuteron implanted Al on electron bombardment

    International Nuclear Information System (INIS)

    Kamada, K.; Kinoshita, H.; Takahashi, H.

    1994-05-01

    Anomalous heat evolution was observed in deuteron implanted Al foils on 175 keV electron bombardment. Local regions with linear dimension of several 100nm showed simultaneous transformation from single crystalline to polycrystalline structure instantaneously on the electron bombardment, indicating the temperature rise up to more than melting point of Al from room temperature. The amount of energy evolved was more than 180 MeV for each transformed region. The transformation was never observed in proton implanted Al foils. The heat evolution was considered due to a nuclear reaction in D 2 molecular collections. (author)

  4. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  5. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  6. Anti-deuteron sensitivity studies at LHCb

    CERN Multimedia

    Baker, Sophie Katherine

    2018-01-01

    Measurements of anti-deuterons in collider experiments can help to reduce systematic uncertainties in indirect searches for dark matter. Two predominant unknowns in these searches are the production of secondary anti-deuterons in the cosmos from spallation processes, and anti-deuteron production from annihilating dark matter. LHCb is a forward spectrometer on the LHC ring, designed to measure b-hadron decays from high energy proton-proton collisions. With the detector's excellent particle identification capabilities, deuteron and anti-deuteron measurements at LHCb could help to parametrise the two cosmological processes. Recent studies of (anti-)deuteron identification at LHCb and the prospects for measuring prompt (anti-)deuterons from pp-collisions will be presented, as well as a working analysis of b-baryrons decaying to deuterons.

  7. Identification and spectrometry of charged particles produced in reactions induced by 14 MeV neutrons. II

    International Nuclear Information System (INIS)

    Sellem, C.; Perroud, J.P.; Loude, J.F.

    1975-01-01

    A counter telescope consisting of gas proportional counters, a thin semiconductor detector and a thick one has been built and used for the study of the angular differential cross sections of (n, charged particles) reactions induced by 14 MeV neutrons. Detection of the α-particles emitted in the neutron production reaction 3 H(d,n) 4 He gives a time reference for the measurement of the time of flight of the charged particles and allows a precise monitoring of the intensity of the neutron beam. High energy protons, deuterons and tritons are identified by their energy losses in the thin semiconductor detector and in the thick one and by their time of flight. Low energy protons, deuterons, tritons and all α-particles stop in the thin semiconductor detector and are identified by their energy losses in this detector and in one gas proportional counter as well as by their time of flight. It is possible to identify and to measure the energy of all charged particles in the energy range of 2 to 15 MeV: a very low background results from the use of the time of flight. (Auth.)

  8. Experimental cross sections for light-charged particle production induced by neutrons with energies between 25 and 65 MeV incident on aluminum

    International Nuclear Information System (INIS)

    Benck, S.; Slypen, I.; Meulders, J.P.; Corcalciuc, V.

    2001-01-01

    Experimental double-differential cross sections (d 2 σ/dΩdE) for fast neutron-induced proton, deuteron, triton, and alpha-particle production on aluminum are reported, at several incident neutron energies between 25 and 65 MeV, for outgoing particle energies above the experimental energy thresholds. Angular distributions were measured at laboratory angles between 20 deg. and 160 deg. . Reliable extrapolated spectra are derived for very forward (2.5 deg. and 10 deg. ) and very backward angles (170 deg. and 177.5 deg. ). Based on these experimental data, energy-differential (dσ/dE), angle-differential (dσ/dΩ), and total production cross sections (σ T ) are reported for each outgoing particle

  9. Study of one-nucleon transfer reactions with polarized deuterons of 20 MeV

    International Nuclear Information System (INIS)

    Seichert, N.

    1983-01-01

    In this thesis the results of the study of (d vector,p), (d vector,t), and (d vector, 3 He) reactions at Esub(d)approx.=20 MeV on the target nuclei 16 O, 18 O, 28 Si, 36 Ar, 40 Ca, 48 Ca, 54 Cr, 65 Cu, 90 Zr, 144 Sm, and 208 Pb in the framework of a DWBA analysis are presented. The collection of the results of the analysis over this wide mass range shall permit a survey, how well the conventional DWBA describes the measured angular distributions of dsigma/dΩ(theta) and iT 11 (theta). Furthermore in justified cases the contribution of higher order processes (inelastic transfer) are studied by means of a CCBA analysis. The spectroscopical possibilities given by the measurement of the analyzing power iT 11 (theta) are presented in detail on the example of the reaction 144 Sm (d vector,p) 145 Sm. The analysis of the tensor analyzing power T 21 (theta) in the framework of a finite range DWBA in the last part of the thesis permits quantitative statements about the D state amplitude in the relative wave function of the deuteron, the triton, and of 3 He. (orig./HSI) [de

  10. 1H(d,2p)n reaction at 2 GeV deuteron energy

    International Nuclear Information System (INIS)

    Erohuml, J.; Fodor, Z.; Koncz, P.; Seres, Z.; Perdrisat, C.F.; Punjabi, V.; Boudard, A.; Bonin, B.; Garcon, M.; Lombard, R.; Mayer, B.; Terrien, Y.; Tomasi, E.; Boivin, M.; Yonnet, J.; Bhang, H.C.; Youn, M.; Belostotsky, S.L.; Grebenuk, O.G.; Nikulin, V.N.; Kudin, L.G.

    1994-01-01

    The 1 H(d,2p)n deuteron breakup reaction was measured at 2 GeV deuteron energy in a kinematically complete experiment. Fivefold differential cross sections are given in a wide range of kinematical variables and analyzed in terms of impulse approximation and NN rescattering. The deuteron momentum density was determined and deviations were found depending on the value of the four-momentum transfer |t| in the scattering process. At low |t| the momentum densities are in good agreement with the impulse approximation whereas large discrepancies were found above q∼200 MeV/c when the four-momentum transfer was large. Various possible origins of the anomalous behavior at high q values are discussed

  11. Neutron energy spectra from the thick target 9Be(d,n)10B reaction

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1976-12-01

    The energy spectrum of neutrons emitted when deuterons impinge on a thick beryllium target has been measured using an NE213 scintillation detector and the time-of-flight technique. Spectra were measured at angles of 0, 30, 45, 60, 90, 120 and 150 0 for deuteron energies of 1.4, 1.8, 2.3 and 2.8 MeV. Tables are presented of these angle-dependent energy spectra, the angle-integrated energy dependent yeidls, and the total neutron yield as a function of deuteron energy. (author)

  12. Monitoring of the tensor polarization of high energy deuteron beams; Monitoring tenzornoj polyarizatsii dejtronnykh puchkov vysokoj ehnergii

    Energy Technology Data Exchange (ETDEWEB)

    Zolin, L S; Litvinenko, A G; Pilipenko, Yu K; Reznikov, S G; Rukoyatkin, P A; Fimushkin, V V

    1998-12-01

    The method of determining the tensor component of high energy polarized deuteron beams, based on measuring of the tensor analyzing power in the deuteron stripping reaction, is discussed. This method is convenient for monitoring during long time runs on the tensor polarized deuteron beams. The method was tested in the 5-days run at the LHE JINR accelerator with the 3 and 9 GeV/c tensor polarized deuterons. The results made it possible to estimate the beam polarization stability in time 5 refs., 4 figs., 1 tab.

  13. Final-state interaction in spin asymmetry and GDH sum rule for incoherent pion production on the deuteron

    International Nuclear Information System (INIS)

    Darwish, E.M.; Arenhoevel, H.; Schwamb, M.

    2003-01-01

    The contribution of incoherent single-pion photoproduction to the spin response of the deuteron, i.e., the asymmetry of the total photoabsorption cross-section with respect to parallel and antiparallel spins of photon and deuteron, is calculated over the region of the Δ-resonance with inclusion of final-state NN and πN rescattering. Sizeable effects, mainly from NN rescattering, are found leading to an appreciable reduction of the spin asymmetry. Furthermore, the contribution to the Gerasimov-Drell-Hearn integral is explicitly evaluated by integration up to a photon energy of 550 MeV. Final-state interaction reduces the value of the integral to about half of the value obtained for the pure impulse approximation. (orig.)

  14. Cross-section measurements of the space-star configuration in N-D breakup at 13.0 MeV

    International Nuclear Information System (INIS)

    Setze, H.R.; Howell, C.R.; Braun, R.T.; Gonzalez Trotter, D.E.; Hussein, A.H.; Roper, C.D.; Salinas, F.; Slaus, I.; Tornow, W.; Vlahovic, B.; Walter, R.L.; Mertens, G.; Lambert, J.M.; Witala, H.

    1995-01-01

    In this paper we present results for kinematically complete cross-section measurements of the space-star configuration in neutron-deuteron breakup for an incident neutron energy of 13.0 MeV. These data are a subset of the results obtained in a recent experiment in which cross sections for 46 configurations were measured simultaneously. The experimental techniques are described. These new data are in good agreement with previous n-d data but differ significantly from both rigorous n-d calculations and proton-deuteron breakup data. copyright 1995 American Institute of Physics

  15. The search for high-energy deuterons in the 3He +3He reaction

    International Nuclear Information System (INIS)

    Pigeon, R.; Slobodrian, R.J.

    1979-01-01

    High-energy deuterons have been detected from the 3 He + 3 He reaction with a system sensitive to cross-sections of 0.6 nb sr -1 . Several tests have permitted to evaluate the small contribution of spurious events. The deuterons are kenematically consistent with the reaction 3 He + 3 He→ 2 H + 4 He + e + +ν, but the measured cross-section at 20deg laboratory is too high for a weak-interaction process; (1.3 +- 0.2) nb sr -1 . It might be due to an interaction of intermediate strength causing the decay of pp pairs ( 3 He) into deuterons. Other alternatives and the implications concerning fusion processes and the production of neutrinos in the sun are discussed in the text

  16. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  17. Relativistic polarized deuteron fragmentation into protons as test of six-quark nature of deuteron at small distances

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Vizireva, L.

    1981-01-01

    A study of the nature of the short-range few-nucleon correlations in nuclei is proposed in the polarized high-energy deuteron fragmentation experiments. The presence of 6q-state in deuteron with probability of several percents is shown to change essentially the cross-section behaviour of this process in the momentum region where the fraction of the deuteron momentum carried out by proton in the infinite momentum frame is about 0.78. It is shown how the character of the cross-section of the transverse polarized deuteron fragmentation is changed depending on the parameters of 6q-admixure in deuteron [ru

  18. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  19. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. G.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J. [Physics Department, SUNY Geneseo, Geneseo, New York 14454 (United States); Fiksel, G.; Stoeckl, C.; Mileham, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Sinenian, N.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-07-15

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  20. Calculations and Evaluations of Cross Sections for n + 204,206,207,208,natPb Reactions in the En ≤ 250 MeV Energy Range

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhang Zhengjun; Cai Chonghai

    2005-01-01

    The quality and reliability of the computational simulation of a macroscopic nuclear device are directly related to the quality of the underlying basic nuclear data. To meet these needs, according to advanced nuclear models that account for details of nuclear structure and the quantum nature of nuclear reaction and the experimental data of total, nonelastic, and elastic scattering cross sections, and elastic scattering angular distributions of Pb and its isotopes, all cross sections of neutron-induced reaction, angular distributions, energy spectra, especially the double-differential cross sections for neutron, proton, deuteron, triton, helium, and alpha emissions are calculated and analyzed for n + 204,206,207,208,nat Pb at incident neutron energies below 20 MeV by using the UNF nuclear model code. At neutron incident energies 20 n ≤ 250 MeV, MEND codes are used. Theoretical calculations are compared with existing experimental data and other evaluated data from ENDF/B-VI and JENDL-3

  1. Forward absolute cross-section of the reaction 2H(d,n)3He for Esub(d) = (3/6)MeV

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.

    1981-01-01

    The zero-degree differential cross-section of the reaction 2 H(d,n) 3 He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident-deuteron energy interval from 3 to 6 MeV. (author)

  2. Ion tail formation and its effect on 14-MeV neutron generation in D-3He plasmas

    International Nuclear Information System (INIS)

    Matsuura, H.; Nakao, Y.; Kudo, K.

    1992-01-01

    This paper reports on the triton distribution function in D- 3 He plasmas which is distorted from a Maxwellian owing to the presence of a 1.01-MeV birth component. The deuteron-triton reaction rate (i.e., 14-MeV neutron generation rate) in the plasma should be smaller than the values evaluated by assuming a Maxwellian triton distribution. A local Fokker-Planck calculation shows that although the degree of the decrease in 14-MeV neutron generation strongly depends on the plasma conditions and also on the energy loss mechanism, it becomes appreciable in actual burning plasmas

  3. Correlations of fragments and their sequential products from the 3He-induced reaction on 58Ni at 130 MeV

    International Nuclear Information System (INIS)

    Stockhorst, H.

    1986-01-01

    The 3 He breakup on the 58 Ni nucleus was studied with a projectile energy of 130 MeV. The main topic of this studies lies thereby on the absorptive breakup in which a fragment from the 3 He breakup is absorbed by the target nucleus. Beside the single and coincidence measurements on the 3 He breakup on the one hand the reaction 58 Ni(d,pp') was studied at a projectile energy of 80 MeV and on the other hand the inclusive reactions 58 Ni(d,yX) and 58 Ni(p,yX) whereby the light particles y up to A=3 were spectroscoped in a wide angular range. The projectile energies were selected in such a way that they correspond almost to the energies of the primary fragments deuteron and proton from the 3 He breakup (E d =79 MeV and E p =39 MeV). The study of the elastic 3 He breakup resulted that the shapes of the deuteron and proton spectra can be well described by a PWBA model and reproduce the momentum distribution of the fragments before the 3 He breakup. The spectra are therefore determined by properties of the projectiles. However the proton and deuteron spectra from the absorptive breakup show distinct components which cannot be reduced to 3 He properties. Rather they are in their shape comparable with the inclusive spectra of the (d,p) respectively (p,p') reaction. Especially this is valid for spectra from the 3 He breakup in which a fragment was registrated with an energy corresponding to the projectile velocity. This suggests that in the absorptive 3 He breakup a two-stage process is present in which after the 3 He fragmentation in a second stage a (d,p) or (p,p') reaction occurs. The study of the 3 He breakup resulted that such processes yield an essential contribution to the inclusive cross section of the reactions 58 Ni( 3 He,dX) and 58 Ni( 3 He,pX). (HSI) [de

  4. Cyclotron production of {sup 64}Cu by deuteron irradiation of {sup 64}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, K. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: kamel.abbas@jrc.it; Kozempel, J. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Charles University Prague, Faculty of Science, Department of Organic and Nuclear Chemistry, 128 43 Prague (Czech Republic); Bonardi, M. [LASA, Radiochemistry Laboratory, University and INFN, via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Groppi, F. [LASA, Radiochemistry Laboratory, University and INFN, via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Alfarano, A. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Holzwarth, U. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Simonelli, F. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Hofman, H. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Horstmann, W. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Menapace, E. [ENEA, Applied Physics Division, Bologna (Italy); Leseticky, L. [Charles University Prague, Faculty of Science, Department of Organic and Nuclear Chemistry, 128 43 Prague (Czech Republic); Gibson, N. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy)

    2006-09-15

    The short-lived (12.7 h half-life) {sup 64}Cu radioisotope is both a {beta} {sup +} and a {beta} {sup -} emitter. This property makes {sup 64}Cu a promising candidate for novel medical applications, since it can be used simultaneously for therapeutic application of radiolabelled biomolecules and for diagnosis with PET. Following previous work on {sup 64}Cu production by deuteron irradiation of natural zinc, we report here the production of this radioisotope by deuteron irradiation of enriched {sup 64}Zn. In addition, yields of other radioisotopes such as {sup 61}Cu, {sup 67}Cu, {sup 65}Zn, {sup 69m}Zn, {sup 66}Ga and {sup 67}Ga, which were co-produced in this process, were also measured. The evaporation code ALICE-91 and the transport code SRIM 2003 were used to determine the excitation functions and the stopping power, respectively. All the nuclear reactions yielding the above-mentioned radioisotopes were taken into account in the calculations both for the natural and enriched Zn targets. The experimental and calculated yields were shown to be in reasonable agreement. The work was carried out at the Scanditronix MC-40 Cyclotron of the Institute for Health and Consumer Protection of the Joint Research Centre of the European Commission (Ispra site, Italy). The irradiations were carried out with 19.5 MeV deuterons, the maximum deuteron energy obtainable with the MC-40 cyclotron.

  5. Use of the SPIRAL 2 facility for material irradiations with 14 MeV energy neutrons

    International Nuclear Information System (INIS)

    Mosnier, A.; Ridikas, D.; Ledoux, X.; Pellemoine, F.; Anne, R.; Huguet, Y.; Lipa, M.; Magaud, P.; Marbach, G.; Saint-Laurent, M.G.; Villari, A.C.C.

    2005-01-01

    The primary goal of an irradiation facility for fusion applications will be to generate a material irradiation database for the design, construction, licensing and safe operation of a fusion demonstration power station (e.g., DEMO). This will be achieved through testing and qualifying material performance under neutron irradiation that simulates service up to the full lifetime anticipated in the power plant. Preliminary investigations of 14 MeV neutron effects on different kinds of fusion material could be assessed by the SPIRAL 2 Project at GANIL (Caen, France), aiming at rare isotope beams production for nuclear physics research with first beams expected by 2009. In SPIRAL 2, a deuteron beam of 5 mA and 40 MeV interacts with a rotating carbon disk producing high-energy neutrons (in the range between 1 and 40 MeV) via C (d, xn) reactions. Then, the facility could be used for 3-4 months y -1 for material irradiation purposes. This would correspond to damage rates in the order of 1-2 dpa y -1 (in Fe) in a volume of ∼10 cm 3 . Therefore, the use of miniaturized specimens will be essential in order to effectively utilize the available irradiation volume in SPIRAL 2. Sample package irradiation temperature would be in the range of 250-1000 deg. C. The irradiation level of 1-2 dpa y -1 with 14 MeV neutrons (average energy) may be interesting for micro-structural and metallurgical investigations (e.g., mini-traction, small punch tests, etc.) and possibly for the understanding of specimen size/geometric effects of critical material properties. Due to the small test cell volume, sample in situ experiments are not foreseen. However, sample packages would be, if required, available each month after transfer in a special hot cell on-site

  6. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    International Nuclear Information System (INIS)

    Gobin, R.; Bogard, D.; Chauvin, N.; Chel, S.; Delferrière, O.; Harrault, F.; Mattei, P.; Senée, F.; Cara, P.; Mosnier, A.; Shidara, H.; Okumura, Y.

    2014-01-01

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported

  7. Effects of Coulomb repulsion in the inner-shell ionization cross-section by protons, deuterons and alpha-particles

    International Nuclear Information System (INIS)

    Magno, C.; Milazzo, M.; Pizzi, C.; Porro, F.; Rota, A.; Riccobono, G.

    1979-01-01

    A critical survey has been made of the currently accepted BEA theory for inner-shell atomic-ionization processes. This review has led to the introduction of an effective ion energy which accounts for the slowing-down of the ion in the nuclear Coulomb field. The effect of the ion deflection, also due to the nuclear Coulomb field, is analyzed. Relativistic effects in the collision of ions with K-shell electrons have been taken into account. A tentative qualitative explanation for the experimentally observed nonexistence of a threshold energy for ionization is given in the framework of the BEA theory. Ionization cross-sections for Rb, Sr, Zr, Cd, In, Sb, W by protons in the energy range from 500 keV to 3 MeV have been measured. Also measurements of ionization cross-sections by deuterons in the energy range from 800 keV to 2.6 MeV on Rb, Sr, Zr, Cd, Sb and by He ions in the energy range from 1.4 MeV to 2.8 MeV on Cd and Sb have been performed. Results are compared with those of other authors and in the context of the corrections introduced in the BEA theory. (author)

  8. Stoichiometric analysis of Y-Ba-Cu-O superconductors using deuterons

    International Nuclear Information System (INIS)

    Tang, S.M.; Ong, T.H.; Tan, M.G.; Loh, K.K.; Sow, C.H.; Yuan, B.; Orlic, I.

    1993-01-01

    In principle, deuteron irradiation can be used for a complete stoichiometric analysis of Y-Ba-Cu-O superconductors. The contents of all the four chemical constituents can be determined by simultaneous detection of the 0.871 MeV prompt gamma rays from the 16 O(d, pγ) 17 O * reaction and of the characteristic X-rays produced by DIXE (deuteron induced X-ray emission). In this paper we present the approach taken and the results obtained in exploring the applicability of this technique for accurate quantitative determinations of the chemical constituents of bulk Y-Ba-Cu-O superconductors. (orig.)

  9. Energy Loss of Coasting Gold Ions and Deuterons in RHIC

    CERN Document Server

    Abreu, N P; Brown, K; Burkhardt, H; Butler, J; Fischer, W; Harvey, M; Tepikian, S

    2008-01-01

    The total energy loss of coasting gold ion beams at two different energies and deuterons at one energy were measured at RHIC, corresponding to a gamma of 75.2, 107.4 and 108.7 respectively. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  10. Electron scattering from nucleons and deuterons at intermediate energies

    International Nuclear Information System (INIS)

    Burkert, V.

    1985-04-01

    Recent results from electron scattering of nucleons and deuterons are discussed. A tentative physics program for ELSA employing the polarized electron beams as well as the polarized nucleon and deuteron target facilities is outlined. (orig.)

  11. States in 118Sn from 117Sn(d,p) 118Sn at 12 MeV

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.

    1983-01-01

    118 Sn energy levels up to = 5.2 MeV excitation energy are studied in the reaction 117 Sn (d,p) 118 Sn. Deuterons had a bombarding energy of 12 MeV. The protons were analized by a magnetic spectrograph. The detector was nuclear emulsion and the resolution in energy about 10 KeV. The distorted-wave analysis was used to determine l values and spectroscopic strengths. Centers of gravity and the sums of reduced spectroscopic factors are presented for the levels when it was possible to determine the S' value. 66 levels of excitation energy were found which did not appear in previous 117 Sn (d,p) reactions. 40 levels were not found previously in any reaction giving 118 Sn. The results are compared with the known ones. (Author) [pt

  12. Investigation of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction

    Science.gov (United States)

    Ciepał, I.; Kłos, B.; Kistryn, St.; Stephan, E.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Zejma, J.

    2014-08-01

    Precise and large sets of cross section, vector A x , A y and tensor A xx , A xy , A yy analyzing power data for the 1 H( d, pp) n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the SALAD and BINA detectors at KVI and the Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon system dynamics. The cross section data reveal a sizable three-nucleon force (3NF) and Coulomb force influence. In case of the analyzing powers very low sensitivity to these effects was found and the data are well describe by 2N models only. For A xy at 130 MeV, serious disagreements were observed when 3NF models are included in the calculations.

  13. Deuteron-induced reactions on Ni isotopes up to 60 MeV

    Czech Academy of Sciences Publication Activity Database

    Avrigeanu, M.; Šimečková, Eva; Fischer, U.; Mrázek, Jaromír; Novák, Jan; Štefánik, Milan; Costache, C.; Avrigeanu, V.

    2016-01-01

    Roč. 94, č. 1 (2016), č. článku 014606. ISSN 2469-9985 R&D Projects: GA MŠk(CZ) LM2011019; GA MŠk LM2015076 Institutional support: RVO:61389005 Keywords : cross-section * deuteron breakup * compound nucleus Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.820, year: 2016

  14. Methane formation during deuteron bombardment of carbon in the energy range of 100 to 1500 eV

    International Nuclear Information System (INIS)

    Sone, K.

    1982-01-01

    Methane (CD 4 ) formation rates during deuteron bombardment of carbon (Papyex) have been measured in the energy range of 100 to 1500 eV. The temperature dependence of the methane formation rate is well explained by the model proposed by Erents et al. in the temperature range of 600 to 1150 K. The model, however, does not explain the dependence of the methane formation rate on the flux of incident deuterons at a certain temperature near Tsub(m) at which the formation rate has a maximum value. An alternative model is proposed in which the methane formation rate is assumed to be proportional to the product of the following three parameters: the surface concentration of deuterium atoms, the chemical reaction rate for the formation of methane, and the rate of production of vacancies on the surface by the deuteron bombardment. This model predicts an energy dependence of methane formation which has a maximum around 900 eV even at different deuteron fluxes, when the calculated result by Weissman and Sigmund is used for the surface deposited energy responsible for the production of vacancies. (author)

  15. Forward absolute cross-section of the reaction /sup 2/H(d,n)/sup 3/He for Esub(d) = (3/6)MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.

    1981-12-01

    The zero-degree differential cross-section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident-deuteron energy interval from 3 to 6 MeV.

  16. Forward absolute cross-section of the reaction /sup 2/H(d,n)/sup 3/He for Esub(d)=(3/6)MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Padua (Italy)); Galeazzi, G. (Istituto Nazionale di Fisica Nucleare, Padua (Italy). Lab. di Legnaro)

    1981-12-01

    The zero-degree differential cross-section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident deuteron energy interval form 3 to 6 MeV.

  17. Neutron induced alpha production from carbon between 18 and 22 MeV

    International Nuclear Information System (INIS)

    Stevens, A.P.

    1976-10-01

    Cross sections for neutron induced alpha production in carbon were measured at seventeen energies between 18 and 22 MeV, using a deuterated anthracene crystal as both target and detector. Pulse shape discrimination was employed to separate the alphas and elastically scattered deuterons from the other reaction products. Published (n,d) elastic scattering data were used as a standard to obtain the alpha production cross sections. Comparison with available measurements shows good agreement

  18. Measurement of photon showers in lead produced by electrons of 150 MeV

    International Nuclear Information System (INIS)

    Goeringer, H.; Eyss, H.J. von; Schoch, B.

    1976-01-01

    The photon energy spectra induced by 150 MeV electrons in lead were measured in the energy range from 40 MeV up to the primary electron energy. The target thickness was varied between 0.1 and 2.5 radiation lengths X 0 . The photons were analyzed by use of a technique based on deuteron photodisintegration. Differential and integral shower spectra are presented and compared with Monte Carlo calculations of Nagel and Messel et al., both interpolated to our primary energy of 150 MeV. The measured spectra show good agreement with these Monte Carlo calculations for the thickest target of 2.5X 0 and with calculated bremsstrahlung spectra for the thinnest target of 0.1X 0 . Considerable discrepancies, however, are found for medium target thicknesses in the range 0 . Around the shower maxima, the shower spectra are narrower and the maxima are shifted about 0.3-0.4X 0 to lower target thicknesses, furthermore the number of photons at the shower maxima are up to 50% higher than calculated. (Auth.)

  19. Optimisation and calibration of the polarimeter Polder at Saturne. Experiment t20 at the Jefferson Laboratory: Measurement of the deuteron form factors

    International Nuclear Information System (INIS)

    Eyraud, Laurent

    1998-01-01

    The topic of this thesis is the made for the upgrade of the deuteron tensor polarimeter Polder, and its use in the so-called t 20 experiment at the Jefferson Laboratory (USA). The Polder polarimeter is based on the analysing reaction H(d → ,2p)n which makes possible the measurement of the tensor polarization of deuterons in the kinetic energy range 160 MeV - 520 MeV. The first part of this thesis describes the polarimeter and its performances as obtained during the calibration experiment at Saturne (Saclay, France). Specific developments of this polarimeter for the t 20 experiment (Wire Chambers with 3 detections planes, target, hodoscopes) are described. An acquisition system based on Fastbus-VME standard was developed and used during the calibration runs. The second part of the thesis is devoted to the t 20 experiment. The experimental devices, the CEBAF accelerator and the data analysis are presented. Finally the preliminary results for the polarization t 20 and the extraction of the electromagnetic form factors of the deuteron (G c , G q and G m ) for six values of the transferred momentum Q in the range of 4.11 - 6.8 fm -1 are presented and discussed along various theoretical models predictions. (author) [fr

  20. Energy distributions study of spallation neutrons produced at 0 deg. by proton beams (0.8 GeV and 1.6 GeV) and deuteron beams (1.2 and 1.6 GeV)

    International Nuclear Information System (INIS)

    Martinez, Eugenie

    1997-01-01

    We are studying the energy distributions of spallation neutrons produced at 0 deg. by protons of 0.8 GeV up to 1.6 GeV and deuterons of 1.2 and 1.6 GeV with two complementary experimental techniques: the time of flight measurement with tagged incident protons for low energy neutrons (3-400 MeV) and the use of a magnetic spectrometer at high energy (E ≥ 200 MeV). These measurements enable us to measure for the first time the neutron spectra for incident energies higher than 800 MeV. We have compared the double differential cross sections produced with 1.2 GeV protons on several thin targets (Al, Fe, Zr, W, Pb and Th). The neutron production obtained for a lead target is also studied for various energies (0.8 up to 1.6 GeV) and incident particles (p, d). Data are compared with theoretical simulations carried out using the TIERCE system and the intranuclear cascade model of J. Cugnon associated to the decay code of D. Durand. The neutron spectra calculated by using the HETC and MCNP codes, included in TIERCE, are significantly higher than the measured distributions. A better agreement is observed with the results of the Cugnon's cascade model. (author) [fr

  1. Nucleus fragmentation induced by a high-energy hadron

    International Nuclear Information System (INIS)

    Zielinski, P.

    1982-10-01

    The author presents a review about the spallation in hadron reactions. Especially he considers proton-proton correlations at low relative momentum, angular distributions of 30-100 MeV protons, emission of fast deuterons, the vanishing of the Coulomb barrier, fission-like processes, the rise of the heavy fragment yield with energy transfer, proton-deuteron breakup reactions, and the backward emission of fast protons. (HSI)

  2. Cross-section activation measurement for U-238 through protons and deuterons in energy interval 10-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Abramovich, S.N.; Zvenigorodskii, A.G. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    There were presented results of cross-section measurements for nuclear reactions {sup 238}U(p,n){sup 238}Np, {sup 238}U(d,2n){sup 238}Np, {sup 238}U(d,t){sup 237}U, {sup 238}U(d,p){sup 239}U, and {sup 238}U(d,n){sup 239}Np. Interval of projectile energy was 10-14 MeV. For measurements of cross-sections it was used the activatio methods. The registration of {beta}- and {gamma}-activity was made with using of plastic scintillation detector and Ge(Li)-detector.

  3. Study of the /sup 58/Ni, /sup 90/Zr and /sup 208/Pb(p,d) reactions at 121 MeV. [DWBA, angular distributions, spectroscopic factors, finite range calculations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R E; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Indiana Univ., Bloomington (USA). Dept. of Physics

    1978-01-01

    The (p,d) reaction has been studied on /sup 58/Ni, /sup 90/Zr and /sup 208/Pb at 121 MeV in order to test the applicability of the usual DWBA methods to higher energy data. The calculations describe the angular distribution for the strongly excited low-lying states reasonably well when adiabatic-deuteron optical potentials are used. Some discrepancies in shape persist, however, and some values of the spectroscopic factors differ from lower energy data in spite of many variations in the calculations. By use of exact finite-range calculations a value of D/sup 2//sub 0/ = 1.23 x 10/sup 4/ MeV/sup 2/.fm/sup 3/ was found for use at 121 MeV. Deuteron D-state contributions were negligible at forward angles and two-step contributions do not appear more significant than for data at lower energy.

  4. High energy angular distribution measurements of the exclusive deuteron photodisintegration reaction

    International Nuclear Information System (INIS)

    Schulte, E. C.; A. Afanasev; M. Amarian; K. Aniol; S. Becher; K. Benslama; L. Bimbot; P. Bosted; E. Brash; J. Calarco; Z. Chai; C. Chang; T. Chang; J. P. Chen; S. Choi; E. Chudakov; S. Churchwell; D. Crovelli; S. Dieterich; S. Dumalski; D. Dutta; M. Epstein; K. Fissum; B. Fox; S. Frullani; H. Gao; J. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; V. Gorbenko; J.-O. Hansen; R. J. Holt; J. Hovdebo; G. M. Huber; C. W. de Jager; X. Jiang; C. Jones; M. K. Jones; J. Kelly; E. Kinney; E. Kooijman; G. Kumbartzki; M. Kuss; J. LeRose; M. Liang; R. Lindgren; N. Liyanage; S. Malov; D. Margaziotis; P. Markowitz; K. McCormick; D. Meekins; Z.-E. Meziani; R. Michaels; J. Mitchell; L. Morand; C. Perdrisat; R. Pomatsalyuk; V. Punjabi; A. Radyushkin; R. Ransome; R. Roche; M. Rvachev; A. Saha; A. Sarty; D. Simon; S. Strauch; R. Suleiman; L. Todor; P. Ulmer; G. M. Urciuoli; K. Wijesooriya; B. Wojtsekhowski; F. Xiong; W. Xu

    2002-01-01

    The first complete measurements of the angular distributions of the two-body deuteron photodisintegration differential cross section at photon energies above 1.6 GeV were performed at the Thomas Jefferson National Accelerator Facility. The results show a persistent forward-backward asymmetry up to Egamma = 2.4 GeV, the highest-energy measured in this experiment. The Hard Rescattering and the Quark-Gluon string models are in fair agreement with the results

  5. The tensor analyzing power T20 in the dd → 3Hen and dd → 3Hp reactions at the energies 140, 200 and 270 MeV at zero angle

    International Nuclear Information System (INIS)

    Ladygin, V.P.; ); Uesaka, T.; Saito, T.

    2006-01-01

    The data on the tensor analyzing power T 20 in the dd → 3 Hen and dd → 3 Hp reactions at 140, 200 and 270 MeV of the deuteron kinetic energy and at zero angle obtained at RIKEN Accelerator Research Facility are presented. The observed positive sign of T 20 clearly demonstrates the sensitivity to the D/S wave ratios in the 3 He and 3 H in the energy domain of the measurements. The T 20 data for the 3 Hen and 3 Hp channels are in agreement within experimental accuracy [ru

  6. Measurements of the Coulomb dissociation cross section of 156 MeV 6Li projectiles at extremely low relative fragment energies of astrophysical interest

    International Nuclear Information System (INIS)

    Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J.; Baur, G.

    1991-04-01

    Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV 6 Li-projectiles at 208 Pb with small emission angles of the a particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0deg-2deg. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follow theoretical predictions of the astrophysical S-factor and extrapolations of corresponding radiative capture reaction cross section to very low c. m. energies of the a particle and deuterons. Various implications of the approach are discussed. (orig.) [de

  7. Energy-Dependent Partial-Wave Analysis of Pion-Deuteron Elastic Scattering in T_L=65 to 294 MeV Region

    OpenAIRE

    Noboru, HIROSHIGE; Faculty of Economics, Hannan University

    1996-01-01

    An energy-dependent partial-wave analysis of πd elastic scattering has been performed in the region T_L=65~294 MeV for currently available experimental data, including the recent vector analyzing power iT_ and composite observables τ_. We have obtained a solution which is in good agreement with the experimental data. The ^3P_1,^3P_2,^3D_3 and ^3D_2 amplitudes abtained show counter-clockwise rotating behaviors.

  8. Tensor analyzing power T20 of the dd →3Hen and dd →3Hp reactions at zero angle for energies 140, 200, and 270 MeV

    International Nuclear Information System (INIS)

    Ladygin, V. P.; Uesaka, T.; Saito, T.; Hatano, M.; Isupov, A. Yu.; Kato, H.; Ladygina, N. B.; Maeda, Y.; Malakhov, A. I.; Nishikawa, J.; Ohnishi, T.; Okamura, H.; Reznikov, S. G.; Sakai, H.; Sakamoto, N.; Sakoda, S.; Satou, Y.; Sekiguchi, K.; Suda, K.; Tamii, A.

    2006-01-01

    RIKEN Accelerator Research Facility data on the tensor analyzing power T 20 of the dd → 3 Hen and dd → 3 Hp reactions at zero angle for deuteron kinetic energies of 140, 200, and 270 MeV are reported. The observed positive sign of T 20 clearly demonstrates the sensitivity to the D/S-wave ratio in the 3 He and 3 H wave functions in the energy range of the experiment. Data on T 20 for the 3 Hen channel are in agreement with those for the 3 Hp channel within the experimental errors

  9. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at the cooler synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2015-07-01

    The Cooler Synchrotron (COSY) is a storage ring used for experiments with polarized proton and deuteron beams. The low energy polarimeter is used to determine the vector and tensor polarization of the beam before injection at kinetic energies up to 45 MeV for protons and 75 MeV for deuterons. The polarimeter uses scintillators to measure the energy of both outgoing particles of a scattering reaction and the time between their detection. The present read-out electronics consists of analog NIM modules and is limited in terms of time resolution and the capability for online data analysis. The read-out electronics will be replaced with a a new system based on analog pulse sampling and an FPGA chip for logic operations. The new system will be able to measure the time at which particles arrive to a precision better than 50 ps, facilitating better background reduction using coincidence measurement. In addition to measuring the beam polarization, the system will be used to precisely determine the vector and tensor analyzing powers for deuteron scattering off carbon at a kinetic energy of 75 MeV.

  10. Search for Δ-Δ component in deuteron

    International Nuclear Information System (INIS)

    Asai, M.; Endo, I.; Harada, M.

    1989-10-01

    We investigated the Δ-Δ states in deuteron by Δ-spectator method in γd reaction. No candidates for spectator Δ ++ originating in deuteron were observed. An upper limit of the Δ-Δ state in deuteron was estimated as 0.14 % at the 95 % CL. This limit is consistent with most of the existing data, but it is incompatible with an earlier measurement with photons of higher energies. (author)

  11. Modification of EXIFON code and analysis of O16+n reactions in En=20-50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Toru [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan)

    1997-03-01

    To evaluate the nuclear data concerning neutron induced reactions of O-16 and N-14 in the incident energy range of 20-50 MeV, the statistical multistep reaction code EXIFON was modified to include the outgoing channels of deuteron, triton and He-3. The calculated double differential cross sections (DDXs) with the modified code are compared with experimental DDXs. (author)

  12. Analyzing power measurements for the d+d-d+p+n breakup reaction at 12MeV

    International Nuclear Information System (INIS)

    Felsher, P.D.; Howell, C.R.; Tornow, W.; Roberts, M.L.; Hanly, J.K.; Weisel, G.J.; Ohali, M. Al; Walter, R.L.; Slaus, I.; Lambert, J.M.; Treado, P.A.; Mertens, G.; Fonseca, G.; Soldi, A.; Vlahovic, B.

    1997-01-01

    We report the most extensive set of vector iT11 and tensor T20 and T22 analyzing-power for the d=d-d=p=n reaction. Two-particle coincidence data have been measured for six deuteron-proton, three deuteron-neutron and three proton-neutron angle pairs at an incident deuteron energy of 12.0MeV. These data are compared to impulse-approximation calculations that threat the underlying nucleon-deuteron system exactly and include contributions from both target and projectile breakup processes. This model gives a good description of the analyzing-power and relative cross-section data. We show that the inclusion of nucleon-nucleon P interactions considerably improves the agreement with the spin observables. The disagreement between the data and theoretical predictions show the limitations in our model and the importance of the rescattering processes. We suggest that the d+d three-body breakup process will provide useful information on the nucleon-nucleon force when exact calculations become available. [S0556-2813(97)02907-5

  13. Elastic eD scattering in the Bethe-Salpeter approach for the deuteron with the positive- and negative-energy states

    International Nuclear Information System (INIS)

    Bondarenko, S.G.; Burov, V.V.; Hamamoto, N.; Manabe, Y.; Hosaka, A.; Toki, H.

    2005-01-01

    Recent results obtained by the application of the Bethe-Salpeter approach to the analysis of elastic electron-deuteron scattering with the separable NN kernel are presented. We analyze the impact of the P waves (negative-energy components) on the electromagnetic properties of the deuteron and compare it with experimental data. It was shown that the contribution of the P waves must be taken into account to explain tensor polarization and charge form factor of the deuteron

  14. Fragmentation of deuteronated aromatic derivatives: The role of ion-neutral complexes

    Science.gov (United States)

    Harrison, Alex G.; Wang, Jian-Yao

    1997-01-01

    The low-energy collision-induced dissociation reactions of the MD+ ions of a number of alkyl phenyl ethers, alkylbenzenes, acetophenones and benzaldehyde have been studied as a function of collision energy to establish qualitatively the dependence of the fragmentation reactions observed on internal energy. Deuteronated alkyl phenyl ethers (ROC6H5·D+, R = C3H7, C4H9) fragment at low collision energies to form C6H5OHD+ + (R-H), the thermochemically favoured products; with increasing collision energy (and, hence, internal energy) formation of the alkyl ion R+ increases significantly in importance. Deuteronated alkylbenzenes (RC6H5, RC6H4R', R = C2H5, C3H7) similarly form the deuteronated benzene (the thermochemically favoured product) at low collision energies with formation of the alkyl ion R+ being observed at higher collision energies. The results for both systems are consistent with a fragmentation mechanism involving initial formation of an R+/aromatic ion/neutral complex. At low internal energies proton transfer occurs within this complex to form an ion/neutral complex consisting of the deuteronated aromatic and a neutral olefin; this complex fragments to the thermochemically favoured products. Since the transition state leading to these products is a "tight" transition state involving loss of rotational degrees of freedom, the proton transfer reaction is unfavourable entropically with respect to simple dissociation of the R+/aromatic complex to R+ + ArD. Consequently, these products increase in importance as the internal energy is increased. The fragmentation of deuteronated aromatic carbonyl compounds can also be rationalized by similar mechanisms involving the intermediacy of ion/neutral complexes. Deuteronated acetophenone forms only CH3CO+ at all collision energies; this is both the thermochemically and entropically favoured product. However, deuteronated p-aminoacetophenone forms deuteronated aniline, the thermochemically favoured product at low collision

  15. Production of (anti)deuterons in heavy-ion collisions at SPS energies

    CERN Document Server

    Kolesnikov, Vadim Ivanovich

    2015-01-01

    In this paper NA49 results on the production of deuterons and anti-deuterons in semi-central Pb+Pb collisions at 158A GeV are presented. Midrapidity transverse momentum spectra of d ( ̄ d ) are analysed in several centrality bins. A combined analysis of (anti)deuterons and (anti)protons iss performed in the framework of the coalescence model.

  16. Deuteron nuclear data for the design of accelerator-based neutron sources: Measurement, model analysis, evaluation, and application

    Science.gov (United States)

    Watanabe, Yukinobu; Kin, Tadahiro; Araki, Shouhei; Nakayama, Shinsuke; Iwamoto, Osamu

    2017-09-01

    A comprehensive research program on deuteron nuclear data motivated by development of accelerator-based neutron sources is being executed. It is composed of measurements of neutron and gamma-ray yields and production cross sections, modelling of deuteron-induced reactions and code development, nuclear data evaluation and benchmark test, and its application to medical radioisotopes production. The goal of this program is to develop a state-of-the-art deuteron nuclear data library up to 200 MeV which will be useful for the design of future (d,xn) neutron sources. The current status and future plan are reviewed.

  17. Measurements of fast deuterons from plasma accelerator by means of PM-355 track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Skladnik-Sadowska, E. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Malinowski, K., E-mail: k.malinowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J.; Czaus, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    This paper reports on studies of fast ions (mostly deuterons) emitted from an RPI (Rod-Plasma-Injector) plasma accelerator. The first aim was the verification of applicability of PM-355 track detectors for dosimetry of lower-energy (<200 KeV) deuterons. The second aim was information about energy spectra of deuterons from RPI-IBIS device in different operational modes. Mass- and energy spectra of ions were investigated with a Thomson-analyzer and PM-355 detectors. On the recorded deuteron-parabolas we chose points, and from numbers of tracks we determined the deuteron energy distribution. In the slow-mode the energy distribution peak was observed at about 40 keV, while the maximum energy amounted to about 150 keV. Those measurements confirmed an influence of the initial gas-conditions on energy distributions of the deuteron streams. The results are of importance for plasma-physics and applications. Another result was the confirmation that PM-355 detectors might be used for accurate measurements of low-energy (<200 keV) deuterons.

  18. Analyzing power measurements for the rvec d+d→d+p+n breakup reaction at 12 MeV

    International Nuclear Information System (INIS)

    Felsher, P.D.; Howell, C.R.; Tornow, W.; Roberts, M.L.; Hanly, J.M.; Weisel, G.J.; Ohali, M.A.; Walter, R.L.; Slaus, I.; Lambert, J.M.; Treado, P.A.; Mertens, G.; Fonseca, A.C.; Soldi, A.; Vlahovic, B.

    1997-01-01

    We report the most extensive set of vector iT 11 and tensor T 20 and T 22 analyzing-power data for the rvec d+d→d+p+n reaction. Two-particle coincidence data have been measured for six deuteron-proton, three deuteron-neutron and three proton-neutron angle pairs at an incident deuteron energy of 12.0 MeV. These data are compared to impulse-approximation calculations that treat the underlying nucleon-deuteron system exactly and include contributions from both target and projectile breakup processes. This model gives a good description of the analyzing-power and relative cross-section data. We show that the inclusion of nucleon-nucleon P interactions considerably improves the agreement with the spin observables. The disagreement between the data and theoretical predictions show the limitations in our model and the importance of the rescattering processes. We suggest that the d+d three-body breakup process will provide useful information on the nucleon-nucleon force when exact calculations become available. copyright 1997 The American Physical Society

  19. Forward absolute cross section of the reaction /sup 2/H(d,n)/sup 3/He from E/sub d/ = 3 to 6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1981-01-15

    The zero degree differential cross section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a proton recoil neutron counter telescope, with an accuracy of 2%, in the incident deuteron energy interval from 3 to 6 MeV. Results are presented.

  20. Low-temperature irradiation of niobium with 15-MeV neutrons

    International Nuclear Information System (INIS)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Sekula, S.T.

    1978-01-01

    Niobium was irradiated at 4.2 K with high energy d-Be neutrons to a fluence of 3.7x10 15 n/cm 2 . The neutrons were generated at the Oak Ridge Isochronous Cyclotron by the breakup reaction of 40-MeV deuterons in a thick Be target. The resulting neutron energy spectrum was broadly peaked near 15 MeV. The 0.012-cm-diameter wire sample (RRR=200) was situated in a uniform transverse magnetic field. The critical current, flux flow resistance, and normal state resistance were measured by using a standard four-terminal technique. The critical current density and the flux flow resistivity were observed to increase with irradiation and to decrease toward the preirradiation values with subsequent isochronal annealing between 4.2 K and 360 K. Using recent theories of flux line lattice deformation, the elementary pinning force is deduced and the result is compared to theoretical calculations. (Auth.)

  1. Deuterons and flow: At intermediate AGS energies

    International Nuclear Information System (INIS)

    Kahana, D.E.; Pang, Y.; Kahana, S.H.

    1996-06-01

    A quantitative model, based on hadronic physics and Monte Carlo cascading is applied to heavy ion collisions at BNL-AGS and BEVALAC energies. The model was found to be in excellent agreement with particle spectra where data previously existed, for Si beams, and was able to successfully predict the spectra where data was initially absent, for Au beams. For Si + Au collisions baryon densities of three or four times the normal nuclear matter density (ρ 0 ) are seen in the theory, while for Au + Au collisions, matter at densities up to 10 ρ 0 is anticipated. The possibility that unusual states of matter may be created in the Au beams and potential signatures for its observation, in particular deuterons and collective flow, are considered

  2. Proton pickup from /sup 27/Al via the (n,d) reaction at 56. 3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F P; Shepard, J R; King, N S.P.; McNaughton, M W; Wang, J C [California Univ., Davis (USA)

    1977-09-26

    Energy spectra of deuterons from the /sup 27/Al(n,d)/sup 26/Mg reaction due to 56.3 MeV neutrons incident have been measured for 10/sup 0/ <= thetasub(c.m.) <= 55 /sup 0/. The angular distributions for the excitations observed at 0.0, 1.81, and 4.33 MeV are quite well described by DWBA calculations and yield spectroscopic factors in agreement with shell model calculations; but with calculations based on the rotational model, the agreement is less satisfactory particularly for the 4.33 MeV level. For the states at 7.86 and 9.16 MeV the fits, assuming p-shell pick-up, are only fair. Comparison with /sup 27/Al(d,/sup 3/He)/sup 26/Mg measurements shows that the deduced spectroscopic factors for the two reactions agree quite well.

  3. Neutron-deuteron analyzing power data at En=22.5 MeV

    Science.gov (United States)

    Weisel, G. J.; Tornow, W.; Crowell, A. S.; Esterline, J. H.; Hale, G. M.; Howell, C. R.; O'Malley, P. D.; Tompkins, J. R.; Witała, H.

    2014-05-01

    We present measurements of n-d analyzing power, Ay(θ), at En=22.5 MeV. The experiment uses a shielded neutron source which produced polarized neutrons via the 2H(d⃗,n⃗)3He reaction. It also uses a deuterated liquid-scintillator center detector and six pairs of liquid-scintillator neutron side detectors. Elastic neutron scattering events are identified by using time-of-flight techniques and by setting a window in the center detector pulse-height spectrum. The beam polarization is monitored by using a high-pressure helium gas cell and an additional pair of liquid-scintillator side detectors. The n-d Ay(θ) data were corrected for finite-geometry and multiple-scattering effects using a Monte Carlo simulation of the experiment. The 22.5-MeV data demonstrate that the three-nucleon analyzing power puzzle also exists at this energy. They show a significant discrepancy with predictions of high-precision nucleon-nucleon potentials alone or combined with Tucscon-Melbourne or Urbana IX three-nucleon forces, as well as currently available effective-field theory based potentials of next-to-next-to-next-to-leading order.

  4. Observable off-shell effects and the Pauli principle in the reactions 4He+deuteron → 4He+deuteron and 4He+deuteron → 4He+neutron+proton

    International Nuclear Information System (INIS)

    Hahn, K.

    1983-01-01

    In the present thesis we have studied the system 4 He-neutron-proton. Starting from the microscopic three-cluster model of the resonating group method the Hamiltonian of the optical fish-bone model is defined for the three cluster centers which contains effects from the Pauli principle of the whole six-nucleon system. Beside this microscopically founded Hamiltonian a second, purely phenomenologically defined Hamiltonian is applied, which is only fixed by the phase shifts of the systems neutron-proton and 4 He-nucleon. Both Hamiltonians are phase equivalent in the subsystems, i.e. the scattering waves of the subsystems differ only in the near-range. A comparison of the three-particle scattering observables of both approaches at the incident energies Esub(d)sup(lab) = 7.5 and 12 MeV shows surprisingly strong off-shell effects in the system 4 He-neutron-proton, the order of magnitude of which exceeds both in the elastic and in the breakup case widely the experimental measurement uncertainty. It means that in our system the near-range of the subsystem scattering waves and by this the kind of the reduction of the six-nucleon problem to a three-body problem play an important role. Furthermore we can in the case of the elastic reaction 4 He + deuteron -> 4 He + deuteron for the differential cross sections and the spherical analyzing powers in angular ranges, where the neglected Coulomb interaction should have only little influence, prove, that the microscopically foundes Hamiltonian leads to results which are more realistic than in the case of the phenomenological model. (orig./HSI) [de

  5. Fissility of actinide nuclei induced by 60-130 MeV photons

    International Nuclear Information System (INIS)

    Morcelle, Viviane; Tavares, Odilon A.P.

    2004-06-01

    Nuclear fissilities obtained from recent photofission reaction cross section measurements carried out at Saskatchewan Accelerator Laboratory (Saskatoon, Canada) in the energy range 60-130 MeV for 232 Th, 233 U, 235 U, 238 U, and 237 Np nuclei have been analysed in a systematic way. To this aim, a semiempirical approach has been developed based on the quasi-deuteron nuclear photoabsorption model followed by the process of competition between neutron evaporation and fission for the excited nucleus. The study reproduces satisfactorily well the increasing trend of nuclear fissility with parameter Z 2 =A. (author)

  6. Santilli’s hadronic mechanics of formation of deuteron

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.

    2015-01-01

    In the present communication a brief review of the structure of deuteron proposed by Professor Santilli [1, 2] and its physical properties have been presented. Although Deuteron is a simple molecule, quantum mechanics has been unable to explain its different properties like the spin, magnetic moment, binding energy, stability, charge radius, dipole moment, etc. However, the Hadronic Mechanics developed by Santilli and applied by him [1, 2] to deuteron has succeeded in explaining the above properties to the scientific satisfaction. Santilli proposed Deuteron as a three body system which could take care of all the insufficiencies of quantum mechanics

  7. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  8. Study of the deuteron break-up with protons and neutrons

    International Nuclear Information System (INIS)

    Kumpf, H.; Moeller, K.; Moesner, J.; Schmidt, G.

    1977-06-01

    A review is given on the present situation and the results obtained in the experimental and theoretical investigation of the break-up of deuterons by protons and neutrons at bombarding energies up to 50 MeV. The nonrelativistic three-particle kinematics, experimental techniques and the basic theoretical equations for three particle scattering are described and the most important experimental results of the last years are discussed together with theoretical interpretation. It is shown that the reaction mechanism of the N-d break-up is well understood and that one can extract two-particle low energy scattering parameters (e.g., the n-n scattering length) with good accuracy. But despite of a relatively good agreement between experimental spectra and theoretical calculations (except polarisation measurements) no reliable quantitative information on the off-shell behaviour of the two-particle interaction and on three-body forces can be obtained at present. (author)

  9. Semiclassical model of deuteron dissociation in the Coulomb-Nuclear field

    International Nuclear Information System (INIS)

    Aleshin, V.P.; Sidorenko, B.I.

    1995-01-01

    We consider the survival probability of a deuteron which moves in the field of a heavy nucleus. This quantity was calculated within a semiclassical approach to the intrinsic motion within a deuteron and in the framework of an approach which makes use of the imaginary part of the phenomenological deuteron optical potential. A close agreement is obtained between these approaches in a broad range of deuteron energies and orbital momenta

  10. The tensor analyzing power T20 in the dd → 3Hen and dd → 3Hp reactions at the energies 140, 200 and 270 MeV and at zero degree

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Uesaka, T.; Saito, T.

    2005-01-01

    The data on the tensor analyzing power T 20 in the dd → 3 Hen and dd → 3 Hp reactions at 140, 200 and 270 MeV of the deuteron kinetic energy and at zero degree obtained at RIKEN Accelerator Research Facility are presented. The observed positive sign of T 20 clearly demonstrates the sensitivity to the D/S wave ratios in the 3 He and 3 H in the energy domain of the measurements. The T 20 data for the 3 He-n and 3 H-p channels are in agreement within experimental accuracy

  11. Deuteron polarizability and S-wave π+d scattering at energies below 1 keV

    International Nuclear Information System (INIS)

    Pupyshev, V.V.

    1987-01-01

    The influence of deuteron polarizability on the S-wave π + d-scattering in a low-energy limit is explored in the framework of the variable phase method. It is shown that the nonoscillating part of the S-wave cross section of π + d-scattering has a deep and sharp minimum in the energy region ∼ 0.4 keV

  12. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    International Nuclear Information System (INIS)

    Miley, George H.

    2012-01-01

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition

  13. The deuteron bound state wave function with tensor forces

    International Nuclear Information System (INIS)

    Takemasa, Tadashi

    1991-01-01

    A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)

  14. NSRL 200 MeV linac beam energy stabilization system

    International Nuclear Information System (INIS)

    Huang Guirong; Pei Yuanji; Dong Sai

    2001-01-01

    By using the computer image processing technology and RF phase auto-shifting system, the ESS (Energy Stabilization System) was applied to 200 MeV Linac. the ESS adjusts beam energy automatically in a range of +-4 MeV. After adjustment beam energy stability is improved to +-6%

  15. Coulomb effects in the deuteron-nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.

    1990-01-01

    The authors develop a consistent theory for calculation of the potential of the deuteron interaction with the Coulomb field of a nucleus. They study the properties of this potential at large distances and give its explicit form at the deuteron-breakup threshold. In the limit of low energies they derive the potential, which includes intermediate off-energy-shell states, and explain the physical nature of its constants. The accuracy of the transition to the polarization interaction is estimated

  16. Phenomenological model for non-equilibrium deuteron emission in nucleon induced reactions

    International Nuclear Information System (INIS)

    Broeders, C.H.M.; Konobeyev, A.Yu.

    2005-01-01

    A new approach is proposed for the calculation of non-equilibrium deuteron energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines the model of the nucleon pick-up, the coalescence and the deuteron knock-out. Emission and absorption rates for excited particles are described by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from the exciton configurations starting from (2p, 1h). The model of deuteron knock-out is formulated taking into account the Pauli principle for the nucleon-deuteron interaction inside a nucleus. The contribution of the direct nucleon pick-up is described phenomenologically. The multiple pre-equilibrium emission of particles is taken into account. The calculated deuteron energy distributions are compared with experimental data from 12 C to 209 Bi. (orig.)

  17. Time-resolved characteristics of deuteron-beam generated by plasma focus discharge

    Science.gov (United States)

    Bradley, D. A.

    2018-01-01

    The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1–3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic. PMID:29309425

  18. Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Axial Vector Form Factor

    International Nuclear Information System (INIS)

    Ito, T.

    2003-01-01

    The authors report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at the backward angles at electron beam energy of 125 MeV [Q 2 =0.038 (GeV/c) 2 ]. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon. In addition to the tree level amplitude associated with Z-exchange, the neutral weak axial vector form factor as measured in electron scattering can potentially receive large electroweak corrections, including the anapole moment, that are absent in neutrino scattering. The measured asymmetry A -3.51 ± 0.57 (stat) ± 0.58 (sys) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at 200 MeV [Q 2 = 0.091 (GeV/c) 2 ] on a deuterium target. The updated results are also consistent with theoretical predictions on the neutral weal axial vector form factor

  19. Research of high energy radioactivity identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  20. The new JET 2.5-MeV neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Belle, P.v.; Grosshoeg, G.; Hoek, M.; Jarvis, O.N.; Olsson, M.; Sadler, G.

    1992-01-01

    A major upgrade of the JET 2.5-MeV neutron time-of-flight spectrometer has been completed. The improvement has permitted ion temperature measurements for Maxwellian deuterium plasmas with T i >4 keV to be obtained in 0.5-s intervals. By combining observations of neutron and x-ray energy spectra with studies of γ-ray emission from reactions between fast deuterons and impurities, the effects of ICRF heating on the deuterium energy distribution have been studied. The time evolution of neutron energy spectra from deuterium-beam heated deuterium plasmas is illustrated and a method for evaluating the ion temperature from such sequences is indicated. Furthermore, the spectrometer has shown stable performance during high neutron fluxes

  1. The scattering of polarized deuterons on 3He between 10 and 17 MeV

    International Nuclear Information System (INIS)

    Ohlsen, G.G.; Jarmie, N.; Haglund, R.H. Jr.; Brown, R.E.; Schmelzbach, P.A.

    1978-01-01

    Using the LASL polarized beam facility, the cross section and vector and tensor analysing powers for the 3 He(d vector,d) 3 He and 3 He(d vector,p) 4 He reactions have been measured in a large angular range at energies between 10 and 17 MeV. (orig./WL) [de

  2. Cross-sections of residual nuclei from deuteron irradiation of thin thorium target at energy 7 GeV

    Directory of Open Access Journals (Sweden)

    Vespalec Radek

    2017-01-01

    Full Text Available The residual nuclei yields are of great importance for the estimation of basic radiation-technology characteristics (like a total target activity, production of long-lived nuclides etc. of accelerator driven systems planned for transmutation of spent nuclear fuel and for a design of radioisotopes production facilities. Experimental data are also essential for validation of nuclear codes describing various stages of a spallation reaction. Therefore, the main aim of this work is to add new experimental data in energy region of relativistic deuterons, as similar data are missing in nuclear databases. The sample made of thin natural thorium foil was irradiated at JINR Nuclotron accelerator with a deuteron beam of the total kinetic energy 7 GeV. Integral number of deuterons was determined with the use of aluminum activation detectors. Products of deuteron induced spallation reaction were qualified and quantified by means of gamma-ray spectroscopy method. Several important spectroscopic corrections were applied to obtain results of high accuracy. Experimental cumulative and independent cross-sections were determined for more than 80 isotopes including meta-stable isomers. The total uncertainty of results rarely exceeded 9%. Experimental results were compared with MCNP6.1 Monte-Carlo code predictions. Generally, experimental and calculated cross-sections are in a reasonably good agreement, with the exception of a few light isotopes in a fragmentation region, where the calculations are highly under-estimated. Measured data will be useful for future development of high-energy nuclear codes. After completion, final data will be added into the EXFOR database.

  3. Polarized deuteron elastic scattering from a polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Zankel, H. (Graz Univ. (Austria). Inst. fuer Theoretische Physik)

    1983-01-13

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76/sup 0/,85/sup 0/,98/sup 0/,115/sup 0/,132/sup 0/). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results.

  4. Cross section for the 103Rh(n,n')103Rhm reaction in the energy range 5.7 endash 12 MeV

    International Nuclear Information System (INIS)

    Miah, M.M.; Strohmaier, B.; Vonach, H.; Mannhart, W.; Schmidt, D.

    1996-01-01

    The 103 Rh(n,n ' ) 103 Rh m cross section was measured by the activation method in the neutron energy range 5.7 endash 12 MeV with an uncertainty of ≅5%. Monoenergetic neutrons produced by the D(d,n) 3 He reaction were used to irradiate metallic Rh samples at 0 degree relative to the deuteron beam. The K x rays from 103 Rh m were measured with a calibrated Si detector, and the neutron fluence was determined by means of a 238 U fission chamber. The measured cross sections resolve the discrepancies in previous data and agree with the results of recent statistical model calculations of the fast-neutron cross sections of rhodium. copyright 1996 The American Physical Society

  5. Nucleon-deuteron low energy parameters

    International Nuclear Information System (INIS)

    Zankel, H.; Mathelitsch, L.

    1983-01-01

    Momentum space Fadeev equations are solved for nucleon-deuteron scattering and effective range parameters are calculated. A reverse trend is found in the two spin states by 4 asub(nd) 4 asub(pd) and 2 asub(pd) 2 asub(nd) which is in agreement with a configuration space calculation, but in conflict with all existing experiments. The Coulomb contributions to the effective range are small in quartet but sizeable in doublet scattering. (Author)

  6. Measurement of deuteron-induced activation cross section for IFMIF accelerator structural materials in 22-40 MeV region

    International Nuclear Information System (INIS)

    Nakao, Makoto; Hori, Jun-ichi; Ochiai, Kentaro; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo; Ishioka, Noriko S.

    2004-01-01

    The activation cross-sections for the deuteron-induced reactions have been obtained for Al, Cu and W in 22-40 MeV regions and compared with previous experimental ones and the data in ACSELAM library. For 27 Mg, ACSELAM were smaller than the present result by a factor of 1.3-2.0. For 24 Na, ACSELAM resembled experimental values in shape but were lower than these by about 1 order. For 61 Cu, 64 Cu, 62 Zn and 63 Zn, the present results resembled other experimental data and ACSELAM in shape. In the case of 61 Cu and 62 Zn, ACSELAM became higher than the present results by a factor of 2-4. In the case of 64 Cu and 63 Zn, ACSELAM and the present results were in agreement within 40%. For 181 Re, 182m+g Re and 183 Re, the present data and the data in ACSELAM were about same shapes and in agreement within 30%. For 184m+g Re, 186 Re and 187 W, the data in ACSELAM were different from the present data about 1.5-7 times. (author)

  7. Polarization of protons produced in diffractive disintegration of deuterons by high-energy pions

    International Nuclear Information System (INIS)

    Gakh, G.Yi.; Rekalo, M.P.

    1996-01-01

    For the process of diffractive disintegration of unpolarized deuterons by the high-energy pions, π + d → π + p + n, the polarization characteristics of produced protons are calculated. Using the vector nature of the Pomeron exchange, the general structure of all components of proton polarization vector is found for d (π, π p) n. By the Pomeron-photon analogy, the amplitude of the process P + d → n + p is approximated by the isoscalar contribution of four Born diagrams similar to the case of deuteron electrodisintegration. Unitarization of the amplitude is achieved by introducing in multipole amplitudes the corresponding phases of np-scattering. The numerical calculation of all components of the polarization vector of protons, produced in the case of noncomplanar kinematics of the reaction π + d → π + p + n, is realized

  8. Giant quadrupole resonance in 12C, 24Mg, and 27Al observed via deuteron inelastic scattering

    International Nuclear Information System (INIS)

    Chang, C.C.; Didelez, J.P.; Kwiatowski, K.; Wo, J.R.

    1977-06-01

    Giant quadrupole resonance in 12 C, 24 Mg, and 27 Al was studied using 70 MeV deuteron beam. The results clearly show, in all three targets, resonance-like structures peaked at E/sub x/ approximately 63A/sup -1/3/ MeV, with a width of about 10 MeV. The experimental angular distributions for these resonances agree well with the l = 2 DWBA prediction. For 12 C, a binary splitting was observed, and for 24 Mg, there are indications of finer structure in the main giant quadrupole resonance region

  9. Calculation of A (x) for the Proton-Deuteron Breakup Reaction at 135 MeV

    NARCIS (Netherlands)

    Eslami-Kalantari, M.; Mehmandoost-Khajeh-Dad, A. A.; Shafaei, M. A.; Amir-Ahmadi, H. R.; Biegun, A.; Gasparic, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Moeini, H.; Ramazani Moghaddam Arani, Ahmad; Shende, S. V.; Stephan, E.; Sworst, R.

    Observables in proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects (3NF). Several facilities in the world, including Kernfysisch Versneller Instituut (KVI), allow a detailed study a few-nucleon interaction below the pion-production

  10. Three-body coupled-channel theory of scattering and breakup of light and heavy ions

    International Nuclear Information System (INIS)

    Kamimura, M.; Kameyama, H.; Kawai, M.; Sakuragi, Y.; Iseri, Y.; Yahiro, M.; Tanifuji, M.

    1986-09-01

    It is shown that the method of coupled discretized continuum channels (CDCC) based on the three-body model for direct reactions is very successful in explaining the following, recently developed experiments using deuteron, 6 Li and 7 Li projectiles whose breakup threshold energies are very low: (i) Precise measurement of all the possible analyzing powers in elastic scattering of polarized deuteron at 56 MeV, (ii) scattering of polarized deuteron at intermediate energies, (iii) deuteron projectile breakup at 56 MeV, (iv) scattering of polarized 7 Li at 20 and 44 MeV and (v) projectile breakup of 6 Li at 178 MeV and 7 Li at 70 MeV. The CDCC analyses of those data are made transparently with no adjustable parameters. (author)

  11. Nucleus fragmentation induced by a high-energy hadron. Pt. 1

    International Nuclear Information System (INIS)

    Zielinski, P.

    1981-08-01

    The author gives a review about high-energy hadron reactions on nuclei. Especially he discusses the proton-proton correlation at low relative momentum, the angular distribution of 30-100 MeV protons, and the emission of fast deuterons. (HSI)

  12. New capabilities for Monte Carlo simulation of deuteron transport and secondary products generation

    International Nuclear Information System (INIS)

    Sauvan, P.; Sanz, J.; Ogando, F.

    2010-01-01

    Several important research programs are dedicated to the development of facilities based on deuteron accelerators. In designing these facilities, the definition of a validated computational approach able to simulate deuteron transport and evaluate deuteron interactions and production of secondary particles with acceptable precision is a very important issue. Current Monte Carlo codes, such as MCNPX or PHITS, when applied for deuteron transport calculations use built-in semi-analytical models to describe deuteron interactions. These models are found unreliable in predicting neutron and photon generated by low energy deuterons, typically present in those facilities. We present a new computational tool, resulting from an extension of the MCNPX code, which improve significantly the treatment of problems where any secondary product (neutrons, photons, tritons, etc.) generated by low energy deuterons reactions could play a major role. Firstly, it handles deuteron evaluated data libraries, which allow describing better low deuteron energy interactions. Secondly, it includes a reduction variance technique for production of secondary particles by charged particle-induced nuclear interactions, which allow reducing drastically the computing time needed in transport and nuclear response calculations. Verification of the computational tool is successfully achieved. This tool can be very helpful in addressing design issues such as selection of the dedicated neutron production target and accelerator radioprotection analysis. It can be also helpful to test the deuteron cross-sections under development in the frame of different international nuclear data programs.

  13. Polarization of recoil deuteron in ed elastic scattering at medium energies

    International Nuclear Information System (INIS)

    Bhalerao, R. S.

    1981-12-01

    Vector and tensor polarizations of the recoil deuteron in ed elastic scattering are calculated for THETA=0deg-180deg and q 2 2 . A longitudinally polarized electron beam is assumed to scatter off an unpolarized deuteron target. Calculations are made in the relativistic impulse approximation using a recently described approach based on the Bethe-Salpeter equation. Results are different, at high q 2 even qualitatively so, from those of a non-relativistic calculation, and a relativistic calculation which takes the spectator nucleon on-mass-shell. In the light of these results a recent suggestion that the polarization measurements would throw new light on the off-shell behavior and tensor force strength of the NN interaction are reexamined. Results are also presented for the three deuteron form factors Gsub(C), Gsub(Q), and Gsub(M), and the often-needed related quantities Ssub(S), Ssub(Q), and Ssub(M). The latter results may have an important implication in high-momentum transfer reactions involving deuteron. (author)

  14. Exclusive nuclear reactions: Can you count on the deuteron?

    International Nuclear Information System (INIS)

    Holt, R.J.

    1991-01-01

    Three of the simplest nuclear reactions -- (1) electron-deuteron elastic scattering, (2) electro-disintegration of the deuteron near threshold and at high momentum transfer, and (3) photodisintegration of the deuteron at high energy -- were believed to have unique signatures for OCD effects in nuclei. The progress in the past few years with regard to these reactions will be traced and the results will be compared with recent theoretical predictions. 36 refs., 12 figs., 1 tab

  15. The electrodisintegration of the deuteron reaction at high four-momentum transfer

    Science.gov (United States)

    Ibrahim, Hassan F.

    This dissertation presents the highest four-momentum transfer, Q2, quasielastic (xBj = 1) results from Experiment E01-020 which systematically explored the 2H(e, e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q 2 = 0.8, 2.1, and 3.5 GeV2 and missing momenta, pmiss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, RLT, and extraction of the longitudinal-transverse asymmetry, ALT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are needed. All these features of Jefferson Lab allow us to examine large missing momenta (short range scales) at kinematics where the effects of final state interactions (FSI), meson exchange currents (MEC), and isobar currents (IC) are minimal, making the extraction of the deuteron structure less model-dependent. Jefferson Lab also provides the kinematical flexibility to perform the separation of RLT over a broad range of missing momenta and momentum transfers. Experiment E01-020 used the standard Hall A equipment in coincidence configuration in addition to the cryogenic target system. The low and middle Q2 kinematics were completed in June

  16. Electromagnetic Structure of the Deuteron

    International Nuclear Information System (INIS)

    Franz Gross

    2002-01-01

    Recent high energy measurements of elastic ed scattering support the use of a relativistic theory based on an accurate description of the NN channel, but theory needed for an understanding of the high energy deuteron photodisintegration cross sections and polarized observables is not yet mature

  17. Measurement of the Asymmetry of Photoproduction of π- Mesons on Linearly Polarized Deuterons by Linearly Polarized Photons

    Science.gov (United States)

    Gauzshtein, V. V.; Zevakov, S. A.; Levchuk, M. I.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.

    2018-05-01

    The first results of a double polarization experiment to extract the asymmetry of the reaction of photoproduction of a π- meson by a linearly polarized photon on a tensor-polarized deuteron in the energy range of the virtual photon (300-700 MeV) are presented. The measurements were performed on an internal tensor-polarized deuterium target in the VEPP-3 electron-positron storage ring for the electron beam energy equal to 2 GeV. The experiment employed the method of recording two protons and the scattered electron in coincidence. The obtained measurement results are compared with the theoretical predictions obtained in the momentum approximation with allowance for πN and NN rescattering in the final state.

  18. /sup 12/C(γ,n) cross section from 30 to 100 MeV

    International Nuclear Information System (INIS)

    Harty, P.D.; Thompson, M.N.; O'Keefe, G.J.

    1988-01-01

    This paper reports a measurement of the differential photoneutron cross section of /sup 12/C at 65 0 , between E/sub γ/ = 30 and 100 MeV. Tagged photons, monochromatic to within 2.6 MeV, were used, thus allowing the cross sections to a wide range of final states to be observed. The results are compared to the photoproton cross section of /sup 12/C, which was measured previously, under similar conditions. Comparisons are also made with calculations based on the quasi-deuteron model, and with calculations by Gari and Hebach, and Cavinato et al. These latter calculations incorporate two-body effects by the inclusion of meson exchange currents. The agreement between these calculations and the measured cross section is in contrast to predictions of a direct, single-nucleon knockout model of the reaction mechanism, indicating the importance of two-body effects in the photoreaction process for energies greater than 50 MeV

  19. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Elaine [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  20. Deuteron stripping reactions using dirac phenomenology

    Science.gov (United States)

    Hawk, E. A.; McNeil, J. A.

    2001-04-01

    In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.

  1. Deuteron D-wave and the non-eikonal effects in tensor asymmetries in elastic proton-deuteron scattering

    International Nuclear Information System (INIS)

    Alberi, G.; Bleszynski, M.; California Univ., Los Angeles; Santos, S.; Jaroszewicz, T.

    1980-01-01

    It is shown that the tensor asymmetries in the elastic proton-deuteron scattering at medium energies are very sensitive to the non-eikonal corrections to the Glauber model. This sensitivity originates from the fact that, in double scattering, the non-eikonal corrections affect in a different way the contributions coming from the S- and D-wave parts of the deuteron wave function. This leads to considerable change of the tensor asymmetries not only in the region of the interference between single and double scatterings, but also in the region of dominance of the double scattering. It is suggested that these effects should be taken into account in any careful analysis of the proton-deuteron polarization data, which has as a goal the extraction of the NN amplitudes. (author)

  2. Photonuclear reaction as a probe for α -clustering nuclei in the quasi-deuteron region

    Science.gov (United States)

    Huang, B. S.; Ma, Y. G.; He, W. B.

    2017-03-01

    Photon-nuclear reaction in a transport model frame, namely an extended quantum molecular dynamics model, has been realized at the photon energy of 70-140 MeV in the quasi-deuteron regime. For an important application, we pay a special focus on photonuclear reactions of 12C(γ ,n p )10B where 12C is considered as different configurations including α clustering. Obvious differences for some observables have been observed among different configurations, which can be attributed to spatial-momentum correlation of a neutron-proton pair inside nucleus, and therefore it gives us a sensitive probe to distinguish the different configurations including α clustering with the help of the photonuclear reaction mechanism.

  3. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    Science.gov (United States)

    Strikman, M.; Weiss, C.

    2018-03-01

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 rest frame momenta ≲1 GeV , target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSIs, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with an EIC. We discuss possible extensions of the FSI model to other kinematic regions (large/small x ). In tagged DIS at x ≪0.1 FSIs resulting from diffractive scattering on the nucleons become important and require separate treatment.

  4. FY08 parameters for the injection, acceleration, and extraction of gold ions and deuterons in the booster, AGS, and RHIC

    International Nuclear Information System (INIS)

    Gardner, C.J.

    2010-01-01

    A Gold ion with charge eQ has N = 197 Nucleons, Z = 79 Protons, and (Z-Q) electrons. (Here Q is an integer and e is the charge of a single proton.) The mass is m = au - Qm e + E b /c 2 (1) where a = 196.966552 is the relative atomic mass (1, 2) of the neutral Gold atom, u = 931.494013 MeV/c 2 is the unified atomic mass unit (3), and m e c 2 = .510998902 MeV is the electron mass (3). E b is the binding energy of the Q electrons removed from the neutral Gold atom. This amounts to 0.332 MeV for the helium-like gold ion (Q = 77) and 0.517 MeV for the fully stripped ion. For the Au 31+ ion we have E b = 13.5 keV. These numbers are given in Ref. (4). The deuteron mass (3) is 1875.612762(75) MeV/c 2 .

  5. Experimental study of spallation: neutron angular distributions induced by protons (0.8.,1.2 et 1.6 GeV) and deuterons (0.8 et 1.6 GeV) beams

    International Nuclear Information System (INIS)

    Borne, F.

    1998-01-01

    Angular distributions of spallation neutrons, produced by 0,8 to 1,6 GeV protons and 0,8 to 1,6 GeV deuterons, with two experimental and complementary techniques: the flight time measure and the use of a liquid hydrogen converter associated with a magnetic spectrometer of higher energy (2000 MeV). Experimental results obtained at Saturne (Cea) are analysed and interpreted. They allowed the determination of the neutrons production behaviour on thin targets (Al, Fe, Zr, W, Pb and Th) in function of the angle emission and the atomic number of the target and to compare the variation of neutrons production, coming from protons and incident deuterons of same total energy on a Pb target. Experimental results are compared with simulation results obtained with the TIERCE code, including Bertini and Cugnon intra-nuclear cascades. (A.L.B.)

  6. /sup 54/Fe(p vector,d)/sup 53/Fe and /sup 140/Ce(p vector,d)/sup 139/Ce reactions at 122 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, S A; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Miller, D W; Jacobs, W W; Jones, W P [Indiana Univ., Bloomington (USA). Dept. of Physics

    1985-08-05

    The /sup 54/Fe(p vector,d)/sup 53/Fe and /sup 140/Ce(p vector,d)/sup 139/Ce reactions have been studied at a proton energy of 122 MeV. Analyzing powers and angular distributions were obtained for outgoing deuterons to the strong low-lying single-particle states in both nuclei. These data along with the data of others at 26, 29, 41, 52 and 24, 35, 55 MeV for /sup 54/Fe and /sup 140/Ce respectively, have been compared with exact-finite-range DWBA calculations carried out in a consistent fashion to determine the energy dependence of the spectroscopic factors. A strong energy dependence was noticed for the spectroscopic factors when the l-values were large.

  7. Studies of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction

    Science.gov (United States)

    Ciepał, I.; Kłos, B.; Stephan, E.; Kistryn, St.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Zejma, J.

    2014-03-01

    One of the most important goals of modern nuclear physics is to contruct nuclear force model which properly describes the experimental data. To develop and test predictions of current models the breakup 1H(overrightarrow d, pp)n reaction was investigated experimentally at 100 and 130 MeV deuteron beam energies. Rich set of data for cross section, vector and tensor analyzing powers was obtained with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which describe the three-nucleon (3N) system dynamics. For correct description of the cross section data both, three-nucleon force (3NF) and Coulomb force, have to be included into calculations and influence of those ingredients is seizable at specific parts of the phase space. In case of the vector analyzing powers very low sensitivity to any effects beyond nucleon-nucleon interaction was found. At 130 MeV, the Axy data are not correctly described when 3NF models are included into calculations.

  8. Analysis of minor elements in steel by coincidence method in deuteron-induced prompt gamma-ray emission (D-PIGE)

    International Nuclear Information System (INIS)

    Ene, Antoaneta; Popescu, I.; Badica, T.; Olariu, Agata; Besliu, C.

    2000-01-01

    Among the factors affecting the sensitivity of PIGE method (particle-induced prompt gamma-ray emission) frequently discussed in the literature, the background in the γ-ray spectrum holds a prominent place. In this work the limits of detection of minor elements in a standard steel sample (Euronorm rm No. 085/1) irradiated with 5 MeV deuterons have been determined by the regular d-PIGE method and with the selection of the (d,n) reaction channel by measuring γ--n coincidences following the reaction steel + deuterons. This approach has resulted in a significant improvement of the sensitivity of the analysis, reducing the background in prompt gamma ray spectrum by eliminating the γ--rays observed in the singular spectrum which arises from the reaction channels (d, d'), (d, γ), (d, p), (d, 3 He), (d, α) and (d, t). From the singular spectrum we could establish the presence of the elements S, Pb, Mo, Co, V, P, O, Si, Zn, Mn, Cu, Sb, C, Al, N, As, Ti and Fe. The γ--n coincidence spectrum, obtained as a result of the selection of the γ- transitions via the reaction channel (d, n), is substantially different from the singular γ--spectrum, exhibiting γ- lines of rather high intensity to be used in the analyses on a reduced background. The coincidence spectrum shows lines from S, Mo, Co, Zn, Si, Mn, V, Sb, Ti, As, Ni, Cr, P, O, Al, Cu and Fe. We also made a comparative study with the published results using 5.5 MeV protons as projectiles. While for a given energy of the protons not all the elements of interest lead to a (p, n) reaction (C, O, P, S, Si etc.), most of the (d, n) reactions are exoergic. On the other side, the identification of the elements is more difficult in the case of deuterons. (authors)

  9. Investigation of transversal nuclear excitation in 208Pb at excitation energies between 6 MeV and 8 MeV using inelastic electron scattering

    International Nuclear Information System (INIS)

    Frey, R.W.

    1978-01-01

    Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)

  10. Examination of adhesion layer of TeO2 film with indented platinum substrate after radiation loading by 13 MeV deuterons

    International Nuclear Information System (INIS)

    Garapatskij, A.A.; Troyan, P.E.

    2011-01-01

    In this work the influence of a corrugated surface of a Pt substrate on the quality of thermal contact of an adhesion layer with a material of different compositions of TeO 2 and Al 2 O 3 when bombing a target by a 20 µA, 13.7 MeV deuteron beam has been studied. Before the irradiation a Raman spectrum of the TeO 2 +4%Al 2 O 3 material had a fuzzy contour, what corresponds to a polycrystalline composition or glass, but after the irradiation the spectrum has distinct Raman peaks which relate to the α-phase. In Raman spectrums for TeO 2 , containing α-phase peaks, essential changes were not observed after the irradiation. However, the glassy structure was formed in the target’s central part. Studies have shown good thermal contact of TeO 2 with the surface of a Pt substrate, processed by the offered technique. It allows to manage without addition of Al 2 O 3 and to carry out the target irradiation without loss of TeO 2 . (authors)

  11. The influence of the deviation from the equilibrium deuteron distribution on the neutron spectra in linear pinch geometries

    International Nuclear Information System (INIS)

    Deutsch, R.; Herold, H.; Kaeppeler, H.J.; Schmidt, H.

    1982-07-01

    In order to analyse the influence of the deviation from the equilibrium distribution of the fast deuterons on the neutron spectrum, the limiting case, corresponding to a two-dimensional mono-energetic deuteron distribution, was studied. An essential difference in comparison to the equilibrium case is the appearance of a pronounced peak in the side-on spectra at Esub(n)approx.=2.5 MeV. A comparison of the theoretical and experimental data was made. If we take into account the relaxation processes, there results a good agreement between theory and experiment. (orig.)

  12. Pion deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1978-09-01

    A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt

  13. Nucleon-deuteron breakup quantities calculated with separable interactions including tensor forces and P-wave interactions

    International Nuclear Information System (INIS)

    Bruinsma, J.; Wageningen, R. van

    1977-01-01

    Nucleon-deuteron breakup calculations at a nucleon bombarding energy of 22.7 MeV have been performed with separable interactions including a tensor force and P-wave interactions. Differential cross sections and a selection of polarization quantities have been computed for special regions of the phase space. The influence of a tensor force and P-wave interactions on the differential cross section is of the order of 20%. Large discrepancies between theory and experiment occur for the vector analyzing powers, both for the kinematically complete and for the incomplete situation. The calculations show that there are kinematical situations in which the differential cross sections and the tensor analyzing powers are sufficiently large to make measurements feasible. (Auth.)

  14. Hadron--deuteron scattering at 50 GeV

    International Nuclear Information System (INIS)

    Levinson, L.J.

    1978-06-01

    The forward scattering of π + , π - , and protons on deuterons and protons was measured with a single arm spectrometer at the Fermi National Accelerator Laboratory. The energy was 50 GeV and the invariant 4-momentum transfer range was .06 2 for π + and p, and .06 - . The missing mass, determined by the spectrometer, selected proton elastic and deuteron elastic-plus-breakup scattering, rejecting particle and resonance production events. The measured proton and deuteron differential cross sections were analyzed in the context of the Glauber Theory of deuteron elastic-plus-breakup scattering and a neutron elastic differential cross section was extracted. The theory and analysis were tested by comparing the π + n cross section extracted from the π + d and n + p data with the π - p data; by I-spin symmetry the π + n cross section must equal the π - p. The same test was done for π - n. The proton--neutron elastic differential cross section was then extracted from the pd and pp data. The theory and the data were not found to be consistent within the random errors. Systematic errors are probably the cause; several possible systematic errors are discussed. Also an attempt to use recoil particle detectors to extract the deuteron elastic and the neutron cross sections is reported

  15. Power plant by deuteron beams using indirect-driven target

    International Nuclear Information System (INIS)

    Niu, Keishiro

    1989-01-01

    An indirect-driven target is proposed to be used for 6-beam nonuniform irradiation of deuteron particles. The target consists of 5 layers; tamper, radiator, smoother (radiation gap), absorber (pusher) and solid DT fuel. The fluctuation comes from nonuniform energy deposition in the radiator layer. Through the smoother layer, radiative energy transport from the radiator layer to the absorber layer is expected to smooth out the temperature fluctuation in the absorber layer. The total beam energy of 12 MJ is launched to the target by 6 beams. In order to delete the charge of the front edge of the propagating deuteron beam, the electron beam is proposed to be launched to the target with the same velocity and with the same number density at the same time of the deuteron extraction form the diode. To stabilize the beam propagation, the electron beam has a rotation velocity which induces the magnetic field in the propagation direction. The construction of the power supply system whose total stored energy is 12 MJ seems to be not difficult and to be economical. (author)

  16. Low energy deuteron-induced reactions on Fe isotopes

    Czech Academy of Sciences Publication Activity Database

    Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Honusek, Milan; Katovsky, K.; Manailescu, C.; Mrázek, Jaromír; Šimečková, Eva; Závorka, Lukáš

    2014-01-01

    Roč. 89, č. 4 (2014), 044613 ISSN 0556-2813 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : cross sections * proton spectra * polarized deuterons Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 3.733, year: 2014

  17. Electric and Magnetic Coulomb Potentials in the Deuteron

    Directory of Open Access Journals (Sweden)

    Bernard Schaeffer

    2013-09-01

    Full Text Available After one century of nuclear physics, the underlying fun- damental laws of nuclear physics are still missing. Bohr had found a formula for the H atom and another for the H2 molecule but no equivalent formula exists for the deuteron 2H. The only known Coulomb interaction in a nucleus by the mainstream nuclear physics is the long range repulsion between protons, forgetting that the neutron contains elec- tric charges with no net charge. The neutron is attracted by the proton in a way discovered two millenaries ago by the Greeks. This attraction is equilibrated by the repulsion between the opposite magnetic moments of the proton and of the neutron in the deuteron. The bare application of ge- ometry together with electric and magnetic Coulomb’s in- teractions accounts for the binding energy of the deuteron, without fitting, with only 4 per cent discrepancy, proving the electromagnetic nature of the nuclear energy.

  18. Use of deuteron-induced nuclear reactions for quantitative surface analysis

    International Nuclear Information System (INIS)

    Simpson, J.C.B.; Earwaker, L.G.

    1986-01-01

    A summary of the basic features of nuclear reaction analysis is given; particular emphasis is placed on quantitative light element determination using (d,p) and (d,α) reactions. The experimental apparatus is also described, with reference to the 3MV Dynamitron accelerator at the University of Birmingham Radiation Centre. Finally, a set of standard (d, p) spectra for the elements Z=3 to Z=17, using 2 MeV incident deuterons, is included together with examples of the more useful of the (d,α) spectra. (orig.)

  19. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Miyachi, T.; Sugano, K.; Toshioka, K.; Ukai, K.

    1979-08-01

    The recoil proton polarization of the reaction γp → π 0 p were measured at a C.M. angle of 100 0 for incident photon energies between 451 and 1106 MeV, and at an angle of 130 0 for energies from 400 MeV to 1142 MeV. One photon decayed from a π 0 -meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A 3 can be estimated to be small at 100 0 . (author)

  20. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV

    International Nuclear Information System (INIS)

    Tárkányi, F.; Takács, S.; Ditrói, F.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2014-01-01

    Highlights: • Experimental excitation function of deuteron induced reactions on natural Nd. • Model code calculations with EMPIRE-D, ALICE-D and TALYS (TENDL-2012). • Physical yield calculation and comparison. • Discussion of medical and industrial applications. - Abstract: In the frame of a systematic study of activation cross sections of deuteron induced nuclear reactions on rare earths, the reactions on neodymium for production of therapeutic radionuclides were measured for the first time. The excitation functions of the nat Nd(d,x) 151,150,149,148m,148g,146,144,143 Pm, 149,147,139m Nd, 142 Pr and 139g Ce nuclear reactions were assessed by using the stacked foil activation technique and high resolution γ-spectrometry. The experimental excitation functions were compared to the theoretical predictions calculated with the modified model codes ALICE-IPPE-D and EMPIRE-II-D and with the data in the TENDL-2012 library based on latest version of the TALYS code. The application of the data in the field of medical isotope production and nuclear reaction theory is discussed

  1. Neutron scattering differential cross sections of carbon and bismuth at 37 MeV

    International Nuclear Information System (INIS)

    Zhou Zuying; Tang Hongqing; Qi Bujia; Zhou Chenwei; Du Yanfeng; Xia Haihong; Walter, R.L.; Tornow, W.; Howell, C.; Braun, R.; Roper, C.; Chen Zemin; Chen Zhengpeng; Chen Yingtang

    1997-01-01

    Elastic differential cross sections of 37 MeV neutrons scattered from carbon and bismuth were measured in the angular range 11 to 160 degrees by means of the multi-detector TOF facility. The 37 MeV neutrons were produced via the T(d,n) 4 He reaction in a tritium gas target. The pulsed 20 MeV deuteron beam was provided by the HI-13 tandem accelerator. The angular distribution of scattered neutrons from carbon and bismuth were measured in the angular range 11 degree to 145 degree and 11 degree to 160 degree respectively in steps of about 3 degree

  2. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N. [CEA Bruyeres-le-Chatel (DPTA/SPN), 91 (France). Dept. de Physique Theorique et Appliquee; Dore, D. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DAPNIA/SPhN), 91- Gif sur Yvette (France)

    2008-07-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C{sub 6}D{sub 6} detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4{pi} neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  3. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N.

    2008-01-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C 6 D 6 detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4π neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  4. FY08 parameters for the injection, acceleration, and extraction of gold ions and deuterons in the booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.J.

    2010-08-01

    A Gold ion with charge eQ has N = 197 Nucleons, Z = 79 Protons, and (Z-Q) electrons. (Here Q is an integer and e is the charge of a single proton.) The mass is m = au - Qm{sub e} + E{sub b}/c{sup 2} (1) where a = 196.966552 is the relative atomic mass [1, 2] of the neutral Gold atom, u = 931.494013 MeV/c{sup 2} is the unified atomic mass unit [3], and m{sub e}c{sup 2} = .510998902 MeV is the electron mass [3]. E{sub b} is the binding energy of the Q electrons removed from the neutral Gold atom. This amounts to 0.332 MeV for the helium-like gold ion (Q = 77) and 0.517 MeV for the fully stripped ion. For the Au{sup 31+} ion we have E{sub b} = 13.5 keV. These numbers are given in Ref. [4]. The deuteron mass [3] is 1875.612762(75) MeV/c{sup 2}.

  5. HIGH ENERGY RADIOGRAPHY-1-30 Mev

    Energy Technology Data Exchange (ETDEWEB)

    Bly, James H.

    1963-10-15

    From 1963 American Society of Metals/Materials Show, Cleveland, Oct. 1963. A survey of the field of radiographic inspection of thick sections, at one million volts energy or more, shows that this field has become a major branch of radiographic testing. More than a dozen models of x-ray generators are now commercially available in this field, over the range from 1 to 31 Mev, with outputs up to more than two orders of magnitude greater than can be obtained from radiographic isotope sources, and with smaller spot size. A study of the radiographic characteristics of x rays in this region shows that energies available cover the range of minimum absorption and scattering for most materials and approach this range for solid propellant; at higher energies severe coverage restrictions are imposed; output powers on small spots are near the limits of present target technology. It would appear that some degree of technological maturity'' has been achieved. Radiographic technique at 1 to 30 Mev is straightforward, following the same basic principles as in conventional radiography. Specialized aspects of technique are individually discussed. The wellknown 1 and 2 million volt equlpments are supplemented by a wide variety of higher-energy machines, with energy and output ratings to satisfy almost any radiographic need. Some examples are epitomized, and a brief discussion of possible future developments is presented. (auth)

  6. Pulse-shape discrimination of high-energy neutrons and gamma rays in NaI(Tl)

    International Nuclear Information System (INIS)

    Share, G.H.; Kurfess, J.D.; Theus, R.B.

    1978-01-01

    Pulse-shape discrimination can be used to separate neutron and gamma-ray interactions depositing energies up to in excess of 50 MeV in NaI(Tl) crystals. The secondary alpha particles, deuterons and protons produced in the neutron interactions are also resolvable. (Auth.)

  7. PICA95: An intranuclear-cascade code for 25-MeV to 3.5-GeV photon-induced nuclear reactions

    International Nuclear Information System (INIS)

    Fu, C.Y.; Gabriel, T.A.; Lillie, R.A.

    1997-01-01

    PICA95, an intranuclear-cascade code for calculating photon-induced nuclear reactions for incident photon energies up to 3.5 GeV, is an extension of the original PICA code package that works for incident photon energies up to 400 MeV. The original code includes the quasi-deuteron breakup and single-pion production channels. The extension to an incident photon energy of 3.5 GeV requires the addition of multiple-pion production channels capable of emitting up to five pions. Relativistic phase-space relations are used to conserve energy and momentum in multi-body breakups. Fermi motion of the struck nucleon is included in the phase-space calculations as well as secondary nuclear collisions of the produced particles. Calculated doubly differential cross sections for the productions of protons, neutrons, π + , π 0 , and π - for incident photon energies of 500 MeV, 1 GeV, and 2 GeV are compared with predictions by other codes. Due to the sparsity of experimental data, more experiments are needed in order to refine the gamma nuclear collision model

  8. The polarized proton and deuteron beam at the Bonn isochronous cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, K G; Enders, R; Hammon, W; Krause, K D; Lesemann, D; Scholzen, A [Bonn Univ. (F.R. Germany). Inst. fuer Angewandte Physik; Euler, K; Schueller, B [Bonn Univ. (F.R. Germany). Inst. fuer Strahlen- und Kernphysik

    1976-02-15

    The present state of the polarized proton and deuteron source at the Bonn cyclotron is described. The source, which is of the atomic beam type, gives typical ion beam intensities of 2 ..mu..A for protons and 3 ..mu..A for deuterons. The overall transmission from the source to the first stopper after extraction from the cyclotron is 3%. Target currents with an energy resolution E/..delta..E=500 are 20 nA for deuterons and 10 nA for protons. For the proton beam, a polarization P=-0.71 was measured. For the deuteron beam, a pure vector polarization Psub(z)=-0.47 or various mixtures of vector and tensor polarization are obtained.

  9. Small-angle neutron polarization for the 2H(d vector,n vector)3He reaction near Esub(d) = 8MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Woye, W.; Mack, G.

    1981-01-01

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction 2 H(d vector,n vector) 3 He at a reaction angle of theta = 0 0 . To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle Δtheta of 20 0 (lab) centered about theta = 0 0 . In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction 2 H(d vector,n vector) 3 He has been studied with Δtheta of about 3 0 in 3 0 steps out to theta = 20 0 (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0 0 and theta = 10 0 (lab). (orig.)

  10. Alpha-clustering effects on {sup 16}O(γ, np){sup 14}N in the quasi-deuteron region

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo-Song [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Ma, Yu-Gang [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); ShanghaiTech University, Shanghai (China); He, Wan-Bing [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Fudan University, Institute of Modern Physics, Shanghai (China)

    2017-06-15

    Photonuclear reaction in the quasi-deuteron regime has been investigated in an extended Quantum Molecular Dynamics model at a photon energy of 70-120 MeV. Particularly, the reaction channel of {sup 16}O(γ, np){sup 14}N is focused where {sup 16}O is considered as having different α-clustering configurations as well as regular spherical structure. Because of three-body decay from the above photonuclear reaction, we can investigate many observables including the recoil momentum, missing energy, pair momentum/energy and opening angle of ejected neutron and proton, hyper-angle and hyper-radius distributions, etc. These quantitative results demonstrate an obvious difference among different initial configurations of {sup 16}O, which can be attributed to the spatial-momentum correlation of a neutron-proton pair inside the nucleus. The results illustrate that photonuclear reaction is a good tool to explore different α-clustering structures. (orig.)

  11. Study on the 21 MeV neutron flux characteristics obtained in the 3H(d,n)4He reaction using of gas target

    International Nuclear Information System (INIS)

    Lovchikova, G.N.; Polyakov, A.V.; Sal'nikov, O.A.; Simakov, S.P.; Sukhikh, S.Eh.; Trufanov, A.M.

    1983-01-01

    The possibility to use gas tritium target as neutron source with the energy 2 MeV for nuclear-physical studies has been considered. Characteristics of neutron flux crested in the reaction 3 H(d, n) 4 He to obtain neutrons are investigated. The study of inelastic scattering processes at the energies permits to expand the experiments conducted up to the present day on the study of spectra of inelastically scattered neutrons in a lower energy region and it is of interest for the clarification of appearance mechanism of high-energy neutrons in the spectra. Characteristics of neutron flux as a result of the reaction 3 (α, n) 4 He at the energy of falling deuterons Esub(d)=5.54 MeV are investigated. Measurements of spectra of scattered neutrons on carbon-12 at the angles 30, 45, 60, 90, 120, 150 degrees are made. Differential cross sections of elastic scattering are obtained

  12. Determination of light elements concentration in aerosols by X emission induced by deuteron

    International Nuclear Information System (INIS)

    Morales, J.R.; Romo, C.

    1983-01-01

    Absolute concentrations for Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe and Cu were obtained in the range from 10 ng/m 3 to 10 4 ng/m 3 in aerosols from Santiago. A 4,2 MeV deuteron beam was used to induce characteristic X-ray emission. It was found that relative abundance of these elements is maintained for days of high and low total suspended particulates. (Author)

  13. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    Science.gov (United States)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  14. Low-energy deuteron-induced reactions on Nb-93

    Czech Academy of Sciences Publication Activity Database

    Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Honusek, Milan; Koning, A.J.; Mrázek, Jaromír; Šimečková, Eva; Štefánik, Milan; Závorka, Lukáš

    2013-01-01

    Roč. 88, č. 1 (2013), 014612 ISSN 0556-2813 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : deuteron-induced reactions * cross sections * breakup mechanism Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.881, year: 2013 http://prc.aps.org/pdf/PRC/v88/i1/e014612

  15. Energy monitoring device for 1.5-2.4 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Lavalle, M.; Martelli, A. [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O.Box 77, H-1525 Budapest (Hungary); Mehta, K. [Arbeiterstrandbad Strasse 72, Vienna, A-1210 (Austria); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France)

    2010-03-11

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  16. Energy monitoring device for 1.5-2.4 MeV electron beams

    Science.gov (United States)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  17. Neutron production in interactions of relativistic protons and deuterons with lead targets

    International Nuclear Information System (INIS)

    Yurevich, V.I.; Amelin, N.S.; Yakovlev, R.M.; Nikolaev, V.A.; Lyapin, V.G.; Tsvetkov, I.O.

    2005-01-01

    Results on the neutron double-differential cross sections and yields obtained in the time-of-flight measurements with different lead targets and beams of protons and deuterons at an energy of about 2 GeV are discussed. The neutron spatial-energy distribution for an extended lead target was studied by the threshold detector method in the energy range of protons and deuterons 1-3.7 GeV. A dependence of the mean neutron multiplicity, energy of neutrons, and process of neutron multiplication in lead on the target dimension, and the type and energy of the beam particle is analyzed. (author)

  18. Measurements of Ay(θ) for 12C(n,n)12C from En=2.2 to 8.5 MeV

    International Nuclear Information System (INIS)

    Roper, C.D.; Tornow, W.; Braun, R.T.; Chen, Q.; Crowell, A.; Trotter, D. Gonzalez; Howell, C.R.; Salinas, F.; Setze, R.; Walter, R.L.; Chen Zemin; Tang Hongqing; Zhou Zuying

    2005-01-01

    The analyzing power A y (θ) for neutron elastic scattering from 12 C has been measured for 33 neutron energies between E n =2.2 and 8.5 MeV in the angular range from 25 deg. to 145 deg. in the laboratory system. The primary motivation for these measurements is the need for an accurate knowledge of A y (θ) for 12 C(n,n) 12 C elastic scattering to enable corrections to high-precision neutron-proton and neutron-deuteron A y (θ) data in the neutron-energy range below E n =30 MeV. In their own right, 12 C(n,n) 12 C A y (θ) data are of crucial importance for improving both the parametrization of n- 12 C scattering and our knowledge of the level scheme of 13 C. The present A y (θ) data are compared with published data and previous phase-shift-analysis results

  19. Azimuthal asymmetries of charged hadrons produced in high-energy muon scattering off longitudinally polarised deuterons

    CERN Document Server

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grabmuller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d’Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jorg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kramer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Roskot, M; Rossiyskaya, N S; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schonning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tasevsky, M; Tessaro, S; Tessarotto, F; Thibaud, F; Thiel, A; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M; Zink, A

    2016-01-01

    Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\\phi$ is obtained by means of a five-parameter fitting function that besides a $\\phi$-independent term includes four modulations predicted by theory: $\\sin\\phi$, $\\sin 2 \\phi$, $\\sin 3\\phi$ and $\\cos\\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. In further fits, the $\\phi$-dependence is determined as a function of one of three kinematic variables (Bjorken-$x$, fractional energy of virtual photon taken by the outgoing hadron and hadron transverse momentum), while disregarding the other two. Except the $\\phi$-independent term, all the modulation amplitudes are very small, and no cl...

  20. Nd break-up process with considering 3NF at intermediate energies in a 3D approach

    Energy Technology Data Exchange (ETDEWEB)

    Radin, M., E-mail: harzchi@kntu.ac.ir; Ghasemi, H.

    2016-01-15

    In this work we have applied a three-dimensional approach to solve the three-nucleon Faddeev equation in the Jacobi momenta space. To this end, we have considered the inhomogeneous part of the Faddeev equation as an appropriate approximation for projectile intermediate energies. As an application the Bonn-B and the Tucson–Melbourne two- and three-nucleon forces have been used for calculating the differential cross section for proton–deuteron break-up process. Finally, comparing our results with the experimental data has been performed for 197 MeV and 346 MeV projectile energies.

  1. Production and use of Li(d,n) neutrons for simulation of radiation effects in fusion reactors

    International Nuclear Information System (INIS)

    Goland, A.N.; Gurinsky, D.H.; Hendrie, J.; Kukkonen, J.; Sheehan, T.; Snead, C.L. Jr.

    1975-01-01

    In the Brookhaven Accelerator-Based Neutron Generator 1.5-cm thick x 12-cm wide films of lithium flowing at the velocity of approximately 10 m sec -1 will be the targets for 30-MeV D + and D - beams 1-cm high and 10-cm wide. At this energy a beam of energetic neutrons is emitted mainly in the forward direction (theta less than or equal to 20 0 ) as a result of the Li(d,n) breakup reaction. Measurements of the neutron flux and spectrum as a function of incident deuteron energy and emission angle theta(theta less than or equal to 20 0 ) indicate that the yield increases approximately linearly with increasing deuteron energy from 25 MeV to at least 35 MeV, and that the mean energy of the neutrons (theta = 0 0 ) is about 0.4 of the incident deuteron energies between 25 and 35 MeV. The most probable neutron energy in the forward-directed (theta = 0 0 ) spectrum is also about 0.4 of the deuteron energy over this range. For a 30-MeV beam, the full width at half maximum of the neutron spectrum is 11.8 MeV (theta = 0 0 ), and the mean neutron energy is 13 MeV. Pertinent radiation-damage parameters were calculated for various materials exposed to this neutron spectrum. In Nb, for example, the helium production rate and the displacement rate simulate the values anticipated in a D-T fusion reactor spectrum of comparable flux. Furthermore, the primary-recoil-atom energy distributions produced by Li(d,n) neutrons in Al, Nb, and Au are similar to those produced by 14-MeV neutrons. (U.S.)

  2. Small-angle neutron polarization for the /sup 2/H(d vector,n vector)/sup 3/He reaction near Esub(d) = 8MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Woye, W.; Mack, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Walter, R.L.; Floyd, C.E.; Guss, P.P.; Byrd, R.C. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1981-12-15

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction /sup 2/H(d vector,n vector)/sup 3/He at a reaction angle of theta = 0/sup 0/. To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle ..delta..theta of 20/sup 0/ (lab) centered about theta = 0/sup 0/. In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction /sup 2/H(d vector,n vector)/sup 3/He has been studied with ..delta..theta of about 3/sup 0/ in 3/sup 0/ steps out to theta = 20/sup 0/ (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0/sup 0/ and theta = 10/sup 0/ (lab).

  3. Investigating the foil-generated deuteron beam interaction with a DT target in degenerate and classical plasma

    Science.gov (United States)

    Mehrangiz, M.; Ghasemizad, A.

    2017-06-01

    Deuteron fast ignition of a conically guided pre-compressed DT fuel is investigated. For this purpose, the acceleration of the deuterated thin foil by the intense laser beam is evaluated. The acceleration values and the number of foil-generated deuterons are calculated in terms of the laser pulse duration. Using the created deuterons as the fast ignitors, we investigate the fast ignition scheme by comparing fully degenerate, partial degenerate and classical types of DT plasma. The total energy gain of deuterons "beam fusion" is calculated to show the efficiency of beam reactions in increasing fusion rate. Besides, the stopping time and stopping range of incident deuterons are evaluated. Our numerical results indicate that degeneracy increases the beam-target collisions. Thus, it prepares the ignition situation sooner than the classical plasma. Moreover, the number of generated deuterons and their acceleration depend on the foil thickness and laser parameters. We show that when a 4ps laser with intensity of 10^{19} W/cm^2 focused onto a 20μm foil, 35× 10^{15} deuterons are generated. Moreover, under our analysis, in order to have a practicable fast ignition, 18% of the laser energy is necessary to convert into a deuteron driver.

  4. Measurement of Anti-Deuteron Photoproduction and a Search for Heavy Stable Charged Particles at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.D.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.G.; Wissing, Ch.; Woehrling, E.E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2004-01-01

    The cross section for anti-deuteron photoproduction is measured at HERA at a mean centre-of-mass energy of W_{\\gamma p} = 200 GeV in the range 0.2 < p_T/M < 0.7 and |y| < 0.4, where M, p_T and y are the mass, transverse momentum and rapidity in the laboratory frame of the anti-deuteron, respectively. The numbers of anti-deuterons per event are found to be similar in photoproduction to those in central proton-proton collisions at the CERN ISR but much lower than those in central Au-Au collisions at RHIC. The coalescence parameter B_2, which characterizes the likelihood of anti-deuteron production, is measured in photoproduction to be 0.010 \\pm 0.002 \\pm 0.001, which is much higher than in Au-Au collisions at a similar nucleon-nucleon centre-of-mass energy. No significant production of particles heavier than deuterons is observed and upper limits are set on the photoproduction cross sections for such particles.

  5. Time resolved energy spectrum of the axial ion beam generated in plasma focus discharges

    International Nuclear Information System (INIS)

    Bostick, W.H.; Kilic, H.; Nardi, V.; Powell, C.W.

    1993-01-01

    The energy spectrum of the deuteron beam along the electrode axis (0 (degree) ) in a plasma focus discharge has been determined with a time of flight (TOF) method and with a differential filter method in the ion energy interval E = 0.3-9 MeV. The ion TOF method is applied to single-ion pulse events with an ion emission time t(E) that is only weakly dependent on the ion energy E for E > 0.3 MeV. The correlation of the ion beam intensity with the filling pressure, the neutron yield and the hard X-ray intensity is also reported. (author). 11 refs, 10 figs

  6. Hilbert-Schmidt method for nucleon-deuteron scattering

    International Nuclear Information System (INIS)

    Moeller, K.; Narodetskij, I.M.

    1983-01-01

    The Hilbert-Schmidt technique is used for computing the divergent multiple-scattering series for scattering of nucleons by deuterons at energies above the deuteron breakup. It is found that for each partial amplitude a series of s-channel resonances diverges because of the logarithmic singularities which reflect the t-channel singularities of the total amplitude. However, the convergence of the Hilbert-Schmidt series may be improved by iterating the Faddeev equations thereby extracting the most strong logarithmic singularities. It is shown that the series for the amplitudes with first two iterations subtracted converges rapidly. Final results are in excellent agreement with exact results obtained by a direct matrix technique

  7. Study of the He3 breakup reaction and the triton production spectra at 283 MeV

    International Nuclear Information System (INIS)

    Hussain Obid, R.

    1988-01-01

    The breakup of He3 ions at 94MeV/nucleon was studied in inclusive experiments on nuclei ranging from C12 to Pb208, and in coincidence experiments (γd) and (γt) on an A127 target. The inclusive spectra of protons and deuterons show an important contribution of the He3 breakup reaction to the reaction cross section (80%). Analysis of the dependence as a function of A confirms a peripheral mechanism. The coincidence experiment gives a proportion of inelastic breakup in the inclusive cross section of 40 %. Examination of triton spectra reveals that at 94 MeV the dominant reaction is not breakup transfer as at lower energies, but charge exchange. The spectra peak at energies of 20MeV, compatible with the excitation of a mixture of L=1 and L=2 states. The variation of the cross section following an A 1/3 law indicates a peripheral mechanism for the (He3,t) reaction too. The (γ-t) coincidence reaction showing residual nucleus production near the target nucleus reinforces this result [fr

  8. Differential cross section for neutron scattering from 209Bi at 37 MeV and the weak particle-core coupling

    International Nuclear Information System (INIS)

    Zhou Zuying; Ruan Xichao; Du Yanfeng; Qi Bujia; Tang Hongqing; Xia Haihong; Walter, R. L.; Braun, R. T.; Howell, C. R.; Tornow, W.; Weisel, G. J.; Dupuis, M.; Delaroche, J. P.; Chen Zemin; Chen Zhenpeng; Chen Yingtang

    2010-01-01

    Differential scattering cross-section data have been measured at 43 angles from 11 deg. to 160 deg. for 37-MeV neutrons incident on 209 Bi. The primary motivation for the measurements is to address the scarcity of neutron scattering data above 30 MeV and to improve the accuracy of optical-model predictions at medium neutron energies. The high-statistics measurements were conducted at the China Institute of Atomic Energy using the 3 H(d,n) 4 He reaction as the neutron source, a pulsed deuteron beam, and time-of-flight (TOF) techniques. Within the resolution of the TOF spectrometer, the measurements included inelastic scattering components. The sum of elastic and inelastic scattering cross sections was computed in joint optical-model and distorted-wave Born approximation calculations under the assumption of the weak particle-core coupling. The results challenge predictions from well-established spherical optical potentials. Good agreement between data and calculations is achieved at 37 MeV provided that the balance between surface and volume absorption in a recent successful model [A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003)] is modified, thus suggesting the need for global optical-model improvements at medium neutron energies.

  9. Search for the p1/2- resonance in 7He with the 7Li(d,2He) reaction and measurement of the deuteron electrodisintegration under 180 deg at the S-DALINAC

    International Nuclear Information System (INIS)

    Ryezayeva, N.

    2006-07-01

    The present work contains two parts, both devoted to the investigation of light nuclei. In the first part of the thesis the structure of the exotic 7 He nucleus is studied. The disappearance of the usual magic numbers in extremely neutron-rich nuclei implies a considerable modification in the spin-orbit interaction. Recent experiments yield contradictory results about a possible existence of the p 1/2 - spin-orbit partner of the 7 He ground state with a dominant p 3/2 - single-particle character. In order to clarify this question a study of the 7 Li(d, 2 He) 7 He reaction has been performed using a 171 MeV deuteron beam provided by the cyclotron at Kernfysisch Versneller Insituut (KVI) in Groningen. The experiment was carried out in April 2003. The setup at KVI offers a resolution ΔE ∼ 150 keV (FWHM) in the measured spectra, better than the line width of the ground state of 7 He. The unbound 2 He system was identified by detecting coincidences between two protons with small relative energy. The data were taken over the angular range Θ cm =0 -11.3 . A possible resonance at an excitation energy E x =(1.45 -0.5 +0.7 ) MeV with a width Γ=(2.0 -1.1 +1.0 ) MeV is suggested by a decomposition of the spectrum using known resonances, the breakup behaviour of 7 He and quasifree charge-exchange contributions, taking into account the cluster structure of 7 Li. Gamow-Teller strengths for transitions to the lowest states in 7 He are in remarkable agreement with results from ab initio Quantum Monte Carlo calculations. The neutron spectroscopic factor S n =0.64±0.09 of the 7 He ground state ( 7 He= 6 He x n) is extracted by an R-matrix analysis. In the second part of the thesis the deuteron breakup has been studied in the 2 H(e,e ' ) reaction at Θ=180 . The present measurements were performed in March and April 2006 at the superconducting Darmstadt electron linear accelerator S-DALINAC at an incident electron energy E 0 =27.8 MeV and 74 MeV. At low momentum transfer (q=0

  10. Deuteron-induced reactions generated by intense lasers for PET isotope production

    Science.gov (United States)

    Kimura, Sachie; Bonasera, Aldo

    2011-05-01

    We investigate the feasibility of using laser accelerated protons/deuterons for positron emission tomography (PET) isotope production by means of the nuclear reactions 11B(p, n) 11C and 10B(d, n) 11C. The second reaction has a positive Q-value and no energy threshold. One can, therefore, make use of the lower energy part of the laser-generated deuterons, which includes the majority of the accelerated deuterons. By assuming that the deuteron spectra are similar to the proton spectra, the 11C produced from the reaction 10B(d, n) 11C is estimated to be 7.4×10 9 per laser-shot at the Titan laser at Lawrence Livermore National Laboratory. Meanwhile a high-repetition table-top laser irradiation is estimated to generate 3.5×10 711C per shot from the same reaction. In terms of the 11C activity, it is about 2×10 4 Bq per shot. If this laser delivers kHz, the activity is integrated to 1 GBq after 3 min. The number is sufficient for the practical application in medical imaging for PET.

  11. Neutron-induced 2.2 MeV background in gamma ray telescopes

    International Nuclear Information System (INIS)

    Zanrosso, E.M.; Long, J.L.; Zych, A.D.; White, R.S.; Hughes Aircraft Co., Los Angeles, CA)

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma line essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen

  12. Distribution of isotopes produced in superconductor YBa2Cu3O7-x and ferroelectric PbZr0.54Ti0.46O3 under irradiation by high-energy charged particles

    International Nuclear Information System (INIS)

    Didik, V.A.; Malkovich, R.Sh.; Skoryatina, E.A.; Kozlovskij, V.V.

    1998-01-01

    The concentration profiles of transmutation radioactive isotopes, formed in the YBa 2 Cu 3 O 7-x superconductor and PbZr 0.54 Ti 0.46 O 3 ferroelectric under high-energy proton radiation (with 10 and 15 MeV energy), deuterons (4 MeV), the 3 He and 4 He nuclei (20 MeV), are studied. Two types of the concentration profiles: monotonous ones and profiles with the maximum are identified. It is shown that the isotope profile is determined by the character of energy dependence of the nuclear reaction cross section, leading to formation of the given isotope

  13. The quasi deuteron model for low energy pion absorption

    International Nuclear Information System (INIS)

    Gouweloos, M.

    1986-01-01

    In this thesis pion absorption in complex nuclei is studied in the quasi-deuteron model in which the pion is absorbed on a nucleon pair in the nucleus. The mechanism is studied in the low-energy domain since then the in-medium (pi→NN) operator turns out to be of simple character. In Ch. 2 and 3 this operator is constructed and analytical expressions are derived for (pi,NN) distributions in a plane wave impulse approximation for nuclei. The results turn out to be very useful for developing insight in the possibilities inherent in the QDM and the interpretation of the results in later chapters. Ch. 4 to 6 are devoted to the more realistic distorted wave calculations. In Ch. 4 the formal framework is presented and the calculational details are discussed. Ch.5 and 6 contain the comparison to stopped pion and in-flight data respectively. In Ch. 7 the main results are summarized. (Auth.)

  14. Fusion with projectiles from carbon to argon at energies between 20A MeV and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-01-01

    Fusion reactions are known to be the dominant reaction channel at low bombarding energies and can now be investigated with a large variety of projectiles at several tens of MeV per nucleon. The gross characteristics of the fusion process can be studied by measuring global quantities, such as the linear momentum transferred from projectile to target and the dissipated energy of the reaction. The strong correlation between these two quantities is demonstrated at moderate bombarding energies, with a Ne projectile on a U target. It is expected that light particle (charged or neutron) multiplicity measurements can be extended to this higher energy domain and be used to selectively filter these collisions, according to their degree of violence. A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MeV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behavior. Finally, the decay of highly excited (E* similarly ordered 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  15. Low-temperature deuteron irradiation of differently reacted Nb3Sn superconductors

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1978-01-01

    Irradiation measurements with 50 MeV deuterons at 18 K and subsequent annealing measurements were performed on Nb 3 Sn single and multifilamentary superconductors at the Helium-Bath Irradiation Facility of the Karlsruhe Cyclotron. The critical current densities jsub(c) of Nb 3 Sn bronze-reacted wire samples at various reaction temperatures (Tsub(R)=650,700,750,800 and 850 0 C) with equal layer thickness were measured for integral deuteron fluxes up to PHIsub(t)=0.7x10 18 cm -2 . After a decrease in jsub(c) of 85% at maximum dose a relatively small annealing effect (4 to 10%) was observed at ambient temperatures. The maximum value of the normalized critical current density, jsub(c)/jsub(c0), at PHIsub(t)approximately=10 17 cm -2 increases with increasing reaction temperature. The difference in volume pinning forces before and after irradiation increases less than linear (approximately√PHIsub(t)) with the irradiation dose. An almost linear dependence between the inverse grain diameter (dsub(K) -1 )) and volume pinning force is obtained both before and after irradiation. (Auth.)

  16. Scattering of 14.2 MeV polarized neutrons from 12C

    International Nuclear Information System (INIS)

    Casparis, R.; Leemann, B.Th.; Preiswerk, M.; Rudin, H.; Wagner, R.; Zupranski, P.

    1976-01-01

    Polarized 14.2 MeV neutrons with a polarization of approximately 50% were produced in the 3 H(d(pol),n(pol)) 4 He reaction using vector polarized deuterons from an 'atomic beam' source of polarized ions. The angular distributions of the analyzing power in the elastic and inelastic (Q = -4.43 MeV) scattering of neutrons from carbon have been measured at ten angles in the range from 22 0 to 152 0 c.m. A time-of-flight technique was used to separate elastically and inelastically scattered neutrons. The results have been compared with theoretical calculations obtained with the DWBA and the coupled channels method. (Auth.)

  17. Production of deuterons in hA collisions at high energies in the target fragmentation region

    International Nuclear Information System (INIS)

    Braun, M.A.; Vechernin, V.V.

    1987-01-01

    The production of relativistic deuterons in the target fragmentation region is studied. It is shown that for fast deuterons the role of the nuclear field is small and is not determined by the Butler-Pearson formulae. The main contribution comes from the direct coalescence into the deuteron of nucleons produced either at one point in the nucleus or at two different points. In the forward hemisphere for purely geometrical reasons the production at two points dominates, whereas in the backward hemisphere (the ''cumulative region'') the production at one point and at two different points may give contributions of the same order

  18. Light charged particle emission in the matched reactions 280 MeV 40Ar+27Al and 670 MeV 55Mn+12C: Inclusive studies

    International Nuclear Information System (INIS)

    Brown, Craig M.; Milosevich, Zoran; Kaplan, Morton; Vardaci, Emanuele; DeYoung, Paul; Whitfield, James P.; Peterson, Donald; Dykstra, Christopher; Karol, Paul J.; McMahan, Margaret A.

    1999-01-01

    In order to test the statistical model's ability to predict the behavior of relatively light mass systems (A≅67) with large angular momenta, two matched heavy ion nuclear reactions were used to produce 67 Ga * composite nuclei at an excitation energy of 127 MeV. Light charged particles (protons, deuterons, tritons, and α particles) were used as probes to characterize the composite systems and track the deexcitation processes. From these measurements, energy spectra, cross sections, angular distributions, anisotropy ratios, and particle multiplicities were deduced. Measuring many degrees of freedom provides a stringent test for the statistical models. What is found is that models which did well in predicting the behavior of heavy composite systems (A≅150), are unable to simultaneously reproduce energy spectra, angular distributions, and particle multiplicities for the lighter systems (A≅67), where angular momentum plays a dominant role. This implies that more rigorous models and/or additional physics are needed to understand the behavior of the hot, high-spin nuclear matter in this mass region. (c) 1999 The American Physical Society

  19. Nuclear reactions of high energy deuterons with medium mass targets

    International Nuclear Information System (INIS)

    Numajiri, Masaharu; Miura, Taichi; Oki, Yuichi

    1994-01-01

    Formation cross sections of product nuclides in the nuclear reactions of medium mass targets by 10 GeV deuterons were measured with a gamma-ray spectroscopy. The measured data were compared with the cross sections of 12 GeV protons. (author)

  20. Energy loss and straggling of MeV ions through biological samples

    International Nuclear Information System (INIS)

    Ma Lei; Wang Yugang; Xue Jianming; Chen Qizhong; Zhang Weiming; Zhang Yanwen

    2007-01-01

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat, and tomato coat) with different mass thickness were studied, together with Mylar for comparison. The energy loss and energy straggling of MeV H and He ions after penetrating the biological and Mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions; however, large deviation in energy straggling is observed between the measured results and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicted by the proposed formula

  1. Hard breakup of the deuteron into two Δ isobars

    International Nuclear Information System (INIS)

    Granados, Carlos G.; Sargsian, Misak M.

    2011-01-01

    We study high-energy photodisintegration of the deuteron into two Δ isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn→ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn→ΔΔ scattering. We predict that the cross section of the deuteron breakup to Δ ++ Δ - is 4-5 times larger than that of the breakup to the Δ + Δ 0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ isobars are the result of the disintegration of the preexisting ΔΔ components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both Δ ++ Δ - and Δ + Δ 0 channels to be similar.

  2. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  3. Fission of 209 Bi by 60-270 MeV tagged photons: cross section measurement and analysis of photo fissility

    International Nuclear Information System (INIS)

    Terranova, M.L.; Tavares, O.A.P.

    1996-07-01

    Tagged photons produced by the ROKK-2 facility have been used to measure the photofission cross section of 209 Bi in the energy range 60-270 MeV. Photofission events were detected by using a nuclear fragment detector designed for fission experiments, based on multiwire spark counters. Fissility values have been deduced and compared with available data obtained in other laboratories by using monochromatic photons. These data, together with early measurements obtained near photofission threshold, have been analysed in the framework of a two-step model which considers the primary photo interaction occurring via the quasi-deuteron and/or photo mesonic processes, followed by a mechanism of evaporation-fission competition for the excited residual nucleus. The model was found to reproduce the main experimental features of 209 Bi photo fissility up to 300 MeV. (author). 52 refs., 7 figs., 2 tabs

  4. Exotic components of the deuteron wave function

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtonov, A.I.

    1996-01-01

    Problems of quark exchange effects in cross sections and polarization observables of d p elastic backward scattering and (d, p) deuteron breakup at high and intermediate energy are considered. Theoretical predictions for new polarization observables of the d p elastic backward scattering are given [ru

  5. Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region Eγ = 1.1 - 2.3 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zachariou, Nicholas [George Washington Univ., Washington, DC (United States)

    2012-05-20

    Deuteron photodisintegration is a benchmark process for the investigation of the role of quarks and gluons in nuclei. Existing theoretical models of this process describe the available cross sections with the same degree of success. Therefore, spin-dependent observables are crucial for a better understanding of the underlying dynamical mechanisms. However, data on the induced polarization (P y), along with the polarization transfers (Cx and Cz ), have been shown to be insensitive to differences between theoretical models. On the other hand, the beam-spin asymmetry {Sigma} is predicted to have a large sensitivity and is expected to help in identifying the energy at which the transition from the hadronic to the quark-gluon picture of the deuteron takes place. Here, the work done to determine the experimental values of the beam-spin asymmetry in deuteron photodisintegration for photon energies between 1.1 - 2.3 GeV is presented. The data were taken with the CLAS at the Thomas Jefferson National Accelerator Facility during the g13 experiment. Photons with linear polarization of ~80% were produced using the coherent bremsstrahlung facility in Hall B. The work done by the author to calibrate a specific detector system, select deuteron photodisintegration events, study the degree of photon polarization, and finally determine the azimuthal asymmetry and any systematic uncertainties associate with it, is comprehensively explained. This work shows that the collected data provide the kinematic coverage and statistics to test the available QCD-based models. The results of this study show that the available theoretical models in their current state do not adequately predict the azimuthal asymmetry in the energy region 1.1 - 2.3 GeV.

  6. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  7. Photodisintegration of aligned deuterons at astrophysical energies using linearly polarized photons

    International Nuclear Information System (INIS)

    Shilpashree, S.P.; Sirsi, Swarnamala; Ramachandran, G.

    2013-01-01

    Following the model independent approach to deuteron photodisintegration with linearly polarized γ-rays, we show that the measurements of the tensor analyzing powers on aligned deuterons along with the differential cross-section involve five different linear combinations of the isovector E1 ν j ; j = 0, 1, 2 amplitudes interfering with the isoscalar M1 s and E2 s amplitudes. This is of current interest in view of the recent experimental finding [M. A. Blackston et al., Phys. Rev. C78 (2008) 034003] that the three E1 ν j amplitudes are distinct and also the reported experimental observation [B. D. Sawatzky, Ph.D. thesis, University of Virginia (2005)] on the front–back (polar angle) asymmetry in the differential cross-section. (author)

  8. Influence of the incident particle energy on the fission product mass distribution

    International Nuclear Information System (INIS)

    Gomes, I. C.

    1998-01-01

    For 238 U targets and the five elements considered here, the best yields of neutron-rich isotopes are obtained from neutrons in the 2-20 MeV range. High energy beams of neutrons, protons, and deuterons have comparable integral yields per element to neutrons below 20 MeV, but the distributions are peaked at lower neutron numbers. This is presumably due to a higher neutron multiplicity in the pre-equilibrium stage and/or the compound nucleus/fission stage. For 235 U targets there are high yields predicted especially for thermal neutrons, and also for the fast neutron spectrum. For the high energy neutrons, protons, and deuterons 235 U has no advantage over 238 U. A detailed comparison of the relative advantages of 235 U and 238 U for radioactive beam applications is beyond the scope of this study and will be addressed in the future. The present work is the first step of a more detailed analysis of various possible one- and two-step target geometry calculated with the LAHET code system. It is intended to serve as a guide in choosing geometry and beams for future studies. It is desirable to extend this study to higher beam energies, e.g. 200 to 1000 MeV, but at this time there is very little data against which to benchmark the analysis. Additional data would also permit comparisons of isotope yields beyond the tails of the distributions presented here, to even more neutron rich isotopes

  9. Multinucleon effects in muon capture on 3He at high energy transfer

    International Nuclear Information System (INIS)

    Kuhn, S.E.; Cummings, W.J.; Dodge, G.E.; Hanna, S.S.; King, B.H.; Shin, Y.M.; Congleton, J.G.; Helmer, R.; Schubank, R.B.; Stevenson, N.R.; Wienands, U.; Lee, Y.K.; Mason, G.R.; King, B.E.; Chung, K.S.; Lee, J.M.; Rosenzweig, D.P.

    1994-01-01

    Energy spectra of both protons and deuterons emitted following the capture of negative muons by 3 He nuclei have been measured for energies above 15 MeV. A limited number of proton-neutron pairs emitted in coincidence were also observed. A simple plane wave impulse approximation (PWIA) model calculation yields fair agreement with the measured proton energy spectra, but underpredicts the measured rate of deuteron production above our energy threshold by a large factor. A more sophisticated PWIA calculation for the two-body breakup channel, based on a realistic three-body wave function for the initial state, is closer to the deuteron data at moderate energies, but still is significantly lower near the kinematic end point. The proton-neutron coincidence data also point to the presence of significant strength involving more than one nucleon in the capture process at high energy transfer. These results indicate that additional terms in the capture matrix element beyond the impulse approximation contribution may be required to explain the experimental data. Specifically, the inclusion of nucleon-nucleon correlations in the initial or final state and meson exchange current contributions could bring calculations into better agreement with our data. A fully microscopic calculation would thus open the possibility for a quantitative test of multinucleon effects in the weak interaction

  10. Use of 13.5-MeV neutrons for protein determination in grain crops

    International Nuclear Information System (INIS)

    Barit, I.A.; Kuz'min, L.E.; Makarov, S.A.; Vozhzhov, V.F.; Pronman, I.M.

    1989-01-01

    One of the main objectives of the Food Supply Program, i.e., that of improving the quality of crop production, is bound up intimately with the intensification of work on the selection and genetics of high-protein grain and legume crops. High-protein stains cannot be isolated without the proper analytical service for mass testing of the nitrogen content in the grain, which is one of the main elements of protein. The neutron-activation method of nitrogen determination is based on the use of the 14 N(n, 2n) 13 N nuclear reaction (E th = 11.3 MeV) with an average neutron energy of ∼14.5 MeV. In this work the authors consider a new variant of the neutron-activation method of determining nitrogen in grain and legume crops. The method is based on the use of monoenergetic neutrons with an energy of ∼13.5 MeV, generated in relatively thin titanium-tritium targets by a mass-separated deuteron beam from neutron generators operating at 150-300 kV, in order to eliminate the interference of the reaction 39 K(n, 2n) 38 K (E thr = 13.4 MeV). The present method has been used to determine the protein content (mass %) in different grains and legumes at the All-Union Selection-Genetic Institute of the Lenin Academy of Agricultural Sciences. The correctness of the analysis was checked by comparison with the data of chemical analysis. The discrepancy between the results of the two methods does not exceed 3%, which is within the limits of the error of measurement of Δ and K s.r

  11. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    International Nuclear Information System (INIS)

    Oz, H.; Gurler, O.; Gultekin, A.; Yalcin, S.; Gundogdu, O.

    2006-01-01

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  12. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Oz, H.; Gurler, O.; Gultekin, A. [Uludag University, Bursa (Turkmenistan); Yalcin, S. [Kastamonu University, Kastamonu (Turkmenistan); Gundogdu, O. [University of Surrey, Guildford (United Kingdom)

    2006-07-15

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  13. Neutron Energy Spectra from Neutron Induced Fission of 235U at 0.95 MeV and of 238U at 1.35 and 2.02 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Almen, E; Holmqvist, B; Wiedling, T

    1971-09-15

    The shapes of fission neutron spectra are of interest for power reactor calculations. Recently it has been suggested that the neutron induced fission spectrum of 235U may be harder than was earlier assumed. For this reason measurements of the neutron spectra of some fissile isotopes are in progress at our laboratory. This report will present results from studies of the energy spectra of the neutrons emitted in the neutron induced fission of 235U and 238U. The measurements were performed at an incident neutron energy of 0.95 MeV for 235U and at energies of 1.35 and 2.02 MeV for 238U using time-of-flight techniques. The time-of-flight spectra were only analysed at energies higher than those of the incident neutrons and up to about 10 MeV. Corrections for neutron attenuation in the uranium samples were calculated using a Monte Carlo program. The corrected fission neutron spectra were fitted to Maxwellian temperature distributions. For 235U a temperature of 1.27 +- 0.01 MeV gives the best fit to the experimental data and for 238U the corresponding values are 1.29 +- 0.03 MeV at 1.35 MeV and 1.29 +- 0.02 MeV at 2.02 MeV

  14. The Hilbert-Schmidt method for nucleon-deuteron scattering

    International Nuclear Information System (INIS)

    Moeller, K.; Narodetskii, I.M.

    1984-01-01

    The Hilbert-Schmidt technique is used for computing the divergent multiple-scattering series for scattering of nucleons by deuterons at energies above the deuteron breakup. We have found that for each partial amplitude a series of s-channel resonances diverges because of the logarithmic singularities which reflect the t-channel singularities of the total amplitude. However, the convergence of the Hilbert-Schmidt series may be improved by iterating the Faddeev equations thereby extracting the most strong logarithmic singularities. We show that the series for the amplitudes with the first two iteration subtracted converges rapidly. Our final results are in excellent agreement with exact results obtained by a direct matrix technique. (orig.)

  15. Preparation of 3-7 MeV neutron source and preliminary results of activation cross section measurement

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, T.; Masuda, T.; Tsurita, Y.; Hashimoto, A.; Miyajima, N. [Department of Nuclear Engineering, Nagoya University, Nagoya, Aichi (Japan); Sakane, H.; Shibata, M.; Yamamoto, H.; Kawade, K.

    1999-03-01

    A d-D gas target producing monoenergetic neutrons has been constructed for measurement of activation cross sections in the energy region of 3 to 7 MeV at Van de Graaff accelerator of Nagoya University. Neutron spectra and neutron fluxes were measured as a function of the incident deuteron energy. Preliminary results of activation cross sections were obtained for reactions {sup 27}Al(n, p){sup 27}Mg, {sup 27}Al(n, {alpha}){sup 24}Na, {sup 47}Ti(n, p){sup 47}Sc, {sup 56}Fe(n, p){sup 56}Mn, {sup 58}Ni(n, p){sup 58}Co and {sup 64}Zn(n, p){sup 64}Cu. The results are compared with the evaluated values of JENDL-3.2. A well-type HPGe detector was used for highly efficient detection. (author)

  16. Systematic study of three-nucleon force effects in the cross section of the deuteron-proton breakup at 130 MeV

    International Nuclear Information System (INIS)

    St. Kistryn; E. Stephan; A. Biegun; K. Bodek; A. Deltuva; E. Epelbaum; K. Ermisch; W. Gloeckle; J. Golak; N. Kalantar-Nayestanaki; H. Kamada; M. Kis; B. Klos; A. Kozela; J. Kuros-Zolnierczuk; M. Mahjour-Shafiei; U.-G. Meissner; A. Micherdzinska; A. Nogga; P. U. Sauer; R. Skibinski; R. Sworst; H. Witala; J. Zejma; W. Zipper

    2005-01-01

    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV are presented for 72 kinematically complete configurations. The data cover a large region of the available phase space, divided into a systematic grid of kinematical variables. They are compared with theoretical predictions, in which the full dynamics of the three-nucleon (3N) system is obtained in three different ways: realistic nucleon-nucleon (NN) potentials are combined with model 3N forces (3NF's) or with an effective 3NF resulting from explicit treatment of the Delta-isobar excitation. Alternatively, the chiral perturbation theory approach is used at the next-to-next-to-leading order with all relevant NN and 3N contributions taken into account. The generated dynamics is then applied to calculate cross-section values by rigorous solution of the 3N Faddeev equations. The comparison of the calculated cross sections with the experimental data shows a clear preference for the predictions in which the 3NF's are included. The majority of the experimental data points is well reproduced by the theoretical predictions. The remaining discrepancies are investigated by inspecting cross sections integrated over certain kinematical variables. The procedure of global comparisons leads to establishing regularities in disagreements between the experimental data and the theoretically predicted values of the cross sections. They indicate deficiencies still present in the assumed models of the 3N system dynamics

  17. Measurement of activation cross-section of long-lived products in deuteron induced nuclear reactions on palladium in the 30-50MeV energy range.

    Science.gov (United States)

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2017-10-01

    Excitation functions were measured in the 31-49.2MeV energy range for the nat Pd(d,xn) 111,110m,106m,105,104g,103 Ag, nat Pd(d,x) 111m,109,101,100 Pd, nat Pd(d,x), 105,102m,102g,101m,101g,100,99m,99g Rh and nat Pd(d,x) 103,97 Ru nuclear reactions by using the stacked foil irradiation technique. The experimental results are compared with our previous results and with the theoretical predictions calculated with the ALICE-D, EMPIRE-D and TALYS (TENDL libraries) codes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hilbert-Schmidt expansion for the nucleon-deuteron scattering amplitude

    International Nuclear Information System (INIS)

    Moeller, K.; Narodetskii, I.M.

    1983-01-01

    The Hilbert-Schmidt method is used to sum the divergent iterative series for the partial amplitudes of nucleon-deuteron scattering in the energy region above the deuteron breakup threshold. It is observed that the Hilbert-Schmidt series for the partial amplitudes themselves diverges, which is due to the closeness of the logarithmic singularities. But if the first iterations in the series for multiple scattering are subtracted from the amplitude, the Hilbert-Schmidt series for the remainder converges rapidly. The final answer obtained in the present paper is in excellent agreement with the results obtained in exact calculations

  19. Gamma-delayed deuteron emission of the 6Li(0+;T=1) halo state

    International Nuclear Information System (INIS)

    Tursunov, E.M.; Descouvemont, P.; Baye, D.

    2007-01-01

    M1 transitions from the 6 Li(0 + ;T=1) state at 3.563 MeV to the 6 Li(1 + ) ground state and to the α+d continuum are studied in a three-body model. The bound states are described as an α+n+p system in hyperspherical coordinates on a Lagrange mesh. The ground-state magnetic moment and the gamma width of the 6 Li(0 + ) resonance are well reproduced. The halo-like structure of the 6 Li(0 + ) resonance is confirmed and is probed by the M1 transition probability to the α+d continuum. The spectrum is sensitive to the description of the α+d phase shifts. The corresponding gamma width is around 1.0 meV, with optimal potentials. Charge symmetry is analyzed through a comparison with the β-delayed deuteron spectrum of 6 He. In 6 He, a nearly perfect cancellation effect between short-range and halo contributions was found. A similar analysis for the 6 Li(0 + ;T=1)γ decay is performed; it shows that charge-symmetry breaking at large distances, due to the different binding energies and to different charges, reduces this effect. The present branching ratio Γ γ (0 + →α+d)/Γ γ (0 + →1 + )∼1.3x10 -4 should be observable with current experimental facilities.

  20. Light ion source for proton/deuteron production at CEA Saclay for the Spiral2 project

    Energy Technology Data Exchange (ETDEWEB)

    Tuske, O.; Adroit, G.; Delferriere, O.; Denis, J-F.; Gauthier, Y.; Girardot, P.; Gobin, R.; Harrault, F.; Guiho, P.; Sauce, Y.; Uriot, D.; Vacher, T.; Van Hille, C. [CEA/Saclay, DSM/IRFU/SACM, F- 91191-Gif/Yvette (France); Graehling, P.; Hosselet, J.; Maazouzi, C. [IPHC, Institut Pluridisciplinaire Hubert Curien, Strasbourg (France)

    2012-02-15

    The production of rare radioactive ion beam (RIB) far from the valley of stability is one of the final purposes of the Spiral2 facility in Caen. The RIB will be produced by impinging a deuteron beam onto a carbon sample to produce a high neutron flux, which will interact with a uranium target. The primary deuteron beam is produced by an ion source based on ECR plasma generation. The deuteron source and the low energy beam transport (LEBT) has been assembled and tested at CEA Saclay. Diagnostics from other laboratories were implemented on the LEBT in order to characterize the deuteron beam produced and compare it to the initial simulations. The ion source has been based on a SILHI-type source, which has demonstrated good performances in pulsed and continuous mode, and also a very good reliability on long term operation. The 5 mA of deuteron beam required at the RFQ entrance is extracted from the plasma source at the energy of 40 kV. After a brief description of the experimental set-up, this article reports on the first beam characterization experiments.

  1. High Accuracy, High Energy He-Erd Analysis of H,C, and T

    International Nuclear Information System (INIS)

    Browning, James F.; Langley, Robert A.; Doyle, Barney L.; Banks, James C.; Wampler, William R.

    1999-01-01

    A new analysis technique using high-energy helium ions for the simultaneous elastic recoil detection of all three hydrogen isotopes in metal hydride systems extending to depths of several microm's is presented. Analysis shows that it is possible to separate each hydrogen isotope in a heavy matrix such as erbium to depths of 5 microm using incident 11.48MeV 4 He 2 ions with a detection system composed of a range foil and ΔE-E telescope detector. Newly measured cross sections for the elastic recoil scattering of 4 He 2 ions from protons and deuterons are presented in the energy range 10 to 11.75 MeV for the laboratory recoil angle of 30degree

  2. Cross section ratio and angular distributions of the reaction p + d → 3He + η at 48.8 MeV and 59.8 MeV excess energy

    International Nuclear Information System (INIS)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Hoeistad, B.; Johansson, T.; Marciniewski, P.; Redmer, C.F.; Wolke, M.; Zlomanczuk, J.; Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P.; Bardan, W.; Ciepal, I.; Czerwinski, E.; Hodana, M.; Jany, A.; Jany, B.R.; Jarczyk, L.; Kamys, B.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Ozerianska, I.; Podkopal, P.; Rudy, Z.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J.; Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Pricking, A.; Skorodko, T.; Wagner, G.J.; Bergmann, F.S.; Demmich, K.; Goslawski, P.; Huesken, N.; Khoukaz, A.; Passfeld, A.; Taeschner, A.; Berlowski, M.; Stepaniak, J.; Bhatt, H.; Lalwani, K.; Varma, R.; Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Stroeher, H.; Wurm, P.; Zurek, M.; Coderre, D.; Ritman, J.; Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P.; Eyrich, W.; Hauenstein, F.; Krapp, M.; Zink, A.; Fedorets, P.; Foehl, K.; Goswami, A.; Grigoryev, K.; Kirillov, D.A.; Piskunov, N.M.; Klos, B.; Stephan, E.; Weglorz, W.; Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A.; Kupsc, A.; Pszczel, D.; Mikirtychiants, M.; Pyszniak, A.; Roy, A.; Sawant, S.; Serdyuk, V.; Sopov, V.; Yamamoto, A.; Yurev, L.; Zabierowski, J.

    2014-01-01

    We present new data for angular distributions and on the cross section ratio of the p+d → 3 He + η reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Juelich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval. (orig.)

  3. LYSO crystal testing for an EDM polarimeter

    Science.gov (United States)

    Müller, F.; Keshelashvili, I.; Mchedlishvili, D.; JEDI Collaboration

    2017-11-01

    Four detector modules, built from three different LYSO crystals and two different types of light sensors (PMTs and SiPM arrays), have been tested with a deuteron beam from 100 MeV - 270 MeV at the COSY accelerator facility for the srEDM project at the Forschungszentrum Jülich in Germany. The detector modules were arranged in a cluster hand mounted on a positioning table. The deuteron beam was targeted at the center of each individual crystal for data analysis. The signals were digitized using a 14 bit, 250 MS/s flash ADC. Further, the energy spectra were calibrated using the known beam energies from the accelerator. From the calibrated spectra, the energy resolution was calculated. A resolution of 3% for the low energies and down to 1% for the high energy of 270 MeV was achieved. A deuteron reconstruction efficiency of almost 100% for low energies and around 70% for high energies was achieved. The SiPM light sensor showed a very good performance and will be used for the next generation of detector modules.

  4. The pion-deuteron forward elastic amplitude in the non-overlapping potentials model

    International Nuclear Information System (INIS)

    Butterworth, D.S.

    1978-01-01

    The pion-deuteron forward elastic amplitude has been calculated in the non-overlapping potentials model, which enables a description of off-shell propagation effects in terms of on-shell amplitudes. Calculations include spin, isospin and deuteron D-state probability effects. Two energy regions are considered. First the pion-nucleon P 33 resonance region, where, using a formalism developed by Agassi and Gal (Ann. Phys.; 75:56 (1973) and 94:184 (1975)), the full multiple-scattering series is summed in an approximation of P 33 wave dominance of the higher-order scatterings. Second, for the subsequent highest-energy region, the double-scattering term only is calculated. Fermi smearing effects are included in both cases. Predictions for the total cross section, its dependence on the deuteron alignment and the real part of the forward elastic amplitude are compared with those of Glauber theory, and data where available. Convergence of the multiple-scattering series is also discussed. (author)

  5. Model wave functions for the deuteron

    International Nuclear Information System (INIS)

    Certov, A.; Mathelitsch, L.; Moravcsik, M.J.

    1987-01-01

    Model wave functions are constructed for the deuteron to facilitate the unambiguous exploration of dependencies on the percentage D state and on the small-, medium-, and large-distance parts of the deuteron wave function. The wave functions are constrained by those deuteron properties which are accurately known experimentally, and are in an analytic form which is easily integrable in expressions usually encountered in the use of such wave functions

  6. Scientific opportunities at SARAF with a liquid lithium jet target neutron source

    Science.gov (United States)

    Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.

  7. Measurement of 230Pa and 186Re Production Cross Sections Induced by Deuterons at Arronax Facility

    Science.gov (United States)

    Duchemin, Charlotte; Guertin, Arnaud; Metivier, Vincent; Haddad, Ferid; Michel, Nathalie

    2014-02-01

    A dedicated program has been launched on production of innovative radionuclides for PET imaging and for β- and α targeted radiotherapy using proton or α particles at the ARRONAX cyclotron. Since the accelerator is also able to deliver deuteron beams up to 35 MeV, we have reconsidered the possibility of using them to produce medical isotopes. Two isotopes dedicated to targeted therapy have been considered: 226Th, a decay product of 230Pa, and 186Re. The production cross sections of 230Pa and 186Re, as well as those of the contaminants created during the irradiation, have been determined by the stacked-foil technique using deuteron beams. Experimental values have been quantified using a referenced cross section. The measured cross sections have been used to determine expected production yields and compared with the calculated values obtained using the Talys code with default parameters.

  8. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  9. Calculation of the energy spectrum of atmospheric gamma-rays between 1 and 1000 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    The energy spectrum of atmospheric gamma-rays at 4 g/cm 2 has been calculated for cut-off rigidities of 4.5, 10 and 16 GV. The considered processes for the production of these gamma-rays were the π 0 decay plus the bremsstrahlung from primary, secondary like splash and re-entrant albedo electrons. The calculations indicated that the spectrum could be fitted to a power law in energy, with the exponential index varying from 1.1 in the energy range 1 - 10 MeV, to 1.4 in the energy range 10 - 200 MeV and 1.8 in the energy range 200 - 1000 MeV. These results are discussed [pt

  10. Measurement of Ay(θ) for n+208Pb from 6 to 10 MeV and the neutron-nucleus interaction over the energy range from bound states at -17 MeV up to scattering at 40 MeV

    International Nuclear Information System (INIS)

    Roberts, M.L.; Felsher, P.D.; Weisel, G.J.; Chen, Z.; Howell, C.R.; Tornow, W.; Walter, R.L.; Horen, D.J.

    1991-01-01

    High-accuracy measurements of A y (θ) data for elastic scattering and inelastic scattering to the first excited state for n+ 208 Pb have been performed at 6, 7, 8, 9, and 10 MeV. In addition, σ(θ) was measured at 8 MeV. These data provide an important subset for the growing database for the n+ 208 Pb system from bound-state energies to energies above 40 MeV, the limit of the range of interest here. This database has been interpreted via several approaches. First, a conventional Woods-Saxon spherical optical was used to obtain three potential representations for the energy range from 4 to 40 MeV: ''best fits'' at each energy, constant-geometry global fit with linear energy dependences for the potential strengths for the range 4.0--40 MeV, and an extension of the latter model to allow a linear energy dependence on the radii and diffuseness. A preference for a complex spin-orbit interaction was observed in all cases. Second, the dispersion relation was introduced into the spherical optical model to obtain a more ''realistic'' representation. In our approach, the strength and shape of the real potential was modified by calculating the dispersion-relation contributions that originate from the presence of the surface and volume imaginary terms. Two potentials were developed, one based only on the scattering data (from 4.0 to 40 MeV) and another based additionally on single-particle and single-hole information down to a binding energy of 17 MeV. In addition, the σ(θ) and A y (θ) measurements were compared to earlier conventional and dispersion-relation models. One of the latter of these included an l dependence in the absorptive surface term, and we applied this model in the 6- to 10-MeV region to describe all the σ(θ) and the new A y (θ)

  11. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  12. Cross section ratio and angular distributions of the reaction p + d → {sup 3}He + η at 48.8 MeV and 59.8 MeV excess energy

    Energy Technology Data Exchange (ETDEWEB)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Hoeistad, B.; Johansson, T.; Marciniewski, P.; Redmer, C.F.; Wolke, M.; Zlomanczuk, J. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Department of Nuclear Physics, Warsaw (Poland); Bardan, W.; Ciepal, I.; Czerwinski, E.; Hodana, M.; Jany, A.; Jany, B.R.; Jarczyk, L.; Kamys, B.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Ozerianska, I.; Podkopal, P.; Rudy, Z.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J. [Jagiellonian University, Institute of Physics, Krakow (Poland); Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Pricking, A.; Skorodko, T.; Wagner, G.J. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Physikalisches Institut der Universitaet Tuebingen, Kepler Center fuer Astro- und Teilchenphysik, Tuebingen (Germany); Bergmann, F.S.; Demmich, K.; Goslawski, P.; Huesken, N.; Khoukaz, A.; Passfeld, A.; Taeschner, A. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Berlowski, M.; Stepaniak, J. [National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Bhatt, H.; Lalwani, K.; Varma, R. [Indian Institute of Technology Bombay, Department of Physics, Mumbai, Maharashtra (India); Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Stroeher, H.; Wurm, P.; Zurek, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Coderre, D.; Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (Germany); Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P. [Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Zentralinstitut fuer Engineering, Elektronik und Analytik, Juelich (Germany); Eyrich, W.; Hauenstein, F.; Krapp, M.; Zink, A. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Fedorets, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Foehl, K. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Goswami, A. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Indian Institute of Technology Indore, Department of Physics, Indore, Madhya Pradesh (India); Grigoryev, K. [Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); RWTH Aachen, III. Physikalisches Institut B, Physikzentrum, Aachen (Germany); Petersburg Nuclear Physics Institute, High Energy Physics Division, Leningrad district (Russian Federation); Kirillov, D.A.; Piskunov, N.M. [Joint Institute for Nuclear Physics, Veksler and Baldin Laboratory of High Energiy Physics, Moscow region (Russian Federation); Klos, B.; Stephan, E.; Weglorz, W. [University of Silesia, August Chelkowski Institute of Physics, Katowice (Poland); Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A. [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Kupsc, A.; Pszczel, D. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Mikirtychiants, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (DE); Petersburg Nuclear Physics Institute, High Energy Physics Division, Leningrad district (RU); Pyszniak, A. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (SE); Jagiellonian University, Institute of Physics, Krakow (PL); Roy, A. [Indian Institute of Technology Indore, Department of Physics, Indore, Madhya Pradesh (IN); Sawant, S. [Indian Institute of Technology Bombay, Department of Physics, Mumbai, Maharashtra (IN); Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Serdyuk, V. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Joint Institute for Nuclear Physics, Dzhelepov Laboratory of Nuclear Problems, Moscow region (RU); Sopov, V. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (RU); Yamamoto, A. [High Energy Accelerator Research Organization KEK, Tsukuba, Ibaraki (JP); Yurev, L. [Joint Institute for Nuclear Physics, Dzhelepov Laboratory of Nuclear Problems, Moscow region (RU); Zabierowski, J. [National Centre for Nuclear Research, Department of Cosmic Ray Physics, Lodz (PL); Collaboration: WASA-at-COSY Collaboration

    2014-06-15

    We present new data for angular distributions and on the cross section ratio of the p+d → {sup 3}He + η reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Juelich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval. (orig.)

  13. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    International Nuclear Information System (INIS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  14. Cross-section studies of relativistic deuteron reactions obtained by activation method

    CERN Document Server

    Wagner, V; Svoboda, O; Vrzalová, J; Majerle, M; Krása, A; Chudoba, P; Honusek, M; Kugler, A; Adam, J; Baldin, A; Furman, W; Kadykov, M; Khushvaktov, J; Sol-nyskhin, A; Tsoupko-Sitnikov, V; Závorka, L; Tyutyunnikov, S; Vladimirova, N

    2014-01-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the big Quinta uranium target at Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The deuteron beams with energies ranging from 1 GeV up to 8 GeV were produced by JINR Nuclotron. Residual nuclides were identified by the gamma spectrometry. Lack of such experimental cross-section values prevents the usage of copper foils from beam integral monitoring.

  15. Neutron-photon multigroup cross sections for neutron energies up to 400 MeV: HILO86R

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Nakane, Yoshihiro; Hasegawa, Akira; Tanaka, Shun-ichi

    1993-02-01

    A macroscopic multigroup cross section library of 66 neutron and 22 photon groups for neutron energies up to 400 MeV: HILO86R is prepared for 10 typical shielding materials; water, concrete, iron, air, graphite, polyethylene, heavy concrete, lead, aluminum and soil. The library is a revision of the DLC-119/HILO86, in which only the cross sections below 19.6 MeV have been exchanged with a group cross section processed from the JENDL-3 microscopic cross section library. In the HILO86R library, self shielding factors are used to produce effective cross sections for neutrons less than 19.6 MeV considering rather coarse energy meshes. Energy spectra and dose attenuation in water, concrete and iron have been compared among the HILO, HILO86 and HILO86R libraries for different energy neutron sources. Significant discrepancy has been observed in the energy spectra less than a couple of MeV energy in iron among the libraries, resulting large difference in the dose attenuation. The difference was attributed to the effect of self-shielding factor, namely to the difference between infinite dilution and effective cross sections. Even for 400 MeV neutron source the influence of the self-shielding factor is significant, nevertheless only the cross sections below 19.6 MeV are exchanged. (author)

  16. Characterization of Deuteron-Deuteron Neutron Generators

    Science.gov (United States)

    Waltz, Cory Scott

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil

  17. Anomalous deuteron to hydrogen ratio in naturally occuring fission reactions and the possibility of deuteron disintegration

    International Nuclear Information System (INIS)

    Shaheen, M.; Ragheb, M.

    1992-01-01

    A hypothesis is presented for explaining the experimentally determined anomalous D/H ratio observed in the samples from the naturally occuring fission reaction in the Oklo phenomenon. No other explanation has been given, to the best knowledge, for the large difference between the measured D/H ratio in the Oklo samples and the expected values in a fission neutron spectrum. A multicomponent system consisting of hydrogen, deuterium, tritium and helium nuclei is considered. An analytical solution is derived and solved using as boundary conditions the experimentally determined value of the D/H ratio. The solution of the rate equations for hydrogen and deuteron concentrations, assuming a pure fission process without a deuteron sink term, yields a D/H ratio of 445 ppm for a reaction in which the fluence of neutrons is 10 21 n/cm 2 . This exceeds the experimentally observed value of 127 ppm, and the naturally occuring value of 150 ppm. Solving the same rate equations accounting for a deuterium sink term using a hypothesis of deuteron disintegration, and the experimentally observed value of 127 ppm yields a deuteron disintegration constant of 7.47*10 -14 s -1 . Deuteron disintegration would provide a neutron source, in addition to the fission neutrons, driving a subcritical chain reaction over an extended period of time. Relationship of the presented hypothesis to the Vlasov theory of an annihilation meteorite impact explosion explaining the experimentally observed anomalous 235 U/ 238 U ratio, and to the suggestion of deuteron disintegration as a possible explanation of some observations of deuterium dissociation in palladium and titanium electrodes is discussed. The tritium andhelium-3 rate equations are further solved under the deuteron disintegration hypothesis and the relationship of the present work to the work by JONES et al. is discussed. (author) 16 refs.; 7 figs.; 2 tabs

  18. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  19. Fluid dynamics characteristics of IFMIF Li-jet under deuteron load

    International Nuclear Information System (INIS)

    Fuertes, F.M.; Casal, N.; Barbero, R.; Garcia, A.; Branas, B.; Riccardi, B.

    2006-01-01

    IFMIF is an accelerator-based neutron source with the purpose of testing and fully qualify fusion candidate materials. Two 40 MeV deuteron beams, 125 mA current each, strike a target of liquid lithium flowing over a concave back-plate. The deuteron-lithium stripping reactions produce an intense high energy neutron flux which simulates the fusion reactor irradiation. To remove the beam power deposited on it (up to 10 MW), the lithium jet must have a speed around 20 m/s, which may give rise to flow instabilities. However, a stable liquid free surface is a very critical requirement of the target system, otherwise the neutron field could be altered. Therefore, the possible occurrences that could affect the hydrodynamical stability of the lithium jet are being examined in the frame of EFDA Technology Workprogramme. This paper summarizes the studies of the fluid dynamics characteristics of the lithium jet under the deuteron heat load, based on applications of the CFX 5.7 code, a commercial Navier-Stokes equations solver with specific modelling of turbulence, like the classical k - ε among others. Significant effort has been dedicated to develop an optimized and reliable numerical mesh, able to illustrate the behaviour of the lithium free surface and other issues like heat transport along the stream and to the back-plate, and lithium vaporization. First activities were dedicated to explore the effects on the results of a three-dimensional unstructured numerical mesh covering the area from the nozzle upstream the target to the exit of the target region. Subsequently, a more effective approach to this issue has been undertaken by developing a fine two-dimensional mesh along the longitudinal flow direction, with refined areas in the free surface and close to the wall regions. The numerical convergence criteria have been found to be strongly sensitive with respect to small modifications of the adopted unstructured mesh. Owing to the uncertainties associated with modelling

  20. Characterisation of a compton suppressed clover detector for high energy gamma rays (5 MeV ≤ E ≤ 11 MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Goswami, A.; Ray, S.; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.; Sinha, Mandira; Ray, Maitreyee

    2004-01-01

    The Clover detectors in their add back mode have been seen to be excellent tools for detecting high energy gamma rays (≥ 2 MeV). Recently studies were carried out on the characteristics of a Compton suppressed Clover germanium detector up to 5 MeV using a radioactive 66 Ga (T 1/2 =9.41 h) source for the first time

  1. About using of ion accelerators in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Chigrinov, S; Kevitskaya, A; Petlevskij, V; Rutkovskaya, C [Belarussian Academy of Sciences, Minsk-Sosny (Belarus). Radiation Physics and Chemistry Inst.

    1997-12-31

    The prospects of using deuteron and alpha particle beams in Accelerator Driven Molten Salt Breeder for simultaneous production of uranium 233 and of thermal power are discussed, disregarding the problems of reactor construction and design. It is shown that by replacing the proton beam by beams of deuterons or alpha particles the energy cost of one neutron can be reduced from 11.5 MeV down to 9.3-10 MeV. The average energy of neutrons increases from 17.7 MeV to 24.3 MeV or 28.2 MeV, respectively. Thus, the gain in the number of fissile nuclei and in thermal power production of at least 1.2 - 1.3 times can be expected in ACMB. (J.U.). 1 tab., 3 figs., 4 refs.

  2. Development of dose assessment method for high-energy neutrons using intelligent neutron monitor

    International Nuclear Information System (INIS)

    Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Matsufuji, N.; Sato, S.; Takada, M.

    2006-01-01

    Light output of liquid organic scintillator NE213 has been measured for proton, deuteron, triton, 3 He nucleus and alpha particle. A thick graphite target was bombarded with 400-MeV/u C ions to the produce charged particles. Time-of-flight method was adopted to determine the kinetic energy of the charged particles. Light output for proton was also measured using mono-energy beams of 100 and 160 MeV. The experimental results gave a new database of light output. (author)

  3. Ionisation of L subshells of heavy atoms by deuteron collision

    International Nuclear Information System (INIS)

    Sokhi, R.S.; Crumpton, D.; Trautmann, D.

    1989-01-01

    L i subshell ionisation cross sections for 1.2-3.0 MeV deuteron impact on thin targets of W, Au, Pb and Bi have been measured experimentally. Measurements were made with the Birmingham University's 3MV Dynamitron accelerator and the cross sections were deduced from the emitted L X-rays. These cross sections and their ratios have been compared graphically with the ECPSSR and RHSCA models. The ECPSSR model underestimates the measured L 2 subshell cross sections but shows very good agreement with the L 3 subshell values. The RHSCA theory in general exhibits good agreement with the measured cross sections for the L 1 and L 2 subshells but overestimates the L 3 cross sections by up to 60%. (orig.)

  4. Beam energy variability and other system considerations for a deuteron linac materials research neutron source

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1989-01-01

    There are many overall system aspects and tradeoffs that must be considered in the design of a deuteron linac based neutron source for materials research, in order to obtain a facility with the best possible response to the user's needs, efficient and reliable operation and maintenance, at the optimum construction and operating cost. These considerations should be included in the facility design from the earliest conceptual stages, and rechecked at each stage to insure consistency and balance. Some of system requirements, particularly that of beam energy variability and its implications, are outlined in this talk. (author)

  5. Proceedings of the 3. International Symposium. Dubna. Deuteron-95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Proceedings of the 3. International Symposium. Dubna. Deuteron-95 (July 4-7, 1995) are presented. The main subjects of 50 presented reports are the following ones: the deuteron structure at small distances in hadron-deuteron interactions with polarized and nonpolarized beams and targets; the deuterons structure in lD and {gamma}D interactions; study of the NN interactions; the program of experimental investigations of the deuteron structure at JINR and other centers; prospects of the investigations with polarized {sup 3}He beams.

  6. Deuteron electromagnetic form factors in the transitional region between nucleon-meson and quark-gluon pictures

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.

    1994-01-01

    Experimental observables of the elastic ed-scattering in the region of intermediate energies are discussed. We offer the numerical analysis of the available experimental data, which reproduces the results of the calculations with popular NN-potentials at low energies (Q 2 2 ), but, at the same time, provides the right asymptotic behavior of the deuteron e.m. form factors, following from the quark counting rules, at high energies (Q 2 >>1(GeV/c) 2 ). The numerical analysis developed allows to make certain estimations of the characteristic energy scale, at what the consideration of quark-gluon degrees of freedom in the deuteron becomes essential. (author). 18 refs., 2 tab., 10 figs

  7. Measurements of Relative Biological Effectiveness and Oxygen Enhancement Ratio of Fast Neutrons of Different Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barendsen, G. W.; Broerse, J. J. [Radiobiological Institute of the Health Research Council TNO, Rijswijk (ZH) (Netherlands)

    1968-03-15

    Impairment of the reproductive capacity of cultured cells of human kidney origin (T-l{sub g} cells) has been measured by the Puck cloning technique. From the dose-survival curves obtained in these experiments by irradiation of cells in equilibrium with air and nitrogen, respectively, the relative biological effectiveness (RBE) and the oxygen enhancement ratios (OER) were determined for different beams of fast neutrons. Monoenergetic neutrons of 3 and 15 MeV energy, fission spectrum fast neutrons (mean energy about 1.5 MeV), neutrons produced by bombarding Be with cyclotron-accelerated 16 MeV deuterons (mean energy about 6 MeV) and neutrons produced by bombarding Be with cyclotron- accelerated 20 MeV {sup 3}He ions (mean energy about 10 MeV) have been compared with 250 kVp X-rays as a standard reference. The RBE for 50% cell survival varies from 4.7 for fission-spectrum fast neutrons to 2.7 for 15 MeV monoenergetic neutrons. The OER is not strongly dependent on the neutron energy for the various beams investigated. For the neutrons with the highest and lowest energies used OER values of 1.6 {+-} 0.2 and 1.5 {+-} 0.1 were measured. An interpretation of these data on the basis of the shapes of the LET spectra is proposed and an approximate verification of this hypothesis is provided from measurements in which secondary particle equilibrium was either provided for or deliberately eliminated. (author)

  8. Search for the p{sub 1/2{sup -}} resonance in {sup 7}He with the {sup 7}Li(d,{sup 2}He) reaction and measurement of the deuteron electrodisintegration under 180 at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Ryezayeva, N.

    2006-07-15

    The present work contains two parts, both devoted to the investigation of light nuclei. In the first part of the thesis the structure of the exotic {sup 7}He nucleus is studied. The disappearance of the usual magic numbers in extremely neutron-rich nuclei implies a considerable modification in the spin-orbit interaction. Recent experiments yield contradictory results about a possible existence of the p{sub 1/2{sup -}} spin-orbit partner of the {sup 7}He ground state with a dominant p{sub 3/2{sup -}} single-particle character. In order to clarify this question a study of the {sup 7}Li(d,{sup 2}He){sup 7}He reaction has been performed using a 171 MeV deuteron beam provided by the cyclotron at Kernfysisch Versneller Insituut (KVI) in Groningen. The experiment was carried out in April 2003. The setup at KVI offers a resolution {delta}E {approx} 150 keV (FWHM) in the measured spectra, better than the line width of the ground state of {sup 7}He. The unbound {sup 2}He system was identified by detecting coincidences between two protons with small relative energy. The data were taken over the angular range {theta}{sub cm}=0 -11.3 . A possible resonance at an excitation energy E{sub x}=(1.45{sub -0.5}{sup +0.7}) MeV with a width {gamma}=(2.0{sub -1.1}{sup +1.0}) MeV is suggested by a decomposition of the spectrum using known resonances, the breakup behaviour of {sup 7}He and quasifree charge-exchange contributions, taking into account the cluster structure of {sup 7}Li. Gamow-Teller strengths for transitions to the lowest states in {sup 7}He are in remarkable agreement with results from ab initio Quantum Monte Carlo calculations. The neutron spectroscopic factor S{sub n}=0.64{+-}0.09 of the {sup 7}He ground state ({sup 7}He={sup 6}He x n) is extracted by an R-matrix analysis. In the second part of the thesis the deuteron breakup has been studied in the {sup 2}H(e,e{sup '}) reaction at {theta}=180 . The present measurements were performed in March and April 2006 at the

  9. Role of deuteron NN*-components in processes pd → dp and pd → dN*

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1996-01-01

    The contribution of nucleon isobar N * exchanges to backward elastic pd-scattering is calculated on the basis of deuteron 6q-model and found to be negligible in comparison with neutron exchange. It is shown that the pole amplitude of neutron pickup from the deuteron nN * -component is favoured in the reaction pd → dN * for backward going N * (1440) and N* (1710) at kinetic energy of incident proton of 1.5-2 GeV whereas the triangular diagram with subprocess pp → dπ + related to the usual pn-component of deuteron considerably suppressed. 19 refs., 3 figs

  10. Final-state interaction in processes of deuteron breaking

    International Nuclear Information System (INIS)

    Thome Filho, Z.D.

    1974-12-01

    Interaction between particles in the final state of reactions can strongly affect the experimental angular distributions, as in the scattering processes with the breaking of the deuteron target, where the final state interaction is responsible for the disappearance of the differential cross section in the front direction. It is then necessary to include the contribution of the final state interaction to small angles of incoherent processes particle-deuteron. In this work line, an analysis is made of the process πd → πpn for different values of the incident energy. The data obtained are compared with existing experimental data. The hypothesis is also considered of the nucleon which collides with the incident particle being outside the mass layer. An analytical extension of the resonant amplitude πN outwards the mass layer is also used

  11. Particle-gamma coincidence measurements in 12C+12C and 12C+Pb collisions at 2.1 GeV/nucleon incident energy

    International Nuclear Information System (INIS)

    Roche, G.; Koontz, R.; Mulera, T.; Pugh, H.G.; Schroeder, L.S.; Hallman, T.; Madansky, L.; Carroll, J.; Chang, C.C.; Kirk, P.N.; Krebs, G.; Vicente, J.

    1985-01-01

    A particle-gamma coincidence experiment has been performed with a 2.1 GeV per nucleon 12 C beam from the Bevalac. Data were taken with C and Pb targets. The γ-ray spectra are almost independent of the energy or the kind of charged particles detected in coincidence, mainly protons and deuterons. These γ-ray spectra are interpreted as resulting from π 0 decay, and are consistent with known π 0 production rates. A search for a possible decay of singly-charged anomalons into a gamma and a deuteron (or unbound proton-neutron system) has been done by studying the γp and γd invariant mass distributions. The upper limits for such a process are found to be 2 to 20% of the deuteron production rate, for anomalon masses for 200 to 400 MeV above the deuteron mass, with an anomalon mean lifetime of up to 10 -9 s, depending on which kind of decay process is considered. (orig.)

  12. Isochronous variable energy cyclotron of IPEN-CNEN/SP (Brazil)

    International Nuclear Information System (INIS)

    Lucki, G.; Zanchetta, A.A.; Gouveia, S.; Klein, H.

    1984-01-01

    The cyclotron CV-28 installed at the Radiation Damage Division of IPEN-CNEN/SP is a multi-particle radiation source where protons, deuterons, 3 He ions and alpha particles can be accelerated with variable energy up to 24, 14, 36 and 28 MeV, respectively. The cyclotron is a versatile machine that can be applied in research and development of : radioisotope production - materials science - nuclear physics - activation analysis and others. First internal beam with 24 MeV protons has been obtained in April 23, 1981. First irradiation of Cu sample, at the external beam (beam current 1.5 μA), with 28 MeV alpha particles was performed in December 29, 1983. Main characteristics of the cyclotron are given together with a description of peripheral systems and experimental capability. Presently the accelerator is being optimized for cpontinuous running. (Author) [pt

  13. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  14. Deuteron and anti-deuteron production in CERN experiment NA44

    International Nuclear Information System (INIS)

    Simon-Gillo, J.

    1995-01-01

    The abundances of light nuclei probe the later stages of the evolution of a system formed in a relativistic heavy-ion collision. After the system has cooled and expanded, nucleons in close proximity and moving with small relative momenta coalesce to form nuclei. Light nuclei production enables the study of several topics, including the mechanism of composite particle production, freeze-out temperature, size of the interaction region, and entropy of the system. NA44 is the only relativistic heavy-ion experiment to have both deuteron and anti-deuteron results in both pA and AA collisions and the first CERN experiment to study the physics topics addressed by d and bar d production

  15. Polarization Measurements in elastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Garcon, M.

    1989-01-01

    The deuteron electromagnetic form factors, are recalled. The experiment, recently performed in the Bates accelerator (M.I.T.), is described. The aim of the experiment is the measurement of the tensor polarization of the backscattered deuteron, in the elastic electron-deuteron scattering, up to q = 4.6 f/m. Different experimental methods, concerning the determination of this observable, are compared. Several improvement possibilities in this field are suggested

  16. Composite nucleon approach to the deuteron problem

    International Nuclear Information System (INIS)

    Agarwal, B.K.

    1975-01-01

    A composite model is suggested for the nucleons by assuming a long-range strong gluon force between a diquark boson B and a quark A. In the proton, A is trapped inside B in an oscillator potential; and in the neutron, A is on the surface of B in a hydrogenlike state. Nucleon form factors are obtained in agreement with experiments. The model contains a mechanism for a large effective mass of the quark A. When B is identified with π and A with μ, one can fix the gluon charge value and obtain the magnetic moments of the proton and neutron. The (μπ) atomic model for the nucleon can be used to construct the deuteron on a hydrogen molecule model. It leads to values for the binding energy, electric quadrupole moment, and form factors of the deuteron that are in agreement with experiments

  17. Coherent pi0 Photoproduction on the Deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Meekins, David G. [College of William and Mary, Williamsburg, VA (United States)

    2004-11-01

    The differential scattering cross section for the process gamma d → d pi0 was measured, as part of experiment E89-012 at Thomas Jefferson National Accelerator Facility. The experiment was performed in Hall C during the Spring of 1996 as the commissioning experiment for the Hall C cryogenic target. The High Momentum Spectrometer was used to detect the recoil deuteron and no effort was made to detect the pi0 or its decay photons. The differential cross section was measured at a number of incident photon energies between 0.8 GeV and 4.0 GeV for the center-of-mass angles of 90 degrees and 136 degrees. The data were found to disagree with both the constituent counting rule and reduced nuclear amplitude predictions. These are the first data at large deuteron center-of-mass angles for photon energies larger than 1.6 GeV.

  18. Limits on production of anomalous secondaries in deuteron-deuteron collisions at 7.9 GeV/c

    International Nuclear Information System (INIS)

    Clarke, R.L.; Hardy, J.E.; Hemingway, R.J.

    1983-01-01

    A search has been made in bubble-chamber film of 7.9-GeV/c deuteron-deuteron interactions for anomalous behavior of the collision fragments. No positive effect is seen in the distribution of secondary mean free paths, although stringent limits are placed on the primary production rate

  19. Cross-sections for formation of {sup 89}Zr{sup m} through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction over neutron energy range 13.73 MeV to 14.77 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Attar, F.M.D. [Department of Physics, University of Pune, Pune-411007 (India); Mandal, R. [Department of Physics, University of Pune, Pune-411007 (India); Indian Institute of Technology, Kharagpur (India); Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Saxena, A. [Nuclear Physics Division, BARC, Mumbai (India); Ashokkumar,; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2008-04-01

    The cross-sections for formation of metastable state of {sup 89}Zr ({sup 89}Zr{sup m}, 0.588 MeV, 4.16 m) through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction induced by 13.73 MeV to 14.77 MeV neutrons were measured for the first time and also theoretically estimated using Empire-II and Talys programs. At 13.73 MeV neutron energy, the {sup 89}Zr nuclei can be excited to metastable state, {sup 89}Zr{sup m}, when the first and the second emitted neutrons have energies lower than the most probable energy {approx}0.64 MeV. The probability of exciting {sup 89}Zr nuclei to energy levels higher than 0.588 MeV and therefore of populating the metastable state through decay process increases with increasing neutron energy. The measured cross-sections vary from 41{+-}3mb to 221{+-}15mb over neutron energies 13.73 MeV to 14.77 MeV, and are in agreement with the cross-sections estimated using Empire-II code. The formation of {sup 89}Zr{sup m} is favoured when the first and the second reaction neutrons are emitted with the most probable energies rather than lower energy, except for 13.73 MeV neutrons.

  20. DAPHNE: A large-acceptance tracking detector for the study of photoreactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Audit, G.; Bloch, A.; Hose, N. d' ; Isbert, V.; Martin, J.; Powers, R.; Sundermann, D.; Tamas, G.; Wallace, P.A.; Bechade, J.; Carton, P.H.; Conat, S.; Foucaud, D.; Goldsticker, M. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique Nucleaire); Altieri, S.; Pedroni, P. (Istituto Nazionale di Fisica Nucleare, Pavia (Italy)); Braghieri, A.; Fossati, F.; Pinelli, T. (Istituto Nazionale di Fisica Nucleare, Pavia (Italy) Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica)

    1991-03-15

    A large-acceptance (94% of 4{pi} sr) hadron detector capable of handling multiparticle final states is described. The track reconstruction capability, energy resolution, particle identification capability and neutral-particle detection efficiency of the detector are discussed and the results of tests shown. Tests have been performed both with cosmic rays and in a realistic experimental situation using a 500 MeV photon beam impinging on hydrogen and deuteron targets. (orig.).

  1. Theoretical calculation of n + {sup 59}Co reaction in energy region up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    A set of neutron optical potential parameters for {sup 59}Co in energy region of 2{approx}100 MeV was obtained based on concerned experimental data. Various cross sections of n + {sup 59}Co reactions were calculated and predicted. The calculated results show that the activation products {sup 58,57}Co, {sup 59}Fe and {sup 56}Mn are main neutron monitor reaction products for n + {sup 59}Co reaction in energy range up to 100 MeV. {sup 54}Mn production reaction can be a promising neutron monitor reaction in the energy region from 30 to 100 MeV. (6 figs.).

  2. Relativistic impulse approximation and deuteron spin structure

    International Nuclear Information System (INIS)

    Tokarev, M.V.

    1992-01-01

    The fragmentation processes were considered of tensor- and vector-polarized deuterons to protons in the framework of the covariant approach in the light cone variables on the basis of the relativistic deuteron wave function with one nucleon on-mass shell. The experimental verification of predicted dependences of T 20 and K is of interest for the research of the momentum and spin distributions of high momentum deuteron constituents. 21 refs.; 6 figs

  3. Fragmentation of deuterons on nucleons in the infinite momentum frame

    International Nuclear Information System (INIS)

    Dolidze, M.G.; Lykasov, G.I.

    1989-01-01

    A method for the analysis of interactions between fast deuterons and nucleons is developed taking into account both the relativistic effects in the deuteron and the mechanism of their interaction. The inclusive proton spectra and the polarization characteristics are investigated on the example of the fragmentation type processes of deuterons on nucleons. A strong sensitivity of the deuteron polarization tensor component T 20 both to the reaction mechanisms and to the relativistic structure of the deuteron is shown. The probable existence of the 6q-state in the deuteron in those reactions is discussed. 24 refs.; 3 figs

  4. Electromagnetic structure of the deuteron

    International Nuclear Information System (INIS)

    Gilman, R.; Gross, Franz

    2001-01-01

    Recent measurements of the deuteron electromagnetic structure functions A, B, and T 20 extracted from high energy elastic ed scattering, and the cross sections and asymmetries extracted from high energy photodisintegration gamma + d to n + p, are reviewed and compared to theory. The theoretical calculations range from nonrelativistic and relativistic models using the traditional meson and baryon degrees of freedom, to effective field theories, to models based on the underlying quark and gluon degrees of freedom of QCD, including nonperturbative quark cluster models and perturbative QCD. We review what has been learned from these experiments, and discuss why elastic ed scattering and photodisintegration seem to require very different theoretical approaches, even though they are closely related experimentally

  5. On the possibility of deuteron disintegration in electrochemically compressed D+ in a palladium cathode

    International Nuclear Information System (INIS)

    Ragheb, M.; Miley, G.H.

    1989-01-01

    The possibility of deuteron disintegration due to polarization in the coulomb field of a target nucleus according to an Oppenheimer-Phillips process is discussed within the context of electrochemically compressed D + in a palladium cathode. This reaction is possible between deuterons and palladium isotopes, as well as between the deuterons themselves. In the last case, the equivalent of the proton branch of the deuterium-deuterium fusion reaction occurs in preference to the neutron branch. The process provides a possible explanation for the observed energy release, tritium production, and neutron suppression in the Fleischmann and Pons experiment. If such a process can be experimentally verified, analogous processes leading to the disintegration of the 9 Be nucleus may be achievable

  6. Evaluation of the D(γ,n) reaction cross section

    International Nuclear Information System (INIS)

    Murata, T.

    1994-01-01

    Evaluation was performed for the cross section of photo-disintegration of Deuteron in the photon energy range between the threshold energy of the reaction (2.224 MeV) and pion production threshold (140 MeV). Angular distributions of the emitted neutrons were also evaluated. (author)

  7. Fission-fragment angular distributions and total kinetic energies for 235U(n,f) from .18 to 8.83 MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.; Budtz-Joergensen, C.

    1982-01-01

    A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the 235 U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment

  8. Evaluated Nuclear Data Library for Transport Calculations at Energies up to 150 MeV

    International Nuclear Information System (INIS)

    Korovin, Yu.A.; Konobeyev, A.Yu.; Pilnov, G.B.; Stankovskiy, A.Yu.

    2005-01-01

    A new evaluated nuclear data library has been created. The library consists of two sub-libraries for neutron and proton incident particles. The first version of neutron sub-library has been completed and described in the present paper. The library contains nuclear data for transport, heating, and shielding applications for 242 nuclides ranging in atomic number from 8 to 82 in the energy region of primary neutrons from 10-5 eV to 150 MeV. Data below 20 MeV are taken mainly from ENDF/B-VI (Revision 8) and for some nuclides, from the JENDL-3.3 and JEFF-3.0 libraries. The evaluation of emitted particle energy and angular distributions at the energies above 20 MeV was performed with the help of the ALICE/ASH code and the analysis of available experimental data. The total cross sections, elastic cross sections, and elastic scattering angular distributions were calculated with the help of the coupled channel model. The results of the calculation were adjusted to the data from ENDF/B-VI, JENDL-3.3m or JEFF-3.0 at the neutron energy equal to 20 MeV. The library is written in ENDF/B-VI format using the MF=3/MT=5 and MF=6/MT=5 representations

  9. A polarized deuteron source and its application to nuclear physics (1963); Une source de deutons polarises et son application en physique nucleaire (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Beurtey, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    Principles and realization of a polarized deuteron source fitted to the 22 MeV Saclay cyclotron are described. Various vector and tensor polarizations are obtained using radio-frequency transitions between Zeeman sub-levels of the deuterium atoms. Such polarized deuterons enable us the study of spin-dependent interactions in (d, d) scattering and (d, p) reactions. The asymmetries obtained by {sup 40}Ca (d, d) {sup 40}Ca, {sup 12}C (d, p) {sup 13}C and {sup 28}Si (d, p) {sup 29}Si are presented. (author) [French] L'auteur decrit les principes et la realisation d'une source de deutons polarises adaptee au cyclotron de 22 MeV de Saclay. Des polarisations vectorielles et tensorielles variees sont obtenues par des transitions entre sous-niveaux Zeeman de l'atome de deuterium. Les deutons ainsi polarises permettent l'etude des interactions dependant du spin dans les diffusions (d, d) et reactions (d, p). Les asymetries obtenues par la diffusion {sup 40}Ca (d, d) {sup 40}Ca et les reactions {sup 12}C (d, p) {sup 13}C et {sup 28}Si (d, p) {sup 29}Si sont presentees. (auteur)

  10. Oxygen enhancement ratio as a function of neutron energy with mammalian cells in culture

    International Nuclear Information System (INIS)

    Rini, F.J.; Hall, E.J.; Marino, S.A.

    1979-01-01

    Chinese hamster cells (V79) in culture under oxic and hypoxic conditions were irradiated with several neutron beams spanning a wide energy range to determine the oxygen enhancement ratio (OER). Eight essentially monoenergetic neutron beams, ranging from 0.22 to 13.6 MeV and a 0.11-MeV neutron spectrum, were produced at the Radiological Research Accelerator Facility (RARAF) at Brookhaven National Laboratory. Additional experiments were performed at the Naval Research Laboratory, Washington, DC, where neutrons are produced for radiotherapy by bombarding a beryllium target with 35-MeV deuterons. This beam has a broad energy spectrum with a mean energy of about 15 MeV. A maximum OER of about 1.9 was observed for 13.6-MeV neutrons. The OER values of the monoenergetic neutrons decreased with energy, plateaued at about 1.45 for the energy range from 0.22 to 2.0 MeV and increased slightly to about 1.55 for lower energy spectrum. In the light of microdosimetric data obtained for the neutron beams at RARAF, the OER appears to depend primarily on the intermediate-LET secondaries produced by neutrons in tissue, such as protons, while in contrast high LET-secondaries, such as α-particles and recoil ions, play a minor role. The studies using the NRL neutron beam resulted in a lower OER of about 1.67 as compared to the monoenergetic 13.6-MeV beam. This is a consequence of the fact that more of the dose is deposited by intermediate LET secondaries for the NRL neutron beam

  11. TRANGE: computer code to calculate the energy beam degradation in target stack

    International Nuclear Information System (INIS)

    Bellido, Luis F.

    1995-07-01

    A computer code to calculate the projectile energy degradation along a target stack was developed for an IBM or compatible personal microcomputer. A comparison of protons and deuterons bombarding uranium and aluminium targets was made. The results showed that the data obtained with TRANGE were in agreement with other computers code such as TRIM, EDP and also using Williamsom and Janni range and stopping power tables. TRANGE can be used for any charged particle ion, for energies between 1 to 100 MeV, in metal foils and solid compounds targets. (author). 8 refs., 2 tabs

  12. Transition metal analysis. A comparison between ICP-AES and deuteron activation

    International Nuclear Information System (INIS)

    Pillay, A.E.; Williams, J.R.; Hassan, S.M.; Al-Hamdi, A.; El Mardi, M.O.

    2002-01-01

    The analytical capabilities of ICP-AES (ICP) and deuteron activation (associated with prompt gamma-rays and delayed X-rays) for the determination of certain transition metals, were investigated. The sensitivities of the three methods are given, and the general applicability of each technique is evaluated. In the case of ICP, numerical data were obtained from aqueous solutions containing digested plant material. These experimental results were assessed against minimum detectable limits attained in relevant solid matrices that were subjected to prompt gamma-ray and delayed X-ray spectrometry using 5 MeV 2 H + ions. The analytically useful lines originated mainly from (d,p) and (d,n) reactions. The potential of the three techniques for routine analysis is discussed and detailed methodologies are presented. (author)

  13. Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV

    DEFF Research Database (Denmark)

    Miller, A.; Kovacs, A.; Kuntz, F.

    2002-01-01

    Polystyrene (PS) calorimeters developed at Riso National Laboratory for use below 4 MeV have been modified due to irradiation technology requirements concerning both design principles and dimensions. The temperature-time relationship after irradiation was measured, and two ways of dose measurement...... the average and the surface dose and to prove the applicability of the new low energy calorimeter for calibration purposes at 1.5 and 2 MeV electron energy. Alanine dosimeters of 2 mm thickness were used to calibrate the calorimeters and their use for nominal dose measurements was demonstrated in a series...... of intercomparisons. The use as routine dosimeters at electron accelerators operating in the energy range of 1.5-4 MeV was also demonstrated. (C) 2002 Elsevier Science Ltd. All rights reserved....

  14. Evaluation of cross sections and calculation of kerma factors for neutrons up to 80 MeV on {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Watanabe, Y. [Kyushu Univ., Fukuoka (Japan); Chiba, S.; Fukahori, T.

    1997-03-01

    We have evaluated the cross sections for neutrons with incident energies from 20 to 80 MeV on {sup 12}C for the JENDL high-energy file. The total cross sections were determined by a generalized least-squares method with available experimental data. The cross sections of elastic and inelastic scattering to the first 2{sup +} were evaluated with the theoretical calculations. The optical potentials necessary for these calculations were derived using a microscopic approach by Jeukenne-Lejeune-Mahaux. For the evaluation of double differential emission cross sections (DDXs), we have developed a code system SCINFUL/DDX in which total 35 reactions including the 3-body simultaneous breakup process (n+{sup 12}C {yields} n+{alpha}+{sup 8}Be) can be taken into consideration in terms of a Monte Carlo method, and have calculated the DDXs of all light-emissions (A{<=}4) and heavier reaction products. The results for protons, deuterons, and alphas showed overall good agreement with experimental data. The code is also applicable for calculations of total and partial kerma factors. Total kerma factors calculated for energies from 20 to 80 MeV were compared with the measurements and the other latest evaluations from the viewpoints of medical application and nuclear heating estimation. (author)

  15. Particle-gamma coincidence measurements in /sup 12/C+/sup 12/C and /sup 12/C+Pb collisions at 2. 1 GeV/nucleon incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Roche, G.; Koontz, R.; Mulera, T.; Pugh, H.G.; Schroeder, L.S. (Lawrence Berkeley Lab., CA (USA)); Hallman, T.; Madansky, L. (Johns Hopkins Univ., Baltimore, MD (USA)); Carroll, J. (California Univ., Los Angeles (USA)); Chang, C.C. (Maryland Univ., College Park (USA)); Kirk, P.N.

    1985-06-24

    A particle-gamma coincidence experiment has been performed with a 2.1 GeV per nucleon /sup 12/C beam from the Bevalac. Data were taken with C and Pb targets. The ..gamma..-ray spectra are almost independent of the energy or the kind of charged particles detected in coincidence, mainly protons and deuterons. These ..gamma..-ray spectra are interpreted as resulting from ..pi../sup 0/ decay, and are consistent with known ..pi../sup 0/ production rates. A search for a possible decay of singly-charged anomalons into a gamma and a deuteron (or unbound proton-neutron system) has been done by studying the ..gamma..p and ..gamma..d invariant mass distributions. The upper limits for such a process are found to be 2 to 20% of the deuteron production rate, for anomalon masses for 200 to 400 MeV above the deuteron mass, with an anomalon mean lifetime of up to 10/sup -9/ s, depending on which kind of decay process is considered.

  16. Preparation of carrier-free radioactive thallium for medical use

    International Nuclear Information System (INIS)

    Comar, D.; Crouzel, C.

    1975-01-01

    Radioactive thallium for medical use have been prepared by proton or deuteron bombardment of HgO or metallic Hg. The carrier free thallium is separated from mercury by ether extraction of the chloride. The yield of production for the isotopes 198m to 202 is given for different energies of protons and deuterons. The irradiated substances consisted of red mercury oxide containing less than 1 ppm iron, and high-purity (99.999%) metallic mercury. The red mercury oxide targets were irradiated with 15 MeV deuterons (M.R.C. cyclotron, Hammersmith Hospital-London and Saclay Van de Graff tandem) or 50 and 14 MeV protons (Grenoble Nuclear Physics Institute cyclotron and S.H.F.J. compact cyclotrons). The metallic mercury target was irradiated with 14, 16 and 20 MeV protons (S.H.F.J. compact cyclotron and Saclay variable-energy cyclotron). The particle current never exceeded 10 μA for irradiation times between 15 minutes and a few hours. (F.Gy.)

  17. Photoresponse of {sup 94}Mo at energies up to 8.6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Romig, Christopher; Fritzsche, M.; Lindenberg, K.; Pietralla, N.; Savran, D.; Sonnabend, K. [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Rusev, G.; Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory, Duke University, Durham, NC (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2009-07-01

    The isotope {sup 94}Mo was investigated in nuclear resonance fluorescence experiments at the High Intensity Photon Setup (HIPS) at the S-DALINAC in Darmstadt using bremsstrahlung photons with energies of 7.65 and 8.6 MeV, respectively, and at the High Intensity {gamma}-ray Source (HI{gamma}S) at Duke University using photons from Laser Compton backscattering. Thereby over 60 excitations were found which could be assigned to {sup 94}Mo due to the highly enriched sample. In the energy region between 5.4 and 8 MeV many transitions could be classified as dipole transitions and cross sections, angular momentum quantum numbers, half-lifes and transition strengths were determined. At HI{gamma}S the parity quantum numbers of 40 excitations between 5.5 and 7.0 MeV could be determined. The methods and results are presented.

  18. Calibration in photon radiation fields with energies above 3 MeV

    International Nuclear Information System (INIS)

    Bueermann, L.

    1997-01-01

    For determination of the response of dosemeters and dose ratemeters for photon energies above 3 MeV, the PTB uses reference radiation fields generated via the nuclear reactions 12 (p, p' γ) 12 C (4.4 MeV) and 19 F(p,αγ) 16 O (6-7 MeV). As a maximum, kerma rates of 1 mGy/h released in air can be achieved at 1 m distance from the target. The air kerma in the reference fields is determined with two different methods, i.e. by spectrometry using a Ge detector, and by ionometry using a graphite cavity ionisation chamber. The total uncertainty of the value determined for the air kerma (collision radiation) in the reference fields is 50% at a confidence level of 68.3%. (orig./CB) [de

  19. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Sinha, Mandira; Ray, Maitreyi; Goswami, A.; Roy, Subinit; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.

    2006-01-01

    Gamma ray spectra of two (p,γ) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV

  20. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Sinha, Mandira [Gurudas College, Narkeldanga, Kolkata-700054 (India); Ray, Maitreyi [Behala College, Parnashree, Kolkata-700060 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Roy, Subinit [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Basu, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Majumder, H. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2006-01-01

    Gamma ray spectra of two (p,{gamma}) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV.

  1. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  2. Program in medium energy nuclear physics research. Technical progress report, 1 December 1978-30 November 1979

    International Nuclear Information System (INIS)

    Willard, H.B.; Bevington, P.R.; Winkelmann, E.; Leskovec, R.A.

    1979-01-01

    Experimental results are rported on: the polarization analyzing power proton-deuteron elastic scattering at 796 MeV, and for the pp → dπ + reaction at 643 and 796 MeV; the spin-correlation parameter for proton-proton scattering at 643 and 796 MeV; pion production in proton-proton collisions at 800 MeV. A list of publications in included

  3. Inter-comparison of High Energy Files (neutron-induced, from 20 to 150 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Recent new applications using accelerator-driven system require well-tested nuclear data when modeling the interaction of neutrons above 20 MeV. This work is aimed to review evaluation methods applied in currently available neutron high energy files above 20 to 150 MeV, to inter-compare their evaluated cross sections on some important isotopes, and to analyze resulting discrepancies. Through out these, integrities and consistencies of the high energy files are checked, applicability of physics models and evaluation methodologies are assessed, and some directions are derived to improve and expand current JENDL High Energy File. (author)

  4. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  5. Analyses of Alpha-Alpha Elastic Scattering Data in the Energy Range 140 - 280 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shehadeh, Zuhair F. [Taif University, Taif (Saudi Arabia)

    2017-01-15

    The differential and the reaction cross-sections for 4He-4He elastic scattering data have been nicely obtained at four energies ranging from 140 MeV to 280 MeV (lab system), namely, 140, 160, 198 and 280 MeV, by using a new optical potential with a short-range repulsive core. The treatment has been handled relativistically as υ/c > 0.25 for the two lower energies and υ/c > 0.31 for the two higher ones. In addition to explaining the elastic angular distributions, the adopted potentials accounted for the structure that may exist at angles close to 90◦ , especially for the 198 and the 280-MeV incident energies. No renormalization has been used, and all our potential parameters are new. The necessity of including a short-range repulsive potential term in our real nuclear potential part has been demonstrated. Our results contribute to solving a long-standing problem concerning the nature of the alpha-alpha potential. This is very beneficial in explaining unknown alpha-nucleus and nucleus-nucleus relativistic reactions by using the cluster formalism.

  6. First observation of the splittings of the E1 p-wave amplitudes in low energy deuteron photodisintegration and its implications for the Gerasimov-Drell-Hearn Sum Rule integrand

    International Nuclear Information System (INIS)

    Blackston, M. A.; Ahmed, M. A.; Perdue, B. A.; Weller, H. R.; Bewer, B.; Pywell, R. E.; Wurtz, W. A.; Igarashi, R.; Kucuker, S.; Norum, B.; Wang, K.; Li, J.; Mikhailov, S. F.; Popov, V. G.; Wu, Y. K.; Sawatzky, B. D.

    2008-01-01

    Angular distributions of the cross section and linear analyzing powers have been measured for the d(γ-vector,n)p reaction at the High Intensity γ-ray Source with linearly polarized beams of 14 and 16 MeV. The outgoing neutrons were detected using the Blowfish detector array, consisting of 88 liquid scintillator detectors with large solid angle coverage. The amplitudes of the reduced transition matrix elements were extracted by means of fits to the data and good agreement was found with a recent potential model calculation of the splittings of the triplet p-wave amplitudes. The extracted amplitudes are used to reconstruct the Gerasimov-Drell-Hearn sum rule integrand for the deuteron and are compared to theory

  7. Few-body Studies at the High Intensity γ-Ray Source (HIγS

    Directory of Open Access Journals (Sweden)

    Weller H.R.

    2010-04-01

    Full Text Available The HIγS facility is making it possible to perform studies of few body systems at a new level of accuracy and precision. A study of the photodisintegration of the deuteron using 100% linearly polarized beams at 14 and 16 MeV has determined the splittings of the three p-wave amplitudes involved in this process for the first time. These results show that the relativistic contributions, which when included in the theory lead to a positive value of the GDH integrand above 8 MeV, are valid. The near threshold data on the photodisintegration of the deuteron provide results which are used to extract the forward spin-polarizability of the deuteron for the first time. The experimental value is in good agreement with a recent effective field theory calculation. Measurements of the absolute differential cross section of the 3He(γ,npp reaction have been completed at three γ-ray energies. The measurements were made at incident γ-ray energies of 12.8, 13.5, and 14.7 MeV. It has been found that the shape of the outgoing neutron energy distribution at a given scattering angle at 12.8 MeV disagrees with current theoretical predictions. At these energies, the shape is consistent with a phase-space-only shape. At the higher energies, the measurements agree with theory.

  8. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV

    Science.gov (United States)

    Krauss, A.; Kapsch, R.-P.

    2018-02-01

    For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  9. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV.

    Science.gov (United States)

    Krauss, A; Kapsch, R-P

    2018-02-06

    For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  10. (Anti-)deuteron formation and neutron-proton correlation

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1995-01-01

    The neutron-proton correlation, deuteron and antideuteron formation in nuclear collisions are all due to the final state interactions. The neutron-proton correlation function and the (anti-)deuteron formation rate are calculated in parallel. These quantities are expressed through the space-time parameters of the particle source created in nucleus-nucleus collisions. In the case of baryon reach sources, the nucleons are emitted from the whole source volume while the antinucleons dominantly from the surface due to the antinucleon absorption in the baryon environment. Thus, the shape of the antinucleon source is different from the nucleon one, and consequently the antideuteron formation rate is substantially smaller than that one of deuterons. The correlation function satisfies the sum rule, which, in particular, connects the number of correlated neutron-proton pairs with the number of produced deuterons. (author). 18 refs., 4 figs

  11. Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-05-01

    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300-318 GeV using an integrated luminosity of 120 pb -1 . The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3 T /M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements. (orig.)

  12. Study of the deuteron emission in the $\\beta$-decay of $^{6}$He

    CERN Multimedia

    Karny, M; Tengblad, O; Riisager, K; Perkowski, J; Garcia borge, M J; Raabe, R; Kowalska, M; Fynbo, H O U; Perea martinez, A; Ter-akopian, G; Huyse, M L

    The main goal of the present proposal is to measure the continuous spectrum of deuterons emitted in the $\\beta$-decay of $^{6}$He. In particular, we want to focus on the low energy part of the spectrum, below 400 keV, which could not be accessed by all previous experiments. For the decay spectroscopy the Warsaw Optical Time Projection Chamber (OTPC) will be used. The bunches of $^{6}$He ions produced by REX-ISOLDE facility will be implanted into the active volume of the OTPC, where the rare events of deuteron emission will be recorded, practically background free.

  13. Neutron scattering on natural iron at incident energies between 9.4 and 15.2 MeV

    International Nuclear Information System (INIS)

    Schmidt, D.; Mannhart, W.; Klein, H.; Nolte, R.

    1994-11-01

    Neutrons were scattered on a sample of natural iron at 12 incident energies in the range between 9.4 MeV and 15.2 MeV. Differential cross sections of the elastic scattering (natural iron) and of the inelastic scattering to the first excited level of 56 Fe (Q=-0.847 MeV) were determined for angles between 12.5 deg and 160 deg with total uncertainties between of 3% and 10%. Legendre polynomial least-squares fits resulted in integrated cross sections with uncertainties of 2% (elastic data) and 7% (inelastic data). The cross sections obtained in this work were compared with data from the literature. Inelastic scattering cross sections were determined within the scope of a pseudolevel analysis up to excitation energies of nearly 5.5 MeV. At higher excitation energies the scattering spectrum is contaminated by scattered breakup neutrons from the D+d source used hampering an analysis of the data. (orig.) [de

  14. Measurement of the energy spectrum with proportional counters with spherical cathodes between 20 keV and 2.5 MeV with the propagation of 14 MeV neutrons in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Schneider-Kuehnle, P.

    1974-01-01

    This work deals with the measurement of the energy spectrum of a 14 MeV neutron source in liquid nitrogen and liquid air in the energy region of 20 keV to 2.5 MeV as a function of the distance from the source. The measured results together with those of a scintispectrometer which measures the energies between 2.5 MeV and 14 MeV, are to serve as experimentally-supported input data for shielding calculations and are to enable the checking of transport theoretical calculations. (orig./LH) [de

  15. Large-angle quasi-free scattering in the 6Li(p,pd)4He at 670 MeV

    International Nuclear Information System (INIS)

    Albrecht, D.; Csatlos, M.

    1979-01-01

    The 6 Li(p,pd) 4 He reaction was investigated at 670 MeV by a coincidence experiment at large-angle scattering geometry. Energy distributions, cross sections and angular correlations of the reaction products have been measured. Momentum distribution of the recoil nucleus has been determined for transitions leading to residual nucleus in the ground and excited states. Results were analyzed in terms of the simplified distorted wave impulse approximation using the cluster model and three-body wave functions. The observed momentum distribution of the pn pair in the p shell of 6 Li is in agreement with three-body calculations. The spectroscopic factor is larger than predicted by theory. Transitions in the ground and excited states of the α-particle also have the characteristics of quasi-free scattering on deuteron clusters

  16. Three-fold increase of M1 strength in 40Ar at 10 MeV excitation energy

    Science.gov (United States)

    Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Tonchev, Anton

    2017-09-01

    We reexamined the excitation energy region of 40Ar around 9.8 MeV with the goal of determining the known M1 strength located at 9.76 MeV more accurately. The physics motivation was based on the fact that i) the neutrino-nucleus interaction cross section is proportional to the M1 strength of a nucleus, ii) DUNE, the Deep Underground Neutrino Experiment at SURF will be using liquid argon as detector medium, iii) the energy spectrum of supernova neutrinos is peaked at approximately 10 MeV. Mono-energetic and linearly polarized photons of 9.88 MeV were produced via Compton backscattering of 548 nm FEL photons from 543 MeV electrons at the High-Intensity γ-ray Source (HI γS) facility at TUNL. The 1.25 cm diameter photon beam with energy spread of 300 keV (FWHM) interacted with argon gas contained in a high-pressure cell. The cell was viewed with HPGe detectors placed at 90o relative to the incident photon beam in the horizontal and vertical planes to distinguish between E1 and M1 de-excitation γ-rays. Our re-measurement provided an increase in M1 strength by a factor of approximately 3, mostly due to the discovery that the known level in 40Ar at 9.84 MeV is of M1 character and not of E1 character, as previously thought. In addition to the already known M1 state at 9.76 MeV, we observed weaker M1 states at 9.70, 9.81, 9.87, and 9.89 MeV.

  17. Do phase-shift analyses and nucleon-nucleon potential models yield the wrong 3Pj phase shifts at low energies?

    International Nuclear Information System (INIS)

    Tornow, W.; Witala, H.; Kievsky, A.

    1998-01-01

    The 4 P J waves in nucleon-deuteron scattering were analyzed using proton-deuteron and neutron-deuteron data at E N =3 MeV. New sets of nucleon-nucleon 3 P j phase shifts were obtained that may lead to a better understanding of the long-standing A y (θ) puzzle in nucleon-deuteron elastic scattering. However, these sets of 3 P j phase shifts are quite different from the ones determined from both global phase-shift analyses of nucleon-nucleon data and nucleon-nucleon potential models. copyright 1998 The American Physical Society

  18. Investigation of the neutron-proton-interaction in the energy range from 20 to 50 MEV

    International Nuclear Information System (INIS)

    Wilczynski, J.

    1984-07-01

    In the framework of the investigation of the isospin singlet part of the nucleon-nucleon-interaction in the energy range below 100 MeV two experiments were conducted, which were selected by sensitivity calculations. At the Karlsruhe polarized neutron facility POLKA the analyzing powers Asub(y) and Asub(yy) of the elastic n vector-p- and n vector-p vector-scattering were measured in the energy range from 20 to 50 MeV. The results of this epxeriment are compared to older data. In the energy range from 20 to 50 MeV the new data were analyzed together with other selected data of the nucleon-nucleon-system in phase shift analyses. The knowledge of the isospin singlet phase shifts 1 P 1 and 3 D 3 was improved by the new data. (orig./HSI) [de

  19. Progress report: determinations of the neutron-neutron scattering length ann from kinematically incomplete neutron-deuteron breakup data revisited

    International Nuclear Information System (INIS)

    Tornow, W.; Braun, R.T.; Witala, H.

    1996-01-01

    We review published analyses of the final-state-interaction enhancement observed in proton energy distributions obtained from kinematically incomplete neutron-deuteron breakup experiments. We compare the results derived from these analyses for the neutron-neutron scattering length, a nn with our results based on a rigorous treatment of the three-nucleon Faddeev equations in conjunction with the use of realistic nucleon-nucleon potentials. Our values for a nn deviate outside the quoted uncertainties from the ones obtained in the previous analyses where simplified nucleon-nucleon interaction models were employed. In contrast to the previous determinations, the present results for a nn are in clear disagreement with the values for a nn based on π - -deuteron capture experiments. Unless inconsistencies in the experimental neutron-deuteron breakup data at low energies can be resolved and the influence of possible three-nucleon-force effects can be reliably determined, we recommend that one not resort to the kinematically incomplete neutron-deuteron breakup reaction as a tool for determining a quantity as important for nuclear and particle physics as is the neutron-neutron scattering length a nn . (author)

  20. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    International Nuclear Information System (INIS)

    Kniffen, D.A.; Bertsch, D.L.; Palmeira, R.A.R.; Rao, K.R.

    1977-01-01

    Gamma-ray astronomy in the medium energy (10-50 MeV) range can provide unique information with which to study many astrophysical problems. Observations in the 10-50 MeV range provide the cleanest window with which to view the isotropic diffuse component of the radiation and to study the possible cosmological implications of the spectrum. For the study of compact sources, this is the important region between the X-ray sky and the vastly different γ-ray sky seen by SAS-2 and COS-B. To understand the implications of medium energy γ-ray astronomy to the study of the galactic diffuse γ-radiation, the model developed to explain the high energy γ-ray observations of SAS-2 is extended to the medium energy range. This work illustrates the importance of medium energy γ-ray astronomy for studying the electromagnetic component of the galactic cosmic rays. To observe the medium energy component of the intense galactic center γ-ray emission, two balloon flights of a medium energy γ-ray spark chamber telescope were flown in Brazil in 1975. These results indicate the emission is higher than previously thought and above the predictions of the theoretical model

  1. Exact finite range DWBA results for the /sup 12/C(p,d)/sup 11/C reaction at 700 MeV. [Differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Rost, E; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-08

    The differential cross sections for the /sup 12/C(p,d)/sup 11/C(g.s.) reaction at 700 MeV have been calculated in a full finite range DWBA approach. The absolute cross sections agree with the data and are dominated by contributions arising from the deuteron D-state.

  2. Measurements of neutron emission spectra and 7Be production in Li(d, n) and Be(d, n) reactions for 25 and 40 MeV deuterons

    International Nuclear Information System (INIS)

    Hagiwara, Masayuki; Baba, Mamoru; Aoki, Takao; Kawata, Naoki; Hirabayashi, Naoya; Itoga, Toshiro

    2003-01-01

    The neutron spectra in Li(d, n) and Be(d, n) reactions for Ed = 25, 40 MeV were measured from ∼1 MeV to highest energy of secondary neutrons at ten laboratory angles between 0- and 110-deg with the time-of-flight (TOF) method. In addition, the number of 7 Be accumulated in the targets was also measured by counting the γ-rays from 7 Be using a pure Ge detector to obtain 7 Be production cross-section and yields. (author)

  3. Elastic scattering of 7Li + 27Al at several angles in the 7-11 MeV energy range

    International Nuclear Information System (INIS)

    Abriola, D.; Carnelli, P.; Arazi, A.; Figueira, J.M.; Capurro, O.A.; Cardona, M.A.; Fernandez Niello, J.O.; Hojman, D.; Fimiani, L.; Grinberg, P.; Martinez Heimann, D.; Marti, G.V.; Negri, A.E.; Pacheco, A.J.

    2010-01-01

    Elastic cross sections for the 7 Li + 27 Al system were measured at laboratory energies between 7 and 11 MeV in steps of 0.25 MeV, and angles between 135 o and 170 o in steps of 5 o . Excitation functions for the elastic scattering were measured using an array of eight Si surface-barrier detectors whereas a solid-state telescope was used to estimate and subtract background from other reactions. Contamination from α particles arising from the 7 Li breakup process at E lab ≥ 10 MeV makes the use of these energies inadvisable for RBS applications. The present results are compared with previous data obtained at 165 o (E lab ≤ 6 MeV), 140 o and 170 o (E lab ≤ 8 MeV). The experimental data were analyzed in terms of the Optical Model. Two different energy-independent potentials were found. These optical potentials allow an interpolation with physical meaning to other energies and scattering angles. The experimental cross sections will be uploaded to the IBANDL database.

  4. Study of the 76788082Se(d,p)77798183Se reactions using polarized deuterons

    International Nuclear Information System (INIS)

    Montestruque, L.A.

    1978-01-01

    Differential cross sections and vector analyzing powers were measured at an incident deuteron energy of 12.5 MeV for the 76 78 80 82 Se(d,p) 77 79 81 83 Se reactions. The data are compared with the predictions of the DWBA theory to determine the l-value, spin, parity and spectroscopic factor of the resolved states. High resolution measurements were made with a 100 cm broad-range magnetic spectrograph to determine the excitation energies of the states studied, and the possible existence of contaminants in the targets. Definitive spin and parity assignments are made to 16 states in 77 Se, 22 states in 79 Se, 17 states in 81 Se, and 18 states in 83 Se, fifteen of which were previously assigned. In addition, tentative spin assignments were made to one state in 83 Se. The spectrograph measurements allowed the determination of the excitation energies of anumber of additional states in each isotope. Among the 76 states studied in this work, ther are 8 2P/sub 3/2/ states, 4 1F/sub 5/2/ states 6 2P/sub 1/2/ states 4 1G/sub 9/2/ states, 31 2D/sub 5/2/ states, 10 3S/sub 1/2/ states, and 13 2D/sub 3/2 states. A sum-rule analysis was made and the results compared to previous work and to the predictions of the simple pairing theory

  5. Utilization of new 150-MeV neutron and proton evaluations in MCNP

    International Nuclear Information System (INIS)

    Little, R.C.; Frankle, S.C.; Hughes, H.G. III; Prael, R.E.

    1997-01-01

    MCNP trademark and LAHET trademark are two of the codes included in the LARAMIE (Los Alamos Radiation Modeling Interactive Environment) code system. Both MCNP and LAHET are three-dimensional continuous-energy Monte Carlo radiation transport codes. The capabilities of MCNP and LAHET are currently being merged into one code for the Accelerator Production of Tritium (APT) program at Los Alamos National Laboratory. Concurrently, a significant effort is underway to improve the accuracy of the physics in the merged code. In particular, full nuclear-data evaluations (in ENDF6 format) for many materials of importance to APT are being produced for incident neutrons and protons up to an energy of 150-MeV. After processing, cross-section tables based on these new evaluations will be available for use fin the merged code. In order to utilize these new cross-section tables, significant enhancements are required for the merged code. Neutron cross-section tables for MCNP currently specify emission data for neutrons and photons only; the new evaluations also include complete neutron-induced data for protons, deuterons, tritons, and alphas. In addition, no provision in either MCNP or LAHET currently exists for the use of incident charged-particle tables other than for electrons. To accommodate the new neutron-induced data, it was first necessary to expand the format definition of an MCNP neutron cross-section table. The authors have prepared a 150-MeV neutron cross-section library in this expanded format for 15 nuclides. Modifications to MCNP have been implemented so that this expanded neutron library can be utilized

  6. On theory of π-mesons low-energy scattering on the deuterons

    International Nuclear Information System (INIS)

    Zubarev, A.L.; Irgaziev, B.F.; Podkopaev, A.P.; Fridman, A.A.

    1979-01-01

    The pion-deuteron scattering length is calculated using the equations derived by application of Shwinger variational principle to the strongly coupled channel method. The dependence upon the πN-scattering lengths, effective radii and shape of the NN potential is studied. The πN interaction is described by local potentials. The contribution given by closed channels to the πd-scattering length is shown to be of 30 %

  7. Proceedings of the International symposium Dubna Deuteron-93

    International Nuclear Information System (INIS)

    1994-01-01

    Proceedings of international symposium on the deuteron structure problem are given. The results of investigations of hadron-deuteron interactions with polarized and unpolarized beams, lD, γD and NN interactions are discussed

  8. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    Science.gov (United States)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  9. Quarks degrees of freedom and deuteron static moments

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.; Veselov, A.I.

    1985-01-01

    The probability of the six-quark bag part of the deuteron is defined within recently formulated quark compound bag (QCB) model.An upper limit of about 1% for admixture of the confined bag in the deuteron is found for the QCB potential supplied by the long range Paris interaction. The six-quark bag corrections to the static multipole moments of the deuteron are estimated to be < or approximately 1% for μsub(α) and < or approximately 6% for Qsub(d)

  10. Deuteron form factor measurements at low momentum transfers

    Directory of Open Access Journals (Sweden)

    Schlimme B. S.

    2016-01-01

    Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.

  11. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  12. Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-05-15

    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300-318 GeV using an integrated luminosity of 120 pb{sup -1}. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements. (orig.)

  13. Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-03-01

    A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  14. Range-energy relations and stopping power of water, water vapour and tissue equivalent liquid for α particles over the energy range 0.5 to 8 MeV

    International Nuclear Information System (INIS)

    Palmer, R.B.J.; Akhavan-Rezayat, Ahmad

    1978-01-01

    Experimental range-energy relations are presented for alpha particles in water, water vapour and tissue equivalent liquid at energies up to 8 MeV. From these relations differential stopping powers are derived at 0.25 MeV energy intervals. Consideration is given to sources of error in the range-energy measurements and to the uncertainties that these will introduce into the stopping power values. The ratio of the differential stopping power of muscle equivalent liquid to that of water over the energy range 0.5 to 7.5 MeV is discussed in relation to the specific gravity and chemical composition of the muscle equivalent liquid. Theoretical molecular stopping power calculations based upon the Bethe formula are also presented for water. The effect of phase upon the stopping power of water is discussed. The molecular stopping power of water vapour is shown to be significantly higher than that of water for energies below 1.25 MeV and above 2.5 MeV, the ratio of the two stopping powers rising to 1.39 at 0.5 MeV and to 1.13 at 7.0 MeV. Stopping power measurements for other liquids and vapours are compared with the results for water and water vapour and some are observed to have stopping power ratios in the vapour and liquid phases which vary with energy in a similar way to water. It is suggested that there may be several factors contributing to the increased stopping power of liquids. The need for further experimental results on a wider range of liquids is stressed

  15. Light ion beams generation in dense plasma focus

    International Nuclear Information System (INIS)

    Yokoyama, M.; Kitagawa, Y.; Yamada, Y.; Okada, M.; Yamamoto, Y.

    1982-01-01

    The high energy deuterons and protons in a Mather type plasma focus device were measured by nuclear activation techniques. The radioactivity induced in graphite, aluminum and copper targets provided the deuteron intensity, energy spectra and angular dependence. High energy protons were measured by cellulose nitrate particle track detectors. The plasma focus device was operated at 30 kV for a stored energy of 18 kJ at 1.5 Torr D 2 (low pressure mode), and 5 Torr D 2 (high pressure mode). The yield ratio of N-13 and Al-28 showed the mean deuteron energy of 1.55 MeV under low pressure mode and of 1.44 MeV under high pressure mode. The deuteron energy spectra were measured by the stacks of 10 aluminum foils, and consisted of two components as well as the proton energy spectra measured by CN film technique. The angular spread of deuteron beam was within 30 degree under low pressure mode. Under high pressure mode, the distribution showed multi-structure, and two peaks were observed at the angle smaller than 20 degree and at 60 degree. The protons with energy more than 770 keV were directed in the angle of 10 degree. The high energy electron beam was also observed. A three-channel ruby laser holographic interferometry was used to see the spatial and temporal location of the generation of high energy ions. The ion temperature in plasma focus was estimated from D + He 3 mixture gas experiment. (Kato, T.)

  16. Energy dissipation process for 100-MeV protons and the nucleon-nucleon interactions in nuclei

    International Nuclear Information System (INIS)

    Cowley, A.A.; Chang, C.C.; Holmgren, H.D.; Silk, J.D.; Hendrie, D.L.; Koontz, R.W.; Roos, P.G.; Samanta, C.; Wu, J.R.

    1980-01-01

    Coincidence studies of two protons emitted from p+ 58 Ni at 100 MeV have been carried out. The proton spectra in coincidence with scattered protons suffering an average energy loss of 60 MeV are similar to those resulting from 60-MeV incident protons. This suggests that the initial interaction of the incident proton is with a bound nucleon and that one or both of these nucleons are emitted or initiates a cascade leading to more complex states

  17. (Anti-)deuteron production at the LHC with the ALICE-HMPID detector

    International Nuclear Information System (INIS)

    Barile, F.

    2015-01-01

    The high center-of-mass energies delivered by the LHC during the last three years of operation led to accumulate a significant statistics of light (hyper-)nuclei in pp, p-Pb and Pb-Pb collisions. The ALICE apparatus allows for the detection of these rarely produced particles over a wide momentum range thanks to its excellent vertexing, tracking and particle identification capabilities. The last is based on the specific energy loss in the Time Projection Chamber and the velocity measurement with the Time-Of-Flight detector. The Cherenkov technique, exploited by a small acceptance detector (HMPID), has been also recently used for the most central Pb-Pb collisions to extend the identification range of the (anti-)deuteron at intermediate transverse momentum. An overview of the recent results on the (anti-)deuteron production in pp, p-Pb and Pb-Pb collisions measured with ALICE experiment are presented, giving a particular emphasis to the description of the Cherenkov technique.

  18. (Anti-)deuteron production at the LHC with the ALICE-HMPID detector

    CERN Document Server

    Barile, F

    2015-01-01

    The high center-of-mass energies delivered by the LHC during the last three years of operation led to accumulate a significant statistics of light (hyper-)nuclei in pp, p-Pb and Pb-Pb collisions. The ALICE apparatus allows for the detection of these rarely produced particles over a wide momentum range thanks to its excellent vertexing, tracking and particle identification capabilities. The last is based on the specific energy loss in the Time Projection Chamber and the velocity measurement with the Time-Of-Flight detector. The Cherenkov tech- nique, exploited by a small acceptance detector (HMPID), has been also recently used for the most central Pb-Pb collisions to extend the identification range of the (anti-)deuteron at intermediate transverse momentum. An overview of the recent results on the (anti-)deuteron production in pp, p-Pb and Pb-Pb collisions mea- sured with ALICE experiment are presented, giving a particular emphasis to the description of the Cherenkov technique

  19. (γ,2n) reactions in complexe nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Pinheiro Filho, J. de D.

    1976-01-01

    The Monte Carlo Method has been used in the intranuclear cascade model for the calculation of the cross sections of the (γ,2n) reactions in complex nuclei 9 Be, 12 C, 16 O, 59 Co, 103 Rh, 127 I, 197 Au and 209 Bi at intermediate energies (200MeV-1000MeV). The initial photon-interaction via the photomesonic and quasi-deuteron mechanisms have been taken into account. The nuclear model used was a degenerate Fermi gas of nucleons, and the Pauli exclusion principle was considered in all secondary interactions. To improve accuracy in the results of the calculations, 30000 cascades have been followed for each target nucleus at a given incident photon energy. The probabilities of the various (γ,2n) reactions, as well as the correspondent cross section obtained, are summarized in tables and graphs. New data on the cross sections of the 59 Co (γ,2n) and 209 Bi (γ,2n) reactions at photon energies between 300 MeV and 1000MeV are also reported. These measurements were obtained with the Bremsstrahlung beams of the Frascati 1 GeV Electron Synchrotron. A comparison between all existing data in the literature on the (γ,2n) reaction cross sections and the estimates by the Monte Carlo Method, is presented. (Author) [pt

  20. Measurement of {alpha} particle energy loss in biological tissue below 2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy); Bortolussi, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy)], E-mail: silva.bortolussi@pv.infn.it; Bruschi, P.; Portella, C. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy)

    2009-09-01

    The energy loss of {alpha} particles crossing biological tissue at energies between 0.8 and 2.2 MeV has been measured. This energy range is very important for boron neutron capture therapy, based on the {sup 10}B(n,{alpha}){sup 7}Li reaction, which emits {alpha} particles with energies of 1.78 and 1.47 MeV. One of the methods used for the measurement of the boron concentration in tissue is based on the deconvolution of the {alpha} spectra obtained from neutron irradiation of thin (70 {mu}m) tissue samples. For this technique, a knowledge of the behaviour of the energy loss of the particles in the irradiated tissue is of critical importance. In particular, the curve of the residual energy as a function of the distance travelled in the tissue must be known. In this paper, the results of an experiment carried out with an {sup 241}Am source and a series of cryostatic sections of rat-lung tissue are presented. The experimental measurements are compared with the results of Monte Carlo calculations performed with the MCNPX code.

  1. New approximation for Glauber theory on stripping of relativistic deuterons

    International Nuclear Information System (INIS)

    Nissen-Meyer, S.A.

    1978-03-01

    The momentum distribution of forward protons from relativistic collisions of deuterons with nuclei is computed from a Glauber theoretical Ansatz of Bertocchi and Tekou. The outgoing proton-neutron scattering state (disintegrated deuteron) with a plane wave minus the components of this plane wave along the deuteron bound state vector is approximated. With no fitted parameters good agreement is found with data from the reaction d + C 12 → p + X in the region corresponding to nonrelativistic Fermi momenta in the forward direction. At more relativistic Fermi momenta, the model deviates more from the data, which can be due to incorrect choice of the short distance part of the deuteron wave function as well as off-shell effects in the deuteron

  2. The pion in the deuteron

    International Nuclear Information System (INIS)

    Ballot, J.L.; Eiro, A.M.; Robilotta, M.R.

    1988-12-01

    A potential containing the OPEP tail and regularized at the origin by means of three parameters is used to construct several families of deuterons, which are employed in the assessment of the influence of the inner parts of the potential over observables such as Υ m , η and Q. The off-energy shell extrapolation of the results is considered, so as to provide guide-lines for the treatment of other systems such as the triton. We also show that, provided the central potential contains an OPEP tail, the value of η is determined with great precision by just the inner part of the tensor component of the interaction

  3. Neutron data library for transactinides at energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Artisyuk, V.V.; Konobeyev, A.Y. [Obninsk Institute of Nuclear Power Engineering (Russian Federation)

    1995-10-01

    New neutron data library for transactinides is briefly described. The library includes evaluated cross-sections for fission and threshold neutron induced reactions for isotopes of U, Np and Pu at energies 0-100 MeV.

  4. 207,208Pb(n,xnγ) reactions for neutron energies from 3 to 200 MeV

    International Nuclear Information System (INIS)

    Vonach, H.; Pavlik, A.; Chadwick, M.B.; Haight, R.C.; Nelson, R.O.; Wender, S.A.; Young, P.G.

    1994-01-01

    High-resolution γ-ray spectra from the interaction of neutrons in the energy range from 3 to 200 MeV with 207,208 Pb were measured with the white neutron source at the weapons neutron research (WNR) facility at Los Alamos National Laboratory. From these data, excitation functions for prominent γ transitions in 200,202,204,206,207,208 Pb were derived from threshold to 200 MeV incident neutron energy. These γ-production cross sections reflect the excitation cross sections for the respective residual nuclei. The results are compared with the predictions of nuclear reaction calculations based on the exciton model for precompound emission, the Hauser-Feshbach theory for compound nucleus decay, and coupled channels calculations to account for direct excitation of collective levels. Good agreement was obtained over the entire energy range covered in the experiment with reasonable model parameters. The results of this work clearly demonstrate that multiple preequilibrium emission has to be taken into account above about 40 MeV, and that the level density model of Ignatyuk, which accounts for the gradual disappearance of shell effects with increasing excitation energy, should be used instead of the Gilbert-Cameron and backshifted Fermi-gas models if excitation energies exceed about 30 MeV. No indication for a reduction of the nuclear moment of inertia below the rigid body value was found

  5. Measurements of neutron emission spectra and {sup 7}Be production in Li(d, n) and Be(d, n) reactions for 25 and 40 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Masayuki; Baba, Mamoru; Aoki, Takao; Kawata, Naoki; Hirabayashi, Naoya; Itoga, Toshiro [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-06-01

    The neutron spectra in Li(d, n) and Be(d, n) reactions for Ed = 25, 40 MeV were measured from {approx}1 MeV to highest energy of secondary neutrons at ten laboratory angles between 0- and 110-deg with the time-of-flight (TOF) method. In addition, the number of {sup 7}Be accumulated in the targets was also measured by counting the {gamma}-rays from {sup 7}Be using a pure Ge detector to obtain {sup 7}Be production cross-section and yields. (author)

  6. The Energy Dependence of Flow in Ni Induced Collisions from 400A to 1970A MeV

    International Nuclear Information System (INIS)

    Chance, J.; Brady, F.; Cebra, D.; Kintner, J.; Partlan, M.; Romero, J.; Albergo, S.; Caccia, Z.; Costa, S.; Insolia, A.; Potenza, R.; Romanski, J.; Russo, G.; Tuve, C.; Bieser, F.; Cebra, D.; Lisa, M.; Matis, H.; McMahan, M.; McParland, C.; Olson, D.; Rai, G.; Rasmussen, J.; Ritter, H.; Symons, T.; Wieman, H.; Wienold, T.; Choi, Y.; Elliott, J.; Gilkes, M.; Hauger, J.; Hirsch, A.; Hjort, E.; Porile, N.; Scharenberg, R.; Srivastava, B.; Tincknell, M.; Warren, P.; Chacon, A.; Wolf, K.

    1997-01-01

    We study the energy dependence of collective (hydrodynamic-like) nuclear matter flow in (400 endash 1970)A MeV Ni+Au and (1000 endash 1970)A MeV Ni+Cu reactions. The flow increases with energy, appears to reach a maximum, and then to decrease at higher energies. A way of comparing the energy dependence of flow values for different projectile-target mass combinations is introduced, which demonstrates a more-or-less common scaling behavior among flow values from different systems. copyright 1997 The American Physical Society

  7. Lambda-neutron interaction in kaon photoproduction from the deuteron

    International Nuclear Information System (INIS)

    Adelseck, R.A.; Wright, L.E.

    1989-01-01

    The importance of hyperon-nucleon final-state interaction in kaon photoproduction from the deuteron is examined. By calculating the deuteron wave function using the Reid, Paris, or Bonn NN potentials, the uncertainty of this process due to the nucleonic wave function is found to be negligible. The insignificance of off-shell and relativistic effects is demonstrated by employing a completely relativistic wave function and comparing various approximations. We find the influence of the kaon production operator to be the most critical ingredient in this calculation. Final-state effects, which are included via a distorted-wave formalism, involve partial waves up to l = 3. They produce a sharp rise of the cross section near threshold resulting in an enhancement by about a factor of 3, but diminish rapidly as the energy increases. Different ΛN potential models show variations of the effect by up to 10%

  8. Measurements of fission product yield in the neutron-induced fission of {sup 238}U with average energies of 9.35 MeV and 12.52 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, Sadhana; Krishnani, Pritam Das; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok [Bhabha Atomic Research Centre, Mumbai (India); Shivashankar, Byrapura Siddaramaiah [Manipal University, Manipal (India); Mulik, Vikas Kaluram [University of Pune, Pune (India)

    2014-07-15

    The yields of various fission products in the neutron-induced fission of {sup 238}U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the {sup 7}Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  9. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  10. The electromagnetic Ram action of the plasma focus as a paradigm for the generation of cosmic rays and the gigantic jets in active galaxies

    Science.gov (United States)

    Bostick, W. H.; Nardi, V.

    1985-08-01

    Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.

  11. Electromagnetic ram action of the plasma focus as a paradigm for the generation of cosmic rays and the gigantic jets in active galaxies

    International Nuclear Information System (INIS)

    Bostick, W.H.; Nardi, V.

    1985-01-01

    Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield a spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam, which is generated simultaneously with the deuteron beam, is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by action near the centers of active galaxies

  12. Measurement of omega, the energy required to create an ion pair, for 150-MeV protons in nitrogen and argon

    International Nuclear Information System (INIS)

    Petti, P.L.

    1985-01-01

    The purpose of this thesis is to provide a 1% measurement of omega, the energy required to produce an ion pair, for 150 MeV protons in various gases. Such a measurement should improve the accuracy of proton ionization chamber dosimetry at the Harvard Cyclotron Laboratory. Currently, no measurements of omega exist in the energy range of 30 to 150 MeV, and present ionization chamber dosimetry at the Cyclotron relies on average values of measurements at lower and higher energies (i.e. for E < 3 MeV and E = 340 MeV). Contrary to theoretical expectations, these low and high energy data differ by as much as 9% in some gases. The results of this investigation demonstrate that the existing high energy data is probably in error, and current proton ionization chamber dosimetry underestimates omega, and hence the proton dose, by 5%

  13. Double π production on the deuteron with the energy-tagged photon beam of the spectrometer facility for photon-induced reactions

    International Nuclear Information System (INIS)

    Merkel, R.

    1992-11-01

    Within the framework of this thesis it has been achieved to complete the tagging system TOPAS 1 including all aspects of hardware, software and calibration procedures. In addition, TOPAS 1, has been integrated into SAPHIR successfully, thus adding an indispensable tool for making physical measurements. Initial data analysis of the double Pion production at the Deuteron proved the basic function and usability of the tagging system in measuring total cross sections, also comprising their dependence on photon energy. (orig.) [de

  14. Charged particle beams for radiobiology at RARAF

    International Nuclear Information System (INIS)

    Colvett, R.D.; Rohrig, N.; Marino, S.A.

    1977-01-01

    (1) The extent to which the internal structure of a molecule might affect the separation of its constituent atoms after the molecule dissociates was investigated. Scattered intensity vs. lateral distance is shown (at 46 cm) for beams of 1.25-MeV monatomic deuterons, 2.5-MeV diatomic deuterons, and 3.75-MeV triatomic deuterons. It was found that the three species of ions have essentially indistinguishable scattering parameters; i.e., molecular effects are negligible. (2) Representative LET spectra are shown for deuterons of 2.2, 1.9, and 1.7 MeV and 3 He of 6.2 MeV. 3 figures

  15. Bevalac, a high-energy heavy-ion facility: status and outlook

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1974-01-01

    The high-energy heavy-ion facility, which has commonly been referred to as the Bevalac, is a synchrotron with B rho of 9000 [kG-in or 2.3 x 10 2 kG-m] having special injectors. The synchrotron has three injectors. The 50 MeV proton injector, originally from BNL, is a tool left over from the high-energy high-intensity days of this productive synchrotron. The 20 MeV linac is a proton linac, designed so conservatively that it was possible to accelerate modest but useful beams of 12 C, 14 N, and 16 O as well as deuterons and alpha particles in the 2 β lambda mode. This was accomplished in 1971. After our first trials, a suggestion made earlier by A. Ghiorso to inject from the SuperHILAC into the synchrotron was actively pursued. Reasons as to why the SuperHILAC is being used as injector to the Bevatron are given

  16. Theoretical model of the probability of fusion between deuterons within deformed lattices with microcracks at room temperature

    International Nuclear Information System (INIS)

    Frisone, Fulvio

    2006-01-01

    In this work we wish to demonstrate that a reaction path as the following dislocations, deformations due to thermodynamic stress and, finally, microcrack occurrence, can enhance the process of fusion of the deuterons introduced into the lattice by deuterium loading (F. Frisone, Can variations in temperature influence deuteron interaction within crystalline lattices?, Nuovo Cimento D, 18, 1279 (1996)). In fact, calculating the rate of deuteron-plasmon-deuteron fusion within a microcrack, showed, together with an enhancement of the tunneling effect, an increase of at least 2 - 3 orders of magnitude compared to the probability of fusion on the no deformed lattice. In fact, strong electric fields can take place in the microcrack and the deuterons are accelerated to the energy which is enough for the D-D tunnelling (M. Rabinowitz, High temperature superconductivity and cold fusion, Mod. Phys, Lett. B, 4, 233 (1990); J. Price Hirt and J. Lothe, Theory of Dislocation (McGraw Hill); Z. Phys., 457, 156 (1960)). These phenomena open the way to the theoretical hypothesis that a kind of chain reaction, catalyzed by the microcracks produced in the structure as a result of deuterium loading, can favour tho process of deuteron-plasmon fusion (N. W. Ashcroft and N. D. Mermin (Eds.), Solid State Physics, Chapter 25 (Saunders College, Philadelphia, 1972, pp. 492-509)

  17. Experimental results on RPC neutron sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; De Vecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P

    2003-08-01

    RPC neutron sensitivity has been studied during two tests done with different neutrons energies. In the first test, neutrons from spontaneous fission events of {sup 252}Cf were used (average energy 2 MeV); while in the second test neutrons were produced using a 50 MeV deuteron beam on a 1 cm thick beryllium target (average energy 20 MeV). Preliminary results show that the neutron sensitivity in double gap mode is (0.52{+-}0.03)x10{sup -3} at about 2 MeV and (5.3{+-}0.5)x10{sup -3} at about 20 MeV.

  18. Digital neutron/gamma discrimination with an organic scintillator at energies between 1 MeV and 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Comrie, A.C. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Buffler, A., E-mail: andy.buffler@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Smit, F.D. [iThemba LABS, Somerset West 7129 (South Africa); Wörtche, H.J. [INCAS" 3, Dr. Nassaulaan 9. 9400 AT Assen (Netherlands)

    2015-02-01

    Three different digital implementations of pulse shape discrimination for pulses from an EJ301 liquid scintillator detector are presented, and illustrated with neutrons and gamma-rays produced by an Am–Be radioisotopic source, a D–T generator and beams produced by cyclotron-accelerated protons of energies 42, 62 and 100 MeV on a Li target. A critical comparison between the three methods is provided.

  19. Charged particle production in proton-, deuteron-, oxygen- and sulphur-nucleus collisions at 200 GeV per nucleon

    CERN Document Server

    Alber, T.; Bachler, J.; Bartke, J.; Bialkowska, H.; Bloomer, M.A.; Bock, R.; Braithwaite, W.J.; Brinkmann, D.; Brockmann, R.; Buncic, P.; Chan, P.; Cramer, J.G.; Cramer, P.B.; Derado, I.; Eckardt, V.; Eschke, J.; Favuzzi, C.; Ferenc, D.; Fleischmann, B.; Foka, P.; Freund, P.; Fuchs, M.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hoffmann, M.; Jacobs, P.; Kabana, S.; Kadija, K.; Keidel, R.; Kowalski, M.; Kuhmichel, A.; Lee, J.Y.; Ljubicic, A, Jr.; Margetis, S.; Mitchell, J.T.; Morse, R.; Nappi, E.; Odyniec, G.; Paic, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Posa, F.; Poskanzer, Arthur M.; Puhlhofer, F.; Rauch, W.; Renfordt, R.; Retyk, W.; Rohrich, D.; Roland, G.; Rothard, H.; Runge, K.; Sandoval, A.; Schmitz, N.; Schmoetten, E.; Sendelbach, R.; Seyboth, P.; Seyerlein, J.; Skrzypczak, E.; Spinelli, P.; Stock, R.; Strobele, H.; Teitelbaum, L.; Tonse, S.; Trainor, T.A.; Vasileiadis, G.; Vassiliou, M.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wosiek, B.; Zhu, X.

    1998-01-01

    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse mom...

  20. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  1. Measurement of energy deposition distributions produced in cylindrical geometry by irradiation with 15 MeV neutrons

    International Nuclear Information System (INIS)

    Brandan, M.E.

    1979-01-01

    Cellular survival experiments have shown that the biological damage induced by radiation depends on the density of energy deposition along the trajectory of the ionizing particle. The quantity L is defined to measure the density of energy transfer along a charged particle's trajectory. It is equal to sigma/l, where sigma is the energy transferred to a medium and l is the path length along which the transfer takes place. L is the stochastic quantity whose mean value is the unrestricted linear energy transfer, L/sub infinity/. Measurements of the distribution of L in a thin medium by secondary charged particles from fast neutron irradiation were undertaken. A counter operating under time coincidence between two coaxial cylindrical detectors was designed and built for this purpose. Secondary charged particles enter a gas proportional counter and deposit some energy sigma. Those particles traversing the chamber along a radial trajectory strike a CsI scintillator. A coincidence between both detectors' signals selects a known path length for these events, namely the radius of the cavity. Measurements of L distributions for l = 1 μm in tissue were obtained for 3 and 15 MeV neutron irradiation of a tissue-equivalent target wall and for 15 MeV neutron irradiation of a graphite wall. Photon events were corrected for by measurements with a Pb target wall and 15 MeV neutron irradiation as well as exposure to a pure photon field. The measured TE wall distributions with 15 MeV neutron bombardment show contributions from protons, α-particles, 9 Be and 12 C recoils. The last three comprise the L distribution for irradiation of the graphite wall. The proton component of the measured L distributions at 3 and 15 MeV was compared to calculated LET distributions

  2. Enhancement of deuteron-fusion reactions in metals and experimental implications

    International Nuclear Information System (INIS)

    Huke, A.; Heide, P.; Czerski, K.; Ruprecht, G.; Targosz, N.; Zebrowski, W.

    2008-01-01

    Recent measurements of the reaction 2 H(d,p) 3 H in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for diverse host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls that make them and the data analysis particularly error prone. There are multiparameter collateral effects that are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations owing to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. To address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-Hueckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays can be clearly excluded

  3. Elastic scattering of 16O+16O at energies E/A between 5 and 8 MeV

    International Nuclear Information System (INIS)

    Nicoli, M. P.; Haas, F.; Freeman, R. M.; Aissaoui, N.; Beck, C.; Elanique, A.; Nouicer, R.; Morsad, A.; Szilner, S.; Basrak, Z.

    1999-01-01

    The elastic scattering of 16 O+ 16 O has been measured at nine energies between E lab =75 and 124 MeV. The data cover up to 100 degree sign in the c.m. and can be described in terms of phenomenological and folding model potentials which reproduce the main features observed. In agreement with studies at higher energies in this and similar systems, refractive effects are present in the angular distributions at all energies. In particular, the passage of Airy minima through 90 degree sign at E c.m. =40, 47.5, and 62 MeV explains the deep minima observed in the excitation function. The real part of the optical potential is found to vary very little with energy over the studied interval, but the imaginary part shows a rapid change in its shape at incident energy about 90 MeV. Nonetheless, the energy dependence of the volume integral of the real and imaginary parts is in agreement with dispersion relation predictions. (c) 1999 The American Physical Society

  4. Field theory for a deuteron quantum liquid

    Science.gov (United States)

    Berezhiani, Lasha; Gabadadze, Gregory; Pirtskhalava, David

    2010-04-01

    Based on general symmetry principles we study an effective Lagrangian for a neutral system of condensed spin-1 deuteron nuclei and electrons, at greater-than-atomic but less-than-nuclear densities. We expect such matter to be present in thin layers within certain low-mass brown dwarfs. It may also be produced in future shock-wave-compression experiments as an effective fuel for laser-induced nuclear fusion. We find a background solution of the effective theory describing a net spin zero condensate of deuterons with their spins aligned and anti-aligned in a certain spontaneously emerged preferred direction. The spectrum of low energy collective excitations contains two spin-waves with linear dispersions — like in antiferromagnets — as well as gapped longitudinal and transverse modes related to the Meissner effect — like in superconductors. We show that counting of the Nambu-Goldstone modes of spontaneously broken internal and space-time symmetries obeys, in a nontrivial way, the rules of the Goldstone theorem for Lorentz non-invariant systems. We discuss thermodynamic properties of the condensate, and its potential manifestation in the low-mass brown dwarfs.

  5. Alpha particles from the photodisintegration of 9Be in the photon energy region 18 to 26 MeV

    International Nuclear Information System (INIS)

    Buchnea, A.; Johnson, R.G.; McNeill, K.G.

    1978-01-01

    Alpha particles from the 9 Be(γ,n) 8 Be(16.6) and 9 Be(γ,α 0 ) 5 He reactions were studied in the photon energy region 18 to 26 MeV; the results yielded a combined integrated cross section of 13.1 +- 2 MeV mb and an upper limit on the integrated (γ,α 0 ) cross section of 4.0 MeV mb. This agrees within error with the integrated cross section of Becchi, Meneghetti, Sanzone, and Vitale, 10 +- 2 MeV mb, which would contain about 50% of any contribution from the (γ,α 0 ) reaction. These reactions together with the 9 Be(γ,n 1 ) 8 Be reaction (which has an integrated cross section of 2.4 +- 0.4 MeV mb) are the major reaction channels contributing to the total photoneutron cross section in this energy region. Their sum, 15.5 MeV mb, agrees well with the results of Nathans and Halpern and Hughes, Sambell, Muirhead, and Spicer but disagrees with that of Costa, Pasqualini, Piragino, and Roasio. (author)

  6. Calculation of nuclear data for incident energies to 200 MeV with the FKK-GNASH code system

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1993-02-01

    We describe how the FKK-GNASH code system has been extended to calculate nucleon-induced reactions up to 200 MeV, and used to predict (p,xn) and (p,xp) cross sections on 208 Pb at incident energies of 25, 45, 80 and 160 MeV, for an intermediate energy code intercomparison. Details of the reaction mechanisms calculated by FKK-GNASH are given, and the calculational procedure is described

  7. Medium-energy nuclear physics research. Final technical progress report, May 1, 1971-November 30, 1981

    International Nuclear Information System (INIS)

    Willard, H.B.

    1981-01-01

    Final results are summarized for this program with the primary emphasis on measurement of ten independent parameters for proton-proton elastic scattering at 800 MeV and four independent such parameters at 650 MeV. Inelastic proton-proton reactions have also been measured at 800 MeV. Proton-deuteron elastic scattering cross sections and polarization analyzing powers have been obtained at 800 MeV. Proton-nucleus total and total reaction cross sections were measured at 700 MeV for a number of nuclei. Major instrumentation was designed and constructed to carry out this program

  8. Study of depolarization of deuteron and proton beams in the Nuclotron ring

    CERN Document Server

    Golubeva, N Y; Kondratenko, A M; Kondratenko, A M; Mikhajlov, V A; Strokovsky, E A

    2002-01-01

    The scheme for acceleration of polarized deuterons at the Nuclotron accelerator facility includes a cryogenic polarized deuteron source 'Polaris', a 5 MeV/nucl. linac, a superconducting heavy ion synchrotron of a 6 GeV/nucl. energy with 10 s spill slow extraction, thin internal targets and wide net of external beam lines. This scheme also allows one to generate high energy polarized proton and neutron beams with well determined characteristics. There are two principal problems of polarized particle acceleration: to keep spin orientation during beam acceleration and to produce the high ion intensity sufficient for data taking in physics experiments. The first problem is discussed in this paper. The reasons of depolarization effects in the mentioned parts of the Nuclotron have been analysed and four methods of the polarization conserving have been suggested. They are the spin resonance strength compensation increasing of the resonance strength, the betatron tune jump and the spin tune jump. Among their number, ...

  9. Irradiation and annealing effects of deuteron irradiated NbTi and V3Ga multifilamentary composite wires at low temperature

    International Nuclear Information System (INIS)

    Seibt, E.

    1975-01-01

    To study the effects of low-temperature irradiation on technological type II-superconductors, NbTi and V 3 Ga multifilamentary composite wires, the critical current I/sub c/ and transition temperature T/sub c/ were measured before and after irradiation with 50-MeV deuterons at 10 and 15 0 K, respectively. While the irradiation effects on I/sub c/ and T/sub c/ of NbTi are substantially unaffected, the V 3 Ga wires undergo a reduction in I/sub c/ of about 50 percent and T/sub c/ decreases from 14.7 +- 0.1 0 K to 12.3 +- 0.1 0 K at a total deuteron flux of 2.6 x 10 17 cm -2 . Annealing experiments at room temperature and 100 0 C show only a small recovery of the superconducting properties up to 15 percent. The field dependence of the volume pinning force densities P/sub V/ was determined and the results are shown to be consistent with a qualitative dynamic pinning model

  10. Precise Measurement of the Deuteron Elastic structure Function A(Q2)

    International Nuclear Information System (INIS)

    D. Abbott; A. Ahmidouch; H. Anklin; J. Arvieux; J. Bail; S. Beedoe; E. J. Beise; L. Bimbot; W. Boeglin; H. Breuer; R. Carlini; N. S. Chant; S. Danagoulian; K. Dow; J.E. Ducret; J. Dunne; R. Ent; L. Ewell; L. Eyraud; C. Furget; M. Garcon; R. Gilman; C. Glashausser; P. Gucye; K. Gustafsson; K. Hafidi; A. Honegger; J. Jourdan; S. Kox; G. Kumbartzki; L. Lu; A. Lung; D. Mack; P. Markowitz; J. McIntyre; D. Meekins; F. Merchez; J. Mitchell; R. Mohring; S. Mtingwa; H. Mrktchyan; D. Pitz; L. Qin; R. Ransome; J.S. Real; P. G. Roos; P. Rutt; R. Sawafta; S. Stepanyan; R. Tieulent; E. Tomasi-Gustafsson; W. Turchinetz; K. Vansyoc; J. Volmer; E. Voutier; W. Vulcan; C. Williamson; S. A. Wood; C. Yan; J. Zhao; W. Zhao

    1999-01-01

    The A(Q 2 ) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q 2 between 0.66 and 1.80 (GeV/c) 2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 o . These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents

  11. Exclusive scattering off the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Amrath, D.

    2007-12-15

    Exclusive processes are a special class of processes giving insight into the inner structure of hadrons. In this thesis we consider two exclusive processes and compute their total cross sections as well as the beam charge and beam polarization asymmetries for different kinematical constraints. These calculations o er the opportunity to get access to the nonperturbative GPDs. Theoretically they can be described with the help of models. The rst process we investigate contains a GPD of the pion, which is basically unknown so far. We include different models and make predictions for observables that could in principle be measured at HERMES at DESY and CLAS at JLab. The second process we consider is electron-deuteron scattering in the kinematical range where the deuteron breaks up into a proton and a neutron. This can be used to investigate the neutron, which cannot be taken as a target due to its lifetime of approximately 15 minutes. For the calculation of the electron-deuteron cross section we implement models for the proton and neutron GPDs. Once there are experimental data available our calculations are ready for comparison. (orig.)

  12. Determination of deuteron beam polarizations at COSY

    Directory of Open Access Journals (Sweden)

    D. Chiladze

    2006-05-01

    Full Text Available The vector (P_{z} and tensor (P_{zz} polarizations of a deuteron beam have been measured using elastic deuteron–carbon scattering at 75.6 MeV and deuteron-proton scattering at 270 MeV. After acceleration to 1170 MeV inside the COSY storage ring, the polarizations of the deuterons were remeasured by studying the analyzing powers of a variety of nuclear reactions. For this purpose a hydrogen cluster target was employed at the ANKE magnetic spectrometer, which is situated at an internal target position in the ring. The overall precisions obtained were about 4% for both P_{z} and P_{zz}. Though all the measurements were consistent with the absence of depolarization during acceleration, only an upper limit of about 6% could be placed on such an effect.

  13. Possible measurements of the spin one observables in elastic dN, dd collisions at the NICA deuteron beams

    International Nuclear Information System (INIS)

    Sharov, V I

    2016-01-01

    The report shows the possibilities of studying the spin one observables in the elastic dN and dd interactions at the NICA collider of the VBLHEP JINR. The use of the colliding deuteron beams would allow us to carry out the measurements of the differential cross sections I 0 (dN, dd) of the elastic scattering of unpolarized deuterons and the differential cross sections I pol (dN,dd) and the vector A y (Ed,θ) and tensor A yy (Ed,θ) and A xx (E d .θ) analyzing powers in elastic collisions of the vector and tensor polarized deuterons. The planned luminosity of the colliding polarized deuteron beams will provide sufficiently high elastic events counting rate. The use of the colliding beams of the polarized deuterons for the spin one >dN and dd observables research has a number of significant advantages in comparison with the experiments with the “fixed” target. The angular acceptance of the collider detector covers the full solid angle 4π radians while the wide ranges of the energies of the dN, dd interactions and the 4-momentum transfer squared are available. (paper)

  14. On the meson exchange currents contribution in deep inelastic scattering on deuteron

    International Nuclear Information System (INIS)

    Kaptar', L.P.; Titov, A.I.; Umnikov, A.Yu.

    1988-01-01

    The contribution of the one- and two-pion exchange currents to the deep inelastic deuteron structure function F 2 D (x) is considered. It is shown that the mesonic corrections do not restore the energy sum rule violated by the off-mass-shell properties of the bound nucleons

  15. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  16. Neutrino magnetic moment contribution to the neutrino-deuteron reaction

    International Nuclear Information System (INIS)

    Tsuji, K.; Nakamura, S.; Sato, T.; Kubodera, K.; Myhrer, F.

    2004-01-01

    We study the effect of the neutrino magnetic moment on the neutrino-deuteron breakup reaction, using a method called the standard nuclear physics approach, which has already been well tested for several electroweak processes involving the deuteron

  17. Precise Measurement of the Deuteron Elastic Structure Function A(Q2 )

    International Nuclear Information System (INIS)

    Ball, J.; Ducret, J.; Garcon, M.; Hafidi, K.; Pitz, D.; Tomasi-Gustafsson, E.; Honegger, A.; Jourdan, J.; Zhao, J.; Beise, E.J.; Breuer, H.; Chant, N.S.; Ewell, L.; Gustafsson, K.; Lung, A.; Mohring, R.; Pitz, D.; Roos, P.G.; Eyraud, L.; Furget, C.; Kox, S.; Lu, L.; Merchez, F.; Real, J.; Tieulent, R.; Voutier, E.; Abbott, D.; Carlini, R.; Dunne, J.; Ent, R.; Gilman, R.; Gueye, P.; Mack, D.; Meekins, D.; Mitchell, J.; Pitz, D.; Qin, L.; Vansyoc, K.; Volmer, J.; Vulcan, W.; Wood, S.A.; Yan, C.; Gilman, R.; Glashausser, C.; Kumbartzki, G.; McIntyre, J.; Ransome, R.; Rutt, P.; Ahmidouch, A.; Dow, K.; Turchinetz, W.; Williamson, C.; Zhao, W.; Anklin, H.; Boeglin, W.; Markowitz, P.; Mrktchyan, H.; Stepanyan, S.; Ahmidouch, A.; Beedoe, S.; Danagoulian, S.; Mtingwa, S.; Sawafta, R.; Arvieux, J.; Ball, J.; Tomasi-Gustafsson, E.; Arvieux, J.; Bimbot, L.

    1999-01-01

    The A(Q 2 ) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q 2 between 0.66 and 1.80 (GeV/c) 2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 degree. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents. copyright 1999 The American Physical Society

  18. Development of neutron-monitor detectors applicable for energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Kim, Eunjoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Takashi [Tohoku Univ., Sendai, Miyagi (Japan)

    2003-03-01

    For the purpose of monitoring of neutron doses in high energy accelerator facilities, we have been developing neutron detectors which are applicable for neutron energies up to 100 MeV. The present paper reports characteristics of a phoswitch-type neutron detector which is composed of a liquid organic scintillator and {sup 6}Li+ZnS(Ag) sheets. (author)

  19. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    Science.gov (United States)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  20. Polarized deuteron beam at the Dubna synchrophasotron

    International Nuclear Information System (INIS)

    Ershov, V.P.; Fimushkin, V.V.; Gai, G.I.

    1990-01-01

    The experimental equipment and setup used to accelerate a polarized deuteron beam at the Dubna synchrophasotron are briefly described. Basic characteristics of the cryogenic source of polarized deuterons POLARIS are presented. The results of measurements of the intensity of the accelerated beam, vector and tensor polarization at the output of the linac LU-20, inside the synchrophasotron ring and in the extracted beam are given. 16 refs.; 9 figs.; 3 tabs

  1. Reaction-rate coefficients, high-energy ions slowing-down, and power balance in a tokamak fusion reactor plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo

    1978-07-01

    Described are the reactivity coefficient of D-T fusion reaction, slowing-down processes of deuterons injected with high energy and 3.52 MeV alpha particles generated in D-T reaction, and the power balance in a Tokamak reactor plasma. Most of the results were obtained in the first preliminary design of JAERI Experimental Fusion Reactor (JXFR) driven with stationary neutral beam injection. A manual of numerical computation program ''BALTOK'' developed for the calculations is given in the appendix. (auth.)

  2. Polarized beam asymmetry for. gamma. d. -->. Peta in the energy range 0. 4-0. 8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, F.V.; Arustamyan, G.V.; Galumyan, P.I.; Grabsky, V.H.; Hakopyan, H.H.; Karapetyan, V.V.; Vartapetyan, H.A.

    1983-01-01

    Measurements of the polarized beam asymmetry for deuteron photodisintegration ..gamma..d ..-->.. Peta have been carried out in the energy range E/sub ..gamma../ = 0.4-0.8 GeV and at angles theta/sub p//sup cm/ = 45/sup 0/-75/sup 0/. The results obtained are in disagreement with theoretical predictions which take into account the dibaryon resonance contribution. The data qualitative analysis indicates the weakness of isoscalar dibaryon amplitudes near E/sub ..gamma../ = 400 MeV. 8 references, 1 figure.

  3. Development of a cryogenic source of polarized deuterons ''Polaris''

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Belushkina, A.A.; Ershov, V.P.

    1985-01-01

    To obtain a beam of polarized deuterons, a cryogenic source ''Polaris'' has been developed according to the program of research at the Dubna synchrophasotron. The source is installed on a high-voltage terminal of the linac preaccelerator. A beam of deuterons from the source is accelerated in the synchrophasotron. At present the source is being improved. A polarimeter with 3 He and 4 He targets has been developed to measure the polarization of the beam of deuterons after the linac. Results of this work are presented in the report

  4. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at Eγ=65 MeV

    Science.gov (United States)

    Sikora, Mark; Compton@HIGS Team

    2017-01-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.

  5. Measurement of photonuclear cross sections from 30 to 140 MeV for intermediate and heavy mass nuclei (Sn, Ce, Ta, Pb and U)

    International Nuclear Information System (INIS)

    Lepretre, A.

    1982-06-01

    The total photonuclear absorption cross section for Sn, Ce, Ta, Pb and U has been studied from 25 to 140 MeV using a continuously variable monochromatic photon beam obtained from the annihilation in flight of monoenergetic positrons. The basic experimental results are a set of data giving sums of inclusive multiple photoneutron production cross sections of the form σsup(j) (Esub(γ) = Σsub(i=j)σ(γ,in) for neutron multiplicities ranging from j=1 to 12. From these data the total photonuclear absorption cross section σ(tot : Esub(γ)) has been deduced. It is concluded that Levinger's modified quasi-deuteron model describes the total cross sections reasonably well. When these data are combined with lower energy data and integrated to 140 MeV they indicate the need for an enhancement factor K for the Thomas-Reiche-Kuhn sum rule of 0.76+-0.10. No evidence was found that would indicate an A-dependence for the enhancement factor. From event-by-event records of observed photoneutron multiplicities it was also possible to determine the mean number of photoneutrons, antiν, for each photon energy and the widths W of the multiplicities distributions. From these measurements one also obtains the cross section for the formation of a compound nucleus state excited with the full energy of the absorbed photon [fr

  6. Excitation functions and yields for cyclotron production of radiorhenium via deuteron irradiation. {sup nat}W(d,xn){sup 181,182,(A+B),183,184(m+g),186g}Re nuclear reactions and tests on the production of {sup 186g}Re using enriched {sup 186}W

    Energy Technology Data Exchange (ETDEWEB)

    Manenti, Simone; Persico, Elisa; Bonardi, Mauro L.; Gini, Luigi; Groppi, Flavia [LASA, Univ. degli Studi di Milano, Segrate (Italy); INFN Milano (Italy); Abbas, Kamel; Holzwarth, Uwe; Simonelli, Federica [Institute for Health and Consumer Protection, IHCP, JRC-Ispra, Ispra (Italy)

    2014-10-01

    Excitation functions, thin- and thick-target yields for the {sup 181-186g}Re and {sup 187}W radionuclides were measured by the activation stacked-foil technique on natural tungsten foils for deuteron energies up to 18.0 MeV. These cross sections were validated by comparing the experimental results for thick-target yields with those calculated by integration of the thin-target yields. It was found that the maximum {sup 186g}Re content by irradiation of natural tungsten is about 55%, a higher value compared with the one found for proton beam, but not sufficient to use natural tungsten for medical purposes yet. Thus, in order to have a higher specific activity A{sub S} of {sup 186g}Re, the use of enriched {sup 186}W target is necessary. Therefore the irradiation of a thick target of enriched {sup 186}W by accelerated deuterons was studied and the results for the production of {sup 186g}Re were compared with those obtained from the irradiation of the same target by accelerated protons. It was found that the deuteron irradiation is preferable for three reasons: larger yield, less contamination by tantalum radioisotopes and smaller required amount of the target, which simplify the separation of the {sup 186g}Re from the target itself.

  7. The Efficiency of the BC-720 Scintillator in a High-Energy (20--800 MeV) Accelerator Neutron Field

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Leslie H. [Univ. of Missouri, Columbia, MO (United States)

    2005-12-01

    High-energy neutron doses (>20 MeV) are of little importance to most radiation workers. However, space and flight crews, and people working around medical and scientific accelerators receive over half of their radiation dose from high-energy neutrons. Unfortunately, neutrons are difficult to measure, and no suitable dosimetry has yet been developed to measure this radiation. In this paper, basic high-energy neutron interactions, characteristics of high-energy neutron environments, present neutron dosimetry, and quantities used in neutron dosimetry are discussed before looking into the potential of the BC-720 scintillator to improve dosimetry. This research utilized 800 MeV protons impinging upon the WNR Facility spallation neutron source at Los Alamos National Laboratory. Time-of-flight methods and a U-238 Fission Chamber were used to aid evaluation of the efficiency of the BC-720. Results showed that the efficiency is finite over the 20–650 MeV energy region studied, although it decreases by a factor of ten between 40 and 100 MeV. This limits the use of this dosimeter to measure doses at sitespecific locations. It also encourages modifications to use this dosimeter for any unknown neutron field. As such, this dosimeter has the potential for a small, lightweight, real-time dose measurement, which could impact neutron dosimetry in all high-energy neutron environments.

  8. Radioprotection shielding for neutrons induced by the reaction (2H (40 MeV, 12C

    Directory of Open Access Journals (Sweden)

    Fadil M.

    2017-01-01

    Full Text Available In the framework of design studies for SPIRAL2, the simulation of the neutron flux generated by 40 MeV deuterons on a thick 12C target was performed and compared to experimental data. The calculation of the dose rate of these neutrons allowed to compare four materials being considered for radioprotection shielding: barites, gypsum, ordinary concrete and heavy concrete. The simulated map of the neutron dose rate in the production building shows a very high dose rate around the neutron source and in the environment of some of the accelerator equipment.

  9. Monte Carlo simulation of channeled and random profiles of heavy ions implanted in silicon at high energy (1.2 MeV)

    International Nuclear Information System (INIS)

    Mazzone, A.M.

    1987-01-01

    In order to study channeling effects and implants of heavy ions with energy of few MeV in silicon, ion distributions are calculated with a Monte Carlo method for axial [(001) axis], planar, and nominally random directions for As + and P + ions implanted into silicon with energies in the range 100 keV to 2 MeV. The calculation indicates an appreciable channeling at the higher energy only for the (001) axis and the (110) planes. For heavy ions with energy in the MeV range the subsidence of channeling into major channels and the disappearance of minor channels are shown

  10. Production of e(+)e(-) pairs in proton-deuteron capture to He-3

    NARCIS (Netherlands)

    Korchin, AY; Van Neck, D; Waroquier, M; Scholten, O; Dieperink, AEL

    1998-01-01

    The process p + d He-3 + gamma * at intermediate energies is described using a covariant and gauge-invariant model, and a realistic pd(3)He vertex, Both photodisintegration of He-3 and proton-deuteron capture with production of e(+)e(-) pairs are studied, and results for cross sections and response

  11. Electrofission of 239Pu in the energy range 7 endash 12 MeV

    International Nuclear Information System (INIS)

    Arruda-Neto, J.D.; Yoneama, M.; Dias, J.F.; Garcia, F.; Reigota, M.A.; Likhachev, V.P.; Guzman, F.; Rodriguez, O.; Mesa, J.

    1997-01-01

    The electrofission cross section of 239 Pu(e,f) is measured between 7 and 12 MeV. The data are analyzed by means of the virtual photon formalism, assuming that E1, E2 (T=0), and M1 transitions are involved. Using known estimates for the E1 and E2 (T=0) fission strengths, it is deduced an M1 fission strength of 19±4μ N 2 concentrated near the fission barrier (between 5.4 and 5.8 MeV). The levels of the 239 Pu transition nucleus are theoretically obtained; a bunch of positive-parity levels shows up between 5.5 and 5.9 MeV, which might well be associated with the deduced M1 strength, since the E2 strength is negligible in this energy interval. copyright 1997 The American Physical Society

  12. Selectivity of the nucleon-induced deuteron breakup and relativistic effects

    OpenAIRE

    Witała, H.; Golak, J.; Skibiński, R.

    2006-01-01

    Theoretical predictions for the nucleon induced deuteron breakup process based on solutions of the three-nucleon Faddeev equation including such relativistic features as the relativistic kinematics and boost effects are presented. Large changes of the breakup cross section in some complete configurations are found at higher energies. The predicted relativistic effects, which are mostly of dynamical origin, seem to be supported by existing data.

  13. Measurement of deuteron induced gamma-ray emission differential cross sections on {sup nat}Cl from 1.0 to 2.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Jokar, A., E-mail: arezajokar@gmail.com; Kakuee, O.; Lamehi-Rachti, M.

    2016-06-15

    In this research work, measured differential cross sections for gamma-ray emission from the nuclear reactions {sup 35}Cl(d,pγ{sub 1-0}){sup 36}Cl (E{sub γ} = 788 keV), {sup 35}Cl(d,pγ{sub 2-0}){sup 36}Cl (Eγ = 1165 keV), {sup 37}Cl(d,pγ{sub 1-0}){sup 38}Cl (E{sub γ} = 671 keV) and {sup 37}Cl(d,pγ{sub 2-0}){sup 38}Cl (E{sub γ} = 755 keV) are presented. For these measurements a thin natural BaCl{sub 2} target evaporated onto a 50 μm-thick Mo foil was used. The gamma-rays and backscattered deuterons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered deuterons. The validity of the obtained differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be ±10%.

  14. Spectroscopy of 919395Nb and 9395Tc via the (3He,d) reaction at 25 MeV

    International Nuclear Information System (INIS)

    Cooney, P.J.

    1975-01-01

    Low-lying and analog states in 91 93 95 Nb and 93 95 Tc have been studied using the ( 3 He,d) reaction at a 3 He lab energy of 25 MeV. Outgoing deuteron angular distributions were measured using cooled surface barrier detector telescopes with a typical energy resolution of 70 keV and were compared with DWBA calculations in order to obtain l-values and proton spectroscopic factors. Reasonable agreement with sum rule limits for low-lying g-, p-, and f-states was obtained without any ad hoc adjustment of the calculated differential cross sections. Considerable fragmentation of the T/sub less than/ component of the d 5 / 2 single proton strength was observed, particularly in 93 95 Nb and its centroid was found to shift to lower excitation energies with increasing neutron number. The spectroscopic factors of the analog states were extracted using previously untried wavefunctions and were in good agreement with those of the parent states. Finally, the splitting between the analog and anti-analog d 5 / 2 states was found to be proportional to (T/sub A/ + 1 / 2 ), the constant of proportionality being about 150 MeV/A

  15. Neutron radiative capture by the 241Am nucleus in the energy range 1 keV-20 MeV

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Ignatyuk, A.V.; Tolstikov, V.A.; Tertychnyj, G.Ya.

    1998-01-01

    Production of high actinides leads to many technological problems in the nuclear power. The 241 Am(n,γ) 242 Am reaction is one of the sources of high actinide buildup. So a knowledge of the radiative capture cross-section of 241 Am for neutron energies up to 20 MeV is of considerable important for present day fission reactors and future advanced reactors. The main goal of this paper is the evaluation of the excitation function for the reaction 241 Am(n,γ) 242 Am in the energy range 1 keV-20 MeV. The evaluation was done on the basis of analysed experimental data, data from theoretical model calculations and systematic predictions for 14.5 MeV and 20 MeV. Data from the present evaluation are compared with the cross-section values given in the evaluations carried out earlier. (author)

  16. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    International Nuclear Information System (INIS)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm 3 thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm 3 active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response

  17. New approach to a global description of the deuteron electromagnetic structure

    International Nuclear Information System (INIS)

    Dubnickova, A.Z.; Dubnicka, S.

    1991-07-01

    A new approach to a global description of the deuteron electro-magnetic (EM) structure is developed on the bases of a modification of the well known vector-meson-dominance (VMD) model of EM hadron interactions by incorporating the true deuteron form factor (FF) analytic properties, non-zero vector meson widths and the correct power asymptotic behaviour as predicted by QCD. As a result, the experimental data on elastic electron-deuteron scattering structure functions A(t) and B(t) are described quite well, the deuteron EM FF's in the space-like region are reproduced and their behaviour in the time- like region is predicted. At the same time the couplings of the ω-mesons to deuteron are evaluated and the total cross section of e + e - → dd-bar process is determined for the first time. (author). 47 refs, 5 figs

  18. Study of the p+{sup 12}C reaction at energies up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Masahide; Yamamoto, A.; Yoshioka, S. [Kyushu Univ., Fukuoka (Japan)] [and others

    1998-03-01

    Double differential cross sections of charged-particles emitted in the p+{sup 12}C reaction were measured in the energy region from 14 to 26 MeV. The observed continuous components of emitted protons and {alpha}-particles were analyzed by assuming sequential decay of intermediate reaction products and/or simultaneous breakup process. It was found that the three body simultaneous decay, p+{alpha}+{sup 8}Be, and the sequential decay via p+{sup 12}C{sup *}{sub 3-} and {alpha}+{sup 9}B{sub g.s.} are most important in the proton-induced breakup of {sup 12}C for energies up to 30 MeV. (author)

  19. Investigation of the 14N/d,α/12C reaction at Esub(d)=640-310 keV deuteron energies

    International Nuclear Information System (INIS)

    Bakr, M.H.S.; Hunyadi, I.; Schlenk, G.; Somogyi, G.; Valek, A.

    1974-01-01

    Angular distributions of the α 0 , α 1 , α 2 , and α 3 groups from the 14 N/d,α/ 12 C reaction have been measured at deuteron energies 640, 510, and 350 keV using solid state track detectors. Semiconductor detector was used to measure the excitation functions of the α 0 and α 1 groups from the same reaction in the energy range 640-310 keV at THETAsub(lab)=90 0 . The absolute cross-section values are given for the alpha groups investigated. The experimentally obtained angular distributions have been analysed in terms of Legendre polynomials. The measured relative intensity ratios of the α 0 , α 1 , and α 3 groups could be reproduced by a simple calculation assuming statistical compound reaction mechanism. (B.T.)

  20. Experimental cross-sections of deuteron-induced reaction on Y-89 up to 20 MeV; comparison of Ti-nat(d,x)V-48 and Al-27(d,x)Na-24 monitor reactions

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-01-01

    Roč. 360, OCT (2015), s. 118-128 ISSN 0168-583X R&D Projects: GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : deuteron-induced nuclear reactions * excitation functions * Na, Mg, Sc, V, Sr, Y and Zr radioisotopes * deuteron beam monitors * U-120M cyclotron Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015