WorldWideScience

Sample records for metric spatial task

  1. On Information Metrics for Spatial Coding.

    Science.gov (United States)

    Souza, Bryan C; Pavão, Rodrigo; Belchior, Hindiael; Tort, Adriano B L

    2018-04-01

    The hippocampal formation is involved in navigation, and its neuronal activity exhibits a variety of spatial correlates (e.g., place cells, grid cells). The quantification of the information encoded by spikes has been standard procedure to identify which cells have spatial correlates. For place cells, most of the established metrics derive from Shannon's mutual information (Shannon, 1948), and convey information rate in bits/s or bits/spike (Skaggs et al., 1993, 1996). Despite their widespread use, the performance of these metrics in relation to the original mutual information metric has never been investigated. In this work, using simulated and real data, we find that the current information metrics correlate less with the accuracy of spatial decoding than the original mutual information metric. We also find that the top informative cells may differ among metrics, and show a surrogate-based normalization that yields comparable spatial information estimates. Since different information metrics may identify different neuronal populations, we discuss current and alternative definitions of spatially informative cells, which affect the metric choice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Eye metrics for task-dependent automation

    NARCIS (Netherlands)

    Imants, P.; Greef, T.E. de

    2014-01-01

    Future air traffic is expected to grow increasingly, opening up a gap for task dependent automation and adaptive interfaces, helping the Air Traffic Controller to cope with fluctuating workloads. One of the challenging factors in the application of such intelligent systems concerns the question what

  3. Eye Metrics for Task-Dependent Automation

    NARCIS (Netherlands)

    Imants, P.; de Greef, T.F.A.

    2014-01-01

    Future air traffic is expected to grow increasingly, opening up a gap for task dependent automation and adaptive interfaces, helping the Air Traffic Controller to cope with fluctuating workloads. One of the challenging factors in the application of such intelligent systems concerns the question what

  4. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

    Science.gov (United States)

    Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon

    2018-05-01

    The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.

  5. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    Science.gov (United States)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite

  6. Sex differences in the weighting of metric and categorical information in spatial location memory.

    Science.gov (United States)

    Holden, Mark P; Duff-Canning, Sarah J; Hampson, Elizabeth

    2015-01-01

    According to the Category Adjustment model, remembering a spatial location involves the Bayesian combination of fine-grained and categorical information about that location, with each cue weighted by its relative certainty. However, individuals may differ in terms of their certainty about each cue, resulting in estimates that rely more or less on metric or categorical representations. To date, though, very little research has examined individual differences in the relative weighting of these cues in spatial location memory. Here, we address this gap in the literature. Participants were asked to recall point locations in uniform geometric shapes and in photographs of complex, natural scenes. Error patterns were analyzed for evidence of a sex difference in the relative use of metric and categorical information. As predicted, women placed relatively more emphasis on categorical cues, while men relied more heavily on metric information. Location reproduction tasks showed a similar effect, implying that the sex difference arises early in spatial processing, possibly during encoding.

  7. Prediction of water temperature metrics using spatial modelling in ...

    African Journals Online (AJOL)

    Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of ...

  8. A Deep Similarity Metric Learning Model for Matching Text Chunks to Spatial Entities

    Science.gov (United States)

    Ma, K.; Wu, L.; Tao, L.; Li, W.; Xie, Z.

    2017-12-01

    The matching of spatial entities with related text is a long-standing research topic that has received considerable attention over the years. This task aims at enrich the contents of spatial entity, and attach the spatial location information to the text chunk. In the data fusion field, matching spatial entities with the corresponding describing text chunks has a big range of significance. However, the most traditional matching methods often rely fully on manually designed, task-specific linguistic features. This work proposes a Deep Similarity Metric Learning Model (DSMLM) based on Siamese Neural Network to learn similarity metric directly from the textural attributes of spatial entity and text chunk. The low-dimensional feature representation of the space entity and the text chunk can be learned separately. By employing the Cosine distance to measure the matching degree between the vectors, the model can make the matching pair vectors as close as possible. Mearnwhile, it makes the mismatching as far apart as possible through supervised learning. In addition, extensive experiments and analysis on geological survey data sets show that our DSMLM model can effectively capture the matching characteristics between the text chunk and the spatial entity, and achieve state-of-the-art performance.

  9. Advanced spatial metrics analysis in cellular automata land use and cover change modeling

    International Nuclear Information System (INIS)

    Zamyatin, Alexander; Cabral, Pedro

    2011-01-01

    This paper proposes an approach for a more effective definition of cellular automata transition rules for landscape change modeling using an advanced spatial metrics analysis. This approach considers a four-stage methodology based on: (i) the search for the appropriate spatial metrics with minimal correlations; (ii) the selection of the appropriate neighborhood size; (iii) the selection of the appropriate technique for spatial metrics application; and (iv) the analysis of the contribution level of each spatial metric for joint use. The case study uses an initial set of 7 spatial metrics of which 4 are selected for modeling. Results show a better model performance when compared to modeling without any spatial metrics or with the initial set of 7 metrics.

  10. Analysis of Skeletal Muscle Metrics as Predictors of Functional Task Performance

    Science.gov (United States)

    Ryder, Jeffrey W.; Buxton, Roxanne E.; Redd, Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle J.; Fiedler, James; Ploutz-Snyder, Robert J.; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.

    2010-01-01

    PURPOSE: The ability to predict task performance using physiological performance metrics is vital to ensure that astronauts can execute their jobs safely and effectively. This investigation used a weighted suit to evaluate task performance at various ratios of strength, power, and endurance to body weight. METHODS: Twenty subjects completed muscle performance tests and functional tasks representative of those that would be required of astronauts during planetary exploration (see table for specific tests/tasks). Subjects performed functional tasks while wearing a weighted suit with additional loads ranging from 0-120% of initial body weight. Performance metrics were time to completion for all tasks except hatch opening, which consisted of total work. Task performance metrics were plotted against muscle metrics normalized to "body weight" (subject weight + external load; BW) for each trial. Fractional polynomial regression was used to model the relationship between muscle and task performance. CONCLUSION: LPMIF/BW is the best predictor of performance for predominantly lower-body tasks that are ambulatory and of short duration. LPMIF/BW is a very practical predictor of occupational task performance as it is quick and relatively safe to perform. Accordingly, bench press work best predicts hatch-opening work performance.

  11. Eyetracking metrics reveal impaired spatial anticipation in behavioural variant frontotemporal dementia.

    Science.gov (United States)

    Primativo, Silvia; Clark, Camilla; Yong, Keir X X; Firth, Nicholas C; Nicholas, Jennifer; Alexander, Daniel; Warren, Jason D; Rohrer, Jonathan D; Crutch, Sebastian J

    2017-11-01

    Eyetracking technology has had limited application in the dementia field to date, with most studies attempting to discriminate syndrome subgroups on the basis of basic oculomotor functions rather than higher-order cognitive abilities. Eyetracking-based tasks may also offer opportunities to reduce or ameliorate problems associated with standard paper-and-pencil cognitive tests such as the complexity and linguistic demands of verbal test instructions, and the problems of tiredness and attention associated with lengthy tasks that generate few data points at a slow rate. In the present paper we adapted the Brixton spatial anticipation test to a computerized instruction-less version where oculomotor metrics, rather than overt verbal responses, were taken into account as indicators of high level cognitive functions. Twelve bvFTD (in whom spatial anticipation deficits were expected), six SD patients (in whom deficits were predicted to be less frequent) and 38 healthy controls were presented with a 10 × 7 matrix of white circles. During each trial (N = 24) a black dot moved across seven positions on the screen, following 12 different patterns. Participants' eye movements were recorded. Frequentist statistical analysis of standard eye movement metrics were complemented by a Bayesian machine learning (ML) approach in which raw eyetracking time series datasets were examined to explore the ability to discriminate diagnostic group performance not only on the overall performance but also on individual trials. The original pen and paper Brixton test identified a spatial anticipation deficit in 7/12 (58%) of bvFTD and in 2/6 (33%) of SD patients. The eyetracking frequentist approach reported the deficit in 11/12 (92%) of bvFTD and in none (0%) of the SD patients. The machine learning approach had the main advantage of identifying significant differences from controls in 24/24 individual trials for bvFTD patients and in only 12/24 for SD patients. Results indicate that the fine

  12. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    Science.gov (United States)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing

  13. Hierarchical clustering using correlation metric and spatial continuity constraint

    Science.gov (United States)

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  14. Efficient task assignment in spatial crowdsourcing with worker and task privacy protection

    KAUST Repository

    Liu, An; Wang, Weiqi; Shang, Shuo; Li, Qing; Zhang, Xiangliang

    2017-01-01

    Spatial crowdsourcing (SC) outsources tasks to a set of workers who are required to physically move to specified locations and accomplish tasks. Recently, it is emerging as a promising tool for emergency management, as it enables efficient and cost

  15. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  16. A Spatial Queuing-Based Algorithm for Multi-Robot Task Allocation

    Directory of Open Access Journals (Sweden)

    William Lenagh

    2015-08-01

    Full Text Available Multi-robot task allocation (MRTA is an important area of research in autonomous multi-robot systems. The main problem in MRTA is to allocate a set of tasks to a set of robots so that the tasks can be completed by the robots while ensuring that a certain metric, such as the time required to complete all tasks, or the distance traveled, or the energy expended by the robots is reduced. We consider a scenario where tasks can appear dynamically and a task needs to be performed by multiple robots to be completed. We propose a new algorithm called SQ-MRTA (Spatial Queueing-MRTA that uses a spatial queue-based model to allocate tasks between robots in a distributed manner. We have implemented the SQ-MRTA algorithm on accurately simulated models of Corobot robots within the Webots simulator for different numbers of robots and tasks and compared its performance with other state-of-the-art MRTA algorithms. Our results show that the SQ-MRTA algorithm is able to scale up with the number of tasks and robots in the environment, and it either outperforms or performs comparably with respect to other distributed MRTA algorithms.

  17. Multi-scale application of spatial metrics for quantifying forest spatial structure and diversity from Corine Land Cover and FMERS-WiFS raster data

    DEFF Research Database (Denmark)

    Nielsen, Niels Christian; Blackburn, Alan

    2005-01-01

    In this paper, the moving-windows approach to calculation and analysis of spatial metrics is tested with particular focus on forest mapping. The influence of window size on average metrics values, agreement between values from different EO-based data sources and local variance of metrics values i...

  18. Selection of spatial reference frames depends on task's demands

    Directory of Open Access Journals (Sweden)

    Greeshma Sharma

    2016-12-01

    Full Text Available Spatial reference frames (SRF are the means of representing spatial relations or locations either in an egocentric coordinate system (centred on navigator or in an allocentric coordinate system (Centred on object. It is necessary to understand when and how spatial representation switches between allocentric and egocentric reference frames in context to spatial tasks. The objective of this study was to explore if the elementary spatial representation does exist, whether it would remain consistent or change under the influence of a task's demand. Also, we explored how the SRF would assist if the environment is enriched with landmarks, having multiple routes for wayfinding. The results showed that the switching of SRF depends not only on the default representation but also on a task's demand. They also demonstrated that participants who were using allocentric representation performed better in the presence of landmarks.

  19. INVESTIGATION AND EVALUATION OF SPATIAL PATTERNS IN TABRIZ PARKS USING LANDSCAPE METRICS

    Directory of Open Access Journals (Sweden)

    Ali Majnouni Toutakhane

    2016-01-01

    Full Text Available Nowadays, the green spaces in cities and especially metropolises have adopted a variety of functions. In addition to improving the environmental conditions, they are suitable places for spending free times and mitigating nervous pressures of the machinery life based on their distribution and dispersion in the cities. In this research, in order to study the spatial distribution and composition of the parks and green spaces in Tabriz metropolis, the map of Parks prepared using the digital atlas of Tabriz parks and Arc Map and IDRISI softwares. Then, quantitative information of spatial patterns of Tabriz parks provided using Fragstats software and a selection of landscape metrics including: the area of class, patch density, percentage of landscape, average patch size, average patch area, largest patch index, landscape shape index, average Euclidean distance of the nearest neighborhood and average index of patch shape. Then the spatial distribution, composition, extent and continuity of the parks was evaluated. Overall, only 8.5 percent of the landscape is assigned to the parks, and they are studied in three classes of neighborhood, district and regional parks. Neighborhood parks and green spaces have a better spatial distribution pattern compared to the other classes and the studied metrics showed better results for this class. In contrast, the quantitative results of the metrics calculated for regional parks, showed the most unfavorable spatial status for this class of parks among the three classes studied in Tabriz city.

  20. Selecting landscape metrics as indicators of spatial heterogeneity-A comparison among Greek landscapes

    Science.gov (United States)

    Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.

    2014-02-01

    This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.

  1. Spatial Programming for Industrial Robots Through Task Demonstration

    OpenAIRE

    Jens Lambrecht; Martin Kleinsorge; Martin Rosenstrauch; Jörg Krüger

    2013-01-01

    Abstract We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward ...

  2. Privacy-Preserving Task Assignment in Spatial Crowdsourcing

    KAUST Repository

    Liu, An

    2017-09-20

    With the progress of mobile devices and wireless networks, spatial crowdsourcing (SC) is emerging as a promising approach for problem solving. In SC, spatial tasks are assigned to and performed by a set of human workers. To enable effective task assignment, however, both workers and task requesters are required to disclose their locations to untrusted SC systems. In this paper, we study the problem of assigning workers to tasks in a way that location privacy for both workers and task requesters is preserved. We first combine the Paillier cryptosystem with Yao’s garbled circuits to construct a secure protocol that assigns the nearest worker to a task. Considering that this protocol cannot scale to a large number of workers, we then make use of Geohash, a hierarchical spatial index to design a more efficient protocol that can securely find approximate nearest workers. We theoretically show that these two protocols are secure against semi-honest adversaries. Through extensive experiments on two real-world datasets, we demonstrate the efficiency and effectiveness of our protocols.

  3. Spatially-Explicit Bayesian Information Entropy Metrics for Calibrating Landscape Transformation Models

    Directory of Open Access Journals (Sweden)

    Kostas Alexandridis

    2013-06-01

    Full Text Available Assessing spatial model performance often presents challenges related to the choice and suitability of traditional statistical methods in capturing the true validity and dynamics of the predicted outcomes. The stochastic nature of many of our contemporary spatial models of land use change necessitate the testing and development of new and innovative methodologies in statistical spatial assessment. In many cases, spatial model performance depends critically on the spatially-explicit prior distributions, characteristics, availability and prevalence of the variables and factors under study. This study explores the statistical spatial characteristics of statistical model assessment of modeling land use change dynamics in a seven-county study area in South-Eastern Wisconsin during the historical period of 1963–1990. The artificial neural network-based Land Transformation Model (LTM predictions are used to compare simulated with historical land use transformations in urban/suburban landscapes. We introduce a range of Bayesian information entropy statistical spatial metrics for assessing the model performance across multiple simulation testing runs. Bayesian entropic estimates of model performance are compared against information-theoretic stochastic entropy estimates and theoretically-derived accuracy assessments. We argue for the critical role of informational uncertainty across different scales of spatial resolution in informing spatial landscape model assessment. Our analysis reveals how incorporation of spatial and landscape information asymmetry estimates can improve our stochastic assessments of spatial model predictions. Finally our study shows how spatially-explicit entropic classification accuracy estimates can work closely with dynamic modeling methodologies in improving our scientific understanding of landscape change as a complex adaptive system and process.

  4. Almeria spatial memory recognition test (ASMRT): Gender differences emerged in a new passive spatial task.

    Science.gov (United States)

    Tascón, Laura; García-Moreno, Luis Miguel; Cimadevilla, Jose Manuel

    2017-06-09

    Many different human spatial memory tasks were developed in the last two decades. Virtual reality based tasks make possible developing different scenarios and situations to assess spatial orientation but sometimes these tasks are complex for specific populations like children and older-adults. A new spatial task with a very limited technological requirement was developed in this study. It demanded the use of spatial memory for an accurate solution. It also proved to be sensitive to gender differences, with men outperforming women under high specific difficulty levels. Thanks to its simplicity it could be applied as a screening test and is easy to combine with EEG and fMRI studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Spatial memory tasks in rodents: what do they model?

    Science.gov (United States)

    Morellini, Fabio

    2013-10-01

    The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.

  6. Interference between postural control and spatial vs. non-spatial auditory reaction time tasks in older adults.

    Science.gov (United States)

    Fuhrman, Susan I; Redfern, Mark S; Jennings, J Richard; Furman, Joseph M

    2015-01-01

    This study investigated whether spatial aspects of an information processing task influence dual-task interference. Two groups (Older/Young) of healthy adults participated in dual-task experiments. Two auditory information processing tasks included a frequency discrimination choice reaction time task (non-spatial task) and a lateralization choice reaction time task (spatial task). Postural tasks included combinations of standing with eyes open or eyes closed on either a fixed floor or a sway-referenced floor. Reaction times and postural sway via center of pressure were recorded. Baseline measures of reaction time and sway were subtracted from the corresponding dual-task results to calculate reaction time task costs and postural task costs. Reaction time task cost increased with eye closure (p = 0.01), sway-referenced flooring (p vision x age interaction indicated that older subjects had a significant vision X task interaction whereas young subjects did not. However, when analyzed by age group, the young group showed minimal differences in interference for the spatial and non-spatial tasks with eyes open, but showed increased interference on the spatial relative to non-spatial task with eyes closed. On the contrary, older subjects demonstrated increased interference on the spatial relative to the non-spatial task with eyes open, but not with eyes closed. These findings suggest that visual-spatial interference may occur in older subjects when vision is used to maintain posture.

  7. The role of physical content in piagetian spatial tasks: Sex differences in spatial knowledge?

    Science.gov (United States)

    Golbeck, Susan L.

    Sex-related differences on Piagetian horizontality (water level) and verticality (plumb line) tasks were examined in 64 college students. It was hypothesized that females' difficulties on these Euclidean spatial problems are due not to differences in underlying spatial competence, but rather to differences in knowledge of task specific information about the physical properties of water levels and plumb lines. This was tested by presenting subjects with the standard water level and plumb line problems and also modified problems not requiring knowledge of physical principles (i.e., drawing straight up and down or straight across lines inside tipped rectangles). While males were expected to outperform females on the standard tasks, no sex differences were expected on the modified tasks. Results of an ANOVA on scores for horizontality and verticality each showed main effects for sex and task version but failed to reveal the hypothesized interaction. However, performance on the Euclidean spatial tasks was also considered in terms of overall success versus failure. While males were more successful than females in the standard format, males and females were equally successful in the modified, nonphysical, format. Hence, college aged males and females generally do not differ in spatial competence although they may be differentially influenced by task content. Findings are discussed in terms of their implications for theory and practice. It is emphasized that science educators must be especially aware of such task influences for females so that performance deficits are not mistaken for competence deficits.

  8. Attentional reorienting triggers spatial asymmetries in a search task with cross-modal spatial cueing.

    Directory of Open Access Journals (Sweden)

    Rebecca E Paladini

    Full Text Available Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory, may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition, spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants' accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants' performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when

  9. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics.

    Science.gov (United States)

    Nong, Duong H; Lepczyk, Christopher A; Miura, Tomoaki; Fox, Jefferson M

    2018-01-01

    Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001-2006 and 2006-2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries.

  10. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics

    Science.gov (United States)

    Lepczyk, Christopher A.; Miura, Tomoaki; Fox, Jefferson M.

    2018-01-01

    Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001–2006 and 2006–2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries. PMID:29734346

  11. Privacy-Preserving Task Assignment in Spatial Crowdsourcing

    KAUST Repository

    Liu, An; Li, Zhi-Xu; Liu, Guan-Feng; Zheng, Kai; Zhang, Min; Li, Qing; Zhang, Xiangliang

    2017-01-01

    untrusted SC systems. In this paper, we study the problem of assigning workers to tasks in a way that location privacy for both workers and task requesters is preserved. We first combine the Paillier cryptosystem with Yao’s garbled circuits to construct a secure protocol that assigns the nearest worker to a task. Considering that this protocol cannot scale to a large number of workers, we then make use of Geohash, a hierarchical spatial index to design a more efficient protocol that can securely find approximate nearest workers. We theoretically show that these two protocols are secure against semi-honest adversaries. Through extensive experiments on two real-world datasets, we demonstrate the efficiency and effectiveness of our protocols.

  12. Spatial Programming for Industrial Robots through Task Demonstration

    Directory of Open Access Journals (Sweden)

    Jens Lambrecht

    2013-05-01

    Full Text Available Abstract We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks.

  13. Sex differences in spatial memory using serial and search tasks.

    Science.gov (United States)

    Shah, Darshna S; Prados, Jose; Gamble, Jasmin; De Lillo, Carlo; Gibson, Claire L

    2013-11-15

    The present study assessed the spatial abilities of male and female human participants using different versions of the non-navigational Corsi block-tapping test (CBT) and a search task. Males performed significantly better than females on the standard manual version of the CBT; however, the standard CBT does not allow discrimination between spatial memory span and the role of spatial organisational factors (structure, path length and presence of crossings) in the sequences to recall. These organisational factors were assessed, therefore, in an experiment in which 7-block-sequences had to be recalled in a computerised version of the CBT. No sex differences in performance were observed on the computerised CBT, indicating that males do not make better use of spatial organisational principles. Accordingly, sex differences observed in the manual CBT are likely to rely upon differences in memory span between males and females. In the search task, participants could locate a goal by reference to a Euclidian space (the geometry of a virtual enclose) or to proximal non-geometric cues. Both male and female participants showed a preference for the non-geometric cues, which overshadowed learning about the geometric cues when the two sets were available simultaneously during the training stage. These results indicate that sex differences do exist in those tests which are dependent on memory span. Sex differences were absent, however, in spatial organisational skills or in the usage of Euclidian and egocentric strategies to solve problems relying on spatial ability. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Aging Effect on Audiovisual Integrative Processing in Spatial Discrimination Task

    Directory of Open Access Journals (Sweden)

    Zhi Zou

    2017-11-01

    Full Text Available Multisensory integration is an essential process that people employ daily, from conversing in social gatherings to navigating the nearby environment. The aim of this study was to investigate the impact of aging on modulating multisensory integrative processes using event-related potential (ERP, and the validity of the study was improved by including “noise” in the contrast conditions. Older and younger participants were involved in perceiving visual and/or auditory stimuli that contained spatial information. The participants responded by indicating the spatial direction (far vs. near and left vs. right conveyed in the stimuli using different wrist movements. electroencephalograms (EEGs were captured in each task trial, along with the accuracy and reaction time of the participants’ motor responses. Older participants showed a greater extent of behavioral improvements in the multisensory (as opposed to unisensory condition compared to their younger counterparts. Older participants were found to have fronto-centrally distributed super-additive P2, which was not the case for the younger participants. The P2 amplitude difference between the multisensory condition and the sum of the unisensory conditions was found to correlate significantly with performance on spatial discrimination. The results indicated that the age-related effect modulated the integrative process in the perceptual and feedback stages, particularly the evaluation of auditory stimuli. Audiovisual (AV integration may also serve a functional role during spatial-discrimination processes to compensate for the compromised attention function caused by aging.

  15. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches

    Directory of Open Access Journals (Sweden)

    Rajesh Bahadur Thapa

    2009-09-01

    Full Text Available This paper examines the spatiotemporal pattern of urbanization in Kathmandu Valley using remote sensing and spatial metrics techniques. The study is based on 33-years of time series data compiled from satellite images. Along with new developments within the city fringes and rural villages in the valley, shifts in the natural environment and newly developed socioeconomic strains between residents are emerging. A highly dynamic spatial pattern of urbanization is observed in the valley. Urban built-up areas had a slow trend of growth in the 1960s and 1970s but have grown rapidly since the 1980s. The urbanization process has developed fragmented and heterogeneous land use combinations in the valley. However, the refill type of development process in the city core and immediate fringe areas has shown a decreasing trend in the neighborhood distances between land use patches, and an increasing trend towards physical connectedness, which indicates a higher probability of homogenous landscape development in the upcoming decades.

  16. Efficient task assignment in spatial crowdsourcing with worker and task privacy protection

    KAUST Repository

    Liu, An

    2017-08-01

    Spatial crowdsourcing (SC) outsources tasks to a set of workers who are required to physically move to specified locations and accomplish tasks. Recently, it is emerging as a promising tool for emergency management, as it enables efficient and cost-effective collection of critical information in emergency such as earthquakes, when search and rescue survivors in potential ares are required. However in current SC systems, task locations and worker locations are all exposed in public without any privacy protection. SC systems if attacked thus have penitential risk of privacy leakage. In this paper, we propose a protocol for protecting the privacy for both workers and task requesters while maintaining the functionality of SC systems. The proposed protocol is built on partially homomorphic encryption schemes, and can efficiently realize complex operations required during task assignment over encrypted data through a well-designed computation strategy. We prove that the proposed protocol is privacy-preserving against semi-honest adversaries. Simulation on two real-world datasets shows that the proposed protocol is more effective than existing solutions and can achieve mutual privacy-preserving with acceptable computation and communication cost.

  17. The relationship between language and spatial ability an analysis of spatial language for reconstructing the solving of spatial tasks

    CERN Document Server

    Mizzi, Angel

    2017-01-01

    This work investigates how different fifth-grade students solve spatial-verbal tasks and the role of language in this process. Based on a synthesis of theoretical foundations and methodological issues for supporting the relationship between spatial ability and language, this present study examines and classifies strategies used by students as well as the obstacles they encounter when solving spatial tasks in the reconstruction method. Contents Theoretical Framework Design and Implementation Results and Discussion from the Inductive Data Analyses Target Groups Scholars and students of mathematics education Teachers of mathematics in primary and secondary schools About the Author Angel Mizzi works as a research assistant and lecturer at the University of Duisburg-Essen, where he has successfully completed his PhD studies in mathematics education.

  18. Correlation of spatial climate/weather maps and the advantages of using the Mahalanobis metric in predictions

    OpenAIRE

    Stephenson, D. B.

    2011-01-01

    he skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the var...

  19. Mental workload and cognitive task automaticity: an evaluation of subjective and time estimation metrics.

    Science.gov (United States)

    Liu, Y; Wickens, C D

    1994-11-01

    The evaluation of mental workload is becoming increasingly important in system design and analysis. The present study examined the structure and assessment of mental workload in performing decision and monitoring tasks by focusing on two mental workload measurements: subjective assessment and time estimation. The task required the assignment of a series of incoming customers to the shortest of three parallel service lines displayed on a computer monitor. The subject was either in charge of the customer assignment (manual mode) or was monitoring an automated system performing the same task (automatic mode). In both cases, the subjects were required to detect the non-optimal assignments that they or the computer had made. Time pressure was manipulated by the experimenter to create fast and slow conditions. The results revealed a multi-dimensional structure of mental workload and a multi-step process of subjective workload assessment. The results also indicated that subjective workload was more influenced by the subject's participatory mode than by the factor of task speed. The time estimation intervals produced while performing the decision and monitoring tasks had significantly greater length and larger variability than those produced while either performing no other tasks or performing a well practised customer assignment task. This result seemed to indicate that time estimation was sensitive to the presence of perceptual/cognitive demands, but not to response related activities to which behavioural automaticity has developed.

  20. Hypergraph+: An Improved Hypergraph-Based Task-Scheduling Algorithm for Massive Spatial Data Processing on Master-Slave Platforms

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-08-01

    Full Text Available Spatial data processing often requires massive datasets, and the task/data scheduling efficiency of these applications has an impact on the overall processing performance. Among the existing scheduling strategies, hypergraph-based algorithms capture the data sharing pattern in a global way and significantly reduce total communication volume. Due to heterogeneous processing platforms, however, single hypergraph partitioning for later scheduling may be not optimal. Moreover, these scheduling algorithms neglect the overlap between task execution and data transfer that could further decrease execution time. In order to address these problems, an extended hypergraph-based task-scheduling algorithm, named Hypergraph+, is proposed for massive spatial data processing. Hypergraph+ improves upon current hypergraph scheduling algorithms in two ways: (1 It takes platform heterogeneity into consideration offering a metric function to evaluate the partitioning quality in order to derive the best task/file schedule; and (2 It can maximize the overlap between communication and computation. The GridSim toolkit was used to evaluate Hypergraph+ in an IDW spatial interpolation application on heterogeneous master-slave platforms. Experiments illustrate that the proposed Hypergraph+ algorithm achieves on average a 43% smaller makespan than the original hypergraph scheduling algorithm but still preserves high scheduling efficiency.

  1. Using spatial metrics to assess the efficacy of biodiversity conservation within the Romanian Carpathian Convention area

    Directory of Open Access Journals (Sweden)

    Petrişor Alexandru-Ionuţ

    2017-06-01

    Full Text Available The alpine region is of crucial importance for the European Union; as a result, the Carpathian Convention aims at its sustainable development. Since sustainability implies also conservation through natural protected areas, aimed at including regions representative for the national biogeographical space, this article aims at assessing the efficiency of conservation. The methodology consisted of using spatial metrics applied to Romanian and European data on the natural protected areas, land cover and use and their transitional dynamics. The findings show a very good coverage of the Alpine biogeographical region (98% included in the Convention area, and 43% of it protected within the Convention area and of the ecological region of Carpathian montane coniferous forests (88% included in the Convention area, and 42% of it protected within the Convention area. The dominant land cover is represented by forests (63% within the Convention area, and 70% of the total protected area. The main transitional dynamics are deforestation (covering 50% of all changes area within the Convention area and 46% from the changed area within its protected area and forestations – including afforestation, reforestation and colonization of abandoned agricultural areas by forest vegetation (covering 44% of all changes area within the Convention area and 51% from the changed area within its protected area during 1990-2000 and deforestation (covering 97% of all changes area within the Convention area and 99% from the changed area within its protected area during 1990-2000. The results suggest that the coverage of biogeographical and ecological zones is good, especially for the most relevant ones, but deforestations are a serious issue, regardless of occurring before or after achieving the protection status.

  2. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    Science.gov (United States)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified

  3. Correlation of spatial climate/weather maps and the advantages of using the Mahalanobis metric in predictions

    Science.gov (United States)

    Stephenson, D. B.

    1997-10-01

    The skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the variance of the correlation distribution can vary from unity up to the number of grid points depending on the choice of weighting metric. The (pseudo-) inverse of the sample covariance matrix acts as a special choice for the metric in that it gives a correlation distribution which has minimal kurtosis and maximum dimension. Minimal kurtosis suggests that the average predictive skill might be improved due to the rarer occurrence of troublesome outlier patterns far from the mean state. Maximum dimension has a disadvantage for analogue prediction schemes in that it gives the minimum number of analogue states. This metric also has an advantage in that it allows one to powerfully test the null hypothesis of multinormality by examining the second and third moments of the correlation coefficient which were introduced by Mardia as invariant measures of multivariate kurtosis and skewness. For these reasons, it is suggested that this metric could be usefully employed in the prediction of weather/climate and in fingerprinting anthropogenic climate change. The ideas are illustrated using the bivariate example of the observed monthly mean sea-level pressures at Darwin and Tahitifrom 1866 1995.

  4. Detecting the Land-Cover Changes Induced by Large-Physical Disturbances Using Landscape Metrics, Spatial Sampling, Simulation and Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2009-08-01

    Full Text Available The objectives of the study are to integrate the conditional Latin Hypercube Sampling (cLHS, sequential Gaussian simulation (SGS and spatial analysis in remotely sensed images, to monitor the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial heterogeneity and variability. The multiple NDVI images demonstrate that spatial patterns of disturbed landscapes were successfully delineated by spatial analysis such as variogram, Moran’I and landscape metrics in the study area. The hybrid method delineates the spatial patterns and spatial variability of landscapes caused by these large disturbances. The cLHS approach is applied to select samples from Normalized Difference Vegetation Index (NDVI images from SPOT HRV images in the Chenyulan watershed of Taiwan, and then SGS with sufficient samples is used to generate maps of NDVI images. In final, the NDVI simulated maps are verified using indexes such as the correlation coefficient and mean absolute error (MAE. Therefore, the statistics and spatial structures of multiple NDVI images present a very robust behavior, which advocates the use of the index for the quantification of the landscape spatial patterns and land cover change. In addition, the results transferred by Open Geospatial techniques can be accessed from web-based and end-user applications of the watershed management.

  5. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    Science.gov (United States)

    2017-07-07

    IFR ) IFR Instrument Flight Rules LED Light Emitting Diode LEP Laser Eye Protection MAPP Model Assessing Pilot Performance OD Optical Density...LEP and then use them to assess the impact of wearing LEP in a flight simulator environment. 2 Pending Distribution, A: Approved for public...2005). LEP has the potential to alter distinct characteristics of the visual environment, giving rise to concerns over the impact on flight tasks and

  6. Solution strategies as possible explanations of individual and sex differences in a dynamic spatial task.

    Science.gov (United States)

    Peña, Daniel; Contreras, María José; Shih, Pei Chun; Santacreu, José

    2008-05-01

    When individuals perform spatial tasks, individual differences emerge in accuracy and speed as well as in the response patterns used to cope with the task. The purpose of this study is to identify, through empirical criteria, the different response patterns or strategies used by individuals when performing the dynamic spatial task presented in the Spatial Orientation Dynamic Test-Revised (SODT-R). Results show that participants can be classified according to their response patterns. Three different ways of solving a task are described, and their relation to (a) performance factors (response latency, response frequency, and invested time) and (b) ability tests (analytical reasoning, verbal reasoning, and spatial estimation) are investigated. Sex differences in response patterns and performance are also analyzed. It is found that the frequency with which men and women employ each one of the strategies described here, is different and statistically significant. Thus, employed strategy plays an important role when interpreting sex differences on dynamic spatial tasks.

  7. A management-oriented framework for selecting metrics used to assess habitat- and path-specific quality in spatially structured populations

    Science.gov (United States)

    Nicol, Sam; Wiederholt, Ruscena; Diffendorfer, James E.; Mattsson, Brady; Thogmartin, Wayne E.; Semmens, Darius J.; Laura Lopez-Hoffman,; Norris, Ryan

    2016-01-01

    Mobile species with complex spatial dynamics can be difficult to manage because their population distributions vary across space and time, and because the consequences of managing particular habitats are uncertain when evaluated at the level of the entire population. Metrics to assess the importance of habitats and pathways connecting habitats in a network are necessary to guide a variety of management decisions. Given the many metrics developed for spatially structured models, it can be challenging to select the most appropriate one for a particular decision. To guide the management of spatially structured populations, we define three classes of metrics describing habitat and pathway quality based on their data requirements (graph-based, occupancy-based, and demographic-based metrics) and synopsize the ecological literature relating to these classes. Applying the first steps of a formal decision-making approach (problem framing, objectives, and management actions), we assess the utility of metrics for particular types of management decisions. Our framework can help managers with problem framing, choosing metrics of habitat and pathway quality, and to elucidate the data needs for a particular metric. Our goal is to help managers to narrow the range of suitable metrics for a management project, and aid in decision-making to make the best use of limited resources.

  8. Chew on this: No support for facilitating effects of gum on spatial task performance.

    Science.gov (United States)

    Nader, Ingo W; Gittler, Georg; Waldherr, Karin; Pietschnig, Jakob

    2010-09-01

    To determine whether chewing of gum facilitates spatial task performance in healthy participants, two behavioral experiments were performed. In the first experiment, spatial task performance of 349 men and women preceding and after treatment administration (saccharated chewing gum, sugar-free chewing gum, no chewing gum) was assessed using effect modeling by means of Item Response Theory. In the second experiment, another 100 participants were either administered sugar-free chewing gum or no chewing gum during spatial task performance. Effects of gum in the second study were assessed by standard means of data analysis. Results indicated no significant effects of either chewing gum or sugar on spatial task performance in either experiment. Our findings are consistent with recent studies investigating the influences of chewing gum on various memory functions, extending them by another measure of cognitive ability. Thus, further doubt is cast on enhancing effects of chewing gum on cognitive task performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Spatial effects, sampling errors, and task specialization in the honey bee.

    Science.gov (United States)

    Johnson, B R

    2010-05-01

    Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.

  10. Interference between a fast-paced spatial puzzle task and verbal memory demands.

    Science.gov (United States)

    Epling, Samantha L; Blakely, Megan J; Russell, Paul N; Helton, William S

    2017-06-01

    Research continues to provide evidence that people are poor multi-taskers. Cognitive resource theory is a common explanation for the inability to efficiently perform multiple tasks at the same time. This theory proposes that one's limited supply of cognitive resources can be utilized faster than it is replenished, which results in a performance decline, particularly when these limited resources must be allocated among multiple tasks. Researchers have proposed both domain-specific, for example, spatial versus verbal processing resources, and domain general cognitive resources. In the present research, we investigated whether a spatial puzzle task performed simultaneously with a verbal recall task would impair performance in either task or both tasks, compared to performance on the tasks individually. As hypothesized, a reduction in word recall was found when dual-tasking, though performance on the puzzle task did not significantly differ between the single- and dual-task conditions. This is consistent, in part, with both a general resource theory and a Multiple Resource Theory, but further work is required to better understand the cognitive processing system. The employment of the recall task in the dual-task paradigm with a variety of secondary tasks will help to continue mapping out the specificity (or lack thereof) of cognitive resources utilized in various mental and physical tasks.

  11. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Shunbo; Wen, Weijia; Cao, Wenbin

    2016-01-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF 4 :Yb 3+ , Er 3+ upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited

  12. Children's attention to task-relevant information accounts for relations between language and spatial cognition.

    Science.gov (United States)

    Miller, Hilary E; Simmering, Vanessa R

    2018-08-01

    Children's spatial language reliably predicts their spatial skills, but the nature of this relation is a source of debate. This investigation examined whether the mechanisms accounting for such relations are specific to language use or reflect a domain-general mechanism of selective attention. Experiment 1 examined whether 4-year-olds' spatial skills were predicted by their selective attention or their adaptive language use. Children completed (a) an attention task assessing attention to task-relevant color, size, and location cues; (b) a description task assessing adaptive language use to describe scenes varying in color, size, and location; and (c) three spatial tasks. There was correspondence between the cue types that children attended to and produced across description and attention tasks. Adaptive language use was predicted by both children's attention and task-related language production, suggesting that selective attention underlies skills in using language adaptively. After controlling for age, gender, receptive vocabulary, and adaptive language use, spatial skills were predicted by children's selective attention. The attention score predicted variance in spatial performance previously accounted for by adaptive language use. Experiment 2 followed up on the attention task (Experiment 2a) and description task (Experiment 2b) from Experiment 1 to assess whether performance in the tasks related to selective attention or task-specific demands. Performance in Experiments 2a and 2b paralleled that in Experiment 1, suggesting that the effects in Experiment 1 reflected children's selective attention skills. These findings show that selective attention is a central factor supporting spatial skill development that could account for many effects previously attributed to children's language use. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Novel behavioral tasks for studying spatial cognition in rats

    Czech Academy of Sciences Publication Activity Database

    Klement, Daniel; Blahna, Karel; Nekovářová, Tereza

    2008-01-01

    Roč. 57, Suppl.3 (2008), S161-S165 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial cognition * moving objects * recognition Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  14. Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation

    Directory of Open Access Journals (Sweden)

    Tatem Andrew J

    2012-05-01

    Full Text Available Abstract The use of Global Positioning Systems (GPS and Geographical Information Systems (GIS in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models. Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites. In this paper we discuss the deficiencies of existing

  15. Dual-task results and the lateralization of spatial orientation: artifact of test selection?

    Science.gov (United States)

    Bowers, C A; Milham, L M; Price, C

    1998-01-01

    An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.

  16. Task-Management Method Using R-Tree Spatial Cloaking for Large-Scale Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-12-01

    Full Text Available With the development of sensor technology and the popularization of the data-driven service paradigm, spatial crowdsourcing systems have become an important way of collecting map-based location data. However, large-scale task management and location privacy are important factors for participants in spatial crowdsourcing. In this paper, we propose the use of an R-tree spatial cloaking-based task-assignment method for large-scale spatial crowdsourcing. We use an estimated R-tree based on the requested crowdsourcing tasks to reduce the crowdsourcing server-side inserting cost and enable the scalability. By using Minimum Bounding Rectangle (MBR-based spatial anonymous data without exact position data, this method preserves the location privacy of participants in a simple way. In our experiment, we showed that our proposed method is faster than the current method, and is very efficient when the scale is increased.

  17. Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex

    Science.gov (United States)

    Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo

    2016-01-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…

  18. Cross-domain interference costs during concurrent verbal and spatial serial memory tasks are asymmetric

    NARCIS (Netherlands)

    Morey, Candice C.; Mall, Jonathan T.

    2012-01-01

    Some evidence suggests that memory for serial order is domain-general. Evidence also points to asymmetries in interference between verbal and visual-spatial tasks. We confirm that concurrently remembering verbal and spatial serial lists provokes substantial interference compared with remembering a

  19. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Crayfish Self-Administer Amphetamine in a Spatially Contingent Task

    Directory of Open Access Journals (Sweden)

    Udita Datta

    2018-05-01

    Full Text Available Natural reward is an essential element of any organism’s ability to adapt to environmental variation. Its underlying circuits and mechanisms guide the learning process as they help associate an event, or cue, with the perception of an outcome’s value. More generally, natural reward serves as the fundamental generator of all motivated behavior. Addictive plant alkaloids are able to activate this circuitry in taxa ranging from planaria to humans. With modularly organized nervous systems and confirmed vulnerabilities to human drugs of abuse, crayfish have recently emerged as a compelling model for the study of the addiction cycle, including psychostimulant effects, sensitization, withdrawal, reinstatement, and drug reward in conditioned place preference paradigms. Here we extend this work with the demonstration of a spatially contingent, operant drug self-administration paradigm for amphetamine. When the animal enters a quadrant of the arena with a particular textured substrate, a computer-based control system delivers amphetamine through an indwelling fine-bore cannula. Resulting reward strength, dose-response, and the time course of operant conditioning were assessed. Individuals experiencing the drug contingent on their behavior, displayed enhanced rates of operant responses compared to that of their yoked (non-contingent counterparts. Application of amphetamine near the supra-esophageal ganglion elicited stronger and more robust increases in operant responding than did systemic infusions. This work demonstrates automated implementation of a spatially contingent self-administration paradigm in crayfish, which provides a powerful tool to explore comparative perspectives in drug-sensitive reward, the mechanisms of learning underlying the addictive cycle, and phylogenetically conserved vulnerabilities to psychostimulant compounds.

  1. Detection of auditory signals in quiet and noisy backgrounds while performing a visuo-spatial task

    Directory of Open Access Journals (Sweden)

    Vishakha W Rawool

    2016-01-01

    Full Text Available Context: The ability to detect important auditory signals while performing visual tasks may be further compounded by background chatter. Thus, it is important to know how task performance may interact with background chatter to hinder signal detection. Aim: To examine any interactive effects of speech spectrum noise and task performance on the ability to detect signals. Settings and Design: The setting was a sound-treated booth. A repeated measures design was used. Materials and Methods: Auditory thresholds of 20 normal adults were determined at 0.5, 1, 2 and 4 kHz in the following conditions presented in a random order: (1 quiet with attention; (2 quiet with a visuo-spatial task or puzzle (distraction; (3 noise with attention and (4 noise with task. Statistical Analysis: Multivariate analyses of variance (MANOVA with three repeated factors (quiet versus noise, visuo-spatial task versus no task, signal frequency. Results: MANOVA revealed significant main effects for noise and signal frequency and significant noise–frequency and task–frequency interactions. Distraction caused by performing the task worsened the thresholds for tones presented at the beginning of the experiment and had no effect on tones presented in the middle. At the end of the experiment, thresholds (4 kHz were better while performing the task than those obtained without performing the task. These effects were similar across the quiet and noise conditions. Conclusion: Detection of auditory signals is difficult at the beginning of a distracting visuo-spatial task but over time, task learning and auditory training effects can nullify the effect of distraction and may improve detection of high frequency sounds.

  2. Comparison of congruence judgment and auditory localization tasks for assessing the spatial limits of visual capture.

    Science.gov (United States)

    Bosen, Adam K; Fleming, Justin T; Brown, Sarah E; Allen, Paul D; O'Neill, William E; Paige, Gary D

    2016-12-01

    Vision typically has better spatial accuracy and precision than audition and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small, visual capture is likely to occur, and when disparity is large, visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audiovisual disparities over which visual capture was likely to occur was narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner.

  3. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    Science.gov (United States)

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  4. Metric learning

    CERN Document Server

    Bellet, Aurelien; Sebban, Marc

    2015-01-01

    Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learnin

  5. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk [Department of Physics, KAUST-HKUST Joint Micro/Nanofluidic Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Cao, Wenbin [Nano Science and Technology Program, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  6. Mapping Urban Land Use at Street Block Level Using OpenStreetMap, Remote Sensing Data, and Spatial Metrics

    Directory of Open Access Journals (Sweden)

    Taïs Grippa

    2018-06-01

    Full Text Available Up-to-date and reliable land-use information is essential for a variety of applications such as planning or monitoring of the urban environment. This research presents a workflow for mapping urban land use at the street block level, with a focus on residential use, using very-high resolution satellite imagery and derived land-cover maps as input. We develop a processing chain for the automated creation of street block polygons from OpenStreetMap and ancillary data. Spatial metrics and other street block features are computed, followed by feature selection that reduces the initial datasets by more than 80%, providing a parsimonious, discriminative, and redundancy-free set of features. A random forest (RF classifier is used for the classification of street blocks, which results in accuracies of 84% and 79% for five and six land-use classes, respectively. We exploit the probabilistic output of RF to identify and relabel blocks that have a high degree of uncertainty. Finally, the thematic precision of the residential blocks is refined according to the proportion of the built-up area. The output data and processing chains are made freely available. The proposed framework is able to process large datasets, given that the cities in the case studies, Dakar and Ouagadougou, cover more than 1000 km2 in total, with a spatial resolution of 0.5 m.

  7. WE-DE-207B-05: Measuring Spatial Resolution in Digital Breast Tomosynthesis: Update of AAPM Task Group 245

    Energy Technology Data Exchange (ETDEWEB)

    Scaduto, DA; Hu, Y-H; Zhao, W [Stony Brook Medicine, Stony Brook, NY (United States); Goodsitt, M; Chan, H-P [University Michigan, Ann Arbor, MI (United States); Olafsdottir, H [Image Owl, 105 Reykjavik (Iceland); Das, M [University Houston, Houston, TX (United States); Fredenberg, E [Philips Healthcare, Solna (Sweden); Geiser, W [UT MD Anderson Cancer Center, Houston, TX (United States); Goodenough, D [The George Washington University, Washington, DC (United States); Heid, P [ARCADES, Marseille (France); Liu, B [Massachusetts General Hospital, Boston, MA (United States); Mainprize, J [Sunnybrook Health Sciences Centre, North York, ON (Canada); Reiser, I [The University of Chicago, Chicago, IL (United States); Van Engen, R [LRCB, Nijmegen (Netherlands); Varchena, V [CIRS Inc., Norfolk, VA (United States); Vecchio, S [I.M.S., Pontecchio Marconi (Italy); Glick, S [Food and Drug Administration, Silver Spring, MD (United States)

    2016-06-15

    Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spread function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object

  8. Sex Differences in Spatial Memory in Brown-Headed Cowbirds: Males Outperform Females on a Touchscreen Task.

    Directory of Open Access Journals (Sweden)

    Mélanie F Guigueno

    Full Text Available Spatial cognition in females and males can differ in species in which there are sex-specific patterns in the use of space. Brown-headed cowbirds are brood parasites that show a reversal of sex-typical space use often seen in mammals. Female cowbirds, search for, revisit and parasitize hosts nests, have a larger hippocampus than males and have better memory than males for a rewarded location in an open spatial environment. In the current study, we tested female and male cowbirds in breeding and non-breeding conditions on a touchscreen delayed-match-to-sample task using both spatial and colour stimuli. Our goal was to determine whether sex differences in spatial memory in cowbirds generalizes to all spatial tasks or is task-dependant. Both sexes performed better on the spatial than on the colour touchscreen task. On the spatial task, breeding males outperformed breeding females. On the colour task, females and males did not differ, but females performed better in breeding condition than in non-breeding condition. Although female cowbirds were observed to outperform males on a previous larger-scale spatial task, males performed better than females on a task testing spatial memory in the cowbirds' immediate visual field. Spatial abilities in cowbirds can favour males or females depending on the type of spatial task, as has been observed in mammals, including humans.

  9. Sex Differences in Spatial Memory in Brown-Headed Cowbirds: Males Outperform Females on a Touchscreen Task

    Science.gov (United States)

    Guigueno, Mélanie F.; MacDougall-Shackleton, Scott A.; Sherry, David F.

    2015-01-01

    Spatial cognition in females and males can differ in species in which there are sex-specific patterns in the use of space. Brown-headed cowbirds are brood parasites that show a reversal of sex-typical space use often seen in mammals. Female cowbirds, search for, revisit and parasitize hosts nests, have a larger hippocampus than males and have better memory than males for a rewarded location in an open spatial environment. In the current study, we tested female and male cowbirds in breeding and non-breeding conditions on a touchscreen delayed-match-to-sample task using both spatial and colour stimuli. Our goal was to determine whether sex differences in spatial memory in cowbirds generalizes to all spatial tasks or is task-dependant. Both sexes performed better on the spatial than on the colour touchscreen task. On the spatial task, breeding males outperformed breeding females. On the colour task, females and males did not differ, but females performed better in breeding condition than in non-breeding condition. Although female cowbirds were observed to outperform males on a previous larger-scale spatial task, males performed better than females on a task testing spatial memory in the cowbirds’ immediate visual field. Spatial abilities in cowbirds can favour males or females depending on the type of spatial task, as has been observed in mammals, including humans. PMID:26083573

  10. Calculations of two new dose metrics proposed by AAPM Task Group 111 using the measurements with standard CT dosimetry phantoms

    International Nuclear Information System (INIS)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2013-01-01

    Purpose: AAPM Task Group 111 proposed to measure the equilibrium dose-pitch product D-caret eq for scan modes involving table translation and the midpoint dose D L (0) for stationary-table modes on the central and peripheral axes of sufficiently long (e.g., at least 40 cm) phantoms. This paper presents an alternative approach to calculate both metrics using the measurements of scanning the standard computed tomographic (CT) dosimetry phantoms on CT scanners.Methods: D-caret eq was calculated from CTDI 100 and ε(CTDI 100 ) (CTDI 100 efficiency), and D L (0) was calculated from D-caret eq and the approach to equilibrium function H(L) =D L (0)/D eq , where D eq was the equilibrium dose. CTDI 100 may be directly obtained from several sources (such as medical physicist's CT scanner performance evaluation or the IMPACT CT patient dosimetry calculator), or be derived from CTDI Vol using the central to peripheral CTDI 100 ratio (R 100 ). The authors have provided the required ε(CTDI 100 ) and H(L) data in two previous papers [X. Li, D. Zhang, and B. Liu, Med. Phys. 39, 901–905 (2012); and ibid. 40, 031903 (10pp.) (2013)]. R 100 was assessed for a series of GE, Siemens, Philips, and Toshiba CT scanners with multiple settings of scan field of view, tube voltage, and bowtie filter.Results: The calculated D L (0) and D L (0)/D eq in PMMA and water cylinders were consistent with the measurements on two GE CT scanners (LightSpeed 16 and VCT) by Dixon and Ballard [Med. Phys. 34, 3399–3413 (2007)], the measurements on a Siemens CT scanner (SOMATOM Spirit Power) by Descamps et al. [J. Appl. Clin. Med. Phys. 13, 293–302 (2012)], and the Monte Carlo simulations by Boone [Med. Phys. 36, 4547–4554 (2009)].Conclusions: D-caret eq and D L (0) can be calculated using the alternative approach. The authors have provided the required ε(CTDI 100 ) and H(L) data in two previous papers. R 100 is presented for a majority of multidetector CT scanners currently on the market, and can be

  11. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    Directory of Open Access Journals (Sweden)

    Anastasia Krasheninnikova

    Full Text Available String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla and the cockatiel (Nymphicus hollandicus, forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  12. Individual Differences in Verbal and Spatial Stroop Tasks: Interactive Role of Handedness and Domain

    Directory of Open Access Journals (Sweden)

    Mariagrazia Capizzi

    2017-11-01

    Full Text Available A longstanding debate in psychology concerns the relation between handedness and cognitive functioning. The present study aimed to contribute to this debate by comparing performance of right- and non-right-handers on verbal and spatial Stroop tasks. Previous studies have shown that non-right-handers have better inter-hemispheric interaction and greater access to right hemisphere processes. On this ground, we expected performance of right- and non-right-handers to differ on verbal and spatial Stroop tasks. Specifically, relative to right-handers, non-right-handers should have greater Stroop effect in the color-word Stroop task, for which inter-hemispheric interaction does not seem to be advantageous to performance. By contrast, non-right-handers should be better able to overcome interference in the spatial Stroop task. This is for their preferential access to the right hemisphere dealing with spatial material and their greater inter-hemispheric interaction with the left hemisphere hosting Stroop task processes. Our results confirmed these predictions, showing that handedness and the underlying brain asymmetries may be a useful variable to partly explain individual differences in executive functions.

  13. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    Science.gov (United States)

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of methylphenidate on enhancement of spatial learning by novel alternated dual task.

    Science.gov (United States)

    Veetil, Praveen Kottath; Mukkadan, Joseph Kurian

    2011-01-01

    The novel alternated dual task (ADT) arranged rats to learn T-maze spontaneous alternation task and radial arm maze (RAM) task alternatively, and by doing ADT, rats could acquire the tasks more easily than non alternated dual task (NADT) group. Also retention capacity of ADT group was significantly more and ADT help to learn a complex task faster than learning it in isolation from other tasks. In the present study effect of methylphenidate (MPD), a mood elevator, known to enhance learning and memory, on ADT procedure is assessed. Also effect of ADT procedure and MPD on spatial learning and memory are compared. Different groups were assigned by administering MPD (intraperitoneal injection at a dose of 3 mg/kg body weight) during different phases of behavioural experiments, and control groups received saline injection. MPD administration increased both acquisition and retention capacities. The amelioration attained for retention of complex task by ADT procedure, could be achieved by NADT rats only by administration of MPD. The influence of ADT procedure on acquisition and retention of TM and RAM tasks were similar to the effects of MPD, especially for the RAM task. MPD at low dose is found to enhance the learning and memory capacity in rats, than deteriorating it, supporting the use of MPD as a drug to treat attention deficit hyperactive disorder. The recent reports suggesting the effect of MPD only on retention and not on acquisition could not be confirmed, as enhancement for both acquisition and retention was found in this study.

  15. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults

    OpenAIRE

    Heed, Tobias; Roeder, Brigitte; Badde, Stephanie; Schubert, Jonathan

    2017-01-01

    Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while i...

  16. Multi-tasking uncovers right spatial neglect and extinction in chronic left-hemisphere stroke patients.

    Science.gov (United States)

    Blini, Elvio; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, Marco

    2016-11-01

    Unilateral Spatial Neglect, the most dramatic manifestation of contralesional space unawareness, is a highly heterogeneous syndrome. The presence of neglect is related to core spatially lateralized deficits, but its severity is also modulated by several domain-general factors (such as alertness or sustained attention) and by task demands. We previously showed that a computer-based dual-task paradigm exploiting both lateralized and non-lateralized factors (i.e., attentional load/multitasking) better captures this complex scenario and exacerbates deficits for the contralesional space after right hemisphere damage. Here we asked whether multitasking would reveal contralesional spatial disorders in chronic left-hemisphere damaged (LHD) stroke patients, a population in which impaired spatial processing is thought to be uncommon. Ten consecutive LHD patients with no signs of right-sided neglect at standard neuropsychological testing performed a computerized spatial monitoring task with and without concurrent secondary tasks (i.e., multitasking). Severe contralesional (right) space unawareness emerged in most patients under attentional load in both the visual and auditory modalities. Multitasking affected the detection of contralesional stimuli both when presented concurrently with an ipsilesional one (i.e., extinction for bilateral targets) and when presented in isolation (i.e., left neglect for right-sided targets). No spatial bias emerged in a control group of healthy elderly participants, who performed at ceiling, as well as in a second control group composed of patients with Mild Cognitive Impairment. We conclude that the pathological spatial asymmetry in LHD patients cannot be attributed to a global reduction of cognitive resources but it is the consequence of unilateral brain damage. Clinical and theoretical implications of the load-dependent lack of awareness for contralesional hemispace following LHD are discussed. Copyright © 2016. Published by Elsevier Ltd.

  17. A potential spatial working memory training task to improve both episodic memory and fluid intelligence.

    Directory of Open Access Journals (Sweden)

    Sarah R Rudebeck

    Full Text Available One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity presented simultaneously (i.e. a dual n-back paradigm. Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores, we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice

  18. Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task.

    Science.gov (United States)

    Mochizuki, Kei; Funahashi, Shintaro

    2016-01-01

    While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. Copyright © 2016 the American Physiological Society.

  19. Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task

    Science.gov (United States)

    Mochizuki, Kei

    2015-01-01

    While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. PMID:26490287

  20. Attention, spatial integration, and the tail of response time distributions in Stroop task performance

    NARCIS (Netherlands)

    Roelofs, A.P.A.

    2012-01-01

    A few studies have examined selective attention in Stroop task performance through ex-Gaussian analyses of response time (RT) distributions. It has remained unclear whether the tail of the RT distribution in vocal responding reflects spatial integration of relevant and irrelevant attributes, as

  1. Investigating the time course of tactile reflexive attention using a non-spatial discrimination task.

    Science.gov (United States)

    Miles, Eleanor; Poliakoff, Ellen; Brown, Richard J

    2008-06-01

    Peripheral cues are thought to facilitate responses to stimuli presented at the same location because they lead to exogenous attention shifts. Facilitation has been observed in numerous studies of visual and auditory attention, but there have been only four demonstrations of tactile facilitation, all in studies with potential confounds. Three studies used a spatial (finger versus thumb) discrimination task, where the cue could have provided a spatial framework that might have assisted the discrimination of subsequent targets presented on the same side as the cue. The final study circumvented this problem by using a non-spatial discrimination; however, the cues were informative and interspersed with visual cues which may have affected the attentional effects observed. In the current study, therefore, we used a non-spatial tactile frequency discrimination task following a non-informative tactile white noise cue. When the target was presented 150 ms after the cue, we observed faster discrimination responses to targets presented on the same side compared to the opposite side as the cue; by 1000 ms, responses were significantly faster to targets presented on the opposite side to the cue. Thus, we demonstrated that tactile attentional facilitation can be observed in a non-spatial discrimination task, under unimodal conditions and with entirely non-predictive cues. Furthermore, we provide the first demonstration of significant tactile facilitation and tactile inhibition of return within a single experiment.

  2. Metric Learning for Hyperspectral Image Segmentation

    Science.gov (United States)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  3. WE-E-213CD-11: A New Automatically Generated Metric for Evaluating the Spatial Precision of Deformable Image Registrations: The Distance Discordance Metric.

    Science.gov (United States)

    Saleh, Z; Apte, A; Sharp, G; Deasy, J

    2012-06-01

    We propose a new metric called Distance Discordance (DD), which is defined as the distance between two anatomic points from two moving images, which are co-located on some reference image, when deformed onto another reference image. To demonstrate the concept of DD, we created a reference software phantom which contains two objects. The first object (1) consists of a hollow box with a fixed size core and variable wall thickness. The second object (2) consists of a solid box of fixed size and arbitrary location. 7 different variations of the fixed phantom were created. Each phantom was deformed onto every other phantom using two B-Spline DIR algorithms available in Elastix and Plastimatch. Voxels were sampled from the reference phantom [1], which were also deformed from moving phantoms [2…6], and we find the differences in their corresponding location on phantom [7]. Each voxel results in a distribution of DD values, which we call distance discordance histogram (DDH). We also demonstrate this concept in 8 Head & Neck patients. The two image registration algorithms produced two different DD results for the same phantom image set. The mean values of the DDH were slightly lower for Elastix (0-1.28 cm) as compared to the values produced by Plastimatch (0-1.43 cm). The combined DDH for the H&N patients followed a lognormal distribution with a mean of 0.45 cm and std. deviation of 0.42 cm. The proposed distance discordance (DD) metric is an easily interpretable, quantitative tool that can be used to evaluate the effect of inter-patient variability on the goodness of the registration in different parts of the patient anatomy. Therefore, it can be utilized to exclude certain images based on their DDH characteristics. In addition, this metric does not rely on 'ground truth' or the presence of contoured structures. Partially supported by NIH grant R01 CA85181. © 2012 American Association of Physicists in Medicine.

  4. Spatial patterns of hydro-social metrics in the Northeastern United States from the Colonial Era through the Industrial Revolution (1600-1920)

    Science.gov (United States)

    Witherell, B. B.; Bain, D. J.; Salant, N.; Aloysius, N. R.

    2009-12-01

    Humans impact the hydrologic cycle at local, regional and global scales. Understanding how spatial patterns of human water use and hydrologic impact have changed over time is important to future water management in an era of increasing water constraints and globalization of high water-use resources. This study investigates spatial dependence and spatial patterns of hydro-social metrics for the Northeastern United States from 1600 to 1920 through the use of spatial statistical techniques. Several relevant hydro-social metrics, including water residence time, surface water storage (natural and human engineered) and per capita water availability, are analyzed. This study covers a region and period of time that saw significant population growth, landscape change, and industrial growth. These changes had important impacts on water availability. Although some changes such as the elimination of beavers, and the resulting loss of beaver ponds on low-order streams, are felt at a regional scale, preliminary analysis indicates that humans responded to water constraints by acting locally (e.g., mill ponds for water power and water supply reservoirs for public health). This 320-year historical analysis of spatial patterns of hydro-social metrics provides unique insight into long-term changes in coupled human-water systems.

  5. Task and spatial frequency modulations of object processing: an EEG study.

    Directory of Open Access Journals (Sweden)

    Matt Craddock

    Full Text Available Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF and slow processing of high spatial frequencies (HSF. Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal, the basic (e.g. dog, or the subordinate (e.g. Border Collie. We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs and time-frequency (TF analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization or a living/non-living judgement (superordinate categorization on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350 was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.

  6. Task and spatial frequency modulations of object processing: an EEG study.

    Science.gov (United States)

    Craddock, Matt; Martinovic, Jasna; Müller, Matthias M

    2013-01-01

    Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs) and time-frequency (TF) analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization) or a living/non-living judgement (superordinate categorization) on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350) was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.

  7. Common mechanisms of spatial attention in memory and perception: a tactile dual-task study.

    Science.gov (United States)

    Katus, Tobias; Andersen, Søren K; Müller, Matthias M

    2014-03-01

    Orienting attention to locations in mnemonic representations engages processes that functionally and anatomically overlap the neural circuitry guiding prospective shifts of spatial attention. The attention-based rehearsal account predicts that the requirement to withdraw attention from a memorized location impairs memory accuracy. In a dual-task study, we simultaneously presented retro-cues and pre-cues to guide spatial attention in short-term memory (STM) and perception, respectively. The spatial direction of each cue was independent of the other. The locations indicated by the combined cues could be compatible (same hand) or incompatible (opposite hands). Incompatible directional cues decreased lateralized activity in brain potentials evoked by visual cues, indicating interference in the generation of prospective attention shifts. The detection of external stimuli at the prospectively cued location was impaired when the memorized location was part of the perceptually ignored hand. The disruption of attention-based rehearsal by means of incompatible pre-cues reduced memory accuracy and affected encoding of tactile test stimuli at the retrospectively cued hand. These findings highlight the functional significance of spatial attention for spatial STM. The bidirectional interactions between both tasks demonstrate that spatial attention is a shared neural resource of a capacity-limited system that regulates information processing in internal and external stimulus representations.

  8. Associations between volume changes and spatial dose metrics for the urinary bladder during local versus pelvic irradiation for prostate cancer.

    Science.gov (United States)

    Casares-Magaz, Oscar; Moiseenko, Vitali; Hopper, Austin; Pettersson, Niclas Johan; Thor, Maria; Knopp, Rick; Deasy, Joseph O; Muren, Ludvig Paul; Einck, John

    2017-06-01

    Inter-fractional variation in urinary bladder volumes during the course of radiotherapy (RT) for prostate cancer causes deviations between planned and delivered doses. This study compared planned versus daily cone-beam CT (CBCT)-based spatial bladder dose distributions, for prostate cancer patients receiving local prostate treatment (local treatment) versus prostate including pelvic lymph node irradiation (pelvic treatment). Twenty-seven patients (N = 15 local treatment; N = 12 pelvic treatment) were treated using daily image-guided RT (1.8 Gy@43-45 fx), adhering to a full bladder/empty rectum protocol. For each patient, 9-10 CBCTs were registered to the planning CT, using the clinically applied translations. The urinary bladder was manually segmented on each CBCT, 3 mm inner shells were generated, and semi and quadrant sectors were created using axial/coronal cuts. Planned and delivered DVH metrics were compared across patients and between the two groups of treatment (t-test, p bladder volume variations and the dose-volume histograms (DVH) of the bladder and its sectors were evaluated (Spearman's rank correlation coefficient, r s ). Bladder volumes varied considerably during RT (coefficient of variation: 16-58%). The population-averaged planned and delivered DVH metrics were not significantly different at any dose level. Larger treatment bladder volumes resulted in increased absolute volume of the posterior/inferior bladder sector receiving intermediate-high doses, in both groups. The superior bladder sector received less dose with larger bladder volumes for local treatments (r s  ± SD: -0.47 ± 0.32), but larger doses for pelvic treatments (r s  ± SD: 0.74 ± 0.24). Substantial bladder volume changes during the treatment course occurred even though patients were treated under a full bladder/daily image-guided protocol. Larger bladder volumes resulted in less bladder wall spared at the posterior-inferior sector, regardless the

  9. Spatial perseveration error by alpacas (Vicugna pacos) in an A-not-B detour task.

    Science.gov (United States)

    Abramson, José Z; Paulina Soto, D; Beatriz Zapata, S; Lloreda, María Victoria Hernández

    2018-05-01

    Spatial perseveration has been documented for domestic animals such as mules, donkeys, horses and dogs. However, evidence for this spatial cognition behavior among other domestic species is scarce. Alpacas have been domesticated for at least 7000 years yet their cognitive ability has not been officially reported. The present article used an A-not-B detour task to study the spatial problem-solving abilities of alpacas (Vicugna pacos) and to identify the perseveration errors, which refers to a tendency to maintain a learned route, despite having another available path. The study tested 51 alpacas, which had to pass through a gap at one end of a barrier in order to reach a reward. After one, two, three or four repeats (A trials), the gap was moved to the opposite end of the barrier (B trials). In contrast to what has been found in other domestic animals tested with the same task, the present study did not find clear evidence of spatial perseveration. Individuals' performance in the subsequent B trials, following the change of gap location, suggests no error persistence in alpacas. Results suggest that alpacas are more flexible than other domestic animals tested with this same task, which has important implications in planning proper training for experimental designs or productive purposes. These results could contribute toward enhancing alpacas' welfare and our understanding of their cognitive abilities.

  10. Coherent visualization of spatial data adapted to roles, tasks, and hardware

    Science.gov (United States)

    Wagner, Boris; Peinsipp-Byma, Elisabeth

    2012-06-01

    Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).

  11. Horses fail to use social learning when solving spatial detour tasks

    DEFF Research Database (Denmark)

    Rørvang, Maria Vilain; Peerstrup Ahrendt, Line; Christensen, Janne Winther

    2015-01-01

    Social animals should have plenty of opportunities to learn from conspecifics, but most studies have failed to document social learning in horses. This study investigates whether young Icelandic horses can learn a spatial detour task through observation of a trained demonstrator horse of either...... the same age (Experiments 1 and 2, n = 22) or older (Experiment 3, n = 24). Observer horses were allowed to observe the demonstrator being led three times through the detour route immediately before being given the opportunity to solve the task themselves. Controls were allowed only to observe...

  12. Dynamic spatial coding within the dorsal frontoparietal network during a visual search task.

    Directory of Open Access Journals (Sweden)

    Wieland H Sommer

    Full Text Available To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect.

  13. An fMRI study of sex differences in regional activation to a verbal and a spatial task.

    Science.gov (United States)

    Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E

    2000-09-01

    Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.

  14. Group social rank is associated with performance on a spatial learning task.

    Science.gov (United States)

    Langley, Ellis J G; van Horik, Jayden O; Whiteside, Mark A; Madden, Joah R

    2018-02-01

    Dominant individuals differ from subordinates in their performances on cognitive tasks across a suite of taxa. Previous studies often only consider dyadic relationships, rather than the more ecologically relevant social hierarchies or networks, hence failing to account for how dyadic relationships may be adjusted within larger social groups. We used a novel statistical method: randomized Elo-ratings, to infer the social hierarchy of 18 male pheasants, Phasianus colchicus , while in a captive, mixed-sex group with a linear hierarchy. We assayed individual learning performance of these males on a binary spatial discrimination task to investigate whether inter-individual variation in performance is associated with group social rank. Task performance improved with increasing trial number and was positively related to social rank, with higher ranking males showing greater levels of success. Motivation to participate in the task was not related to social rank or task performance, thus indicating that these rank-related differences are not a consequence of differences in motivation to complete the task. Our results provide important information about how variation in cognitive performance relates to an individual's social rank within a group. Whether the social environment causes differences in learning performance or instead, inherent differences in learning ability predetermine rank remains to be tested.

  15. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults.

    Directory of Open Access Journals (Sweden)

    Jonathan T W Schubert

    Full Text Available Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically ("palm" or "back" of the hand, or externally ("up" or "down" in space. Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly

  16. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults.

    Science.gov (United States)

    Schubert, Jonathan T W; Badde, Stephanie; Röder, Brigitte; Heed, Tobias

    2017-01-01

    Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically ("palm" or "back" of the hand), or externally ("up" or "down" in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top

  17. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task

    Directory of Open Access Journals (Sweden)

    Gregor eHardiess

    2013-06-01

    Full Text Available Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements the overall task for the subjects was to predict the potential-of-collision (POC of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing. In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (i which sensory variables can be identified supporting adequate collision detection? (ii How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (iii how do they correlate with task performance? (iv How do patients with homonymous visual field defects use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined

  18. Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task.

    Science.gov (United States)

    Korthauer, L E; Nowak, N T; Frahmand, M; Driscoll, I

    2017-01-15

    Although effective spatial navigation requires memory for objects and locations, navigating a novel environment may also require considerable executive resources. The present study investigated associations between performance on the virtual Morris Water Task (vMWT), an analog version of a nonhuman spatial navigation task, and neuropsychological tests of executive functioning and spatial performance in 75 healthy young adults. More effective vMWT performance (e.g., lower latency and distance to reach hidden platform, greater distance in goal quadrant on a probe trial, fewer path intersections) was associated with better verbal fluency, set switching, response inhibition, and ability to mentally rotate objects. Findings also support a male advantage in spatial navigation, with sex moderating several associations between vMWT performance and executive abilities. Overall, we report a robust relationship between executive functioning and navigational skill, with some evidence that men and women may differentially recruit cognitive abilities when navigating a novel environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. High and low schizotypal female subjects do not differ in spatial memory abilities in a virtual reality task.

    Science.gov (United States)

    García-Montes, José Manuel; Noguera, Carmen; Alvarez, Dolores; Ruiz, Marina; Cimadevilla Redondo, José Manuel

    2014-01-01

    Schizotypy is a psychological construct related to schizophrenia. The exact relationship between both entities is not clear. In recent years, schizophrenia has been associated with hippocampal abnormalities and spatial memory problems. The aim of this study was to determine possible links between high schizotypy (HS) and low schizotypy (LS) and spatial abilities, using virtual reality tasks. We hypothesised that the HS group would exhibit a lower performance in spatial memory tasks than the LS group. Two groups of female students were formed according to their score on the ESQUIZO-Q-A questionnaire. HS and LS subjects were tested on two different tasks: the Boxes Room task, a spatial memory task sensitive to hippocampal alterations and a spatial recognition task. Data showed that both groups mastered both tasks. Groups differed in personality features but not in spatial performance. These results provide valuable information about the schizotypy-schizophrenia connections. Schizotypal subjects are not impaired on spatial cognition and, accordingly, the schizotypy-schizophrenia relationship is not straightforward.

  20. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.

    Science.gov (United States)

    Schlesiger, Magdalene I; Cressey, John C; Boublil, Brittney; Koenig, Julie; Melvin, Neal R; Leutgeb, Jill K; Leutgeb, Stefan

    2013-11-01

    Temporally graded retrograde amnesia is observed in human patients with medial temporal lobe lesions as well as in animal models of medial temporal lobe lesions. A time-limited role for these structures in memory recall has also been suggested by the observation that the rodent hippocampus and entorhinal cortex are activated during the retrieval of recent but not of remote memories. One notable exception is the recall of remote memories for platform locations in the water maze, which requires an intact hippocampus and results in hippocampal activation irrespective of the age of the memory. These findings raise the question whether the hippocampus is always involved in the recall of spatial memories or, alternatively, whether it might be required for procedural computations in the water maze task, such as for calculating a path to a hidden platform. We performed spatial memory testing in radial maze tasks to distinguish between these possibilities. Radial maze tasks require a choice between spatial locations on a center platform and thus have a lesser requirement for navigation than the water maze. However, we used a behavioral design in the radial maze that retained other aspects of the standard water maze task, such as the use of multiple start locations and retention testing in a single trial. Using the immediate early gene c-fos as a marker for neuronal activation, we found that all hippocampal subregions were more activated during the recall of remote compared to recent spatial memories. In areas CA3 and CA1, activation during remote memory testing was higher than in rats that were merely reexposed to the testing environment after the same time interval. Conversely, Fos levels in the dentate gyrus were increased after retention testing to the extent that was also observed in the corresponding exposure control group. This pattern of hippocampal activation was also obtained in a second version of the task that only used a single start arm instead of multiple

  1. Flexible spatial perspective-taking: Conversational partners weigh multiple cues in collaborative tasks

    Directory of Open Access Journals (Sweden)

    Alexia eGalati

    2013-09-01

    non-spatial tasks.

  2. Flexible spatial perspective-taking: conversational partners weigh multiple cues in collaborative tasks.

    Science.gov (United States)

    Galati, Alexia; Avraamides, Marios N

    2013-01-01

    Research on spatial perspective-taking often focuses on the cognitive processes of isolated individuals as they adopt or maintain imagined perspectives. Collaborative studies of spatial perspective-taking typically examine speakers' linguistic choices, while overlooking their underlying processes and representations. We review evidence from two collaborative experiments that examine the contribution of social and representational cues to spatial perspective choices in both language and the organization of spatial memory. Across experiments, speakers organized their memory representations according to the convergence of various cues. When layouts were randomly configured and did not afford intrinsic cues, speakers encoded their partner's viewpoint in memory, if available, but did not use it as an organizing direction. On the other hand, when the layout afforded an intrinsic structure, speakers organized their spatial memories according to the person-centered perspective reinforced by the layout's structure. Similarly, in descriptions, speakers considered multiple cues whether available a priori or at the interaction. They used partner-centered expressions more frequently (e.g., "to your right") when the partner's viewpoint was misaligned by a small offset or coincided with the layout's structure. Conversely, they used egocentric expressions more frequently when their own viewpoint coincided with the intrinsic structure or when the partner was misaligned by a computationally difficult, oblique offset. Based on these findings we advocate for a framework for flexible perspective-taking: people weigh multiple cues (including social ones) to make attributions about the relative difficulty of perspective-taking for each partner, and adapt behavior to minimize their collective effort. This framework is not specialized for spatial reasoning but instead emerges from the same principles and memory-depended processes that govern perspective-taking in non-spatial tasks.

  3. Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Redel, P; Bublak, P; Sorg, C; Kurz, A; Förstl, H; Müller, H J; Schneider, W X; Perneczky, R; Finke, K

    2012-01-01

    Visual selective attention was assessed with a partial-report task in patients with probable Alzheimer's disease (AD), amnestic mild cognitive impairment (MCI), and healthy elderly controls. Based on Bundesen's "theory of visual attention" (TVA), two parameters were derived: top-down control of attentional selection, representing task-related attentional weighting for prioritizing relevant visual objects, and spatial distribution of attentional weights across the left and the right hemifield. Compared with controls, MCI patients showed significantly reduced top-down controlled selection, which was further deteriorated in AD subjects. Moreover, attentional weighting was significantly unbalanced across hemifields in MCI and tended to be more lateralized in AD. Across MCI and AD patients, carriers of the apolipoprotein E ε4 allele (ApoE4) displayed a leftward spatial bias, which was the more pronounced the younger the ApoE4-positive patients and the earlier disease onset. These results indicate that impaired top-down control may be linked to early dysfunction of fronto-parietal networks. An early temporo-parietal interhemispheric asymmetry might cause a pathological spatial bias which is associated with ApoE4 genotype and may therefore function as early cognitive marker of upcoming AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. An Investigation of the Relationship Between Automated Machine Translation Evaluation Metrics and User Performance on an Information Extraction Task

    Science.gov (United States)

    2007-01-01

    more reliable than BLEU and that it is easier to understand in terms familiar to NLP researchers. 19 2.2.3 METEOR Researchers at Carnegie Mellon...essential elements of infor- mation from output generated by three types of Arabic -English MT engines. The information extraction experiment was one of three...reviewing the task hierarchy and examining the MT output of several engines. A small, prior pilot experiment to evaluate Arabic -English MT engines for

  5. Integration of Landscape Metrics and Variograms to Characterize and Quantify the Spatial Heterogeneity Change of Vegetation Induced by the 2008 Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-06-01

    Full Text Available The quantification of spatial heterogeneity can be used to examine the structure of ecological systems. The 2008 Wenchuan earthquake caused severe vegetation damage. In addition to simply detecting change, the magnitude of changes must also be examined. Remote sensing and geographic information system techniques were used to produce landscape maps before and after the earthquake and analyze the spatial-temporal change of the vegetation pattern. Landscape metrics were selected to quantify the spatial heterogeneity in a categorical map at both the class and landscape levels. The results reveal that the Wenchuan earthquake greatly increased the heterogeneity in the study area. In particular, forests experienced the most fragmentation among all of the landscape types. In addition, spatial heterogeneity in a numerical map was studied by using variogram analysis of normalized difference vegetation indices derived from Landsat images. In comparison to before the earthquake, the spatial variability after the earthquake had doubled. The structure of the spatial heterogeneity represented by the range of normalized difference vegetation index (NDVI variograms also changed due to the earthquake. Moreover, the results of the NDVI variogram analysis of three contrasting landscapes, which were farmland, broadleaved forest, and coniferous forest, confirm that the earthquake produced spatial variability and changed the structure of the landscapes. Regardless of before or after the earthquake, farmland sites are the most heterogeneous among the three landscapes studied.

  6. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  7. Computerized spatial delayed recognition span task: a specific tool to assess visuospatial working memory.

    Science.gov (United States)

    Satler, Corina; Belham, Flávia Schechtman; Garcia, Ana; Tomaz, Carlos; Tavares, Maria Clotilde H

    2015-01-01

    A new tablet device version (IOS platform) of the Spatial Delayed Recognition Span Task (SDRST) was developed with the aim of investigating visuospatial Working Memory (WM) abilities based on touchscreen technology. This new WM testing application will be available to download for free in Apple Store app ("SDRST app"). In order to verify the feasibility of this computer-based task, we conducted three experiments with different manipulations and groups of participants. We were interested in investigating if (1) the SDRST is sensitive enough to tap into cognitive differences brought by aging and dementia; (2) different experimental manipulations work successfully; (3) cortical brain activations seen in other WM tasks are also demonstrated here; and (4) non-human primates are able to answer the task. Performance (scores and response time) was better for young than older adults and higher for the latter when compared to Alzheimer's disease (AD) patients. All groups performed better with facial stimuli than with images of scenes and with emotional than with neutral stimuli. Electrophysiology data showed activation on prefrontal and frontal areas of scalp, theta band activity on the midline area, and gamma activity in left temporal area. There are all scalp regions known to be related to attention and WM. Besides those data, our sample of adult captive capuchin monkeys (Sapajus libidinosus) answered the task above chance level. Taken together, these results corroborate the reliability of this new computer-based SDRST as a measure of visuospatial WM in clinical and non-clinical populations as well as in non-human primates. Its tablet app allows the task to be administered in a wide range of settings, including hospitals, homes, schools, laboratories, universities, and research institutions.

  8. Computerized Spatial-Delayed Recognition Span Task: a specific tool to assess visuospatial working memory

    Directory of Open Access Journals (Sweden)

    Corina eSatler

    2015-04-01

    Full Text Available A new tablet device version (IOS platform of the Spatial Delayed Recognition Span Task (SDRST was developed with the aim of investigating visuospatial Working Memory (WM abilities based on touchscreen technology. This new WM testing application will be available to download for free in Apple Store app (SDRST app. In order to verify the feasibility of this computer-based task, we conducted three experiments with different manipulations and groups of participants. We were interested in investigating if (1 the SDRST is sensitive enough to tap into cognitive differences brought by ageing and dementia; (2 different experimental manipulations work successfully; (3 cortical brain activations seen in other WM tasks are also demonstrated here; and (4 non-human primates are able to answer the task. Performance (scores and response time was better for young than older adults and higher for the latter when compared to Alzheimer’s disease patients. All groups performed better with facial stimuli than with images of scenes and with emotional than with neutral stimuli. Electrophysiology data showed activation on prefrontal and frontal areas of scalp, theta band activity on the midline area, and gamma activity in left temporal area. There are all scalp regions known to be related to attention and WM. Besides those data, our sample of adult captive capuchin monkeys (Sapajus libidinosus answered the task above chance level. Taken together, these results corroborate the reliability of this new computer-based SDRST as a measure of visuospatial WM in clinical and non-clinical populations as well as in non-human primates. Its tablet app allows the task to be administered in a wide range of settings, including hospitals, homes, schools, laboratories, universities, and research institutions.

  9. Reaction time inconsistency in a spatial stroop task: age-related differences through childhood and adulthood.

    Science.gov (United States)

    Williams, Benjamin R; Strauss, Esther H; Hultsch, David F; Hunter, Michael A

    2007-07-01

    Age-related differences in inconsistency of reaction time (RT) across the life span were examined on a task with differing levels of demand on executive control. A total of 546 participants, aged 5 to 76 years, completed a spatial Stroop task that permitted observations under three conditions (congruent, incongruent, and neutral) according to the correspondence between the required response (based on stimulus direction) and stimulus location. An interference effect was observed across all ages. Analyses of neutral condition data replicated previous research demonstrating RT inconsistency follows a U-shaped developmental curve across the life span. The relationship between age and inconsistency, however, depended on condition: inconsistency in the congruent condition was higher than inconsistency in both the neutral and incongruent conditions across middle-aged groups. Reaction time inconsistency may reflect processing efficiency that is maximal in young adulthood and may also be sensitive to fluctuations in performance that reflect momentarily highly efficient responding.

  10. Comparing temporal order judgments and choice reaction time tasks as indices of exogenous spatial cuing.

    Science.gov (United States)

    Eskes, Gail A; Klein, Raymond M; Dove, Mary Beth; Coolican, Jamesie; Shore, David I

    2007-11-30

    Attentional disorders are common in individuals with neurological or psychiatric conditions and impact on recovery and outcome. Thus, it is critical to develop theory-based measures of attentional function to understand potential mechanisms underlying the disorder and to evaluate the effect of intervention. The present study compared two alternative methods to measure the effects of attentional cuing that could be used in populations of individuals who may not be able to make manual responses normally or may show overall slowing in responses. Spatial attention was measured with speeded and unspeeded methods using either manual or voice responses in two standard attention paradigms: the cued target discrimination reaction time (RT) paradigm and the unspeeded temporal order judgment (TOJ) task. The comparison of speeded and unspeeded tasks specifically addresses the concern about interpreting RT differences between cued and uncued trials (taken as a proxy for attention) in the context of drastically different baseline RTs. We found significant cuing effects for both tasks (speeded RT and untimed TOJ) and both response types (vocal and manual) giving clinicians and researchers alternative methods with which to measure the effects of attention in different populations who may not be able to perform the standard speeded RT task.

  11. Complex neural codes in rat prelimbic cortex are stable across days on a spatial decision task

    Directory of Open Access Journals (Sweden)

    Nathaniel J. Powell

    2014-04-01

    Full Text Available The rodent prelimbic cortex has been shown to play an important role in cognitive processing, and has been implicated in encoding many different parameters relevant to solving decision-making tasks. However, it is not known how the prelimbic cortex represents all these disparate variables, and if they are simultaneously represented when the task requires it. In order to investigate this question, we trained rats to run the Multiple-T Left Right Alternate (MT-LRA task and recorded multi-unit ensembles from their prelimbic regions. Significant populations of cells in the prelimbic cortex represented the strategy controlling reward receipt on a given lap, whether the animal chose to go right or left on a given lap, and whether the animal made a correct decision or an error on a given lap. These populations overlapped in the cells recorded, with several cells demonstrating differential firing to all three variables. The spatial and strategic firing patterns of individual prelimbic cells were highly conserved across several days of running this task, indicating that each cell encoded the same information across days.

  12. Projecting one’s own spatial bias onto others during a theory-of-mind task

    Science.gov (United States)

    Bio, Branden J.; Webb, Taylor W.; Graziano, Michael S. A.

    2018-01-01

    Many people show a left-right bias in visual processing. We measured spatial bias in neurotypical participants using a variant of the line bisection task. In the same participants, we measured performance in a social cognition task. This theory-of-mind task measured whether each participant had a processing-speed bias toward the right of, or left of, a cartoon agent about which the participant was thinking. Crucially, the cartoon was rotated such that what was left and right with respect to the cartoon was up and down with respect to the participant. Thus, a person’s own left-right bias could not align directly onto left and right with respect to the cartoon head. Performance on the two tasks was significantly correlated. People who had a natural bias toward processing their own left side of space were quicker to process how the cartoon might think about objects to the left side of its face, and likewise for a rightward bias. One possible interpretation of these results is that the act of processing one’s own personal space shares some of the same underlying mechanisms as the social cognitive act of reconstructing someone else’s processing of their space. PMID:29339513

  13. Evidence from a partial report task for forgetting in dynamic spatial memory.

    Science.gov (United States)

    Gugerty, L

    1998-09-01

    G. Sperling (1960) and others have investigated memory for briefly presented stimuli by using a partial versus whole report technique in which participants sometimes reported part of a stimulus array and sometimes reported all of it. For simple, static stimulus displays, the partial report technique showed that participants could recall most of the information in the stimulus array but that this information faded quickly when participants engaged in whole report recall. An experiment was conducted that applied the partial report method to a task involving complex displays of moving objects. In the experiment, 26 participants viewed cars in a low-fidelity driving simulator and then reported the locations of some or all of the cars in each scene. A statistically significant advantage was found for the partial report trials. This finding suggests that detailed spatial location information was forgotten from dynamic spatial memory over the 14 s that it took participants to recall whole report trials. The experiment results suggest better ways of measuring situation awareness. Partial report recall techniques may give a more accurate measure of people's momentary situation awareness than whole report techniques. Potential applications of this research include simulator-based measures of situation awareness ability that can be part of inexpensive test batteries to select people for real-time tasks (e.g., in a driver licensing battery) and to identify people who need additional training.

  14. Transfer of learning on a spatial memory task between the blind and sighted people.

    Science.gov (United States)

    Akpinar, Selcuk; Popović, Stevo; Kirazci, Sadettin

    2012-12-01

    The purpose of this study was to analyze the effect of two different types of feedback on a spatial memory task between the blind and blindfolded-sighted participants. Participants tried to estimate the predetermined distance by using their dominant hands. Both blind and blindfolded-sighted groups were randomly divided into two feedback subgroups as "100% frequency" and "10% bandwidth". The score of the participants was given verbally to the participants as knowledge of results (KR). The target distance was set as 60 cm. Sixty acquisition trials were performed in 4 sets each including 15 repetition afterwards immediate and delayed retention tests were undertaken. Moreover, 24 hours past the delayed retention test, the participants completed 15 no-KR trials as a transfer test (target distance was 30 cm). The results of the statistical analyses revealed no significant differences for both acquisition and retention tests. However, a significant difference was found at transfer test. 100% frequency blind group performed significantly less accurate than all other groups. As a result, it can be concluded that different types of feedback have similar effect on spatial memory task used in this study. However, types of feedback can change the performance of accuracy on transferring this skill among the blind.

  15. Mineralocorticoid receptor stimulation effects on spatial memory in healthy young adults: A study using the virtual Morris Water Maze task.

    Science.gov (United States)

    Piber, Dominique; Schultebraucks, Katharina; Mueller, Sven C; Deuter, Christian Eric; Wingenfeld, Katja; Otte, Christian

    2016-12-01

    Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Very low birth weight piglets show improved cognitive performance in the spatial cognitive holeboard task

    Directory of Open Access Journals (Sweden)

    Alexandra eAntonides

    2015-02-01

    Full Text Available Low birth weight (LBW is common in humans and has been found to cause lasting cognitive and developmental deficits later in life. It is thought that the primary cause is intra-uterine growth restriction due to a shortage of oxygen and nutrients supply to the fetus. Pigs appear to be a good model animal to investigate long-term cognitive effects of LBW, as LBW is common in commercially farmed breeds of pigs. Moreover, pigs are developmentally similar to humans and can be trained to perform complex tasks. In this study, we trained ten very low birth weight (vLBW piglets and their ten normal birth weight (NBW siblings in a spatial cognitive holeboard task in order to investigate long-term cognitive effects of LBW. In this task, four out of sixteen holes contain a hidden food reward, which allows measuring working memory (short-term and reference memory (long-term in parallel. Piglets were trained for 46-54 trials during the acquisition phase, followed by a 20-trial reversal phase in which a different set of four holes was baited. Both groups acquired the task and improved their performance over time. A mixed model repeated measures ANOVA revealed that vLBW piglets showed a better reference memory performance than NBW piglets in both the acquisition and reversal phase. Additionally, the vLBW piglets fell back less in working memory scores than the NBW animals when switched to the reversal phase. These findings are contrary to findings in humans. Moreover, vLBW pigs had lower hair cortisol concentrations than NBW pigs in flank hair at 12 weeks of age. These results could indicate that restricted intra-uterine growth causes compensatory mechanisms to arise in early development that result in beneficial effects for vLBW piglets, increasing their low survival chances in early-life competition.

  17. Very low birth weight piglets show improved cognitive performance in the spatial cognitive holeboard task.

    Science.gov (United States)

    Antonides, Alexandra; Schoonderwoerd, Anne C; Nordquist, Rebecca E; van der Staay, Franz Josef

    2015-01-01

    Low birth weight (LBW) is common in humans and has been found to cause lasting cognitive and developmental deficits later in life. It is thought that the primary cause is intra-uterine growth restriction (IUGR) due to a shortage of oxygen and supply of nutrients to the fetus. Pigs appear to be a good model animal to investigate long-term cognitive effects of LBW, as LBW is common in commercially farmed breeds of pigs. Moreover, pigs are developmentally similar to humans and can be trained to perform complex tasks. In this study, we trained ten very low birth weight (vLBW) piglets and their ten normal birth weight (NBW) siblings in a spatial cognitive holeboard task in order to investigate long-term cognitive effects of LBW. In this task, four out of sixteen holes contain a hidden food reward, which allows measuring working memory (WM) (short-term memory) and reference memory (RM) (long-term memory) in parallel. Piglets were trained for 46-54 trials during the acquisition phase, followed by a 20-trial reversal phase in which a different set of four holes was baited. Both groups acquired the task and improved their performance over time. A mixed model repeated measures ANOVA revealed that vLBW piglets showed better RM performance than NBW piglets in both the acquisition and reversal phase. Additionally, WM scores in the vLBW were less disrupted than in the NBW animals when switched to the reversal phase. These findings are contrary to findings in humans. Moreover, vLBW pigs had lower hair cortisol concentrations (HCCs) than NBW pigs in flank hair at 12 weeks of age. These results could indicate that restricted intra-uterine growth causes compensatory mechanisms to arise in early development that result in beneficial effects for vLBW piglets, increasing their low survival chances in early-life competition.

  18. Using spatial metrics and surveys for the assessment of trans-boundary deforestation in protected areas of the Maya Mountain Massif: Belize-Guatemala border.

    Science.gov (United States)

    Chicas, S D; Omine, K; Ford, J B; Sugimura, K; Yoshida, K

    2017-02-01

    Understanding the trans-boundary deforestation history and patterns in protected areas along the Belize-Guatemala border is of regional and global importance. To assess deforestation history and patterns in our study area along a section of the Belize-Guatemala border, we incorporated multi-temporal deforestation rate analysis and spatial metrics with survey results. This multi-faceted approach provides spatial analysis with relevant insights from local stakeholders to better understand historic deforestation dynamics, spatial characteristics and human perspectives regarding the underlying causes thereof. During the study period 1991-2014, forest cover declined in Belize's protected areas: Vaca Forest Reserve 97.88%-87.62%, Chiquibul National Park 99.36%-92.12%, Caracol Archeological Reserve 99.47%-78.10% and Colombia River Forest Reserve 89.22%-78.38% respectively. A comparison of deforestation rates and spatial metrics indices indicated that between time periods 1991-1995 and 2012-2014 deforestation and fragmentation increased in protected areas. The major underlying causes, drivers, impacts, and barriers to bi-national collaboration and solutions of deforestation along the Belize-Guatemala border were identified by community leaders and stakeholders. The Mann-Whitney U test identified significant differences between leaders and stakeholders regarding the ranking of challenges faced by management organizations in the Maya Mountain Massif, except for the lack of assessment and quantification of deforestation (LD, SH: 18.67, 23.25, U = 148, p > 0.05). The survey results indicated that failure to integrate buffer communities, coordinate among managing organizations and establish strong bi-national collaboration has resulted in continued ecological and environmental degradation. The information provided by this research should aid managing organizations in their continued aim to implement effective deforestation mitigation strategies. Copyright © 2016 Elsevier

  19. The effects of age and workload on 3D spatial attention in dual-task driving.

    Science.gov (United States)

    Pierce, Russell S; Andersen, George J

    2014-06-01

    In the present study we assessed whether the limits in visual-spatial attention associated with aging affect the spatial extent of attention in depth during driving performance. Drivers in the present study performed a car-following and light-detection task. To assess the extent of visual-spatial attention, we compared reaction times and accuracy to light change targets that varied in horizontal position and depth location. In addition, because workload has been identified as a factor that can change the horizontal and vertical extent of attention, we tested whether variability of the lead car speed influenced the extent of spatial attention for younger or older drivers. For younger drivers, reaction time (RT) to light-change targets varied as a function of distance and horizontal position. For older drivers RT varied only as a function of distance. There was a distance by horizontal position interaction for younger drivers but not for older drivers. Specifically, there was no effect of horizontal position at any given level of depth for older drivers. However, for younger drivers there was an effect of horizontal position for targets further in depth but not for targets nearer in depth. With regards to workload, we found no statistically reliable evidence that variability of the lead car speed had an effect on the spatial extent of attention for younger or older drivers. In a control experiment, we examined the effects of depth on light detection when the projected size and position of the targets was constant. Consistent with our previous results, we found that drivers' reaction time to light-change targets varied as a function of distance even when 2D position and size were controlled. Given that depth is an important dimension in driving performance, an important issue for assessing driving safety is to consider the limits of attention in the depth dimension. Therefore, we suggest that future research should consider the importance of depth as a dimension of

  20. Lucky numbers: spatial neglect affects physical, but not representational, choices in a lotto task.

    Science.gov (United States)

    Loetscher, Tobias; Nicholls, Michael E R; Towse, John N; Bradshaw, John L; Brugger, Peter

    2010-05-01

    Spatial neglect can be characterized by a "magnetic attraction" towards the right side of a visual stimulus array and a selection of stimuli from that hemispace. This study examined whether these distinctive characteristics in visuo-motor space are also evident in representational number space. Given that numbers are thought to be represented along a left-to-right oriented mental number line, an affinity for the spontaneous selection of larger numbers was anticipated for neglect patients. Contrary to this expectation, neglect patients (n=20) picked a similar range of numbers compared to controls (n=17) when generating a number between 1000 and 10,000 and when playing an imaginary lottery game. There was, however, a positive correlation between the biases for the imaginary lottery, number generation and a number bisection task - demonstrating that exploration asymmetries along the mental number line are consistent within individuals across tasks. Some of the patients selected smaller numbers in all of these tasks, confirming reports of dissociations between physical and numerical-representational forms of neglect. Conversely, only four (20%) of the patients could reliably be classified as demonstrating a neglect in number space. When filling out a physical lottery ticket, the neglect patients showed the expected bias towards picking numbers placed on the right-hand side of the ticket. These results demonstrate that the magnetic attraction towards the right side of mental representations is rather weak and that representational forms of neglect only occasionally co-exist with neglect in physical space. Copyright 2009 Elsevier Srl. All rights reserved.

  1. Effects of caloric restriction on learning and recovery of a spatial task in rats exposed to acute stress

    Directory of Open Access Journals (Sweden)

    Lamprea Rodríguez, Marisol

    2009-06-01

    Full Text Available The purpose of the present study was to describe the effects of caloric restriction on spatial learning and recovery in the Barnes maze in animals experimentally stressed before recovery of the spatial task. Male Wistar rats were exposed for two months to one of two conditions: ad libitum (AL or intermittent fasting (IF. Both groups were exposed then to an experimental form of acute stress, induced by movement restriction for 4 hours. IF subjects had better performance in learning tasks during the acquisition trials but required more time to complete the task after the stressor was applied. These results are discussed in light of previous data reported in the literature emphasizing differences in the instruments used to evaluate spatial learning and its interaction with experimentally induced stress.

  2. Analyzing Snowpack Metrics Over Large Spatial Extents Using Calibrated, Enhanced-Resolution Brightness Temperature Data and Long Short Term Memory Artificial Neural Networks

    Science.gov (United States)

    Norris, W.; J Q Farmer, C.

    2017-12-01

    Snow water equivalence (SWE) is a difficult metric to measure accurately over large spatial extents; snow-tell sites are too localized, and traditional remotely sensed brightness temperature data is at too coarse of a resolution to capture variation. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) data from the National Snow and Ice Data Center (NSIDC) offers remotely sensed brightness temperature data at an enhanced resolution of 3.125 km versus the original 25 km, which allows for large spatial extents to be analyzed with reduced uncertainty compared to the 25km product. While the 25km brightness temperature data has proved useful in past research — one group found decreasing trends in SWE outweighed increasing trends three to one in North America; other researchers used the data to incorporate winter conditions, like snow cover, into ecological zoning criterion — with the new 3.125 km data, it is possible to derive more accurate metrics for SWE, since we have far more spatial variability in measurements. Even with higher resolution data, using the 37 - 19 GHz frequencies to estimate SWE distorts the data during times of melt onset and accumulation onset. Past researchers employed statistical splines, while other successful attempts utilized non-parametric curve fitting to smooth out spikes distorting metrics. In this work, rather than using legacy curve fitting techniques, a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) was trained to perform curve fitting on the data. LSTM ANN have shown great promise in modeling time series data, and with almost 40 years of data available — 14,235 days — there is plenty of training data for the ANN. LSTM's are ideal for this type of time series analysis because they allow important trends to persist for long periods of time, but ignore short term fluctuations; since LSTM's have poor mid- to short-term memory, they are ideal for smoothing out the large spikes generated in the melt

  3. A Virtual Reality Task Based on Animal Research - Spatial Learning and Memory in Patients after the First Episode of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Iveta eFajnerova

    2014-05-01

    Full Text Available Objective: Cognitive deficit is considered to be a characteristic feature of schizophrenia disorder. A similar cognitive dysfunction was demonstrated in animal models of schizophrenia. However, the poor comparability of methods used to assess cognition in animals and humans could be responsible for low predictive validity of current animal models. In order to assess spatial abilities in schizophrenia and compare our results with the data obtained in animal models we designed a virtual analogue of the Morris water maze (MWM, the virtual Four Goals Navigation (vFGN task.Method: Twenty-nine patients after the first psychotic episode with schizophrenia symptoms and a matched group of healthy volunteers performed the vFGN task. They were required to find and remember four hidden goal positions in an enclosed virtual arena. The task consisted of two parts. The Reference memory (RM session with a stable goal position was designed to test spatial learning. The Delayed-matching-to-place (DMP session presented a modified working memory protocol designed to test the ability to remember a sequence of three hidden goal positions.Results: Data obtained in the RM session show impaired spatial learning in schizophrenia patients compared to healthy controls in pointing and navigation accuracy. The DMP session showed impaired spatial memory in schizophrenia during the recall of spatial sequence and similar deficit in spatial bias in probe trials. The pointing accuracy and the quadrant preference showed higher sensitivity toward the cognitive deficit than the navigation accuracy. Direct navigation to the goal was affected by sex and age of the tested subjects. Age affected spatial performance only in healthy controls. Conclusions: Despite some limitations of the study, our results correspond well to previous studies in animal models of schizophrenia and support the decline of spatial cognition in schizophrenia, indicating the usefulness of the vFGN task in

  4. Progressive impairment of directional and spatially precise trajectories by TgF344-AD Rats in the Morris Water Task

    OpenAIRE

    Thompson, Shannon; Harvey, Ryan; Clark, Benjamin; Drake, Emma; Berkowitz, Laura

    2018-01-01

    Spatial navigation is impaired in early stages of Alzheimers disease (AD), and may be a defining behavioral marker of preclinical AD. Nevertheless, limitations of diagnostic criteria for AD and within animal models of AD make characterization of preclinical AD difficult. A new rat model (TgF344-AD) of AD overcomes many of these limitations, though spatial navigation has not been comprehensively assessed. Using the hidden and cued platform variants of the Morris water task, a longitudinal asse...

  5. The right look for the job: decoding cognitive processes involved in the task from spatial eye-movement patterns.

    Science.gov (United States)

    Król, Magdalena Ewa; Król, Michał

    2018-02-20

    The aim of the study was not only to demonstrate whether eye-movement-based task decoding was possible but also to investigate whether eye-movement patterns can be used to identify cognitive processes behind the tasks. We compared eye-movement patterns elicited under different task conditions, with tasks differing systematically with regard to the types of cognitive processes involved in solving them. We used four tasks, differing along two dimensions: spatial (global vs. local) processing (Navon, Cognit Psychol, 9(3):353-383 1977) and semantic (deep vs. shallow) processing (Craik and Lockhart, J Verbal Learn Verbal Behav, 11(6):671-684 1972). We used eye-movement patterns obtained from two time periods: fixation cross preceding the target stimulus and the target stimulus. We found significant effects of both spatial and semantic processing, but in case of the latter, the effect might be an artefact of insufficient task control. We found above chance task classification accuracy for both time periods: 51.4% for the period of stimulus presentation and 34.8% for the period of fixation cross presentation. Therefore, we show that task can be to some extent decoded from the preparatory eye-movements before the stimulus is displayed. This suggests that anticipatory eye-movements reflect the visual scanning strategy employed for the task at hand. Finally, this study also demonstrates that decoding is possible even from very scant eye-movement data similar to Coco and Keller, J Vis 14(3):11-11 (2014). This means that task decoding is not limited to tasks that naturally take longer to perform and yield multi-second eye-movement recordings.

  6. Low Birth Weight Impairs Acquisition of Spatial Memory Task in Pigs

    Directory of Open Access Journals (Sweden)

    Sanne Roelofs

    2018-06-01

    Full Text Available In commercial pig farming, an increasing number of low birth weight (LBW piglets are born, due to selection for large litter sizes. While LBW piglets have a higher risk of pre-weaning mortality, a considerable number of these piglets survive to slaughter age. In humans, LBW is a risk factor for long-term cognitive impairments. In pigs, studies examining the post-weaning effects of LBW on cognition have reported contradictory results. Therefore, the current study aimed to assess the effects of LBW on cognitive development in pigs using an improved study design, by (1 testing a larger sample size than previous studies, (2 assessing acute and chronic stress responses to account for a potential altered stress response in LBW pigs, and (3 testing both female and male pigs to account for potential confounding effects of sex. Learning and memory of 20 LBW pigs and 20 normal birth weight (NBW pigs, both groups consisting of 10 females and 10 males, were compared using a spatial holeboard task. In this task, pigs had to learn and remember the locations of hidden food rewards. After a pig had successfully acquired the task, it was presented with two successive reversal phases during which it was presented with a new configuration of reward locations. The holeboard allows for simultaneous assessment of working and reference memory, as well as measures of motivation, exploration, and behavioral flexibility. Mixed model ANOVAs revealed a transiently impaired reference memory performance of LBW pigs, implying they had more difficulty learning their reward configuration in the holeboard. Also, LBW piglets showed increased pre-weaning hair cortisol concentrations compared to their NBW siblings. No other effects of LBW were found. Sex had no direct or interaction effects on any measures of holeboard performance or stress. It is possible that the enriched housing conditions applied during our study had an ameliorating effect on our pigs' cognitive development

  7. Beyond Conceptual Knowledge: The Impact of Children’s Theory-of-Mind on Dyadic Spatial Tasks

    Science.gov (United States)

    Viana, Karine M. P.; Zambrana, Imac M.; Karevold, Evalill B.; Pons, Francisco

    2016-01-01

    Recent studies show that Theory of Mind (ToM) has implications for children’s social competences and psychological well-being. Nevertheless, although it is well documented that children overall take advantage when they have to resolve cognitive problems together with a partner, whether individual difference in ToM is one of the mechanisms that could explain cognitive performances produced in social interaction has received little attention. This study examines to what extent ToM explains children’s spatial performances in a dyadic situation. The sample includes 66 boys and girls between the ages of 5–9 years, who were tested for their ToM and for their competence to resolve a Spatial task involving mental rotation and spatial perspective taking, first individually and then in a dyadic condition. Results showed, in accordance with previous research, that children performed better on the Spatial task when they resolved it with a partner. Specifically, children’s ToM was a better predictor of their spatial performances in the dyadic condition than their age, gender, and spatial performances in the individual setting. The findings are discussed in terms of the relation between having a conceptual understanding of the mind and the practical implications of this knowledge for cognitive performances in social interaction regarding mental rotation and spatial perspective taking. PMID:27812344

  8. Overshadowing of geometric cues by a beacon in a spatial navigation task.

    Science.gov (United States)

    Redhead, Edward S; Hamilton, Derek A; Parker, Matthew O; Chan, Wai; Allison, Craig

    2013-06-01

    In three experiments, we examined whether overshadowing of geometric cues by a discrete landmark (beacon) is due to the relative saliences of the cues. Using a virtual water maze task, human participants were required to locate a platform marked by a beacon in a distinctively shaped pool. In Experiment 1, the beacon overshadowed geometric cues in a trapezium, but not in an isosceles triangle. The longer escape latencies during acquisition in the trapezium control group with no beacon suggest that the geometric cues in the trapezium were less salient than those in the triangle. In Experiment 2, we evaluated whether generalization decrement, caused by the removal of the beacon at test, could account for overshadowing. An additional beacon was placed in an alternative corner. For the control groups, the beacons were identical; for the overshadow groups, they were visually unique. Overshadowing was again found in the trapezium. In Experiment 3, we tested whether the absence of overshadowing in the triangle was due to the geometric cues being more salient than the beacon. Following training, the beacon was relocated to a different corner. Participants approached the beacon rather than the trained platform corner, suggesting that the beacon was more salient. These results suggest that associative processes do not fully explain cue competition in the spatial domain.

  9. Study of target and non-target interplay in spatial attention task.

    Science.gov (United States)

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  10. Daily Access to Sucrose Impairs Aspects of Spatial Memory Tasks Reliant on Pattern Separation and Neural Proliferation in Rats

    Science.gov (United States)

    Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick

    2016-01-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…

  11. Beyond time and space: The effect of a lateralized sustained attention task and brain stimulation on spatial and selective attention.

    Science.gov (United States)

    Shalev, Nir; De Wandel, Linde; Dockree, Paul; Demeyere, Nele; Chechlacz, Magdalena

    2017-10-03

    The Theory of Visual Attention (TVA) provides a mathematical formalisation of the "biased competition" account of visual attention. Applying this model to individual performance in a free recall task allows the estimation of 5 independent attentional parameters: visual short-term memory (VSTM) capacity, speed of information processing, perceptual threshold of visual detection; attentional weights representing spatial distribution of attention (spatial bias), and the top-down selectivity index. While the TVA focuses on selection in space, complementary accounts of attention describe how attention is maintained over time, and how temporal processes interact with selection. A growing body of evidence indicates that different facets of attention interact and share common neural substrates. The aim of the current study was to modulate a spatial attentional bias via transfer effects, based on a mechanistic understanding of the interplay between spatial, selective and temporal aspects of attention. Specifically, we examined here: (i) whether a single administration of a lateralized sustained attention task could prime spatial orienting and lead to transferable changes in attentional weights (assigned to the left vs right hemi-field) and/or other attentional parameters assessed within the framework of TVA (Experiment 1); (ii) whether the effects of such spatial-priming on TVA parameters could be further enhanced by bi-parietal high frequency transcranial random noise stimulation (tRNS) (Experiment 2). Our results demonstrate that spatial attentional bias, as assessed within the TVA framework, was primed by sustaining attention towards the right hemi-field, but this spatial-priming effect did not occur when sustaining attention towards the left. Furthermore, we show that bi-parietal high-frequency tRNS combined with the rightward spatial-priming resulted in an increased attentional selectivity. To conclude, we present a novel, theory-driven method for attentional modulation

  12. Semantic metrics

    OpenAIRE

    Hu, Bo; Kalfoglou, Yannis; Dupplaw, David; Alani, Harith; Lewis, Paul; Shadbolt, Nigel

    2006-01-01

    In the context of the Semantic Web, many ontology-related operations, e.g. ontology ranking, segmentation, alignment, articulation, reuse, evaluation, can be boiled down to one fundamental operation: computing the similarity and/or dissimilarity among ontological entities, and in some cases among ontologies themselves. In this paper, we review standard metrics for computing distance measures and we propose a series of semantic metrics. We give a formal account of semantic metrics drawn from a...

  13. Time asymmetric spacetimes near null and spatial infinity: II. Expansions of developments of initial data sets with non-smooth conformal metrics

    International Nuclear Information System (INIS)

    Kroon, Juan Antonio Valiente

    2005-01-01

    This paper uses the conformal Einstein equations and the conformal representation of spatial infinity introduced by Friedrich to analyse the behaviour of the gravitational field near null and spatial infinity for the development of initial data which are, in principle, non-conformally flat and time asymmetric. The paper is the continuation of the investigation started in Class. Quantum Grav. 21 (2004) 5457-92, where only conformally flat initial data sets were considered. For the purposes of this investigation, the conformal metric of the initial hypersurface is assumed to have a very particular type of non-smoothness at infinity in order to allow for the presence of non-Schwarzschildean stationary initial data sets in the class under study. The calculation of asymptotic expansions of the development of these initial data sets reveals-as in the conformally flat case-the existence of a hierarchy of obstructions to the smoothness of null infinity which are expressible in terms of the initial data. This allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. A conjecture regarding the general structure of the hierarchy of obstructions is presented

  14. Integrated cross-domain object storage in working memory: evidence from a verbal-spatial memory task.

    Science.gov (United States)

    Morey, Candice C

    2009-11-01

    Working-memory theories often include domain-specific verbal and visual stores (e.g., the phonological and visuospatial buffers of Baddeley, 1986), and some also posit more general stores thought to be capable of holding verbal or visuospatial materials (Baddeley, 2000; Cowan, 2005). However, it is currently unclear which type of store is primarily responsible for maintaining objects that include components from multiple domains. In these studies, a spatial array of letters was followed by a single probe identical to an item in the array or differing systematically in spatial location, letter identity, or their combination. Concurrent verbal rehearsal suppression impaired memory in each of these trial types in a task that required participants to remember verbal-spatial binding, but did not impair memory for spatial locations if the task did not require verbal-spatial binding for a correct response. Thus, spatial information might be stored differently when it must be bound to verbal information. This suggests that a cross-domain store such as the episodic buffer of Baddeley (2000) or the focus of attention of Cowan (2001) might be used for integrated object storage, rather than the maintenance of associations between features stored in separate domain-specific buffers.

  15. Object-based selection from spatially-invariant representations: evidence from a feature-report task.

    Science.gov (United States)

    Matsukura, Michi; Vecera, Shaun P

    2011-02-01

    Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.

  16. Persistent spatial information in the FEF during object-based short-term memory does not contribute to task performance.

    Science.gov (United States)

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2014-06-01

    We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.

  17. The Effect of Two-dimensional and Stereoscopic Presentation on Middle School Students' Performance of Spatial Cognition Tasks

    Science.gov (United States)

    Price, Aaron; Lee, Hee-Sun

    2010-02-01

    We investigated whether and how student performance on three types of spatial cognition tasks differs when worked with two-dimensional or stereoscopic representations. We recruited nineteen middle school students visiting a planetarium in a large Midwestern American city and analyzed their performance on a series of spatial cognition tasks in terms of response accuracy and task completion time. Results show that response accuracy did not differ between the two types of representations while task completion time was significantly greater with the stereoscopic representations. The completion time increased as the number of mental manipulations of 3D objects increased in the tasks. Post-interviews provide evidence that some students continued to think of stereoscopic representations as two-dimensional. Based on cognitive load and cue theories, we interpret that, in the absence of pictorial depth cues, students may need more time to be familiar with stereoscopic representations for optimal performance. In light of these results, we discuss potential uses of stereoscopic representations for science learning.

  18. Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice

    Directory of Open Access Journals (Sweden)

    Schwegler Herbert

    2005-04-01

    Full Text Available Abstract In the present paper we review a series of experiments showing that heritable variations in the size of the hippocampal intra- and infrapyramidal mossy fiber (IIPMF terminal fields correlate with performance in spatial, but not non-spatial radial-maze tasks. Experimental manipulation of the size of this projection by means of early postnatal hyperthyroidism produces the effects predicted from the correlations obtained with inbred mouse strains. Although the physiological mechanisms behind these correlations are unknown as yet, several lines of evidence indicate that these correlations are causal.

  19. Coupling Intensive Land Use and Landscape Ecological Security for Urban Sustainability: An Integrated Socioeconomic Data and Spatial Metrics Analysis in Hangzhou City

    Directory of Open Access Journals (Sweden)

    Xiaoteng Cen

    2015-01-01

    Full Text Available Despite the unprecedented rate of urbanization throughout the world, human society is still facing the challenge of coordinating urban socioeconomic development and ecological conservation. In this article, we integrated socioeconomic data and spatial metrics to investigate the coupling relationship between intensive land use (ILU system and landscape ecological security (LES system for urban sustainable development, and to determine how these systems interact with each other. The values of ILU and LES were first calculated according to two evaluation subsystems under the pressure-state-response (PSR framework. A coupling model was then established to analyze the coupling relationship within these two subsystems. The results showed that the levels of both subsystems were generally increasing, but there were several fluctuation changes in LES. The interaction in each system was time lagged; urban land use/cover change (LUCC and ecosystem transformation were determined by political business cycles and influenced by specific factors. The coupling relationship underwent a coordinated development mode from 1992–2012. From the findings we concluded that the coupling system maintained a stable condition and underwent evolving threshold values. The integrated ILU and LES system was a coupling system in which subsystems were related to each other and internal elements had mutual effects. Finally, it was suggested that our results provided a multi-level interdisciplinary perspective on linking socioeconomic-ecological systems. The implications for urban sustainable development were also discussed.

  20. Walking and non-walking space in an equivalent virtual reality task: Sexual dimorphism and aging decline of spatial abilities.

    Science.gov (United States)

    Tascón, Laura; Castillo, Joaquín; León, Irene; Cimadevilla, José Manuel

    2018-07-16

    Spatial memory enables us to locate places and objects in space, to determine our position and manage spatial relationships in our environment. Our operations are displayed in a space that sometimes is inaccessible. In this case, the impossibility of movement within the context forces individuals to rely on the information gathered from limited viewpoints. This study investigates the use of walking and non-walking spaces using two equivalent virtual reality tasks in which displacement is only permitted in one of them. One hundred and fifty participants were divided into three age groups: 50-59, 60-69 and 70-79 year-old subjects. The starting position changed pseudo-randomly and two difficulty levels were set, with one and three positions to be found. Results provided evidence for 70-79 year-old people impairment of their spatial abilities compared with 50-59 and 60-69 year-old groups. In both difficulty conditions, participants made more errors in the non-walking space than in the walking space. All participants showed an improvement in the last trials of the task. Moreover, sexual dimorphism was registered in the high level of difficulty, in which men outperformed women. This study supports the idea that aging impairs the organization of spatial representations of the environment, and that this aspect is more noticeable in conditions where displacement is limited. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Learning and inference using complex generative models in a spatial localization task.

    Science.gov (United States)

    Bejjanki, Vikranth R; Knill, David C; Aslin, Richard N

    2016-01-01

    A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integration when the underlying generative model of the environment consists of multiple causes. Here we ask if the Bayes-optimal integration seen with simple tasks also applies to such natural tasks when the generative model is more complex, or whether observers rely instead on a less efficient set of heuristics that approximate ideal performance. Participants localized a "hidden" target whose position on a touch screen was sampled from a location-contingent bimodal generative model with different variances around each mode. Over repeated exposure to this task, participants learned the a priori locations of the target (i.e., the bimodal generative model), and integrated this learned knowledge with uncertain sensory information on a trial-by-trial basis in a manner consistent with the predictions of Bayes-optimal behavior. In particular, participants rapidly learned the locations of the two modes of the generative model, but the relative variances of the modes were learned much more slowly. Taken together, our results suggest that human performance in a more complex localization task, which requires the integration of sensory information with learned knowledge of a bimodal generative model, is consistent with the predictions of Bayes-optimal behavior, but involves a much longer time-course than in simpler tasks.

  2. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  3. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  4. Changes in prefrontal neuronal activity after learning to perform a spatial working memory task.

    Science.gov (United States)

    Qi, Xue-Lian; Meyer, Travis; Stanford, Terrence R; Constantinidis, Christos

    2011-12-01

    The prefrontal cortex is considered essential for learning to perform cognitive tasks though little is known about how the representation of stimulus properties is altered by learning. To address this issue, we recorded neuronal activity in monkeys before and after training on a task that required visual working memory. After the subjects learned to perform the task, we observed activation of more prefrontal neurons and increased activity during working memory maintenance. The working memory-related increase in firing rate was due mostly to regular-spiking putative pyramidal neurons. Unexpectedly, the selectivity of neurons for stimulus properties and the ability of neurons to discriminate between stimuli decreased as the information about stimulus properties was apparently present in neural firing prior to training and neuronal selectivity degraded after training in the task. The effect was robust and could not be accounted for by differences in sampling sites, selection of neurons, level of performance, or merely the elapse of time. The results indicate that, in contrast to the effects of perceptual learning, mastery of a cognitive task degrades the apparent stimulus selectivity as neurons represent more abstract information related to the task. This effect is countered by the recruitment of more neurons after training.

  5. Increased Variability and Asymmetric Expansion of the Hippocampal Spatial Representation in a Distal Cue-Dependent Memory Task.

    Science.gov (United States)

    Park, Seong-Beom; Lee, Inah

    2016-08-01

    Place cells in the hippocampus fire at specific positions in space, and distal cues in the environment play critical roles in determining the spatial firing patterns of place cells. Many studies have shown that place fields are influenced by distal cues in foraging animals. However, it is largely unknown whether distal-cue-dependent changes in place fields appear in different ways in a memory task if distal cues bear direct significance to achieving goals. We investigated this possibility in this study. Rats were trained to choose different spatial positions in a radial arm in association with distal cue configurations formed by visual cue sets attached to movable curtains around the apparatus. The animals were initially trained to associate readily discernible distal cue configurations (0° vs. 80° angular separation between distal cue sets) with different food-well positions and then later experienced ambiguous cue configurations (14° and 66°) intermixed with the original cue configurations. Rats showed no difficulty in transferring the associated memory formed for the original cue configurations when similar cue configurations were presented. Place field positions remained at the same locations across different cue configurations, whereas stability and coherence of spatial firing patterns were significantly disrupted when ambiguous cue configurations were introduced. Furthermore, the spatial representation was extended backward and skewed more negatively at the population level when processing ambiguous cue configurations, compared with when processing the original cue configurations only. This effect was more salient for large cue-separation conditions than for small cue-separation conditions. No significant rate remapping was observed across distal cue configurations. These findings suggest that place cells in the hippocampus dynamically change their detailed firing characteristics in response to a modified cue environment and that some of the firing

  6. Development and evaluation of a specialized task taxonomy for spatial planning - A map literacy experiment with topographic maps

    Science.gov (United States)

    Rautenbach, Victoria; Coetzee, Serena; Çöltekin, Arzu

    2017-05-01

    Topographic maps are among the most commonly used map types, however, their complex and information-rich designs depicting natural, human-made and cultural features make them difficult to read. Regardless of their complexity, spatial planners make extensive use of topographic maps in their work. On the other hand, various studies suggest that map literacy among the development planning professionals in South Africa is not very high. The widespread use of topographic maps combined with the low levels of map literacy presents challenges for effective development planning. In this paper we address some of these challenges by developing a specialized task taxonomy based on systematically assessed map literacy levels; and conducting an empirical experiment with topographic maps to evaluate our task taxonomy. In such empirical studies if non-realistic tasks are used, the results of map literacy tests may be skewed. Furthermore, experience and familiarity with the studied map type play a role in map literacy. There is thus a need to develop map literacy tests aimed at planners specifically. We developed a taxonomy of realistic map reading tasks typically executed during the planning process. The taxonomy defines six levels tasks of increasing difficulty and complexity, ranging from recognising symbols to extracting knowledge. We hypothesized that competence in the first four levels indicates functional map literacy. In this paper, we present results from an empirical experiment with 49 map literate participants solving a subset of tasks from the first four levels of the taxonomy with a topographic map. Our findings suggest that the proposed taxonomy is a good reference for evaluating topographic map literacy. Participants solved the tasks on all four levels as expected and we therefore conclude that the experiment based on the first four levels of the taxonomy successfully determined the functional map literacy of the participants. We plan to continue the study for the

  7. When do objects become landmarks? A VR study of the effect of task relevance on spatial memory.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants' attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects' locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral "object processing stream", but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory.

  8. Strategies for human-driven robot comprehension of spatial descriptions by older adults in a robot fetch task.

    Science.gov (United States)

    Carlson, Laura; Skubic, Marjorie; Miller, Jared; Huo, Zhiyu; Alexenko, Tatiana

    2014-07-01

    This contribution presents a corpus of spatial descriptions and describes the development of a human-driven spatial language robot system for their comprehension. The domain of application is an eldercare setting in which an assistive robot is asked to "fetch" an object for an elderly resident based on a natural language spatial description given by the resident. In Part One, we describe a corpus of naturally occurring descriptions elicited from a group of older adults within a virtual 3D home that simulates the eldercare setting. We contrast descriptions elicited when participants offered descriptions to a human versus robot avatar, and under instructions to tell the addressee how to find the target versus where the target is. We summarize the key features of the spatial descriptions, including their dynamic versus static nature and the perspective adopted by the speaker. In Part Two, we discuss critical cognitive and perceptual processing capabilities necessary for the robot to establish a common ground with the human user and perform the "fetch" task. Based on the collected corpus, we focus here on resolving the perspective ambiguity and recognizing furniture items used as landmarks in the descriptions. Taken together, the work presented here offers the key building blocks of a robust system that takes as input natural spatial language descriptions and produces commands that drive the robot to successfully fetch objects within our eldercare scenario. Copyright © 2014 Cognitive Science Society, Inc.

  9. Cyber threat metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  10. Generalized Painleve-Gullstrand metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chunyu [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: l2891112@mail.ncku.edu.tw; Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: cpsoo@mail.ncku.edu.tw

    2009-02-02

    An obstruction to the implementation of spatially flat Painleve-Gullstrand (PG) slicings is demonstrated, and explicitly discussed for Reissner-Nordstroem and Schwarzschild-anti-deSitter spacetimes. Generalizations of PG slicings which are not spatially flat but which remain regular at the horizons are introduced. These metrics can be obtained from standard spherically symmetric metrics by physical Lorentz boosts. With these generalized PG metrics, problematic contributions to the imaginary part of the action in the Parikh-Wilczek derivation of Hawking radiation due to the obstruction can be avoided.

  11. Differences between appetitive and aversive reinforcement on reorientation in a spatial working memory task.

    Science.gov (United States)

    Golob, Edward J; Taube, Jeffrey S

    2002-10-17

    Tasks using appetitive reinforcers show that following disorientation rats use the shape of an arena to reorient, and cannot distinguish two geometrically similar corners to obtain a reward, despite the presence of a prominent visual cue that provides information to differentiate the two corners. Other studies show that disorientation impairs performance on certain appetitive, but not aversive, tasks. This study evaluated whether rats would make similar geometric errors in a working memory task that used aversive reinforcement. We hypothesized that in a task that used aversive reinforcement rats that were initially disoriented would not reorient by arena shape and thus make similar geometric errors. Tests were performed in a rectangular arena having one polarizing cue. In the appetitive condition water consumption was the reward. The aversive condition was a water maze task with reinforcement provided by escape to a hidden platform. In the aversive condition rats returned to the reinforced corner significantly more often than in the dry condition, and did not favor the diagonally opposite corner. Results show that rats can use cues besides arena shape to reorient in an aversive reinforcement condition. These findings may also reflect different strategies, with an escape/homing strategy in the wet condition and a foraging strategy in the dry condition.

  12. The effects of visual discriminability and rotation angle on 30-month-olds’ search performance in spatial rotation tasks

    Directory of Open Access Journals (Sweden)

    Mirjam Ebersbach

    2016-10-01

    Full Text Available Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29 performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  13. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds' Search Performance in Spatial Rotation Tasks.

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds' success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children ( N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  14. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds’ Search Performance in Spatial Rotation Tasks

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children. PMID:27812346

  15. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    Science.gov (United States)

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  16. Altered visual-spatial attention to task-irrelevant information is associated with falls risk in older adults

    Science.gov (United States)

    Nagamatsu, Lindsay S.; Munkacsy, Michelle; Liu-Ambrose, Teresa; Handy, Todd C.

    2014-01-01

    Executive cognitive functions play a critical role in falls risk – a pressing health care issue in seniors. In particular, intact attentional processing is integral for safe mobility and navigation. However, the specific contribution of impaired visual-spatial attention in falls remains unclear. In this study, we examined the association between visual-spatial attention to task-irrelevant stimuli and falls risk in community-dwelling older adults. Participants completed a visual target discrimination task at fixation while task-irrelevant probes were presented in both visual fields. We assessed attention to left and right peripheral probes using event-related potentials (ERPs). Falls risk was determined using the valid and reliable Physiological Profile Assessment (PPA). We found a significantly positive association between reduced attentional facilitation, as measured by the N1 ERP component, and falls risk. This relationship was specific to probes presented in the left visual field and measured at ipsilateral electrode sites. Our results suggest that fallers exhibit reduced attention to the left side of visual space and provide evidence that impaired right hemispheric function and/or structure may contribute to falls. PMID:24436970

  17. Female and male pigs' performance in a spatial holeboard and judgment bias task

    NARCIS (Netherlands)

    Roelofs, Sanne; Nordquist, Rebecca E.; van der Staay, Franz Josef

    2017-01-01

    Studies of the cognitive abilities of pigs are increasing in number, due to their relevance for the fields of animal welfare and biomedical research. While both female and male pigs have been used in cognitive tasks, possible sex differences in performance have not yet received extensive attention.

  18. Gender Perspectives on Spatial Tasks in a National Assessment: A Secondary Data Analysis

    Science.gov (United States)

    Logan, Tracy; Lowrie, Tom

    2017-01-01

    Most large-scale summative assessments present results in terms of cumulative scores. Although such descriptions can provide insights into general trends over time, they do not provide detail of how students solved the tasks. Less restrictive access to raw data from these summative assessments has occurred in recent years, resulting in…

  19. Comparing "pick and place" task in spatial Augmented Reality versus non-immersive Virtual Reality for rehabilitation setting.

    Science.gov (United States)

    Khademi, Maryam; Hondori, Hossein Mousavi; Dodakian, Lucy; Cramer, Steve; Lopes, Cristina V

    2013-01-01

    Introducing computer games to the rehabilitation market led to development of numerous Virtual Reality (VR) training applications. Although VR has provided tremendous benefit to the patients and caregivers, it has inherent limitations, some of which might be solved by replacing it with Augmented Reality (AR). The task of pick-and-place, which is part of many activities of daily living (ADL's), is one of the major affected functions stroke patients mainly expect to recover. We developed an exercise consisting of moving an object between various points, following a flash light that indicates the next target. The results show superior performance of subjects in spatial AR versus non-immersive VR setting. This could be due to the extraneous hand-eye coordination which exists in VR whereas it is eliminated in spatial AR.

  20. Attention capture without awareness in a non-spatial selection task.

    Science.gov (United States)

    Oriet, Chris; Pandey, Mamata; Kawahara, Jun-Ichiro

    2017-02-01

    Distractors presented prior to a critical target in a rapid sequence of visually-presented items induce a lag-dependent deficit in target identification, particularly when the distractor shares a task-relevant feature of the target. Presumably, such capture of central attention is important for bringing a target into awareness. The results of the present investigation suggest that greater capture of attention by a distractor is not accompanied by greater awareness of it. Moreover, awareness tends to be limited to superficial characteristics of the target such as colour. The findings are interpreted within the context of a model that assumes sudden increases in arousal trigger selection of information for consolidation in working memory. In this conceptualization, prolonged analysis of distractor items sharing task-relevant features leads to larger target identification deficits (i.e., greater capture) but no increase in awareness. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. How role distribution influences choice of spatial reference frames in a virtual collaborative task

    OpenAIRE

    Pouliquen-Lardy , Lauriane; Milleville-Pennel , Isabelle; Guillaume , François; Mars , Franck

    2014-01-01

    International audience; We investigated the effects of role distribution on individuals' choice of reference frames in a two-person task. Pairs of participants had to move a virtual block in a constraint immersive virtual environment: only one of them could manipulate the ob-ject, his coworker guided him in the VE. Results show that the guiding operators used more addressee-centered frames of ref-erence than the manipulators. They also suggest that the guides tried to facilitate the manipulat...

  2. Real-time changes in hippocampal energy demands during a spatial working memory task.

    Science.gov (United States)

    Kealy, John; Bennett, Rachel; Woods, Barbara; Lowry, John P

    2017-05-30

    Activity-dependent changes in hippocampal energy consumption have largely been determined using microdialysis. However, real-time recordings of brain energy consumption can be more accurately achieved using amperometric sensors, allowing for sensitive real-time monitoring of concentration changes. Here, we test the theory that systemic pre-treatment with glucose in rats prevents activity-dependent decreases in hippocampal glucose levels and thus enhances their performance in a spontaneous alternation task. Male Sprague Dawley rats were implanted into the hippocampus with either: 1) microdialysis probe; or 2) an oxygen sensor and glucose biosensor co-implanted together. Animals were pre-treated with either saline or glucose (250mg/kg) 30min prior to performing a single 20-min spontaneous alternation task in a +-maze. There were no significant differences found between either treatment group in terms of spontaneous alternation performance. Additionally, there was a significant difference found between treatment groups on hippocampal glucose levels measured using microdialysis (a decrease associated with glucose pre-treatment in control animals) but not amperometry. There were significant increases in hippocampal oxygen during +-maze exploration. Combining the findings from both methods, it appears that hippocampal activity in the spontaneous alternation task does not cause an increase in glucose consumption, despite an increase in regional cerebral blood flow (using oxygen supply as an index of blood flow) and, as such, pre-treatment with glucose does not enhance spontaneous alternation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spatial task for rats testing position recognition of an object displayed on a computer screen

    Czech Academy of Sciences Publication Activity Database

    Klement, Daniel; Levčík, David; Dušková, Lenka; Nekovářová, Tereza

    2010-01-01

    Roč. 207, č. 2 (2010), s. 480-489 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA309/09/0286; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial cognition * operant conditioning * reinforcement learning Subject RIV: FH - Neurology Impact factor: 3.393, year: 2010

  4. Introducing moving objects into behavioral spatial tasks: moving object avoidance in rats

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Telenský, Petr; Blahna, Karel; Pašťálková, Eva; Bureš, Jan

    2005-01-01

    Roč. 43, č. 4 (2005), s. 202-204 ISSN 0960-7560 R&D Projects: GA MŠk(CZ) 1M0517; GA ČR(CZ) GA309/03/0715; GA ČR(CZ) GD206/05/H012 Institutional research plan: CEZ:AV0Z5011922 Keywords : spatial avoidance * rat Subject RIV: FH - Neurology

  5. Temporal Oculomotor Inhibition of Return and Spatial Facilitation of Return in a Visual Encoding Task

    Directory of Open Access Journals (Sweden)

    Steven G Luke

    2013-07-01

    Full Text Available Oculomotor inhibition of return (O-IOR is an increase in saccade latency prior to an eye movement to a recently fixated location compared to other locations. It has been proposed that this temporal O-IOR may have spatial consequences, facilitating foraging by inhibiting return to previously attended regions. In order to test this possibility, participants viewed arrays of objects and of words while their eye movements were recorded. Temporal O-IOR was observed, with equivalent effects for object and word arrays, indicating that temporal O-IOR is an oculomotor phenomenon independent of array content. There was no evidence for spatial inhibition of return. Instead, spatial facilitation of return was observed: Participants were significantly more likely than chance to make return saccades and to refixate just-visited locations. Further, the likelihood of making a return saccade to an object or word was contingent on the amount of time spent viewing that object or word before leaving it. This suggests that, unlike temporal O-IOR, return probability is influenced by cognitive processing. Taken together, these results are inconsistent with the hypothesis that inhibition of return functions as a foraging facilitator. The results also provide strong evidence for a different oculomotor bias that could serve as a foraging facilitator: saccadic momentum, a tendency to repeat the most recently executed saccade program. We suggest that models of visual attention could incorporate saccadic momentum in place of inhibition of return.

  6. Audiotactile integration is reduced in congenital blindness in a spatial ventriloquism task.

    Science.gov (United States)

    Occelli, Valeria; Bruns, Patrick; Zampini, Massimiliano; Röder, Brigitte

    2012-01-01

    In the ventriloquism effect, the presentation of spatially discrepant visual information biases the localization of simultaneously presented sounds. Recently, an analogous spatial influence of touch on audition has been observed. By manipulating hand posture, it has been demonstrated that this audiotactile ventriloquist effect predominantly operates in an external frame of reference. In the present study, we examined the contribution of developmental vision to audiotactile interactions as indicated by the ventriloquism effect. Congenitally blind, late blind and sighted adults were asked to report the perceived location of sounds presented from a left, a central or a right location. Auditory stimuli were either delivered alone or concurrently with touches at the left or the right hand. The hands were located to the right and to the left of the lateral speakers and participants either adopted an uncrossed or a crossed hand posture. While sighted controls and late blind participants similarly mislocalized auditory stimuli toward the concurrent tactile stimuli in bimodal trials, the congenitally blind showed a reduced ventriloquism effect. All groups showed a reduced audiotactile ventriloquism effect in the crossed hand condition. However, the magnitude of the reduction was significantly larger in the group of congenitally blind than in the group of sighted controls. These results suggest reduced audio-tactile interactions in spatial processing following a lack of visual input from birth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Metrication manual

    International Nuclear Information System (INIS)

    Harper, A.F.A.; Digby, R.B.; Thong, S.P.; Lacey, F.

    1978-04-01

    In April 1978 a meeting of senior metrication officers convened by the Commonwealth Science Council of the Commonwealth Secretariat, was held in London. The participants were drawn from Australia, Bangladesh, Britain, Canada, Ghana, Guyana, India, Jamaica, Papua New Guinea, Solomon Islands and Trinidad and Tobago. Among other things, the meeting resolved to develop a set of guidelines to assist countries to change to SI and to compile such guidelines in the form of a working manual

  8. Age-related differences in cortical activity during a visuo-spatial working memory task with facial stimuli.

    Directory of Open Access Journals (Sweden)

    Flávia Schechtman Belham

    Full Text Available Emotion, importantly displayed by facial expressions, is one of the most significant memory modulators. The interaction between memory and the different emotional valences change across lifespan, while young adults (YA are expected to better recall negative events (Negativity Bias Hypothesis, older adults (OA tend to focus on positive stimuli (Positivity Effect Hypothesis. This research work aims at verifying whether cortical electrical activity of these two age groups would also be differently influenced by emotional valences in a visuo-spatial working memory task. 27 YA (13 males and 25 OA (14 males, all healthy volunteers, underwent electroencephalographic recordings (21 scalp electrodes montage, while performing the Spatial Delayed Recognition Span Task using a touch screen with different stimuli categories: neutral, positive and negative faces and geometric pictures. YA obtained higher scores than OA, and showed higher activation of theta and alpha bands in the frontal and midline regions, besides a more evident right-hemispheric asymmetry on alpha band when compared to OA. For both age groups, performance in the task was worse for positive faces than to negative and to neutral faces. Facial stimuli induced a better performance and higher alpha activation on the pre-frontal region for YA, and on the midline, occipital and left temporal regions for OA when compared to geometric figures. The superior performance of YA was expected due to the natural cognitive deficits connected to ageing, as was a better performance with facial stimuli due to the evolutionary importance of faces. These results were related to cortical activity on areas of importance for action-planning, decision making and sustained attention. Taken together, they are in accordance with the Negativity Bias but do not support the Positivity Effect. The methodology used was able to identify age-related differences in cortical activity during emotional mnemonic processing and

  9. Computational modelling and analysis of hippocampal-prefrontal information coding during a spatial decision-making task

    Directory of Open Access Journals (Sweden)

    Thomas eJahans-Price

    2014-03-01

    Full Text Available We introduce a computational model describing rat behaviour and the interactions of neural populations processing spatial and mnemonic information during a maze-based, decision-making task. The model integrates sensory input and implements a working memory to inform decisions at a choice point, reproducing rat behavioural data and predicting the occurrence of turn- and memory-dependent activity in neuronal networks supporting task performance. We tested these model predictions using a new software toolbox (Maze Query Language, MQL to analyse activity of medial prefrontal cortical (mPFC and dorsal hippocampal (dCA1 neurons recorded from 6 adult rats during task performance. The firing rates of dCA1 neurons discriminated context (i.e. the direction of the previous turn, whilst a subset of mPFC neurons was selective for current turn direction or context, with some conjunctively encoding both. mPFC turn-selective neurons displayed a ramping of activity on approach to the decision turn and turn-selectivity in mPFC was significantly reduced during error trials. These analyses complement data from neurophysiological recordings in non-human primates indicating that firing rates of cortical neurons correlate with integration of sensory evidence used to inform decision-making.

  10. The role of social cues in the deployment of spatial attention: Head-body relationships automatically activate directional spatial codes in a Simon task

    Directory of Open Access Journals (Sweden)

    Iwona ePomianowska

    2012-02-01

    Full Text Available The role of body orientation in the orienting and allocation of social attention was examined using an adapted Simon paradigm. Participants categorized the facial expression of forward facing, computer-generated human figures by pressing one of two response keys, each located left or right of the observers’ body midline, while the orientation of the stimulus figure’s body (trunk, arms, and legs, which was the task-irrelevant feature of interest, was manipulated (oriented towards the left or right visual hemifield with respect to the spatial location of the required response. We found that when the orientation of the body was compatible with the required response location, responses were slower relative to when body orientation was incompatible with the response location. This reverse compatibility effect suggests that body orientation is automatically processed into a directional spatial code, but that this code is based on an integration of head and body orientation within an allocentric-based frame of reference. Moreover, we argue that this code may be derived from the motion information implied in the image of a figure when head and body orientation are incongruent. Our results have implications for understanding the nature of the information that affects the allocation of attention for social orienting.

  11. Spatial recognition test: A novel cognition task for assessing topographical memory in mice.

    Science.gov (United States)

    Havolli, Enes; Hill, Mark Dw; Godley, Annie; Goetghebeur, Pascal Jd

    2017-06-01

    Dysfunction in topographical memory is a core feature of several neurological disorders. There is a large unmet medical need to address learning and memory deficits as a whole in central nervous system disease. There are considerable efforts to identify pro-cognitive compounds but current methods are either lengthy or labour intensive. Our test used a two chamber apparatus and is based on the preference of rodents to explore novel environments. It was used firstly to assess topographical memory in mice at different retention intervals (RI) and secondly to investigate the effect of three drugs reported to be beneficial for cognitive decline associated with Alzheimer's disease, namely: donepezil, memantine and levetiracetam. Animals show good memory performance at all RIs tested under four hours. At the four-hour RI, animals show a significantly poorer memory performance which can be rescued using donepezil, memantine and levetiracetam. Using this test we established and validated a spatial recognition paradigm to address topographical memory in mice by showing a decremental time-induced forgetting response and reversing this decrease in performance using pharmacological tools. The spatial recognition test differs from more commonly used visuospatial laboratory tests in both throughput capability and potentially neuroanatomical substrate. This test has the potential to be used to assess cognitive performance in transgenic animals, disease models and to screen putative cognitive enhancers or depressors.

  12. Continuous place avoidance task reveals differences in spatial navigation in male and female rats.

    Science.gov (United States)

    Cimadevilla, J M; Fenton, A A; Bures, J

    2000-01-01

    A new place navigation test was used to estimate the spatial orientation abilities of male and female rats. Animals had to avoid a room frame defined area on a rotating arena, entering of which was punished by mild footshock, i.e. rats had to avoid the same place in the room but different parts of the floor, which was rotated through the punished zone. Because of the rotation of the arena (one revolution per min), animals could not rely on intramaze cues and only extramaze landmarks could be used for accurate navigation. During 8 consecutive days rats were exposed to daily 40-min sessions, consisting of 20-min acquisition and 20-min extinction (shock discontinued). The position of the punished sector centered around one of the four mutually perpendicular azimuths was daily changed in a predetermined sequence. The results showed no male female differences during acquisition and better performance of males during extinction. The performance of females was not affected by estral cycle-related hormonal changes. The findings are discussed in the light of controversial results of research into sex differences in spatial abilities.

  13. Spatial working memory in aging and mild cognitive impairment: effects of task load and contextual cueing.

    Science.gov (United States)

    Kessels, Roy P C; Meulenbroek, Olga; Fernández, Guillén; Olde Rikkert, Marcel G M

    2010-09-01

    Mild Cognitive Impairment (MCI) is characterized by episodic memory deficits, while aspects of working memory may also be implicated, but studies into this latter domain are scarce and results are inconclusive. Using a computerized search paradigm, this study compares 25 young adults, 25 typically aging older adults and 15 amnestic MCI patients as to their working-memory capacities for object-location information and potential differential effects of memory load and additional context cues. An age-related deficit in visuospatial working-memory maintenance was found that became more pronounced with increasing task demands. The MCI group additionally showed reduced maintenance of bound information, i.e., object-location associations, again especially at elevated memory load. No effects of contextual cueing were found. The current findings indicate that working memory should be considered when screening patients for suspected MCI and monitoring its progression.

  14. Daylight metrics and energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  15. Wild, free-living rufous hummingbirds do not use geometric cues in a spatial task.

    Science.gov (United States)

    Hornsby, Mark A W; Hurly, T Andrew; Hamilton, Caitlin E; Pritchard, David J; Healy, Susan D

    2014-10-01

    In the laboratory, many species orient themselves using the geometric properties of an enclosure or array and geometric information is often preferred over visual cues. Whether animals use geometric cues when relocating rewarded locations in the wild, however, has rarely been investigated. We presented free-living rufous hummingbirds with a rectangular array of four artificial flowers to investigate learning of rewarded locations using geometric cues. In one treatment, we rewarded two of four flowers at diagonally opposite corners. In a second treatment, we provided a visual cue to the rewarded flower by connecting the flowers with "walls" consisting of four dowels (three white, one blue) laid on the ground connecting each of the flowers. Neither treatment elicited classical geometry results; instead, hummingbirds typically chose one particular flower over all others. When we exchanged that flower with another, hummingbirds tended to visit the original flower. These results suggest that (1) hummingbirds did not use geometric cues, but instead may have used a visually derived cue on the flowers themselves, and (2) using geometric cues may have been more difficult than using visual characteristics. Although hummingbirds typically prefer spatial over visual information, we hypothesize that they will not use geometric cues over stable visual features but that they make use of small, flower-specific visual cues. Such cues may play a more important role in foraging decisions than previously thought. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Food's visually perceived fat content affects discrimination speed in an orthogonal spatial task.

    Science.gov (United States)

    Harrar, Vanessa; Toepel, Ulrike; Murray, Micah M; Spence, Charles

    2011-10-01

    Choosing what to eat is a complex activity for humans. Determining a food's pleasantness requires us to combine information about what is available at a given time with knowledge of the food's palatability, texture, fat content, and other nutritional information. It has been suggested that humans may have an implicit knowledge of a food's fat content based on its appearance; Toepel et al. (Neuroimage 44:967-974, 2009) reported visual-evoked potential modulations after participants viewed images of high-energy, high-fat food (HF), as compared to viewing low-fat food (LF). In the present study, we investigated whether there are any immediate behavioural consequences of these modulations for human performance. HF, LF, or non-food (NF) images were used to exogenously direct participants' attention to either the left or the right. Next, participants made speeded elevation discrimination responses (up vs. down) to visual targets presented either above or below the midline (and at one of three stimulus onset asynchronies: 150, 300, or 450 ms). Participants responded significantly more rapidly following the presentation of a HF image than following the presentation of either LF or NF images, despite the fact that the identity of the images was entirely task-irrelevant. Similar results were found when comparing response speeds following images of high-carbohydrate (HC) food items to low-carbohydrate (LC) food items. These results support the view that people rapidly process (i.e. within a few hundred milliseconds) the fat/carbohydrate/energy value or, perhaps more generally, the pleasantness of food. Potentially as a result of HF/HC food items being more pleasant and thus having a higher incentive value, it seems as though seeing these foods results in a response readiness, or an overall alerting effect, in the human brain.

  17. Seeing the forest before the trees-spatial orientation in freshwater stingrays (Potamotrygon motoro) in a hole-board task.

    Science.gov (United States)

    Schluessel, V; Herzog, H; Scherpenstein, M

    2015-10-01

    Freshwater stingrays (Potamotrygon motoro) have been shown to use a variety of spatial learning strategies including directional, landmark and place learning. In the present study, the significance of landmarks and geometric cues was investigated in a hole-board task. The aim was to determine cue preferences and collect additional information on the orientation mechanisms used in elasmobranchs. In four experiments, five juvenile stingrays had to memorize a fixed goal location within either a rectangular or a circular arena in the presence of goal-associated, signaling landmarks, proximal and distal cues. Transfer tests elucidated which cues the rays used or favored to reach the goal position. All rays successfully solved three of four tasks; as expected, different strategies were used in the process. Small alterations in the positioning of signaling landmarks (causing a spatial conflict between the previous feeding location and the new position of the signaling landmark) caused individuals to visit both locations equally often, whereas large alterations caused animals to ignore signaling cues and return to the previous feeding location. In the last and most complex experiment, three of five rays found the feeding location by remembering the positions of both proximate and distal landmarks in addition to memorizing particular swimming paths. Results showed that rays generally placed more importance on the overall environmental or geometric arrangement of the arena than on (individual) landmarks. This seems ecologically feasible, as distinct landmarks (e.g. rocks, pieces of wood, water plants) in the rays' natural environment may be more easily altered, removed or obscured from view than global ones (e.g. a river bend), which tend to be more stable. Overall, these results confirm those of previous studies, in that freshwater stingrays orient visually, learn quickly and can apply various orientation strategies, which are not mutually exclusive. Copyright © 2015

  18. Software Quality Assurance Metrics

    Science.gov (United States)

    McRae, Kalindra A.

    2004-01-01

    Software Quality Assurance (SQA) is a planned and systematic set of activities that ensures conformance of software life cycle processes and products conform to requirements, standards and procedures. In software development, software quality means meeting requirements and a degree of excellence and refinement of a project or product. Software Quality is a set of attributes of a software product by which its quality is described and evaluated. The set of attributes includes functionality, reliability, usability, efficiency, maintainability, and portability. Software Metrics help us understand the technical process that is used to develop a product. The process is measured to improve it and the product is measured to increase quality throughout the life cycle of software. Software Metrics are measurements of the quality of software. Software is measured to indicate the quality of the product, to assess the productivity of the people who produce the product, to assess the benefits derived from new software engineering methods and tools, to form a baseline for estimation, and to help justify requests for new tools or additional training. Any part of the software development can be measured. If Software Metrics are implemented in software development, it can save time, money, and allow the organization to identify the caused of defects which have the greatest effect on software development. The summer of 2004, I worked with Cynthia Calhoun and Frank Robinson in the Software Assurance/Risk Management department. My task was to research and collect, compile, and analyze SQA Metrics that have been used in other projects that are not currently being used by the SA team and report them to the Software Assurance team to see if any metrics can be implemented in their software assurance life cycle process.

  19. Left neglected, but only in far space: Spatial biases in healthy participants revealed in a visually-guided grasping task

    Directory of Open Access Journals (Sweden)

    Natalie ede Bruin

    2014-01-01

    Full Text Available Hemispatial neglect is a common outcome of stroke that is characterised by the inability to orient towards, and attend to stimuli in contralesional space. It is established that hemispatial neglect has a perceptual component, however, the presence and severity of motor impairments is controversial. Establishing the nature of space use and spatial biases during visually-guided actions amongst healthy individuals is critical to understanding the presence of visuomotor deficits in patients with neglect. Accordingly, three experiments were conducted to investigate the effect of object spatial location on patterns of grasping. Experiment 1 required right-handed participants to reach and grasp for blocks in order to construct 3D models. The blocks were scattered on a tabletop divided into equal size quadrants: left near, left far, right near, and right far. Identical sets of building blocks were available in each quadrant. Space use was dynamic, with participants initially grasping blocks from right near space and tending to ‘neglect’ left far space until the final stages of the task. Experiment 2 repeated the protocol with left-handed participants. Remarkably, left-handed participants displayed a similar pattern of space use to right-handed participants. In Experiment 3 eye movements were examined to investigate whether ‘neglect’ for grasping in left far reachable space had its origins in attentional biases. It was found that patterns of eye movements mirrored patterns of reach-to-grasp movements. We conclude that there are spatial biases during visually-guided grasping, specifically, a tendency to neglect left far reachable space, and that this ‘neglect’ is attentional in origin. The results raise the possibility that visuomotor impairments reported among patients with right hemisphere lesions when working in contralesional space may result in part from this inherent tendency to ‘neglect’ left far space irrespective of the presence

  20. Identification and location tasks rely on different mental processes: a diffusion model account of validity effects in spatial cueing paradigms with emotional stimuli.

    Science.gov (United States)

    Imhoff, Roland; Lange, Jens; Germar, Markus

    2018-02-22

    Spatial cueing paradigms are popular tools to assess human attention to emotional stimuli, but different variants of these paradigms differ in what participants' primary task is. In one variant, participants indicate the location of the target (location task), whereas in the other they indicate the shape of the target (identification task). In the present paper we test the idea that although these two variants produce seemingly comparable cue validity effects on response times, they rest on different underlying processes. Across four studies (total N = 397; two in the supplement) using both variants and manipulating the motivational relevance of cue content, diffusion model analyses revealed that cue validity effects in location tasks are primarily driven by response biases, whereas the same effect rests on delay due to attention to the cue in identification tasks. Based on this, we predict and empirically support that a symmetrical distribution of valid and invalid cues would reduce cue validity effects in location tasks to a greater extent than in identification tasks. Across all variants of the task, we fail to replicate the effect of greater cue validity effects for arousing (vs. neutral) stimuli. We discuss the implications of these findings for best practice in spatial cueing research.

  1. Vestibular Loss in Older Adults Is Associated with Impaired Spatial Navigation: Data from the Triangle Completion Task

    Directory of Open Access Journals (Sweden)

    Yanjun Xie

    2017-04-01

    Full Text Available BackgroundVestibular inputs have been shown to play a critical role in spatial navigation. In this study, we sought to evaluate whether vestibular loss due to aging contributes to impaired spatial navigation as measured by the triangle completion task (TCT.Materials and methodsWe recruited three types of participants: young controls <55 years of age, older controls ≥55 years of age, and older patients from a Neurotology Clinic with evidence of vestibular physiologic impairment but who did not have any known vestibular disorder. We performed the cervical vestibular-evoked myogenic potential to evaluate saccular function and video head impulse testing to quantify horizontal semicircular canal vestibulo-ocular reflex gain. To assess spatial navigation ability, we administered the TCT, in which participants were conveyed along two segments of a pre-drawn triangular path and instructed to complete the final segment independently. We measured the angle (degrees and distance (centimeters of deviation from the correct trajectory. We evaluated the influence of vestibular inputs on TCT performance.ResultsForty-eight adults participated in the study (mean age: 62.0 years; 52.1% females, including 9 young controls, 15 older controls, and 24 clinic patients. Clinic patients had the greatest distance of deviation (67.7 cm, followed by older controls (45.4 cm, then young controls (27.8 cm; p < 0.01. Similarly, clinic patients had greater rotational angles (22.1° compared to older (13.3° and younger controls (12.4°; p < 0.01. Following multivariate linear regression adjusting for demographic variables, loss of otolith function was associated with an 18.2 cm increase in distance of deviation (95% CI: 15.2–47.4 and a 9.2° increase in rotational angle (95% CI: 3.0–15.5. Abnormal semicircular canal function was associated with a 26.0 cm increase in distance of deviation (95% CI: 0.2–51.8 and a 10.8° increase in rotational angle

  2. Common Metrics for Human-Robot Interaction

    Science.gov (United States)

    Steinfeld, Aaron; Lewis, Michael; Fong, Terrence; Scholtz, Jean; Schultz, Alan; Kaber, David; Goodrich, Michael

    2006-01-01

    This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and a case study. Preparation of a larger, more detailed toolkit is in progress.

  3. Pre-weaning dietary iron deficiency impairs spatial learning and memory in the cognitive holeboard task in piglets

    Directory of Open Access Journals (Sweden)

    Alexandra eAntonides

    2015-10-01

    Full Text Available Iron deficiency (ID is the most common nutritional deficiency in humans, affecting more than two billion people worldwide. Early-life ID can lead to irreversible deficits in learning and memory. The pig represents a promising model animal for studying such deficits, because of its similarities to humans during early development. We investigated long-term effects of pre-weaning dietary iron deficiency in piglets on growth, blood parameters, cognitive performance and brain histology. Ten male sibling pairs of piglets were removed from the sow 4-6 days after birth. Ten piglets were given an iron dextran injection and were fed a control milk diet for 28 days (100 mg Fe/kg; their ten siblings were given a saline injection and fed an iron deficient milk diet (10 mg Fe/kg. Then, all piglets were fed a balanced commercial pig diet (190-240 mg Fe/kg. From 8 weeks of age, piglets were tested in a spatial cognitive holeboard task. In this task, 4 of 16 holes contain a hidden food reward, allowing measurement of working (short-term memory and reference (long-term memory (RM simultaneously. All piglets received 40-60 acquisition trials, followed by a 16-trial reversal phase. ID piglets showed permanently retarded growth and a strong decrease in blood iron parameters during dietary treatment. After treatment, ID piglets blood iron values restored to normal levels. In the holeboard task, ID piglets showed impaired RM learning during acquisition and reversal. Iron staining at necropsy at 12 weeks of age showed that ID piglets had fewer iron-containing cells in hippocampal regions CA1 and dentate gyrus. The number of iron-containing cells in CA3 correlated positively with acquisition RM performance for all animals. Our results support the hypothesis that early ID leads to lasting cognitive deficits. The piglet as a model animal, tested in the holeboard, can be useful in future research for assessing long-term cognitive effects of early-life diets or diet

  4. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task.

    Science.gov (United States)

    Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D

    2013-11-01

    Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.

  5. The Effects of Adding Coordinate Axes To a Mental Rotations Task in Measuring Spatial Visualization Ability in Introductory Undergraduate Technical Graphics Courses.

    Science.gov (United States)

    Branoff, Ted

    1998-01-01

    Reports on a study to determine whether the presence of coordinate axes in a test of spatial-visualization ability affects scores and response times on a mental-rotations task for students enrolled in undergraduate introductory graphic communications classes. Based on Pavios's dual-coding theory. Contains 36 references. (DDR)

  6. The influence of spatial congruency and movement preparation time on saccade curvature in simultaneous and sequential dual-tasks.

    Science.gov (United States)

    Moehler, Tobias; Fiehler, Katja

    2015-11-01

    Saccade curvature represents a sensitive measure of oculomotor inhibition with saccades curving away from covertly attended locations. Here we investigated whether and how saccade curvature depends on movement preparation time when a perceptual task is performed during or before saccade preparation. Participants performed a dual-task including a visual discrimination task at a cued location and a saccade task to the same location (congruent) or to a different location (incongruent). Additionally, we varied saccade preparation time (time between saccade cue and Go-signal) and the occurrence of the discrimination task (during saccade preparation=simultaneous vs. before saccade preparation=sequential). We found deteriorated perceptual performance in incongruent trials during simultaneous task performance while perceptual performance was unaffected during sequential task performance. Saccade accuracy and precision were deteriorated in incongruent trials during simultaneous and, to a lesser extent, also during sequential task performance. Saccades consistently curved away from covertly attended non-saccade locations. Saccade curvature was unaffected by movement preparation time during simultaneous task performance but decreased and finally vanished with increasing movement preparation time during sequential task performance. Our results indicate that the competing saccade plan to the covertly attended non-saccade location is maintained during simultaneous task performance until the perceptual task is solved while in the sequential condition, in which the discrimination task is solved prior to the saccade task, oculomotor inhibition decays gradually with movement preparation time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks.

    Science.gov (United States)

    Bour, Alexandra; Grootendorst, Jeannette; Vogel, Elise; Kelche, Christian; Dodart, Jean-Cosme; Bales, Kelly; Moreau, Pierre-Henri; Sullivan, Patrick M; Mathis, Chantal

    2008-11-21

    Apolipoprotein (apo) E4, one of three human apoE (h-apoE) isoforms, has been identified as a major genetic risk factor for Alzheimer's disease and for cognitive deficits associated with aging. However, the biological mechanisms involving apoE in learning and memory processes are unclear. A potential isoform-dependent role of apoE in cognitive processes was studied in human apoE targeted-replacement (TR) mice. These mice express either the human apoE3 or apoE4 gene under the control of endogenous murine apoE regulatory sequences, resulting in physiological expression of h-apoE in both a temporal and spatial pattern similar to humans. Male and female apoE3-TR, apoE4-TR, apoE-knockout and C57BL/6J mice (15-18 months) were tested with spatial memory and avoidance conditioning tasks. Compared to apoE3-TR mice, spatial memory in female apoE4-TR mice was impaired based on their poor performances in; (i) the probe test of the water-maze reference memory task, (ii) the water-maze working memory task and (iii) an active avoidance Y-maze task. Retention performance on a passive avoidance task was also impaired in apoE4-TR mice, but not in other genotypes. These deficits in both spatial and avoidance memory tasks may be related to the anatomical and functional abnormalities previously reported in the hippocampus and the amygdala of apoE4-TR mice. We conclude that the apoE4-TR mice provide an excellent model for understanding the mechanisms underlying apoE4-dependent susceptibility to cognitive decline.

  8. Stimulus- and state-dependence of systematic bias in spatial attention: additive effects of stimulus-size and time-on-task.

    Science.gov (United States)

    Benwell, Christopher S Y; Harvey, Monika; Gardner, Stephanie; Thut, Gregor

    2013-03-01

    Systematic biases in spatial attention are a common finding. In the general population, a systematic leftward bias is typically observed (pseudoneglect), possibly as a consequence of right hemisphere dominance for visuospatial attention. However, this leftward bias can cross-over to a systematic rightward bias with changes in stimulus and state factors (such as line length and arousal). The processes governing these changes are still unknown. Here we tested models of spatial attention as to their ability to account for these effects. To this end, we experimentally manipulated both stimulus and state factors, while healthy participants performed a computerized version of a landmark task. State was manipulated by time-on-task (>1 h) leading to increased fatigue and a reliable left- to rightward shift in spatial bias. Stimulus was manipulated by presenting either long or short lines which was associated with a shift of subjective midpoint from a reliable leftward bias for long to a more rightward bias for short lines. Importantly, we found time-on-task and line length effects to be additive suggesting a common denominator for line bisection across all conditions, which is in disagreement with models that assume that bisection decisions in long and short lines are governed by distinct processes (Magnitude estimation vs Global/local distinction). Our findings emphasize the dynamic rather than static nature of spatial biases in midline judgement. They are best captured by theories of spatial attention positing that spatial bias is flexibly modulated, and subject to inter-hemispheric balance which can change over time or conditions to accommodate task demands or reflect fatigue. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task.

    Science.gov (United States)

    Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo

    2014-10-15

    Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Modeling the impacts of phenological and inter-annual changes in landscape metrics on local biodiversity of agricultural lands of Eastern Ontario using multi-spatial and multi-temporal remote sensing data

    Science.gov (United States)

    Alavi-Shoushtari, N.; King, D.

    2017-12-01

    Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of

  11. Postural tasks are associated with center of pressure spatial patterns of three-dimensional statokinesigrams in young and elderly healthy subjects.

    Science.gov (United States)

    Baracat, Patrícia Junqueira Ferraz; de Sá Ferreira, Arthur

    2013-12-01

    The present study investigated the association between postural tasks and center of pressure spatial patterns of three-dimensional statokinesigrams. Young (n=35; 27.0±7.7years) and elderly (n=38; 67.3±8.7years) healthy volunteers maintained an undisturbed standing position during postural tasks characterized by combined sensory (vision/no vision) and biomechanical challenges (feet apart/together). A method for the analysis of three-dimensional statokinesigrams based on nonparametric statistics and image-processing analysis was employed. Four patterns of spatial distribution were derived from ankle and hip strategies according to the quantity (single; double; multi) and location (anteroposterior; mediolateral) of high-density regions on three-dimensional statokinesigrams. Significant associations between postural task and spatial pattern were observed (young: gamma=0.548, p<.001; elderly: gamma=0.582, p<.001). Robustness analysis revealed small changes related to parameter choices for histogram processing. MANOVA revealed multivariate main effects for postural task [Wilks' Lambda=0.245, p<.001] and age [Wilks' Lambda=0.308, p<.001], with interaction [Wilks' Lambda=0.732, p<.001]. The quantity of high-density regions was positively correlated to stabilogram and statokinesigram variables (p<.05 or lower). In conclusion, postural tasks are associated with center of pressure spatial patterns and are similar in young and elderly healthy volunteers. Single-centered patterns reflected more stable postural conditions and were more frequent with complete visual input and a wide base of support. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Brain Activity Stimulated by Prism Adaptation Tasks Utilized for the Treatment of Unilateral Spatial Neglect: A Study with fNIRS

    Directory of Open Access Journals (Sweden)

    Hiroshi Taniguchi

    2012-01-01

    Full Text Available We investigated the neurological basis for efficacy of prism adaptation therapy, which is used for the treatment of poststroke unilateral spatial neglect (USN. Study subjects were 6 USN-positive (+, 6 USN-negative patients, and 6 healthy volunteer control subjects. USN was identified by the Behavioural Inattention Test (BIT. During the tasks, brain activity was assessed with fNIRS via changes in oxyHb concentration per unit length. There was no significant difference in the number of errors in the task between the 3 groups. However, in the USN(+ group there was a significantly greater reduction in oxyHb levels in the right parietal association cortex during the prism adaptation task than in the other 2 groups (<0.05. There was an immediate improvement in USN symptoms as well as a significant increase in oxyHb levels during the prism adaptation in the channels covering the right frontal and parietal lobes in 2 patients in the USN(+ group (<0.05. This result suggested that decreased activity in the right parietal association cortex, which is related to spatial perception, during the prism adaptation task and task-induced reorganization of the right frontal and parietal areas were involved in improvement in USN symptoms.

  13. Metrics of quantum states

    International Nuclear Information System (INIS)

    Ma Zhihao; Chen Jingling

    2011-01-01

    In this work we study metrics of quantum states, which are natural generalizations of the usual trace metric and Bures metric. Some useful properties of the metrics are proved, such as the joint convexity and contractivity under quantum operations. Our result has a potential application in studying the geometry of quantum states as well as the entanglement detection.

  14. Lateralized Contribution of Prefrontal Cortex in Controlling Task-Irrelevant Information during Verbal and Spatial Working Memory Tasks: rTMS Evidence

    Science.gov (United States)

    Sandrini, Marco; Rossini, Paolo Maria; Miniussi, Carlo

    2008-01-01

    The functional organization of working memory (WM) in the human prefrontal cortex remains unclear. The present study used repetitive transcranial magnetic stimulation (rTMS) to clarify the role of the dorsolateral prefrontal cortex (dlPFC) both in the types of information (verbal vs. spatial), and the types of processes (maintenance vs.…

  15. Effects of Dual-Tasks on Spatial-Temporal Parameters of Gait in Older Adults With Impaired Balance

    Directory of Open Access Journals (Sweden)

    Elaheh Azadian

    2016-04-01

    Conclusion: The results showed that the duration of double reliance and stance increase when walking with dual task than when normal walking. Therefore, in the elderly with poor balance, doing dual-task with walking could increase the risk of fall. With regard to increase in asymmetry in walking with dual-task, it seems that mutual harmony and symmetry is very sensitive to concurrent cognitive task. This asymmetry in the function of legs is considered a risk factor in falling. Thus, based on the results, walking of the elderly with poor balance needs better cognitive performance. Doing concurrent cognitive tasks could intervene with attention sources and consequently change the walking pattern. Therefore, we recommend that the older people with weak balance and prone to falling should refrain from cognitive dual-task during walking and focus on walking itself.   

  16. $\\eta$-metric structures

    OpenAIRE

    Gaba, Yaé Ulrich

    2017-01-01

    In this paper, we discuss recent results about generalized metric spaces and fixed point theory. We introduce the notion of $\\eta$-cone metric spaces, give some topological properties and prove some fixed point theorems for contractive type maps on these spaces. In particular we show that theses $\\eta$-cone metric spaces are natural generalizations of both cone metric spaces and metric type spaces.

  17. Differential cortical c-Fos and Zif-268 expression after object and spatial memory processing in a standard or episodic-like object recognition task

    Directory of Open Access Journals (Sweden)

    Flávio F Barbosa

    2013-08-01

    Full Text Available Episodic memory reflects the capacity to recollect what, where and when a specific event happened in an integrative manner. Animal studies have suggested that the medial temporal lobe and the medial pre-frontal cortex are important for episodic-like memory formation. The goal of present study was to evaluate whether there are different patterns of expression of the immediate early genes c-Fos and Zif-268 in these cortical areas after rats are exposed to object recognition tasks with different cognitive demands. Male rats were randomly assigned to five groups: home cage control (CTR-HC, empty open field (CTR-OF, open field with one object (CTR-OF + Obj, novel object recognition task (OR and episodic-like memory task (ELM and were killed one hour after the last behavioral procedure. Rats were able to discriminate the objects in the OR task. In the ELM task, rats showed spatial (but not temporal discrimination of the objects. We found an increase in the c-Fos expression in the dorsal dentate gyrus (DG and in the perirhinal cortex (PRh in the OR and ELM groups. The OR group also presented an increase of c-Fos expression in the medial prefrontal cortex (mPFC. Additionally, the OR and ELM groups had increased expression of Zif-268 in the mPFC. Moreover, Zif-268 was increased in the dorsal CA1 and perirhinal cortex only in the ELM group. In conclusion, the pattern of activation was different in tasks with different cognitive demands. Accordingly, correlation tests suggest the engagement of different neural networks in the object recognition tasks used. Specifically, perirhinal-dentate gyrus co-activation was detected after the what-where memory retrieval, but not after the novel object recognition task. Both regions correlated with the respective behavioral outcome. These findings can be helpful in the understanding of the neural networks underlying memory tasks with different cognitive demands.

  18. Comparison of proximally versus distally placed spatially distributed sequential stimulation electrodes in a dynamic knee extension task

    Directory of Open Access Journals (Sweden)

    Marco Laubacher

    2016-06-01

    Full Text Available Spatially distributed sequential stimulation (SDSS has demonstrated substantial power output and fatigue benefits compared to single electrode stimulation (SES in the application of functional electrical stimulation (FES. This asymmetric electrode setup brings new possibilities but also new questions since precise placement of the electrodes is one critical factor for good muscle activation. The aim of this study was to compare the power output, fatigue and activation properties of proximally versus distally placed SDSS electrodes in an isokinetic knee extension task simulating knee movement during recumbent cycling. M. vastus lateralis and medialis of seven able-bodied subjects were stimulated with rectangular bi-phasic pulses of constant amplitude of 40 mA and at an SDSS frequency of 35 Hz for 6 min on both legs with both setups (i.e. n=14. Torque was measured during knee-extension movement by a dynamometer at an angular velocity of 110 deg/s. Mean power, peak power and activation time were calculated and compared for the initial and final stimulation phases, together with an overall fatigue index. Power output values (Pmean, Ppeak were scaled to a standardised reference input pulse width of 100 μs (Pmean,s, Ppeak,s. The initial evaluation phase showed no significant differences between the two setups for all outcome measures. Ppeak and Ppeak,s were both significantly higher in the final phase for the distal setup (25.4 ± 8.1 W vs. 28.2 ± 6.2 W, p=0.0062 and 34.8 ± 9.5 W vs. 38.9 ± 6.7 W, p=0.021, respectively. With distal SDSS, there was modest evidence of higher Pmean and Pmean,s (p=0.071, p=0.14, respectively but of longer activation time (p=0.096. The rate of fatigue was similar for both setups. For practical FES applications, distal placement of the SDSS electrodes is preferable.

  19. A novel spatial Delayed Non-Match to Sample (DNMS) task in the Göttingen minipig

    DEFF Research Database (Denmark)

    Nielsen, Thomas Rune; Kornum, Birgitte Rahbek; Moustgaard, Anette

    2009-01-01

    required an average of 144 trials to reach criterion for learning the task, which is similar to macaque monkeys. We also found that pigs, in contrast to rats, do not have a natural tendency to alternate in their choices in the task. To evaluate the sensitivity to reduced memory function longer delay...

  20. [Neuronal activity of monkey dorso-lateral premotor cortex during tasks of figure recognition guided motor sequence vs memorized spatial motor sequence].

    Science.gov (United States)

    Chen, Y C; Huang, F D; Chen, N H; Shou, J Y; Wu, L

    1998-04-01

    In the last 2-3 decades the role of the premotor cortex (PM) of monkey in memorized spatial sequential (MSS) movements has been amply investigated. However, it is as yet not known whether PM participates in the movement sequence behaviour guided by recognition of visual figures (i.e. the figure-recognition sequence, FRS). In the present work three monkeys were trained to perform both FRS and MSS tasks. Postmortem examination showed that 202 cells were in the dorso-lateral premotor cortex. Among 111 cells recorded during the two tasks, more than 50% changed their activity during the cue periods in either task. During the response period, the ratios of cells with changes of firing rate in both FRS and MSS were high and roughly equal to each other, while during the image period, the proportion in the FRS (83.7%) was significantly higher than that in the MSS (66.7%). Comparison of neuronal activities during same motor sequence of two different tasks showed that during the image periods PM neuronal activities were more closely related to the FRS task, while during the cue periods no difference could be found. Analysis of cell responses showed that the neurons with longer latency were much more in MSS than in FRS in either cue or image period. The present results indicate that the premotor cortex participates in FRS motor sequence as well as in MSS and suggest that the dorso-lateral PM represents another subarea in function shared by both FRS and MSS tasks. However, in view of the differences of PM neuronal responses in cue or image periods of FRS and MSS tasks, it seems likely that neural networks involved in FRS and MSS tasks are different.

  1. A Practical Method for Collecting Social Media Campaign Metrics

    Science.gov (United States)

    Gharis, Laurie W.; Hightower, Mary F.

    2017-01-01

    Today's Extension professionals are tasked with more work and fewer resources. Integrating social media campaigns into outreach efforts can be an efficient way to meet work demands. If resources go toward social media, a practical method for collecting metrics is needed. Collecting metrics adds one more task to the workloads of Extension…

  2. Rule knowledge aids performance on spatial and object alternation tasks by alcoholic patients with and without Korsakoff’s amnesia

    Directory of Open Access Journals (Sweden)

    Fiona J Bardenhagen

    2007-01-01

    Full Text Available Fiona J Bardenhagen1,2, Marlene Oscar-Berman3, Stephen C Bowden2,41School of Psychology, Victoria University, Melbourne, Victoria, Australia; 2Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Australia; 3Division of Psychiatry and Departments of Neurology and Anatomy and Neurobiology, Boston University School of Medicine; and Psychology Research Service, US Department of Veterans Affairs (VA Healthcare System, Jamaica Plain Campus, MA, USA; 4School of Behavioural Science, University of Melbourne, Parkville, Victoria, AustraliaAbstract: Delayed alternation (DA and object alternation (OA tasks traditionally have been used to measure defective response inhibition associated with dysfunction of frontal brain systems. However, these tasks are also sensitive to nonfrontal lesions, and cognitive processes such as the induction of rule-learning strategies also are needed in order to perform well on these tasks. Performance on DA and OA tasks was explored in 10 patients with alcohol-induced persisting amnestic disorder (Korsakoff’s syndrome, 11 abstinent long-term alcoholics, and 13 healthy non-alcoholic controls under each of two rule provision conditions: Alternation Rule and Correction Rule. Results confirmed that rule knowledge is a crucial cognitive component for solving problems such as DA and OA, and therefore, that errors on these tasks are not due to defective response inhibition alone. Further, rule-induction strategies were helpful to Korsakoff patients, despite their poorer performance on the tasks. These results stress the role of multiple cognitive abilities in successful performance on rule induction tasks. Evidence that these cognitive abilities are served by diffusely distributed neural networks should be considered when interpreting behavioral impairments on these tasks.Keywords: alcoholism, Korsakoff’s syndrome, comparative neuropsychology, perseveration, rule induction, working memory

  3. Hippocampal-dependent memory in the plus-maze discriminative avoidance task: The role of spatial cues and CA1 activity.

    Science.gov (United States)

    Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H

    2016-05-01

    The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to

  4. Memory modulation across neural systems: intra-amygdala glucose reverses deficits caused by intraseptal morphine on a spatial task but not on an aversive task.

    Science.gov (United States)

    McNay, E C; Gold, P E

    1998-05-15

    Based largely on dissociations of the effects of different lesions on learning and memory, memories for different attributes appear to be organized in independent neural systems. Results obtained with direct injections of drugs into one brain region at a time support a similar conclusion. The present experiments investigated the effects of simultaneous pharmacological manipulation of two neural systems, the amygdala and the septohippocampal system, to examine possible interactions of memory modulation across systems. Morphine injected into the medial septum impaired memory both for avoidance training and during spontaneous alternation. When glucose was concomitantly administered to the amygdala, glucose reversed the morphine-induced deficits in memory during alternation but not for avoidance training. These results suggest that the amygdala is involved in modulation of spatial memory processes and that direct injections of memory-modulating drugs into the amygdala do not always modulate memory for aversive events. These findings are contrary to predictions from the findings of lesion studies and of studies using direct injections of drugs into single brain areas. Thus, the independence of neural systems responsible for processing different classes of memory is less clear than implied by studies using lesions or injections of drugs into single brain areas.

  5. The role of rewarding and novel events in facilitating memory persistence in a separate spatial memory task

    Science.gov (United States)

    Salvetti, Beatrice; Morris, Richard G.M.; Wang, Szu-Han

    2014-01-01

    Many insignificant events in our daily life are forgotten quickly but can be remembered for longer when other memory-modulating events occur before or after them. This phenomenon has been investigated in animal models in a protocol in which weak memories persist longer if exploration in a novel context is introduced around the time of memory encoding. This study aims to understand whether other types of rewarding or novel tasks, such as rewarded learning in a T-maze and novel object recognition, can also be effective memory-modulating events. Rats were trained in a delayed matching-to-place task to encode and retrieve food locations in an event arena. Weak encoding with only one food pellet at the sample location induced memory encoding but forgetting over 24 h. When this same weak encoding was followed by a rewarded task in a T-maze, the memory persisted for 24 h. Moreover, the same persistence of memory over 24 h could be achieved by exploration in a novel box or by a rewarded T-maze task after a “non-rewarded” weak encoding. When the one-pellet weak encoding was followed by novel object exploration, the memory did not persist at 24 h. Together, the results confirm that place encoding is possible without explicit reward, and that rewarded learning in a separate task lacking novelty can be an effective memory-modulating event. The behavioral and neurobiological implications are discussed. PMID:24429424

  6. Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance.

    Science.gov (United States)

    Ribeiro, Jéssica Alves; Marinho, Francisco Victor Costa; Rocha, Kaline; Magalhães, Francisco; Baptista, Abrahão Fontes; Velasques, Bruna; Ribeiro, Pedro; Cagy, Mauricio; Bastos, Victor Hugo; Gupta, Daya; Teixeira, Silmar

    2018-03-01

    Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.

  7. Metric learning for DNA microarray data analysis

    International Nuclear Information System (INIS)

    Takeuchi, Ichiro; Nakagawa, Masao; Seto, Masao

    2009-01-01

    In many microarray studies, gene set selection is an important preliminary step for subsequent main task such as tumor classification, cancer subtype identification, etc. In this paper, we investigate the possibility of using metric learning as an alternative to gene set selection. We develop a simple metric learning algorithm aiming to use it for microarray data analysis. Exploiting a property of the algorithm, we introduce a novel approach for extending the metric learning to be adaptive. We apply the algorithm to previously studied microarray data on malignant lymphoma subtype identification.

  8. METRIC context unit architecture

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R.O.

    1988-01-01

    METRIC is an architecture for a simple but powerful Reduced Instruction Set Computer (RISC). Its speed comes from the simultaneous processing of several instruction streams, with instructions from the various streams being dispatched into METRIC's execution pipeline as they become available for execution. The pipeline is thus kept full, with a mix of instructions for several contexts in execution at the same time. True parallel programming is supported within a single execution unit, the METRIC Context Unit. METRIC's architecture provides for expansion through the addition of multiple Context Units and of specialized Functional Units. The architecture thus spans a range of size and performance from a single-chip microcomputer up through large and powerful multiprocessors. This research concentrates on the specification of the METRIC Context Unit at the architectural level. Performance tradeoffs made during METRIC's design are discussed, and projections of METRIC's performance are made based on simulation studies.

  9. Delayed-matching-to-place Task in a Dry Maze to Measure Spatial Working Memory in Mice.

    Science.gov (United States)

    Feng, Xi; Krukowski, Karen; Jopson, Timothy; Rosi, Susanna

    2017-07-05

    The delayed-matching-to-place (DMP) dry maze test is a variant of DMP water maze (Steele and Morris, 1999; Faizi et al. , 2012) which measures spatial working/episodic-like learning and memory that depends on both hippocampal and cortical functions (Wang and Morris, 2010; Euston et al. , 2012). Using this test we can detect normal aging related spatial working memory decline, as well as trauma induced working memory deficits. Furthermore, we recently reported that fractionated whole brain irradiation does not affect working memory in mice (Feng et al. , 2016). Here we describe the experimental setup and procedures of this behavioral test.

  10. A Male Advantage for Spatial and Object but Not Verbal Working Memory Using the N-Back Task

    Science.gov (United States)

    Lejbak, Lisa; Crossley, Margaret; Vrbancic, Mirna

    2011-01-01

    Sex-related differences have been reported for performance and neural substrates on some working memory measures that carry a high cognitive load, including the popular n-back neuroimaging paradigm. Despite some evidence of a sex effect on the task, the influence of sex on performance represents a potential confound in neuroimaging research. The…

  11. Differences in spatial working memory as a function of team sports expertise: the Corsi Block-tapping task in sport psychological assessment.

    Science.gov (United States)

    Furley, Philip; Memmert, Daniel

    2010-06-01

    Individual differences in visuospatial abilities were investigated in experienced basketball players compared with nonathletes. Most research shows that experts and novices do not differ on basic cognitive ability tests. Nevertheless, there are some equivocal findings indicating there are differences in basic cognitive abilities such as attention. The goal of the present research was to investigate team-ball athletes in regard to their visuospatial abilities. 112 male college students (54 basketball players, 58 nonathlete college students) were tested in their spatial capacity with the Corsi Block-tapping Task. No differences in spatial capacity were evident between basketball players and nonathlete college students. The results are discussed in the context of the expert performance approach and individual difference research.

  12. Anxiety-related biases in visual orienting and spatial motor response selection independently assessed by a probe-classification task

    NARCIS (Netherlands)

    Schrooten, M.G.S.; Smulders, F.T.Y.; Mogg, K.; Bradley, B.P.

    2012-01-01

    This dot-probe study assessed anxiety-related biases in visual attentional orienting and spatial motor response selection (motor attention) in high- and low-trait-anxious adults, and whether anxiety-related biases depend on response speed. Emotional-neutral word pairs appeared for 14 or 500 ms, with

  13. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.

    Science.gov (United States)

    Grewe, P; Lahr, D; Kohsik, A; Dyck, E; Markowitsch, H J; Bien, C G; Botsch, M; Piefke, M

    2014-02-01

    Ecological assessment and training of real-life cognitive functions such as visual-spatial abilities in patients with epilepsy remain challenging. Some studies have applied virtual reality (VR) paradigms, but external validity of VR programs has not sufficiently been proven. Patients with focal epilepsy (EG, n=14) accomplished an 8-day program in a VR supermarket, which consisted of learning and buying items on a shopping list. Performance of the EG was compared with that of healthy controls (HCG, n=19). A comprehensive neuropsychological examination was administered. Real-life performance was investigated in a real supermarket. Learning in the VR supermarket was significantly impaired in the EG on different VR measures. Delayed free recall of products did not differ between the EG and the HCG. Virtual reality scores were correlated with neuropsychological measures of visual-spatial cognition, subjective estimates of memory, and performance in the real supermarket. The data indicate that our VR approach allows for the assessment of real-life visual-spatial memory and cognition in patients with focal epilepsy. The multimodal, active, and complex VR paradigm may particularly enhance visual-spatial cognitive resources. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Gaze-based rehearsal in children under 7: a developmental investigation of eye movements during a serial spatial memory task.

    Science.gov (United States)

    Morey, Candice C; Mareva, Silvana; Lelonkiewicz, Jaroslaw R; Chevalier, Nicolas

    2018-05-01

    The emergence of strategic verbal rehearsal at around 7 years of age is widely considered a major milestone in descriptions of the development of short-term memory across childhood. Likewise, rehearsal is believed by many to be a crucial factor in explaining why memory improves with age. This apparent qualitative shift in mnemonic processes has also been characterized as a shift from passive visual to more active verbal mnemonic strategy use, but no investigation of the development of overt spatial rehearsal has informed this explanation. We measured serial spatial order reconstruction in adults and groups of children 5-7 years old and 8-11 years old, while recording their eye movements. Children, particularly the youngest children, overtly fixated late-list spatial positions longer than adults, suggesting that younger children are less likely to engage in covert rehearsal during stimulus presentation than older children and adults. However, during retention the youngest children overtly fixated more of the to-be-remembered sequences than any other group, which is inconsistent with the idea that children do nothing to try to remember. Altogether, these data are inconsistent with the notion that children under 7 do not engage in any attempts to remember. They are most consistent with proposals that children's style of remembering shifts around age 7 from reactive cue-driven methods to proactive, covert methods, which may include cumulative rehearsal. © 2017 John Wiley & Sons Ltd.

  15. The Jacobi metric for timelike geodesics in static spacetimes

    Science.gov (United States)

    Gibbons, G. W.

    2016-01-01

    It is shown that the free motion of massive particles moving in static spacetimes is given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobi's metric in classical dynamics. In the massless limit Jacobi's metric coincides with the energy independent Fermat or optical metric. For stationary metrics, it is known that the motion of massless particles is given by the geodesics of an energy independent Finslerian metric of Randers type. The motion of massive particles is governed by neither a Riemannian nor a Finslerian metric. The properies of the Jacobi metric for massive particles moving outside the horizon of a Schwarschild black hole are described. By constrast with the massless case, the Gaussian curvature of the equatorial sections is not always negative.

  16. Metric diffusion along foliations

    CERN Document Server

    Walczak, Szymon M

    2017-01-01

    Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

  17. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  18. Relevance of motion-related assessment metrics in laparoscopic surgery.

    Science.gov (United States)

    Oropesa, Ignacio; Chmarra, Magdalena K; Sánchez-González, Patricia; Lamata, Pablo; Rodrigues, Sharon P; Enciso, Silvia; Sánchez-Margallo, Francisco M; Jansen, Frank-Willem; Dankelman, Jenny; Gómez, Enrique J

    2013-06-01

    Motion metrics have become an important source of information when addressing the assessment of surgical expertise. However, their direct relationship with the different surgical skills has not been fully explored. The purpose of this study is to investigate the relevance of motion-related metrics in the evaluation processes of basic psychomotor laparoscopic skills and their correlation with the different abilities sought to measure. A framework for task definition and metric analysis is proposed. An explorative survey was first conducted with a board of experts to identify metrics to assess basic psychomotor skills. Based on the output of that survey, 3 novel tasks for surgical assessment were designed. Face and construct validation was performed, with focus on motion-related metrics. Tasks were performed by 42 participants (16 novices, 22 residents, and 4 experts). Movements of the laparoscopic instruments were registered with the TrEndo tracking system and analyzed. Time, path length, and depth showed construct validity for all 3 tasks. Motion smoothness and idle time also showed validity for tasks involving bimanual coordination and tasks requiring a more tactical approach, respectively. Additionally, motion smoothness and average speed showed a high internal consistency, proving them to be the most task-independent of all the metrics analyzed. Motion metrics are complementary and valid for assessing basic psychomotor skills, and their relevance depends on the skill being evaluated. A larger clinical implementation, combined with quality performance information, will give more insight on the relevance of the results shown in this study.

  19. Prognostic Performance Metrics

    Data.gov (United States)

    National Aeronautics and Space Administration — This chapter presents several performance metrics for offline evaluation of prognostics algorithms. A brief overview of different methods employed for performance...

  20. Overview of journal metrics

    Directory of Open Access Journals (Sweden)

    Kihong Kim

    2018-02-01

    Full Text Available Various kinds of metrics used for the quantitative evaluation of scholarly journals are reviewed. The impact factor and related metrics including the immediacy index and the aggregate impact factor, which are provided by the Journal Citation Reports, are explained in detail. The Eigenfactor score and the article influence score are also reviewed. In addition, journal metrics such as CiteScore, Source Normalized Impact per Paper, SCImago Journal Rank, h-index, and g-index are discussed. Limitations and problems that these metrics have are pointed out. We should be cautious to rely on those quantitative measures too much when we evaluate journals or researchers.

  1. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks.

    Science.gov (United States)

    Dai, Lengshi; Shinn-Cunningham, Barbara G

    2016-01-01

    Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics

  2. Contributions of sensory coding and attentional control to individual differences in performance in spatial auditory selective attention tasks

    Directory of Open Access Journals (Sweden)

    Lengshi Dai

    2016-10-01

    Full Text Available Listeners with normal hearing thresholds differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding, onset event-related potentials from the scalp (ERPs, reflecting cortical responses to sound, and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones; however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance, inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with normal hearing thresholds can arise due to both subcortical coding differences and differences in attentional control, depending on

  3. High-sucrose diets in male rats disrupt aspects of decision making tasks, motivation and spatial memory, but not impulsivity measured by operant delay-discounting.

    Science.gov (United States)

    Wong, Alanna; Dogra, Vimi R; Reichelt, Amy C

    2017-06-01

    Excessive consumption of sugar sweetened drinks is proposed to produce functional changes in the hippocampus and prefrontal cortex, leading to perturbations in behavioural control. Impairments in behavioural control have been observed in obese people on tasks that involve making choices, including delay-discounting, indicative of increased impulsivity. In this study we examined the impact of 2h daily access to 10% sucrose (or no sucrose in controls) in young male rats on behavioural tasks reliant on hippocampal function including delay-discounting, T-maze forced choice alternation and place recognition memory, as well as progressive ratio to measure motivation. We observed deficits in place recognition memory and T-maze forced choice alternation, indicative of hippocampal deficits in rats with a history of sucrose consumption. Moreover, rats with a history of sucrose consumption were less motivated to lever press for rewards on a progressive ratio schedule. However, rats with a history of sucrose consumption performed equally to control animals during the delay-discounting task, suggesting that they discounted for reward size over a delay in a manner comparable to control animals. These findings indicate that high-sucrose diets impact on spatial and working memory processes, but do not induce impulsive-like choice behaviours in rats, suggesting that unhealthy diet choices may not influence this aspect of decision-making behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Brand metrics that matter

    NARCIS (Netherlands)

    Muntinga, D.; Bernritter, S.

    2017-01-01

    Het merk staat steeds meer centraal in de organisatie. Het is daarom essentieel om de gezondheid, prestaties en ontwikkelingen van het merk te meten. Het is echter een uitdaging om de juiste brand metrics te selecteren. Een enorme hoeveelheid metrics vraagt de aandacht van merkbeheerders. Maar welke

  5. Privacy Metrics and Boundaries

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2005-01-01

    textabstractThis paper aims at defining a set of privacy metrics (quantitative and qualitative) in the case of the relation between a privacy protector ,and an information gatherer .The aims with such metrics are: -to allow to assess and compare different user scenarios and their differences; for

  6. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.

    Science.gov (United States)

    Doricchi, Fabrizio; Macci, Enrica; Silvetti, Massimo; Macaluso, Emiliano

    2010-07-01

    Voluntary orienting of visual attention is conventionally measured in tasks with predictive central cues followed by frequent valid targets at the cued location and by infrequent invalid targets at the uncued location. This implies that invalid targets entail both spatial reorienting of attention and breaching of the expected spatial congruency between cues and targets. Here, we used event-related functional magnetic resonance imaging (fMRI) to separate the neural correlates of the spatial and expectancy components of both endogenous orienting and stimulus-driven reorienting of attention. We found that during endogenous orienting with predictive cues, there was a significant deactivation of the right Temporal-Parietal Junction (TPJ). We also discovered that the lack of an equivalent deactivation with nonpredictive cues was matched to drop in attentional costs and preservation of attentional benefits. The right TPJ showed equivalent responses to invalid targets following predictive and nonpredictive cues. On the contrary, infrequent-unexpected invalid targets following predictive cues specifically activated the right Middle and Inferior Frontal Gyrus (MFG-IFG). Additional comparisons with spatially neutral trials demonstrated that, independently of cue predictiveness, valid targets activate the left TPJ, whereas invalid targets activate both the left and right TPJs. These findings show that the selective right TPJ activation that is found in the comparison between invalid and valid trials results from the reciprocal cancelling of the different activations that in the left TPJ are related to the processing of valid and invalid targets. We propose that left and right TPJs provide "matching and mismatching to attentional template" signals. These signals enable reorienting of attention and play a crucial role in the updating of the statistical contingency between cues and targets.

  7. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  8. Tau Depletion in APP Transgenic Mice Attenuates Task-Related Hyperactivation of the Hippocampus and Differentially Influences Locomotor Activity and Spatial Memory

    Directory of Open Access Journals (Sweden)

    Misato Yoshikawa

    2018-03-01

    Full Text Available Hippocampal hyperactivity, ascribed to amyloid β (Aβ-induced imbalances in neural excitation and inhibition, is found in patients with mild cognitive impairment, a prodromal stage of Alzheimer's disease (AD. To better understand the relationship between hippocampal hyperactivity and the molecular triggers of behavioral impairments in AD, we used Mn-enhanced MRI (MEMRI to assess neuronal activity after subjecting mice to a task requiring spatial learning and memory. Depletion of endogenous tau in an amyloid precursor protein (APP transgenic (J20 mouse line was shown to ameliorate hippocampal hyperactivity in J20 animals, tau depletion failed to reverse memory deficits associated with APP/Aβ overproduction. On the other hand, deletion of tau alleviated the hyperlocomotion displayed by APP transgenics, suggesting that the functional effects of Aβ-tau interactions reflect the temporal appearance of these molecules in individual brain areas.

  9. The role of spatial frequency information in the decoding of facial expressions of pain: a novel hybrid task.

    Science.gov (United States)

    Wang, Shan; Eccleston, Christopher; Keogh, Edmund

    2017-11-01

    Spatial frequency (SF) information contributes to the recognition of facial expressions, including pain. Low-SF encodes facial configuration and structure and often dominates over high-SF information, which encodes fine details in facial features. This low-SF preference has not been investigated within the context of pain. In this study, we investigated whether perpetual preference differences exist for low-SF and high-SF pain information. A novel hybrid expression paradigm was used in which 2 different expressions, one containing low-SF information and the other high-SF information, were combined in a facial hybrid. Participants are instructed to identify the core expression contained within the hybrid, allowing for the measurement of SF information preference. Three experiments were conducted (46 participants in each) that varied the expressions within the hybrid faces: respectively pain-neutral, pain-fear, and pain-happiness. In order to measure the temporal aspects of image processing, each hybrid image was presented for 33, 67, 150, and 300 ms. As expected, identification of pain and other expressions was dominated by low-SF information across the 3 experiments. The low-SF preference was largest when the presentation of hybrid faces was brief and reduced as the presentation duration increased. A sex difference was also found in experiment 1. For women, the low-SF preference was dampened by high-SF pain information, when viewing low-SF neutral expressions. These results not only confirm the role that SF information has in the recognition of pain in facial expressions but suggests that in some situations, there may be sex differences in how pain is communicated.

  10. Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task.

    Science.gov (United States)

    Cánovas, Rosa; García, Rubén Fernández; Cimadevilla, Jose Manuel

    2011-01-01

    The aim of this study was to examine the influence of the number of cues and cue location in human spatial learning. To assess their importance, subjects performed variants of a virtual task called "The Boxes Room". Participants were trained to locate, in a computer-generated environment with 16 boxes, the rewarded boxes through 8 trials. In experiment I, the number of distal cues available was zero, one, two or the standard arrangement (seven cues). In experiment II, place navigation was compared based on distal landmarks (extra-maze cues placed on the walls) and proximal landmarks (proximal cues placed between the boxes). The results of experiment I demonstrated that one cue in the room is enough to obtain a good performance in the task. Experiment II showed that groups using proximal cues were slower and less accurate than groups using distal cues. In addition, our data suggest that men are better navigators than women, as they found the rewarded boxes sooner and committed fewer errors in both studies. These results indicate that performance can change depending on the number and location of available cues. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task

    Directory of Open Access Journals (Sweden)

    Matthijs A A Van Der Meer

    2009-06-01

    Full Text Available Local field potential (LFP oscillations in the brain reflect organization thought to be important for perception, attention, movement, and memory. In the basal ganglia, including dorsal striatum, dysfunctional LFP states are associated with Parkinson’s disease, while in healthy subjects, dorsal striatal LFPs have been linked to decision-making processes. However, LFPs in ventral striatum have been less studied. We report that in rats running a spatial decision task, prominent gamma-50 (45-55 Hz and gamma-80 (70-85 Hz oscillations in ventral striatum had distinct relationships to behavior, task events, and spiking activity. Gamma-50 power increased sharply following reward delivery and before movement initiation, while in contrast, gamma-80 power ramped up gradually to reward locations. Gamma-50 power was low and contained little structure during early learning, but rapidly developed a stable pattern, while gamma-80 power was initially high before returning to a stable level within a similar timeframe. Putative fast-spiking interneurons (FSIs showed phase, firing rate, and coherence relationships with gamma-50 and gamma-80, indicating that the observed LFP patterns are locally relevant. Furthermore, in a number of FSIs such relationships were specific to gamma-50 or gamma-80, suggesting that partially distinct FSI populations mediate the effects of gamma-50 and gamma-80.

  12. Probabilistic metric spaces

    CERN Document Server

    Schweizer, B

    2005-01-01

    Topics include special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. 1983 edition, updated with 3 new appendixes. Includes 17 illustrations.

  13. Tracker Performance Metric

    National Research Council Canada - National Science Library

    Olson, Teresa; Lee, Harry; Sanders, Johnnie

    2002-01-01

    .... We have developed the Tracker Performance Metric (TPM) specifically for this purpose. It was designed to measure the output performance, on a frame-by-frame basis, using its output position and quality...

  14. Negative effects of chronic oral chlorpromazine and olanzapine treatment on the performance of tasks designed to assess spatial learning and working memory in rats.

    Science.gov (United States)

    Terry, A V; Warner, S E; Vandenhuerk, L; Pillai, A; Mahadik, S P; Zhang, G; Bartlett, M G

    2008-10-28

    Learning potential and memory capacity are factors that strongly predict the level of rehabilitation and the long-term functional outcome in patients with schizophrenia. Unfortunately, however, the effects of antipsychotic drugs (i.e. the primary treatments for schizophrenia) on these components of cognition are unclear, particularly when they are administered chronically (i.e. a standard clinical practice). In this rodent study we evaluated the effects of different time periods (ranging from 2 weeks to 6 months) of oral treatment with the first generation antipsychotic chlorpromazine (10.0 mg/kg/day), or the second generation antipsychotic olanzapine (10.0 mg/kg/day) on the repeated acquisition of a water maze task (i.e. a method of assessing spatial learning potential in a repeated testing format). We assessed locomotor function (in an open field) and employed a radial arm maze (RAM) task to assess antipsychotic effects (5.0 and 10.0 mg/kg/day doses) on spatial working memory during the treatment period between 15 days and 2 months. Finally, we conducted experiments using liquid chromatography/tandem mass spectrometry (LC-MS/MS) to evaluate the therapeutic relevance of our method of drug delivery (oral administration in drinking water). In the water maze experiments, both antipsychotics were associated with impairments in acquisition in the earlier test sessions that could eventually be overcome with repeated testing while olanzapine also impaired retention in probe trials. Both antipsychotics were also associated with impairments in delayed non-match-to-position trials in the RAM and some impairments of motor function (especially in the case of olanzapine) as indicated by slightly reduced swim speeds in the water maze and decreased activity in some components of the open field assessment. Finally, LC-MS/MS studies indicated that the method of antipsychotic administration generated clinically relevant plasma levels in the rat. These animal data indicate that

  15. IT Project Management Metrics

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Many software and IT projects fail in completing theirs objectives because different causes of which the management of the projects has a high weight. In order to have successfully projects, lessons learned have to be used, historical data to be collected and metrics and indicators have to be computed and used to compare them with past projects and avoid failure to happen. This paper presents some metrics that can be used for the IT project management.

  16. Mass Customization Measurements Metrics

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev; Jørgensen, Kaj Asbjørn

    2014-01-01

    A recent survey has indicated that 17 % of companies have ceased mass customizing less than 1 year after initiating the effort. This paper presents measurement for a company’s mass customization performance, utilizing metrics within the three fundamental capabilities: robust process design, choice...... navigation, and solution space development. A mass customizer when assessing performance with these metrics can identify within which areas improvement would increase competitiveness the most and enable more efficient transition to mass customization....

  17. Efeitos de duas modalidades tutoriais para a criança tutora em tarefas espaciais Effects of two tutorial modalities on tutor children in spatial tasks

    Directory of Open Access Journals (Sweden)

    Irene Franciscato

    2006-01-01

    Full Text Available O estudo investiga efeitos da tutoria para o tutor, na aprendizagem de noções espaciais, em duas modalidades: explicação oral e explicação oral com demonstração. Participaram 40 crianças de 8 a 9 anos, em três grupos experimentais e um grupo controle. A pesquisa teve delineamento experimental, com pré-teste e pós-testes. No pré-teste e pós-testes 1 e 2 foram aplicadas duas provas de noções espaciais. A tarefa experimental consistiu na realização do jogo do parking em três condições: crianças sozinhas, crianças em díades na modalidade explicação oral ou na modalidade explicação oral com demonstração. Os resultados mostraram que a tutoria favoreceu a aprendizagem das noções espaciais para a criança tutora, com vantagem para a modalidade explicação oral com demonstração. Foram identificadas variações nos progressos alcançados pelos tutores nas duas modalidades tutoriais. São feitas considerações sobre as vantagens da tutoria no campo educacional.The study concerns the effects of tutoring on tutor children, on the learning of spatial notions, in two tutorship modalities, oral explanation and oral explanation with demonstration. Subjects were 40 children aged 8 to 9 years old, randomly assigned to three experimental groups and a control group. The study design is experimental, with pre-test and post-test. Two spatial tasks were employed as pre-test and post-tests (1 and 2. The experimental task consisted in a parking game carried out under three conditions: children alone, children in pairs for both oral explanation and oral explanation with demonstration. Results showed that tutor's learning on the focused spatial notions was favored by tutorship especially under the oral explanation with demonstration condition. Some variations on the tutor's progress were also identified on both modalities. The results provide some grounds on which tutorship may be debated in the educational field.

  18. A family of metric gravities

    Science.gov (United States)

    Shuler, Robert

    2018-04-01

    The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one

  19. Time takes space: selective effects of multitasking on concurrent spatial processing.

    Science.gov (United States)

    Mäntylä, Timo; Coni, Valentina; Kubik, Veit; Todorov, Ivo; Del Missier, Fabio

    2017-08-01

    Many everyday activities require coordination and monitoring of complex relations of future goals and deadlines. Cognitive offloading may provide an efficient strategy for reducing control demands by representing future goals and deadlines as a pattern of spatial relations. We tested the hypothesis that multiple-task monitoring involves time-to-space transformational processes, and that these spatial effects are selective with greater demands on coordinate (metric) than categorical (nonmetric) spatial relation processing. Participants completed a multitasking session in which they monitored four series of deadlines, running on different time scales, while making concurrent coordinate or categorical spatial judgments. We expected and found that multitasking taxes concurrent coordinate, but not categorical, spatial processing. Furthermore, males showed a better multitasking performance than females. These findings provide novel experimental evidence for the hypothesis that efficient multitasking involves metric relational processing.

  20. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    Science.gov (United States)

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  1. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  2. Deep Transfer Metric Learning.

    Science.gov (United States)

    Junlin Hu; Jiwen Lu; Yap-Peng Tan; Jie Zhou

    2016-12-01

    Conventional metric learning methods usually assume that the training and test samples are captured in similar scenarios so that their distributions are assumed to be the same. This assumption does not hold in many real visual recognition applications, especially when samples are captured across different data sets. In this paper, we propose a new deep transfer metric learning (DTML) method to learn a set of hierarchical nonlinear transformations for cross-domain visual recognition by transferring discriminative knowledge from the labeled source domain to the unlabeled target domain. Specifically, our DTML learns a deep metric network by maximizing the inter-class variations and minimizing the intra-class variations, and minimizing the distribution divergence between the source domain and the target domain at the top layer of the network. To better exploit the discriminative information from the source domain, we further develop a deeply supervised transfer metric learning (DSTML) method by including an additional objective on DTML, where the output of both the hidden layers and the top layer are optimized jointly. To preserve the local manifold of input data points in the metric space, we present two new methods, DTML with autoencoder regularization and DSTML with autoencoder regularization. Experimental results on face verification, person re-identification, and handwritten digit recognition validate the effectiveness of the proposed methods.

  3. Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: A pilot study

    Directory of Open Access Journals (Sweden)

    Goswami N

    2015-02-01

    Full Text Available Nandu Goswami,1 Voyko Kavcic,2 Uros Marusic,3 Bostjan Simunic,3 Andreas Rössler,1 Helmut Hinghofer-Szalkay,1 Rado Pisot3 1Institute of Physiology, Medical University of Graz, Graz, Austria; 2Institute of Gerontology, Wayne State University, Detroit, MI, USA; 3Institute for Kinesiology Research, University of Primorska, Ankaran, Slovenia Abstract: We investigated the effects of bed rest (BR immobilization, with and without computerized cognitive training with virtual spatial navigation task (CCT, on vascular endothelium on older subjects. The effects of 14-day BR immobilization in healthy older males (n=16 of ages 53–65 years on endothelial function were studied using EndoPAT®, a noninvasive and user-independent method. From the group of 16 older men, 8 randomly received CCT during the BR, using virtual navigation tasks in a virtual environment with joystick device. In all the cases, EndoPAT assessments were done at pre- and post-BR immobilization as well as following 28 days of ambulatory recovery. The EndoPAT index increased from 1.53±0.09 (mean ± standard error of the mean at baseline to 1.61±0.16 following immobilization (P=0.62 in the group with CCT. The EndoPAT index decreased from 2.06±0.13 (mean ± standard error of the mean at baseline to 1.70±0.09 at the last day of BR study, day 14 (BR14 (P=0.09 in the control group. Additionally, there were no statistically significant differences between BR14 and at 28 days of follow-up (rehabilitation program (R28. Our results show a trend of immobilization in older persons affecting the vasoconstrictory endothelial response. As the control subjects had a greater increase in EndoPAT index after R28 (+0.018 compared to subjects who had cognitive training (+0.11 (calculated from the first day of BR study, it is possible that cognitive training during BR does not improve endothelial function but rather contributes to slowing down the impairment of endothelial function. Finally, our results

  4. Performance metrics for the evaluation of hyperspectral chemical identification systems

    Science.gov (United States)

    Truslow, Eric; Golowich, Steven; Manolakis, Dimitris; Ingle, Vinay

    2016-02-01

    Remote sensing of chemical vapor plumes is a difficult but important task for many military and civilian applications. Hyperspectral sensors operating in the long-wave infrared regime have well-demonstrated detection capabilities. However, the identification of a plume's chemical constituents, based on a chemical library, is a multiple hypothesis testing problem which standard detection metrics do not fully describe. We propose using an additional performance metric for identification based on the so-called Dice index. Our approach partitions and weights a confusion matrix to develop both the standard detection metrics and identification metric. Using the proposed metrics, we demonstrate that the intuitive system design of a detector bank followed by an identifier is indeed justified when incorporating performance information beyond the standard detection metrics.

  5. Functional Dissociation of Confident and Not-Confident Errors in the Spatial Delayed Response Task Demonstrates Impairments in Working Memory Encoding and Maintenance in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Jutta S. Mayer

    2018-05-01

    Full Text Available Even though extensively investigated, the nature of working memory (WM deficits in patients with schizophrenia (PSZ is not yet fully understood. In particular, the contribution of different WM sub-processes to the severe WM deficit observed in PSZ is a matter of debate. So far, most research has focused on impaired WM maintenance. By analyzing different types of errors in a spatial delayed response task (DRT, we have recently demonstrated that incorrect yet confident responses (which we labeled as false memory errors rather than incorrect/not-confident responses reflect failures of WM encoding, which was also impaired in PSZ. In the present study, we provide further evidence for a functional dissociation between confident and not-confident errors by manipulating the demands on WM maintenance, i.e., the length over which information has to be maintained in WM. Furthermore, we investigate whether these functionally distinguishable WM processes are impaired in PSZ. Twenty-four PSZ and 24 demographically matched healthy controls (HC performed a spatial DRT in which the length of the delay period was varied between 1, 2, 4, and 6 s. In each trial, participants also rated their level of response confidence. Across both groups, longer delays led to increased rates of incorrect/not-confident responses, while incorrect/confident responses were not affected by delay length. This functional dissociation provides additional support for our proposal that false memory errors (i.e., confident errors reflect problems at the level of WM encoding, while not-confident errors reflect failures of WM maintenance. Schizophrenic patients showed increased numbers of both confident and not-confident errors, suggesting that both sub-processes of WM—encoding and maintenance—are impaired in schizophrenia. Combined with the delay length-dependent functional dissociation, we propose that these impairments in schizophrenic patients are functionally distinguishable.

  6. Modulations of eye movement patterns by spatial filtering during the learning and testing phases of an old/new face recognition task.

    Science.gov (United States)

    Lemieux, Chantal L; Collin, Charles A; Nelson, Elizabeth A

    2015-02-01

    In two experiments, we examined the effects of varying the spatial frequency (SF) content of face images on eye movements during the learning and testing phases of an old/new recognition task. At both learning and testing, participants were presented with face stimuli band-pass filtered to 11 different SF bands, as well as an unfiltered baseline condition. We found that eye movements varied significantly as a function of SF. Specifically, the frequency of transitions between facial features showed a band-pass pattern, with more transitions for middle-band faces (≈5-20 cycles/face) than for low-band (≈20 cpf) ones. These findings were similar for the learning and testing phases. The distributions of transitions across facial features were similar for the middle-band, high-band, and unfiltered faces, showing a concentration on the eyes and mouth; conversely, low-band faces elicited mostly transitions involving the nose and nasion. The eye movement patterns elicited by low, middle, and high bands are similar to those previous researchers have suggested reflect holistic, configural, and featural processing, respectively. More generally, our results are compatible with the hypotheses that eye movements are functional, and that the visual system makes flexible use of visuospatial information in face processing. Finally, our finding that only middle spatial frequencies yielded the same number and distribution of fixations as unfiltered faces adds more evidence to the idea that these frequencies are especially important for face recognition, and reveals a possible mediator for the superior performance that they elicit.

  7. Landscape pattern metrics and regional assessment

    Science.gov (United States)

    O'Neill, R. V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B.

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop and interpret quantitative measures of spatial pattern-the landscape indices. This article reviews what is known about the statistical properties of these pattern metrics and suggests some additional metrics based on island biogeography, percolation theory, hierarchy theory, and economic geography. Assessment applications of this approach have required interpreting the pattern metrics in terms of specific environmental endpoints, such as wildlife and water quality, and research into how to represent synergystic effects of many overlapping sources of stress.

  8. The Convergence in Spatial Tasks

    Directory of Open Access Journals (Sweden)

    Vladimir P. Kulagin

    2013-01-01

    Full Text Available The article reveals the problem of convergence of direct and inverse problems in Earth Sciences, describes the features and application of these problems, discloses analytical features of direct and inverse problems. The convergence criteria and conditions for convergence were presented. This work is supported by the Grant of the Government of the Russian Federation for support of scientific research, implemented under the supervision of leading scientists in Russian institutions of higher education in the field "Space Research and Technologies" in 2011–2013.

  9. Segregating Top-Down Selective Attention from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source Localization Study.

    Science.gov (United States)

    Hong, Xiangfei; Wang, Yao; Sun, Junfeng; Li, Chunbo; Tong, Shanbao

    2017-08-29

    Successfully inhibiting a prepotent response tendency requires the attentional detection of signals which cue response cancellation. Although neuroimaging studies have identified important roles of stimulus-driven processing in the attentional detection, the effects of top-down control were scarcely investigated. In this study, scalp EEG was recorded from thirty-two participants during a modified Go/NoGo task, in which a spatial-cueing approach was implemented to manipulate top-down selective attention. We observed classical event-related potential components, including N2 and P3, in the attended condition of response inhibition. While in the ignored condition of response inhibition, a smaller P3 was observed and N2 was absent. The correlation between P3 and CNV during the foreperiod suggested an inhibitory role of P3 in both conditions. Furthermore, source analysis suggested that P3 generation was mainly localized to the midcingulate cortex, and the attended condition showed increased activation relative to the ignored condition in several regions, including inferior frontal gyrus, middle frontal gyrus, precentral gyrus, insula and uncus, suggesting that these regions were involved in top-down attentional control rather than inhibitory processing. Taken together, by segregating electrophysiological correlates of top-down selective attention from those of response inhibition, our findings provide new insights in understanding the neural mechanisms of response inhibition.

  10. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  11. Metrical Phonology and SLA.

    Science.gov (United States)

    Tice, Bradley S.

    Metrical phonology, a linguistic process of phonological stress assessment and diagrammatic simplification of sentence and word stress, is discussed as it is found in the English language with the intention that it may be used in second language instruction. Stress is defined by its physical and acoustical correlates, and the principles of…

  12. Engineering performance metrics

    Science.gov (United States)

    Delozier, R.; Snyder, N.

    1993-03-01

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  13. Metrics for Probabilistic Geometries

    DEFF Research Database (Denmark)

    Tosi, Alessandra; Hauberg, Søren; Vellido, Alfredo

    2014-01-01

    the distribution over mappings is given by a Gaussian process. We treat the corresponding latent variable model as a Riemannian manifold and we use the expectation of the metric under the Gaussian process prior to define interpolating paths and measure distance between latent points. We show how distances...

  14. Low-dose cone-beam CT via raw counts domain low-signal correction schemes: Performance assessment and task-based parameter optimization (Part II. Task-based parameter optimization).

    Science.gov (United States)

    Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong

    2018-05-01

    Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region

  15. Metrics for energy resilience

    International Nuclear Information System (INIS)

    Roege, Paul E.; Collier, Zachary A.; Mancillas, James; McDonagh, John A.; Linkov, Igor

    2014-01-01

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today's energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system's energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth. - Highlights: • Resilience is the ability of a system to recover from adversity. • There is a need for methods to quantify and measure system resilience. • We developed a matrix-based approach to generate energy resilience metrics. • These metrics can be used in energy planning, system design, and operations

  16. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  17. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology.

    Science.gov (United States)

    Koch, Julian; Stisen, Simon

    2017-01-01

    Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics.

  18. Enterprise Sustainment Metrics

    Science.gov (United States)

    2015-06-19

    are negatively impacting KPIs” (Parmenter, 2010: 31). In the current state, the Air Force’s AA and PBL metrics are once again split . AA does...must have the authority to “take immediate action to rectify situations that are negatively impacting KPIs” (Parmenter, 2010: 31). 3. Measuring...highest profitability and shareholder value for each company” (2014: 273). By systematically diagraming a process, either through a swim lane flowchart

  19. Symmetries of the dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric

  20. Kerr metric in cosmological background

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, P C [Gujarat Univ., Ahmedabad (India). Dept. of Mathematics

    1977-06-01

    A metric satisfying Einstein's equation is given which in the vicinity of the source reduces to the well-known Kerr metric and which at large distances reduces to the Robertson-Walker metric of a nomogeneous cosmological model. The radius of the event horizon of the Kerr black hole in the cosmological background is found out.

  1. Degraded visual environment image/video quality metrics

    Science.gov (United States)

    Baumgartner, Dustin D.; Brown, Jeremy B.; Jacobs, Eddie L.; Schachter, Bruce J.

    2014-06-01

    A number of image quality metrics (IQMs) and video quality metrics (VQMs) have been proposed in the literature for evaluating techniques and systems for mitigating degraded visual environments. Some require both pristine and corrupted imagery. Others require patterned target boards in the scene. None of these metrics relates well to the task of landing a helicopter in conditions such as a brownout dust cloud. We have developed and used a variety of IQMs and VQMs related to the pilot's ability to detect hazards in the scene and to maintain situational awareness. Some of these metrics can be made agnostic to sensor type. Not only are the metrics suitable for evaluating algorithm and sensor variation, they are also suitable for choosing the most cost effective solution to improve operating conditions in degraded visual environments.

  2. SU-E-I-40: New Method for Measurement of Task-Specific, High-Resolution Detector System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Loughran, B; Singh, V; Jain, A; Bednarek, D; Rudin, S [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, was then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  3. Video Analytics Evaluation: Survey of Datasets, Performance Metrics and Approaches

    Science.gov (United States)

    2014-09-01

    people with different ethnicity and gender . Cur- rently we have four subjects, but more can be added in the future. • Lighting Variations. We consider...is however not a proper distance as the triangular inequality condition is not met. For this reason, the next metric should be preferred. • the...and Alan F. Smeaton and Georges Quenot, An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics, Proceedings of TRECVID 2011, NIST, USA

  4. Learning Low-Dimensional Metrics

    OpenAIRE

    Jain, Lalit; Mason, Blake; Nowak, Robert

    2017-01-01

    This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric;4) we also bound the accuracy ...

  5. Findings of the 2010 Joint Workshop on Statistical Machine Translation and Metrics for Machine Translation

    NARCIS (Netherlands)

    Callison-Burch, C.; Koehn, P.; Monz, C.; Peterson, K.; Przybocki, M.; Zaidan, O.F.

    2010-01-01

    This paper presents the results of the WMT10 and MetricsMATR10 shared tasks, which included a translation task, a system combination task, and an evaluation task. We conducted a large-scale manual evaluation of 104 machine translation systems and 41 system combination entries. We used the ranking of

  6. Differential Long-Term Effects of Haloperidol and Risperidone on the Acquisition and Performance of Tasks of Spatial Working and Short-Term Memory and Sustained Attention in Rats

    Science.gov (United States)

    Hutchings, Elizabeth J.; Waller, Jennifer L.

    2013-01-01

    A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15–60 and 84–320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non–match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility. PMID:24042161

  7. Differential long-term effects of haloperidol and risperidone on the acquisition and performance of tasks of spatial working and short-term memory and sustained attention in rats.

    Science.gov (United States)

    Hutchings, Elizabeth J; Waller, Jennifer L; Terry, Alvin V

    2013-12-01

    A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15-60 and 84-320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non-match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility.

  8. Image characterization metrics for muon tomography

    Science.gov (United States)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  9. Multimedia Design Principles in the Psychomotor Domain: The Effect of Multimedia and Spatial Contiguity on Students' Learning of Basic Life Support with Task Cards

    Science.gov (United States)

    Iserbyt, Peter; Mols, Liesbet; Elen, Jan; Behets, Daniel

    2012-01-01

    This study adds to the literature by introducing multimedia research in the psychomotor area. In this study, 87 freshman students in pedagogy used task cards to learn Basic Life Support (BLS), a psychomotor skill consisting of nine lifesaving actions to be performed in a specific order. Task cards are printed materials and are often implemented…

  10. Metrics with vanishing quantum corrections

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Gibbons, G W; Pope, C N

    2008-01-01

    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor T μν (g αβ , ∂ τ g αβ , ∂ τ ∂ σ g αβ , ...,) constructed from sums of terms, the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called universal if, when evaluated on that Einstein metric, T μν is a multiple of the metric. A Ricci flat classical solution is called strongly universal if, when evaluated on that Ricci flat metric, T μν vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalization; Einstein metrics with holonomy Sim(n - 2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalized Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all four-dimensional Sim(2) Einstein metrics. We also discuss generalizations to higher dimensions

  11. Reproducibility of graph metrics of human brain functional networks.

    Science.gov (United States)

    Deuker, Lorena; Bullmore, Edward T; Smith, Marie; Christensen, Soren; Nathan, Pradeep J; Rockstroh, Brigitte; Bassett, Danielle S

    2009-10-01

    Graph theory provides many metrics of complex network organization that can be applied to analysis of brain networks derived from neuroimaging data. Here we investigated the test-retest reliability of graph metrics of functional networks derived from magnetoencephalography (MEG) data recorded in two sessions from 16 healthy volunteers who were studied at rest and during performance of the n-back working memory task in each session. For each subject's data at each session, we used a wavelet filter to estimate the mutual information (MI) between each pair of MEG sensors in each of the classical frequency intervals from gamma to low delta in the overall range 1-60 Hz. Undirected binary graphs were generated by thresholding the MI matrix and 8 global network metrics were estimated: the clustering coefficient, path length, small-worldness, efficiency, cost-efficiency, assortativity, hierarchy, and synchronizability. Reliability of each graph metric was assessed using the intraclass correlation (ICC). Good reliability was demonstrated for most metrics applied to the n-back data (mean ICC=0.62). Reliability was greater for metrics in lower frequency networks. Higher frequency gamma- and beta-band networks were less reliable at a global level but demonstrated high reliability of nodal metrics in frontal and parietal regions. Performance of the n-back task was associated with greater reliability than measurements on resting state data. Task practice was also associated with greater reliability. Collectively these results suggest that graph metrics are sufficiently reliable to be considered for future longitudinal studies of functional brain network changes.

  12. Sharp metric obstructions for quasi-Einstein metrics

    Science.gov (United States)

    Case, Jeffrey S.

    2013-02-01

    Using the tractor calculus to study smooth metric measure spaces, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the Weyl tractor W to the setting of smooth metric measure spaces. The obstructions we obtain can be realized as tensorial invariants which are polynomial in the Riemann curvature tensor and its divergence. By taking suitable limits of their tensorial forms, we then find obstructions to the existence of static potentials, generalizing to higher dimensions a result of Bartnik and Tod, and to the existence of potentials for gradient Ricci solitons.

  13. Completion of a Dislocated Metric Space

    Directory of Open Access Journals (Sweden)

    P. Sumati Kumari

    2015-01-01

    Full Text Available We provide a construction for the completion of a dislocated metric space (abbreviated d-metric space; we also prove that the completion of the metric associated with a d-metric coincides with the metric associated with the completion of the d-metric.

  14. Metric adjusted skew information

    DEFF Research Database (Denmark)

    Hansen, Frank

    2008-01-01

    ) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We...... establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible......We extend the concept of Wigner-Yanase-Dyson skew information to something we call "metric adjusted skew information" (of a state with respect to a conserved observable). This "skew information" is intended to be a non-negative quantity bounded by the variance (of an observable in a state...

  15. The metric system: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, S.M.

    1995-05-01

    On July 13, 1992, Deputy Director Duane Sewell restated the Laboratory`s policy on conversion to the metric system which was established in 1974. Sewell`s memo announced the Laboratory`s intention to continue metric conversion on a reasonable and cost effective basis. Copies of the 1974 and 1992 Administrative Memos are contained in the Appendix. There are three primary reasons behind the Laboratory`s conversion to the metric system. First, Public Law 100-418, passed in 1988, states that by the end of fiscal year 1992 the Federal Government must begin using metric units in grants, procurements, and other business transactions. Second, on July 25, 1991, President George Bush signed Executive Order 12770 which urged Federal agencies to expedite conversion to metric units. Third, the contract between the University of California and the Department of Energy calls for the Laboratory to convert to the metric system. Thus, conversion to the metric system is a legal requirement and a contractual mandate with the University of California. Public Law 100-418 and Executive Order 12770 are discussed in more detail later in this section, but first they examine the reasons behind the nation`s conversion to the metric system. The second part of this report is on applying the metric system.

  16. Attack-Resistant Trust Metrics

    Science.gov (United States)

    Levien, Raph

    The Internet is an amazingly powerful tool for connecting people together, unmatched in human history. Yet, with that power comes great potential for spam and abuse. Trust metrics are an attempt to compute the set of which people are trustworthy and which are likely attackers. This chapter presents two specific trust metrics developed and deployed on the Advogato Website, which is a community blog for free software developers. This real-world experience demonstrates that the trust metrics fulfilled their goals, but that for good results, it is important to match the assumptions of the abstract trust metric computation to the real-world implementation.

  17. The metric system: An introduction

    Science.gov (United States)

    Lumley, Susan M.

    On 13 Jul. 1992, Deputy Director Duane Sewell restated the Laboratory's policy on conversion to the metric system which was established in 1974. Sewell's memo announced the Laboratory's intention to continue metric conversion on a reasonable and cost effective basis. Copies of the 1974 and 1992 Administrative Memos are contained in the Appendix. There are three primary reasons behind the Laboratory's conversion to the metric system. First, Public Law 100-418, passed in 1988, states that by the end of fiscal year 1992 the Federal Government must begin using metric units in grants, procurements, and other business transactions. Second, on 25 Jul. 1991, President George Bush signed Executive Order 12770 which urged Federal agencies to expedite conversion to metric units. Third, the contract between the University of California and the Department of Energy calls for the Laboratory to convert to the metric system. Thus, conversion to the metric system is a legal requirement and a contractual mandate with the University of California. Public Law 100-418 and Executive Order 12770 are discussed in more detail later in this section, but first they examine the reasons behind the nation's conversion to the metric system. The second part of this report is on applying the metric system.

  18. Metric-adjusted skew information

    DEFF Research Database (Denmark)

    Liang, Cai; Hansen, Frank

    2010-01-01

    on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to the general metric-adjusted skew information. We finally show that a recently introduced extension to parameter values 1 ...We give a truly elementary proof of the convexity of metric-adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric-adjusted skew information. Recently, Luo and Zhang introduced the notion of semi-quantum states...... of (unbounded) metric-adjusted skew information....

  19. Two classes of metric spaces

    Directory of Open Access Journals (Sweden)

    Isabel Garrido

    2016-04-01

    Full Text Available The class of metric spaces (X,d known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple metric spaces introduced by Hejcman are defined in terms of some kind of bornologies of bounded subsets of X. In this note we present a common framework where both classes of metric spaces can be studied which allows us to see not only the relationships between them but also to obtain new internal characterizations of these metric properties.

  20. Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G

    2016-01-01

    Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.

  1. Software metrics: Software quality metrics for distributed systems. [reliability engineering

    Science.gov (United States)

    Post, J. V.

    1981-01-01

    Software quality metrics was extended to cover distributed computer systems. Emphasis is placed on studying embedded computer systems and on viewing them within a system life cycle. The hierarchy of quality factors, criteria, and metrics was maintained. New software quality factors were added, including survivability, expandability, and evolvability.

  2. Inhibitory control and visuo-spatial reversibility in Piaget’s seminal number conservation task: A high-density ERP study.

    Directory of Open Access Journals (Sweden)

    Gregoire eBorst

    2013-12-01

    Full Text Available The present high-density ERP study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition and then, the tokens in one of the two rows were spread apart (INT condition. Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in adults.

  3. A virtual reality task based on animal research – spatial learning and memory in patients after the first episode of schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Fajnerová, Iveta; Rodriguez, M.; Levčík, David; Konrádová, L.; Mikoláš, P.; Brom, C.; Stuchlík, Aleš; Vlček, Kamil; Horáček, J.

    2014-01-01

    Roč. 8, May 27 (2014), s. 157 ISSN 1662-5153 R&D Projects: GA MZd(CZ) NT13386 Grant - others:GA MZd(CZ) NT14291; GA MZd(CZ) NT13843 Institutional support: RVO:67985823 Keywords : schizophrenia * spatial navigation * learning and memory * virtual reality environment * cognitive deficit * Morris Water Maze (MWM) * psychotic disorders * spatial behavior Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  4. Landscape metrics application in ecological and visual landscape assessment

    Directory of Open Access Journals (Sweden)

    Gavrilović Suzana

    2017-01-01

    Full Text Available The development of landscape-ecological approach application in spatial planning provides exact theoretical and empirical evidence for monitoring ecological consequences of natural and/or anthropogenic factors, particularly changes in spatial structures caused by them. Landscape pattern which feature diverse landscape values is the holder of the unique landscape character at different spatial levels and represents a perceptual domain for its users. Using the landscape metrics, the parameters of landscape composition and configuration are mathematical algorithms that quantify the specific spatial characteristics used for interpretation of landscape features and processes (physical and ecological aspect, as well as forms (visual aspect and the meaning (cognitive aspect of the landscape. Landscape metrics has been applied mostly in the ecological and biodiversity assessments as well as in the determination of the level of structural change of landscape, but more and more applied in the assessment of the visual character of the landscape. Based on a review of relevant literature, the aim of this work is to show the main trends of landscape metrics within the aspect of ecological and visual assessments. The research methodology is based on the analysis, classification and systematization of the research studies published from 2000 to 2016, where the landscape metrics is applied: (1 the analysis of landscape pattern and its changes, (2 the analysis of biodiversity and habitat function and (3 a visual landscape assessment. By selecting representative metric parameters for the landscape composition and configuration, for each category is formed the basis for further landscape metrics research and application for the integrated ecological and visual assessment of the landscape values. Contemporary conceptualization of the landscape is seen holistically, and the future research should be directed towards the development of integrated landscape assessment

  5. Automatic intersection map generation task 10 report.

    Science.gov (United States)

    2016-02-29

    This report describes the work conducted in Task 10 of the V2I Safety Applications Development Project. The work was performed by the University of Michigan Transportation Research Institute (UMTRI) under contract to the Crash Avoidance Metrics Partn...

  6. Multimetric indices: How many metrics?

    Science.gov (United States)

    Multimetric indices (MMI’s) often include 5 to 15 metrics, each representing a different attribute of assemblage condition, such as species diversity, tolerant taxa, and nonnative taxa. Is there an optimal number of metrics for MMIs? To explore this question, I created 1000 9-met...

  7. Metrical Phonology: German Sound System.

    Science.gov (United States)

    Tice, Bradley S.

    Metrical phonology, a linguistic process of phonological stress assessment and diagrammatic simplification of sentence and word stress, is discussed as it is found in the English and German languages. The objective is to promote use of metrical phonology as a tool for enhancing instruction in stress patterns in words and sentences, particularly in…

  8. Extending cosmology: the metric approach

    OpenAIRE

    Mendoza, S.

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  9. Numerical Calabi-Yau metrics

    International Nuclear Information System (INIS)

    Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene

    2008-01-01

    We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results

  10. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  11. Weyl metrics and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Gary W. [DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA U.K. (United Kingdom); Volkov, Mikhail S., E-mail: gwg1@cam.ac.uk, E-mail: volkov@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, LMPT CNRS—UMR 7350, Université de Tours, Parc de Grandmont, Tours, 37200 France (France)

    2017-05-01

    We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.

  12. Metrics for image segmentation

    Science.gov (United States)

    Rees, Gareth; Greenway, Phil; Morray, Denise

    1998-07-01

    An important challenge in mapping image-processing techniques onto applications is the lack of quantitative performance measures. From a systems engineering perspective these are essential if system level requirements are to be decomposed into sub-system requirements which can be understood in terms of algorithm selection and performance optimization. Nowhere in computer vision is this more evident than in the area of image segmentation. This is a vigorous and innovative research activity, but even after nearly two decades of progress, it remains almost impossible to answer the question 'what would the performance of this segmentation algorithm be under these new conditions?' To begin to address this shortcoming, we have devised a well-principled metric for assessing the relative performance of two segmentation algorithms. This allows meaningful objective comparisons to be made between their outputs. It also estimates the absolute performance of an algorithm given ground truth. Our approach is an information theoretic one. In this paper, we describe the theory and motivation of our method, and present practical results obtained from a range of state of the art segmentation methods. We demonstrate that it is possible to measure the objective performance of these algorithms, and to use the information so gained to provide clues about how their performance might be improved.

  13. Energy-Based Metrics for Arthroscopic Skills Assessment.

    Science.gov (United States)

    Poursartip, Behnaz; LeBel, Marie-Eve; McCracken, Laura C; Escoto, Abelardo; Patel, Rajni V; Naish, Michael D; Trejos, Ana Luisa

    2017-08-05

    Minimally invasive skills assessment methods are essential in developing efficient surgical simulators and implementing consistent skills evaluation. Although numerous methods have been investigated in the literature, there is still a need to further improve the accuracy of surgical skills assessment. Energy expenditure can be an indication of motor skills proficiency. The goals of this study are to develop objective metrics based on energy expenditure, normalize these metrics, and investigate classifying trainees using these metrics. To this end, different forms of energy consisting of mechanical energy and work were considered and their values were divided by the related value of an ideal performance to develop normalized metrics. These metrics were used as inputs for various machine learning algorithms including support vector machines (SVM) and neural networks (NNs) for classification. The accuracy of the combination of the normalized energy-based metrics with these classifiers was evaluated through a leave-one-subject-out cross-validation. The proposed method was validated using 26 subjects at two experience levels (novices and experts) in three arthroscopic tasks. The results showed that there are statistically significant differences between novices and experts for almost all of the normalized energy-based metrics. The accuracy of classification using SVM and NN methods was between 70% and 95% for the various tasks. The results show that the normalized energy-based metrics and their combination with SVM and NN classifiers are capable of providing accurate classification of trainees. The assessment method proposed in this study can enhance surgical training by providing appropriate feedback to trainees about their level of expertise and can be used in the evaluation of proficiency.

  14. Overnight social isolation in pigs decreases salivary cortisol but does not impair spatial learning and memory or performance in a decision making task

    Directory of Open Access Journals (Sweden)

    F. Josef evan der Staay

    2016-01-01

    Full Text Available Pigs in modern farming practice may be exposed to a number of stressors, including social stressors such as mixing or isolation. This may potentially affect both cognitive abilities and stress physiology of the animals. We tested the hypothesis that overnight social isolation in pigs impairs performance in a cognitive Holeboard (HB task (Experiment 1 and the Pig Gambling Task (PGT (Experiment 2, a decision making task inspired by the Iowa Gambling Task. In addition, we tested the effect of overnight social isolation on salivary cortisol levels. A within-subjects approach was used in which performance in the two behavioral tasks and cortisol levels were first determined during normal social housing, followed by performance and cortisol levels after experiencing stress induced by overnight social isolation. A total of nineteen female pigs with a birthweight closest to their respective litter average was selected from 10 different litters and placed in two pens after weaning. Following habituation, pigs were trained in the HB task, starting at 10 weeks of age. Then, the pigs were isolated overnight, five individuals per night, at 15, 16 and 17 weeks of age. Between these three isolations, social housing and training in the HB continued. Starting 6 weeks after the end of the HB experiment, at approximately 23 weeks of age, the pigs were trained in the PGT. The effects of overnight social isolation on performance in this task were assessed once, when the pigs were 25 weeks old. Salivary cortisol was measured from samples collected 15 minutes after the start of isolation and at the end of the isolation period, and compared to baseline values collected before the start of social isolation. Our results did not confirm the hypothesis that isolation impaired HB performance and decision making in the PGT. Unexpectedly, overnight social isolation decreased cortisol levels below baseline values, an effect that was not associated with changes in performance

  15. Overnight Social Isolation in Pigs Decreases Salivary Cortisol but Does Not Impair Spatial Learning and Memory or Performance in a Decision-Making Task.

    Science.gov (United States)

    van der Staay, F Josef; Schoonderwoerd, Annelieke J; Stadhouders, Bo; Nordquist, Rebecca E

    2015-01-01

    Pigs in modern farming practice may be exposed to a number of stressors, including social stressors such as mixing or isolation. This may potentially affect both cognitive abilities and stress physiology of the animals. We tested the hypothesis that overnight social isolation in pigs impairs performance in a cognitive holeboard (HB) task (Experiment 1) and the Pig Gambling Task (PGT) (Experiment 2), a decision-making task inspired by the Iowa Gambling Task. In addition, we tested the effect of overnight social isolation on salivary cortisol levels. A within-subjects approach was used in which performance in the two behavioral tasks and cortisol levels were first determined during normal social housing, followed by performance and cortisol levels after experiencing stress induced by overnight social isolation. A total of 19 female pigs with a birth weight closest to their respective litter average was selected from 10 different litters and placed in two pens after weaning. Following habituation, pigs were trained in the HB task, starting at 10 weeks of age. Then, the pigs were isolated overnight, five individuals per night, at 15, 16, and 17 weeks of age. Between these three isolations, social housing and training in the HB continued. Starting 6 weeks after the end of the HB experiment, at approximately 23 weeks of age, the pigs were trained in the PGT. The effects of overnight social isolation on performance in this task were assessed once, when the pigs were 25 weeks old. Salivary cortisol was measured from samples collected 15 min after the start of isolation and at the end of the isolation period and compared to baseline values collected before the start of social isolation. Our results did not confirm the hypothesis that isolation impaired HB performance and decision-making in the PGT. Unexpectedly, overnight social isolation decreased cortisol levels below baseline values, an effect that was not associated with changes in performance of the

  16. Metric regularity and subdifferential calculus

    International Nuclear Information System (INIS)

    Ioffe, A D

    2000-01-01

    The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces

  17. Defining Elemental Imitation Mechanisms: A Comparison of Cognitive and Motor-Spatial Imitation Learning across Object- and Computer-Based Tasks

    Science.gov (United States)

    Subiaul, Francys; Zimmermann, Laura; Renner, Elizabeth; Schilder, Brian; Barr, Rachel

    2016-01-01

    During the first 5 years of life, the versatility, breadth, and fidelity with which children imitate change dramatically. Currently, there is no model to explain what underlies such significant changes. To that end, the present study examined whether task-independent but domain-specific--elemental--imitation mechanism explains performance across…

  18. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task.

    Directory of Open Access Journals (Sweden)

    Amir Segev

    Full Text Available This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level or extensive prior habituation (reduced novelty stress/arousal level. Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side, a glucocorticoid receptor (GR antagonist, or propranolol (0.75 µg/side, a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA, prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas, and (iii the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive.

  19. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task.

    Science.gov (United States)

    Segev, Amir; Ramot, Assaf; Akirav, Irit

    2012-01-01

    This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level) or extensive prior habituation (reduced novelty stress/arousal level). Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress) impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side), a glucocorticoid receptor (GR) antagonist, or propranolol (0.75 µg/side), a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA), prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side) microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i) GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii) the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas), and (iii) the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive).

  20. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  1. METRICS DEVELOPMENT FOR PATENTS.

    Science.gov (United States)

    Veiga, Daniela Francescato; Ferreira, Lydia Masako

    2015-01-01

    To develop a proposal for metrics for patents to be applied in assessing the postgraduate programs of Medicine III - Capes. From the reading and analysis of the 2013 area documents of all the 48 areas of Capes, a proposal for metrics for patents was developed to be applied in Medicine III programs. Except for the areas Biotechnology, Food Science, Biological Sciences III, Physical Education, Engineering I, III and IV and Interdisciplinary, most areas do not adopt a scoring system for patents. The proposal developed was based on the criteria of Biotechnology, with adaptations. In general, it will be valued, in ascending order, the deposit, the granting and licensing/production. It will also be assigned higher scores to patents registered abroad and whenever there is a participation of students. This proposal can be applied to the item Intellectual Production of the evaluation form, in subsection Technical Production/Patents. The percentage of 10% for academic programs and 40% for Masters Professionals should be maintained. The program will be scored as Very Good when it reaches 400 points or over; Good, between 200 and 399 points; Regular, between 71 and 199 points; Weak up to 70 points; Insufficient, no punctuation. Desenvolver uma proposta de métricas para patentes a serem aplicadas na avaliação dos Programas de Pós-Graduação da Área Medicina III - Capes. A partir da leitura e análise dos documentos de área de 2013 de todas as 48 Áreas da Capes, desenvolveu-se uma proposta de métricas para patentes, a ser aplicada na avaliação dos programas da área. Constatou-se que, com exceção das áreas Biotecnologia, Ciência de Alimentos, Ciências Biológicas III, Educação Física, Engenharias I, III e IV e Interdisciplinar, a maioria não adota sistema de pontuação para patentes. A proposta desenvolvida baseou-se nos critérios da Biotecnologia, com adaptações. De uma forma geral, foi valorizado, em ordem crescente, o depósito, a concessão e o

  2. Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats

    Czech Academy of Sciences Publication Activity Database

    Bahník, Štěpán; Stuchlík, Aleš

    2015-01-01

    Roč. 3, Sep 22 (2015), e1257 ISSN 2167-8359 R&D Projects: GA MŠk(CZ) LH14053 Institutional support: RVO:67985823 Keywords : spatial navigation * interval timing * substratal idiothetic navigation * inertial idiothetic navigation * rats Subject RIV: FH - Neurology Impact factor: 2.183, year: 2015

  3. Automatic evaluation of task-focused parallel jaw gripper design

    DEFF Research Database (Denmark)

    Wolniakowski, Adam; Miatliuk, Konstantsin; Krüger, Norbert

    2014-01-01

    In this paper, we suggest gripper quality metrics that indicate the performance of a gripper given an object CAD model and a task description. Those, we argue, can be used in the design and selection of an appropriate gripper when the task is known. We present three different gripper metrics that...

  4. A Metric for Heterotic Moduli

    Science.gov (United States)

    Candelas, Philip; de la Ossa, Xenia; McOrist, Jock

    2017-12-01

    Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in {α^{\\backprime}}, in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Kähler, as is required by supersymmetry. Checking the metric is Kähler is intricate and the anomaly cancellation equation for the H field plays an essential role. The Kähler potential nevertheless takes a remarkably simple form: it is the Kähler potential of special geometry with the Kähler form replaced by the {α^{\\backprime}}-corrected hermitian form.

  5. Encouraging Spatial Talk: Using Children's Museums to Bolster Spatial Reasoning

    Science.gov (United States)

    Polinsky, Naomi; Perez, Jasmin; Grehl, Mora; McCrink, Koleen

    2017-01-01

    Longitudinal spatial language intervention studies have shown that greater exposure to spatial language improves children's performance on spatial tasks. Can short naturalistic, spatial language interactions also evoke improved spatial performance? In this study, parents were asked to interact with their child at a block wall exhibit in a…

  6. Implications of Metric Choice for Common Applications of Readmission Metrics

    OpenAIRE

    Davies, Sheryl; Saynina, Olga; Schultz, Ellen; McDonald, Kathryn M; Baker, Laurence C

    2013-01-01

    Objective. To quantify the differential impact on hospital performance of three readmission metrics: all-cause readmission (ACR), 3M Potential Preventable Readmission (PPR), and Centers for Medicare and Medicaid 30-day readmission (CMS).

  7. Issues in Benchmark Metric Selection

    Science.gov (United States)

    Crolotte, Alain

    It is true that a metric can influence a benchmark but will esoteric metrics create more problems than they will solve? We answer this question affirmatively by examining the case of the TPC-D metric which used the much debated geometric mean for the single-stream test. We will show how a simple choice influenced the benchmark and its conduct and, to some extent, DBMS development. After examining other alternatives our conclusion is that the “real” measure for a decision-support benchmark is the arithmetic mean.

  8. Background metric in supergravity theories

    International Nuclear Information System (INIS)

    Yoneya, T.

    1978-01-01

    In supergravity theories, we investigate the conformal anomaly of the path-integral determinant and the problem of fermion zero modes in the presence of a nontrivial background metric. Except in SO(3) -invariant supergravity, there are nonvanishing conformal anomalies. As a consequence, amplitudes around the nontrivial background metric contain unpredictable arbitrariness. The fermion zero modes which are explicitly constructed for the Euclidean Schwarzschild metric are interpreted as an indication of the supersymmetric multiplet structure of a black hole. The degree of degeneracy of a black hole is 2/sup 4n/ in SO(n) supergravity

  9. Next-Generation Metrics: Responsible Metrics & Evaluation for Open Science

    Energy Technology Data Exchange (ETDEWEB)

    Wilsdon, J.; Bar-Ilan, J.; Peters, I.; Wouters, P.

    2016-07-01

    Metrics evoke a mixed reaction from the research community. A commitment to using data to inform decisions makes some enthusiastic about the prospect of granular, real-time analysis o of research and its wider impacts. Yet we only have to look at the blunt use of metrics such as journal impact factors, h-indices and grant income targets, to be reminded of the pitfalls. Some of the most precious qualities of academic culture resist simple quantification, and individual indicators often struggle to do justice to the richness and plurality of research. Too often, poorly designed evaluation criteria are “dominating minds, distorting behaviour and determining careers (Lawrence, 2007).” Metrics hold real power: they are constitutive of values, identities and livelihoods. How to exercise that power to more positive ends has been the focus of several recent and complementary initiatives, including the San Francisco Declaration on Research Assessment (DORA1), the Leiden Manifesto2 and The Metric Tide3 (a UK government review of the role of metrics in research management and assessment). Building on these initiatives, the European Commission, under its new Open Science Policy Platform4, is now looking to develop a framework for responsible metrics for research management and evaluation, which can be incorporated into the successor framework to Horizon 2020. (Author)

  10. Noradrenergic signaling in the medial prefrontal cortex and amygdala differentially regulates vicarious trial-and-error in a spatial decision-making task.

    Science.gov (United States)

    Amemiya, Seiichiro; Kubota, Natsuko; Umeyama, Nao; Nishijima, Takeshi; Kita, Ichiro

    2016-01-15

    In uncertain choice situations, we deliberately search and evaluate possible options before taking an action. Once we form a preference regarding the current situation, we take an action more automatically and with less deliberation. In rats, the deliberation process can be seen in vicarious trial-and-error behavior (VTE), which is a head-orienting behavior toward options at a choice point. Recent neurophysiological findings suggest that VTE reflects the rat's thinking about future options as deliberation, expectation, and planning when rats feel conflict. VTE occurs depending on the demand: an increase occurs during initial learning, and a decrease occurs with progression in learning. However, the brain circuit underlying the regulation of VTE has not been thoroughly examined. In situations in which VTE often appears, the medial prefrontal cortex (mPFC) and the amygdala (AMY) are crucial for learning and decision making. Our previous study reported that noradrenaline regulates VTE. Here, to investigate whether the mPFC and AMY are involved in regulation of VTE, we examined the effects of local injection of clonidine, an alpha2 adrenergic autoreceptor agonist, into either region in rats during VTE and choice behavior during a T-maze choice task. Injection of clonidine into either region impaired selection of the advantageous choice in the task. Furthermore, clonidine injection into the mPFC suppressed occurrence of VTE in the early phase of the task, whereas injection into the AMY inhibited the decrease in VTE in the later phase and thus maintained a high level of VTE throughout the task. These results suggest that the mPFC and AMY play a role in the increase and decrease in VTE, respectively, and that noradrenergic mechanisms mediate the dynamic regulation of VTE over experiences. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Training on motor and visual spatial learning tasks in early adulthood produces large changes in dendritic organization of prefrontal cortex and nucleus accumbens in rats given nicotine prenatally.

    Science.gov (United States)

    Muhammad, A; Mychasiuk, R; Hosain, S; Nakahashi, A; Carroll, C; Gibb, R; Kolb, B

    2013-11-12

    Experience-dependent plasticity is an ongoing process that can be observed and measured at multiple levels. The first goal of this study was to examine the effects of prenatal nicotine on the performance of rats in three behavioral tasks (elevated plus maze (EPM), Morris water task (MWT), and Whishaw tray reaching). The second goal of this experiment sought to examine changes in dendritic organization following exposure to the behavioral training paradigm and/or low doses of prenatal nicotine. Female Long-Evans rats were administered daily injections of nicotine for the duration of pregnancy and their pups underwent a regimen of behavioral training in early adulthood (EPM, MWT, and Whishaw tray reaching). All offspring exposed to nicotine prenatally exhibited substantial increases in anxiety. Male offspring also showed increased efficiency in the Whishaw tray-reaching task and performed differently than the other groups in the probe trial of the MWT. Using Golgi-Cox staining we examined the dendritic organization of the medial and orbital prefrontal cortex as well as the nucleus accumbens. Participation in the behavioral training paradigm was associated with dramatic reorganization of dendritic morphology and spine density in all brain regions examined. Although both treatments (behavior training and prenatal nicotine exposure) markedly altered dendritic organization, the effects of the behavioral experience were much larger than those of the prenatal drug exposure, and in some cases interacted with the drug effects. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Effect of dopamine D1 receptor antagonist SCH23390 and D1 agonist A77636 on active allothetic place avoidance, a spatial cognition task

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Valeš, Karel

    2006-01-01

    Roč. 172, č. 2 (2006), s. 250-255 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA309/06/1231; GA ČR(CZ) GP309/03/P126; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial memory * cognition * dopamine Subject RIV: FH - Neurology Impact factor: 2.591, year: 2006

  13. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sha XU; Li-xia YANG; Wei-wei HU; Xiao YU; Li MA; Lu-ying LIU; Er-qing WEI; Zhong CHEN

    2005-01-01

    Aim: To investigate the role of histamine in memory deficits induced by MK-801 infusion into the ventral hippocampus in rats. Methods: An 8-arm radial maze (4arms baited) was used to assess spatial memory. Results: Bilateral ventral intrahippocampal (ih) infusion of MK-801 (0.3 μg/site), an N-methyl-D-aspartate (NMDA) antagonist, impaired the retrieval process in both working memory and reference memory. Intrahippocampal injection of histamine (25 or 50 ng/site) or intraperitoneal (ip) injection of histidine (25, 50 or 100 mg/kg) markedly ameliorated the spatial memory deficits induced by MK-801. Both the histamine H1 antagonist pyrilamine (0.5 or 1.0 μg/site, ih) and the H2 antagonist cimetidine (2.5 μg/site,ih) abolished the ameliorating effect of histidine (100 mg/kg, ip) on reference memory deficits, but not that on working memory deficits induced by MK-801. Conclusion:The results indicate that histamine in the ventral hippocampus can ameliorate MK-801-induced spatial memory deficits, and that histamine's effect on reference memory is mediated by postsynaptic histamine H1 and H2 receptors.

  14. Let's Make Metric Ice Cream

    Science.gov (United States)

    Zimmerman, Marianna

    1975-01-01

    Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)

  15. Experiential space is hardly metric

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal; Lukavský, Jiří

    2008-01-01

    Roč. 2008, č. 37 (2008), s. 58-58 ISSN 0301-0066. [European Conference on Visual Perception. 24.08-28.08.2008, Utrecht] R&D Projects: GA ČR GA406/07/1676 Institutional research plan: CEZ:AV0Z70250504 Keywords : visual space perception * metric and non-metric perceptual judgments * ecological validity Subject RIV: AN - Psychology

  16. Coverage Metrics for Model Checking

    Science.gov (United States)

    Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)

    2001-01-01

    When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.

  17. Phantom metrics with Killing spinors

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2015-11-01

    Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.

  18. Differentiating Spatial Memory from Spatial Transformations

    Science.gov (United States)

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  19. Scalar-metric and scalar-metric-torsion gravitational theories

    International Nuclear Information System (INIS)

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  20. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    Science.gov (United States)

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  1. Regge calculus from discontinuous metrics

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2003-01-01

    Regge calculus is considered as a particular case of the more general system where the linklengths of any two neighbouring 4-tetrahedra do not necessarily coincide on their common face. This system is treated as that one described by metric discontinuous on the faces. In the superspace of all discontinuous metrics the Regge calculus metrics form some hypersurface defined by continuity conditions. Quantum theory of the discontinuous metric system is assumed to be fixed somehow in the form of quantum measure on (the space of functionals on) the superspace. The problem of reducing this measure to the Regge hypersurface is addressed. The quantum Regge calculus measure is defined from a discontinuous metric measure by inserting the δ-function-like phase factor. The requirement that continuity conditions be imposed in a 'face-independent' way fixes this factor uniquely. The term 'face-independent' means that this factor depends only on the (hyper)plane spanned by the face, not on it's form and size. This requirement seems to be natural from the viewpoint of existence of the well-defined continuum limit maximally free of lattice artefacts

  2. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    Science.gov (United States)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  3. Symmetries of Taub-NUT dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.; Codoban, S.

    1998-01-01

    Recently geometric duality was analyzed for a metric which admits Killing tensors. An interesting example arises when the manifold has Killing-Yano tensors. The symmetries of the dual metrics in the case of Taub-NUT metric are investigated. Generic and non-generic symmetries of dual Taub-NUT metric are analyzed

  4. World wide spatial capital.

    Science.gov (United States)

    Sen, Rijurekha; Quercia, Daniele

    2018-01-01

    In its most basic form, the spatial capital of a neighborhood entails that most aspects of daily life are located close at hand. Urban planning researchers have widely recognized its importance, not least because it can be transformed in other forms of capital such as economical capital (e.g., house prices, retail sales) and social capital (e.g., neighborhood cohesion). Researchers have already studied spatial capital from official city data. Their work led to important planning decisions, yet it also relied on data that is costly to create and update, and produced metrics that are difficult to compare across cities. By contrast, we propose to measure spatial capital in cheap and standardized ways around the world. Hence the name of our project "World Wide Spatial Capital". Our measures are cheap as they rely on the most basic information about a city that is currently available on the Web (i.e., which amenities are available and where). They are also standardized because they can be applied in any city in the five continents (as opposed to previous metrics that were mainly applied in USA and UK). We show that, upon these metrics, one could produce insights at the core of the urban planning discipline: which areas would benefit the most from urban interventions; how to inform planning depending on whether a city's activity is mono- or poly-centric; how different cities fare against each other; and how spatial capital correlates with other urban characteristics such as mobility patterns and road network structure.

  5. Metrics correlation and analysis service (MCAS)

    International Nuclear Information System (INIS)

    Baranovski, Andrew; Dykstra, Dave; Garzoglio, Gabriele; Hesselroth, Ted; Mhashilkar, Parag; Levshina, Tanya

    2010-01-01

    The complexity of Grid workflow activities and their associated software stacks inevitably involves multiple organizations, ownership, and deployment domains. In this setting, important and common tasks such as the correlation and display of metrics and debugging information (fundamental ingredients of troubleshooting) are challenged by the informational entropy inherent to independently maintained and operated software components. Because such an information pool is disorganized, it is a difficult environment for business intelligence analysis i.e. troubleshooting, incident investigation, and trend spotting. The mission of the MCAS project is to deliver a software solution to help with adaptation, retrieval, correlation, and display of workflow-driven data and of type-agnostic events, generated by loosely coupled or fully decoupled middleware.

  6. Metrics correlation and analysis service (MCAS)

    International Nuclear Information System (INIS)

    Baranovski, Andrew; Dykstra, Dave; Garzoglio, Gabriele; Hesselroth, Ted; Mhashilkar, Parag; Levshina, Tanya

    2009-01-01

    The complexity of Grid workflow activities and their associated software stacks inevitably involves multiple organizations, ownership, and deployment domains. In this setting, important and common tasks such as the correlation and display of metrics and debugging information (fundamental ingredients of troubleshooting) are challenged by the informational entropy inherent to independently maintained and operated software components. Because such an information 'pond' is disorganized, it a difficult environment for business intelligence analysis i.e. troubleshooting, incident investigation and trend spotting. The mission of the MCAS project is to deliver a software solution to help with adaptation, retrieval, correlation, and display of workflow-driven data and of type-agnostic events, generated by disjoint middleware.

  7. A Kerr-NUT metric

    International Nuclear Information System (INIS)

    Vaidya, P.C.; Patel, L.K.; Bhatt, P.V.

    1976-01-01

    Using Galilean time and retarded distance as coordinates the usual Kerr metric is expressed in form similar to the Newman-Unti-Tamburino (NUT) metric. The combined Kerr-NUT metric is then investigated. In addition to the Kerr and NUT solutions of Einstein's equations, three other types of solutions are derived. These are (i) the radiating Kerr solution, (ii) the radiating NUT solution satisfying Rsub(ik) = sigmaxisub(i)xisub(k), xisub(i)xisup(i) = 0, and (iii) the associated Kerr solution satisfying Rsub(ik) = 0. Solution (i) is distinct from and simpler than the one reported earlier by Vaidya and Patel (Phys. Rev.; D7:3590 (1973)). Solutions (ii) and (iii) gave line elements which have the axis of symmetry as a singular line. (author)

  8. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.

    2009-01-01

    analysts have difficulties grasping the dynamics implied by a process model. Recent empirical studies show that people make numerous errors when modeling complex business processes, e.g., about 20 percent of the EPCs in the SAP reference model have design flaws resulting in potential deadlocks, livelocks......, etc. It seems obvious that the complexity of the model contributes to design errors and a lack of understanding. It is not easy to measure complexity, however. This paper presents three complexity metrics that have been implemented in the process analysis tool ProM. The metrics are defined...... for a subclass of Petri nets named Workflow nets, but the results can easily be applied to other languages. To demonstrate the applicability of these metrics, we have applied our approach and tool to 262 relatively complex Protos models made in the context of various student projects. This allows us to validate...

  9. Human Performance Optimization Metrics: Consensus Findings, Gaps, and Recommendations for Future Research.

    Science.gov (United States)

    Nindl, Bradley C; Jaffin, Dianna P; Dretsch, Michael N; Cheuvront, Samuel N; Wesensten, Nancy J; Kent, Michael L; Grunberg, Neil E; Pierce, Joseph R; Barry, Erin S; Scott, Jonathan M; Young, Andrew J; OʼConnor, Francis G; Deuster, Patricia A

    2015-11-01

    Human performance optimization (HPO) is defined as "the process of applying knowledge, skills and emerging technologies to improve and preserve the capabilities of military members, and organizations to execute essential tasks." The lack of consensus for operationally relevant and standardized metrics that meet joint military requirements has been identified as the single most important gap for research and application of HPO. In 2013, the Consortium for Health and Military Performance hosted a meeting to develop a toolkit of standardized HPO metrics for use in military and civilian research, and potentially for field applications by commanders, units, and organizations. Performance was considered from a holistic perspective as being influenced by various behaviors and barriers. To accomplish the goal of developing a standardized toolkit, key metrics were identified and evaluated across a spectrum of domains that contribute to HPO: physical performance, nutritional status, psychological status, cognitive performance, environmental challenges, sleep, and pain. These domains were chosen based on relevant data with regard to performance enhancers and degraders. The specific objectives at this meeting were to (a) identify and evaluate current metrics for assessing human performance within selected domains; (b) prioritize metrics within each domain to establish a human performance assessment toolkit; and (c) identify scientific gaps and the needed research to more effectively assess human performance across domains. This article provides of a summary of 150 total HPO metrics across multiple domains that can be used as a starting point-the beginning of an HPO toolkit: physical fitness (29 metrics), nutrition (24 metrics), psychological status (36 metrics), cognitive performance (35 metrics), environment (12 metrics), sleep (9 metrics), and pain (5 metrics). These metrics can be particularly valuable as the military emphasizes a renewed interest in Human Dimension efforts

  10. Covariant electrodynamics in linear media: Optical metric

    Science.gov (United States)

    Thompson, Robert T.

    2018-03-01

    While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.

  11. The uniqueness of the Fisher metric as information metric

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van

    2017-01-01

    Roč. 69, č. 4 (2017), s. 879-896 ISSN 0020-3157 Institutional support: RVO:67985840 Keywords : Chentsov’s theorem * mixed topology * monotonicity of the Fisher metric Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.049, year: 2016 https://link.springer.com/article/10.1007%2Fs10463-016-0562-0

  12. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  13. Invariant metrics for Hamiltonian systems

    International Nuclear Information System (INIS)

    Rangarajan, G.; Dragt, A.J.; Neri, F.

    1991-05-01

    In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs

  14. Generalization of Vaidya's radiation metric

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, R J; Kozameh, C N [Universidad Nacional de Cordoba (Argentina). Instituto de Matematica, Astronomia y Fisica

    1981-11-01

    In this paper it is shown that if Vaidya's radiation metric is considered from the point of view of kinetic theory in general relativity, the corresponding phase space distribution function can be generalized in a particular way. The new family of spherically symmetric radiation metrics obtained contains Vaidya's as a limiting situation. The Einstein field equations are solved in a ''comoving'' coordinate system. Two arbitrary functions of a single variable are introduced in the process of solving these equations. Particular examples considered are a stationary solution, a nonvacuum solution depending on a single parameter, and several limiting situations.

  15. Evaluating spatial patterns in hydrological modelling

    DEFF Research Database (Denmark)

    Koch, Julian

    the contiguous United Sates (10^6 km2). To this end, the thesis at hand applies a set of spatial performance metrics on various hydrological variables, namely land-surface-temperature (LST), evapotranspiration (ET) and soil moisture. The inspiration for the applied metrics is found in related fields...... is not fully exploited by current modelling frameworks due to the lack of suitable spatial performance metrics. Furthermore, the traditional model evaluation using discharge is found unsuitable to lay confidence on the predicted catchment inherent spatial variability of hydrological processes in a fully...

  16. Technical Privacy Metrics: a Systematic Survey

    OpenAIRE

    Wagner, Isabel; Eckhoff, David

    2018-01-01

    The file attached to this record is the author's final peer reviewed version The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving user privacy in the digital world. The diversity and complexity of privacy metrics in the literature makes an informed choice of metrics challenging. As a result, instead of using existing metrics, n...

  17. Remarks on G-Metric Spaces

    Directory of Open Access Journals (Sweden)

    Bessem Samet

    2013-01-01

    Full Text Available In 2005, Mustafa and Sims (2006 introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.

  18. DLA Energy Biofuel Feedstock Metrics Study

    Science.gov (United States)

    2012-12-11

    moderately/highly in- vasive  Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category  Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then

  19. Assessment of six dissimilarity metrics for climate analogues

    Science.gov (United States)

    Grenier, Patrick; Parent, Annie-Claude; Huard, David; Anctil, François; Chaumont, Diane

    2013-04-01

    Spatial analogue techniques consist in identifying locations whose recent-past climate is similar in some aspects to the future climate anticipated at a reference location. When identifying analogues, one key step is the quantification of the dissimilarity between two climates separated in time and space, which involves the choice of a metric. In this communication, spatial analogues and their usefulness are briefly discussed. Next, six metrics are presented (the standardized Euclidean distance, the Kolmogorov-Smirnov statistic, the nearest-neighbor distance, the Zech-Aslan energy statistic, the Friedman-Rafsky runs statistic and the Kullback-Leibler divergence), along with a set of criteria used for their assessment. The related case study involves the use of numerical simulations performed with the Canadian Regional Climate Model (CRCM-v4.2.3), from which three annual indicators (total precipitation, heating degree-days and cooling degree-days) are calculated over 30-year periods (1971-2000 and 2041-2070). Results indicate that the six metrics identify comparable analogue regions at a relatively large scale, but best analogues may differ substantially. For best analogues, it is also shown that the uncertainty stemming from the metric choice does generally not exceed that stemming from the simulation or model choice. A synthesis of the advantages and drawbacks of each metric is finally presented, in which the Zech-Aslan energy statistic stands out as the most recommended metric for analogue studies, whereas the Friedman-Rafsky runs statistic is the least recommended, based on this case study.

  20. Gender differences in the use of external landmarks versus spatial representations updated by self-motion.

    Science.gov (United States)

    Lambrey, Simon; Berthoz, Alain

    2007-09-01

    Numerous data in the literature provide evidence for gender differences in spatial orientation. In particular, it has been suggested that spatial representations of large-scale environments are more accurate in terms of metric information in men than in women but are richer in landmark information in women than in men. One explanatory hypothesis is that men and women differ in terms of navigational processes they used in daily life. The present study investigated this hypothesis by distinguishing two navigational processes: spatial updating by self-motion and landmark-based orientation. Subjects were asked to perform a pointing task in three experimental conditions, which differed in terms of reliability of the external landmarks that could be used. Two groups of subjects were distinguished, a mobile group and an immobile group, in which spatial updating of environmental locations did not have the same degree of importance for the correct performance of the pointing task. We found that men readily relied on an internal egocentric representation of where landmarks were expected to be in order to perform the pointing task, a representation that could be updated during self-motion (spatial updating). In contrast, women seemed to take their bearings more readily on the basis of the stable landmarks of the external world. We suggest that this gender difference in spatial orientation is not due to differences in information processing abilities but rather due to the differences in higher level strategies.

  1. A guide to calculating habitat-quality metrics to inform conservation of highly mobile species

    Science.gov (United States)

    Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.

    2018-01-01

    Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic

  2. Postoperative pain impairs subsequent performance on a spatial memory task via effects on N-methyl-D-aspartate receptor in aged rats.

    Science.gov (United States)

    Chi, Haidong; Kawano, Takashi; Tamura, Takahiko; Iwata, Hideki; Takahashi, Yasuhiro; Eguchi, Satoru; Yamazaki, Fumimoto; Kumagai, Naoko; Yokoyama, Masataka

    2013-12-18

    Pain may be associated with postoperative cognitive dysfunction (POCD); however, this relationship remains under investigated. Therefore, we examined the impact of postoperative pain on cognitive functions in aged animals. Rats were allocated to the following groups: control (C), 1.2 % isoflurane for 2 hours alone (I), I with laparotomy (IL), IL with analgesia using local ropivacaine (IL+R), and IL with analgesia using systemic morphine (IL+M). Pain was assessed by rat grimace scale (RGS). Spatial memory was evaluated using a radial maze from postoperative days (POD) 3 to 14. NMDA receptor (NR) 2 subunits in hippocampus were measured by ELISA. Finally, effects of memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, on postoperative cognitive performance were tested. Postoperative RGS was increased in Group IL, but not in other groups. The number of memory errors in Group I were comparable to that in Group C, whereas errors in Group IL were increased. Importantly, in Group IL+R and IL+M, cognitive impairment was not found. The memory errors were positively correlated with the levels of NMDA receptor 2 subunits in hippocampus. Prophylactic treatment with memantine could prevent the development of memory deficits observed in Group IL without an analgesic effect. Postoperative pain contributes to the development of memory deficits after anesthesia and surgery via up-regulation of hippocampal NMDA receptors. Our findings suggest that postoperative pain management may be important for the prevention of POCD in elderly patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218873; The ATLAS collaboration; Toler, Wesley; Vamosi, Ralf; Bogado Garcia, Joaquin Ignacio

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  4. Machine learning of network metrics in ATLAS Distributed Data Management

    Science.gov (United States)

    Lassnig, Mario; Toler, Wesley; Vamosi, Ralf; Bogado, Joaquin; ATLAS Collaboration

    2017-10-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for networkaware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  5. Separable metrics and radiating stars

    Indian Academy of Sciences (India)

    We study the junction condition relating the pressure to heat flux at the boundary of an accelerating and expanding spherically symmetric radiating star. We transform the junction condition to an ordinary differential equation by making a separability assumption on the metric functions in the space–time variables.

  6. Socio-technical security metrics

    NARCIS (Netherlands)

    Gollmann, D.; Herley, C.; Koenig, V.; Pieters, W.; Sasse, M.A.

    2015-01-01

    Report from Dagstuhl seminar 14491. This report documents the program and the outcomes of Dagstuhl Seminar 14491 “Socio-Technical Security Metrics”. In the domain of safety, metrics inform many decisions, from the height of new dikes to the design of nuclear plants. We can state, for example, that

  7. Leading Gainful Employment Metric Reporting

    Science.gov (United States)

    Powers, Kristina; MacPherson, Derek

    2016-01-01

    This chapter will address the importance of intercampus involvement in reporting of gainful employment student-level data that will be used in the calculation of gainful employment metrics by the U.S. Department of Education. The authors will discuss why building relationships within the institution is critical for effective gainful employment…

  8. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a ¡§universal¡¨ or ¡§best¡¨ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  9. Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task.

    Directory of Open Access Journals (Sweden)

    Simon R O Nilsson

    Full Text Available Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS-, in a T- or Y-maze configuration. This was followed by three conditions; (1 Full reversal, where contingencies reversed; (2 Perseverance, where the previous CS+ became CS- and the previous CS- was replaced by a novel CS+; (3 Learned non-reward, where the previous CS- became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss

  10. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    Directory of Open Access Journals (Sweden)

    Emma eSalo

    2015-02-01

    Full Text Available We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or simple (speaker-gender or font-shade discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley’s model modality atypical, that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks.

  11. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    International Nuclear Information System (INIS)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc

    2017-01-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  12. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany).

    2017-10-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  13. Analysis of Subjects' Vulnerability in a Touch Screen Game Using Behavioral Metrics.

    Science.gov (United States)

    Parsinejad, Payam; Sipahi, Rifat

    2017-12-01

    In this article, we report results on an experimental study conducted with volunteer subjects playing a touch-screen game with two unique difficulty levels. Subjects have knowledge about the rules of both game levels, but only sufficient playing experience with the easy level of the game, making them vulnerable with the difficult level. Several behavioral metrics associated with subjects' playing the game are studied in order to assess subjects' mental-workload changes induced by their vulnerability. Specifically, these metrics are calculated based on subjects' finger kinematics and decision making times, which are then compared with baseline metrics, namely, performance metrics pertaining to how well the game is played and a physiological metric called pnn50 extracted from heart rate measurements. In balanced experiments and supported by comparisons with baseline metrics, it is found that some of the studied behavioral metrics have the potential to be used to infer subjects' mental workload changes through different levels of the game. These metrics, which are decoupled from task specifics, relate to subjects' ability to develop strategies to play the game, and hence have the advantage of offering insight into subjects' task-load and vulnerability assessment across various experimental settings.

  14. Assessment of various supervised learning algorithms using different performance metrics

    Science.gov (United States)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  15. Spatial audio quality perception (part 2)

    DEFF Research Database (Denmark)

    Conetta, R.; Brookes, T.; Rumsey, F.

    2015-01-01

    location, envelopment, coverage angle, ensemble width, and spaciousness. They can also impact timbre, and changes to timbre can then influence spatial perception. Previously obtained data was used to build a regression model of perceived spatial audio quality in terms of spatial and timbral metrics...

  16. Performance Enhancements Under Dual-task Conditions

    Science.gov (United States)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1984-01-01

    Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.

  17. Microdevelopment of Complex Featural and Spatial Integration with Contextual Support

    Directory of Open Access Journals (Sweden)

    Pamela L. Hirsch

    2015-01-01

    Full Text Available Complex spatial decisions involve the ability to combine featural and spatial information in a scene. In the present work, 4- through 9-year-old children completed a complex map-scene correspondence task under baseline and supported conditions. Children compared a photographed scene with a correct map and with map-foils that made salient an object feature or spatial property. Map-scene matches were analyzed for the effects of age and featural-spatial information on children’s selections. In both conditions children significantly favored maps that highlighted object detail and object perspective rather than color, landmark, and metric elements. Children’s correct performance did not differ by age and was suboptimal, but their ability to choose correct maps improved significantly when contextual support was provided. Strategy variability was prominent for all age groups, but at age 9 with support children were more likely to give up their focus on features and transition to the use of spatial strategies. These findings suggest the possibility of a U-shaped curve for children’s development of geometric knowledge: geometric coding is predominant early on, diminishes for a time in middle childhood in favor of a preference for features, and then reemerges along with the more advanced abilities to combine featural and spatial information.

  18. TSORT - an automated tool for allocating tasks to training strategies

    International Nuclear Information System (INIS)

    Carter, R.J.; Jorgensen, C.C.

    1986-01-01

    An automated tool (TSORT) that can aid training system developers in determining which training strategy should be applied to a particular task and in grouping similar tasks into training categories has been developed. This paper describes the rationale for TSORT's development and addresses its structure, including training categories, task description dimensions, and categorization metrics. It also provides some information on TSORT's application

  19. Group covariance and metrical theory

    International Nuclear Information System (INIS)

    Halpern, L.

    1983-01-01

    The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references

  20. General relativity: An erfc metric

    Science.gov (United States)

    Plamondon, Réjean

    2018-06-01

    This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space-time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.

  1. hdm: High-dimensional metrics

    OpenAIRE

    Chernozhukov, Victor; Hansen, Christian; Spindler, Martin

    2016-01-01

    In this article the package High-dimensional Metrics (\\texttt{hdm}) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e...

  2. Multi-Metric Sustainability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, Shannon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Munoz, David [Colorado School of Mines, Golden, CO (United States)

    2014-12-01

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  3. Sensory Metrics of Neuromechanical Trust.

    Science.gov (United States)

    Softky, William; Benford, Criscillia

    2017-09-01

    Today digital sources supply a historically unprecedented component of human sensorimotor data, the consumption of which is correlated with poorly understood maladies such as Internet addiction disorder and Internet gaming disorder. Because both natural and digital sensorimotor data share common mathematical descriptions, one can quantify our informational sensorimotor needs using the signal processing metrics of entropy, noise, dimensionality, continuity, latency, and bandwidth. Such metrics describe in neutral terms the informational diet human brains require to self-calibrate, allowing individuals to maintain trusting relationships. With these metrics, we define the trust humans experience using the mathematical language of computational models, that is, as a primitive statistical algorithm processing finely grained sensorimotor data from neuromechanical interaction. This definition of neuromechanical trust implies that artificial sensorimotor inputs and interactions that attract low-level attention through frequent discontinuities and enhanced coherence will decalibrate a brain's representation of its world over the long term by violating the implicit statistical contract for which self-calibration evolved. Our hypersimplified mathematical understanding of human sensorimotor processing as multiscale, continuous-time vibratory interaction allows equally broad-brush descriptions of failure modes and solutions. For example, we model addiction in general as the result of homeostatic regulation gone awry in novel environments (sign reversal) and digital dependency as a sub-case in which the decalibration caused by digital sensorimotor data spurs yet more consumption of them. We predict that institutions can use these sensorimotor metrics to quantify media richness to improve employee well-being; that dyads and family-size groups will bond and heal best through low-latency, high-resolution multisensory interaction such as shared meals and reciprocated touch; and

  4. Metric reconstruction from Weyl scalars

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Bernard F; Price, Larry R [Department of Physics, PO Box 118440, University of Florida, Gainesville, FL 32611 (United States)

    2005-08-07

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations.

  5. Metric reconstruction from Weyl scalars

    International Nuclear Information System (INIS)

    Whiting, Bernard F; Price, Larry R

    2005-01-01

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations

  6. Frame Rate versus Spatial Quality: Which Video Characteristics Do Matter?

    DEFF Research Database (Denmark)

    Korhonen, Jari; Reiter, Ulrich; Ukhanova, Ann

    2013-01-01

    and temporal quality levels. We also propose simple yet powerful metrics for characterizing spatial and temporal properties of a video sequence, and demonstrate how these metrics can be applied for evaluating the relative impact of spatial and temporal quality on the perceived overall quality....

  7. Sustainability Metrics: The San Luis Basin Project

    Science.gov (United States)

    Sustainability is about promoting humanly desirable dynamic regimes of the environment. Metrics: ecological footprint, net regional product, exergy, emergy, and Fisher Information. Adaptive management: (1) metrics assess problem, (2) specific problem identified, and (3) managemen...

  8. Crowdsourcing metrics of digital collections

    Directory of Open Access Journals (Sweden)

    Tuula Pääkkönen

    2015-12-01

    Full Text Available In the National Library of Finland (NLF there are millions of digitized newspaper and journal pages, which are openly available via the public website  http://digi.kansalliskirjasto.fi. To serve users better, last year the front end was completely overhauled with its main aim in crowdsourcing features, e.g., by giving end-users the opportunity to create digital clippings and a personal scrapbook from the digital collections. But how can you know whether crowdsourcing has had an impact? How much crowdsourcing functionalities have been used so far? Did crowdsourcing work? In this paper the statistics and metrics of a recent crowdsourcing effort are analysed across the different digitized material types (newspapers, journals, ephemera. The subjects, categories and keywords given by the users are analysed to see which topics are the most appealing. Some notable public uses of the crowdsourced article clippings are highlighted. These metrics give us indications on how the end-users, based on their own interests, are investigating and using the digital collections. Therefore, the suggested metrics illustrate the versatility of the information needs of the users, varying from citizen science to research purposes. By analysing the user patterns, we can respond to the new needs of the users by making minor changes to accommodate the most active participants, while still making the service more approachable for those who are trying out the functionalities for the first time. Participation in the clippings and annotations can enrich the materials in unexpected ways and can possibly pave the way for opportunities of using crowdsourcing more also in research contexts. This creates more opportunities for the goals of open science since source data becomes ­available, making it possible for researchers to reach out to the general public for help. In the long term, utilizing, for example, text mining methods can allow these different end-user segments to

  9. Hybrid metric-Palatini stars

    Science.gov (United States)

    Danilǎ, Bogdan; Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2017-02-01

    We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini f (R ) formalisms. It turns out that the theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor definition of the potential can be represented as an Clairaut differential equation, and provides an explicit form for f (R ) given by f (R )˜R +Λeff, where Λeff is an effective cosmological constant. Furthermore, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity, thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes the form of the bag model equation of state describing

  10. Metrics for Evaluation of Student Models

    Science.gov (United States)

    Pelanek, Radek

    2015-01-01

    Researchers use many different metrics for evaluation of performance of student models. The aim of this paper is to provide an overview of commonly used metrics, to discuss properties, advantages, and disadvantages of different metrics, to summarize current practice in educational data mining, and to provide guidance for evaluation of student…

  11. Context-dependent ATC complexity metric

    NARCIS (Netherlands)

    Mercado Velasco, G.A.; Borst, C.

    2015-01-01

    Several studies have investigated Air Traffic Control (ATC) complexity metrics in a search for a metric that could best capture workload. These studies have shown how daunting the search for a universal workload metric (one that could be applied in different contexts: sectors, traffic patterns,

  12. Properties of C-metric spaces

    Science.gov (United States)

    Croitoru, Anca; Apreutesei, Gabriela; Mastorakis, Nikos E.

    2017-09-01

    The subject of this paper belongs to the theory of approximate metrics [23]. An approximate metric on X is a real application defined on X × X that satisfies only a part of the metric axioms. In a recent paper [23], we introduced a new type of approximate metric, named C-metric, that is an application which satisfies only two metric axioms: symmetry and triangular inequality. The remarkable fact in a C-metric space is that a topological structure induced by the C-metric can be defined. The innovative idea of this paper is that we obtain some convergence properties of a C-metric space in the absence of a metric. In this paper we investigate C-metric spaces. The paper is divided into four sections. Section 1 is for Introduction. In Section 2 we recall some concepts and preliminary results. In Section 3 we present some properties of C-metric spaces, such as convergence properties, a canonical decomposition and a C-fixed point theorem. Finally, in Section 4 some conclusions are highlighted.

  13. Comparison of multi-objective evolutionary approaches for task ...

    Indian Academy of Sciences (India)

    evaluated using standard metrics. Experimental results and performance measures infer that NSGA-II produces quality schedules compared to NSPSO. ...... J 2005 Framework for task scheduling in heterogeneous distributed computing using.

  14. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics

    Directory of Open Access Journals (Sweden)

    Bernardin Keni

    2008-01-01

    Full Text Available Abstract Simultaneous tracking of multiple persons in real-world environments is an active research field and several approaches have been proposed, based on a variety of features and algorithms. Recently, there has been a growing interest in organizing systematic evaluations to compare the various techniques. Unfortunately, the lack of common metrics for measuring the performance of multiple object trackers still makes it hard to compare their results. In this work, we introduce two intuitive and general metrics to allow for objective comparison of tracker characteristics, focusing on their precision in estimating object locations, their accuracy in recognizing object configurations and their ability to consistently label objects over time. These metrics have been extensively used in two large-scale international evaluations, the 2006 and 2007 CLEAR evaluations, to measure and compare the performance of multiple object trackers for a wide variety of tracking tasks. Selected performance results are presented and the advantages and drawbacks of the presented metrics are discussed based on the experience gained during the evaluations.

  15. Summary of the U.S. National Workshop. Results for ATF Metrics Development

    International Nuclear Information System (INIS)

    Pasamehmetoglu, Kemal

    2013-01-01

    This presentation discussed the main outcomes of a recent US National Workshop on Accident-Tolerant Fuels, focusing on results for ATF metrics development. All thermal, mechanical and chemical properties are relevant in defining the metrics for accident tolerance, but considerable testing and analyses are needed to identify the dominant attributes and quantify the metrics. Current analysis tools are not fully adequate to complete the task, and a need was highlighted for strong collaborations to complete the experimental data to qualify the new tools

  16. On characterizations of quasi-metric completeness

    Energy Technology Data Exchange (ETDEWEB)

    Dag, H.; Romaguera, S.; Tirado, P.

    2017-07-01

    Hu proved in [4] that a metric space (X, d) is complete if and only if for any closed subspace C of (X, d), every Banach contraction on C has fixed point. Since then several authors have investigated the problem of characterizing the metric completeness by means of fixed point theorems. Recently this problem has been studied in the more general context of quasi-metric spaces for different notions of completeness. Here we present a characterization of a kind of completeness for quasi-metric spaces by means of a quasi-metric versions of Hu’s theorem. (Author)

  17. The Metric of Colour Space

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2015-01-01

    and found the MacAdam ellipses which are often interpreted as defining the metric tensor at their centres. An important question is whether it is possible to define colour coordinates such that the Euclidean distance in these coordinates correspond to human perception. Using cubic splines to represent......The space of colours is a fascinating space. It is a real vector space, but no matter what inner product you put on the space the resulting Euclidean distance does not correspond to human perception of difference between colours. In 1942 MacAdam performed the first experiments on colour matching...

  18. Product Operations Status Summary Metrics

    Science.gov (United States)

    Takagi, Atsuya; Toole, Nicholas

    2010-01-01

    The Product Operations Status Summary Metrics (POSSUM) computer program provides a readable view into the state of the Phoenix Operations Product Generation Subsystem (OPGS) data pipeline. POSSUM provides a user interface that can search the data store, collect product metadata, and display the results in an easily-readable layout. It was designed with flexibility in mind for support in future missions. Flexibility over various data store hierarchies is provided through the disk-searching facilities of Marsviewer. This is a proven program that has been in operational use since the first day of the Phoenix mission.

  19. Web metrics for library and information professionals

    CERN Document Server

    Stuart, David

    2014-01-01

    This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional.Th...

  20. Almost isometries of non-reversible metrics with applications to stationary spacetimes

    Science.gov (United States)

    Javaloyes, Miguel Angel; Lichtenfelz, Leandro; Piccione, Paolo

    2015-03-01

    We develop the basics of a theory of almost isometries for spaces endowed with a quasi-metric. The case of non-reversible Finsler (more specifically, Randers) metrics is of particular interest, and it is studied in more detail. The main motivation arises from General Relativity, and more specifically in spacetimes endowed with a timelike conformal field K, in which case conformal diffeomorphisms correspond to almost isometries of the Fermat metrics defined in the spatial part. A series of results on the topology and the Lie group structure of conformal maps are discussed.

  1. World wide spatial capital.

    Directory of Open Access Journals (Sweden)

    Rijurekha Sen

    Full Text Available In its most basic form, the spatial capital of a neighborhood entails that most aspects of daily life are located close at hand. Urban planning researchers have widely recognized its importance, not least because it can be transformed in other forms of capital such as economical capital (e.g., house prices, retail sales and social capital (e.g., neighborhood cohesion. Researchers have already studied spatial capital from official city data. Their work led to important planning decisions, yet it also relied on data that is costly to create and update, and produced metrics that are difficult to compare across cities. By contrast, we propose to measure spatial capital in cheap and standardized ways around the world. Hence the name of our project "World Wide Spatial Capital". Our measures are cheap as they rely on the most basic information about a city that is currently available on the Web (i.e., which amenities are available and where. They are also standardized because they can be applied in any city in the five continents (as opposed to previous metrics that were mainly applied in USA and UK. We show that, upon these metrics, one could produce insights at the core of the urban planning discipline: which areas would benefit the most from urban interventions; how to inform planning depending on whether a city's activity is mono- or poly-centric; how different cities fare against each other; and how spatial capital correlates with other urban characteristics such as mobility patterns and road network structure.

  2. Evaluation of mobile phone camera benchmarking using objective camera speed and image quality metrics

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-11-01

    When a mobile phone camera is tested and benchmarked, the significance of image quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. However, the speed or rapidity metrics of the mobile phone's camera system has not been used with the quality metrics even if the camera speed has become a more and more important camera performance feature. There are several tasks in this work. First, the most important image quality and speed-related metrics of a mobile phone's camera system are collected from the standards and papers and, also, novel speed metrics are identified. Second, combinations of the quality and speed metrics are validated using mobile phones on the market. The measurements are done toward application programming interface of different operating systems. Finally, the results are evaluated and conclusions are made. The paper defines a solution to combine different image quality and speed metrics to a single benchmarking score. A proposal of the combined benchmarking metric is evaluated using measurements of 25 mobile phone cameras on the market. The paper is a continuation of a previous benchmarking work expanded with visual noise measurement and updates of the latest mobile phone versions.

  3. Metrics for building performance assurance

    Energy Technology Data Exchange (ETDEWEB)

    Koles, G.; Hitchcock, R.; Sherman, M.

    1996-07-01

    This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs, (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.

  4. ISS Logistics Hardware Disposition and Metrics Validation

    Science.gov (United States)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  5. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    Science.gov (United States)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  6. Measuring distance “as the horse runs”: Cross-scale comparison of terrain-based metrics

    Science.gov (United States)

    Buttenfield, Barbara P.; Ghandehari, M; Leyk, S; Stanislawski, Larry V.; Brantley, M E; Qiang, Yi

    2016-01-01

    Distance metrics play significant roles in spatial modeling tasks, such as flood inundation (Tucker and Hancock 2010), stream extraction (Stanislawski et al. 2015), power line routing (Kiessling et al. 2003) and analysis of surface pollutants such as nitrogen (Harms et al. 2009). Avalanche risk is based on slope, aspect, and curvature, all directly computed from distance metrics (Gutiérrez 2012). Distance metrics anchor variogram analysis, kernel estimation, and spatial interpolation (Cressie 1993). Several approaches are employed to measure distance. Planar metrics measure straight line distance between two points (“as the crow flies”) and are simple and intuitive, but suffer from uncertainties. Planar metrics assume that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny facets of ceramic tile approximating a continuous terrain surface. In truth, terrain can bend, twist and undulate within each pixel.Work with Light Detection and Ranging (lidar) data or High Resolution Topography to achieve precise measurements present challenges, as filtering can eliminate or distort significant features (Passalacqua et al. 2015). The current availability of lidar data is far from comprehensive in developed nations, and non-existent in many rural and undeveloped regions. Notwithstanding computational advances, distance estimation on DEMs has never been systematically assessed, due to assumptions that improvements are so small that surface adjustment is unwarranted. For individual pixels inaccuracies may be small, but additive effects can propagate dramatically, especially in regional models (e.g., disaster evacuation) or global models (e.g., sea level rise) where pixels span dozens to hundreds of kilometers (Usery et al 2003). Such models are increasingly common, lending compelling reasons to understand shortcomings in the use of planar distance metrics. Researchers have studied curvature-based terrain modeling. Jenny et al. (2011) use curvature to generate

  7. Metric approach to quantum constraints

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P; Gustavsson, Anna C T

    2009-01-01

    A framework for deriving equations of motion for constrained quantum systems is introduced and a procedure for its implementation is outlined. In special cases, the proposed new method, which takes advantage of the fact that the space of pure states in quantum mechanics has both a symplectic structure and a metric structure, reduces to a quantum analogue of the Dirac theory of constraints in classical mechanics. Explicit examples involving spin-1/2 particles are worked out in detail: in the first example, our approach coincides with a quantum version of the Dirac formalism, while the second example illustrates how a situation that cannot be treated by Dirac's approach can nevertheless be dealt with in the present scheme.

  8. Metrics for Business Process Models

    Science.gov (United States)

    Mendling, Jan

    Up until now, there has been little research on why people introduce errors in real-world business process models. In a more general context, Simon [404] points to the limitations of cognitive capabilities and concludes that humans act rationally only to a certain extent. Concerning modeling errors, this argument would imply that human modelers lose track of the interrelations of large and complex models due to their limited cognitive capabilities and introduce errors that they would not insert in a small model. A recent study by Mendling et al. [275] explores in how far certain complexity metrics of business process models have the potential to serve as error determinants. The authors conclude that complexity indeed appears to have an impact on error probability. Before we can test such a hypothesis in a more general setting, we have to establish an understanding of how we can define determinants that drive error probability and how we can measure them.

  9. Interactive Mapping of Inundation Metrics Using Cloud Computing for Improved Floodplain Conservation and Management

    Science.gov (United States)

    Bulliner, E. A., IV; Lindner, G. A.; Bouska, K.; Paukert, C.; Jacobson, R. B.

    2017-12-01

    Within large-river ecosystems, floodplains serve a variety of important ecological functions. A recent survey of 80 managers of floodplain conservation lands along the Upper and Middle Mississippi and Lower Missouri Rivers in the central United States found that the most critical information needed to improve floodplain management centered on metrics for characterizing depth, extent, frequency, duration, and timing of inundation. These metrics can be delivered to managers efficiently through cloud-based interactive maps. To calculate these metrics, we interpolated an existing one-dimensional hydraulic model for the Lower Missouri River, which simulated water surface elevations at cross sections spaced (step. To translate these water surface elevations to inundation depths, we subtracted a merged terrain model consisting of floodplain LIDAR and bathymetric surveys of the river channel. This approach resulted in a 29000+ day time series of inundation depths across the floodplain using grid cells with 30 m spatial resolution. Initially, we used these data on a local workstation to calculate a suite of nine spatially distributed inundation metrics for the entire model domain. These metrics are calculated on a per pixel basis and encompass a variety of temporal criteria generally relevant to flora and fauna of interest to floodplain managers, including, for example, the average number of days inundated per year within a growing season. Using a local workstation, calculating these metrics for the entire model domain requires several hours. However, for the needs of individual floodplain managers working at site scales, these metrics may be too general and inflexible. Instead of creating a priori a suite of inundation metrics able to satisfy all user needs, we present the usage of Google's cloud-based Earth Engine API to allow users to define and query their own inundation metrics from our dataset and produce maps nearly instantaneously. This approach allows users to

  10. Active Metric Learning for Supervised Classification

    OpenAIRE

    Kumaran, Krishnan; Papageorgiou, Dimitri; Chang, Yutong; Li, Minhan; Takáč, Martin

    2018-01-01

    Clustering and classification critically rely on distance metrics that provide meaningful comparisons between data points. We present mixed-integer optimization approaches to find optimal distance metrics that generalize the Mahalanobis metric extensively studied in the literature. Additionally, we generalize and improve upon leading methods by removing reliance on pre-designated "target neighbors," "triplets," and "similarity pairs." Another salient feature of our method is its ability to en...

  11. On Nakhleh's metric for reduced phylogenetic networks

    OpenAIRE

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente Feruglio, Gabriel Alejandro

    2009-01-01

    We prove that Nakhleh’s metric for reduced phylogenetic networks is also a metric on the classes of tree-child phylogenetic networks, semibinary tree-sibling time consistent phylogenetic networks, and multilabeled phylogenetic trees. We also prove that it separates distinguishable phylogenetic networks. In this way, it becomes the strongest dissimilarity measure for phylogenetic networks available so far. Furthermore, we propose a generalization of that metric that separates arbitrary phyl...

  12. Generalized tolerance sensitivity and DEA metric sensitivity

    OpenAIRE

    Neralić, Luka; E. Wendell, Richard

    2015-01-01

    This paper considers the relationship between Tolerance sensitivity analysis in optimization and metric sensitivity analysis in Data Envelopment Analysis (DEA). Herein, we extend the results on the generalized Tolerance framework proposed by Wendell and Chen and show how this framework includes DEA metric sensitivity as a special case. Further, we note how recent results in Tolerance sensitivity suggest some possible extensions of the results in DEA metric sensitivity.

  13. The definitive guide to IT service metrics

    CERN Document Server

    McWhirter, Kurt

    2012-01-01

    Used just as they are, the metrics in this book will bring many benefits to both the IT department and the business as a whole. Details of the attributes of each metric are given, enabling you to make the right choices for your business. You may prefer and are encouraged to design and create your own metrics to bring even more value to your business - this book will show you how to do this, too.

  14. Generalized tolerance sensitivity and DEA metric sensitivity

    Directory of Open Access Journals (Sweden)

    Luka Neralić

    2015-03-01

    Full Text Available This paper considers the relationship between Tolerance sensitivity analysis in optimization and metric sensitivity analysis in Data Envelopment Analysis (DEA. Herein, we extend the results on the generalized Tolerance framework proposed by Wendell and Chen and show how this framework includes DEA metric sensitivity as a special case. Further, we note how recent results in Tolerance sensitivity suggest some possible extensions of the results in DEA metric sensitivity.

  15. Chaotic inflation with metric and matter perturbations

    International Nuclear Information System (INIS)

    Feldman, H.A.; Brandenberger, R.H.

    1989-01-01

    A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)

  16. Gravitational lensing in metric theories of gravity

    International Nuclear Information System (INIS)

    Sereno, Mauro

    2003-01-01

    Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat's principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other

  17. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.

    Science.gov (United States)

    Greene, Runyu L; Azari, David P; Hu, Yu Hen; Radwin, Robert G

    2017-11-01

    Patterns of physical stress exposure are often difficult to measure, and the metrics of variation and techniques for identifying them is underdeveloped in the practice of occupational ergonomics. Computer vision has previously been used for evaluating repetitive motion tasks for hand activity level (HAL) utilizing conventional 2D videos. The approach was made practical by relaxing the need for high precision, and by adopting a semi-automatic approach for measuring spatiotemporal characteristics of the repetitive task. In this paper, a new method for visualizing task factors, using this computer vision approach, is demonstrated. After videos are made, the analyst selects a region of interest on the hand to track and the hand location and its associated kinematics are measured for every frame. The visualization method spatially deconstructs and displays the frequency, speed and duty cycle components of tasks that are part of the threshold limit value for hand activity for the purpose of identifying patterns of exposure associated with the specific job factors, as well as for suggesting task improvements. The localized variables are plotted as a heat map superimposed over the video, and displayed in the context of the task being performed. Based on the intensity of the specific variables used to calculate HAL, we can determine which task factors most contribute to HAL, and readily identify those work elements in the task that contribute more to increased risk for an injury. Work simulations and actual industrial examples are described. This method should help practitioners more readily measure and interpret temporal exposure patterns and identify potential task improvements. Copyright © 2017. Published by Elsevier Ltd.

  18. Task-related modulation of visual neglect in cancellation tasks

    OpenAIRE

    Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon

    2008-01-01

    Unilateral neglect involves deficits of spatial exploration and awareness that do not always affect a fixed portion of extrapersonal space, but may vary with current stimulation and possibly with task demands. Here, we assessed any ‘top-down’, task-related influences on visual neglect, with novel experimental variants of the cancellation test. Many different versions of the cancellation test are used clinically, and can differ in the extent of neglect revealed, though the exact factors determ...

  19. About the possibility of a generalized metric

    International Nuclear Information System (INIS)

    Lukacs, B.; Ladik, J.

    1991-10-01

    The metric (the structure of the space-time) may be dependent on the properties of the object measuring it. The case of size dependence of the metric was examined. For this dependence the simplest possible form of the metric tensor has been constructed which fulfils the following requirements: there be two extremal characteristic scales; the metric be unique and the usual between them; the change be sudden in the neighbourhood of these scales; the size of the human body appear as a parameter (postulated on the basis of some philosophical arguments). Estimates have been made for the two extremal length scales according to existing observations. (author) 19 refs

  20. Spatial Patterns of Development Drive Water Use

    Science.gov (United States)

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  1. Spatial patterns of development drive water use

    Science.gov (United States)

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  2. Impaired spatial processing in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2018-05-17

    Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Low-complexity atlas-based prostate segmentation by combining global, regional, and local metrics

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Qiuliang; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States)

    2014-04-15

    Purpose: To improve the efficiency of atlas-based segmentation without compromising accuracy, and to demonstrate the validity of the proposed method on MRI-based prostate segmentation application. Methods: Accurate and efficient automatic structure segmentation is an important task in medical image processing. Atlas-based methods, as the state-of-the-art, provide good segmentation at the cost of a large number of computationally intensive nonrigid registrations, for anatomical sites/structures that are subject to deformation. In this study, the authors propose to utilize a combination of global, regional, and local metrics to improve the accuracy yet significantly reduce the number of required nonrigid registrations. The authors first perform an affine registration to minimize the global mean squared error (gMSE) to coarsely align each atlas image to the target. Subsequently, atarget-specific regional MSE (rMSE), demonstrated to be a good surrogate for dice similarity coefficient (DSC), is used to select a relevant subset from the training atlas. Only within this subset are nonrigid registrations performed between the training images and the target image, to minimize a weighted combination of gMSE and rMSE. Finally, structure labels are propagated from the selected training samples to the target via the estimated deformation fields, and label fusion is performed based on a weighted combination of rMSE and local MSE (lMSE) discrepancy, with proper total-variation-based spatial regularization. Results: The proposed method was applied to a public database of 30 prostate MR images with expert-segmented structures. The authors’ method, utilizing only eight nonrigid registrations, achieved a performance with a median/mean DSC of over 0.87/0.86, outperforming the state-of-the-art full-fledged atlas-based segmentation approach of which the median/mean DSC was 0.84/0.82 when applying to their data set. Conclusions: The proposed method requires a fixed number of nonrigid

  4. Historical Evolution of Spatial Abilities

    Directory of Open Access Journals (Sweden)

    A. Ardila

    1993-01-01

    Full Text Available Historical evolution and cross-cultural differences in spatial abilities are analyzed. Spatial abilities have been found to be significantly associated with the complexity of geographical conditions and survival demands. Although impaired spatial cognition is found in cases of, exclusively or predominantly, right hemisphere pathology, it is proposed that this asymmetry may depend on the degree of training in spatial abilities. It is further proposed that spatial cognition might have evolved in a parallel way with cultural evolution and environmental demands. Contemporary city humans might be using spatial abilities in some new, conceptual tasks that did not exist in prehistoric times: mathematics, reading, writing, mechanics, music, etc. Cross-cultural analysis of spatial abilities in different human groups, normalization of neuropsychological testing instruments, and clinical observations of spatial ability disturbances in people with different cultural backgrounds and various spatial requirements, are required to construct a neuropsychological theory of brain organization of spatial cognition.

  5. H-Metric: Characterizing Image Datasets via Homogenization Based on KNN-Queries

    Directory of Open Access Journals (Sweden)

    Welington M da Silva

    2012-01-01

    Full Text Available Precision-Recall is one of the main metrics for evaluating content-based image retrieval techniques. However, it does not provide an ample perception of the properties of an image dataset immersed in a metric space. In this work, we describe an alternative metric named H-Metric, which is determined along a sequence of controlled modifications in the image dataset. The process is named homogenization and works by altering the homogeneity characteristics of the classes of the images. The result is a process that measures how hard it is to deal with a set of images in respect to content-based retrieval, offering support in the task of analyzing configurations of distance functions and of features extractors.

  6. Enhancing Authentication Models Characteristic Metrics via ...

    African Journals Online (AJOL)

    In this work, we derive the universal characteristic metrics set for authentication models based on security, usability and design issues. We then compute the probability of the occurrence of each characteristic metrics in some single factor and multifactor authentication models in order to determine the effectiveness of these ...

  7. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  8. Invariant metric for nonlinear symplectic maps

    Indian Academy of Sciences (India)

    In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we ...

  9. Finite Metric Spaces of Strictly negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distance...

  10. Fixed point theory in metric type spaces

    CERN Document Server

    Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco

    2015-01-01

    Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...

  11. Metric solution of a spinning mass

    International Nuclear Information System (INIS)

    Sato, H.

    1982-01-01

    Studies on a particular class of asymptotically flat and stationary metric solutions called the Kerr-Tomimatsu-Sato class are reviewed about its derivation and properties. For a further study, an almost complete list of the papers worked on the Tomimatsu-Sato metrics is given. (Auth.)

  12. Validation of Metrics for Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2008-01-01

    Full Text Available This paper describe the new concepts of collaborative systems metrics validation. The paper define the quality characteristics of collaborative systems. There are proposed a metric to estimate the quality level of collaborative systems. There are performed measurements of collaborative systems quality using a specially designed software.

  13. Validation of Metrics for Collaborative Systems

    OpenAIRE

    Ion IVAN; Cristian CIUREA

    2008-01-01

    This paper describe the new concepts of collaborative systems metrics validation. The paper define the quality characteristics of collaborative systems. There are proposed a metric to estimate the quality level of collaborative systems. There are performed measurements of collaborative systems quality using a specially designed software.

  14. Software Power Metric Model: An Implementation | Akwukwuma ...

    African Journals Online (AJOL)

    ... and the execution time (TIME) in each case was recorded. We then obtain the application functions point count. Our result shows that the proposed metric is computable, consistent in its use of unit, and is programming language independent. Keywords: Software attributes, Software power, measurement, Software metric, ...

  15. Product evaluation based in the association between intuition and tasks.

    Science.gov (United States)

    Almeida e Silva, Caio Márcio; Okimoto, Maria Lúcia L R; Albertazzi, Deise; Calixto, Cyntia; Costa, Humberto

    2012-01-01

    This paper explores the importance of researching the intuitiveness in the product use. It approaches the intuitiveness influence for users that already had a visual experience of the product. Finally, it is suggested the use of a table that relates the tasks performed while using a product, the features for an intuitive use and the performance metric "task success".

  16. Metrics for border management systems.

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, Ruth Ann

    2009-07-01

    There are as many unique and disparate manifestations of border systems as there are borders to protect. Border Security is a highly complex system analysis problem with global, regional, national, sector, and border element dimensions for land, water, and air domains. The complexity increases with the multiple, and sometimes conflicting, missions for regulating the flow of people and goods across borders, while securing them for national security. These systems include frontier border surveillance, immigration management and customs functions that must operate in a variety of weather, terrain, operational conditions, cultural constraints, and geopolitical contexts. As part of a Laboratory Directed Research and Development Project 08-684 (Year 1), the team developed a reference framework to decompose this complex system into international/regional, national, and border elements levels covering customs, immigration, and border policing functions. This generalized architecture is relevant to both domestic and international borders. As part of year two of this project (09-1204), the team determined relevant relative measures to better understand border management performance. This paper describes those relative metrics and how they can be used to improve border management systems.

  17. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics.

    Science.gov (United States)

    Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2010-03-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.

  18. The metrics of science and technology

    CERN Document Server

    Geisler, Eliezer

    2000-01-01

    Dr. Geisler's far-reaching, unique book provides an encyclopedic compilation of the key metrics to measure and evaluate the impact of science and technology on academia, industry, and government. Focusing on such items as economic measures, patents, peer review, and other criteria, and supported by an extensive review of the literature, Dr. Geisler gives a thorough analysis of the strengths and weaknesses inherent in metric design, and in the use of the specific metrics he cites. His book has already received prepublication attention, and will prove especially valuable for academics in technology management, engineering, and science policy; industrial R&D executives and policymakers; government science and technology policymakers; and scientists and managers in government research and technology institutions. Geisler maintains that the application of metrics to evaluate science and technology at all levels illustrates the variety of tools we currently possess. Each metric has its own unique strengths and...

  19. Smart Grid Status and Metrics Report Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonopoulos, Chrissi A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clements, Samuel L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ruiz, Kathleen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Chris [APQC, Houston, TX (United States); Varney, Jeff [APQC, Houston, TX (United States)

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  20. Metrics for Polyphonic Sound Event Detection

    Directory of Open Access Journals (Sweden)

    Annamaria Mesaros

    2016-05-01

    Full Text Available This paper presents and discusses various metrics proposed for evaluation of polyphonic sound event detection systems used in realistic situations where there are typically multiple sound sources active simultaneously. The system output in this case contains overlapping events, marked as multiple sounds detected as being active at the same time. The polyphonic system output requires a suitable procedure for evaluation against a reference. Metrics from neighboring fields such as speech recognition and speaker diarization can be used, but they need to be partially redefined to deal with the overlapping events. We present a review of the most common metrics in the field and the way they are adapted and interpreted in the polyphonic case. We discuss segment-based and event-based definitions of each metric and explain the consequences of instance-based and class-based averaging using a case study. In parallel, we provide a toolbox containing implementations of presented metrics.

  1. Towards Video Quality Metrics Based on Colour Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Richard Noël

    2010-01-01

    Full Text Available Vision is a complex process that integrates multiple aspects of an image: spatial frequencies, topology and colour. Unfortunately, so far, all these elements were independently took into consideration for the development of image and video quality metrics, therefore we propose an approach that blends together all of them. Our approach allows for the analysis of the complexity of colour images in the RGB colour space, based on the probabilistic algorithm for calculating the fractal dimension and lacunarity. Given that all the existing fractal approaches are defined only for gray-scale images, we extend them to the colour domain. We show how these two colour fractal features capture the multiple aspects that characterize the degradation of the video signal, based on the hypothesis that the quality degradation perceived by the user is directly proportional to the modification of the fractal complexity. We claim that the two colour fractal measures can objectively assess the quality of the video signal and they can be used as metrics for the user-perceived video quality degradation and we validated them through experimental results obtained for an MPEG-4 video streaming application; finally, the results are compared against the ones given by unanimously-accepted metrics and subjective tests.

  2. Urban Landscape Metrics for Climate and Sustainability Assessments

    Science.gov (United States)

    Cochran, F. V.; Brunsell, N. A.

    2014-12-01

    To test metrics for rapid identification of urban classes and sustainable urban forms, we examine the configuration of urban landscapes using satellite remote sensing data. We adopt principles from landscape ecology and urban planning to evaluate urban heterogeneity and design themes that may constitute more sustainable urban forms, including compactness (connectivity), density, mixed land uses, diversity, and greening. Using 2-D wavelet and multi-resolution analysis, landscape metrics, and satellite-derived indices of vegetation fraction and impervious surface, the spatial variability of Landsat and MODIS data from metropolitan areas of Manaus and São Paulo, Brazil are investigated. Landscape metrics for density, connectivity, and diversity, like the Shannon Diversity Index, are used to assess the diversity of urban buildings, geographic extent, and connectedness. Rapid detection of urban classes for low density, medium density, high density, and tall building district at the 1-km scale are needed for use in climate models. If the complexity of finer-scale urban characteristics can be related to the neighborhood scale both climate and sustainability assessments may be more attainable across urban areas.

  3. Analysis of Spatial Concepts, Spatial Skills and Spatial Representations in New York State Regents Earth Science Examinations

    Science.gov (United States)

    Kastens, Kim A.; Pistolesi, Linda; Passow, Michael J.

    2014-01-01

    Research has shown that spatial thinking is important in science in general, and in Earth Science in particular, and that performance on spatially demanding tasks can be fostered through instruction. Because spatial thinking is rarely taught explicitly in the U.S. education system, improving spatial thinking may be "low-hanging fruit" as…

  4. Evaluating Application-Layer Traffic Optimization Cost Metrics for P2P Multimedia Streaming

    DEFF Research Database (Denmark)

    Poderys, Justas; Soler, José

    2017-01-01

    To help users of P2P communication systems perform better-than-random selection of communication peers, Internet Engineering Task Force standardized the Application Layer Traffic Optimization (ALTO) protocol. The ALTO provided data-routing cost metric, can be used to rank peers in P2P communicati...

  5. Examining alternative landscape metrics in ecological forest planning: a case for capercaillie in Catalonia

    OpenAIRE

    Palahi, M.; Pukkala, T.; Pascual, L.; Trasobares, A.

    2004-01-01

    This study examined the performance of four different landscape metrics in a landscape ecological forest planning situation in Catalonia: (1) proportion of suitable habitat (non-spatial) (%H); (2) spatial autocorrelation; (3) the proportion of habitat-habitat boundary of the total compartment boundary (H-H) and (4) the proportion of habitat-non-habitat boundary (H-nonH). They were analysed in a case study problem that aimed at the maintenance and improvement of capercaillie habitats in two si...

  6. Metrics for value creation in a sustainable knowledge society

    Energy Technology Data Exchange (ETDEWEB)

    Huovila, P., Email: pekka.huovila@vtt.fi

    2012-06-15

    This paper highlights the need to create potential value metrics for sustainable neighbourhoods, capable of working simultaneously at a variety of spatial scales for different stakeholders (multi-scalar reciprocity), moving from top-down imposed metrics towards bottom-up formulated ones. Metrics for Value Creation should be constituted using different approaches. One dimension is the built environment, where the present rating schemes focus on the environmental impact of the use of buildings, namely energy use. Another dimension is the corporate aspect, where triple bottom line reporting also emphasises environmental and social issues, but the discursive civic square environment risks domination by economic sustainability of the production and growth-oriented business environment. The third dimension is the city itself with its social networks, concerning indicators for employment and crime, for example. The fourth dimension aims to measure the quality of life of individual citizens, which is not easy to define. At present, all four approaches are used separately without interoperability between the systems. Current environmental rating schemes, such as BREEAM, CASBEE, Green Star, HQE, LEED, PromisE, etc. are able to structure the processes of setting objectives, monitoring the process and assessing the state of buildings by some simple indicators. Mostly they focus on resource use and environmental impacts, but also cover some performance parameters, such as indoor environmental quality or aspects of accessibility. However, they are not contributing to the objectives of value creation in a knowledge society. This paper discusses major limitations of current sustainability indicator sets and rating tools. Finally, it describes a new approach to value metrics for sustainable neighbourhoods, using the LivingLab approach. This is a user-centric multidisciplinary research approach and a user community-driven innovation based on real-life experiments. The benefits of

  7. MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis

    Science.gov (United States)

    Ahn, Min-Seop; Kim, Daehyun; Sperber, Kenneth R.; Kang, In-Sik; Maloney, Eric; Waliser, Duane; Hendon, Harry

    2017-12-01

    The Madden-Julian Oscillation (MJO) simulation diagnostics developed by MJO Working Group and the process-oriented MJO simulation diagnostics developed by MJO Task Force are applied to 37 Coupled Model Intercomparison Project phase 5 (CMIP5) models in order to assess model skill in representing amplitude, period, and coherent eastward propagation of the MJO, and to establish a link between MJO simulation skill and parameterized physical processes. Process-oriented diagnostics include the Relative Humidity Composite based on Precipitation (RHCP), Normalized Gross Moist Stability (NGMS), and the Greenhouse Enhancement Factor (GEF). Numerous scalar metrics are developed to quantify the results. Most CMIP5 models underestimate MJO amplitude, especially when outgoing longwave radiation (OLR) is used in the evaluation, and exhibit too fast phase speed while lacking coherence between eastward propagation of precipitation/convection and the wind field. The RHCP-metric, indicative of the sensitivity of simulated convection to low-level environmental moisture, and the NGMS-metric, indicative of the efficiency of a convective atmosphere for exporting moist static energy out of the column, show robust correlations with a large number of MJO skill metrics. The GEF-metric, indicative of the strength of the column-integrated longwave radiative heating due to cloud-radiation interaction, is also correlated with the MJO skill metrics, but shows relatively lower correlations compared to the RHCP- and NGMS-metrics. Our results suggest that modifications to processes associated with moisture-convection coupling and the gross moist stability might be the most fruitful for improving simulations of the MJO. Though the GEF-metric exhibits lower correlations with the MJO skill metrics, the longwave radiation feedback is highly relevant for simulating the weak precipitation anomaly regime that may be important for the establishment of shallow convection and the transition to deep convection.

  8. The Importance of Gesture in Children's Spatial Reasoning

    Science.gov (United States)

    Ehrlich, Stacy B.; Levine, Susan C.; Goldin-Meadow, Susan

    2006-01-01

    On average, men outperform women on mental rotation tasks. Even boys as young as 4 1/2 perform better than girls on simplified spatial transformation tasks. The goal of our study was to explore ways of improving 5-year-olds' performance on a spatial transformation task and to examine the strategies children use to solve this task. We found that…

  9. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities In Support Marine and Hydrokinetic Energy Deployment: Task 2.1.7 Permitting and Planning Fiscal Year 2012 Year-End Report

    Energy Technology Data Exchange (ETDEWEB)

    Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Judd, Chaeli R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Blake, Kara M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-01

    This fiscal year 2012 year-end report summarizes activities carried out under DOE Water Power task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the MHK industry, including regulatory and resource management agencies, tribes, NGOs, and industry.

  10. Robustness Metrics: Consolidating the multiple approaches to quantify Robustness

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.

    2016-01-01

    robustness metrics; 3) Functional expectancy and dispersion robustness metrics; and 4) Probability of conformance robustness metrics. The goal was to give a comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand the different types of robustness metrics...

  11. Partial rectangular metric spaces and fixed point theorems.

    Science.gov (United States)

    Shukla, Satish

    2014-01-01

    The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.

  12. The appropriateness of using various Minkowskian metrics for representing cognitive configurations

    OpenAIRE

    G D Richardson

    1981-01-01

    Cognitive mapping has been a rapidly growing area of research concerned with how cognitive information about environments is represented, interpreted, and used. One area of research has been concerned with what geometry best represents cognitive spatial information. This paper further pursues this topic by examining which of three Minkowskian metrics (city-block, Euclidean, dominance) is most appropriate for representing cognitive configurations.

  13. Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion

    International Nuclear Information System (INIS)

    Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio

    2006-01-01

    In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate

  14. Developmental changes in using verbal self-cueing in task-switching situations: the impact of task practice and task-sequencing demands

    Science.gov (United States)

    Kray, Jutta; Gaspard, Hanna; Karbach, Julia; Blaye, Agnès

    2013-01-01

    In this study we examined whether developmental changes in using verbal self-cueing for task-goal maintenance are dependent on the amount of task practice and task-sequencing demands. To measure task-goal maintenance we applied a switching paradigm in which children either performed only task A or B in single-task blocks or switched between them on every second trial in mixed-task blocks. Task-goal maintenance was determined by comparing the performance between both blocks (mixing costs). The influence of verbal self-cueing was measured by instructing children to either name the next task aloud or not to verbalize during task preparation. Task-sequencing demands were varied between groups whereas one group received spatial task cues to support keeping track of the task sequence, while the other group did not. We also varied by the amount of prior practice in task switching while one group of participants practiced task switching first, before performing the task naming in addition, and the other group did it vice versa. Results of our study investigating younger (8–10 years) and older children (11–13 years) revealed no age differences in beneficial effects of verbal self-cueing. In line with previous findings, children showed reduced mixing costs under task-naming instructions and under conditions of low task-sequence demands (with the presence of spatial task cues). Our results also indicated that these benefits were only obtained for those groups of children that first received practice in task switching alone with no additional verbalization instruction. These findings suggest that internal task-cueing strategies can be efficiently used in children but only if they received prior practice in the underlying task so that demands on keeping and coordinating various instructions are reduced. Moreover, children benefitted from spatial task cues for better task-goal maintenance only if no verbal task-cueing strategy was introduced first. PMID:24381566

  15. Measuring Information Security: Guidelines to Build Metrics

    Science.gov (United States)

    von Faber, Eberhard

    Measuring information security is a genuine interest of security managers. With metrics they can develop their security organization's visibility and standing within the enterprise or public authority as a whole. Organizations using information technology need to use security metrics. Despite the clear demands and advantages, security metrics are often poorly developed or ineffective parameters are collected and analysed. This paper describes best practices for the development of security metrics. First attention is drawn to motivation showing both requirements and benefits. The main body of this paper lists things which need to be observed (characteristic of metrics), things which can be measured (how measurements can be conducted) and steps for the development and implementation of metrics (procedures and planning). Analysis and communication is also key when using security metrics. Examples are also given in order to develop a better understanding. The author wants to resume, continue and develop the discussion about a topic which is or increasingly will be a critical factor of success for any security managers in larger organizations.

  16. Characterising risk - aggregated metrics: radiation and noise

    International Nuclear Information System (INIS)

    Passchier, W.

    1998-01-01

    The characterisation of risk is an important phase in the risk assessment - risk management process. From the multitude of risk attributes a few have to be selected to obtain a risk characteristic or profile that is useful for risk management decisions and implementation of protective measures. One way to reduce the number of attributes is aggregation. In the field of radiation protection such an aggregated metric is firmly established: effective dose. For protection against environmental noise the Health Council of the Netherlands recently proposed a set of aggregated metrics for noise annoyance and sleep disturbance. The presentation will discuss similarities and differences between these two metrics and practical limitations. The effective dose has proven its usefulness in designing radiation protection measures, which are related to the level of risk associated with the radiation practice in question, given that implicit judgements on radiation induced health effects are accepted. However, as the metric does not take into account the nature of radiation practice, it is less useful in policy discussions on the benefits and harm of radiation practices. With respect to the noise exposure metric, only one effect is targeted (annoyance), and the differences between sources are explicitly taken into account. This should make the metric useful in policy discussions with respect to physical planning and siting problems. The metric proposed has only significance on a population level, and can not be used as a predictor for individual risk. (author)

  17. Energy functionals for Calabi-Yau metrics

    International Nuclear Information System (INIS)

    Headrick, M; Nassar, A

    2013-01-01

    We identify a set of ''energy'' functionals on the space of metrics in a given Kähler class on a Calabi-Yau manifold, which are bounded below and minimized uniquely on the Ricci-flat metric in that class. Using these functionals, we recast the problem of numerically solving the Einstein equation as an optimization problem. We apply this strategy, using the ''algebraic'' metrics (metrics for which the Kähler potential is given in terms of a polynomial in the projective coordinates), to the Fermat quartic and to a one-parameter family of quintics that includes the Fermat and conifold quintics. We show that this method yields approximations to the Ricci-flat metric that are exponentially accurate in the degree of the polynomial (except at the conifold point, where the convergence is polynomial), and therefore orders of magnitude more accurate than the balanced metrics, previously studied as approximations to the Ricci-flat metric. The method is relatively fast and easy to implement. On the theoretical side, we also show that the functionals can be used to give a heuristic proof of Yau's theorem

  18. Visible Contrast Energy Metrics for Detection and Discrimination

    Science.gov (United States)

    Ahumada, Albert; Watson, Andrew

    2013-01-01

    Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images

  19. Metrics Are Needed for Collaborative Software Development

    Directory of Open Access Journals (Sweden)

    Mojgan Mohtashami

    2011-10-01

    Full Text Available There is a need for metrics for inter-organizational collaborative software development projects, encompassing management and technical concerns. In particular, metrics are needed that are aimed at the collaborative aspect itself, such as readiness for collaboration, the quality and/or the costs and benefits of collaboration in a specific ongoing project. We suggest questions and directions for such metrics, spanning the full lifespan of a collaborative project, from considering the suitability of collaboration through evaluating ongoing projects to final evaluation of the collaboration.

  20. Indefinite metric fields and the renormalization group

    International Nuclear Information System (INIS)

    Sherry, T.N.

    1976-11-01

    The renormalization group equations are derived for the Green functions of an indefinite metric field theory. In these equations one retains the mass dependence of the coefficient functions, since in the indefinite metric theories the masses cannot be neglected. The behavior of the effective coupling constant in the asymptotic and infrared limits is analyzed. The analysis is illustrated by means of a simple model incorporating indefinite metric fields. The model scales at first order, and at this order also the effective coupling constant has both ultra-violet and infra-red fixed points, the former being the bare coupling constant

  1. Software metrics a rigorous and practical approach

    CERN Document Server

    Fenton, Norman

    2014-01-01

    A Framework for Managing, Measuring, and Predicting Attributes of Software Development Products and ProcessesReflecting the immense progress in the development and use of software metrics in the past decades, Software Metrics: A Rigorous and Practical Approach, Third Edition provides an up-to-date, accessible, and comprehensive introduction to software metrics. Like its popular predecessors, this third edition discusses important issues, explains essential concepts, and offers new approaches for tackling long-standing problems.New to the Third EditionThis edition contains new material relevant

  2. Spatial Tapping Interferes With the Processing of Linguistic Spatial Relations

    NARCIS (Netherlands)

    Noordzij, Matthijs Leendert; van der Lubbe, Robert Henricus Johannes; Neggers, Sebastiaan F.W.; Postma, Albert

    2004-01-01

    Simple spatial relations may be represented either in a propositional format that is dependent on verbal rehearsal or in a picture-like format that is maintained by visual-spatial rehearsal. In sentence-picture and picture-picture verification tasks, we examined the effect of an articulatory

  3. Cognitive Modeling and Task Analysis: Basic Processes and Individual Differences

    National Research Council Canada - National Science Library

    Ackerman, Phillip

    1999-01-01

    ... in a complex-skill environment. The subset of task conditions selected were those that involve basic processes of working memory, task monitoring, and differential loads on spatial reasoning and speed of perceiving...

  4. Metrics, Media and Advertisers: Discussing Relationship

    Directory of Open Access Journals (Sweden)

    Marco Aurelio de Souza Rodrigues

    2014-11-01

    Full Text Available This study investigates how Brazilian advertisers are adapting to new media and its attention metrics. In-depth interviews were conducted with advertisers in 2009 and 2011. In 2009, new media and its metrics were celebrated as innovations that would increase advertising campaigns overall efficiency. In 2011, this perception has changed: New media’s profusion of metrics, once seen as an advantage, started to compromise its ease of use and adoption. Among its findings, this study argues that there is an opportunity for media groups willing to shift from a product-focused strategy towards a customer-centric one, through the creation of new, simple and integrative metrics

  5. Networks and centroid metrics for understanding football

    African Journals Online (AJOL)

    Gonçalo Dias

    games. However, it seems that the centroid metric, supported only by the position of players in the field ...... the strategy adopted by the coach (Gama et al., 2014). ... centroid distance as measures of team's tactical performance in youth football.

  6. Clean Cities Annual Metrics Report 2009 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  7. Metric Guidelines Inservice and/or Preservice

    Science.gov (United States)

    Granito, Dolores

    1978-01-01

    Guidelines are given for designing teacher training for going metric. The guidelines were developed from existing guidelines, journal articles, a survey of colleges, and the detailed reactions of a panel. (MN)

  8. Science and Technology Metrics and Other Thoughts

    National Research Council Canada - National Science Library

    Harman, Wayne; Staton, Robin

    2006-01-01

    This report explores the subject of science and technology metrics and other topics to begin to provide Navy managers, as well as scientists and engineers, additional tools and concepts with which to...

  9. Using Activity Metrics for DEVS Simulation Profiling

    Directory of Open Access Journals (Sweden)

    Muzy A.

    2014-01-01

    Full Text Available Activity metrics can be used to profile DEVS models before and during the simulation. It is critical to get good activity metrics of models before and during their simulation. Having a means to compute a-priori activity of components (analytic activity may be worth when simulating a model (or parts of it for the first time. After, during the simulation, analytic activity can be corrected using dynamic one. In this paper, we introduce McCabe cyclomatic complexity metric (MCA to compute analytic activity. Both static and simulation activity metrics have been implemented through a plug-in of the DEVSimPy (DEVS Simulator in Python language environment and applied to DEVS models.

  10. Evaluating and Estimating the WCET Criticality Metric

    DEFF Research Database (Denmark)

    Jordan, Alexander

    2014-01-01

    a programmer (or compiler) from targeting optimizations the right way. A possible resort is to use a metric that targets WCET and which can be efficiently computed for all code parts of a program. Similar to dynamic profiling techniques, which execute code with input that is typically expected...... for the application, based on WCET analysis we can indicate how critical a code fragment is, in relation to the worst-case bound. Computing such a metric on top of static analysis, incurs a certain overhead though, which increases with the complexity of the underlying WCET analysis. We present our approach...... to estimate the Criticality metric, by relaxing the precision of WCET analysis. Through this, we can reduce analysis time by orders of magnitude, while only introducing minor error. To evaluate our estimation approach and share our garnered experience using the metric, we evaluate real-time programs, which...

  11. 16 CFR 1511.8 - Metric references.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Metric references. 1511.8 Section 1511.8 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... parentheses for convenience and information only. ...

  12. Flight Crew State Monitoring Metrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — eSky will develop specific crew state metrics based on the timeliness, tempo and accuracy of pilot inputs required by the H-mode Flight Control System (HFCS)....

  13. Supplier selection using different metric functions

    Directory of Open Access Journals (Sweden)

    Omosigho S.E.

    2015-01-01

    Full Text Available Supplier selection is an important component of supply chain management in today’s global competitive environment. Hence, the evaluation and selection of suppliers have received considerable attention in the literature. Many attributes of suppliers, other than cost, are considered in the evaluation and selection process. Therefore, the process of evaluation and selection of suppliers is a multi-criteria decision making process. The methodology adopted to solve the supplier selection problem is intuitionistic fuzzy TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution. Generally, TOPSIS is based on the concept of minimum distance from the positive ideal solution and maximum distance from the negative ideal solution. We examine the deficiencies of using only one metric function in TOPSIS and propose the use of spherical metric function in addition to the commonly used metric functions. For empirical supplier selection problems, more than one metric function should be used.

  14. Classroom reconstruction of the Schwarzschild metric

    OpenAIRE

    Kassner, Klaus

    2015-01-01

    A promising way to introduce general relativity in the classroom is to study the physical implications of certain given metrics, such as the Schwarzschild one. This involves lower mathematical expenditure than an approach focusing on differential geometry in its full glory and permits to emphasize physical aspects before attacking the field equations. Even so, in terms of motivation, lacking justification of the metric employed may pose an obstacle. The paper discusses how to establish the we...

  15. Marketing communication metrics for social media

    OpenAIRE

    Töllinen, Aarne; Karjaluoto, Heikki

    2011-01-01

    The objective of this paper is to develop a conceptual framework for measuring the effectiveness of social media marketing communications. Specifically, we study whether the existing marketing communications performance metrics are still valid in the changing digitalised communications landscape, or whether it is time to rethink them, or even to devise entirely new metrics. Recent advances in information technology and marketing bring a need to re-examine measurement models. We combine two im...

  16. Some observations on a fuzzy metric space

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, V.

    2017-07-01

    Let $(X,d)$ be a metric space. In this paper we provide some observations about the fuzzy metric space in the sense of Kramosil and Michalek $(Y,N,/wedge)$, where $Y$ is the set of non-negative real numbers $[0,/infty[$ and $N(x,y,t)=1$ if $d(x,y)/leq t$ and $N(x,y,t)=0$ if $d(x,y)/geq t$. (Author)

  17. Area Regge calculus and discontinuous metrics

    International Nuclear Information System (INIS)

    Wainwright, Chris; Williams, Ruth M

    2004-01-01

    Taking the triangle areas as independent variables in the theory of Regge calculus can lead to ambiguities in the edge lengths, which can be interpreted as discontinuities in the metric. We construct solutions to area Regge calculus using a triangulated lattice and find that on a spacelike or timelike hypersurface no such discontinuity can arise. On a null hypersurface however, we can have such a situation and the resulting metric can be interpreted as a so-called refractive wave

  18. Task-Driven Comparison of Topic Models.

    Science.gov (United States)

    Alexander, Eric; Gleicher, Michael

    2016-01-01

    Topic modeling, a method of statistically extracting thematic content from a large collection of texts, is used for a wide variety of tasks within text analysis. Though there are a growing number of tools and techniques for exploring single models, comparisons between models are generally reduced to a small set of numerical metrics. These metrics may or may not reflect a model's performance on the analyst's intended task, and can therefore be insufficient to diagnose what causes differences between models. In this paper, we explore task-centric topic model comparison, considering how we can both provide detail for a more nuanced understanding of differences and address the wealth of tasks for which topic models are used. We derive comparison tasks from single-model uses of topic models, which predominantly fall into the categories of understanding topics, understanding similarity, and understanding change. Finally, we provide several visualization techniques that facilitate these tasks, including buddy plots, which combine color and position encodings to allow analysts to readily view changes in document similarity.

  19. Relaxed metrics and indistinguishability operators: the relationship

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.

    2017-07-01

    In 1982, the notion of indistinguishability operator was introduced by E. Trillas in order to fuzzify the crisp notion of equivalence relation (/cite{Trillas}). In the study of such a class of operators, an outstanding property must be pointed out. Concretely, there exists a duality relationship between indistinguishability operators and metrics. The aforesaid relationship was deeply studied by several authors that introduced a few techniques to generate metrics from indistinguishability operators and vice-versa (see, for instance, /cite{BaetsMesiar,BaetsMesiar2}). In the last years a new generalization of the metric notion has been introduced in the literature with the purpose of developing mathematical tools for quantitative models in Computer Science and Artificial Intelligence (/cite{BKMatthews,Ma}). The aforementioned generalized metrics are known as relaxed metrics. The main target of this talk is to present a study of the duality relationship between indistinguishability operators and relaxed metrics in such a way that the aforementioned classical techniques to generate both concepts, one from the other, can be extended to the new framework. (Author)

  20. Age-Related Differences in Multiple Task Monitoring

    OpenAIRE

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men excee...

  1. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    Science.gov (United States)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  2. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    Science.gov (United States)

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  3. Baby universe metric equivalent to an interior black-hole metric

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, P.F.

    1991-01-01

    It is shown that the maximally extended metric corresponding to a large wormhole is the unique possible wormhole metric whose baby universe sector is conformally equivalent ot the maximal inextendible Kruskal metric corresponding to the interior region of a Schwarzschild black hole whose gravitational radius is half the wormhole neck radius. The physical implications of this result in the black hole evaporation process are discussed. (orig.)

  4. Culture, intangibles and metrics in environmental management.

    Science.gov (United States)

    Satterfield, Terre; Gregory, Robin; Klain, Sarah; Roberts, Mere; Chan, Kai M

    2013-03-15

    The demand for better representation of cultural considerations in environmental management is increasingly evident. As two cases in point, ecosystem service approaches increasingly include cultural services, and resource planners recognize indigenous constituents and the cultural knowledge they hold as key to good environmental management. Accordingly, collaborations between anthropologists, planners, decision makers and biodiversity experts about the subject of culture are increasingly common-but also commonly fraught. Those whose expertise is culture often engage in such collaborations because they worry a practitioner from 'elsewhere' will employ a 'measure of culture' that is poorly or naively conceived. Those from an economic or biophysical training must grapple with the intangible properties of culture as they intersect with economic, biological or other material measures. This paper seeks to assist those who engage in collaborations to characterize cultural benefits or impacts relevant to decision-making in three ways; by: (i) considering the likely mindset of would-be collaborators; (ii) providing examples of tested approaches that might enable innovation; and (iii) characterizing the kinds of obstacles that are in principle solvable through methodological alternatives. We accomplish these tasks in part by examining three cases wherein culture was a critical variable in environmental decision making: risk management in New Zealand associated with Māori concerns about genetically modified organisms; cultural services to assist marine planning in coastal British Columbia; and a decision-making process involving a local First Nation about water flows in a regulated river in western Canada. We examine how 'culture' came to be manifest in each case, drawing from ethnographic and cultural-models interviews and using subjective metrics (recommended by theories of judgment and decision making) to express cultural concerns. We conclude that the characterization of

  5. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  6. Age-related differences in multiple task monitoring.

    Science.gov (United States)

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  7. Age-related differences in multiple task monitoring.

    Directory of Open Access Journals (Sweden)

    Ivo Todorov

    Full Text Available Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  8. A neurophysiological training evaluation metric for air traffic management.

    Science.gov (United States)

    Borghini, G; Aricò, P; Ferri, F; Graziani, I; Pozzi, S; Napoletano, L; Imbert, J P; Granger, G; Benhacene, R; Babiloni, F

    2014-01-01

    The aim of this work was to analyze the possibility to apply a neuroelectrical cognitive metrics for the evaluation of the training level of subjects during the learning of a task employed by Air Traffic Controllers (ATCos). In particular, the Electroencephalogram (EEG), the Electrocardiogram (ECG) and the Electrooculogram (EOG) signals were gathered from a group of students during the execution of an Air Traffic Management (ATM) task, proposed at three different levels of difficulty. The neuroelectrical results were compared with the subjective perception of the task difficulty obtained by the NASA-TLX questionnaires. From these analyses, we suggest that the integration of information derived from the power spectral density (PSD) of the EEG signals, the heart rate (HR) and the eye-blink rate (EBR) return important quantitative information about the training level of the subjects. In particular, by focusing the analysis on the direct and inverse correlation of the frontal PSD theta (4-7 (Hz)) and HR, and of the parietal PSD alpha (10-12 (Hz)) and EBR, respectively, with the degree of mental and emotive engagement, it is possible to obtain useful information about the training improvement across the training sessions.

  9. Evaluation metrics for biostatistical and epidemiological collaborations.

    Science.gov (United States)

    Rubio, Doris McGartland; Del Junco, Deborah J; Bhore, Rafia; Lindsell, Christopher J; Oster, Robert A; Wittkowski, Knut M; Welty, Leah J; Li, Yi-Ju; Demets, Dave

    2011-10-15

    Increasing demands for evidence-based medicine and for the translation of biomedical research into individual and public health benefit have been accompanied by the proliferation of special units that offer expertise in biostatistics, epidemiology, and research design (BERD) within academic health centers. Objective metrics that can be used to evaluate, track, and improve the performance of these BERD units are critical to their successful establishment and sustainable future. To develop a set of reliable but versatile metrics that can be adapted easily to different environments and evolving needs, we consulted with members of BERD units from the consortium of academic health centers funded by the Clinical and Translational Science Award Program of the National Institutes of Health. Through a systematic process of consensus building and document drafting, we formulated metrics that covered the three identified domains of BERD practices: the development and maintenance of collaborations with clinical and translational science investigators, the application of BERD-related methods to clinical and translational research, and the discovery of novel BERD-related methodologies. In this article, we describe the set of metrics and advocate their use for evaluating BERD practices. The routine application, comparison of findings across diverse BERD units, and ongoing refinement of the metrics will identify trends, facilitate meaningful changes, and ultimately enhance the contribution of BERD activities to biomedical research. Copyright © 2011 John Wiley & Sons, Ltd.

  10. A Metric on Phylogenetic Tree Shapes.

    Science.gov (United States)

    Colijn, C; Plazzotta, G

    2018-01-01

    The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees' branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  11. Future of the PCI Readmission Metric.

    Science.gov (United States)

    Wasfy, Jason H; Yeh, Robert W

    2016-03-01

    Between 2013 and 2014, the Centers for Medicare and Medicaid Services and the National Cardiovascular Data Registry publically reported risk-adjusted 30-day readmission rates after percutaneous coronary intervention (PCI) as a pilot project. A key strength of this public reporting effort included risk adjustment with clinical rather than administrative data. Furthermore, because readmission after PCI is common, expensive, and preventable, this metric has substantial potential to improve quality and value in American cardiology care. Despite this, concerns about the metric exist. For example, few PCI readmissions are caused by procedural complications, limiting the extent to which improved procedural technique can reduce readmissions. Also, similar to other readmission measures, PCI readmission is associated with socioeconomic status and race. Accordingly, the metric may unfairly penalize hospitals that care for underserved patients. Perhaps in the context of these limitations, Centers for Medicare and Medicaid Services has not yet included PCI readmission among metrics that determine Medicare financial penalties. Nevertheless, provider organizations may still wish to focus on this metric to improve value for cardiology patients. PCI readmission is associated with low-risk chest discomfort and patient anxiety. Therefore, patient education, improved triage mechanisms, and improved care coordination offer opportunities to minimize PCI readmissions. Because PCI readmission is common and costly, reducing PCI readmission offers provider organizations a compelling target to improve the quality of care, and also performance in contracts involve shared financial risk. © 2016 American Heart Association, Inc.

  12. Diffusion tensor metrics as biomarkers in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Julio Acosta-Cabronero

    Full Text Available Although diffusion tensor imaging has been a major research focus for Alzheimer's disease in recent years, it remains unclear whether it has sufficient stability to have biomarker potential. To date, frequently inconsistent results have been reported, though lack of standardisation in acquisition and analysis make such discrepancies difficult to interpret. There is also, at present, little knowledge of how the biometric properties of diffusion tensor imaging might evolve in the course of Alzheimer's disease.The biomarker question was addressed in this study by adopting a standardised protocol both for the whole brain (tract-based spatial statistics, and for a region of interest: the midline corpus callosum. In order to study the evolution of tensor changes, cross-sectional data from very mild (N = 21 and mild (N = 22 Alzheimer's disease patients were examined as well as a longitudinal cohort (N = 16 that had been rescanned at 12 months.The results revealed that increased axial and mean diffusivity are the first abnormalities to occur and that the first region to develop such significant differences was mesial parietal/splenial white matter; these metrics, however, remained relatively static with advancing disease indicating they are suitable as 'state-specific' markers. In contrast, increased radial diffusivity, and therefore decreased fractional anisotropy-though less detectable early-became increasingly abnormal with disease progression, and, in the splenium of the corpus callosum, correlated significantly with dementia severity; these metrics therefore appear 'stage-specific' and would be ideal for monitoring disease progression. In addition, the cross-sectional and longitudinal analyses showed that the progressive abnormalities in radial diffusivity and fractional anisotropy always occurred in areas that had first shown an increase in axial and mean diffusivity. Given that the former two metrics correlate with dementia severity

  13. Task-set inertia and memory-consolidation bottleneck in dual tasks.

    Science.gov (United States)

    Koch, Iring; Rumiati, Raffaella I

    2006-11-01

    Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.

  14. g-Weak Contraction in Ordered Cone Rectangular Metric Spaces

    Directory of Open Access Journals (Sweden)

    S. K. Malhotra

    2013-01-01

    Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.

  15. Defining a Progress Metric for CERT RMM Improvement

    Science.gov (United States)

    2017-09-14

    REV-03.18.2016.0 Defining a Progress Metric for CERT-RMM Improvement Gregory Crabb Nader Mehravari David Tobar September 2017 TECHNICAL ...fendable resource allocation decisions. Technical metrics measure aspects of controls implemented through technology (systems, soft- ware, hardware...implementation metric would be the percentage of users who have received anti-phishing training . • Effectiveness/efficiency metrics measure whether

  16. NASA education briefs for the classroom. Metrics in space

    Science.gov (United States)

    The use of metric measurement in space is summarized for classroom use. Advantages of the metric system over the English measurement system are described. Some common metric units are defined, as are special units for astronomical study. International system unit prefixes and a conversion table of metric/English units are presented. Questions and activities for the classroom are recommended.

  17. Proxy Graph: Visual Quality Metrics of Big Graph Sampling.

    Science.gov (United States)

    Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra

    2017-06-01

    Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.

  18. SOCIAL METRICS APPLIED TO SMART TOURISM

    Directory of Open Access Journals (Sweden)

    O. Cervantes

    2016-09-01

    Full Text Available We present a strategy to make productive use of semantically-related social data, from a user-centered semantic network, in order to help users (tourists and citizens in general to discover cultural heritage, points of interest and available services in a smart city. This data can be used to personalize recommendations in a smart tourism application. Our approach is based on flow centrality metrics typically used in social network analysis: flow betweenness, flow closeness and eccentricity. These metrics are useful to discover relevant nodes within the network yielding nodes that can be interpreted as suggestions (venues or services to users. We describe the semantic network built on graph model, as well as social metrics algorithms used to produce recommendations. We also present challenges and results from a prototypical implementation applied to the case study of the City of Puebla, Mexico.

  19. A bi-metric theory of gravitation

    International Nuclear Information System (INIS)

    Rosen, N.

    1975-01-01

    The bi-metric theory of gravitation proposed previously is simplified in that the auxiliary conditions are discarded, the two metric tensors being tied together only by means of the boundary conditions. Some of the properties of the field of a particle are investigated; there is no black hole, and it appears that no gravitational collapse can take place. Although the proposed theory and general relativity are at present observationally indistinguishable, some differences are pointed out which may some day be susceptible of observation. An alternative bi-metric theory is considered which gives for the precession of the perihelion 5/6 of the value given by general relativity; it seems less satisfactory than the present theory from the aesthetic point of view. (author)

  20. Steiner trees for fixed orientation metrics

    DEFF Research Database (Denmark)

    Brazil, Marcus; Zachariasen, Martin

    2009-01-01

    We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to s = 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide...... a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation...... metric generalises to the fixed orientation metric. Finally, we give an O(s n) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves....

  1. Metrical and dynamical aspects in complex analysis

    CERN Document Server

    2017-01-01

    The central theme of this reference book is the metric geometry of complex analysis in several variables. Bridging a gap in the current literature, the text focuses on the fine behavior of the Kobayashi metric of complex manifolds and its relationships to dynamical systems, hyperbolicity in the sense of Gromov and operator theory, all very active areas of research. The modern points of view expressed in these notes, collected here for the first time, will be of interest to academics working in the fields of several complex variables and metric geometry. The different topics are treated coherently and include expository presentations of the relevant tools, techniques and objects, which will be particularly useful for graduate and PhD students specializing in the area.

  2. Social Metrics Applied to Smart Tourism

    Science.gov (United States)

    Cervantes, O.; Gutiérrez, E.; Gutiérrez, F.; Sánchez, J. A.

    2016-09-01

    We present a strategy to make productive use of semantically-related social data, from a user-centered semantic network, in order to help users (tourists and citizens in general) to discover cultural heritage, points of interest and available services in a smart city. This data can be used to personalize recommendations in a smart tourism application. Our approach is based on flow centrality metrics typically used in social network analysis: flow betweenness, flow closeness and eccentricity. These metrics are useful to discover relevant nodes within the network yielding nodes that can be interpreted as suggestions (venues or services) to users. We describe the semantic network built on graph model, as well as social metrics algorithms used to produce recommendations. We also present challenges and results from a prototypical implementation applied to the case study of the City of Puebla, Mexico.

  3. Validation of Metrics as Error Predictors

    Science.gov (United States)

    Mendling, Jan

    In this chapter, we test the validity of metrics that were defined in the previous chapter for predicting errors in EPC business process models. In Section 5.1, we provide an overview of how the analysis data is generated. Section 5.2 describes the sample of EPCs from practice that we use for the analysis. Here we discuss a disaggregation by the EPC model group and by error as well as a correlation analysis between metrics and error. Based on this sample, we calculate a logistic regression model for predicting error probability with the metrics as input variables in Section 5.3. In Section 5.4, we then test the regression function for an independent sample of EPC models from textbooks as a cross-validation. Section 5.5 summarizes the findings.

  4. Metrics required for Power System Resilient Operations and Protection

    Energy Technology Data Exchange (ETDEWEB)

    Eshghi, K.; Johnson, B. K.; Rieger, C. G.

    2016-08-01

    Today’s complex grid involves many interdependent systems. Various layers of hierarchical control and communication systems are coordinated, both spatially and temporally to achieve gird reliability. As new communication network based control system technologies are being deployed, the interconnected nature of these systems is becoming more complex. Deployment of smart grid concepts promises effective integration of renewable resources, especially if combined with energy storage. However, without a philosophical focus on resilience, a smart grid will potentially lead to higher magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially catastrophic event. Future system operations can be enhanced with a resilient philosophy through architecting the complexity with state awareness metrics that recognize changing system conditions and provide for an agile and adaptive response. The starting point for metrics lies in first understanding the attributes of performance that will be qualified. In this paper, we will overview those attributes and describe how they will be characterized by designing a distributed agent that can be applied to the power grid.

  5. Kerr metric in the deSitter background

    International Nuclear Information System (INIS)

    Vaidya, P.C.

    1984-01-01

    In addition to the Kerr metric with cosmological constant Λ several other metrics are presented giving a Kerr-like solution of Einstein's equations in the background of deSitter universe. A new metric of what may be termed as rotating deSitter space-time devoid of matter but containing null fluid with twisting null rays, has been presented. This metric reduces to the standard deSitter metric when the twist in the rays vanishes. Kerr metric in this background is the immediate generalization of Schwarzschild's exterior metric with cosmological constant. (author)

  6. A Simple Metric for Determining Resolution in Optical, Ion, and Electron Microscope Images.

    Science.gov (United States)

    Curtin, Alexandra E; Skinner, Ryan; Sanders, Aric W

    2015-06-01

    A resolution metric intended for resolution analysis of arbitrary spatially calibrated images is presented. By fitting a simple sigmoidal function to pixel intensities across slices of an image taken perpendicular to light-dark edges, the mean distance over which the light-dark transition occurs can be determined. A fixed multiple of this characteristic distance is then reported as the image resolution. The prefactor is determined by analysis of scanning transmission electron microscope high-angle annular dark field images of Si. This metric has been applied to optical, scanning electron microscope, and helium ion microscope images. This method provides quantitative feedback about image resolution, independent of the tool on which the data were collected. In addition, our analysis provides a nonarbitrary and self-consistent framework that any end user can utilize to evaluate the resolution of multiple microscopes from any vendor using the same metric.

  7. a tensor theory of gravitation in a curved metric on a flat background

    International Nuclear Information System (INIS)

    Drummond, J.E.

    1979-01-01

    A theory of gravity is proposed using a tensor potential for the field on a flat metric. This potential cannot be isolated by local observations, but some details can be deduced from measurements at a distance. The requirement that the field equations for the tensor potential shall be deducible from an action integral, that the action and field equations are gauge invariant, and, conversely, that the Lagrangian in the action integral can be integrated from the field equations leads to Einstein's field equations. The requirement that the field energy-momentum tensor exists leads to a constraint on the tensor potential. If the constraint is a differential gauge condition, then it can only be the Hilbert condition giving a unique background tensor, metric tensor and tensor potential. For a continuous field inside a solid sphere the metric must be homogeneous in the spatial coordinates, and the associated field energy-momentum tensor has properties consistent with Newtonian dynamics. (author)

  8. Active Metric Learning from Relative Comparisons

    OpenAIRE

    Xiong, Sicheng; Rosales, Rómer; Pei, Yuanli; Fern, Xiaoli Z.

    2014-01-01

    This work focuses on active learning of distance metrics from relative comparison information. A relative comparison specifies, for a data point triplet $(x_i,x_j,x_k)$, that instance $x_i$ is more similar to $x_j$ than to $x_k$. Such constraints, when available, have been shown to be useful toward defining appropriate distance metrics. In real-world applications, acquiring constraints often require considerable human effort. This motivates us to study how to select and query the most useful ...

  9. Heuristic extension of the Schwarzschild metric

    International Nuclear Information System (INIS)

    Espinosa, J.M.

    1982-01-01

    The Schwarzschild solution of Einstein's equations of gravitation has several singularities. It is known that the singularity at r = 2Gm/c 2 is only apparent, a result of the coordinates in which the solution was found. Paradoxical results occuring near the singularity show the system of coordinates is incomplete. We introduce a simple, two-dimensional metric with an apparent singularity that makes it incomplete. By a straightforward, heuristic procedure we extend and complete this simple metric. We then use the same procedure to give a heuristic derivation of the Kruskal system of coordinates, which is known to extend the Schwarzschild manifold past its apparent singularity and produce a complete manifold

  10. Metric inhomogeneous Diophantine approximation in positive characteristic

    DEFF Research Database (Denmark)

    Kristensen, Simon

    2011-01-01

    We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here `almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine-Groshev Theorem and zero...

  11. Metric inhomogeneous Diophantine approximation in positive characteristic

    DEFF Research Database (Denmark)

    Kristensen, S.

    We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here 'almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine--Groshev Theorem and zero...

  12. Jacobi-Maupertuis metric and Kepler equation

    Science.gov (United States)

    Chanda, Sumanto; Gibbons, Gary William; Guha, Partha

    This paper studies the application of the Jacobi-Eisenhart lift, Jacobi metric and Maupertuis transformation to the Kepler system. We start by reviewing fundamentals and the Jacobi metric. Then we study various ways to apply the lift to Kepler-related systems: first as conformal description and Bohlin transformation of Hooke’s oscillator, second in contact geometry and third in Houri’s transformation [T. Houri, Liouville integrability of Hamiltonian systems and spacetime symmetry (2016), www.geocities.jp/football_physician/publication.html], coupled with Milnor’s construction [J. Milnor, On the geometry of the Kepler problem, Am. Math. Mon. 90 (1983) 353-365] with eccentric anomaly.

  13. Local-order metric for condensed-phase environments

    Science.gov (United States)

    Martelli, Fausto; Ko, Hsin-Yu; Oǧuz, Erdal C.; Car, Roberto

    2018-02-01

    We introduce a local order metric (LOM) that measures the degree of order in the neighborhood of an atomic or molecular site in a condensed medium. The LOM maximizes the overlap between the spatial distribution of sites belonging to that neighborhood and the corresponding distribution in a suitable reference system. The LOM takes a value tending to zero for completely disordered environments and tending to one for environments that perfectly match the reference. The site-averaged LOM and its standard deviation define two scalar order parameters, S and δ S , that characterize with excellent resolution crystals, liquids, and amorphous materials. We show with molecular dynamics simulations that S , δ S , and the LOM provide very insightful information in the study of structural transformations, such as those occurring when ice spontaneously nucleates from supercooled water or when a supercooled water sample becomes amorphous upon progressive cooling.

  14. Expanding perfect fluid generalizations of the C metric

    International Nuclear Information System (INIS)

    Wylleman, Lode; Beke, David

    2010-01-01

    Petrov type D gravitational fields, generated by a perfect fluid with spatially homogeneous energy density and with flow lines which form a nonshearing and nonrotating timelike congruence, are reexamined. It turns out that the anisotropic such spacetimes, which comprise the vacuum C metric as a limit case, can have nonzero expansion, contrary to the conclusion in the original investigation by Barnes [A. Barnes, Gen. Relativ. Gravit. 4, 105 (1973).]. Apart from the static members, this class consists of cosmological models with precisely one symmetry. The general line element is constructed and some important properties are discussed. It is also shown that purely electric Petrov type D vacuum spacetimes admit shear-free normal timelike congruences everywhere, even in the nonstatic regions. This result incited to deduce intrinsic, easily testable criteria regarding shear-free normality and staticity of Petrov type D spacetimes in general, which are added in an appendix.

  15. A quantitative method for determining spatial discriminative capacity

    Directory of Open Access Journals (Sweden)

    Dennis Robert G

    2008-03-01

    Full Text Available Abstract Background The traditional two-point discrimination (TPD test, a widely used tactile spatial acuity measure, has been criticized as being imprecise because it is based on subjective criteria and involves a number of non-spatial cues. The results of a recent study showed that as two stimuli were delivered simultaneously, vibrotactile amplitude discrimination became worse when the two stimuli were positioned relatively close together and was significantly degraded when the probes were within a subject's two-point limen. The impairment of amplitude discrimination with decreasing inter-probe distance suggested that the metric of amplitude discrimination could possibly provide a means of objective and quantitative measurement of spatial discrimination capacity. Methods A two alternative forced-choice (2AFC tracking procedure was used to assess a subject's ability to discriminate the amplitude difference between two stimuli positioned at near-adjacent skin sites. Two 25 Hz flutter stimuli, identical except for a constant difference in amplitude, were delivered simultaneously to the hand dorsum. The stimuli were initially spaced 30 mm apart, and the inter-stimulus distance was modified on a trial-by-trial basis based on the subject's performance of discriminating the stimulus with higher intensity. The experiment was repeated via sequential, rather than simultaneous, delivery of the same vibrotactile stimuli. Results Results obtained from this study showed that the performance of the amplitude discrimination task was significantly degraded when the stimuli were delivered simultaneously and were near a subject's two-point limen. In contrast, subjects were able to correctly discriminate between the amplitudes of the two stimuli when they were sequentially delivered at all inter-probe distances (including those within the two-point limen, and improved when an adapting stimulus was delivered prior to simultaneously delivered stimuli. Conclusion

  16. Metrics to describe the effects of landscape pattern on hydrology in a lotic peatland

    Science.gov (United States)

    Yuan, J.; Cohen, M. J.; Kaplan, D. A.; Acharya, S.; Larsen, L.; Nungesser, M.

    2013-12-01

    Strong reciprocal interactions exist between landscape patterns and ecological processes. Hydrology is the dominant abiotic driver of ecological processes in wetlands, particularly flowing wetlands, but is both the control on and controlled by the geometry of vegetation patterning. Landscape metrics are widely used to quantitatively link pattern and process. Our goal here was to use several candidate spatial pattern metrics to predict the effects of wetland vegetation pattern on hydrologic regime, specifically hydroperiod, in the ridge-slough patterned landscape of the Everglades. The metrics focus on the capacity for longitudinally connected flow, and thus the ability of this low-gradient patterned landscape to route water from upstream. We first explored flow friction cost (FFC), a weighted spatial distance procedure wherein ridges have a high flow cost than sloughs by virtue of their elevation and vegetation structure, to evaluate water movement through different landscape configurations. We also investigated existing published flow metrics, specifically the Directional Connectivity Index (DCI) and Landscape Discharge Competence (LDC), that seek to quantify connectivity, one of the sentinel targets of ecological restoration. Hydroperiod was estimated using a numerical hydrologic model (SWIFT 2D) in real and synthetic landscapes with varying vegetation properties ( patch anisotropy, ridge density). Synthetic landscapes were constrained by the geostatistical properties of the best conserved patterned, and contained five anisotropy levels and seven ridge density levels. These were used to construct the relationship between landscape metrics and hydroperiod. Then, using historical images from 1940 to 2004, we applied the metrics toback-cast hydroperiod. Current vegetation maps were used to test scale dependency for each metric. Our results suggest that both FFC and DCI are good predictors of hydroperiod under free flowing conditions, and that they can be used

  17. Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis

    Directory of Open Access Journals (Sweden)

    David Cárdenas-Peña

    2017-07-01

    Full Text Available Alzheimer's disease (AD is the kind of dementia that affects the most people around the world. Therefore, an early identification supporting effective treatments is required to increase the life quality of a wide number of patients. Recently, computer-aided diagnosis tools for dementia using Magnetic Resonance Imaging scans have been successfully proposed to discriminate between patients with AD, mild cognitive impairment, and healthy controls. Most of the attention has been given to the clinical data, provided by initiatives as the ADNI, supporting reliable researches on intervention, prevention, and treatments of AD. Therefore, there is a need for improving the performance of classification machines. In this paper, we propose a kernel framework for learning metrics that enhances conventional machines and supports the diagnosis of dementia. Our framework aims at building discriminative spaces through the maximization of center kernel alignment function, aiming at improving the discrimination of the three considered neurological classes. The proposed metric learning performance is evaluated on the widely-known ADNI database using three supervised classification machines (k-nn, SVM and NNs for multi-class and bi-class scenarios from structural MRIs. Specifically, from ADNI collection 286 AD patients, 379 MCI patients and 231 healthy controls are used for development and validation of our proposed metric learning framework. For the experimental validation, we split the data into two subsets: 30% of subjects used like a blindfolded assessment and 70% employed for parameter tuning. Then, in the preprocessing stage, each structural MRI scan a total of 310 morphological measurements are automatically extracted from by FreeSurfer software package and concatenated to build an input feature matrix. Obtained test performance results, show that including a supervised metric learning improves the compared baseline classifiers in both scenarios. In the multi

  18. The Publications Tracking and Metrics Program at NOAO: Challenges and Opportunities

    Science.gov (United States)

    Hunt, Sharon

    2015-08-01

    The National Optical Astronomy Observatory (NOAO) is the U.S. national research and development center for ground-based nighttime astronomy. The NOAO librarian manages the organization’s publications tracking and metrics program, which consists of three components: identifying publications, organizing citation data, and disseminating publications information. We are developing methods to streamline these tasks, better organize our data, provide greater accessibility to publications data, and add value to our services.Our publications tracking process is complex, as we track refereed publications citing data from several sources: NOAO telescopes at two observatory sites, telescopes of consortia in which NOAO participates, the NOAO Science Archive, and NOAO-granted community-access time on non-NOAO telescopes. We also identify and document our scientific staff publications. In addition, several individuals contribute publications data.In the past year, we made several changes in our publications tracking and metrics program. To better organize our data and streamline the creation of reports and metrics, we created a MySQL publications database. When designing this relational database, we considered ease of use, the ability to incorporate data from various sources, efficiency in data inputting and sorting, and potential for growth. We also considered the types of metrics we wished to generate from our publications data based on our target audiences and the messages we wanted to convey. To increase accessibility and dissemination of publications information, we developed a publications section on the library’s website, with citation lists, acknowledgements guidelines, and metrics. We are now developing a searchable online database for our website using PHP.The publications tracking and metrics program has provided many opportunities for the library to market its services and contribute to the organization’s mission. As we make decisions on collecting, organizing

  19. Complexity Management Using Metrics for Trajectory Flexibility Preservation and Constraint Minimization

    Science.gov (United States)

    Idris, Husni; Shen, Ni; Wing, David J.

    2011-01-01

    The growing demand for air travel is increasing the need for mitigating air traffic congestion and complexity problems, which are already at high levels. At the same time new surveillance, navigation, and communication technologies are enabling major transformations in the air traffic management system, including net-based information sharing and collaboration, performance-based access to airspace resources, and trajectory-based rather than clearance-based operations. The new system will feature different schemes for allocating tasks and responsibilities between the ground and airborne agents and between the human and automation, with potential capacity and cost benefits. Therefore, complexity management requires new metrics and methods that can support these new schemes. This paper presents metrics and methods for preserving trajectory flexibility that have been proposed to support a trajectory-based approach for complexity management by airborne or ground-based systems. It presents extensions to these metrics as well as to the initial research conducted to investigate the hypothesis that using these metrics to guide user and service provider actions will naturally mitigate traffic complexity. The analysis showed promising results in that: (1) Trajectory flexibility preservation mitigated traffic complexity as indicated by inducing self-organization in the traffic patterns and lowering traffic complexity indicators such as dynamic density and traffic entropy. (2)Trajectory flexibility preservation reduced the potential for secondary conflicts in separation assurance. (3) Trajectory flexibility metrics showed potential application to support user and service provider negotiations for minimizing the constraints imposed on trajectories without jeopardizing their objectives.

  20. Area of Concern: A new paradigm in life cycle assessment for the development of footprint metrics

    DEFF Research Database (Denmark)

    Ridoutt, Bradley G.; Pfister, Stephan; Manzardo, Alessandro

    2016-01-01

    As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force...... operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related...... terminology as well as to discuss modelling implications. The task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA...