WorldWideScience

Sample records for methylation independent pcr

  1. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks

    2004-01-01

    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  2. Application of multiplex nested methylated specific PCR in early diagnosis of epithelial ovarian cancer.

    Science.gov (United States)

    Wang, Bi; Yu, Lei; Yang, Guo-Zhen; Luo, Xin; Huang, Lin

    2015-01-01

    To explore the application of multiplex nested methylated specific polymerase chain reaction (PCR) in the early diagnosis of epithelial ovarian carcinoma (EOC). Serum and fresh tissue samples were collected from 114 EOC patients. RUNX3, TFPI2 and OPCML served as target genes. Methylation levels of tissues were assessed by multiplex nested methylated specific PCR, the results being compared with those for carcinoma antigen 125 (CA125). The serum free deoxyribose nucleic acid (DNA) methylation spectrum of EOC patients was completely contained in the DNA spectrum of cancer tissues, providing an accurate reflection of tumor DNA methylation conditions. Serum levels of CA125 and free DNA methylation in the EOC group were evidently higher than those in benign lesion and control groups (p0.05). The sensitivity, specificity and positive predicative value (PPV) of multiplex nested methylated specific PCR were significantly higher for detection of all patients and those with early EOC than those for CA125 (pnested methylated specific PCR (p>0.05), but there was no significant difference in sensitivity (p>0.05). Serum free DNA methylation can be used as a biological marker for EOC and multiplex nested methylated specific PCR should be considered for early diagnosis since it can accurately determine tumor methylation conditions.

  3. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    Science.gov (United States)

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Transient neonatal diabetes mellitus with macroglossia diagnosed by methylation specific PCR (MS-PCR

    Directory of Open Access Journals (Sweden)

    Hye Young Jin

    2010-03-01

    Full Text Available Transient neonatal diabetes mellitus (TNDM has been associated with paternal uniparental isodisomy of chromosome 6, paternally inherited duplication of 6q24, or a methylation defect at a CpG island of the ZAC or HYMAI gene. We experienced a case of TNDM in which the patient presented with hyperglycemia, macroglossia, and intrauterine growth retardation, caused by a paternally derived HYMAI. An 18-day-old female infant was admitted to the hospital because of macroglossia and recurrent hyperglycemia. In addition to the macroglossia, she also presented with large fontanelles, micrognathia, and prominent eyes. Serum glucose levels were 200–300 mg/dL and they improved spontaneously 2 days after admission. To identify the presence of a maternal methylated allele, bisulfite-treated genomic DNA from peripheral blood was prepared and digested with BssHII after polymerase chain reaction (PCR amplification with methylation-specific HYMAI primers. PCR and restriction fragment length polymorphism analysis showed that the patient had only the paternal origin of the HYMA1 gene. TNDM is associated with a methylation defect in chromosome 6, suggesting that an imprinted gene on chromosome 6 is responsible for this phenotype.

  5. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.

    Science.gov (United States)

    Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E

    2018-01-01

    Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.

  6. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR technique among various cell types of bulls

    Directory of Open Access Journals (Sweden)

    Carroll Bernie

    2010-03-01

    Full Text Available Abstract Background The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Methods Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII. The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Results Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90% were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8% and the lowest in fibroblastic DNA (92.3%, P ≤ 0.05. Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P ≤ 0.05. Conclusions The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic

  7. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls

    OpenAIRE

    Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol

    2010-01-01

    Abstract Background The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Methods Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic ...

  8. Enrichment of methylated molecules using enhanced-ice-co-amplification at lower denaturation temperature-PCR (E-ice-COLD-PCR) for the sensitive detection of disease-related hypermethylation.

    Science.gov (United States)

    Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg

    2018-05-01

    The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.

  9. Highly efficient PCR assay to discriminate allelic DNA methylation status using whole genome amplification

    Directory of Open Access Journals (Sweden)

    Ito Takashi

    2011-06-01

    Full Text Available Abstract Background We previously developed a simple method termed HpaII-McrBC PCR (HM-PCR to discriminate allelic methylation status of the genomic sites of interest, and successfully applied it to a comprehensive analysis of CpG islands (CGIs on human chromosome 21q. However, HM-PCR requires 200 ng of genomic DNA to examine one target site, thereby precluding its application to such samples that are limited in quantity. Findings We developed HpaII-McrBC whole-genome-amplification PCR (HM-WGA-PCR that uses whole-genome-amplified DNA as the template. HM-WGA-PCR uses only 1/100th the genomic template material required for HM-PCR. Indeed, we successfully analyzed 147 CGIs by HM-WGA-PCR using only ~300 ng of DNA, whereas previous HM-PCR study had required ~30 μg. Furthermore, we confirmed that allelic methylation status revealed by HM-WGA-PCR is identical to that by HM-PCR in every case of the 147 CGIs tested, proving high consistency between the two methods. Conclusions HM-WGA-PCR would serve as a reliable alternative to HM-PCR in the analysis of allelic methylation status when the quantity of DNA available is limited.

  10. Detection of methylated CDO1 in plasma of colorectal cancer; a PCR study.

    Directory of Open Access Journals (Sweden)

    Keishi Yamashita

    Full Text Available BACKGROUND: Cysteine biology is important for the chemosensitivity of cancer cells. Our research has focused on the epigenetic silencing of cysteine dioxygenase type 1 (CDO1 in colorectal cancer (CRC. In this study, we describe detection of CDO1 methylation in the plasma of CRC patients using methylation specific PCR (Q-MSP and extensive analysis of the PCR reaction. METHODS: DNA was extracted from plasma, and analysed for methylation of the CDO1 gene using Q-MSP. The detection rate of CDO1 gene methylation was calculated and compared with that of diluted DNA extracted from "positive control" DLD1 cells. CDO1 gene methylation in the plasma of 40 CRC patients that were clinicopathologically analysed was then determined. RESULTS: (1 The cloned sequence analysis detected 93.3% methylation of the promoter CpG islands of the CDO1 gene of positive control DLD1 cells and 4.7% methylation of the negative control HepG2 CDO1 gene. (2 DLD1 CDO1 DNA could not be detected in this assay if the extracted DNA was diluted ∼1000 fold. The more DNA that was used for the PCR reaction, the more effectively it was amplified in Q-MSP. (3 By increasing the amount of DNA used, methylated CDO1 could be clearly detected in the plasma of 8 (20% of the CRC patients. However, the percentage of CRC patients detected by methylated CDO1 in plasma was lower than that detected by CEA (35.9% or CA19-9 (23.1% in preoperative serum. Combination of CEA/CA19-9 plus plasma methylated CDO1 could increase the rate of detection of curable CRC patients (39.3% as compared to CEA/CA19-9 (25%. CONCLUSION: We have described detection of CDO1 methylation in the plasma of CRC patients. Although CDO1 methylation was not detected as frequently as conventional tumor markers, analysis of plasma CDO1 methylation in combination with CEA/CA19-9 levels increases the detection rate of curable CRC patients.

  11. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome.

    Science.gov (United States)

    Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle

    2016-01-01

    Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested

  12. Culture independent PCR: an alternative enzyme discovery strategy

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Lydolph, Magnus; Lange, Lene

    2005-01-01

    Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glyco...... the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology....

  13. Digital quantification of gene methylation in stool DNA by emulsion-PCR coupled with hydrogel immobilized bead-array.

    Science.gov (United States)

    Liu, Yunlong; Wu, Haiping; Zhou, Qiang; Song, Qinxin; Rui, Jianzhong; Zou, Bingjie; Zhou, Guohua

    2017-06-15

    Aberrations of gene methylation in stool DNA (sDNA) is an effective biomarker for non-invasive colorectal cancer diagnosis. However, it is challenging to accurately quantitate the gene methylation levels in sDNA due to the low abundance and degradation of sDNA. In this study, a digital quantification strategy was proposed by combining emulsion PCR (emPCR) with hydrogel immobilized bead-array. The assay includes following steps: bisulfite conversion of sDNA, pre-amplification by PCR with specific primers containing 5' universal sequences, emPCR of pre-amplicons with beaded primers to achieve single-molecular amplification and identification of hydrogel embedding beads coated with amplicons. The sensitivity and the specificity of the method are high enough to pick up 0.05% methylated targets from unmethylated DNA background. The successful detection of hypermethylated vimentin gene in clinical stool samples suggests that the proposed method should be a potential tool for non-invasive colorectal cancer screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Diagnosis of the fragile X syndrome in males using methylation-specific PCR of the FMRI locus

    Directory of Open Access Journals (Sweden)

    Sérgio D.J. Pena

    1999-06-01

    Full Text Available We have developed a non-isotopic technique based on methylation-specific PCR (MSP of the FMR1 promoter for the identification of fragile X full mutations among men. DNA samples were first treated with sodium bisulfite to convert unmethylated, but not methylated, cytosines to uracil, followed by PCR amplification with oligonucleotide primers specific for methylated versus unmethylated DNA. We designed two primer pairs: one produced a 142-bp fragment from the bisulfite-treated methylated CpG island, while the other generated an 84-bp product from the treated non-methylated promoter. In normal males only the 84-bp fragment was seen, while the diagnosis of FRAXA was doubly indicated by the appearance of a 142-bp product together with absence or weak visualization of the 84-bp band. As an indispensable internal control for the efficiency of the sodium bisulfite treatment, we used a primer pair specific for the imprinted maternal methylated version of the CpG island of the SNRPN gene on human chromosome 15. Using the methylation-specific PCR we identified with 100% sensitivity and accuracy eight previously diagnosed FRAXA male patients mixed with 42 normal controls. Because of its simplicity and high efficiency, methylation-specific PCR may become the method of choice for the diagnosis of the fragile X syndrome in mentally retarded males.Nós desenvolvemos uma técnica não-isotópica baseada na PCR para a identificação de mutações completas da síndrome do X-frágil em homens. O método é baseado na PCR específica para metilação do promotor do gene FMR1. Amostras de DNA são tratadas com bissulfito de sódio para converter citosinas não-metiladas para uracilo, seguindo-se amplificação por PCR com oligonucleotídeos iniciadores específicos para DNA metilado versus não-metilado. Desenhamos dois iniciadores: um produz um fragmento de 142 pb da ilha CpG metilada tratada com bissulfito de sódio, enquanto o outro gera um produto de 84 pb do

  15. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer.

    Science.gov (United States)

    Barault, L; Amatu, A; Bleeker, F E; Moutinho, C; Falcomatà, C; Fiano, V; Cassingena, A; Siravegna, G; Milione, M; Cassoni, P; De Braud, F; Rudà, R; Soffietti, R; Venesio, T; Bardelli, A; Wesseling, P; de Witt Hamer, P; Pietrantonio, F; Siena, S; Esteller, M; Sartore-Bianchi, A; Di Nicolantonio, F

    2015-09-01

    O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA (cfDNA) from plasma samples using an ultra-sensitive two-step digital PCR technique (methyl-BEAMing). Results were compared with two established techniques, methylation-specific PCR (MSP) and Bs-pyrosequencing. Thresholds for MGMT methylated status for each technique were established in a training set of 98 glioblastoma (GBM) patients. The prognostic and the predictive value of MGMT methylated status was validated in a second cohort of 66 GBM patients treated with temozolomide in which methyl-BEAMing displayed a better specificity than the other techniques. Cutoff values of MGMT methylation specific for metastatic colorectal cancer (mCRC) tissue samples were established in a cohort of 60 patients treated with dacarbazine. In mCRC, both quantitative assays methyl-BEAMing and Bs-pyrosequencing outperformed MSP, providing better prediction of treatment response and improvement in progression-free survival (PFS) (P alkylating agents. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    Science.gov (United States)

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of a multiplex methylation-specific PCR as candidate triage test for women with an HPV-positive cervical scrape

    International Nuclear Information System (INIS)

    Snellenberg, Suzanne; Strooper, Lise MA De; Hesselink, Albertus T; Meijer, Chris JLM; Snijders, Peter JF; Heideman, Daniëlle AM; Steenbergen, Renske DM

    2012-01-01

    Quantitative methylation-specific PCR (qMSP) analysis for determining the methylation status of (candidate) tumor suppressor genes has potential as objective and valuable test to triage high-risk human papillomavirus (hrHPV) positive women in cervical screening. Particularly combined methylation analysis of a panel of genes shows most promising clinical performance, with sensitivity levels that equal or exceed that of cytology. However, the wide application of such methylation marker panels is hampered by the lack of effective multiplex assays allowing simultaneous methylation detection of various targets in a single reaction. Here, we designed and analyzed a multiplex qMSP assay for three genes whose methylation was previously found to be informative for cervical (pre)cancer (i.e. CADM1, MAL and hsa-miR-124-2) as well as a reference gene β-actin. Based on our experience, we discuss the optimization of the parameters that provide a practical approach towards multiplex qMSP design. Primers and PCR reagents were optimized for multiplex qMSP purposes and the resulting assay was analytically validated on serial dilutions of methylated DNA in unmethylated DNA, and compared with singleplex counterparts on hrHPV-positive cervical scrapings. Upon optimization, including primer redesign and primer limiting assays, the multiplex qMSP showed the same analytical performance as the singleplex qMSPs. A strong correlation between the obtained normalized ratios of the singleplex and multiplex qMSPs on cervical scrapes was found for all three markers: CADM1 (R 2 =0.985), MAL (R 2 =0.986) and hsa-miR-124-2 (R 2 =0.944). Multiplex qMSP offers a promising approach for high-throughput diagnostic analysis of the methylation status of multiple genes, which after proper design and validation can be equally specific, sensitive and reproducible as its singleplex versions

  18. A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation

    Directory of Open Access Journals (Sweden)

    Tierling Sascha

    2010-06-01

    Full Text Available Abstract Background DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation. Results This combined method allows detection of 14 pg (that is, four to five genomic copies of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2 and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer. Conclusion The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.

  19. High Specificity of Quantitative Methylation-Specific PCR Analysis for MGMT Promoter Hypermethylation Detection in Gliomas

    Directory of Open Access Journals (Sweden)

    Paola Parrella

    2009-01-01

    Full Text Available Normal brain tissue from 28 individuals and 50 glioma samples were analyzed by real-time Quantitative Methylation-Specific PCR (QMSP. Data from this analysis were compared with results obtained on the same samples by MSP. QMSP analysis demonstrated a statistically significant difference in both methylation level (P=.000009 Mann Whitney Test and frequencies (P=.0000007, Z-test in tumour samples as compared with normal brain tissues. Although QMSP and MSP showed similar sensitivity, the specificity of QMSP analysis was significantly higher (93%; CI95%: 84%–100% as compared with MSP (64%; 95%CI: 46%–82%. Our results suggest that QMSP analysis may represent a powerful tool to identify glioma patients that will benefit from alkylating agents chemotherapy.

  20. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry

    Directory of Open Access Journals (Sweden)

    Emma Louise Beckett

    2016-12-01

    Full Text Available Vitamin D is known for its role in the regulation of gene expression via the vitamin D receptor, a nuclear transcription factor. More recently, a role for vitamin D in regulating DNA methylation has been identified as an additional mechanism of modulation of gene expression. How methylation status influences vitamin D metabolism and response pathways is not yet clear. Therefore, we aimed to assess the relationship between plasma 25-hydroxycholecalciferol (25(OHD and the methylation status of vitamin D metabolism enzyme genes (CYP2R1, CYP27B1 and CYP24A1 and the vitamin D receptor gene (VDR. This analysis was conducted in the context of dietary vitamin D, and background methyl donor related biochemistry, with adjustment for several dietary and lifestyle variables. Percentage methylation at CpG sites was assessed in peripheral blood cells using methylation sensitive and dependent enzymes and qPCR. Standard analytical techniques were used to determine plasma 25(OHD and homocysteine, and serum folate and B12, with the relationship to methylation status assessed using multi-variable regression analysis. CYP2R1 and VDR methylation were found to be independent predictors of plasma 25(OHD, when adjusted for vitamin D intake and other lifestyle variables. CYP24A1 was related to plasma 25(OHD directly, but not in the context of vitamin D intake. Methyl-group donor biochemistry was associated with the methylation status of some genes, but did not alter the relationship between methylation and plasma 25(OHD. Modulation of methylation status of CYP2R1, CYP24A1 and VDR in response to plasma 25(OHD may be part of feedback loops involved in maintaining vitamin D homeostasis, and may explain a portion of the variance in plasma 25(OHD levels in response to intake and sun exposure. Methyl-group donor biochemistry, while a potential independent modulator, did not alter this effect.

  1. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  2. MethPrimer: designing primers for methylation PCRs.

    Science.gov (United States)

    Li, Long-Cheng; Dahiya, Rajvir

    2002-11-01

    DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.

  3. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

    Science.gov (United States)

    Bartlett, Thomas E; Jones, Allison; Goode, Ellen L; Fridley, Brooke L; Cunningham, Julie M; Berns, Els M J J; Wik, Elisabeth; Salvesen, Helga B; Davidson, Ben; Trope, Claes G; Lambrechts, Sandrina; Vergote, Ignace; Widschwendter, Martin

    2015-01-01

    We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.

  4. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

    Directory of Open Access Journals (Sweden)

    Thomas E Bartlett

    Full Text Available We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221, which validates in two independent data sets from Mayo Clinic (n = 198 and TCGA (n = 358, with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.

  5. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    Science.gov (United States)

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  6. Reference Materials for Calibration of Analytical Biases in Quantification of DNA Methylation.

    Science.gov (United States)

    Yu, Hannah; Hahn, Yoonsoo; Yang, Inchul

    2015-01-01

    Most contemporary methods for the quantification of DNA methylation employ bisulfite conversion and PCR amplification. However, many reports have indicated that bisulfite-mediated PCR methodologies can result in inaccurate measurements of DNA methylation owing to amplification biases. To calibrate analytical biases in quantification of gene methylation, especially those that arise during PCR, we utilized reference materials that represent exact bisulfite-converted sequences with 0% and 100% methylation status of specific genes. After determining relative quantities using qPCR, pairs of plasmids were gravimetrically mixed to generate working standards with predefined DNA methylation levels at 10% intervals in terms of mole fractions. The working standards were used as controls to optimize the experimental conditions and also as calibration standards in melting-based and sequencing-based analyses of DNA methylation. Use of the reference materials enabled precise characterization and proper calibration of various biases during PCR and subsequent methylation measurement processes, resulting in accurate measurements.

  7. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women’s Cancers

    Science.gov (United States)

    Bartlett, Thomas E.; Jones, Allison; Goode, Ellen L.; Fridley, Brooke L.; Cunningham, Julie M.; Berns, Els M. J. J.; Wik, Elisabeth; Salvesen, Helga B.; Davidson, Ben; Trope, Claes G.; Lambrechts, Sandrina; Vergote, Ignace; Widschwendter, Martin

    2015-01-01

    We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes. PMID:26629914

  8. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    International Nuclear Information System (INIS)

    Shah, Jinesh N; Shao, Genze; Hei, Tom K; Zhao, Yongliang

    2008-01-01

    Hypermethylation of the TGFBI promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the TGFBI promoter in human lung and prostate cancer specimens. Methylation-specific primers were designed based on the methylation profiles of the TGFBI promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP. Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the TGFBI promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the TGFBI promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (p < 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the TGFBI promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (p < 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the TGFBI gene in human lung and prostate tumor cell lines. We successfully optimized a MSP method for the precise and efficient screening of TGFBI promoter methylation status. Dense methylation of the TGFBI promoter correlated with the extent of TGFBI gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, TGFBI promoter methylation can be used as a potential

  9. Detection and Quantification of Methyl tert-Butyl Ether-Degrading Strain PM1 by Real-Time TaqMan PCR

    OpenAIRE

    Hristova, Krassimira R.; Lutenegger, Christian M.; Scow, Kate M.

    2001-01-01

    The fuel oxygenate methyl tert-butyl ether (MTBE), a widely distributed groundwater contaminant, shows potential for treatment by in situ bioremediation. The bacterial strain PM1 rapidly mineralizes and grows on MTBE in laboratory cultures and can degrade the contaminant when inoculated into groundwater or soil microcosms. We applied the TaqMan quantitative PCR method to detect and quantify strain PM1 in laboratory and field samples. Specific primers and probes were designed for the 16S ribos...

  10. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (Temozolomide).

    Science.gov (United States)

    Pandith, Arshad A; Qasim, Iqbal; Zahoor, Wani; Shah, Parveen; Bhat, Abdul R; Sanadhya, Dheera; Shah, Zafar A; Naikoo, Niyaz A

    2018-04-30

    O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and its subsequent loss of protein expression has been identified to have a variable impact on clinical outcome of glioma patients indicated for chemotherapy with alkylating agents (Temozolomide). This study investigated methylation status of MGMT gene along with in situ protein expression in malignant glioma patients of different histological types to evaluate the associated clinical outcome vis-a-vis use of alkylating drugs and radiotherapy. Sixty three cases of glioma were evaluated for MGMT promoter methylation by methylation-specific PCR (MS-PCR) and protein expression by immunostaining (IHC). Methylation status of MGMT and loss of protein expression showed a very high concordant association with better survival and progression free survival (PFS) (p < 0.0001). Multivariate Cox regression analysis showed both MGMT methylation and loss of protein as significant independent prognostic factors in glioma patients with respect to lower Hazard Ratio (HR) for better OS and PFS) [p < 0.05]. Interestingly concordant MGMT methylation and lack of protein showed better response in TMZ therapy treated patient subgroups with HR of 2.02 and 0.76 (p < 0.05). We found the merits of prognostication of MGMT parameters, methylation as well as loss of its protein as predictive factors for favorable outcome in terms of better survival for TMZ therapy.

  11. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  12. DNA methylation modulates H19 and IGF2 expression in porcine female eye

    Directory of Open Access Journals (Sweden)

    Dongxu Wang

    2017-03-01

    Full Text Available Abstract The sexually dimorphic expression of H19/IGF2 is evolutionarily conserved. To investigate whether the expression of H19/IGF2 in the female porcine eye is sex-dependent, gene expression and methylation status were evaluated using quantitative real-time PCR (qPCR and bisulfite sequencing PCR (BSP. We hypothesized that H19/IGF2 might exhibit a different DNA methylation status in the female eye. In order to evaluate our hypothesis, parthenogenetic (PA cells were used for analysis by qPCR and BSP. Our results showed that H19 and IGF2 were over-expressed in the female eye compared with the male eye (3-fold and 2-fold, respectively. We observed a normal monoallelic methylation pattern for H19 differentially methylated regions (DMRs. Compared with H19 DMRs, IGF2 DMRs showed a different methylation pattern in the eye. Taken together, these results suggest that elevated expression of H19/IGF2 is caused by a specific chromatin structure that is regulated by the DNA methylation status of IGF2 DMRs in the female eye.

  13. DNA methylation modulates H19 and IGF2 expression in porcine female eye

    Science.gov (United States)

    Wang, Dongxu; Wang, Guodong; Yang, Hao; Liu, Haibo; Li, Cuie; Li, Xiaolan; Lin, Chao; Song, Yuning; Li, Zhanjun; Liu, Dianfeng

    2017-01-01

    Abstract The sexually dimorphic expression of H19/IGF2 is evolutionarily conserved. To investigate whether the expression of H19/IGF2 in the female porcine eye is sex-dependent, gene expression and methylation status were evaluated using quantitative real-time PCR (qPCR) and bisulfite sequencing PCR (BSP). We hypothesized that H19/IGF2 might exhibit a different DNA methylation status in the female eye. In order to evaluate our hypothesis, parthenogenetic (PA) cells were used for analysis by qPCR and BSP. Our results showed that H19 and IGF2 were over-expressed in the female eye compared with the male eye (3-fold and 2-fold, respectively). We observed a normal monoallelic methylation pattern for H19 differentially methylated regions (DMRs). Compared with H19 DMRs, IGF2 DMRs showed a different methylation pattern in the eye. Taken together, these results suggest that elevated expression of H19/IGF2 is caused by a specific chromatin structure that is regulated by the DNA methylation status of IGF2 DMRs in the female eye. PMID:28266684

  14. Digital PCR assessment of MGMT promoter methylation coupled with reduced protein expression optimises prediction of response to alkylating agents in metastatic colorectal cancer patients.

    Science.gov (United States)

    Sartore-Bianchi, Andrea; Pietrantonio, Filippo; Amatu, Alessio; Milione, Massimo; Cassingena, Andrea; Ghezzi, Silvia; Caporale, Marta; Berenato, Rosa; Falcomatà, Chiara; Pellegrinelli, Alessio; Bardelli, Alberto; Nichelatti, Michele; Tosi, Federica; De Braud, Filippo; Di Nicolantonio, Federica; Barault, Ludovic; Siena, Salvatore

    2017-01-01

    O(6)-methylguanine-DNA-methyltransferase (MGMT) is a repair protein, and its deficiency makes tumours more susceptible to the cytotoxic effect of alkylating agents. Five clinical trials with temozolomide or dacarbazine have been performed in metastatic colorectal cancer (mCRC) with selection based on methyl-specific PCR (MSP) testing with modest results. We hypothesised that mitigated results are consequences of unspecific patient selection and that alternative methodologies for MGMT testing such as immunohistochemistry (IHC) and digital polymerase chain reaction (PCR) could enhance patient enrolment. Formalin-fixed paraffin embedded archival tumour tissue samples from four phase II studies of temozolomide or dacarbazine in MGMT MSP-positive mCRCs were analysed by IHC for MGMT protein expression and by methyl-BEAMing (MB) for percentage of promoter methylation. Pooled data were then retrospectively analysed according to objective response rate, progression-free survival (PFS) and overall survival (OS). One hundred and five patients were included in the study. Twelve had achieved partial response (PR) (11.4%), 24 stable disease (SD; 22.9%) and 69 progressive disease (PD; 65.7%). Patients with PR/SD had lower IHC scores and higher MB levels than those with PD. MGMT expression by IHC was negatively and MB levels positively associated with PFS (p alkylating agents. Their combination could enhance patient selection in this setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method

    Directory of Open Access Journals (Sweden)

    Lu Jia

    2011-10-01

    Full Text Available Abstract Background Although a variety of methods and expensive kits are available, molecular cloning can be a time-consuming and frustrating process. Results Here we report a highly simplified, reliable, and efficient PCR-based cloning technique to insert any DNA fragment into a plasmid vector or into a gene (cDNA in a vector at any desired position. With this method, the vector and insert are PCR amplified separately, with only 18 cycles, using a high fidelity DNA polymerase. The amplified insert has the ends with ~16-base overlapping with the ends of the amplified vector. After DpnI digestion of the mixture of the amplified vector and insert to eliminate the DNA templates used in PCR reactions, the mixture is directly transformed into competent E. coli cells to obtain the desired clones. This technique has many advantages over other cloning methods. First, it does not need gel purification of the PCR product or linearized vector. Second, there is no need of any cloning kit or specialized enzyme for cloning. Furthermore, with reduced number of PCR cycles, it also decreases the chance of random mutations. In addition, this method is highly effective and reproducible. Finally, since this cloning method is also sequence independent, we demonstrated that it can be used for chimera construction, insertion, and multiple mutations spanning a stretch of DNA up to 120 bp. Conclusion Our FastCloning technique provides a very simple, effective, reliable, and versatile tool for molecular cloning, chimera construction, insertion of any DNA sequences of interest and also for multiple mutations in a short stretch of a cDNA.

  16. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  17. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    Science.gov (United States)

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  18. Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence

    Directory of Open Access Journals (Sweden)

    Mark Lucock

    2015-06-01

    Conclusion: A methylation diet influences methyl group synthesis in the regulation of blood homocysteine level, and is modulated by genetic interactions. Methylation-related nutrients also interact with key genes to modify risk of AP, a precursor of colorectal cancer. Independent of diet, two methylation-related genes (A2756G-MS and A66G-MSR were directly associated with AP occurrence.

  19. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    Science.gov (United States)

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  20. Allele-Specific DNA Methylation Detection by Pyrosequencing®

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide......-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon....

  1. MGMT and MLH1 methylation in Helicobacter pylori-infected children and adults.

    Science.gov (United States)

    Alvarez, Marisa C; Santos, Juliana C; Maniezzo, Nathália; Ladeira, Marcelo S; da Silva, Artur L C; Scaletsky, Isabel C A; Pedrazzoli, José; Ribeiro, Marcelo L

    2013-05-28

    To evaluate the association between Helicobacter pylori (H. pylori) infection and MLH1 and MGMT methylation and its relationship with microsatellite instability (MSI). The methylation status of the MLH1 and MGMT promoter region was analysed by methylation specific methylation-polymerase chain reaction (MSP-PCR) in gastric biopsy samples from uninfected or H. pylori-infected children (n = 50), from adults with chronic gastritis (n = 97) and from adults with gastric cancer (n = 92). MLH1 and MGMT mRNA expression were measured by real-time PCR and normalised to a constitutive gene (β actin). MSI analysis was performed by screening MSI markers at 4 loci (Bat-25, Bat-26, D17S250 and D2S123) with PCR; PCR products were analysed by single strand conformation polymorphism followed by silver staining. Statistical analyses were performed with either the χ(2) test with Yates continuity correction or Fisher's exact test, and statistical significance for expression analysis was assessed using an unpaired Student's t-test. Methylation was not detected in the promoter regions of MLH1 and MGMT in gastric biopsy samples from children, regardless of H. pylori infection status. The MGMT promoter was methylated in 51% of chronic gastritis adult patients and was associated with H. pylori infection (P MLH1 methylation frequencies among H. pylori-infected and non-infected chronic gastritis adult patients were 13% and 7%, respectively. We observed methylation of the MLH1 promoter (39%) and increased MSI levels (68%) in samples from gastric cancer patients in comparison to samples from H. pylori-infected adult chronic gastritis patients (P MLH1 and MGMT mRNA were significantly reduced in chronic gastritis samples that were also hypermethylated (P MLH1 methylation did not occur in earlier-stage H. pylori infections and thus might depend on the duration of infection.

  2. Identification of a Novel Methylated Gene in Nasopharyngeal Carcinoma: TTC40

    Directory of Open Access Journals (Sweden)

    Wajdi Ayadi

    2014-01-01

    Full Text Available To further explore the epigenetic changes in nasopharyngeal carcinoma (NPC, methylation-sensitive arbitrarily primed PCR was performed on NPC biopsies and nontumor nasopharyngeal samples. We have shown mainly two DNA fragments that appeared to be differentially methylated in NPCs versus nontumors. The first, defined as hypermethylated, corresponds to a CpG island at the 5′-end of the tetratricopeptide repeat domain 40 (TTC40 gene, whereas the second, defined as hypo-methylated, is located on repetitive sequences at chromosomes 16p11.1 and 13.1. Thereafter, the epigenetic alteration on the 5′-TTC40 gene was confirmed by methylation-specific PCR, showing a significant aberrant methylation in NPCs, compared to nontumors. In addition, the bisulfite sequencing analysis has shown a very high density of methylated cytosines in C15, C17, and X666 NPC xenografts. To assess whether TTC40 gene is silenced by aberrant methylation, we examined the gene expression by reverse transcription-PCR. Our analysis showed that the mRNA expression was significantly lower in tumors than in nontumors, which is associated with 5′-TTC40 gene hypermethylation. In conclusion, we found that the 5′-TTC40 gene is frequently methylated and is associated with the loss of mRNA expression in NPCs. Hypermethylation of 5′-TTC40 gene might play a role in NPC development; nevertheless, other studies are needed.

  3. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  4. Methylation Status of miR-182 Promoter in Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yongwen LI

    2015-05-01

    Full Text Available Background and objective It has been proven that the abnormal expression of miR-182 was related to the occurrence and development of tumors. The aim of this study is to explore the relationship between the methylation of miR-182 promoter and its expression in lung cancer cell lines. Methods Real-time quantitative PCR and methylation-specific PCR were used to detect the expression level of miR-182 and its promoter methylation status in five lung cancer cell lines (A549, L9981, NL9980, 95C and 95D. DNA sequencing was used to confirm the methylation results. Results The level of miR-182 expression significantly differs among these lung cancer cell lines. The highly metastatic human lung cancer cell lines, namely, A549 and L9981, demonstrate a relatively lower expression level of miR-182 compared with the lowly metastatic human lung cancer cell line 95C. Methylation-specific PCR and DNA sequencing assay results indicate that these lung cancer cell lines present different levels of miR-182 promoter methylation, and the highest methylation level is observed in A549 cells. Furthermore, the expression of miR-182 in these cell lines significantly increases when treated with 10 μM 5’-Aza-dC. Conclusion DNA methylation occurs in the miR-182 promoter region in lung cancer cell lines. This methylation can regulate the expression level of miR-182. Further study must be conducted to explore the function of miR-182 promoter methylation in lung cancer occurrence and development.

  5. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  6. Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors

    International Nuclear Information System (INIS)

    Lombaerts, Marcel; Middeldorp, Janneke W.; Weide, Esther van der; Philippo, Katja; Wezel, Tom van; Smit, Vincent T.H.B.M.; Cornelisse, Cees J.; Cleton-Jansen, Anne-Marie

    2004-01-01

    Promoter hypermethylation is known to result in transcriptional downregulation of many genes including the CDH1 gene. In this study we set out to determine CDH1 promoter methylation in breast tumors with decreased or absent E-cadherin protein expression and without CDH1 gene mutations by methylation-specific PCR (MSP). Interestingly, some tumor samples with normal E-cadherin expression yielded a methylation-specific PCR product. We hypothesized that other cells than tumor cells contribute to these products. Since in normal breast tissue no CDH1 promoter methylation is detected, infiltrating leukocytes, often present in tumors, might account for these methylation-specific fragments. Indeed, a methylation-specific fragment is found in all twelve leukocyte samples tested. Furthermore, activated T-cells also yielded a methylation-specific fragment. Sequencing of these fragments reveals two distinct methylation profiles. Leukocytes have only partial methylation of some CpGs, while the tumor-associated methylation profile shows complete methylation of most CpGs. Therefore, to assess whether CDH1 methylation is tumor associated, sequencing of MSP products is a prerequisite. Here we show that out of six lobular tumors lacking E-cadherin protein expression, three have tumor-associated CDH1 promoter methylation while in three other tumors no methylation is detected

  7. Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation.

    Directory of Open Access Journals (Sweden)

    Andrea Fuso

    Full Text Available Discordant results obtained in bisulfite assays using MethPrimers (PCR primers designed using MethPrimer software or assuming that non-CpGs cytosines are non methylated versus primers insensitive to cytosine methylation lead us to hypothesize a technical bias. We therefore used the two kinds of primers to study different experimental models and methylation statuses. We demonstrated that MethPrimers negatively select hypermethylated DNA sequences in the PCR step of the bisulfite assay, resulting in CpG methylation underestimation and non-CpG methylation masking, failing to evidence differential methylation statuses. We also describe the characteristics of "Methylation-Insensitive Primers" (MIPs, having degenerated bases (G/A to cope with the uncertain C/U conversion. As CpG and non-CpG DNA methylation patterns are largely variable depending on the species, developmental stage, tissue and cell type, a variable extent of the bias is expected. The more the methylome is methylated, the greater is the extent of the bias, with a prevalent effect of non-CpG methylation. These findings suggest a revision of several DNA methylation patterns so far documented and also point out the necessity of applying unbiased analyses to the increasing number of epigenomic studies.

  8. CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients.

    Science.gov (United States)

    Meller, Sebastian; Zipfel, Lisa; Gevensleben, Heidrun; Dietrich, Jörn; Ellinger, Jörg; Majores, Michael; Stein, Johannes; Sailer, Verena; Jung, Maria; Kristiansen, Glen; Dietrich, Dimo

    2016-12-01

    Molecular biomarkers may facilitate the distinction between aggressive and clinically insignificant prostate cancer (PCa), thereby potentially aiding individualized treatment. We analyzed cysteine dioxygenase 1 (CDO1) promoter methylation and mRNA expression in order to evaluate its potential as prognostic biomarker. CDO1 methylation and mRNA expression were determined in cell lines and formalin-fixed paraffin-embedded prostatectomy specimens from a first cohort of 300 PCa patients using methylation-specific qPCR and qRT-PCR. Univariate and multivariate Cox proportional hazards and Kaplan-Meier analyses were performed to evaluate biochemical recurrence (BCR)-free survival. Results were confirmed in an independent second cohort comprising 498 PCa cases. Methylation and mRNA expression data from the second cohort were generated by The Cancer Genome Atlas (TCGA) Research Network by means of Infinium HumanMethylation450 BeadChip and RNASeq. CDO1 was hypermethylated in PCa compared to normal adjacent tissues and benign prostatic hyperplasia (P < 0.001) and was associated with reduced gene expression (ρ = -0.91, P = 0.005). Using two different methodologies for methylation quantification, high CDO1 methylation as continuous variable was associated with BCR in univariate analysis (first cohort: HR = 1.02, P = 0.002, 95% CI [1.01-1.03]; second cohort: HR = 1.02, P = 0.032, 95% CI [1.00-1.03]) but failed to reach statistical significance in multivariate analysis. CDO1 promoter methylation is involved in gene regulation and is a potential prognostic biomarker for BCR-free survival in PCa patients following radical prostatectomy. Further studies are needed to validate CDO1 methylation assays and to evaluate the clinical utility of CDO1 methylation for the management of PCa.

  9. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms.

    Science.gov (United States)

    Xiao, Zhujun; Li, Bingsheng; Wang, Guozhen; Zhu, Weisi; Wang, Zhongqiu; Lin, Jinfeng; Xu, Angao; Wang, Xinying

    2014-04-20

    Methylation-sensitive high-resolution melting (MS-HRM) is a new technique for assaying DNA methylation, but its feasibility for assaying stool in patients with colorectal cancer (CRC) is unknown. First, the MS-HRM and methylation-specific PCR (MSP) detection limits were tested. Second, the methylation statuses of SFRP2 and VIM were analyzed in stool samples by MS-HRM, and in matching tumor and normal colon tissues via bisulfite sequencing PCR (BSP). Third, a case-control study evaluated the diagnostic sensitivity and specificity of MS-HRM relative to results obtained with MSP and the fecal immunochemical test (FIT). Finally, the linearity and reproducibility of MS-HRM were assessed. The detection limits of MS-HRM and MSP were 1% and 5%, respectively. The diagnostic sensitivities of MS-HRM (87.3%, 55/63) in stool and BSP in matching tumor tissue (92.1%, 58/63) were highly consistent (κ=0.744). The MS-HRM assay detected 92.5% (37/40) methylation in CRCs, 94.4% (34/36) in advanced adenomas, and 8.8% (5/57) in normal controls. The results of MS-HRM analysis were stable and reliable and showed fairly good linearity for both SFRP2 (PHRM shows potential for CRC screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Inactivation of PMS2 gene by promoter methylation in nasopharyngeal carcinoma].

    Science.gov (United States)

    Ni, H F; Jiang, B; Zhou, Z; Li, Y; Yuan, X Y; Cao, X L; Huang, G W

    2016-11-23

    Objective: To investigate the inactivation of PMS2 gene mediated by promoter methylation and its regulatory mechanism in nasopharyngeal carcinoma (NPC). Methods: Fifty-four NPC tissues, 16 normal nasopharyngeal epithelia (NNE), 5 NPC cell lines (CNE1, CNE2, TWO3, HNE1 and HONE1) and 1 normal nasopharyngeal epithelial cell line (NP69) were collected.Methylation-specific PCR (MSP) was used to detect the PMS2 promoter methylation, semi-quantitative reverse transcription PCR (qRT-PCR) was applied to determine its mRNA expression, and immunohistochemistry (IHC) was used to detect the protein expression of PMS2. The expressions of PMS2 mRNA in CNE1 and CNE2 cells before and after treated with methyltransferase inhibitor 5-aza-2-deoxycytidine were analyzed by qRT-PCR. The impact of methylation and demethylation on the mRNA expression of PMS2, and the association of mRNA and protein expression of PMS2 with clinicopathological features of nasopharyngeal cancer were analyzed. Results: Methylation of PMS2 gene was detected in all of the five NPC cell lines, but not in normal nasopharyngeal epithelial NP69 cells. The methylation rate of PMS2 gene in NPC tissues was 63% (34/54), significantly higher than that of the normal nasopharyngeal epithelia (0/16, P PMS2 mRNA and protein were significantly down-regulated in the 54 NPC tissues when compared with those in the 16 NNE tissues ( P PMS2 mRNA was restored in the CNE1 and CNE2 cells.However, the expressions of PMS2 mRNA and protein were not significantly correlated with patients' age, gender, TNM stage, histopathologic type or lymph node metastasis ( P >0.05 for all). Conclusions: Promoter methylation-mediated inactivation of PMS2 gene participates in carcinogenesis and development of NPC. PMS2 may be a candidate tumor suppressor in the treatment for patients with inactivation of PMS2 promoter methylation.

  11. Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma

    International Nuclear Information System (INIS)

    Nasab, E. E.; Nasab, E. E.; Hashemi, M.; Rafighdoost, F.

    2016-01-01

    Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent non neoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent non neoplastic tissue (OR=2.30, 95% CI=0.95-5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P=0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients’ clinical characteristics (P>0.05).

  12. Quality assessment of DNA derived from up to 30 years old formalin fixed paraffin embedded (FFPE) tissue for PCR-based methylation analysis using SMART-MSP and MS-HRM.

    Science.gov (United States)

    Kristensen, Lasse S; Wojdacz, Tomasz K; Thestrup, Britta B; Wiuf, Carsten; Hager, Henrik; Hansen, Lise Lotte

    2009-12-21

    The High Resolution Melting (HRM) technology has recently been introduced as a rapid and robust analysis tool for the detection of DNA methylation. The methylation status of multiple tumor suppressor genes may serve as biomarkers for early cancer diagnostics, for prediction of prognosis and for prediction of response to treatment. Therefore, it is important that methodologies for detection of DNA methylation continue to evolve. Sensitive Melting Analysis after Real Time - Methylation Specific PCR (SMART-MSP) and Methylation Sensitive - High Resolution Melting (MS-HRM) are two methods for single locus DNA methylation detection based on HRM. Here, we have assessed the quality of DNA extracted from up to 30 years old Formalin Fixed Paraffin Embedded (FFPE) tissue for DNA methylation analysis using SMART-MSP and MS-HRM. The quality assessment was performed on DNA extracted from 54 Non-Small Cell Lung Cancer (NSCLC) samples derived from FFPE tissue, collected over 30 years and grouped into five years intervals. For each sample, the methylation levels of the CDKN2A (p16) and RARB promoters were estimated using SMART-MSP and MS-HRM assays designed to assess the methylation status of the same CpG positions. This allowed for a direct comparison of the methylation levels estimated by the two methods for each sample. CDKN2A promoter methylation levels were successfully determined by SMART-MSP and MS-HRM in all 54 samples. Identical methylation estimates were obtained by the two methods in 46 of the samples. The methylation levels of the RARB promoter were successfully determined by SMART-MSP in all samples. When using MS-HRM to assess RARB methylation five samples failed to amplify and 15 samples showed a melting profile characteristic for heterogeneous methylation. Twenty-seven of the remaining 34 samples, for which the methylation level could be estimated, gave the same result as observed when using SMART-MSP. MS-HRM and SMART-MSP can be successfully used for single locus

  13. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma.

    Science.gov (United States)

    Ogino, Shuji; Odze, Robert D; Kawasaki, Takako; Brahmandam, Mohan; Kirkner, Gregory J; Laird, Peter W; Loda, Massimo; Fuchs, Charles S

    2006-09-01

    Extensive gene promoter methylation in colorectal carcinoma has been termed the CpG island methylator phenotype (CIMP). Previous studies on CIMP used primarily methylation-specific polymerase chain reaction (PCR), which, unfortunately, may detect low levels of methylation that has little or no biological significance. Utilizing quantitative real-time PCR (MethyLight), we measured DNA methylation in a panel of 5 CIMP-specific gene promoters (CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 459 colorectal carcinomas obtained from 2 large prospective cohort studies. CIMP was defined as tumors that showed methylation in >or=4/5 promoters. CIMP was significantly associated with the presence of mucinous or signet ring cell morphology, marked Crohn's-like lymphoid reaction, tumor infiltrating lymphocytes, marked peritumoral lymphocytic reaction, tumor necrosis, tumor cell sheeting, and poor differentiation. All these features have previously been associated with microsatellite instability (MSI). Therefore, we divided the 459 colorectal carcinomas into 6 subtypes, namely, MSI-high (MSI-H)/CIMP, MSI-H/non-CIMP, MSI-low (MSI-L)/CIMP, MSI-L/non-CIMP, microsatellite stable/CIMP, and micro satellite sstable/non-CIMP. Compared with MSI-H/non-CIMP, MSI-H/CIMP was associated with marked tumor infiltrating lymphocytes, tumor necrosis, sheeting, and poor differentiation (all PCIMP, MSI-L/CIMP was associated with tumors that had CIMP. Both MSI and CIMP appear to play a role in the pathogenesis of specific morphologic patterns of colorectal carcinoma.

  14. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Gavery Mackenzie R

    2010-08-01

    Full Text Available Abstract Background DNA methylation is an epigenetic mechanism with important regulatory functions in animals. While the mechanism itself is evolutionarily ancient, the distribution and function of DNA methylation is diverse both within and among phylogenetic groups. Although DNA methylation has been well studied in mammals, there are limited data on invertebrates, particularly molluscs. Here we characterize the distribution and investigate potential functions of DNA methylation in the Pacific oyster (Crassostrea gigas. Results Methylation sensitive PCR and bisulfite sequencing PCR approaches were used to identify CpG methylation in C. gigas genes and demonstrated that this species possesses intragenic methylation. In silico analysis of CpGo/e ratios in publicly available sequence data suggests that DNA methylation is a common feature of the C. gigas genome, and that specific functional categories of genes have significantly different levels of methylation. Conclusions The Pacific oyster genome displays intragenic DNA methylation and contains genes necessary for DNA methylation in animals. Results of this investigation suggest that DNA methylation has regulatory functions in Crassostrea gigas, particularly in gene families that have inducible expression, including those involved in stress and environmental responses.

  15. Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19.

    Directory of Open Access Journals (Sweden)

    Elmar W Tobi

    Full Text Available Both the early environment and genetic variation may affect DNA methylation, which is one of the major molecular marks of the epigenome. The combined effect of these factors on a well-defined locus has not been studied to date. We evaluated the association of periconceptional exposure to the Dutch Famine of 1944-45, as an example of an early environmental exposure, and single nucleotide polymorphisms covering the genetic variation (tagging SNPs with DNA methylation at the imprinted IGF2/H19 region, a model for an epigenetically regulated genomic region. DNA methylation was measured at five differentially methylated regions (DMRs that regulate the imprinted status of the IGF2/H19 region. Small but consistent differences in DNA methylation were observed comparing 60 individuals with periconceptional famine exposure with unexposed same-sex siblings at all IGF2 DMRs (P(BH<0.05 after adjustment for multiple testing, but not at the H19 DMR. IGF2 DMR0 methylation was associated with IGF2 SNP rs2239681 (P(BH = 0.027 and INS promoter methylation with INS SNPs, including rs689, which tags the INS VNTR, suggesting a mechanism for the reported effect of the VNTR on INS expression (P(BH = 3.4 × 10(-3. Prenatal famine and genetic variation showed similar associations with IGF2/H19 methylation and their contributions were additive. They were small in absolute terms (<3%, but on average 0.5 standard deviations relative to the variation in the population. Our analyses suggest that environmental and genetic factors could have independent and additive similarly sized effects on DNA methylation at the same regulatory site.

  16. Quantitative correlation between promoter methylation and messenger RNA levels of the reduced folate carrier

    Directory of Open Access Journals (Sweden)

    Kheradpour Albert

    2008-05-01

    Full Text Available Abstract Background Methotrexate (MTX uptake is mediated by the reduced folate carrier (RFC. Defective drug uptake in association with decreased RFC expression is a common mechanism of MTX resistance in many tumor types. Heavy promoter methylation was previously identified as a basis for the complete silencing of RFC in MDA-MB-231 breast cancer cells, its role and prevalence in RFC transcription regulation are, however, not widely studied. Methods In the current study, RFC promoter methylation was assessed using methylation specific PCR in a panel of malignant cell lines (n = 8, including MDA-MB-231, and M805, a MTX resistant cell line directly established from the specimen of a patient with malignant fibrohistocytoma, whom received multiple doses of MTX. A quantitative approach of real-time PCR for measuring the extent of RFC promoter methylation was developed, and was validated by direct bisulfite genomic sequencing. RFC mRNA levels were determined by quantitative real-time RT-PCR and were related to the extent of promoter methylation in these cell lines. Results A partial promoter methylation and RFC mRNA down-regulation were observed in M805. Using the quantitative approach, a reverse correlation (correlation coefficient = -0.59, p Conclusion This study further suggests that promoter methylation is a potential basis for MTX resistance. The quantitative correlation identified in this study implies that promoter methylation is possibly a mechanism involved in the fine regulation of RFC transcription.

  17. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection

    Directory of Open Access Journals (Sweden)

    Van Neste Leander

    2012-06-01

    Full Text Available Abstract Background PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like GSTP1, APC and RASSF1 have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence. Results An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the GSTP1, APC and RASSF1 genes, using methylation specific PCR (MSP. The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity. Conclusions The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.

  18. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    Science.gov (United States)

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  19. Expression profiling of O6 methylguanine-DNA-methyl transferase in prolactinomas: a correlative study of promoter methylation and pathological features in 136 cases

    International Nuclear Information System (INIS)

    Jiang, Xiao-Bing; Hu, Bin; He, Dong-Sheng; Mao, Zhi-Gang; Wang, Xin; Song, Bing-Bing; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-01-01

    Low-level expression of O 6 methylguanine-DNA-methyl transferase (MGMT) prolactinomas has been noted previously in case reports, although what modulates MGMT expression remains unclear. This study therefore aimed to delineate the factors regulating MGMT expression in prolactinomas. We retrospectively reviewed 136 prolactinoma patients who were treated in our center between January 2000 and September 2013. Expression of MGMT, Ki-67, and p53 protein were examined by immunohistochemical staining, and MGMT promoter methylation evaluated with methylation-specific PCR. MGMT immunopositivity was <25 % in 106/136 tumor specimens (77.94 %). MGMT immunoexpression was positively correlated with age (r = 0.251, p = 0.003), but inversely correlated with p53 staining (r = −0.153, p = 0.021). Moreover, reduced MGMT expression was more frequent in atypical prolactinomas (p = 0.044). Methylated MGMT promoter was confirmed in 10/46 specimens (21.7 %), all of which had low level or absent MGMT staining. Both p53 protein (r = −0.33, p = 0.025) and promoter methylation (r = −0.331, p = 0.025) were negatively associated with MGMT expression. Multivariate logistic analysis indicated that age (odds ratio [OR] = 1.127. 95 % confidence interval [CI] 1.027–1.236, p = 0.012) and p53 (OR = 0.116. 95 % CI 0.018–0.761, p = 0.025) staining were independent determents of MGMT expression. The majority of prolactinomas, especially atypical prolactinomas, showed low-level or no MGMT immunoexpression, providing a rationale for the utility of temozolomide as an alternative to managing prolactinomas. In summary, epigenetic and transcriptional regulation are involved in silencing MGMT expression

  20. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures.

    Science.gov (United States)

    Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C

    2017-10-18

    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.

  1. Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation

    International Nuclear Information System (INIS)

    Taioli, Emanuela; Ragin, Camille; Wang, Xiao-hong; Chen, Jiangying; Langevin, Scott M; Brown, Ashley R; Gollin, Susanne M; Garte, Seymour; Sobol, Robert W

    2009-01-01

    Biomarkers that predict clinical response, tumor recurrence or patient survival are severely lacking for most cancers, particularly for oral and pharyngeal cancer. This study examines whether gene-promoter methylation of tumor DNA correlates with survival and recurrence rates in a population of patients with oral or pharyngeal cancer. The promoter methylation status of the DNA repair gene MGMT and the tumor suppressor genes CDKN2A and RASSF1 were evaluated by methylation-specific PCR in 88 primary oral and pharyngeal tumors and correlated with survival and tumor recurrence. Quantitative MGMT methylation was also assessed. 29.6% of the tumors presented with MGMT methylation, 11.5% with CDKN2A methylation and 12.1% with RASSF1 methylation. MGMT promoter methylation was significantly associated with poorer overall and disease-free survival. No differences in methylation status of MGMT and RASSF1 with HPV infection, smoking or drinking habits were observed. A significant inverse trend with the amount of MGMT methylation and overall and disease-free survival was observed (p trend = 0.002 and 0.001 respectively). These results implicate MGMT promoter methylation as a possible biomarker for oral and pharyngeal cancer prognosis. The critical role of MGMT in DNA repair suggests that defective DNA repair may be correlative in the observed association between MGMT promoter methylation and tumor recurrence. Follow-up studies should include further quantitative MSP-PCR measurement, global methylation profiling and detailed analysis of downstream DNA repair genes regulated by promoter methylation

  2. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    OpenAIRE

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schr?der, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinh?usel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-...

  3. The application of methylation specific electrophoresis (MSE to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    Directory of Open Access Journals (Sweden)

    Yokoyama Seiya

    2012-02-01

    Full Text Available Abstract Background Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity. Methods Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE. The MSE method is comprised of the following steps: (a bisulfite treatment of genomic DNA, (b amplification of the target DNA by a nested PCR approach and (c applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices. Result The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is Conclusions The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical samples, and this may facilitate identification of new risk markers.

  4. A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome.

    Science.gov (United States)

    Kelly, A D; Kroeger, H; Yamazaki, J; Taby, R; Neumann, F; Yu, S; Lee, J T; Patel, B; Li, Y; He, R; Liang, S; Lu, Y; Cesaroni, M; Pierce, S A; Kornblau, S M; Bueso-Ramos, C E; Ravandi, F; Kantarjian, H M; Jelinek, J; Issa, J-Pj

    2017-10-01

    Genetic changes are infrequent in acute myeloid leukemia (AML) compared with other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CGI methylator phenotype (CIMP) (A-CIMP + ). A-CIMP was associated with longer overall survival (OS) in this data set (median OS, years: A-CIMP + =not reached, CIMP - =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP + =2.34, A-CIMP - =1.00; P=0.01). Hypermethylation in A-CIMP + favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP + was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP + function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple data sets. We conclude that CIMP in AML cannot be explained solely by gene mutations (for example, IDH1/2, TET2), and that curability in A-CIMP + AML should be validated prospectively.

  5. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Dang, Jun; Bian, Yong-qian; Sun, Jian-yong

    2013-01-01

    and patients with oral squamous cell carcinoma (OSCC). A total of 20 OLP and 12 patients with OSCC as well as 10 healthy subjects were subjected to miR-137 promoter methylation analysis using methylation-specific PCR (MSP). To address the malignancy prediction potential from miR-137 promoter methylation status...

  6. Quantitative Detection of ID4 Gene Aberrant Methylation in the Differentiation of Myelodysplastic Syndrome from Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Mian-Yang Li

    2015-01-01

    Full Text Available Background: The diagnosis of myelodysplastic syndrome (MDS, especially hypoplastic MDS, and MDS with low blast counts or normal karyotype may be problematic. This study characterized ID4 gene methylation in patients with MDS and aplastic anemia (AA. Methods: The methylation status of ID4 was analyzed by bisulfite sequencing polymerase chain reaction (PCR and quantitative real-time methylation-specific PCR (MethyLight PCR in 100 patients with MDS and 31 patients with AA. Results: The MDS group had a higher ID4 gene methylation positivity rate (22.22% and higher methylation levels (0.21 [0-3.79] than the AA group (P < 0.05. Furthermore, there were significant differences between the hypoplastic MDS and AA groups, the MDS with low blast count and the AA groups, and the MDS with normal karyotype and the AA groups. The combination of genetic and epigenetic markers was used in much more patients with MDS (62.5% [35/56] than the use of genetic markers only (51.79% [29/56]. Conclusions: These results showed that the detection of ID4 methylation positivity rates and levels could be a useful biomarker for MDS diagnosis.

  7. SHOX2 gene methylation as a diagnostic marker of lung cancer

    International Nuclear Information System (INIS)

    Konecny, M.; Markus, J.; Dolesova, L.; Waczulikova, I.; Majer, I.; Novosadova, H.

    2016-01-01

    Purpose: In the actual study we have detected in the group of patients with mailgnant and also non-malignant disease the presence of DNA methylation of SHOX2 gene. The basic aim was to evaluate the reliability of detection of SHOX2 methylation in blood plasma as a potential alternative to used bronchial lavage. Further, we also determine the correlation of test results with samples of lavage and blood plasma. Materials and methods: The specimens were achieved of each patient from bronchial lavage and also peripheral blood and from january to december 2014 we analysed 69 parallel samples. DNA from bronchial lavage was purified with commercial kit Epi pro Lung BL DNA preparation kit (Epigenomics) and samples from peripheral blood using Epi pro Colon Plasma Quick kit (Epigenomics). Quantitative PCR analysis was accomplished using Epi pro Lung BL real-time PCR kit (Epigenomics) on the ABI 7500 Fast real-time PCR instrument (Life Technologies). Methylation results were performed with ΔΔCT method. Statistical characteristics of patients and other clinical data we analysed by methods of bi variant and descriptive statistics, like hood ratio by Cohen kappa and significance of observed differences by Maxwell and McNemar chi-quadrant test. Results: Altogether we analysed 69 parallel samples and methylation of SHOX2 gene was identified in 63,8% of samples. Overall the methylation was detected in 31 out of 37 lavage and 20 out of 31 blood samples. Diagnostic performance of the model with bio marker of SHOX2 methylation in lavage samples was determined at the level of 89,19% sensitivity and 84,62% specificity, on the other hand model with bio marker of SHOX2 methylation in plasma samples showed 80,65% sensitivity and 78,57% specificity. Conclusion: Generally, we established that methylation analysis of SHOX2 gene in bronchial lavage samples represents a reliable test, which may be used as an additional marker in the lung cancer diagnostics. Test of blood plasma features

  8. A mutant screening method by critical annealing temperature-PCR for site-directed mutagenesis.

    Science.gov (United States)

    Liu, Ying; Wu, Ting; Song, Jian; Chen, Xuelian; Zhang, Yu; Wan, Yu

    2013-03-11

    Distinguishing desired mutants from parental templates and undesired mutants is a problem not well solved in Quikchange™ mutagenesis. Although Dpn I digestion can eliminate methylated parental (WT) DNA, the efficiency is not satisfying due to the existence of hemi-methylated DNA in the PCR products, which is resistant to Dpn I. The present study designed a novel critical annealing temperature (T(c))-PCR to replace Dpn I digestion for more perfect mutant distinguishing, in which part-overlapping primers containing mutation(s) were used to reduce initial concentration of template DNA in mutagenic PCR. A T(c)-PCR with the same mutagenic primers was performed without Dpn I digestion. The T(c) for each pair of the primers was identified by gradient PCR. The relationship between PCR-identified T(c) and T(m) of the primers was analyzed and modeled with correlation and regression. Gradient PCR identified a T(c) for each of 14 tested mutagenic primers, which could discriminate mismatched parental molecules and undesired mutants from desired mutants. The PCR-identified T(c) was correlated to the primer's T(m) (r = 0.804, P<0.0001). Thus, in practical applications, the T(c) can be easily calculated with a regression equation, T(c)= 48.81 + 0.253*T(m). The new protocol introduced a novel T(c)-PCR method for mutant screening which can more efficiently and accurately select against parental molecules and undesired mutations in mutagenic sequence segments.

  9. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    Schneider, Katja U; Liebenberg, Volker; Kneip, Christoph; Seegebarth, Anke; Erdogan, Fikret; Rappold, Gudrun; Schmidt, Bernd; Dietrich, Dimo; Fleischhacker, Michael; Leschber, Gunda; Merk, Johannes; Schäper, Frank; Stapert, Henk R; Vossenaar, Erik R; Weickmann, Sabine

    2011-01-01

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  10. Promoter methylation of APC and RAR-β genes as prognostic markers in non-small cell lung cancer (NSCLC).

    Science.gov (United States)

    Feng, Hongxiang; Zhang, Zhenrong; Qing, Xin; Wang, Xiaowei; Liang, Chaoyang; Liu, Deruo

    2016-02-01

    Aberrant promoter hypermethylations of tumor suppressor genes are promising markers for lung cancer diagnosis and prognosis. The purpose of this study was to determine methylation status at APC and RAR-β promoters in primary NSCLC, and whether they have any relationship with survival. APC and RAR-β promoter methylation status were determined in 41 NSCLC patients using methylation specific PCR. APC promoter methylation was detectable in 9 (22.0%) tumor samples and 6 (14.6%) corresponding non-tumor samples (P=0.391). RAR-β promoter methylation was detectable in 13 (31.7%) tumor samples and 4 (9.8%) corresponding non-tumor samples (P=0.049) in the NSCLC patients. APC promoter methylation was found to be associated with T stage (P=0.046) and nodal status (P=0.019) in non-tumor samples, and with smoking (P=0.004) in tumor samples. RAR-β promoter methylation was found associated with age (P=0.031) in non-tumor samples and with primary tumor site in tumor samples. Patients with APC promoter methylation in tumor samples showed significantly longer survival than patients without it (Log-rank P=0.014). In a multivariate analysis of prognostic factors, APC methylation in tumor samples was an independent prognostic factor (P=0.012), as were N1 positive lymph node number (P=0.025) and N2 positive lymph node number (P=0.06). Our study shows that RAR-β methylation detected in lung tissue may be used as a predictive marker for NSCLC diagnosis and that APC methylation in tumor sample may be a useful marker for superior survival in NSCLC patients. Copyright © 2015. Published by Elsevier Inc.

  11. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients.

    Science.gov (United States)

    de Vos, Luka; Gevensleben, Heidrun; Schröck, Andreas; Franzen, Alina; Kristiansen, Glen; Bootz, Friedrich; Dietrich, Dimo

    2017-01-01

    SHOX2 and SEPT9 methylation in circulating cell-free DNA (ccfDNA) in blood are established powerful and clinically valuable biomarkers for diagnosis, staging, prognosis, and monitoring of cancer patients. The aim of the present study was to evaluate different quantification algorithms (relative quantification, absolute quantification, quasi-digital PCR) with regard to their clinical performance. Methylation analyses were performed in a training cohort (141 patients with head and neck squamous cell carcinoma [HNSCC], 170 control cases) and a testing cohort (137 HNSCC cases, 102 controls). DNA was extracted from plasma samples, bisulfite-converted, and analyzed via quantitative real-time PCR. SHOX2 and SEPT9 methylations were assessed separately and as panel [mean SEPT9 / SHOX2 ] using the ΔCT method for absolute quantification and the ΔΔCT-method for relative quantification. Quasi-digital PCR was defined as the number of amplification-positive PCR replicates. The diagnostic (sensitivity, specificity, area under the curve (AUC) of the receiver operating characteristic (ROC)) and prognostic accuracy (hazard ratio (HR) from Cox regression) were evaluated. Sporadic methylation in control samples necessitated the introduction of cutoffs resulting in 61-63% sensitivity/90-92% specificity ( SEPT9 /training), 53-57% sensitivity/87-90% specificity ( SHOX2 /training), and 64-65% sensitivity/90-91% specificity (mean SEPT9 / SHOX2 /training). Results were confirmed in a testing cohort with 54-56% sensitivity/88-90% specificity ( SEPT9 /testing), 43-48% sensitivity/93-95% specificity ( SHOX2 /testing), and 49-58% sensitivity/88-94% specificity (mean SEPT9 / SHOX2 /testing). All algorithms showed comparable cutoff-independent diagnostic accuracy with largely overlapping 95% confidence intervals ( SEPT9 : AUC training  = 0.79-0.80; AUC testing  = 0.74-0.75; SHOX2 : AUC training  = 0.78-0.81, AUC testing  = 0.77-0.79; mean SEPT9 / SHOX2 : AUC training  = 0

  12. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  13. Heterogeneity of DNA methylation in multifocal prostate cancer.

    Science.gov (United States)

    Serenaite, Inga; Daniunaite, Kristina; Jankevicius, Feliksas; Laurinavicius, Arvydas; Petroska, Donatas; Lazutka, Juozas R; Jarmalaite, Sonata

    2015-01-01

    Most prostate cancer (PCa) cases are multifocal, and separate foci display histological and molecular heterogeneity. DNA hypermethylation is a frequent alteration in PCa, but interfocal heterogeneity of these changes has not been extensively investigated. Ten pairs of foci from multifocal PCa and 15 benign prostatic hyperplasia (BPH) samples were obtained from prostatectomy specimens, resulting altogether in 35 samples. Methylation-specific PCR (MSP) was used to evaluate methylation status of nine tumor suppressor genes (TSGs), and a set of selected TSGs was quantitatively analyzed for methylation intensity by pyrosequencing. Promoter sequences of the RASSF1 and ESR1 genes were methylated in all paired PCa foci, and frequent (≥75 %) DNA methylation was detected in RARB, GSTP1, and ABCB1 genes. MSP revealed different methylation status of at least one gene in separate foci in 8 out of 10 multifocal tumors. The mean methylation level of ESR1, GSTP1, RASSF1, and RARB differed between the paired foci of all PCa cases. The intensity of DNA methylation in these TSGs was significantly higher in PCa cases than in BPH (p epigenetic profile of recurrent tumors can be inferred from our data.

  14. DNA Methylation as a Biomarker for Body Fluid Identification

    Directory of Open Access Journals (Sweden)

    Rania Gomaa

    2017-12-01

    Full Text Available Currently, available identification techniques for forensic samples are either enzyme or protein based, which can be subjected to degradation, thus limiting its storage potentials. Epigenetic changes arising due to DNA methylation and histone acetylation can be used for body fluid identification. Markers DACT1, USP49, ZC3H12D, FGF7, cg23521140, cg17610929, chromosome 4 (25287119–25287254, chromosome 11 (72085678–72085798, 57171095–57171236, 1493401–1493538, and chromosome 19 (47395505–47395651 are currently being used for semen identification. Markers cg26107890, cg20691722, cg01774894 and cg14991487 are used to differentiate saliva and vaginal secretions from other body fluids. However, such markers show overlapping methylation pattern. This review article aimed to highlight the feasibility of using DNA methylation of certain genetic markers in body fluid identification and its implications for forensic investigations. The reviewed articles have employed molecular genetics techniques such as Bisulfite sequencing PCR (BSP, methylation specific PCR (MSP, Pyrosequencing, Combined Bisulfite Restriction Analysis (COBRA, Methylation-sensitive Single Nucleotide Primer Extension (SNuPE, and Multiplex SNaPshot Microarray. Bioinformatics software such as MATLAB and BiQ Analyzer has been used. Biological fluids have different methylation patterns and thus, this difference can be used to identify the nature of the biological fluid found at the crime scene. Using DNA methylation to identify the body fluids gives accurate results without consumption of the trace evidence and requires a minute amount of DNA for analysis. Recent studies have incorporated next-generation sequencing aiming to find out more reliable markers that can differentiate between different body fluids. Nonetheless, new DNA methylation markers are yet to be discovered to accurately differentiate between saliva and vaginal secretions with high confidence. Epigenetic changes are

  15. Differential SLC1A2 Promoter Methylation in Bipolar Disorder With or Without Addiction

    Directory of Open Access Journals (Sweden)

    Yun-Fang Jia

    2017-07-01

    Full Text Available While downregulation of excitatory amino acid transporter 2 (EAAT2, the main transporter removing glutamate from the synapse, has been recognized in bipolar disorder (BD, the underlying mechanisms of downregulation have not been elucidated. BD is influenced by environmental factors, which may, via epigenetic modulation of gene expression, differentially affect illness presentation. This study thus focused on epigenetic DNA methylation regulation of SLC1A2, encoding for EAAT2, in BD with variable environmental influences of addiction. High resolution melting PCR (HRM-PCR and thymine–adenine (TA cloning with sequence analysis were conducted to examine methylation of the promoter region of the SLC1A2. DNA was isolated from blood samples drawn from BD patients (N = 150 with or without addiction to alcohol, nicotine, or food, defined as binge eating, and matched controls (N = 32. In comparison to controls, the SLC1A2 promoter region was hypermethylated in BD without addiction but was hypomethylated in BD with addiction. After adjusting for age and sex, the association of methylation levels with nicotine addiction (p = 0.0009 and binge eating (p = 0.0002 remained significant. Consistent with HRM-PCR, direct sequencing revealed increased methylation in CpG site 6 in BD, but decreased methylation in three CpG sites (6, 48, 156 in BD with alcohol and nicotine addictions. These results suggest that individual point methylation within the SLC1A2 promoter region may be modified by exogenous addiction and may have a potential for developing clinically valuable epigenetic biomarkers for BD diagnosis and monitoring.

  16. The application of methylation specific electrophoresis (MSE) to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    International Nuclear Information System (INIS)

    Yokoyama, Seiya; Yonezawa, Suguru; Kitamoto, Sho; Yamada, Norishige; Houjou, Izumi; Sugai, Tamotsu; Nakamura, Shin-ichi; Arisaka, Yoshifumi; Takaori, Kyoichi; Higashi, Michiyo

    2012-01-01

    Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity. Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis) using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE). The MSE method is comprised of the following steps: (a) bisulfite treatment of genomic DNA, (b) amplification of the target DNA by a nested PCR approach and (c) applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices. The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is < 0.1% and the detectable minimum amount of DNA is 20 pg, which can be obtained from only a few cells. We also show that MSE can be used for analysis of challenging samples such as human isolated colonic crypts or human pancreatic juices, from which only a small amount of DNA can be extracted. The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical

  17. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

    Science.gov (United States)

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh

    2017-03-09

    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  18. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  19. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    Directory of Open Access Journals (Sweden)

    Nikul Patel

    2012-01-01

    Full Text Available The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1, and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.

  20. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Huaying; Li, Guiyuan; Zhang, Liming; Niu, Zhaoxia; Zhou, Ming; Peng, Cong; Li, Xiayu; Deng, Tan; Shi, Lei; Tan, Yixin

    2008-01-01

    Nasopharyngeal carcinoma (NPC) is a head and neck malignancy with high occurrence in South-East Asia and Southern China. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumourigenesis of NPC. BRD7 is a NPC-associated bromodomain gene that exhibits a much higher-level of mRNA expression in normal than in NPC biopsies and cell lines. In this study, we explored the role of DNA methylation in regulation of BRD7 transcription. The presence of CpG islands within BRD7 promoter was predicted by EMBOSS CpGplot and Softberry CpGFinder, respectively. Nested methylation-specific PCR and RT-PCR were employed to detect the methylation status of BRD7 promoter and the mRNA expression of BRD7 gene in tumor cell lines as well as clinical samples. Electrophoretic mobility shift assays (EMSA) and luciferase assay were used to detect the effects of cytosine methylation on the nuclear protein binding to BRD7 promoter. We found that DNA methylation suppresses BRD7 expression in NPC cells. In vitro DNA methylation in NPC cells silenced BRD7 promoter activity and inhibited the binding of the nuclear protein (possibly Sp1) to Sp1 binding sites in the BRD7 promoter. In contrast, inhibition of DNA methylation augments induction of endogenous BRD7 mRNA in NPC cells. We also found that methylation frequency of BRD7 promoter is much higher in the tumor and matched blood samples from NPC patients than in the blood samples from normal individuals. BRD7 promoter demethylation is a prerequisite for high level induction of BRD7 gene expression. DNA methylation of BRD7 promoter might serve as a diagnostic marker in NPC

  1. Methylation-Sensitive High Resolution Melting (MS-HRM).

    Science.gov (United States)

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  2. Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism (FL-MS-AFLP) analysis for quantitative determination of DNA methylation and demethylation status.

    Science.gov (United States)

    Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko

    2008-04-01

    The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.

  3. Digital PCR: A brief history

    OpenAIRE

    Morley, Alexander A.

    2014-01-01

    Digital PCR for quantification of a target of interest has been independently developed several times, being described in 1990 and 1991 using the term “limiting dilution PCR” and in 1999 using the term “digital PCR”. It came into use in the decade following its first development but its use was cut short by the description of real-time PCR in 1996. However digital PCR has now had a renaissance due to the recent development of new instruments and chemistry which have made it a much simpler and...

  4. Detection of circulating tumor cells with CK20 RT-PCR is an independent negative prognostic marker in colon cancer patients - a prospective study.

    Science.gov (United States)

    Hinz, Sebastian; Hendricks, Alexander; Wittig, Amke; Schafmayer, Clemens; Tepel, Jürgen; Kalthoff, Holger; Becker, Thomas; Röder, Christian

    2017-01-13

    Detection of circulating (CTC) or disseminated tumor cells (DTC) has been associated with negative prognosis and outcome in patients with colorectal cancer, though testing for these cells is not yet part of clinical routine. There are several different methodological approaches to detect tumor cells but standardized detection assays are not implemented so far. In this prospective monocentric study 299 patients with colon cancer were included. CTC and DTC were detected using CK20 RT-PCR as well as immunocytochemistry staining with anti-pan-keratin and anti-EpCAM antibodies. The primary endpoints were: Evaluation of CTC and DTC at the time of surgery and correlation with main tumor characteristics and overall (OS) and disease free survival (DFS). Patients with detectable CTC had a 5-year OS rate of 68% compared to a 5-year OS rate of 85% in patients without detectable CTC in the blood (p = 0.002). Detection of DTC in the bone marrow with CK20 RT-PCR was not associated with a worse OS or DFS. Detection of pan-cytokeratin positive DTC in the bone marrow correlated with a significantly reduced 5-year OS rate (p = 0.048), but detection of DTC in the bone marrow with the anti-EpCAM antibody did not significantly influence the 5-year OS rate (p = 0.958). By multivariate analyses only detection of CTC with CK20 RT-PCR in the blood was revealed to be an independent predictor of worse OS (HR1.94; 95% CI 1.0-3.7; p = 0.04) and DFS (HR 1.94; 95% CI 1.1-3.7; p = 0.044). Detection of CTC with CK20 RT-PCR is a highly specific and independent prognostic marker in colon cancer patients. Detection of DTC in the bone marrow with CK20 RT-PCR or immunohistochemistry with anti-EpCAM antibody is not associated with a negative prognostic influence.

  5. Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci

    Directory of Open Access Journals (Sweden)

    Aaron J. Stevens

    2017-03-01

    Full Text Available Loss of one allele during polymerase chain reaction (PCR amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylation and G-quadruplex formation was previously described for a differentially methylated region of the human imprinted gene, MEST. We now demonstrate that this parent-of-origin specific allelic dropout can potentially occur at several other genomic regions that display genomic imprinting and have propensity for G-quadruplex formation, including AIM1, BLCAP, DNMT1, PLAGL1, KCNQ1, and GRB10. These findings demonstrate that systematic allelic dropout during PCR is a general phenomenon for regions of the genome where differential allelic methylation and G-quadruplex motifs coincide, and suggest that great care must be taken to ensure biallelic amplification is occurring in such situations.

  6. A panel of genes methylated with high frequency in colorectal cancer

    International Nuclear Information System (INIS)

    Mitchell, Susan M; Beetson, Iain; Rand, Keith N; McEvoy, Aidan; Thomas, Melissa L; Baker, Rohan T; Wattchow, David A; Young, Graeme P; Lockett, Trevor J; Pedersen, Susanne K; LaPointe, Lawrence C; Ross, Jason P; Molloy, Peter L; Drew, Horace R; Ho, Thu; Brown, Glenn S; Saunders, Neil FW; Duesing, Konsta R; Buckley, Michael J; Dunne, Rob

    2014-01-01

    The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests. Combined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP). Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas. This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes

  7. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  8. Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors

    International Nuclear Information System (INIS)

    Malpeli, Giorgio; Amato, Eliana; Dandrea, Mario; Fumagalli, Caterina; Debattisti, Valentina; Boninsegna, Letizia; Pelosi, Giuseppe; Falconi, Massimo; Scarpa, Aldo

    2011-01-01

    RASSF1A gene silencing by DNA methylation has been suggested as a major event in pancreatic endocrine tumor (PET) but RASSF1A expression has never been studied. The RASSF1 locus contains two CpG islands (A and C) and generates seven transcripts (RASSF1A-RASSF1G) by differential promoter usage and alternative splicing. We studied 20 primary PETs, their matched normal pancreas and three PET cell lines for the (i) methylation status of the RASSF1 CpG islands using methylation-specific PCR and pyrosequencing and (ii) expression of RASSF1 isoforms by quantitative RT-PCR in 13 cases. CpG island A methylation was evaluated by methylation-specific PCR (MSP) and by quantitative methylation-specific PCR (qMSP); pyrosequencing was applied to quantify the methylation of 51 CpGs also encompassing those explored by MSP and qMSP approaches. MSP detected methylation in 16/20 (80%) PETs and 13/20 (65%) normal pancreas. At qMSP, 11/20 PETs (55%) and 9/20 (45%) normals were methylated in at least 20% of RASSF1A alleles. Pyrosequencing showed variable distribution and levels of methylation within and among samples, with PETs having average methylation higher than normals in 15/20 (75%) cases (P = 0.01). The evaluation of mRNA expression of RASSF1 variants showed that: i) RASSF1A was always expressed in PET and normal tissues, but it was, on average, expressed 6.8 times less in PET (P = 0.003); ii) RASSF1A methylation inversely correlated with its expression; iii) RASSF1 isoforms were rarely found, except for RASSF1B that was always expressed and RASSF1C whose expression was 11.4 times higher in PET than in normal tissue (P = 0.001). A correlation between RASSF1A expression and gene methylation was found in two of the three PET cell lines, which also showed a significant increase in RASSF1A expression upon demethylating treatment. RASSF1A gene methylation in PET is higher than normal pancreas in no more than 75% of cases and as such it cannot be considered a marker for this neoplasm

  9. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture.

    Science.gov (United States)

    Geens, M; Seriola, A; Barbé, L; Santalo, J; Veiga, A; Dée, K; Van Haute, L; Sermon, K; Spits, C

    2016-04-01

    Does a preferential X chromosome inactivation (XCI) pattern exist in female human pluripotent stem cells (hPSCs) and does the pattern change during long-term culture or upon differentiation? We identified two independent phenomena that lead to aberrant XCI patterns in female hPSC: a rapid loss of histone H3 lysine 27 trimethylation (H3K27me3) and long non-coding X-inactive specific transcript (XIST) expression during culture, often accompanied by erosion of XCI-specific methylation, and a frequent loss of random XCI in the cultures. Variable XCI patterns have been reported in female hPSC, not only between different hPSC lines, but also between sub-passages of the same cell line, however the reasons for this variability remain unknown. Moreover, while non-random XCI-linked DNA methylation patterns have been previously reported, their origin and extent have not been investigated. We investigated the XCI patterns in 23 human pluripotent stem cell (hPSC) lines, during long-term culture and after differentiation, by gene expression analysis, histone modification assessment and study of DNA methylation. The presence and location of H3K27me3 was studied by immunofluorescence, XIST expression by real-time PCR, and mono- or bi-allelic expression of X-linked genes was studied by sequencing of cDNA. XCI-specific DNA methylation was analysed using methylation-sensitive restriction and PCR, and more in depth by massive parallel bisulphite sequencing. All hPSC lines showed XCI, but we found a rapid loss of XCI marks during the early stages of in vitro culture. While this loss of XCI marks was accompanied in several cases by an extensive erosion of XCI-specific methylation, it did not result in X chromosome reactivation. Moreover, lines without strong erosion of methylation frequently displayed non-random DNA methylation, which occurred independently from the loss of XCI marks. This bias in X chromosome DNA methylation did not appear as a passenger event driven by clonal culture

  10. DNA methylation in states of cell physiology and pathology.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2007-10-01

    Full Text Available DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation. The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences five new genes which are potential biomarkers of lung cancer have been presented.

  11. Synthesis of N-methyl and N-11C-methyl spiperone by phase transfer catalysis in anhydrous solvent

    International Nuclear Information System (INIS)

    Omokawa, Hiroyoshi; Tanaka, Akira; Iio, Mayumi; Nishihara, Yoshiaki; Inoue, Osamu; Yamazaki, Toshio.

    1985-01-01

    Spiperone, a butyrophenone neuroleptic drug, has been used in binding studies of dopamine receptors. Langstrom et al. developed N- 11 C-methyl spiperone, and, in cooperate with Wagner et al., made it possible to visualize the distribution of dopamine receptors in the human brain in vivo. In this paper, we independently developed another synthetic method of N- 11 C-methyl spiperone using the phase transfer catalyst in an anhydrous solvent. Separation of the product is feasible only by passing the reactant solution through a Millipore filter and injecting it onto high pressure liquid chromatography (HPLC). The time required for the synthesis and purification of N- 11 C-methyl spiperone from 11 C-methyl iodide and spiperone was 20 min. Radiochemical yield exceeded 35 % against 11 C-methyl iodide without correcting decay of the radioactivity. (author)

  12. Aberrant methylation of Polo-like kinase CpG islands in Plk4 heterozygous mice

    International Nuclear Information System (INIS)

    Ward, Alejandra; Morettin, Alan; Shum, David; Hudson, John W

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most common cancers world-wide occurs twice as often in men compared to women. Predisposing conditions such as alcoholism, chronic viral hepatitis, aflatoxin B1 ingestion, and cirrhosis all contribute to the development of HCC. We used a combination of methylation specific PCR and bisulfite sequencing, qReal-Time PCR (qPCR), and Western blot analysis to examine epigenetic changes for the Polo-like kinases (Plks) during the development of hepatocellular carcinoma (HCC) in Plk4 heterozygous mice and murine embryonic fibroblasts (MEFs). Here we report that the promoter methylation of Plk4 CpG islands increases with age, was more prevalent in males and that Plk4 epigenetic modification and subsequent downregulation of expression was associated with the development of HCC in Plk4 mutant mice. Interestingly, the opposite occurs with another Plk family member, Plk1 which was typically hypermethylated in normal liver tissue but became hypomethylated and upregulated in liver tumours. Furthermore, upon alcohol exposure murine embryonic fibroblasts exhibited increased Plk4 hypermethylation and downregulation along with increased centrosome numbers and multinucleation. These results suggest that aberrant Plk methylation is correlated with the development of HCC in mice

  13. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis

    International Nuclear Information System (INIS)

    Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro; Kawakami, Masanori; Kage, Hidenori; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2010-01-01

    Research highlights: → Incubating PCR products at a high temperature causes smears in gel electrophoresis. → Smears interfere with the interpretation of methylation analysis using COBRA. → Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. → The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonuclease I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 o C or 65 o C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.

  14. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR

    DEFF Research Database (Denmark)

    Wang, Chong; Robles, Francisco; Ramirez, Saul

    2016-01-01

    Gallibacterium is a genus within the family Pasteurellaceae characterized by a high level of phenotypic and genetic diversity. No diagnostic method has yet been described, which allows species-specific identification of Gallibacterium anatis. The aim of this study was to develop a real...... published conventional PCR method and culture-based identification, respectively. The detection rates were 97%, 78% and 34% for the current qPCR, the conventional PCR and the culture-based identification method, respectively. The qPCR assay was able to detect the gene gyrB in serial dilutions of 10......-time quantitative PCR (qPCR) method allowing species-specific identification and quantification of G. anatis. A G. anatis specific DNA sequence was identified in the gyrase subunit B gene (gyrB) and used to design a TaqMan probe and corresponding primers. The specificity of the assay was tested on 52 bacterial...

  15. High CpG island methylation of p16 gene and loss of p16 protein

    Indian Academy of Sciences (India)

    Methylation-specific polymerase chain reaction (MSP) was employed to detect CpG island methylation in p16 promoter region andWestern blotting was used to detect p16 expression of all subjects. Real-time fluorescence quantitative polymerase chain reaction (FQ-PCR) was performed to test p16 mRNA expression.

  16. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors.

    Directory of Open Access Journals (Sweden)

    Hector Hernandez-Vargas

    Full Text Available BACKGROUND: Hepatocellular carcinoma (HCC is characterized by late detection and fast progression, and it is believed that epigenetic disruption may be the cause of its molecular and clinicopathological heterogeneity. A better understanding of the global deregulation of methylation states and how they correlate with disease progression will aid in the design of strategies for earlier detection and better therapeutic decisions. METHODS AND FINDINGS: We characterized the changes in promoter methylation in a series of 30 HCC tumors and their respective surrounding tissue and identified methylation signatures associated with major risk factors and clinical correlates. A wide panel of cancer-related gene promoters was analyzed using Illumina bead array technology, and CpG sites were then selected according to their ability to classify clinicopathological parameters. An independent series of HCC tumors and matched surrounding tissue was used for validation of the signatures. We were able to develop and validate a signature of methylation in HCC. This signature distinguished HCC from surrounding tissue and from other tumor types, and was independent of risk factors. However, aberrant methylation of an independent subset of promoters was associated with tumor progression and etiological risk factors (HBV or HCV infection and alcohol consumption. Interestingly, distinct methylation of an independent panel of gene promoters was strongly correlated with survival after cancer therapy. CONCLUSION: Our study shows that HCC tumors exhibit specific DNA methylation signatures associated with major risk factors and tumor progression stage, with potential clinical applications in diagnosis and prognosis.

  17. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  18. IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, p53

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-12-01

    Full Text Available Insulin-like growth factor binding protein 3 (IGFBP3, which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP, which is associated with microsatellite instability (MSI and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight, we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41 than in MSI-high CIMPhigh (49% = 44/90, P < .0001, MSI-high non-CIMP-high (17% = 6/36, P < .0001, non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001. Among CIMPhigh tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001, but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02. In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/ CIMP, single molecular events (e.g., IGFBP3 methylation, TP53 mutation, TGFBR2 mutation, the related pathways.

  19. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    Science.gov (United States)

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  20. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  1. Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci.

    Science.gov (United States)

    Stevens, Aaron J; Taylor, Millie G; Pearce, Frederick Grant; Kennedy, Martin A

    2017-03-10

    Loss of one allele during polymerase chain reaction (PCR) amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylation and G-quadruplex formation was previously described for a differentially methylated region of the human imprinted gene, MEST We now demonstrate that this parent-of-origin specific allelic dropout can potentially occur at several other genomic regions that display genomic imprinting and have propensity for G-quadruplex formation, including AIM1 , BLCAP , DNMT1 , PLAGL1 , KCNQ1 , and GRB10 These findings demonstrate that systematic allelic dropout during PCR is a general phenomenon for regions of the genome where differential allelic methylation and G-quadruplex motifs coincide, and suggest that great care must be taken to ensure biallelic amplification is occurring in such situations. Copyright © 2017 Stevens et al.

  2. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample.

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    Full Text Available The CpG island methylator phenotype (CIMP is a distinct phenotype associated with microsatellite instability (MSI and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel. METHOLODOLOGY/PRINCIPAL FINDINGS: DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16, CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight. In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1, CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers, multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and beta-catenin (CTNNB1 activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status.Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also

  3. Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation

    Directory of Open Access Journals (Sweden)

    Zheng Shu-Sen

    2010-08-01

    Full Text Available Abstract Background CpG island methylator phenotype (CIMP, in which multiple genes concordantly methylated, has been demonstrated to be associated with progression, recurrence, as well as overall survival in some types of cancer. Methods We examined the promoter methylation status of seven genes including P16, CDH1, GSTP1, DAPK, XAF1, SOCS1 and SYK in 65 cases of HCC treated with LT by methylation-specific PCR. CIMP+ was defined as having three or more genes that are concordantly methylated. The relationship between CIMP status and clinicopathological parameters, as well as tumor recurrence was further analyzed. Results CIMP+ was more frequent in HCC with AFP > 400 ng/ml than those with AFP ≤ 400 ng/ml (P = 0.017. In addition, patients with CIMP+ were prone to have multiple tumor numbers than those with CIMP- (P = 0.007. Patients with CIMP+ tumors had significantly worse recurrence-free survival (RFS than patients with CIMP-tumors by Kaplan-Meier estimates (P = 0.004. Multivariate analysis also revealed that CIMP status might be a novel independent prognostic factor of RFS for HCC patients treated with LT (HR: 3.581; 95% CI: 1.473-8.710, P = 0.005. Conclusion Our results suggested that CIMP could serve as a new prognostic biomarker to predict the risk of tumor recurrence in HCC after transplantation.

  4. Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation

    International Nuclear Information System (INIS)

    Wu, Li-Ming; Zhang, Feng; Zhou, Lin; Yang, Zhe; Xie, Hai-Yang; Zheng, Shu-Sen

    2010-01-01

    CpG island methylator phenotype (CIMP), in which multiple genes concordantly methylated, has been demonstrated to be associated with progression, recurrence, as well as overall survival in some types of cancer. We examined the promoter methylation status of seven genes including P16, CDH1, GSTP1, DAPK, XAF1, SOCS1 and SYK in 65 cases of HCC treated with LT by methylation-specific PCR. CIMP+ was defined as having three or more genes that are concordantly methylated. The relationship between CIMP status and clinicopathological parameters, as well as tumor recurrence was further analyzed. CIMP+ was more frequent in HCC with AFP > 400 ng/ml than those with AFP ≤ 400 ng/ml (P = 0.017). In addition, patients with CIMP+ were prone to have multiple tumor numbers than those with CIMP- (P = 0.007). Patients with CIMP+ tumors had significantly worse recurrence-free survival (RFS) than patients with CIMP-tumors by Kaplan-Meier estimates (P = 0.004). Multivariate analysis also revealed that CIMP status might be a novel independent prognostic factor of RFS for HCC patients treated with LT (HR: 3.581; 95% CI: 1.473-8.710, P = 0.005). Our results suggested that CIMP could serve as a new prognostic biomarker to predict the risk of tumor recurrence in HCC after transplantation

  5. MGMT promoter methylation determined by HRM in comparison to MSP and pyrosequencing for predicting high-grade glioma response.

    Science.gov (United States)

    Switzeny, Olivier J; Christmann, Markus; Renovanz, Mirjam; Giese, Alf; Sommer, Clemens; Kaina, Bernd

    2016-01-01

    The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) causes resistance of cancer cells to alkylating agents and, therefore, is a well-established predictive marker for high-grade gliomas that are routinely treated with alkylating drugs. Since MGMT is highly epigenetically regulated, the MGMT promoter methylation status is taken as an indicator of MGMT silencing, predicting the outcome of glioma therapy. MGMT promoter methylation is usually determined by methylation specific PCR (MSP), which is a labor intensive and error-prone method often used semi-quantitatively. Searching for alternatives, we used closed-tube high resolution melt (HRM) analysis, which is a quantitative method, and compared it with MSP and pyrosequencing regarding its predictive value. We analyzed glioblastoma cell lines with known MGMT activity and formalin-fixed samples from IDH1 wild-type high-grade glioma patients (WHO grade III/IV) treated with radiation and temozolomide by HRM, MSP, and pyrosequencing. The data were compared as to progression-free survival (PFS) and overall survival (OS) of patients exhibiting the methylated and unmethylated MGMT status. A promoter methylation cut-off level relevant for PFS and OS was determined. In a multivariate Cox regression model, methylation of MGMT promoter of high-grade gliomas analyzed by HRM, but not MSP, was found to be an independent predictive marker for OS. Univariate Kaplan-Meier analyses revealed for PFS and OS a significant and better discrimination between methylated and unmethylated tumors when quantitative HRM was used instead of MSP. Compared to MSP and pyrosequencing, the HRM method is simple, cost effective, highly accurate and fast. HRM is at least equivalent to pyrosequencing in quantifying the methylation level. It is superior in predicting PFS and OS of high-grade glioma patients compared to MSP and, therefore, can be recommended being used routinely for determination of the MGMT status of gliomas.

  6. Global DNA methylation of ischemic stroke subtypes.

    Directory of Open Access Journals (Sweden)

    Carolina Soriano-Tárraga

    Full Text Available Ischemic stroke (IS, a heterogeneous multifactorial disorder, is among the leading causes of mortality and long-term disability in the western world. Epidemiological data provides evidence for a genetic component to the disease, but its epigenetic involvement is still largely unknown. Epigenetic mechanisms, such as DNA methylation, change over time and may be associated with aging processes and with modulation of the risk of various pathologies, such as cardiovascular disease and stroke. We analyzed 2 independent cohorts of IS patients. Global DNA methylation was measured by luminometric methylation assay (LUMA of DNA blood samples. Univariate and multivariate regression analyses were used to assess the methylation differences between the 3 most common IS subtypes, large-artery atherosclerosis (LAA, small-artery disease (SAD, and cardio-aortic embolism (CE. A total of 485 IS patients from 2 independent hospital cohorts (n = 281 and n = 204 were included, distributed across 3 IS subtypes: LAA (78/281, 59/204, SAD (97/281, 53/204, and CE (106/281, 89/204. In univariate analyses, no statistical differences in LUMA levels were observed between the 3 etiologies in either cohort. Multivariate analysis, adjusted by age, sex, hyperlipidemia, and smoking habit, confirmed the lack of differences in methylation levels between the analyzed IS subtypes in both cohorts. Despite differences in pathogenesis, our results showed no global methylation differences between LAA, SAD, and CE subtypes of IS. Further work is required to establish whether the epigenetic mechanism of methylation might play a role in this complex disease.

  7. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal carcinoma.

    Science.gov (United States)

    Ye, Peng; Qu, Chang-Fa; Hu, Xue-Lin

    2016-05-01

    The aim of this study is to investigate IGF-1, IGF-1R, and IGFBP-3 methylations in esophageal carcinoma (EC) patients and their relationship with the development and prognosis of EC. This study population consisted of 264 patients (case group) whom EC radical resection was performed and 283 healthy individuals (control group). Methylation-specific PCR (MSP) detected the methylation status of IGF-1, IGF-1R, and IGFBP-3 in the peripheral blood in both groups. The expressions of IGF-1, IGF-1R, and IGFBP-3 in EC and adjacent normal tissues were detected by immunohistochemistry (IHC). The methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 in the case group were higher than those in the control group (all P IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 IGF-1 among patients of different clinicopathological features (all P IGF-1 and IGF-1R in EC were significantly higher than those in adjacent normal tissues (both P IGF-1 and IGF1R gene promoter methylation was positively correlated with the positive expressions of IGF-1 (r = 0.139, P = 0.024) and IGF-1R (r = 0.135, P = 0.028), while the IGFBP3 methylation was negatively correlated with the positive expression of IGFBP3 (r = -0.133, P = 0.031). The positive expressions of IGF-1, IGF-1R, and IGFBP-3 were related to different clinicopathological features (all P IGF-1, IGF-1R, and IGF-1 + IGF1R + IGFBP3 ; expressions of IGF-1 and IGF-1R protein; infiltration depth; and lymph node metastasis (LNM) were independent factors of EC prognosis. Our study demonstrated that methylation of IGF-1, IGF1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 was closely linked with the occurrence of EC and patients' clinicopathological features. Besides, the methylation status of the target genes and the expressions of IGF-1 and IGF-1R protein were independent factors of EC prognosis, which could provide a direction for the prognosis and treatment of EC.

  8. Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Ji, Meiju; Guan, Haixia; Gao, Cuixia; Shi, Bingyin; Hou, Peng

    2011-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Genetic and epigenetic alterations have been identified frequently in lung cancer, such as promoter methylation, gene mutations and genomic amplification. However, the interaction between genetic and epigenetic events and their significance in lung tumorigenesis remains poorly understood. We determined the promoter methylation of 6 genes and PIK3CA amplification using quantitative methylation-specific PCR (Q-MSP) and real-time quantitative PCR, respectively, and explore the association of promoter methylation with PIK3CA amplification in a large cohort of clinically well-characterized non-small cell lung cancer (NSCLC). Highly frequent promoter methylation was observed in NSCLC. With 100% diagnostic specificity, excellent sensitivity, ranging from 45.8 to 84.1%, was found for each of the 6 genes. The promoter methylation was associated with histologic type. Methylation of CALCA, CDH1, DAPK1, and EVX2 was more common in squamous cell carcinomas (SCC) compared to adenocarcinomas (ADC). Conversely, there was a trend toward a higher frequency of RASSF1A methylation in ADC than SCC. In addition, PIK3CA amplification was frequently found in NSCLC, and was associated with certain clinicopathologic features, such as smoking history, histologic type and pleural indentation. Importantly, aberrant promoter methylation of certain genes was significantly associated with PIK3CA amplification. Our data showed highly frequent promoter methylation and PIK3CA amplification in Chinese NSCLC population, and first demonstrated the associations of gene methylation with PIK3CA amplification, suggesting that these epigenetic events may be a consequence of overactivation of PI3K/Akt pathway

  9. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    Science.gov (United States)

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  10. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    Science.gov (United States)

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  11. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Da, M.X. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Zhang, Y.B. [Department of Surgery, Ningxia Medical University, Yinchuan (China); Yao, J.B. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Duan, Y.X. [Department of Surgery, Ningxia Medical University, Yinchuan (China)

    2014-09-30

    DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growth in vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.

  12. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer

    NARCIS (Netherlands)

    Barault, L.; Amatu, A.; Bleeker, F. E.; Moutinho, C.; Falcomatà, C.; Fiano, V.; Cassingena, A.; Siravegna, G.; Milione, M.; Cassoni, P.; de Braud, F.; Rudà, R.; Soffietti, R.; Venesio, T.; Bardelli, A.; Wesseling, P.; de Witt Hamer, P.; Pietrantonio, F.; Siena, S.; Esteller, M.; Sartore-Bianchi, A.; Di Nicolantonio, F.

    2015-01-01

    O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA

  13. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer

    NARCIS (Netherlands)

    Barault, L.; Amatu, A.; Bleeker, F. E.; Moutinho, C.; Falcomatà, C.; Fiano, V.; Cassingena, A.; Siravegna, G.; Milione, M.; Cassoni, P.; de Braud, F.; Rudà, R.; Soffietti, R.; Venesio, T.; Bardelli, A.; Wesseling, P.; de Witt Hamer, P.; Pietrantonio, F.; Siena, S.; Esteller, M.; Sartore-Bianchi, A.; di Nicolantonio, Federica

    2015-01-01

    Background: O6-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. Patients and methods: We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and

  14. A genome-wide methylation study on obesity: differential variability and differential methylation.

    Science.gov (United States)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Hidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-05-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14-20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances.

  15. Frequent silencing of RASSF1A by DNA methylation in thymic neuroendocrine tumours.

    Science.gov (United States)

    Kajiura, Koichiro; Takizawa, Hiromitsu; Morimoto, Yuki; Masuda, Kiyoshi; Tsuboi, Mitsuhiro; Kishibuchi, Reina; Wusiman, Nuliamina; Sawada, Toru; Kawakita, Naoya; Toba, Hiroaki; Yoshida, Mitsuteru; Kawakami, Yukikiyo; Naruto, Takuya; Imoto, Issei; Tangoku, Akira; Kondo, Kazuya

    2017-09-01

    Aberrant methylation of promoter CpG islands (CGIs) of tumour suppressor genes is a common epigenetic mechanism underlying cancer pathogenesis. The methylation patterns of thymic tumours have not been studied in detail since such tumours are rare. Herein, we sought to identify genes that could serve as epigenetic targets for thymic neuroendocrine tumour (NET) therapy. Genome-wide screening for aberrantly methylated CGIs was performed in three NET samples, seven thymic carcinoma (TC) samples, and eight type-B3 thymoma samples. The methylation status of thymic epithelial tumours (TETs) samples was validated by pyrosequencing in a larger cohort. The expression status was analysed by quantitative polymerase chain reaction (PCR) and immunohistochemistry. We identified a CGI on a novel gene, RASSF1A, which was strongly hypermethylated in NET, but not in thymic carcinoma or B3 thymoma. RASSF1A was identified as a candidate gene statistically and bibliographically, as it showed frequent CGI hypermethylation in NET by genome-wide screening. Pyrosequencing confirmed significant hypermethylation of a RASSF1A CGI in NET. Low-grade NET tissue was more strongly methylated than high-grade NET. Quantitative PCR and immunohistochemical staining revealed that RASSF1A mRNA and protein expression levels were negatively regulated by DNA methylation. RASSF1A is a tumour suppressor gene epigenetically dysregulated in NET. Aberrant methylation of RASSF1A has been reported in various tumours, but this is the first report of RASSF1A hypermethylation in TETs. RASSF1A may represent an epigenetic therapeutic target in thymic NET. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  17. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  18. The influence of DNA degradation in formalin-fixed, paraffin-embedded (FFPE) tissue on locus-specific methylation assessment by MS-HRM.

    Science.gov (United States)

    Daugaard, Iben; Kjeldsen, Tina E; Hager, Henrik; Hansen, Lise Lotte; Wojdacz, Tomasz K

    2015-12-01

    Readily accessible formalin-fixed paraffin embedded (FFPE) tissues are a highly valuable source of genetic material for molecular analyses in both research and in vitro diagnostics but frequently genetic material in those samples is highly degraded. With locus-specific methylation changes being widely investigated for use as biomarkers in various aspects of clinical disease management, we aimed to evaluate to what extent standard laboratory procedures can approximate the quality of the DNA extracted from FFPE samples prior to methylation analyses. DNA quality in 107 FFPE non-small cell lung cancer (NSCLC) samples was evaluated using spectrophotometry and gel electrophoresis. Subsequently, the quality assessment results were correlated with the results of locus specific methylation assessment with methylation sensitive high resolution melting (MS-HRM). The correlation of template quality with PCR amplification performance and HRM based methylation detection indicated a significant influence of DNA quality on PCR amplification but not on methylation assessment. In conclusion, standard laboratory procedures fairly well approximate DNA degradation of FFPE samples and DNA degradation does not seem to considerably affect locus-specific methylation assessment by MS-HRM. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Methylation in the promoter regions of WT1, NKX6-1 and DBC1 genes in cervical cancer tissues of Uygur women in Xinjiang

    Directory of Open Access Journals (Sweden)

    Dan Wu

    Full Text Available Abstract This study aimed to explore: 1 DNA methylation in the promoter regions of Wilms tumor gene 1 (WT1, NK6 transcription factor related locus 1 gene (NKX6-1 and Deleted in bladder cancer 1 (DBC1 gene in cervical cancer tissues of Uygur women in Xinjiang, and 2 the correlation of gene methylation with the infection of HPV16/18 viruses. We detected HPV16/18 infection in 43 normal cervical tissues, 30 cervical intraepithelial neoplasia lesions (CIN and 48 cervical cancer tissues with polymerase chain reaction (PCR method. Methylation in the promoter regions of the WT1, NKX6-1 and DBC1 genes in the above-mentioned tissues was measured by methylation-specific PCR (MSP and cloning sequencing. The expression level of these three genes was measured by real-time PCR (qPCR in 10 methylation-positive cervical cancer tissues and 10 methylation-negative normal cervical tissues. We found that the infection of HPV16 in normal cervical tissues, CIN and cervical cancer tissues was 14.0, 36.7 and 66.7%, respectively. The infection of HPV18 was 0, 6.7 and 10.4%, respectively. The methylation rates of WT1, NKX6-1 and DBC1 genes were 7.0, 11.6 and 23.3% in normal cervical tissues, 36.7, 46.7 and 30.0% in CIN tissues, and 89.6, 77.1 and 85.4% in cervical cancer tissues. Furthermore, WT1, NKX6-1 and DBC1 genes were hypermethylated in the high-grade squamous intraepithelial lesion (CIN2, CIN3 and in the cervical cancer tissues with infection of HPV16/18 (both P< 0.05. The expression of WT1, NKX6-1 and DBC1 was significantly lower in the methylation-positive cervical cancer tissues than in methylation-negative normal cervical tissues. Our findings indicated that methylation in the promoter regions of WT1, NKX6-1 and DBC1 is correlated with cervical cancer tumorigenesis in Uygur women. The infection of HPV16/18 might be correlated with methylation in these genes. Gene inactivation caused by methylation might be related to the incidence and development of cervical

  20. DNA methylation analysis from saliva samples for epidemiological studies.

    Science.gov (United States)

    Nishitani, Shota; Parets, Sasha E; Haas, Brian W; Smith, Alicia K

    2018-06-18

    Saliva is a non-invasive, easily accessible tissue, which is regularly collected in large epidemiological studies to examine genetic questions. Recently, it is becoming more common to use saliva to assess DNA methylation. However, DNA extracted from saliva is a mixture of both bacterial and human DNA derived from epithelial and immune cells in the mouth. Thus, there are unique challenges to using salivary DNA in methylation studies that can influence data quality. This study assesses: (1) quantification of human DNA after extraction; (2) delineation of human and bacterial DNA; (3) bisulfite conversion (BSC); (4) quantification of BSC DNA; (5) PCR amplification of BSC DNA from saliva and; (6) quantitation of DNA methylation with a targeted assay. The framework proposed will allow saliva samples to be more widely used in targeted epigenetic studies.

  1. Changes in IL12A methylation pattern in livers from mice fed DDC.

    Science.gov (United States)

    Oliva, J; French, S W

    2012-04-01

    Mallory-Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. Proteins of the TLR pathway were shown to be involved in the formation of MDBs, in mice fed DDC. TLR genes are upregulated and SAMe supplementation prevents this up regulation and prevented the formation of MDBs. DNA of livers from control mice, from mice fed DDC 10weeks, refed 1week with DDC and with DDC+SAMe were extracted and used to study the methylation pattern of genes involves in the TLR pathway. A PCR array was used to analyze it. Using PCR arrays for the mouse TLR pathway,24 genes were found whose expression of IL12A was regulated by the methylation of its gene. DDC fed for 10weeks reduced the methylation of the IL12A gene expression. This expression was also reduced when DDC was refed. However, when SAMe was fed, the intermediate level methylation of IL12A was up regulated to the intermediate level and the methylation of the promoter decreased compared to DDC refeeding or DDC 10weeks. IL12A is known to induce the production of IFNg by NK and L(T). We showed in a previous publication that IFNg is one of the major cytokines involved in the induction of MDB formation. The low expression of IL12A associated with the intermediate methylation of its promoter could explain one step in the mechanism which leads to the formation of MDBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer.

    Science.gov (United States)

    Ma, Yunxia; Chen, Yuan; Petersen, Iver

    2017-04-01

    Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. FXR silencing in human colon cancer by DNA methylation and KRAS signaling.

    Science.gov (United States)

    Bailey, Ann M; Zhan, Le; Maru, Dipen; Shureiqi, Imad; Pickering, Curtis R; Kiriakova, Galina; Izzo, Julie; He, Nan; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Liang, Han; Kopetz, Scott; Powis, Garth; Guo, Grace L

    2014-01-01

    Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.

  4. [Mifepristone inhibites the migration of endometrial cancer cells through regulating H19 methylation].

    Science.gov (United States)

    Lu, Z Z; Yan, L; Zhang, H; Li, M J; Zhang, X H; Zhao, X X

    2016-06-23

    To investigate the effect and mechanism of mifepristone on the migration of human endometrial carcinoma cells. A human endometrial carcinoma cell line, Ishikawa cells, was cultured in vitro and treated with mifepristone at different concentrations. Wound healing assay was applied to detect the migration of Ishikawa cells. RT-PCR and methylation-specific PCR (MSP) were used to detect the levels of H19 mRNA and its DNA methylation. Western-blot was used to detect the expressions of HMGA2 and epithelial to mesenchymal transition (EMT) related proteins. When treated with different concentrations of mifepristone for 48 hours, the width of scratch of the the control group, the 5 mg/L and the 10 mg/L mifepristone treatment groups were (4.18±0.07)mm, (4.68±0.07)mm, and(4.99±0.07)mm, respectively (Pendometrial carcinoma cells partially through methylation-induced of transcriptional inhibition of H19, which results in the down-regulation of HMGA2 and vimentin and upregulation of E-cadherin.

  5. Promoter Methylation and BDNF and DAT1 Gene Expression Profiles in Patients with Drug Addiction.

    Science.gov (United States)

    Kordi-Tamandani, Dor Mohammad; Tajoddini, Shahrad; Salimi, Farzaneh

    2015-01-01

    Drug addiction is a brain disorder that has negative consequences for individuals and society. Addictions are chronic relapsing diseases of the brain that are caused by direct drug-induced effects and persevering neuroadaptations at the epigenetic, neuropeptide and neurotransmitter levels. Because the dopaminergic system has a significant role in drug abuse, the purpose of this study was to analyze the methylation and expression profile of brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in individuals with drug addiction. BDNF and DAT1 promoter methylation were investigated with a methylation-specific polymerase chain reaction (PCR) technique in blood samples from 75 individuals with drug addiction and 65 healthy controls. The expression levels of BDNF and DAT1 were assessed in 12 mRNA samples from the blood of patients and compared to the samples of healthy controls (n = 12) with real-time quantitative reverse transcription PCR. No significant differences were found in the methylation of BDNF and DAT1 between patients and controls, but the relative levels of expression of BDNF and DAT1 mRNA differed significantly in the patients compared to controls (p drug addiction.

  6. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-11-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  7. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    International Nuclear Information System (INIS)

    Koczor, Christopher A.; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-01-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  8. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    Directory of Open Access Journals (Sweden)

    Jingzi Wang

    Full Text Available Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR. Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays, and chronic exposure for 10 days (0.05Gy/d×10d. High-performance liquid chromatography (HPLC and MeDIP-quantitative polymerase chain reaction (qPCR were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15 were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  9. Correlation between the methylation of APC gene promoter and colon cancer.

    Science.gov (United States)

    Li, Bing-Qiang; Liu, Peng-Peng; Zhang, Cai-Hua

    2017-08-01

    The present study was planned to explore the correlation between the methylation of APC (adenomatous polyposis coli) and colon carcinogenesis. Colon cancer tissues and tumor-adjacent normal tissues of 60 colon cancer patients (who received surgical operation in our hospital from January 2012 to December 2014) were collected. SW1116 cells in human colon cancer tissues were selected for culturing. 5-aza-2c-deoxycytidine (5-aza-dC) was utilized as an inhibitor of the methylation for APC gene. Methylation specific PCR (MSP) was utilized for detection of APC methylation in SW1116 cells. The MTT and Transwell assays were performed to detect the effect of the methylation of APC gene on the proliferation and invasive abilities of SW1116 cells. The correlation between the methylation of APC gene and pathological parameters of colon cancer patients was analyzed. MSP results revealed that 41 cases (68.33%) showed methylation of APC gene in colon cancer tissues. No methylation of APC gene was found in tumor-adjacent normal tissues. 5-aza-dC was able to inhibit the methylation of APC gene in SW1116 cells. APC gene methylation was correlated with tumor size, differentiation degree, lymph node metastasis and Dukes staging. In conclusion, the levels of the methylation of APC in colon cancer tissues and SW1116 cells are relatively high. The methylation of APC promoted the proliferation and invasion abilities of SW1116 cells. Furthermore, methylation is correlated with a variety of clinicopathological features of colon cancer patients.

  10. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  11. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    Energy Technology Data Exchange (ETDEWEB)

    Prior, Sara; Miousse, Isabelle R. [Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne [Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47405 (United States); Pathak, Rupak [Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Skinner, Charles; Kutanzi, Kristy R. [Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Allen, Antiño R. [Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Raber, Jacob [Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239 (United States); Tackett, Alan J. [Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA 92350 (United States); and others

    2016-10-15

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.

  12. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    International Nuclear Information System (INIS)

    Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.

    2016-01-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.

  13. Colorectal Cancer "Methylator Phenotype": Fact or Artifact?

    Directory of Open Access Journals (Sweden)

    Charles Anacleto

    2005-04-01

    Full Text Available It has been proposed that human colorectal tumors can be classified into two groups: one in which methylation is rare, and another with methylation of several loci associated with a "CpG island methylated phenotype (CIMP," characterized by preferential proximal location in the colon, but otherwise poorly defined. There is considerable overlap between this putative methylator phenotype and the well-known mutator phenotype associated with microsatellite instability (MSI. We have examined hypermethylation of the promoter region of five genes (DAPK, MGMT, hMLH1, p16INK4a, and p14ARF in 106 primary colorectal cancers. A graph depicting the frequency of methylated loci in the series of tumors showed a continuous, monotonically decreasing distribution quite different from the previously claimed discontinuity. We observed a significant association between the presence of three or more methylated loci and the proximal location of the tumors. However, if we remove from analysis the tumors with hMLH1 methylation or those with MSI, the significance vanishes, suggesting that the association between multiple methylations and proximal location was indirect due to the correlation with MSI. Thus, our data do not support the independent existence of the so-called methylator phenotype and suggest that it rather may represent a statistical artifact caused by confounding of associations.

  14. Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method

    DEFF Research Database (Denmark)

    Malorny, B.; Hoorfar, Jeffrey; Hugas, M.

    2003-01-01

    A collaborative study involving four European laboratories was conducted to investigate the diagnostic accuracy of a Salmonella specific PCR-based method, which was evaluated within the European FOOD-PCR project (http://www.pcr.dk). Each laboratory analysed by the PCR a set of independent obtained...... presumably naturally contaminated samples and compared the results with the microbiological culture method. The PCR-based method comprised a preenrichment step in buffered peptone water followed by a thermal cell lysis using a closed tube resin-based method. Artificially contaminated minced beef and whole......-based diagnostic methods and is currently proposed as international standard document....

  15. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Chihara, Yoshitomo; Hirao, Yoshihiko; Kanai, Yae; Fujimoto, Hiroyuki; Sugano, Kokichi; Kawashima, Kiyotaka; Liang, Gangning; Jones, Peter A; Fujimoto, Kiyohide; Kuniyasu, Hiroki

    2013-01-01

    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  16. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site.

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-31

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.

  17. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    Science.gov (United States)

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schröder, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinhäusel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma. Results: We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients' age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients. Conclusions: The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer. PMID:26335606

  18. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  19. Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer

    International Nuclear Information System (INIS)

    Noetzel, Erik; Veeck, Jürgen; Niederacher, Dieter; Galm, Oliver; Horn, Felicitas; Hartmann, Arndt; Knüchel, Ruth; Dahl, Edgar

    2008-01-01

    Inhibitor of DNA binding/Inhibitor of differentiation 4 (ID4) is a critical factor for cell proliferation and differentiation in normal vertebrate development. ID4 has regulative functions for differentiation and growth of the developing brain. The role of ID1, ID2 and ID3 are expected to be oncogenic due to their overexpression in pancreatic cancer and colorectal adenocarcinomas, respectively. Aside from these findings, loss of ID3 expression was demonstrated in ovarian cancer. The aim of the present study was to reveal the factual role of ID4 in carcinogenesis in more detail, since its role for the pathogenesis of human breast cancer has been discussed controversially, assigning both oncogenic and tumour suppressive functions. ID4 promoter methylation, ID4 mRNA expression and ID4 protein expression were analysed in primary human breast cancer specimens using methylation-specific PCR (MSP) (n=170), semiquantitative realtime RT-PCR (n=46) and immunhistochemistry (n=3), respectively. In order to demonstrate a functional association of ID4 promoter methylation with its gene silencing, we performed DNA demethylation analysis with four human breast cell lines using MSP and semiquantitative realtime RT-PCR. In addition, we performed correlations of ID4 promoter methylation with ID4 mRNA and ID4 protein expression in matched samples of breast tumour and corresponding normal tissue. We carried out statistical analyses in order to find correlations between ID4 promoter methylation and clinicopathological parameters. Frequent ID4 promoter methylation was observed in primary breast cancer samples (69%, 117/170). We found a tight correlation (P<0.0001) between ID4 promoter methylation and loss of ID4 expression in primary breast cancer 3 specimens. Demethylating treatment with breast cancer cell lines was associated with clear ID4 mRNA re-expression. Tumours with ID4 promoter methylation showed distinct loss of ID4 expression on both transcription and protein level

  20. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  1. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Directory of Open Access Journals (Sweden)

    Karolina Chwialkowska

    2017-11-01

    Full Text Available Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq. We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation

  2. Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas

    International Nuclear Information System (INIS)

    Voorham, Quirinus JM; Mulder, Chris JJ; Engeland, Manon van; Meijer, Gerrit A; Steenbergen, Renske DM; Carvalho, Beatriz; Janssen, Jerry; Tijssen, Marianne; Snellenberg, Suzanne; Mongera, Sandra; Grieken, Nicole CT van; Grabsch, Heike; Kliment, Martin; Rembacken, Bjorn J

    2013-01-01

    Nonpolypoid adenomas are a subgroup of colorectal adenomas that have been associated with a more aggressive clinical behaviour compared to their polypoid counterparts. A substantial proportion of nonpolypoid and polypoid adenomas lack APC mutations, APC methylation or chromosomal loss of the APC locus on chromosome 5q, suggesting the involvement of other Wnt-pathway genes. The present study investigated promoter methylation of several Wnt-pathway antagonists in both nonpolypoid and polypoid adenomas. Quantitative methylation-specific PCR (qMSP) was used to evaluate methylation of four Wnt-antagonists, SFRP2, WIF-1, DKK3 and SOX17 in 18 normal colorectal mucosa samples, 9 colorectal cancer cell lines, 18 carcinomas, 44 nonpolypoid and 44 polypoid adenomas. Results were integrated with previously obtained data on APC mutation, methylation and chromosome 5q status from the same samples. Increased methylation of all genes was found in the majority of cell lines, adenomas and carcinomas compared to normal controls. WIF-1 and DKK3 showed a significantly lower level of methylation in nonpolypoid compared to polypoid adenomas (p < 0.01). Combining both adenoma types, a positive trend between APC mutation and both WIF-1 and DKK3 methylation was observed (p < 0.05). Methylation of Wnt-pathway antagonists represents an additional mechanism of constitutive Wnt-pathway activation in colorectal adenomas. Current results further substantiate the existence of partially alternative Wnt-pathway disruption mechanisms in nonpolypoid compared to polypoid adenomas, in line with previous observations

  3. Correlation of MLH1 and MGMT expression and promoter methylation with genomic instability in patients with thyroid carcinoma

    International Nuclear Information System (INIS)

    Santos, Juliana Carvalho; Bastos, André Uchimura; Cerutti, Janete Maria; Ribeiro, Marcelo Lima

    2013-01-01

    Gene silencing of the repair genes MLH1 and MGMT was shown to be a mechanism underlying the development of microsatellite instability (MSI), a phenotype frequently associated with various human malignancies. Recently, aberrant methylation of MLH1, MGMT and MSI were shown to be associated with mutations in genes such as BRAF, RAS and IDH1 in colon and brain tumours. Little is known about the methylation status of MLH1 and MGMT in thyroid tumours and its association with MSI and mutational status. In a series of 96 thyroid tumours whose mutational profiles of BRAF, IDH1 and NRAS mutations and RET/PTC were previously determined, we investigated MLH1 and MGMT expression and methylation status by qPCR and methylation-specific PCR after bisulphite treatment, respectively. MSI was determined by PCR using seven standard microsatellite markers. Samples with point mutations (BRAF, IDH1 and NRAS) show a decrease in MLH1 expression when compared to negative samples. Additionally, malignant lesions show a higher MSI pattern than benign lesions. The MSI phenotype was also associated with down-regulation of MLH1. The results of this study allow us to conclude that low expression of MLH1 is associated with BRAF V600E mutations, RET/PTC rearrangements and transitions (IDH1 and NRAS) in patients with thyroid carcinoma. In addition, a significant relationship between MSI status and histological subtypes was found

  4. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Directory of Open Access Journals (Sweden)

    Eric J Chater-Diehl

    Full Text Available The molecular basis of Fetal Alcohol Spectrum Disorders (FASD is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  5. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Science.gov (United States)

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  6. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC.

    Science.gov (United States)

    Scarpa, Marco; Scarpa, Melania; Castagliuolo, Ignazio; Erroi, Francesca; Kotsafti, Andromachi; Basato, Silvia; Brun, Paola; D'Incà, Renata; Rugge, Massimo; Angriman, Imerio; Castoro, Carlo

    2016-03-01

    BACKGROUND PROMOTER: hypermethylation plays a major role in cancer through transcriptional silencing of critical genes. The aim of our study is to evaluate the methylation status of these genes in the colonic mucosa without dysplasia or adenocarcinoma at the different steps of sporadic and UC-related carcinogenesis and to investigate the possible role of genomic methylation as a marker of CRC. The expression of Dnmts 1 and 3A was significantly increased in UC-related carcinogenesis compared to non inflammatory colorectal carcinogenesis. In non-neoplastic colonic mucosa, the number of methylated genes resulted significantly higher in patients with CRC and in those with UC-related CRC compared to the HC and UC patients and patients with dysplastic lesion of the colon. The number of methylated genes in non-neoplastic colonic mucosa predicted the presence of CRC with good accuracy either in non inflammatory and inflammatory related CRC. Colonic mucosal samples were collected from healthy subjects (HC) (n = 30) and from patients with ulcerative colitis (UC) (n = 29), UC and dysplasia (n = 14), UC and cancer (n = 10), dysplastic adenoma (n = 14), and colon adenocarcinoma (n = 10). DNA methyltransferases-1, -3a, -3b, mRNA expression were quantified by real time qRT-PCR. The methylation status of CDH13, APC, MLH1, MGMT1 and RUNX3 gene promoters was assessed by methylation-specific PCR. Methylation status of APC, CDH13, MGMT, MLH1 and RUNX3 in the non-neoplastic mucosa may be used as a marker of CRC: these preliminary results could allow for the adjustment of a patient's surveillance interval and to select UC patients who should undergo intensive surveillance.

  7. Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars.

    Science.gov (United States)

    Jiao, Junna; Jia, Yanlong; Lv, Zhuangwei; Sun, Chuanfei; Gao, Lijie; Yan, Xiaoxiao; Cui, Liusu; Tang, Zongxiang; Yan, Benju

    2014-08-01

    Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.

  8. Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Yangxing Zhao

    Full Text Available PURPOSE: There is a need to supplement or supplant the conventional diagnostic tools, namely, cystoscopy and B-type ultrasound, for bladder cancer (BC. We aimed to identify novel DNA methylation markers for BC through genome-wide profiling of BC cell lines and subsequent methylation-specific PCR (MSP screening of clinical urine samples. EXPERIMENTAL DESIGN: The methyl-DNA binding domain (MBD capture technique, methylCap/seq, was performed to screen for specific hypermethylated CpG islands in two BC cell lines (5637 and T24. The top one hundred hypermethylated targets were sequentially screened by MSP in urine samples to gradually narrow the target number and optimize the composition of the diagnostic panel. The diagnostic performance of the obtained panel was evaluated in different clinical scenarios. RESULTS: A total of 1,627 hypermethylated promoter targets in the BC cell lines was identified by Illumina sequencing. The top 104 hypermethylated targets were reduced to eight genes (VAX1, KCNV1, ECEL1, TMEM26, TAL1, PROX1, SLC6A20, and LMX1A after the urine DNA screening in a small sample size of 8 normal control and 18 BC subjects. Validation in an independent sample of 212 BC patients enabled the optimization of five methylation targets, including VAX1, KCNV1, TAL1, PPOX1, and CFTR, which was obtained in our previous study, for BC diagnosis with a sensitivity and specificity of 88.68% and 87.25%, respectively. In addition, the methylation of VAX1 and LMX1A was found to be associated with BC recurrence. CONCLUSIONS: We identified a promising diagnostic marker panel for early non-invasive detection and subsequent BC surveillance.

  9. SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates

    International Nuclear Information System (INIS)

    Schmidt, Bernd; Lewin, Jörn; Tetzner, Reimo; Weickmann, Sabine; Wille, Ulrike; Liloglou, Triantafillos; Raji, Olaide; Walshaw, Martin; Fleischhacker, Michael; Witt, Christian; Field, John K; Liebenberg, Volker; Dietrich, Dimo; Schlegel, Thomas; Kneip, Christoph; Seegebarth, Anke; Flemming, Nadja; Seemann, Stefanie; Distler, Jürgen

    2010-01-01

    This study aimed to show that SHOX2 DNA methylation is a tumor marker in patients with suspected lung cancer by using bronchial fluid aspirated during bronchoscopy. Such a biomarker would be clinically valuable, especially when, following the first bronchoscopy, a final diagnosis cannot be established by histology or cytology. A test with a low false positive rate can reduce the need for further invasive and costly procedures and ensure early treatment. Marker discovery was carried out by differential methylation hybridization (DMH) and real-time PCR. The real-time PCR based HeavyMethyl technology was used for quantitative analysis of DNA methylation of SHOX2 using bronchial aspirates from two clinical centres in a case-control study. Fresh-frozen and Saccomanno-fixed samples were used to show the tumor marker performance in different sample types of clinical relevance. Valid measurements were obtained from a total of 523 patient samples (242 controls, 281 cases). DNA methylation of SHOX2 allowed to distinguish between malignant and benign lung disease, i.e. abscesses, infections, obstructive lung diseases, sarcoidosis, scleroderma, stenoses, at high specificity (68% sensitivity [95% CI 62-73%], 95% specificity [95% CI 91-97%]). Hypermethylation of SHOX2 in bronchial aspirates appears to be a clinically useful tumor marker for identifying subjects with lung carcinoma, especially if histological and cytological findings after bronchoscopy are ambiguous

  10. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  11. A refined, rapid and reproducible high resolution melt (HRM-based method suitable for quantification of global LINE-1 repetitive element methylation

    Directory of Open Access Journals (Sweden)

    Tse M Yat

    2011-12-01

    Full Text Available Abstract Background The methylation of DNA is recognized as a key mechanism in the regulation of genomic stability and evidence for its role in the development of cancer is accumulating. LINE-1 methylation status represents a surrogate measure of genome-wide methylation. Findings Using high resolution melt (HRM curve analysis technology, we have established an in-tube assay that is linear (r > 0.9986 with a high amplification efficiency (90-105%, capable of discriminating between partcipant samples with small differences in methylation, and suitable for quantifying a wide range of LINE-1 methylation levels (0-100%--including the biologically relevant range of 50-90% expected in human DNA. We have optimized this procedure to perform using 2 μg of starting DNA and 2 ng of bisulfite-converted DNA for each PCR reaction. Intra- and inter-assay coefficients of variation were 1.44% and 0.49%, respectively, supporting the high reproducibility and precision of this approach. Conclusions In summary, this is a completely linear, quantitative HRM PCR method developed for the measurement of LINE-1 methylation. This cost-efficient, refined and reproducible assay can be performed using minimal amounts of starting DNA. These features make our assay suitable for high throughput analysis of multiple samples from large population-based studies.

  12. [GSTP1, APC and RASSF1 gene methylation in prostate cancer samples: comparative analysis of MS-HRM method and Infinium HumanMethylation450 BeadChip beadchiparray diagnostic value].

    Science.gov (United States)

    Skorodumova, L O; Babalyan, K A; Sultanov, R; Vasiliev, A O; Govorov, A V; Pushkar, D Y; Prilepskaya, E A; Danilenko, S A; Generozov, E V; Larin, A K; Kostryukova, E S; Sharova, E I

    2016-11-01

    There is a clear need in molecular markers for prostate cancer (PC) risk stratification. Alteration of DNA methylation is one of processes that occur during ÐÑ progression. Methylation-sensitive PCR with high resolution melting curve analysis (MS-HRM) can be used for gene methylation analysis in routine laboratory practice. This method requires very small amounts of DNA for analysis. Numerous results have been accumulated on DNA methylation in PC samples analyzed by the Infinium HumanMethylation450 BeadChip (HM450). However, the consistency of MS-HRM results with chip hybridization results has not been examined yet. The aim of this study was to assess the consistency of results of GSTP1, APC and RASSF1 gene methylation analysis in ÐÑ biopsy samples obtained by MS-HRM and chip hybridization. The methylation levels of each gene determined by MS-HRM were statistically different in the group of PC tissue samples and the samples without signs of tumor growth. Chip hybridization data analysis confirmed the results obtained with the MS-HRM. Differences in methylation levels between tumor tissue and histologically intact tissue of each sample determined by MS-HRM and chip hybridization, were consistent with each other. Thus, we showed that the assessment of GSTP1, APC and RASSF1 gene methylation analysis using MS-HRM is suitable for the design of laboratory assays that will differentiate the PC tissue from the tissue without signs of tumor growth.

  13. Prediction of methyl-side Chain Dynamics in Proteins

    International Nuclear Information System (INIS)

    Ming Dengming; Brueschweiler, Rafael

    2004-01-01

    A simple analytical model is presented for the prediction of methyl-side chain dynamics in comparison with S 2 order parameters obtained by NMR relaxation spectroscopy. The model, which is an extension of the local contact model for backbone order parameter prediction, uses a static 3D protein structure as input. It expresses the methyl-group S 2 order parameters as a function of local contacts of the methyl carbon with respect to the neighboring atoms in combination with the number of consecutive mobile dihedral angles between the methyl group and the protein backbone. For six out of seven proteins the prediction results are good when compared with experimentally determined methyl-group S 2 values with an average correlation coefficient r-bar=0.65±0.14. For the unusually rigid cytochrome c 2 no significant correlation between prediction and experiment is found. The presented model provides independent support for the reliability of current side-chain relaxation methods along with their interpretation by the model-free formalism

  14. Patterns of DNMT1 Promoter Methylation in Patients with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Rahmani, Tirdad; Azad, Mehdi; Chahardouli, Bahram; Nasiri, Hajar; Vatanmakanian, Mousa; Kaviani, Saeid

    2017-07-01

    Background: Acute lymphoblastic leukemia (ALL) is a clonal malignant disorder characterized by an uncontrolled proliferation of immature T or B lymphocytes. Extensive studies have shown that the epigenetic changes, especially modified DNA methylation patterns in the regulatory regions through the DNA methyltransferase (DNMTs), play an important role in the development of genetic disorders and abnormal growth and maturation capacity of leukemic stem cells (LSCs).The aim of this study was to evaluate the changes in DNMT1 promoter methylation and its expression pattern in patients with ALL. Materials and Methods: In this experimental study, methylation specific PCR (MSP) was used to assess the methylation status of DNMT1 promoter regions in samples collected from ALL patients (n=45) and healthy control subjects. According to this method, un-methylated cytosine nucleotides are converted to uracil by sodium bisulfite and the proliferation of methylated and un-methylated regions are performed using specific primers for target sequences. Results: None of the patients with B and T-ALL showed methylated promoter regions of the DNMT1 gene, while the methylation pattern of both pre-B ALL patients and the control group showed a relative promoter methylation. Conclusion: Analysis of promoter methylation patterns in various subgroups of ALL has revealed the importance of DNMT1 in the regulation of gene expression. Likewise, extensive data have also highlighted the methylation-based mechanisms exerted by DNAM1 as one of the main participants regulating gene expression in B-ALL and T-ALL patients. Investigation of the overall DNA methylation pattern offers significant improvements in the prediction of disease prognosis and treatment response.

  15. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  16. Kismeth: Analyzer of plant methylation states through bisulfite sequencing

    Directory of Open Access Journals (Sweden)

    Martienssen Robert A

    2008-09-01

    Full Text Available Abstract Background There is great interest in probing the temporal and spatial patterns of cytosine methylation states in genomes of a variety of organisms. It is hoped that this will shed light on the biological roles of DNA methylation in the epigenetic control of gene expression. Bisulfite sequencing refers to the treatment of isolated DNA with sodium bisulfite to convert unmethylated cytosine to uracil, with PCR converting the uracil to thymidine followed by sequencing of the resultant DNA to detect DNA methylation. For the study of DNA methylation, plants provide an excellent model system, since they can tolerate major changes in their DNA methylation patterns and have long been studied for the effects of DNA methylation on transposons and epimutations. However, in contrast to the situation in animals, there aren't many tools that analyze bisulfite data in plants, which can exhibit methylation of cytosines in a variety of sequence contexts (CG, CHG, and CHH. Results Kismeth http://katahdin.mssm.edu/kismeth is a web-based tool for bisulfite sequencing analysis. Kismeth was designed to be used with plants, since it considers potential cytosine methylation in any sequence context (CG, CHG, and CHH. It provides a tool for the design of bisulfite primers as well as several tools for the analysis of the bisulfite sequencing results. Kismeth is not limited to data from plants, as it can be used with data from any species. Conclusion Kismeth simplifies bisulfite sequencing analysis. It is the only publicly available tool for the design of bisulfite primers for plants, and one of the few tools for the analysis of methylation patterns in plants. It facilitates analysis at both global and local scales, demonstrated in the examples cited in the text, allowing dissection of the genetic pathways involved in DNA methylation. Kismeth can also be used to study methylation states in different tissues and disease cells compared to a reference sequence.

  17. Characterization of human gastric carcinoma-related methylation of 9 miR CpG islands and repression of their expressions in vitro and in vivo

    International Nuclear Information System (INIS)

    Du, Yantao; Liu, Zhaojun; Gu, Liankun; Zhou, Jing; Zhu, Bu-dong; Ji, Jiafu; Deng, Dajun

    2012-01-01

    Many miR genes are located within or around CpG islands. It is unclear whether methylation of these CpG islands represses miR transcription regularly. The aims of this study are to characterize gastric carcinoma (GC)-related methylation of miR CpG islands and its relationship with miRNA expression. Methylation status of 9 representative miR CpG islands in a panel of cell lines and human gastric samples (including 13 normal biopsies, 38 gastritis biopsies, 112 pairs of GCs and their surgical margin samples) was analyzed by bisulfite-DHPLC and sequencing. Mature miRNA levels were determined with quantitative RT-PCR. Relationships between miR methylation, transcription, GC development, and clinicopathological characteristics were statistically analyzed. Methylation frequency of 5 miR CpG islands (miR-9-1, miR-9-3, miR-137, miR-34b, and miR-210) gradually increased while the proportion of methylated miR-200b gradually decreased during gastric carcinogenesis (Ps < 0.01). More miR-9-1 methylation was detected in 62%-64% of the GC samples and 4% of the normal or gastritis samples (18/28 versus 2/48; Odds ratio, 41.4; P < 0.01). miR-210 methylation showed high correlation with H. pylori infection. miR-375, miR-203, and miR-193b methylation might be host adaptation to the development of GCs. Methylation of these miR CpG islands was consistently shown to significantly decrease the corresponding miRNA levels presented in human cell lines. The inverse relationship was also observed for miR-9-1, miR-9-3, miR-137, and miR-200b in gastric samples. Among 112 GC patients, miR-9-1 methylation was an independent favourable predictor of overall survival of GC patients in both univariate and multivariate analysis (P < 0.02). In conclusion, alteration of methylation status of 6 of 9 tested miR CpG islands was characterized in gastric carcinogenesis. miR-210 methylation correlated with H. pylori infection. miR-9-1 methylation may be a GC-specific event. Methylation of miR CpG islands may

  18. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    International Nuclear Information System (INIS)

    Dávalos-Salas, Mercedes; Furlan-Magaril, Mayra; González-Buendía, Edgar; Valdes-Quezada, Christian; Ayala-Ortega, Erandi; Recillas-Targa, Félix

    2011-01-01

    Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines. To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing

  19. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer.

    Science.gov (United States)

    Wu, Yu; Davison, Jerry; Qu, Xiaoyu; Morrissey, Colm; Storer, Barry; Brown, Lisha; Vessella, Robert; Nelson, Peter; Fang, Min

    2016-04-02

    To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.

  20. Research on DNA methylation of human osteosarcoma cell MGMT and its relationship with cell resistance to alkylating agents.

    Science.gov (United States)

    Guo, Jun; Cui, Qiu; Jiang, WeiHao; Liu, Cheng; Li, DingFeng; Zeng, Yanjun

    2013-08-01

    The objective of this study was to explore the O(6)-methylguanine-DNA methyltransferase (MGMT) gene methylation status and its protein expression, as well as the effects of demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-CdR) on MGMT gene expression and its resistance to alkylating agents, and to elucidate MGMT expression mechanism and significance in osteosarcoma. The human osteosarcoma cell lines Saos-2 and MG-63 were collected and treated with 5-Aza-CdR for 6 days. The cells not treated with 5-Aza-CdR were set as a negative control. The genomic DNA was extracted from the Saos-2 and MG-63 cells using methylation-specific PCR to detect the promoter CpG island methylation status of the MGMT gene. Cell sensitivity to alkylating agents before and after drug administration was detected by the MTT method. The variation in MGMT gene mRNA and protein was detected by reverse transcription PCR (RT-PCR) and Western blotting. The MGMT promoter gene of normal Saos-2 cells was methylated, with reduced MGMT mRNA and protein expression; the MGMT mRNA and protein expression of Saos-2 cells treated with 5-Aza-CdR was obviously enhanced, and its sensitivity to alkylating agents was reversed. Meanwhile, with promoter CpG island unmethylation of the MGMT gene, MGMT protein was expressed in the normal MG-63 cells and the MG-63 cells treated with 5-Aza-CdR, and both showed resistance to alkylating agents. The methylation status of the MGMT gene promoter in human osteosarcoma cells reflected the cells' ability to induce MGMT protein expression and can be used as a molecular marker to project the sensitivity of cancer tissues to alkylating agent drugs.

  1. Effect of DNA methylation on identification of aggressive prostate cancer.

    Science.gov (United States)

    Alumkal, Joshi J; Zhang, Zhe; Humphreys, Elizabeth B; Bennett, Christina; Mangold, Leslie A; Carducci, Michael A; Partin, Alan W; Garrett-Mayer, Elizabeth; DeMarzo, Angelo M; Herman, James G

    2008-12-01

    Biochemical (prostate-specific antigen) recurrence of prostate cancer after radical prostatectomy remains a major problem. Better biomarkers are needed to identify high-risk patients. DNA methylation of promoter regions leads to gene silencing in many cancers. In this study, we assessed the effect of DNA methylation on the identification of recurrent prostate cancer. We studied the methylation status of 15 pre-specified genes using methylation-specific polymerase chain reaction on tissue samples from 151 patients with localized prostate cancer and at least 5 years of follow-up after prostatectomy. On multivariate logistic regression analysis, a high Gleason score and involvement of the capsule, lymph nodes, seminal vesicles, or surgical margin were associated with an increased risk of biochemical recurrence. Methylation of CDH13 by itself (odds ratio 5.50, 95% confidence interval [CI] 1.34 to 22.67; P = 0.02) or combined with methylation of ASC (odds ratio 5.64, 95% CI 1.47 to 21.7; P = 0.01) was also associated with an increased risk of biochemical recurrence. The presence of methylation of ASC and/or CDH13 yielded a sensitivity of 72.3% (95% CI 57% to 84.4%) and negative predictive value of 79% (95% CI 66.8% to 88.3%), similar to the weighted risk of recurrence (determined from the lymph node status, seminal vesicle status, surgical margin status, and postoperative Gleason score), a powerful clinicopathologic prognostic score. However, 34% (95% CI 21% to 49%) of the patients with recurrence were identified by the methylation profile of ASC and CDH13 rather than the weighted risk of recurrence. The results of our study have shown that methylation of CDH13 alone or combined with methylation of ASC is independently associated with an increased risk of biochemical recurrence after radical prostatectomy even considering the weighted risk of recurrence score. These findings should be validated in an independent, larger cohort of patients with prostate cancer who have

  2. MicroRNA-219-2-3p functions as a tumor suppressor in gastric cancer and is regulated by DNA methylation.

    Directory of Open Access Journals (Sweden)

    Huizi Lei

    Full Text Available BACKGROUND AIMS: Gastric cancer is the most frequent gastrointestinal tumor in adults and is the most lethal form of human cancer. Despite of the improvements in treatments, the underlying mechanism of gastric carcinogenesis is not well known. To define novel modulators that regulate susceptibility to tumorgenesis, we focused on miR-219-2-3p. METHODS: Quantitative RT-PCR was employed to investigate the level of miR-219-2-3p in gastric cancer (GC tissues (n = 113 and their matched adjacent normal tissues (n = 113. In vitro cell proliferation, apoptosis assays, cell migration, and invasion assays were performed to elucidate biological effects of miR-219-2-3p. Since silencing of miRNA by promoter CpG island methylation may be an important mechanism in tumorgenesis, GC cells were treated with 5-aza-2'-deoxycytidine and trichostatin A, and expression changes of miR-219-2-3p were subsequently examined by quantitative RT-PCR. Finally, the methylation status of CpG island upstream of miR-219-2-3p was analyzed by methylation-specific PCR in GC tissues (n = 22. RESULTS: miR-219-2-3p was down-regulated in GC and cell lines. In addition, the experiments documented the lower expression of miR-219-2-3p in GC specimens with higher grade and later stage tumors. Meanwhile, miR-219-2-3p exerted antiproliferative, proapoptotic, and antimetastatic roles and reduced levels of p-ERK1/2 in GC cells. Furthermore, 5-aza-2'-deoxycytidine and trichostatin A increased the expression (~2 fold of miR-219-2-3p in GC cells. By methylation-specific PCR, DNA methylation in the upstream region of miR-219-2-3p was detected in both adjacent normal tissues and cancer tissues. As expected, the methylation level was considerably higher in the miR-219-2-3p down-regulated group than up-regulated group. CONCLUSIONS: miR-219-2-3p is potentially involved in gastric cancer progression and metastasis by regulating ERK1/2-related signal pathways, which may provide a novel therapeutic strategy

  3. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    Science.gov (United States)

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (ptrend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  4. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    Science.gov (United States)

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  5. Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics.

    Science.gov (United States)

    Panopoulos, Athanasia D; Smith, Erin N; Arias, Angelo D; Shepard, Peter J; Hishida, Yuriko; Modesto, Veronica; Diffenderfer, Kenneth E; Conner, Clay; Biggs, William; Sandoval, Efren; D'Antonio-Chronowska, Agnieszka; Berggren, W Travis; Izpisua Belmonte, Juan Carlos; Frazer, Kelly A

    2017-04-06

    Induced pluripotent stem cells (iPSCs) show variable methylation patterns between lines, some of which reflect aberrant differences relative to embryonic stem cells (ESCs). To examine whether this aberrant methylation results from genetic variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to investigate how genetic background, clone, and passage number contribute. We found that aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein motifs and affect gene expression. We classified differentially methylated CpGs as being associated with genetic and/or non-genetic factors (clone and passage), and we found that aberrant methylation preferentially occurs at CpGs associated with clone-specific effects. We further found that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites across different studies. Our results argue that a non-genetic biological mechanism underlies aberrant methylation in iPSCs and that it is likely based on a probabilistic process involving MYC that takes place during or shortly after reprogramming. Published by Elsevier Inc.

  6. Aberrant Methylation-Mediated Suppression of APAF1 in Myelodysplastic Syndrome.

    Science.gov (United States)

    Zaker, Farhad; Nasiri, Nahid; Amirizadeh, Naser; Razavi, Seyed Mohsen; Yaghmaie, Marjan; Teimoori-Toolabi, Ladan; Maleki, Ali; Bakhshayesh, Masoumeh

    2017-04-01

    Background: Myelodysplastic syndromes (MDSs) include a diverse group of clonal bone marrow disorders characterized by ineffective hematopoiesis and pancytopenia. It was found that down regulation of APAF1, a putative tumor suppressor gene (TSG), leads to resistance to chemotherapy and disease development in some cancers. In this study, we investigated the relation of APAF1 methylation status with its expression and clinicopathological factors in myelodysplastic syndrome (MDS) patients. Materials and Methods: Methylation Sensitive-High Resolution Melting Curve Analysis (MS-HRM) was employed in studying the methylation of CpG islands in the APAF1promoter region in MDS. Gene expression was analyzed by using real time RT-PCR. Results: 42.6% of patient samples were methylated in promoter region of APAF1analyzed, while methylation of the gene was not seen in controls (P<0.05). Methylation of APAF1was significantly associated with the suppression of its mRNA expression (P=0.00). The methylation status of APAF1in advanced-stage MDS patients (80%) was significantly higher than that of the early-stage MDS patients (28.2%) (P=0.001). The difference in frequency of hypermethylatedAPAF1 gene was significant between good (37.5%) and poor (85.71%) cytogenetic risk groups (P=0.043). In addition, a higher frequency of APAF1hypermethylation was observed in higher-risk MDS group (69.2%) compared to lower-risk MDS group (34.14%) (P=0.026). Conclusion: Our study indicated that APAF1hypermethylation in MDS was associated to high-risk disease classified according to the IPSS, WHO and cytogenetic risk.

  7. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    Science.gov (United States)

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  8. A multiplex microplatform for the detection of multiple DNA methylation events using gold-DNA affinity.

    Science.gov (United States)

    Sina, Abu Ali Ibn; Foster, Matthew Thomas; Korbie, Darren; Carrascosa, Laura G; Shiddiky, Muhammad J A; Gao, Jing; Dey, Shuvashis; Trau, Matt

    2017-10-07

    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl -1 of DNA with no sequencing requirement.

  9. MIRA: An R package for DNA methylation-based inference of regulatory activity.

    Science.gov (United States)

    Lawson, John T; Tomazou, Eleni M; Bock, Christoph; Sheffield, Nathan C

    2018-03-01

    DNA methylation contains information about the regulatory state of the cell. MIRA aggregates genome-scale DNA methylation data into a DNA methylation profile for independent region sets with shared biological annotation. Using this profile, MIRA infers and scores the collective regulatory activity for each region set. MIRA facilitates regulatory analysis in situations where classical regulatory assays would be difficult and allows public sources of open chromatin and protein binding regions to be leveraged for novel insight into the regulatory state of DNA methylation datasets. R package available on Bioconductor: http://bioconductor.org/packages/release/bioc/html/MIRA.html. nsheffield@virginia.edu.

  10. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker.

    Directory of Open Access Journals (Sweden)

    Monica Molano

    Full Text Available Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC are associated with human papillomavirus (HPV. Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS and laser capture microdissected (LCM tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL.

  11. Association of diminished expression of RASSF1A with promoter methylation in primary gastric cancer from patients of central China

    Directory of Open Access Journals (Sweden)

    Zhou Feng

    2007-07-01

    Full Text Available Abstract Background Although methylation-mediated inactivation of expression of RASSF1A, a candidate tumor suppressor gene, has been observed in several human cancers, the data concerning alteration of RASSF1A expression and methylation in Chinese primary gastric cancer are scarce. Moreover, direct evidence showing the association between protein expression of RASSF1A and primary human cancers is lacking. The aim of this study was to investigate RASSF1A expression in tissue of primary gastric cancer (GC at mRNA and protein levels, and to establish the possible relationship between DNA methylation status and protein expression of RASSF1A in Chinese. Methods Fifty-four patients with primary gastric cancers were included in the study of RASSF1A mRNA expression and methylation status between the cancer tissue and the corresponding adjacent normal tissue. 20 out of 54 patients were included for study of RASSF1A protein expression. The expression of RASSF1A at mRNA and protein levels was determined by RT-PCR and Western-blotting, respectively. The RASSF1A promoter methylation was detected by methylation-specific PCR. Results RASSF1A mRNA and protein expressions in GC were reduced significantly with comparison to the corresponding normal tissues (OD value: 0.2589 ± 0.2407 vs 0.5448 ± 0.2971, P P P P Conclusion Expression of RASSF1A was reduced in tissue of GC at mRNA and protein levels. Diminished expression of RASSF1A was associated with the promoter methylation.

  12. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  13. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    Science.gov (United States)

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  14. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  15. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation.

    Directory of Open Access Journals (Sweden)

    Yasuko eKikuchi

    2013-12-01

    Full Text Available Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7 was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2'-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P=0.04, Fisher’s exact test. Thus we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer.

  16. DNA methylation analysis in rat kidney epithelial cells exposed to 3-MCPD and glycidol.

    Science.gov (United States)

    Senyildiz, Mine; Alpertunga, Buket; Ozden, Sibel

    2017-10-01

    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been regarded as a rat carcinogen, which is known to induce Leydig-cell and mammary gland tumors in males, as well as kidney tumors in both genders. 3-MCPD is highly suspected to be a non-genotoxic carcinogen. 2,3-Epoxy-1-propanol (glycidol) can be formed via dehalogenation from 3-MCPD. We aimed to investigate the cytotoxic effects of 3-MCPD and glycidol, then to demonstrate the possible epigenetic mechanisms with global and gene-specific DNA methylation in rat kidney epithelial cells (NRK-52E). IC 50 value of 3-MCPD was determined as 48 mM and 41.39 mM, whereas IC 50 value of glycidol was 1.67 mM and 1.13 mM by MTT and NRU test, respectively. Decreased global DNA methylation at the concentrations of 100 μM and 1000 μM for 3-MCPD and 100 μM and 500 μM for glycidol were observed after 48 h exposure by using 5-methylcytosine (5-mC) ELISA kit. Methylation changes were detected in promoter regions of c-myc and Rassf1a in 3-MCPD and glycidol treated NRK-52E cells by using methylation-specific PCR (MSP), whereas changes on gene expression of c-myc and Rassf1a were observed by using real-time PCR. However, e-cadherin, p16, VHL and p15 genes were unmethylated in their CpG promoter regions in response to treatment with 3-MCPD and glycidol. Alterations in DNA methylation might be key events in the toxicity of 3-MCPD and glycidol.

  17. Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR).

    Science.gov (United States)

    Rigotto, C; Sincero, T C M; Simões, C M O; Barardi, C R M

    2005-01-01

    We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.

  18. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    Science.gov (United States)

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Methylation of Promoter Regions of Genes of the Human Intrauterine Renin Angiotensin System and Their Expression

    Directory of Open Access Journals (Sweden)

    Shane D. Sykes

    2015-01-01

    Full Text Available The intrauterine renin angiotensin system (RAS is implicated in placentation and labour onset. Here we investigate whether promoter methylation of RAS genes changes with gestation or labour and if it affects gene expression. Early gestation amnion and placenta were studied, as were term amnion, decidua, and placenta collected before labour (at elective caesarean section or after spontaneous labour and delivery. The expression and degree of methylation of the prorenin receptor (ATP6AP2, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AGTR1, and two proteases that can activate prorenin (kallikrein, KLK1, and cathepsin D, CTSD were measured by qPCR and a DNA methylation array. There was no effect of gestation or labour on the methylation of RAS genes and CTSD. Amnion and decidua displayed strong correlations between the percent hypermethylation of RAS genes and CTSD, suggestive of global methylation. There were no correlations between the degree of methylation and mRNA abundance of any genes studied. KLK1 was the most methylated gene and the proportion of hypermethylated KLK1 alleles was lower in placenta than decidua. The presence of intermediate methylated alleles of KLK1 in early gestation placenta and in amnion after labour suggests that KLK1 methylation is uniquely dynamic in these tissues.

  20. Investigating the Connection between hgcA and Mercury Methylation Rates in the Environment

    Science.gov (United States)

    King, A. J.; Christensen, G. A.; Wymore, A. M.; Podar, M.; Hurt, R. A., Jr.; Brown, S. D.; Palumbo, A. V.; Bender, K. S.; Fields, M. W.; Gilmour, C. C.; Santillan, E. F. U.; Brandt, C. C.; Elias, D. A.

    2015-12-01

    Methylmercury (MeHg) is a common contaminant in many natural environments and is known to be a neurotoxin that impacts human health through bioaccumulation in food webs. The anaerobic conversion of mercury (Hg) to MeHg by microorganisms requires the presence of both HgcA and HgcB. In an effort to link hgcAB abundance and diversity with MeHg generation rates, we performed metagenomic and 16S rRNA sequencing as well as qualitative polymerase chain reaction (qPCR) of hgcA on samples from eight mercury-contaminated sites ranging from tidal marshes to Arctic permafrost. Custom algorithms were developed to filter hgcA sequences from the metagenomes, and to then select for those lineages that also contained hgcB. In the metagenomes, the Deltaproteobacteria dominated the pool of hgcAB from all eight sites; however, Firmicutes and methanogenic Archaea were each 50% less abundant. In parallel to the metagenomics studies, clone libraries of hgcAB were constructed for each site. This more cost-effective approach allowed us to verify the identity of the hgcAB+ organism, and yielded similar results to the metagenomes. Additionally, to determine the accuracy of our new degenerate qPCR primer sets (three sets specific to the three major clades of mercury methylators) in the environment, qPCR hgcA abundance values were compared to those derived from the metagenomes. Finally, we present evidence that hgcA abundance can correlate with MeHg concentrations but that the relationship is influenced by local environmental conditions. Our work demonstrates the relative efficacy of genetic methods for assessing the presence of mercury-methylators in eight different environments contaminated with mercury as well as the strength of association between abundance of hgcA and the rate of mercury methylation.

  1. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass

    DEFF Research Database (Denmark)

    Kirchner, Henriette; Nylen, Carolina; Laber, Samantha

    2014-01-01

    methylation of selected promoter regions was measured in whole blood before and after VLCD. A subgroup of seven patients was studied 1–2 days and 12± 3 months after RYGB. Promoter methylation was measured using methylated DNA capture and quantitative real-time polymerase chain reaction (PCR). Results VLCD....... The objective of this study was to test whether promoter methylation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1 A), pyruvate dehydrogenase kinase isozyme-4 (PDK4), transcription factor A (TFAM), interleukin-1 beta (IL1 B), interleukin-6 (IL6) and tumor necrosis factor...... decreased promoter methylation of PPARGC1 A. Methylation of PPARGC1 A, TFAM, IL1 B, IL6, and TNF promoters was changed two days after RYGB. Similar changes were also seen on day one after cholecystectomy. Moreover, methylation increased in PDK4, IL1 B, IL6, and TNF promoters 12 months after RYGB. Conclusion...

  2. Hepatitis B virus X protein suppresses caveolin-1 expression in hepatocellular carcinoma by regulating DNA methylation

    International Nuclear Information System (INIS)

    Yan, Jun; Lu, Qian; Dong, Jiahong; Li, Xiaowu; Ma, Kuansheng; Cai, Lei

    2012-01-01

    To understand the molecular mechanisms of caveolin-1 downregulation by hepatitis B virus X protein (HBx). The DNA methylation status of the caveolin-1 promoter was examined by nested methylation-specific PCR of 33 hepatitis B virus (HBV)-infected hepatocellular carcinoma (HCC) samples. The SMMC-7721 hepatoma cell line was transfected with a recombinant HBx adenoviral vector, and the effects of HBx protein on caveolin-1 expression and promoter methylation were examined and confirmed by sequencing. A reporter gene containing the caveolin-1 promoter region was constructed, and the effects of HBx on the transcriptional activity of the promoter were also studied. Methylation of the caveolin-1 promoter was detected in 84.8% (28/33) of HBV-infected HCC samples. Expression of caveolin-1 was significantly downregulated (P = 0.022), and multiple CpG sites in the promoter region of caveolin-1 were methylated in SMMC-7721 cells after HBx transfection. Transfected HBx significantly suppressed caveolin-1 promoter activity (P = 0.001). HBx protein induces methylation of the caveolin-1 promoter region and suppresses its expression

  3. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  4. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    International Nuclear Information System (INIS)

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    2015-01-01

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  5. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail: krobitsc@molgen.mpg.de

    2015-05-15

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  6. Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis.

    Science.gov (United States)

    Yoshida, Takeichi; Kato, Jun; Maekita, Takao; Yamashita, Satoshi; Enomoto, Shotaro; Ando, Takayuki; Niwa, Tohru; Deguchi, Hisanobu; Ueda, Kazuki; Inoue, Izumi; Iguchi, Mikitaka; Tamai, Hideyuki; Ushijima, Toshikazu; Ichinose, Masao

    2013-10-01

    Chronic inflammation triggered by Helicobacter pylori causes altered DNA methylation in stomach mucosae, which is deeply involved in gastric carcinogenesis. This study aimed to elucidate the correlation between altered mucosal DNA methylation levels and activity of H. pylori-related gastritis, because inflammatory activity shows particular correlations with the development of diffuse-type cancer. Methylation levels in stomach mucosae of 78 healthy volunteers were determined by real-time methylation-specific PCR or bisulfite pyrosequencing. Examined loci were the promoter CpG islands of six genes (FLNc, HAND1, THBD, p41ARC, HRASLS, and LOX) and the CpG sites of non-coding repetitive elements (Alu and Satα) that are reportedly altered by H. pylori infection. Activity of H. pylori-related gastritis was evaluated using two serum markers: H. pylori antibody titer and pepsinogen II. Methylation levels of the six CpG islands were consistently increased, and those of the two repetitive elements were consistently decreased in a stepwise manner with the activity of gastric inflammation as represented by serum marker levels. Each serum marker level was well correlated with the overall DNA methylation status of stomach mucosa, and these two serologic markers were additive in the detection of the mucosa with severely altered DNA methylation. Alteration in mucosal DNA methylation level was closely correlated with activity of H. pylori-related gastritis as evaluated by serum markers. The observed correlation between altered DNA methylation levels and activity of H. pylori-related gastritis appears to be one of the relevant molecular mechanisms underlying the development of diffuse-type cancer.

  7. Clinical Relevance of CDH1 and CDH13 DNA-Methylation in Serum of Cervical Cancer Patients

    Directory of Open Access Journals (Sweden)

    Günther K. Bonn

    2012-07-01

    Full Text Available This study was designed to investigate the DNA-methylation status of E-cadherin (CDH1 and H-cadherin (CDH13 in serum samples of cervical cancer patients and control patients with no malignant diseases and to evaluate the clinical utility of these markers. DNA-methylation status of CDH1 and CDH13 was analyzed by means of MethyLight-technology in serum samples from 49 cervical cancer patients and 40 patients with diseases other than cancer. To compare this methylation analysis with another technique, we analyzed the samples with a denaturing high performance liquid chromatography (DHPLC PCR-method. The specificity and sensitivity of CDH1 DNA-methylation measured by MethyLight was 75% and 55%, and for CDH13 DNA-methylation 95% and 10%. We identified a specificity of 92.5% and a sensitivity of only 27% for the CDH1 DHPLC-PCR analysis. Multivariate analysis showed that serum CDH1 methylation-positive patients had a 7.8-fold risk for death (95% CI: 2.2–27.7; p = 0.001 and a 92.8-fold risk for relapse (95% CI: 3.9–2207.1; p = 0.005. We concluded that the serological detection of CDH1 and CDH13 DNA-hypermethylation is not an ideal diagnostic tool due to low diagnostic specificity and sensitivity. However, it was validated that CDH1 methylation analysis in serum samples may be of potential use as a prognostic marker for cervical cancer patients.

  8. Predictive value of CHFR and MLH1 methylation in human gastric cancer.

    Science.gov (United States)

    Li, Yazhuo; Yang, Yunsheng; Lu, Youyong; Herman, James G; Brock, Malcolm V; Zhao, Po; Guo, Mingzhou

    2015-04-01

    Gastric carcinoma (GC) has one of the highest mortality rates of cancer diseases and has a high incidence rate in China. Palliative chemotherapy is the main treatment for advanced gastric cancer. It is necessary to compare the effectiveness and toxicities of different regimens. This study explores the possibility of methylation of DNA damage repair genes serving as a prognostic and chemo-sensitive marker in human gastric cancer. The methylation status of five DNA damage repair genes (CHFR, FANCF, MGMT, MLH1, and RASSF1A) was detected by nested methylation-specific PCR in 102 paraffin-embedded gastric cancer samples. Chi-square or Fisher's exact tests were used to evaluate the association of methylation status and clinic-pathological factors. The Kaplan-Meier method and Cox proportional hazards models were employed to analyze the association of methylation status and chemo-sensitivity. The results indicate that CHFR, MLH1, RASSF1A, MGMT, and FANCF were methylated in 34.3% (35/102), 21.6% (22/102), 12.7% (13/102), 9.8% (10/102), and 0% (0/102) of samples, respectively. No association was found between methylation of CHFR, MLH1, RASSF1A, MGMT, or FANCF with gender, age, tumor size, tumor differentiation, lymph node metastasis, and TNM stage. In docetaxel-treated gastric cancer patients, resistance to docetaxel was found in CHFR unmethylated patients by Cox proportional hazards model (HR 0.243, 95% CI, 0.069-0.859, p = 0.028), and overall survival is longer in the CHFR methylated group compared with the CHFR unmethylated group (log-rank, p = 0.036). In oxaliplatin-treated gastric cancer patients, resistance to oxaliplatin was found in MLH1 methylated patients (HR 2.988, 95% CI, 1.064-8.394, p = 0.038), and overall survival was longer in the MLH1 unmethylated group compared with the MLH1 methylated group (log-rank, p = 0.046). CHFR is frequently methylated in human gastric cancer, and CHFR methylation may serve as a docetaxel-sensitive marker. MLH1 methylation was

  9. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  10. Evaluation of PCR and multiplex PCR in relation to nested PCR for diagnosing Theileria equi

    Directory of Open Access Journals (Sweden)

    Danielle C. Leal

    2011-07-01

    Full Text Available Conventional PCR (PCRTeq for diagnosing Theileria equi and multiplex PCR (M/PCRTeq-Bc for diagnosing T. equi and Babesia caballi were comparatively evaluated with nested PCR (N/PCR-Teq for diagnosing equine piroplasmosis. In DNA sensitivity determinations, in multiple dilutions of equine blood that had tested positive for T. equi, PCR-Teq and N/PCR-Teq detected hemoparasite DNA in the larger dilutions (1:128, but did not differ significantly from the M/PCRTeq-Bc (1:64. In analyses on equine serum tested by ELISA, there was high agreement between this serological test and PCR-Teq (k = 0.780 and moderate agreement with N/PCR-Teq (k = 0.562 and M/PCRTeq-Bc (k = 0.488. PCR-Teq found a higher frequency of T. equi both in extensively and intensively reared horses, but this was not significant in relation to N/PCR-Teq (P>0.05, and both PCRs indicated that there was an endemic situation regarding T. equi in the population of horses of this sample. PCR-Teq was only significantly different from M/PCR-Teq-Bc (P<0.05. PCR-Teq presented high sensitivity and specificity, comparable to N/PCR-Teq, but with the advantage of higher speed in obtaining results and lower costs and risks of laboratory contamination. This accredits PCR-Teq for epidemiological studies and for determinations on affected horses.

  11. DNA Methylation Changes in the IGF1R Gene in Birth Weight Discordant Adult Monozygotic Twins

    DEFF Research Database (Denmark)

    Tsai, Pei-Chien; Van Dongen, Jenny; Tan, Qihua

    2015-01-01

    persists into adulthood. To investigate this further, we performed epigenome-wide association analyses of blood DNA methylation using Infinium HumanMethylation450 BeadChip profiles in 71 adult monozygotic (MZ) twin pairs who were extremely discordant for birth weight. A signal mapping to the IGF1R gene (cg...... were not significant. However, a meta-analysis across the four independent samples, in total 216 birth-weight discordant MZ twin pairs, showed a significant positive association between birth weight and DNA methylation differences at IGF1R (random-effects meta-analysis p = .04), and the effect...... was particularly pronounced in older twins (random-effects meta-analysis p = .008, 98 older birth-weight discordant MZ twin pairs). The results suggest that severe intra-uterine growth differences (birth weight discordance >20%) are associated with methylation changes in the IGF1R gene in adulthood, independent...

  12. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos.

    Science.gov (United States)

    Sussarellu, Rossana; Lebreton, Morgane; Rouxel, Julien; Akcha, Farida; Rivière, Guillaume

    2018-03-01

    Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L -1 Cu 2+ ) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L -1 , while significant genotoxic effects were detected at 1 μg L -1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such

  13. DNA methylation of angiotensin II receptor gene in nonalcoholic steatohepatitis-related liver fibrosis.

    Science.gov (United States)

    Asada, Kiyoshi; Aihara, Yosuke; Takaya, Hiroaki; Noguchi, Ryuichi; Namisaki, Tadashi; Moriya, Kei; Uejima, Masakazu; Kitade, Mitsuteru; Mashitani, Tsuyoshi; Takeda, Kosuke; Kawaratani, Hideto; Okura, Yasushi; Kaji, Kosuke; Douhara, Akitoshi; Sawada, Yasuhiko; Nishimura, Norihisa; Seki, Kenichiro; Mitoro, Akira; Yamao, Junichi; Yoshiji, Hitoshi

    2016-10-08

    To clarify whether Agtr1a methylation is involved in the development of nonalcoholic steatohepatitis (NASH)-related liver fibrosis in adult rats. A choline-deficient amino acid (CDAA) diet model was employed for methylation analysis of NASH-related liver fibrosis. Agtr1a methylation levels were measured in the livers of CDAA- and control choline-sufficient amino acid (CSAA)-fed rats for 8 and 12 wk using quantitative methylation-specific PCR. Hepatic stellate cells (HSCs) were isolated by collagenase digestion of the liver, followed by centrifugation of the crude cell suspension through a density gradient. Agtr1a methylation and its gene expression were also analyzed during the activation of HSCs. The mean levels of Agtr1a methylation in the livers of CDAA-fed rats (11.5% and 18.6% at 8 and 12 wk, respectively) tended to be higher ( P = 0.06 and 0.09, respectively) than those in the livers of CSAA-fed rats (2.1% and 5.3% at 8 and 12 wk, respectively). Agtr1a was not methylated at all in quiescent HSCs, but was clearly methylated in activated HSCs (13.8%, P < 0.01). Interestingly, although Agtr1a was hypermethylated, the Agtr1a mRNA level increased up to 2.2-fold ( P < 0.05) in activated HSCs compared with that in quiescent HSCs, suggesting that Agtr1a methylation did not silence its expression but instead had the potential to upregulate its expression. These findings indicate that Agtr1a methylation and its upregulation of gene expression are associated with the development of NASH-related liver fibrosis. This is the first study to show that DNA methylation is potentially involved in the regulation of a renin-angiotensin system-related gene expression during liver fibrosis.

  14. Region of interest methylation analysis: a comparison of MSP with MS-HRM and direct BSP.

    Science.gov (United States)

    Akika, Reem; Awada, Zainab; Mogharbil, Nahed; Zgheib, Nathalie K

    2017-07-01

    The aim of this study was to compare and contrast three DNA methylation methods of a specific region of interest (ROI): methylation-specific PCR (MSP), methylation-sensitive high resolution melting (MS-HRM) and direct bisulfite sequencing (BSP). The methylation of a CpG area in the promoter region of Estrogen receptor alpha (ESR1) was evaluated by these three methods with samples and standards of different methylation percentages. MSP data were neither reproducible nor sensitive, and the assay was not specific due to non-specific binding of primers. MS-HRM was highly reproducible and a step forward into categorizing the methylation status of the samples as percent ranges. Direct BSP was the most informative method regarding methylation percentage of each CpG site. Though not perfect, it was reproducible and sensitive. We recommend the use of either method depending on the research question and target amplicon, and provided that the designed primers and expected amplicons are within recommendations. If the research question targets a limited number of CpG sites and simple yes/no results are enough, MSP may be attempted. For short amplicons that are crowded with CpG sites and of single melting domain, MS-HRM may be the method of choice though it only indicates the overall methylation percentage of the entire amplicon. Although the assay is highly reproducible, being semi-quantitative makes it of lesser interest to study ROI methylation of samples with little methylation differences. Direct BSP is a step forward as it gives information about the methylation percentage at each CpG site.

  15. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2017-08-01

    Full Text Available Non-target-site resistance (NTSR to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol. population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK, water-only control (WCK, and mesosulfuron-methyl treatment (T of R and susceptible (S. Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450 genes, two glutathione S-transferase (GST genes, two glucosyltransferase (GT genes, two ATP-binding cassette (ABC transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence

  16. Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes

    International Nuclear Information System (INIS)

    Kaup, Sahana; Grandjean, Valerie; Mukherjee, Rajarshi; Kapoor, Aparna; Keyes, Edward; Seymour, Colin B.; Mothersill, Carmel E.; Schofield, Paul N.

    2006-01-01

    The mechanism by which radiation-induced genomic instability is initiated, propagated and effected is currently under intense scrutiny. We have investigated the potential role of altered genomic methylation patterns in the cellular response to irradiation and have found evidence for widespread dysregulation of CpG methylation persisting up to 20 population doublings post-irradiation. Similar effects are seen with cells treated with medium from irradiated cells (the 'bystander effect') rather than subjected to direct irradiation. Using an arbitrarily primed methylation sensitive PCR screening method we have demonstrated that irradiation causes reproducible alterations in the methylation profile of a human keratinocyte cell line, HPV-G, and have further characterised one of these sequences as being a member of a retrotransposon element derived sequence family on chromosome 7; MLT1A. Multiple changes were also detected in the screen, which indicate that although the response of cells is predominantly hypermethylation, specific hypomethylation occurs as well. Sequence specific changes are also reported in the methylation of the pericentromeric SAT2 satellite sequence. This is the first demonstration that irradiation results in the induction of heritable methylation changes in mammalian cells, and provides a link between the various non-radiological instigators of genomic instability, the perpetuation of the unstable state and several of its manifestations

  17. Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers

    International Nuclear Information System (INIS)

    Notaro, Sara; Reimer, Daniel; Fiegl, Heidi; Schmid, Gabriel; Wiedemair, Annamarie; Rössler, Julia; Marth, Christian; Zeimet, Alain Gustave

    2016-01-01

    In this retrospective study we evaluated the respective correlations and clinical relevance of FOLR1 mRNA expression, FOLR1 promoter specific methylation and global DNA hypomethylation in type I and type II ovarian cancer. Two hundred fifty four ovarian cancers, 13 borderline tumours and 60 samples of healthy fallopian epithelium and normal ovarian epithelium were retrospectively analysed for FOLR1 expression with RT-PCR. FOLR1 DNA promoter methylation and global DNA hypomethylation (measured by means of LINE1 DNA hypomethylation) were evaluated with MethyLight technique. No correlation between FOLR1 mRNA expression and its specific promoter DNA methylation was found neither in type I nor in type II cancers, however, high FOLR1 mRNA expression was found to be correlated with global DNA hypomethylation in type II cancers (p = 0.033). Strong FOLR1 mRNA expression was revealed for Grades 2-3, FIGO stages III-IV, residual disease > 0, and serous histotype. High FOLR1 expression was found to predict increased platinum sensitivity in type I cancers (odds ratio = 3.288; 1.256-10.75; p = 0.020). One-year survival analysis showed in type I cancers an independent better outcome for strong expression of FOLR1 in FIGO stage III and IV. For the entire follow up period no significant independent outcome for FOLR1 expression was revealed. In type I cancers LINE 1 DNA hypomethylation was found to exhibit a worse PFS and OS which were confirmed to be independent in multivariate COX regression model for both PFS (p = 0.026) and OS (p = 0.012). No correlations were found between FOLR1 expression and its specific promoter methylation, however, high FOLR1 mRNA expression was associated with DNA hypomethylation in type II cancers. FOLR1 mRNA expression did not prove to predict clinical outcome in type II cancers, although strong FOLR1 expression generally denotes ovarian cancers with highly aggressive phenotype. In type I cancers, however, strong FOLR1 expression has been found to be a

  18. Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Lv Shunli

    2010-03-01

    Full Text Available Abstract Background The secreted protein acidic and rich in cysteine (SPARC plays a pivotal role in regulating cell-matrix interactions and tumor angiogenesis, proliferation, and migration. Detection of SPARC gene methylation may be useful as a tumorigenesis marker for early detection of pancreatic cancer. Methods Methylation of the SPARC gene transcriptional regulation region (TRR was detected using bisulfite-specific (BSP PCR-based sequencing analysis in 40 cases of pancreatic cancer and the adjacent normal tissues, 6 chronic pancreatitis tissues, and 6 normal pancreatic tissues. BSP cloning-based sequencing analysis was also performed in selected cases. Clinicopathological data from the cancer patients were collected and analyzed. Results Analysis of SPARC gene TRR methylation showed two hypermethylation wave peak regions: CpG Region 1 (CpG site 1-7 and CpG Region 2 (CpG site 8-12. Pancreatic tissues have shown methylation in both regions with gradual increases from normal, chronic pancreatitis, and adjacent normal tissues to cancerous tissues. However, Methylation of CpG Region 2 was more sensitive than CpG Region 1 in pancreatic tumorigenesis. Furthermore, the methylation level of CpG Region 2 was associated with increased tumor size and exposure to the risk factors (tobacco smoke and alcohol consumption for developing pancreatic cancer. Conclusion Methylation of the SPARC gene, specifically CpG Region 2, may be an early event during pancreatic tumorigenesis and should be further evaluated as a tumorigenesis marker for early detection of pancreatic cancer.

  19. The Clinical Implications of Methylated p15 and p73 Genes in Adult Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    ABD EL-HAMID, Th.M.; SHERISHER, M.A.; MOSSALLAM, Gh.I.

    2010-01-01

    Aberrant methylation of promoter associated CpG islands is an epigenetic modification of DNA which is associated with gene silencing. It plays an important role in the leukemia pathogenesis. This phenomenon is frequently observed in acute lymphoblastic leukemia (ALL) and results in the functional inactivation of its associated genes. The aim of this study is to investigate the frequency and the prognostic impact of p15 and p73 genes methylation in adult acute lymphoblastic leukemia patients. Patients and Methods: Methylation-specific polymerase chain reaction (PCR) was used to analyze methylation of the p15 and p73 genes in 51 newly diagnosed adult ALL patients. Results: The methylation frequencies of p15 and p73 genes at diagnosis were 41.2% and 27.5% respectively, while concomitant methylation was detected in 14% of the patients. Concomitant methylation of p15 and p73 genes was associated with significant lower rate of CR compared to patients without methylation (57% versus 90%), p=0.008. Overall survival (OS) was not affected by p15 methylation, but was poorer with p73 methylation and the difference was near significant (p=0.059). For patients without meyhylation, the survival benefit was significant when compared to patients with p15, p73 or both genes methylation (p=0.047). The leukemia free survival was not affected by the methylation status of single gene p15 or p73, but tended to be worse in patients with methylated p15, p73 or both genes when compared to patients without methylation (p= 0.08). Conclusion: Aberrant p73 promoter methylation is a potential prognostic factor in adult ALL patients. P15 methylation is frequent in Egyptian adult ALL patients, its concomitant methylation with p73 is of poor prognostic significance. Identification of these molecular targets improve risk assessment and selection of appropriate therapy.

  20. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP- primary glioblastoma.

    Science.gov (United States)

    Zhang, Wei; Yan, Wei; You, Gan; Bao, Zhaoshi; Wang, Yongzhi; Liu, Yanwei; You, Yongping; Jiang, Tao

    2013-01-01

    To date, the aberrations in the DNA methylation patterns that are associated with different prognoses of G-CIMP- primary GBMs remain to be elucidated. Here, DNA methylation profiling of primary GBM tissues from 13 long-term survivors (LTS; overall survival ⩾18months) and 20 short-term survivors (STS; overall survival ⩽9months) was performed. Then G-CIMP+ samples were excluded. The differentially expressed CpG loci were identified between residual 18 STS and 9 LTS G-CIMP- samples. Methylation levels of 11 CpG loci (10genes) were statistically significantly lower, and 43 CpG loci (40genes) were statistically significantly higher in the tumor tissues of LTS than those of STS G-CIMP- samples (PCIMP- samples, 3 CpG loci localized in the promoter of ALDH1A3. Furthermore, using an independent validation cohort containing 37 primary GBM samples without IDH1 mutation and MGMT promoter methylation, the hypermethylation status of ALDH1A3 promoter predicted a better prognosis with an accompanied low expression of ALDH1A3 protein. Taken together, our results defined prognosis-related methylation signatures systematically for the first time in G-CIMP- primary GBMs. ALDH1A3 promoter methylation conferred a favorable prognosis in G-CIMP- primary GBMs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Association of promoter methylation and 32-bp deletion of the PTEN gene with susceptibility to metabolic syndrome.

    Science.gov (United States)

    Hashemi, Mohammad; Rezaei, Hamzeh; Eskandari-Nasab, Ebrahim; Kaykhaei, Mahmoud-Ali; Taheri, Mohsen

    2013-01-01

    Metabolic syndrome (MeS), a cluster of several metabolic disorders, is increasingly being recognized as a risk factor for type II diabetes (T2D) and cardiovascular disease. Genetic and epigenetic alteration of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) has been associated with components of MeS. The aim of the present study was to investigate the possible association of a 32-bp deletion polymorphism and promoter methylation of the PTEN gene with MeS. DNA was extracted from the peripheral blood of 151 subjects with and 149 subjects without MeS. The 32-bp deletion variant of PTEN was detected by polymerase chain reaction (PCR) and PTEN promoter methylation was defined by a nested methylation‑specific PCR (MSP) method. No significant differences were found in the allelic and genotypic frequencies of the 32-bp deletion variant of PTEN between the groups [odds ratio (OR), 0.77; 95% confidence interval (CI), 0.41-1.45; P=0.431]. However, patients with MeS were identified to have lower levels of PTEN promoter hypermethylation than subjects without MeS. Promoter methylation may be a protective factor against susceptibility to MeS (OR, 0.52; 95% CI, 0.29-0.92; P=0.029). Our findings suggest that PTEN promoter methylation may be a mechanism for PTEN downregulation or silencing in MeS, which remains to be fully clarified.

  2. Study of the Role of siRNA Mediated Promoter Methylation in DNMT3B Knockdown and Alteration of Promoter Methylation of CDH1, GSTP1 Genes in MDA-MB -453 Cell Line.

    Science.gov (United States)

    Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas

    2017-01-01

    Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.

  3. The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation

    International Nuclear Information System (INIS)

    Sernbo, Sandra; Gustavsson, Elin; Brennan, Donal J; Gallagher, William M; Rexhepaj, Elton; Rydnert, Frida; Jirström, Karin; Borrebaeck, Carl AK; Ek, Sara

    2011-01-01

    The neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking. SOX11 expression and clinicopathological data was compared using χ 2 test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation. SOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5'-Aza-2'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11. SOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours

  4. The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation

    LENUS (Irish Health Repository)

    Sernbo, Sandra

    2011-09-24

    Abstract Background The neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking. Methods SOX11 expression and clinicopathological data was compared using χ2 test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation. Results SOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5\\'-Aza-2\\'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11. Conclusions SOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours.

  5. Pros and cons of methylation-based enrichment methods for ancient DNA

    Science.gov (United States)

    Seguin-Orlando, Andaine; Gamba, Cristina; Sarkissian, Clio Der; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D.; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford,, Thomas W.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic

    2015-01-01

    The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions. PMID:26134828

  6. Methylation of class II transactivator gene promoter IV is not associated with susceptibility to Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lincoln Matthew R

    2008-07-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a complex trait in which alleles at or near the class II loci HLA-DRB1 and HLA-DQB1 contribute significantly to genetic risk. The MHC class II transactivator (MHC2TA is the master controller of expression of class II genes, and methylation of the promoter of this gene has been previously been shown to alter its function. In this study we sought to assess whether or not methylation of the MHC2TA promoter pIV could contribute to MS disease aetiology. Methods In DNA from peripheral blood mononuclear cells from a sample of 50 monozygotic disease discordant MS twins the MHC2TA promoter IV was sequenced and analysed by methylation specific PCR. Results No methylation or sequence variation of the MHC2TA promoter pIV was found. Conclusion The results of this study cannot support the notion that methylation of the pIV promoter of MHC2TA contributes to MS disease risk, although tissue and timing specific epigenetic modifications cannot be ruled out.

  7. Identification of Differentially Methylated Sites with Weak Methylation Effects

    Directory of Open Access Journals (Sweden)

    Hong Tran

    2018-02-01

    Full Text Available Deoxyribonucleic acid (DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same

  8. Reduced DNA methylation of FKBP5 in Cushing's syndrome.

    Science.gov (United States)

    Resmini, Eugenia; Santos, Alicia; Aulinas, Anna; Webb, Susan M; Vives-Gilabert, Yolanda; Cox, Olivia; Wand, Gary; Lee, Richard S

    2016-12-01

    FKBP5 encodes a co-chaperone of HSP90 protein that regulates intracellular glucocorticoid receptor sensitivity. When it is bound to the glucocorticoid receptor complex, cortisol binds with lower affinity to glucocorticoid receptor. Cushing's syndrome is associated with memory deficits, smaller hippocampal volumes, and wide range of cognitive impairments. We aimed at evaluating blood DNA methylation of FKBP5 and its relationship with memory and hippocampal volumes in Cushing's syndrome patients. Polymorphism rs1360780 in FKBP5 has also been assessed to determine whether genetic variations can also govern CpG methylation. Thirty-two Cushing's syndrome patients and 32 matched controls underwent memory tests, 3-Tesla MRI of the brain, and DNA extraction from total leukocytes. DNA samples were bisulfite treated, PCR amplified, and pyrosequenced to assess a total of 41CpG-dinucleotides in the introns 1, 2, 5, and 7 of FKBP5. Significantly lower intronic FKBP5 DNA methylation in CS patients compared to controls was observed in ten CpG-dinucleotides. DNA methylation at these CpGs correlated with left and right HV (Intron-2-Region-2-CpG-3: LHV, r = 0.73, p = 0.02; RHV, r = 0.58, p = 0.03). Cured and active CS patients showed both lower methylation of intron 2 (92.37, 91.8, and 93.34 %, respectively, p = 0.03 for both) and of intron 7 (77.08, 73.74, and 79.71 %, respectively, p = 0.02 and p < 0.01) than controls. Twenty-two subjects had the CC genotype, 34 had the TC genotype, and eight had the TT genotype. Lower average DNA methylation in intron 7 was observed in the TT subjects compared to CC (72.5vs. 79.5 %, p = 0.02) and to TC (72.5 vs. 79.0 %, p = 0.03). Our data demonstrate, for the first time, a reduction of intronic DNA methylation of FKBP5 in CS patients.

  9. The prognostic significance of whole blood global and specific DNA methylation levels in gastric adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mansour S Al-Moundhri

    Full Text Available BACKGROUND: Epigenetics, particularly DNA methylation, has recently been elucidated as important in gastric cancer (GC initiation and progression. We investigated the clinical and prognostic importance of whole blood global and site-specific DNA methylation in GC. METHODS: Genomic DNA was extracted from the peripheral blood of 105 Omani GC patients at diagnosis. DNA methylation was quantified by pyrosequencing of global DNA and specific gene promoter regions at 5 CpG sites for CDH1, 7 CpG sites for p16, 4 CpG sites for p53, and 3 CpG sites for RUNX3. DNA methylation levels in patients were categorized into low, medium, and high tertiles. Associations between methylation level category and clinicopathological features were evaluated using χ(2 tests. Survival analyses were carried out using the Kaplan-Meier method and log rank test. A backward conditional Cox proportional hazards regression model was used to identify independent predictors of survival. RESULTS: Older GC patients had increased methylation levels at specific CpG sites within the CDH1, p53, and RUNX-3 promoters. Male gender was significantly associated with reduced global and increased site-specific DNA methylation levels in CDH1, p16, and p53 promoters. Global DNA low methylation level was associated with better survival on univariate analysis. Patients with high and medium methylation vs. low methylation levels across p16 promoter CpG sites, site 2 in particular, had better survival. Multivariate analysis showed that global DNA hypermethylation was a significant independent predictor of worse survival (hazard ratio (HR = 2.0, 95% CI: 1.1-3.8; p = 0.02 and high methylation mean values across p16 promoter sites 1-7 were associated with better survival with HR of 0.3 (95% CI, 0.1-0.8; p = 0.02 respectively. CONCLUSIONS: Analysis of global and site-specific DNA methylation in peripheral blood by pyrosequencing provides quantitative DNA methylation values that may serve as important

  10. Lgr5 Methylation in Cancer Stem Cell Differentiation and Prognosis-Prediction in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Shasha Su

    Full Text Available Leucine-rich-repeat-containing G-protein-coupled receptor 5 (lgr5 is a candidate marker for colorectal cancer stem cells (CSC. In the current study, we investigated the methylation status within thelgr5 promoter and evaluated its relationship with CSC differentiation, prognosis for colorectal cancer, and its clinicopathological features.The methylation status within Lgr5 promoter was detected with a methylation-specific PCR in six colorectal cancer cell lines as well as 169 primary colorectal tumor tissues. Differentiation of CSC was examined with immunofluorescence and immunocytochemistry. Down-regulation of lgr5 was achieved with gene-specific siRNA. The associations between lgr5 methylation and the clinicopathological features as well as survival of patients were analyzed with statistical methods.The lgr5 promoter was methylated to different degrees for the six colorectal cell lines examined, with complete methylation observed in HCT116 cells in which the lgr5 expression was partially recovered following DAC treatment. The stem-cell sphere formation from HCT116 cells was accompanied by increasing methylation within the lgr5 promoter and decreasing expression of lgr5. Knocking down lgr5 by siRNA also led to stem-cell spheres formation. Among primary colorectal tumors, 40% (67/169 were positive for lgr5 methylation, while none of the normal colon tissues were positive for lgr5 methylation. Furthermore, lgr5 methylation significantly associated with higher tumor grade, and negative distant metastasis (p < 0.05, as well as better prognosis (p = 0.001 in patients with colorectal cancer.Our data suggests that lgr5 methylation, through the regulation of lgr5 expression and colorectal CSC differentiation, may constitute a novel prognostic marker for colorectal cancer patients.

  11. Evidence that steroid 5alpha-reductase isozyme genes are differentially methylated in human lymphocytes.

    Science.gov (United States)

    Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A

    2002-03-01

    The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.

  12. Avaliação das técnicas de RT-PCR e heminested RT-PCR em cérebros de cães com sinais neurológicos compatíveis com cinomose

    Directory of Open Access Journals (Sweden)

    Adriana Cortez

    2015-12-01

    Full Text Available The diagnostic value of RT-PCR and hemi-nested RT-PCR (hnRT-PCR was compared in brain samples of dogs presenting neurological signs compatible with canine distemper. Samples of central nervous system (CNS were collected from 68 dogs and tested by direct immunofluorescence test (RFID and, independent of the results, they were stored at -20°C for at least three years. They were submitted to the RT-PCR and hnRT-PCR techniques aiming to determine the gene responsible for the viral nucleoprotein decoding. Fifty-nine samples were positive for RIFD, 40 for RT-PCR (Kappa = 0.358 and 54 for hnRT-PCR (Kappa = 0.740. All nine RIFD negative samples were also negative for RT-PCR and hnRT-PCR. In spite of the storage duration and proper sample conditions, the estimated accordance between hnRT-PCR and RIFD demonstrated that hnRT-PCR technique can be applied in retrospective studies.

  13. Position-specific prediction of methylation sites from sequence conservation based on information theory.

    Science.gov (United States)

    Shi, Yinan; Guo, Yanzhi; Hu, Yayun; Li, Menglong

    2015-07-23

    Protein methylation plays vital roles in many biological processes and has been implicated in various human diseases. To fully understand the mechanisms underlying methylation for use in drug design and work in methylation-related diseases, an initial but crucial step is to identify methylation sites. The use of high-throughput bioinformatics methods has become imperative to predict methylation sites. In this study, we developed a novel method that is based only on sequence conservation to predict protein methylation sites. Conservation difference profiles between methylated and non-methylated peptides were constructed by the information entropy (IE) in a wider neighbor interval around the methylation sites that fully incorporated all of the environmental information. Then, the distinctive neighbor residues were identified by the importance scores of information gain (IG). The most representative model was constructed by support vector machine (SVM) for Arginine and Lysine methylation, respectively. This model yielded a promising result on both the benchmark dataset and independent test set. The model was used to screen the entire human proteome, and many unknown substrates were identified. These results indicate that our method can serve as a useful supplement to elucidate the mechanism of protein methylation and facilitate hypothesis-driven experimental design and validation.

  14. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  15. MSP-HTPrimer: a high-throughput primer design tool to improve assay design for DNA methylation analysis in epigenetics.

    Science.gov (United States)

    Pandey, Ram Vinay; Pulverer, Walter; Kallmeyer, Rainer; Beikircher, Gabriel; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Bisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity. Designing specific and optimized primers for target regions is the most critical and challenging step in obtaining the adequate DNA methylation results using PCR-based methods. Currently, no integrated, optimized, and high-throughput methylation-specific primer design software methods are available for both BS- and MSRE-based methods. Therefore an integrated, powerful, and easy-to-use methylation-specific primer design pipeline with great accuracy and success rate will be very useful. We have developed a new web-based pipeline, called MSP-HTPrimer, to design primers pairs for MSP, BSP, pyrosequencing, COBRA, and MSRE assays on both genomic strands. First, our pipeline converts all target sequences into bisulfite-treated templates for both forward and reverse strand and designs all possible primer pairs, followed by filtering for single nucleotide polymorphisms (SNPs) and known repeat regions. Next, each primer pairs are annotated with the upstream and downstream RefSeq genes, CpG island, and cut sites (for COBRA and MSRE). Finally, MSP-HTPrimer selects specific primers from both strands based on custom and user-defined hierarchical selection criteria. MSP-HTPrimer produces a primer pair summary output table in TXT and HTML format for display and UCSC custom tracks for resulting primer pairs in GTF format. MSP-HTPrimer is an integrated, web-based, and high-throughput pipeline and has no limitation on the number and size of target sequences and designs MSP, BSP, pyrosequencing, COBRA, and MSRE assays. It is the only pipeline, which automatically designs primers on both genomic

  16. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects

    DEFF Research Database (Denmark)

    Gillberg, Linn; Jacobsen, Stine; Rönn, Tina

    2014-01-01

    OBJECTIVE: Increased DNA methylation of the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in skeletal muscle from type 2 diabetes (T2D) subjects and from low birth weight (LBW) subjects with an increased risk of T2D. High...... and insulin-stimulated SAT from LBW and matched normal birth weight (NBW) subjects during control and high-fat overfeeding. MATERIALS/METHODS: Nineteen young healthy men with LBW and 26 NBW controls were studied after both a 5-day high-fat overfeeding and a control diet in a randomized crossover setting. DNA...... methylation was assessed with bisulfite sequencing and mRNA expression with quantitative real-time PCR. RESULTS: Following high-fat overfeeding, increased SAT PPARGC1A DNA methylation was observed in LBW subjects but not in NBW controls. Basal SAT PPARGC1A mRNA expression was unaffected by diet and similar...

  17. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    International Nuclear Information System (INIS)

    Costa, Vera L; Henrique, Rui; Ribeiro, Franclim R; Pinto, Mafalda; Oliveira, Jorge; Lobo, Francisco; Teixeira, Manuel R; Jerónimo, Carmen

    2007-01-01

    Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP) in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC), 13 papillary (pRCC), 10 chromophobe (chRCC), and 10 oncocytomas) and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007), PTGS2 (p = 0.002), and RASSF1A (p = 0.0001). CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively), whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004). RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035). In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031) and nuclear grade (p = 0.022), respectively. The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses

  18. In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, A S

    2007-05-21

    Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5\\' CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49\\/79 primary prostate adenocarcinoma and 7\\/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5\\/37 benign prostatic hyperplasia (P < 0.0001) and in 0\\/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score > or =7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease.

  19. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Our method uses a single-CpG-resolution, whole-genome methylation ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, ...... methylation is prevalent in embryonic stem cells andmaybe mediated.

  20. Melatonin-Mediated Development of Ovine Cumulus Cells, Perhaps by Regulation of DNA Methylation

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-02-01

    Full Text Available Cumulus cells of pre-pubertal domestic animals are dysfunctional, perhaps due to age-specific epigenetic events. This study was designed to determine effects of melatonin treatment of donors on methylation modification of pre-pubertal cumulus cells. Cumulus cells from germinal vesicle stage cumulus oocyte complexes (COCs were collected from eighteen lambs which were randomly divided into control group (C and melatonin group given an 18 mg melatonin implant subcutaneous (M. Compared to the C group, the M group had higher concentrations of melatonin in plasma and follicular fluid (p < 0.05, greater superovulation, a higher proportion of fully expanded COCs, and a lower proportion of apoptotic cumulus cells (p < 0.05. Real-time PCR results showed that melatonin up-regulated expression of genes MT1, Bcl2, DNMT1, DNMT3a and DNMT3b, but down-regulated expression of genes p53, Caspase 3 and Bax (p < 0.05. Furthermore, melatonin increased FI of FITC (global methylation level on cumulus cells (p < 0.05. To understand the regulation mechanism, the DNMTs promoter methylation sequence were analyzed. Compared to the C group, although there was less methylation at two CpG sites of DNMT1 (p < 0.05 and higher methylation at two CpG sites of DNMT3a (p < 0.05, there were no significant differences in methylation of the detected DNMT1 and DNMT3a promoter regions. However, there were lower methylation levels at five CpG sites of DNMT3b, which decreased methylation of detected DNMT3b promoter region on M group (p < 0.05. In conclusion, alterations of methylation regulated by melatonin may mediate development of cumulus cells in lambs.

  1. Methylation status and protein expression of RASSF1A in breast cancer patients.

    Science.gov (United States)

    Hagrass, Hoda A; Pasha, Heba F; Shaheen, Mohamed A; Abdel Bary, Eman H; Kassem, Rasha

    2014-01-01

    Recently genetics and epigenetics alterations have been found to be characteristic of malignancy and hence can be used as targets for detection of neoplasia. RAS association domain family protein 1A (RASSF1A) gene hypermethylation has been a subject of interest in recent researches on cancer breast patients. The aim of the present study was to evaluate whether RASSF1A methylation status and RASSF1A protein expression are associated with the major clinico-pathological parameters. One hundred and twenty breast cancer Egyptian patients and 100-control subjects diagnosed with benign lesions of the breast were enrolled in this study. We evaluated RASSF1A methylation status in tissue and serum samples using Methyl specific PCR together with RASSF1A protein expression in tissues by immunohistochemistry. Results were studied in relation to known prognostic clinicopathological features in breast cancer. Frequency of RASSF1A methylation in tissues and serum were 70 and 63.3 % respectively and RASSF1A protein expression showed frequency of 46.7 %. There was an association between RASSF1A methylation in tissues, serum and loss of protein expression in tissues with invasive carcinoma, advanced stage breast cancer, L.N. metastasis, ER/PR and HER2 negativity. RASSF1A methylation in serum showed high degree of concordance with methylation in tissues (Kappa = 0.851, P < 0.001). RASSF1A hypermethylation in tissues and serum and its protein expression may be a valid, reliable and sensitive tool for detection and follow up of breast cancer patients.

  2. Distinct features between MLH1-methylated and unmethylated colorectal carcinomas with the CpG island methylator phenotype: implications in the serrated neoplasia pathway.

    Science.gov (United States)

    Kim, Jung Ho; Bae, Jeong Mo; Cho, Nam-Yun; Kang, Gyeong Hoon

    2016-03-22

    The presence or absence of MLH1 methylation may critically affect the heterogeneity of colorectal carcinoma (CRC) with the CpG island methylator phenotype (CIMP). Here, we investigated the differential characteristics of CIMP-high (CIMP-H) CRCs according to MLH1 methylation status. To further confirm the MLH1-dependent features in CIMP-H CRC, an independent analysis was performed using data from The Cancer Genome Atlas (TCGA). In our CIMP-H CRC samples, MLH1-methylated tumors were characterized by older patient age, proximal colonic location, mucinous histology, intense lymphoid reactions, RUNX3/SOCS1 promoter methylation, BRAF mutations, and microsatellite instability-high (MSI-H) status. By contrast, MLH1-unmethylated tumors were associated with earlier age of onset, increased distal colorectal localization, adverse pathologic features, and KRAS mutations. In the TCGA dataset, the MLH1-silenced CIMP-H CRC demonstrated proximal location, MSI-H status, hypermutated phenotype, and frequent BRAF mutations, but the MLH1-non-silenced CIMP-H CRC was significantly associated with high frequencies of KRAS and APC mutations. In conclusion, the differential nature of CIMP-H CRCs depends primarily on the MLH1 methylation status. Based on the current knowledge, the sessile serrated adenoma/polyp may be the major precursor of MLH1-methylated CIMP-H CRCs, whereas MLH1-unmethylated CIMP-H CRCs may develop predominantly from KRAS-mutated traditional serrated adenomas and less commonly from BRAF-mutated traditional serrated adenomas and/or sessile serrated adenomas/polyps.

  3. Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype

    Directory of Open Access Journals (Sweden)

    Robinson Claire M

    2012-08-01

    Full Text Available Abstract Background Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu. As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression. Methods CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR was used to examine the methylation status of the Thy-1 promoter. Results Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2′-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2. Conclusion These data suggest that global and

  4. AN UPWARD TREND IN DNA P16INK4A METHYLATION PATTERN AND HIGH RISK HPV INFECTION ACCORDING TO THE SEVERITY OF THE CERVICAL LESION

    Directory of Open Access Journals (Sweden)

    Fernanda Nahoum Carestiato

    2013-09-01

    Full Text Available SUMMARY High-risk human papillomavirus (hr-HPV infection is necessary but not sufficient for cervical cancer development. Recently, P16INK4A gene silencing through hypermethylation has been proposed as an important cofactor in cervical carcinogenesis due to its tumor suppressor function. We aimed to investigate P16INK4A methylation status in normal and neoplastic epithelia and evaluate an association with HPV infection and genotype. This cross-sectional study was performed with 141 cervical samples from patients attending Hospital Moncorvo Filho, Rio de Janeiro. HPV detection and genotyping were performed through PCR and P16INK4A methylation by nested-methylation specific PCR (MSP. HPV frequency was 62.4% (88/141. The most common HPV were HPV16 (37%, HPV18 (16.3% and HPV33/45(15.2%. An upward trend was observed concerning P16INK4A methylation and lesion degree: normal epithelia (10.7%, low grade lesions (22.9%, high grade (57.1% and carcinoma (93.1% (p < 0.0001. A multivariate analysis was performed to evaluate an association between methylation, age, tobacco exposure, HPV infection and genotyping. A correlation was found concerning methylation with HPV infection (p < 0.0001, hr-HPV (p = 0.01, HSIL (p < 0.0007 and malignant lesions (p < 0.0001. Since viral infection and epigenetic alterations are related to cervical carcinoma, we suggest that P16INK4A methylation profile maybe thoroughly investigated as a biomarker to identify patients at risk of cancer.

  5. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  6. Identification of endometrial cancer methylation features using combined methylation analysis methods.

    Directory of Open Access Journals (Sweden)

    Michael P Trimarchi

    Full Text Available DNA methylation is a stable epigenetic mark that is frequently altered in tumors. DNA methylation features are attractive biomarkers for disease states given the stability of DNA methylation in living cells and in biologic specimens typically available for analysis. Widespread accumulation of methylation in regulatory elements in some cancers (specifically the CpG island methylator phenotype, CIMP can play an important role in tumorigenesis. High resolution assessment of CIMP for the entire genome, however, remains cost prohibitive and requires quantities of DNA not available for many tissue samples of interest. Genome-wide scans of methylation have been undertaken for large numbers of tumors, and higher resolution analyses for a limited number of cancer specimens. Methods for analyzing such large datasets and integrating findings from different studies continue to evolve. An approach for comparison of findings from a genome-wide assessment of the methylated component of tumor DNA and more widely applied methylation scans was developed.Methylomes for 76 primary endometrial cancer and 12 normal endometrial samples were generated using methylated fragment capture and second generation sequencing, MethylCap-seq. Publically available Infinium HumanMethylation 450 data from The Cancer Genome Atlas (TCGA were compared to MethylCap-seq data.Analysis of methylation in promoter CpG islands (CGIs identified a subset of tumors with a methylator phenotype. We used a two-stage approach to develop a 13-region methylation signature associated with a "hypermethylator state." High level methylation for the 13-region methylation signatures was associated with mismatch repair deficiency, high mutation rate, and low somatic copy number alteration in the TCGA test set. In addition, the signature devised showed good agreement with previously described methylation clusters devised by TCGA.We identified a methylation signature for a "hypermethylator phenotype" in

  7. Validations of SCT Methylation as a Hallmark Biomarker for Lung Cancers

    Science.gov (United States)

    Fujimoto, Junya; Wistuba, Ignacio; Lam, Stephen; Yatabe, Yasushi; Wang, Yi-Wei; Stastny, Victor; Gao, Boning; Larsen, Jill E; Girard, Luc; Liu, Xiaoyun; Song, Kai; Behrens, Carmen; Kalhor, Neda; Xie, Yang; Zhang, Michael Q; Minna, John D; Gazdar, Adi F

    2016-01-01

    Background The human secretin (SCT) gene encodes secretin, a hormone with limited tissue distribution. Analysis of The Cancer Genome Atlas (TCGA) 450K methylation array data indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential cancer biomarker for lung cancer. Methods We analyzed TCGA data, and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation specific PCR (qMSP) assays. Results The analyses of TCGA 450K data of 801 samples showed that SCT hypermethylation has an area under curve (AUC) value >0.98 to distinguish lung adenocarcinomas or squamous cell carcinomas from non-malignant lung. We confirmed the highly discriminative SCT methylation by bisulfite sequencing of lung cancer cell lines and normal blood cells. By applying qMSP, we found that SCT hypermethylation was frequently detected in all major subtypes of malignant NSCLC (AUC=0.92, n=108) and SCLC cancers (AUC=0.93, n=40) but less frequently present in lung carcinoids (AUC=0.54, n=20). SCT hypermethylation appeared in lung carcinoma in situ samples during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450K data showed that SCT hypermethylation is highly discriminative in most types of other malignant tumors but less frequently present in low-grade malignant tumors. The only normal tissue with high methylation was the placenta. Conclusions Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, and less frequently present in low-grade malignant tumors including lung carcinoids, and appears at the carcinoma in situ stage. PMID:26725182

  8. Restoration of CpG Methylation in The Egf Promoter Region during Rat Liver Regeneration

    Science.gov (United States)

    Deming, Li; Ziwei, Li; Xueqiang, Guo; Cunshuan, Xu

    2015-01-01

    Epidermal growth factor (EGF) is an important factor for healing after tissue damage in diverse experimental models. It plays an important role in liver regeneration (LR). The objective of this experiment is to investigate the methylation variation of 10 CpG sites in the Egf promoter region and their relevance to Egf expression during rat liver regenera- tion. As a follow up of our previous study, rat liver tissue was collected after rat 2/3 partial hepatectomy (PH) during the re-organization phase (from days 14 to days 28). Liver DNA was extracted and modified by sodium bisulfate. The methylation status of 10 CpG sites in Egf promoter region was determined using bisulfite sequencing polymerase chain reaction (PCR), as BSP method. The results showed that 3 (sites 3, 4 and 9) out of 10 CpG sites have strikingly methylation changes during the re-organization phase compared to the regeneration phase (from 2 hours to 168 hours, P=0.002, 0.048 and 0.018, respectively). Our results showed that methylation modification of CpGs in the Egf promoter region could be restored to the status before PH operation and changes of methylation didn’t affect Egf mRNA expression during the re-organization phase. PMID:26464832

  9. The altered promoter methylation of oxytocin receptor gene in autism.

    Science.gov (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  10. Methylation of food commodities during fumigation with methyl bromide

    International Nuclear Information System (INIS)

    Starratt, A.N.; Bond, E.J.

    1990-01-01

    Sites of methylation in several commodities (wheat, oatmeal, peanuts, almonds, apples, oranges, maize, alfalfa and potatoes) during fumigation with 14 C-methyl bromide were studied. Differences were observed in levels of the major volatiles: methanol, dimethyl sulphide and methyl mercaptan, products of O- and S-methylation, resulting from treatment of the fumigated materials with 1N sodium hydroxide. In studies of maize and wheat, histidine was the amino acid which underwent the highest level of N-methylation. (author). 24 refs, 3 tabs

  11. SNP rs16906252C>T is an expression and methylation quantitative trait locus associated with an increased risk of developing MGMT-methylated colorectal cancer

    Science.gov (United States)

    Kuroiwa-Trzmielina, Joice; Wang, Fan; Rapkins, Robert W.; Ward, Robyn L.; Buchanan, Daniel D.; Win, Aung Ko; Clendenning, Mark; Rosty, Christophe; Southey, Melissa C.; Winship, Ingrid M.; Hopper, John L.; Jenkins, Mark A.; Olivier, Jake; Hawkins, Nicholas J.; Hitchins, Megan P.

    2016-01-01

    Purpose Methylation of the MGMT promoter is the major cause of O6-methylguanine methyltransferase deficiency in cancer and has been associated with the T variant of the promoter-enhancer SNP rs16906252C>T. We sought evidence for an association between the rs16906252C>T genotype and increased risk of developing a subtype of colorectal cancer (CRC) featuring MGMT methylation, mediated by genotype-dependent epigenetic silencing within normal tissues. Experimental design By applying a molecular pathological epidemiology case-control study design, associations between rs16906252C>T and risk for CRC overall, and CRC stratified by MGMT methylation status, were estimated using multinomial logistic regression in two independent retrospective series of CRC cases and controls. The test sample comprised 1054 CRC cases and 451 controls from Sydney, Australia. The validation sample comprised 612 CRC cases and 245 controls from the Australasian Colon Cancer Family Registry (ACCFR). To determine if rs16906252C>T was linked to a constitutively altered epigenetic state, quantitative allelic expression and methylation analyses were performed in normal tissues. Results An association between rs16906252C>T and increased risk of developing MGMT-methylated CRC in the Sydney sample was observed (OR 3.3; 95%CI=2.0–5.3; PT represents an expression and methylation quantitative trait locus. Conclusions We provide evidence that rs16906252C>T is associated with elevated risk for MGMT-methylated CRC, likely mediated by constitutive epigenetic repression of the T allele. PMID:27267851

  12. Circulating Differentially Methylated Amylin DNA as a Biomarker of β-Cell Loss in Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    John A Olsen

    Full Text Available In type 1 diabetes (T1D, β-cell loss is silent during disease progression. Methylation-sensitive quantitative real-time PCR (qPCR of β-cell-derived DNA in the blood can serve as a biomarker of β-cell death in T1D. Amylin is highly expressed by β-cells in the islet. Here we examined whether demethylated circulating free amylin DNA (cfDNA may serve as a biomarker of β-cell death in T1D. β cells showed unique methylation patterns within the amylin coding region that were not observed with other tissues. The design and use of methylation-specific primers yielded a strong signal for demethylated amylin in purified DNA from murine islets when compared with other tissues. Similarly, methylation-specific primers detected high levels of demethylated amylin DNA in human islets and enriched human β-cells. In vivo testing of the primers revealed an increase in demethylated amylin cfDNA in sera of non-obese diabetic (NOD mice during T1D progression and following the development of hyperglycemia. This increase in amylin cfDNA did not mirror the increase in insulin cfDNA, suggesting that amylin cfDNA may detect β-cell loss in serum samples where insulin cfDNA is undetected. Finally, purified cfDNA from recent onset T1D patients yielded a high signal for demethylated amylin cfDNA when compared with matched healthy controls. These findings support the use of demethylated amylin cfDNA for detection of β-cell-derived DNA. When utilized in conjunction with insulin, this latest assay provides a comprehensive multi-gene approach for the detection of β-cell loss.

  13. Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans

    Science.gov (United States)

    Hammamieh, R; Chakraborty, N; Gautam, A; Muhie, S; Yang, R; Donohue, D; Kumar, R; Daigle, B J; Zhang, Y; Amara, D A; Miller, S-A; Srinivasan, S; Flory, J; Yehuda, R; Petzold, L; Wolkowitz, O M; Mellon, S H; Hood, L; Doyle, F J; Marmar, C; Jett, M

    2017-01-01

    Emerging knowledge suggests that post-traumatic stress disorder (PTSD) pathophysiology is linked to the patients’ epigenetic changes, but comprehensive studies examining genome-wide methylation have not been performed. In this study, we examined genome-wide DNA methylation in peripheral whole blood in combat veterans with and without PTSD to ascertain differentially methylated probes. Discovery was initially made in a training sample comprising 48 male Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) veterans with PTSD and 51 age/ethnicity/gender-matched combat-exposed PTSD-negative controls. Agilent whole-genome array detected ~5600 differentially methylated CpG islands (CpGI) annotated to ~2800 differently methylated genes (DMGs). The majority (84.5%) of these CpGIs were hypermethylated in the PTSD cases. Functional analysis was performed using the DMGs encoding the promoter-bound CpGIs to identify networks related to PTSD. The identified networks were further validated by an independent test set comprising 31 PTSD+/29 PTSD− veterans. Targeted bisulfite sequencing was also used to confirm the methylation status of 20 DMGs shown to be highly perturbed in the training set. To improve the statistical power and mitigate the assay bias and batch effects, a union set combining both training and test set was assayed using a different platform from Illumina. The pathways curated from this analysis confirmed 65% of the pool of pathways mined from training and test sets. The results highlight the importance of assay methodology and use of independent samples for discovery and validation of differentially methylated genes mined from whole blood. Nonetheless, the current study demonstrates that several important epigenetically altered networks may distinguish combat-exposed veterans with and without PTSD. PMID:28696412

  14. Urinary retinoic acid receptor-β2 gene promoter methylation and hyaluronidase activity as noninvasive tests for diagnosis of bladder cancer.

    Science.gov (United States)

    Eissa, Sanaa; Zohny, Samir F; Shehata, Hanan Hussien; Hegazy, Marwa G A; Salem, Ahmed M; Esmat, Mohamed

    2012-04-01

    We evaluated the significance of urinary retinoic acid receptor-β2 (RAR-β2) gene promoter methylation and hyaluronidase activity in comparison with voided urine cytology (VUC) in diagnosis of bladder cancer. This study included 100 patients diagnosed with bladder cancer, 65 patients with benign urological disorders and 51 healthy volunteers. Urine supernatant was used for determining hyaluronidase activity by zymography while urine sediment was used for cytology and detection of methylated RAR-β2 gene promoter by methylation specific nested PCR. The sensitivity and specificity were 53% and 90.5% for VUC, 65% and 89.7% for percent methylation fraction of RAR-β2 gene promoter, and 89% and 90.5% for hyaluronidase activity; combination of the three parameters increased sensitivity to 95%. A significant association was observed between investigated markers and advanced grade tumor. Combined use of RAR-β2 gene promoter methylation, hyaluronidase activity and VUC is promising non-invasive tool for bladder cancer detection. Copyright © 2012. Published by Elsevier Inc.

  15. Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver

    Directory of Open Access Journals (Sweden)

    Laghi Luigi

    2006-04-01

    Full Text Available Abstract Background Epigenetic changes during ageing and their relationship with cancer are under the focus of intense research. RASSF1A and NORE1A are novel genes acting in concert in the proapoptotic pathway of the RAS signalling. While NORE1A has not been previously investigated in the human liver, recent reports have suggested that RASSF1A is frequently epigenetically methylated not only in HCC but also in the cirrhotic liver. Methods To address whether epigenetic changes take place in connection to age and/or to the underlying disease, we investigated RASSF1A and NORE1A gene promoter methylation by conventional methylation specific PCR and Real-Time MSP in a series of hepatitic and non-hepatitic livers harboring regenerative/hyperplastic (cirrhosis/focal nodular hyperplasia, dysplastic (large regenerative, low and high grade dysplastic nodules and neoplastic (hepatocellular adenoma and carcinoma growths. Results In the hepatitic liver (chronic hepatitic/cirrhosis, hepatocellular nodules and HCC we found widespread RASSF1A gene promoter methylation with a methylation index that increased from regenerative conditions (cirrhosis to hepatocellular nodules (p RASSF1A gene promoter methylation, NORE1A gene was never found epigenetically alterated in both hepatitic and non-hepatitic liver. Conclusion We have shown that in non-lesional, regenerative and neoplastic liver the RASSF1A gene is increasingly methylated, that this condition takes place as an age-related phenomenon and that the early setting and spreading over time of an epigenetically methylated hepatocyte subpopulation, might be related to liver tumorigenesis.

  16. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  17. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers

    International Nuclear Information System (INIS)

    Liu, Yang; Gao, Weimin; Siegfried, Jill M; Weissfeld, Joel L; Luketich, James D; Keohavong, Phouthone

    2007-01-01

    Epidemiological studies indicate that some characteristics of lung cancer among never-smokers significantly differ from those of smokers. Aberrant promoter methylation and mutations in some oncogenes and tumor suppressor genes are frequent in lung tumors from smokers but rare in those from never-smokers. In this study, we analyzed promoter methylation in the ras-association domain isoform A (RASSF1A) and the death-associated protein kinase (DAPK) genes in lung tumors from patients with primarily non-small cell lung cancer (NSCLC) from the Western Pennsylvania region. We compare the results with the smoking status of the patients and the mutation status of the K-ras, p53, and EGFR genes determined previously on these same lung tumors. Promoter methylation of the RASSF1A and DAPK genes was analyzed by using a modified two-stage methylation-specific PCR. Data on mutations of K-ras, p53, and EGFR were obtained from our previous studies. The RASSF1A gene promoter methylation was found in tumors from 46.7% (57/122) of the patients and was not significantly different between smokers and never-smokers, but was associated significantly in multiple variable analysis with tumor histology (p = 0.031) and marginally with tumor stage (p = 0.063). The DAPK gene promoter methylation frequency in these tumors was 32.8% (40/122) and did not differ according to the patients' smoking status, tumor histology, or tumor stage. Multivariate analysis adjusted for age, gender, smoking status, tumor histology and stage showed that the frequency of promoter methylation of the RASSF1A or DAPK genes did not correlate with the frequency of mutations of the K-ras, p53, and EGFR gene. Our results showed that RASSF1A and DAPK genes' promoter methylation occurred frequently in lung tumors, although the prevalence of this alteration in these genes was not associated with the smoking status of the patients or the occurrence of mutations in the K-ras, p53 and EGFR genes, suggesting each of

  18. Methylation and silencing of the retinoic acid receptor-β2 gene in cervical cancer

    International Nuclear Information System (INIS)

    Ivanova, Tatyana; Petrenko, Anatolii; Gritsko, Tatyana; Vinokourova, Svetlana; Eshilev, Ernest; Kobzeva, Vera; Kisseljov, Fjodor; Kisseljova, Natalia

    2002-01-01

    Expression of the retinoic acid receptor β2 (RAR-β2), a putative tumor suppressor gene, is reduced in various human cancers, including squamous cell carcinomas (SCC) of the uterine cervix. The mechanism of the inhibition of RAR-β2 expression remains obscure. We examined whether methylation of RAR-β2 gene could be responsible for this silencing in cervical SCC. Expression of RAR-β2 mRNA and methylation status of the 5' region of RAR-β2 gene were examined in 20 matched specimens from patients with cervical SCC and in three cervical cancer cell lines by Northern blot analysis and methylation-specific PCR (MSP) assay or Southern blot analysis respectively. In 8 out 20 cervical SCC (40%) the levels of RAR-β2 mRNA were decreased or undetectable in comparison with non-neoplastic cervix tissues. All 8 tumors with reduced levels of RAR-β2 mRNA expression showed methylation of the promoter and the first exon expressed in the RAR-β2 transcript. The RAR-β2 gene from non-neoplastic cervical tissues was mostly unmethylated and expressed, but methylated alleles of the gene were found in three samples of the morphologically normal tissues adjacent to the tumors. Three cervical cancer cell lines with extremely low level of RAR-β2 mRNA expression, SiHA, HeLA and CaSki, also showed methylation of this region of the RAR-β2 gene. These findings suggest that methylation of the 5' region of RAR-β2 gene may contribute to gene silencing and that methylation of this region may be an important and early event in cervical carcinogenesis. These findings may be useful to make retinoids more effective as preventive and therapeutic agents in combination with inhibitors of DNA methylation

  19. Parvovirus b19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression.

    Directory of Open Access Journals (Sweden)

    Francesca Bonvicini

    Full Text Available CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression.The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections.The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19.

  20. Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression

    Science.gov (United States)

    Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio

    2012-01-01

    CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013

  1. Trichloroethylene-Induced DNA Methylation Changes in Male F344 Rat Liver.

    Science.gov (United States)

    Jiang, Yan; Chen, Jiahong; Yue, Cong; Zhang, Hang; Chen, Tao

    2016-10-17

    Trichloroethylene (TCE), a common environmental contaminant, causes hepatocellular carcinoma in mice but not in rats. To understand the mechanisms of the species-specific hepatocarcinogenecity of TCE, we examined the methylation status of DNA in the liver of rats exposed to TCE at 0 or 1000 mg/kg b.w. for 5 days using MeDIP-chip, bisulfite sequencing, COBRA, and LC-MS/MS. The related mRNA expression levels were measured by qPCR. Although no global DNA methylation change was detected, 806 genes were hypermethylated and 186 genes were hypomethylated. The genes with hypermethylated DNA were enriched in endocytosis, MAPK, and cAMP signaling pathways. We further confirmed the hypermethylation of Uhrf2 DNA and the hypomethylation of Hadhb DNA, which were negatively correlated with their mRNA expression levels. The transcriptional levels of Jun, Ihh, and Tet2 were significantly downregulated, whereas Cdkn1a was overexpressed. No mRNA expression change was found for Mki67, Myc, Uhrf1, and Dnmt1. In conclusion, TCE-induced DNA methylation changes in rats appear to suppress instead of promote hepatocarcinogenesis, which might play a role in the species-specific hepatocarcinogenecity of TCE.

  2. Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer.

    Science.gov (United States)

    Mahon, K L; Qu, W; Devaney, J; Paul, C; Castillo, L; Wykes, R J; Chatfield, M D; Boyer, M J; Stockler, M R; Marx, G; Gurney, H; Mallesara, G; Molloy, P L; Horvath, L G; Clark, S J

    2014-10-28

    Glutathione S-transferase 1 (GSTP1) inactivation is associated with CpG island promoter hypermethylation in the majority of prostate cancers (PCs). This study assessed whether the level of circulating methylated GSTP1 (mGSTP1) in plasma DNA is associated with chemotherapy response and overall survival (OS). Plasma samples were collected prospectively from a Phase I exploratory cohort of 75 men with castrate-resistant PC (CRPC) and a Phase II independent validation cohort (n=51). mGSTP1 levels in free DNA were measured using a sensitive methylation-specific PCR assay. The Phase I cohort identified that detectable baseline mGSTP1 DNA was associated with poorer OS (HR, 4.2 95% CI 2.1-8.2; P<0.0001). A decrease in mGSTP1 DNA levels after cycle 1 was associated with a PSA response (P=0.008). In the Phase II cohort, baseline mGSTP1 DNA was a stronger predictor of OS than PSA change after 3 months (P=0.02). Undetectable plasma mGSTP1 after one cycle of chemotherapy was associated with PSA response (P=0.007). We identified plasma mGSTP1 DNA as a potential prognostic marker in men with CRPC as well as a potential surrogate therapeutic efficacy marker for chemotherapy and corroborated these findings in an independent Phase II cohort. Prospective Phase III assessment of mGSTP1 levels in plasma DNA is now warranted.

  3. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  4. Exploring the Link between Nucleosome Occupancy and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Cecilia Lövkvist

    2018-01-01

    Full Text Available Near promoters, both nucleosomes and CpG sites form characteristic spatial patterns. Previously, nucleosome depleted regions were observed upstream of transcription start sites and nucleosome occupancy was reported to correlate both with CpG density and the level of CpG methylation. Several studies imply a causal link where CpG methylation might induce nucleosome formation, whereas others argue the opposite, i.e., that nucleosome occupancy might influence CpG methylation. Correlations are indeed evident between nucleosomes, CpG density and CpG methylation—at least near promoter sites. It is however less established whether there is an immediate causal relation between nucleosome occupancy and the presence of CpG sites—or if nucleosome occupancy could be influenced by other factors. In this work, we test for such causality in human genomes by analyzing the three quantities both near and away from promoter sites. For data from the human genome we compare promoter regions with given CpG densities with genomic regions without promoters but of similar CpG densities. We find the observed correlation between nucleosome occupancy and CpG density, respectively CpG methylation, to be specific to promoter regions. In other regions along the genome nucleosome occupancy is statistically independent of the positioning of CpGs or their methylation levels. Anti-correlation between CpG density and methylation level is however similarly strong in both regions. On promoters, nucleosome occupancy is more strongly affected by the level of gene expression than CpG density or CpG methylation—calling into question any direct causal relation between nucleosome occupancy and CpG organization. Rather, our results suggest that for organisms with cytosine methylation nucleosome occupancy might be primarily linked to gene expression, with no strong impact on methylation.

  5. Comparison of telomere length and insulin-like growth factor-binding protein 7 promoter methylation between breast cancer tissues and adjacent normal tissues in Turkish women.

    Science.gov (United States)

    Kaya, Zehra; Akkiprik, Mustafa; Karabulut, Sevgi; Peker, Irem; Gullu Amuran, Gokce; Ozmen, Tolga; Gulluoglu, Bahadır M; Kaya, Handan; Ozer, Ayse

    2017-09-01

    Both insulin-like growth factor-binding protein 7 (IGFBP7) and telomere length (TL) are associated with proliferation and senescence of human breast cancer. This study assessed the clinical significance of both TL and IGFBP7 methylation status in breast cancer tissues compared with adjacent normal tissues. We also investigated whether IGFBP7 methylation status could be affecting TL. Telomere length was measured by quantitative PCR to compare tumors with their adjacent normal tissues. The IGFBP7 promoter methylation status was evaluated by methylation-specific PCR and its expression levels were determined by western blotting. Telomeres were shorter in tumor tissues compared to controls (Pbreast cancer with invasive ductal carcinoma (IDC; n=72; P=.014) compared with other histological type (n=29), and TL in IDC with HER2 negative (n=53; P=.017) was higher than TL in IDC with HER2 positive (n=19). However, telomeres were shortened in advanced stages and growing tumors. IGFBP7 methylation was observed in 90% of tumor tissues and 59% of controls (P=.0002). Its frequency was significantly higher in IDC compared with invasive mixed carcinoma (IMC; P=.002) and it was not correlated either with protein expression or the other clinicopathological parameters. These results suggest that IGFBP7 promoter methylation and shorter TL in tumor compared with adjacent tissues may be predictive biomarkers for breast cancer. Telomere maintenance may be indicative of IDC and IDC with HER2 (-) of breast cancer. Further studies with larger number of cases are necessary to verify this association. © 2016 Wiley Periodicals, Inc.

  6. Alteration in Methylation Pattern of Retinoblastoma 1 Gene Promotor Region in Intestinal Metaplasia with or without Helicobacter pylori and Gastric Cancer Patients.

    Science.gov (United States)

    Boyacioglu, Seda Orenay; Kasap, Elmas; Yuceyar, Hakan; Korkmaz, Mehmet

    2016-01-01

    Helicobacter pylori, intestinal metaplasia (IM), and gene methylation play important roles in gastric carcinogenesis. However, the association among H. pylori infection, IM, gastric cancer (GC), and gene methylation is not fully understood. Cell cycle control involving retinoblastoma 1 (RB1) gene is one of the main regulatory pathways reported to be altered in gastric carcinogenesis. The purpose of this research is to assess the methylation status of RB1 gene in GC and IM with or without H. pylori infection, and to discuss the possible role of H. pylori-induced RB1 gene methylation in the mechanism of gastric carcinogenesis. The methylation profile of RB1 gene was analyzed by sodium bisulfite modification and methylation-specific PCR in GC (n = 24), IM patients with H. pylori positive (n = 20) and negative (n = 20), and control subjects (n = 20). According to methylation levels in RB1 gene; the high correlation values were detected between H. pylori positive-IM group and GC group, and between H. pylori positive-IM and H. pylori negative-IM groups (p gene. High methylation levels in RB1 gene in H. pylori positive individuals may suggest an elevated risk of gastric cancer occurrence.

  7. [Methylation of selected tumor-supressor genes in benign and malignant ovarian tumors].

    Science.gov (United States)

    Cul'bová, M; Lasabová, Z; Stanclová, A; Tilandyová, P; Zúbor, P; Fiolka, R; Danko, J; Visnovský, J

    2011-09-01

    To evaluate the usefullness of examination of methylation status of selected tumor-supressor genes in early diagnosis of ovarian cancer. Prospective clinical study. Department of Gynecology and Obstetrics, Department of Molecular Biology, Jessenius Medical Faculty, Commenius University, Martin, Slovak Republic. In this study we analyzed hypermethylation of 5 genes RASSF1A, GSTP, E-cadherin, p16 and APC in ovarian tumor samples from 34 patients - 13 patients with epithelial ovarian cancer, 2 patients with border-line ovarian tumors, 12 patients with benign lesions of ovaries and 7 patients with healthy ovarian tissue. The methylation status of promoter region of tumor-supressor genes was determined by Methylation Specific Polymerase Chain Reaction (MSP) using a nested two-step approach with bisulfite modified DNA template and specific primers. Gene methylation analysis revealed hypermethylation of gene RASSF1A (46%) and GSTP (8%) only in malignant ovarian tissue samples. Ecad, p16 and APC genes were methylated both in maignant and benign tissue samples. Methylation positivity in observed genes was present independently to all clinical stages of ovarian cancer and to tumor grades. However, there was observed a trend of increased number and selective involvement of methylated genes with increasing disease stages. Furthermore, there was no association between positive methylation status and histological subtypes of ovarian carcinomas. RASSF1A and GSTP promoter methylation positivity is associated with ovarian cancer. The revealed gene-selective methylation positivity and the increased number of methylated genes with advancing disease stages could be considered as a useful molecular marker for early detection of ovarian cancer. However, there is need to find diagnostic approach of specifically and frequently methylated genes to determining a methylation phenotype for early detection of ovarian malignancies.

  8. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  9. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Magnus Borssén

    Full Text Available BACKGROUND: Treatment of pediatric T-cell acute lymphoblastic leukemia (T-ALL has improved, but there is a considerable fraction of patients experiencing a poor outcome. There is a need for better prognostic markers and aberrant DNA methylation is a candidate in other malignancies, but its potential prognostic significance in T-ALL is hitherto undecided. DESIGN AND METHODS: Genome wide promoter DNA methylation analysis was performed in pediatric T-ALL samples (n = 43 using arrays covering >27000 CpG sites. Clinical outcome was evaluated in relation to methylation status and compared with a contemporary T-ALL group not tested for methylation (n = 32. RESULTS: Based on CpG island methylator phenotype (CIMP, T-ALL samples were subgrouped as CIMP+ (high methylation and CIMP- (low methylation. CIMP- T-ALL patients had significantly worse overall and event free survival (p = 0.02 and p = 0.001, respectively compared to CIMP+ cases. CIMP status was an independent factor for survival in multivariate analysis including age, gender and white blood cell count. Analysis of differently methylated genes in the CIMP subgroups showed an overrepresentation of transcription factors, ligands and polycomb target genes. CONCLUSIONS: We identified global promoter methylation profiling as being of relevance for subgrouping and prognostication of pediatric T-ALL.

  10. Two-temperature LATE-PCR endpoint genotyping

    Directory of Open Access Journals (Sweden)

    Reis Arthur H

    2006-12-01

    Full Text Available Abstract Background In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. Results Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of

  11. Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants.

    Science.gov (United States)

    How-Kit, Alexandre; Daunay, Antoine; Mazaleyrat, Nicolas; Busato, Florence; Daviaud, Christian; Teyssier, Emeline; Deleuze, Jean-François; Gallusci, Philippe; Tost, Jörg

    2015-07-01

    Pyrosequencing permits accurate quantification of DNA methylation of specific regions where the proportions of the C/T polymorphism induced by sodium bisulfite treatment of DNA reflects the DNA methylation level. The commercially available high-throughput locus-specific pyrosequencing instruments allow for the simultaneous analysis of 96 samples, but restrict the DNA methylation analysis to CpG dinucleotide sites, which can be limiting in many biological systems. In contrast to mammals where DNA methylation occurs nearly exclusively on CpG dinucleotides, plants genomes harbor DNA methylation also in other sequence contexts including CHG and CHH motives, which cannot be evaluated by these pyrosequencing instruments due to software limitations. Here, we present a complete pipeline for accurate CpG and non-CpG cytosine methylation analysis at single base-resolution using high-throughput locus-specific pyrosequencing. The devised approach includes the design and validation of PCR amplification on bisulfite-treated DNA and pyrosequencing assays as well as the quantification of the methylation level at every cytosine from the raw peak intensities of the Pyrograms by two newly developed Visual Basic Applications. Our method presents accurate and reproducible results as exemplified by the cytosine methylation analysis of the promoter regions of two Tomato genes (NOR and CNR) encoding transcription regulators of fruit ripening during different stages of fruit development. Our results confirmed a significant and temporally coordinated loss of DNA methylation on specific cytosines during the early stages of fruit development in both promoters as previously shown by WGBS. The manuscript describes thus the first high-throughput locus-specific DNA methylation analysis in plants using pyrosequencing.

  12. Systemic effects of chronically administered methyl prednisolonate and methyl 17-deoxyprednisolonate.

    Science.gov (United States)

    Olejniczak, E; Lee, H J

    1984-06-01

    The systemic activities of methyl prednisolonate and methyl 17-deoxyprednisolonate (1) were studied in rats. Methyl 17-deoxyprednisolonate produced significant changes in the amount of sodium ion (decreased) and potassium ion (increased) in urine; however, methyl prednisolonate had no effect on electrolyte balance. Both methyl prednisolonate and methyl 17-deoxyprednisolonate had no effect on liver glycogen content, plasma corticosterone level and relative adrenal weight. In contrast, the parent compound prednisolone caused a significant decrease in liver glycogen content, plasma corticosterone level and relative adrenal weight.

  13. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael Watson

    Full Text Available DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T. Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2, and maintenance DNA METHYLTRANSFERASE1 (MET1 being responsible for faithful propagation of CG methylation. Here we report an unusual 'dense methylation' pattern under the control of MET1, with methylation in all three sequence contexts. We identified epi-alleles of dense methylation at a non coding RNA locus (At4g15242 in Arabidopsis ecotypes, with distinct dense methylation and expression characteristics, which are stably maintained and transmitted in genetic crosses and which can be heritably altered by depletion of MET1. This suggests that, in addition to its classical CG maintenance function, at certain loci MET1 plays a role in creating transcriptional diversity based on the generation of independent epi-alleles. Database inspection identified several other loci with MET1-dependent dense methylation patterns. Arabidopsis ecotypes contain distinct epi-alleles of these loci with expression patterns that inversely correlate with methylation density, predominantly within the transcribed region. In Arabidopsis, dense methylation appears to be an exception as it is only found at a small number of loci. Its presence does, however, highlight the potential for MET1 as a contributor to epigenetic diversity, and it will be interesting to investigate the representation of dense methylation in other plant species.

  14. PCR

    African Journals Online (AJOL)

    Elham

    2013-07-03

    Jul 3, 2013 ... was constructed with competitive strategy by PCR-cloning technique and the limitation range was determined. The PCR products of MTB and IAC were 245 and 660 bp, respectively on .... products' differentiation was easy.

  15. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction

    Science.gov (United States)

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-01

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the

  16. Prenatal Exposure to Maternal Cigarette Smoking and DNA Methylation: Epigenome-Wide Association in a Discovery Sample of Adolescents and Replication in an Independent Cohort at Birth through 17 Years of Age

    Science.gov (United States)

    Lee, Ken W.K.; Richmond, Rebecca; Hu, Pingzhao; French, Leon; Shin, Jean; Bourdon, Celine; Reischl, Eva; Waldenberger, Melanie; Zeilinger, Sonja; Gaunt, Tom; McArdle, Wendy; Ring, Susan; Woodward, Geoff; Bouchard, Luigi; Gaudet, Daniel; Smith, George Davey; Relton, Caroline; Paus, Tomas

    2014-01-01

    , Pausova Z. 2015. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect 123:193–199; http://dx.doi.org/10.1289/ehp.1408614 PMID:25325234

  17. Tumor-associated endothelial cells display GSTP1 and RARβ2 promoter methylation in human prostate cancer

    Directory of Open Access Journals (Sweden)

    Pohida Thomas J

    2006-03-01

    Full Text Available Abstract Background A functional blood supply is essential for tumor growth and proliferation. However, the mechanism of blood vessel recruitment to the tumor is still poorly understood. Ideally, a thorough molecular assessment of blood vessel cells would be critical in our comprehension of this process. Yet, to date, there is little known about the molecular makeup of the endothelial cells of tumor-associated blood vessels, due in part to the difficulty of isolating a pure population of endothelial cells from the heterogeneous tissue environment. Methods Here we describe the use of a recently developed technique, Expression Microdissection, to isolate endothelial cells from the tumor microenvironment. The methylation status of the dissected samples was evaluated for GSTP1 and RARβ2 promoters via the QMS-PCR method. Results Comparing GSTP1 and RARβ2 promoter methylation data, we show that 100% and 88% methylation is detected, respectively, in the tumor areas, both in epithelium and endothelium. Little to no methylation is observed in non-tumor tissue areas. Conclusion We applied an accurate microdissection technique to isolate endothelial cells from tissues, enabling DNA analysis such as promoter methylation status. The observations suggest that epigenetic alterations may play a role in determining the phenotype of tumor-associated vasculature.

  18. A DNA methylation-based definition of biologically distinct breast cancer subtypes.

    Science.gov (United States)

    Stefansson, Olafur A; Moran, Sebastian; Gomez, Antonio; Sayols, Sergi; Arribas-Jorba, Carlos; Sandoval, Juan; Hilmarsdottir, Holmfridur; Olafsdottir, Elinborg; Tryggvadottir, Laufey; Jonasson, Jon G; Eyfjord, Jorunn; Esteller, Manel

    2015-03-01

    In cancer, epigenetic states are deregulated and thought to be of significance in cancer development and progression. We explored DNA methylation-based signatures in association with breast cancer subtypes to assess their impact on clinical presentation and patient prognosis. DNA methylation was analyzed using Infinium 450K arrays in 40 tumors and 17 normal breast samples, together with DNA copy number changes and subtype-specific markers by tissue microarrays. The identified methylation signatures were validated against a cohort of 212 tumors annotated for breast cancer subtypes by the PAM50 method (The Cancer Genome Atlas). Selected markers were pyrosequenced in an independent validation cohort of 310 tumors and analyzed with respect to survival, clinical stage and grade. The results demonstrate that DNA methylation patterns linked to the luminal-B subtype are characterized by CpG island promoter methylation events. In contrast, a large fraction of basal-like tumors are characterized by hypomethylation events occurring within the gene body. Based on these hallmark signatures, we defined two DNA methylation-based subtypes, Epi-LumB and Epi-Basal, and show that they are associated with unfavorable clinical parameters and reduced survival. Our data show that distinct mechanisms leading to changes in CpG methylation states are operative in different breast cancer subtypes. Importantly, we show that a few selected proxy markers can be used to detect the distinct DNA methylation-based subtypes thereby providing valuable information on disease prognosis. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Methylation of the miR-126 gene associated with glioma progression.

    Science.gov (United States)

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    Gliomas are the most common and the most malignant brain tumors, accouting for 45-55% of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of

  20. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors.

    Science.gov (United States)

    Sweeney, Carol; Boucher, Kenneth M; Samowitz, Wade S; Wolff, Roger K; Albertsen, Hans; Curtin, Karen; Caan, Bette J; Slattery, Martha L

    2009-01-01

    Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis.

  1. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay.

    Directory of Open Access Journals (Sweden)

    Robert Grützmann

    Full Text Available BACKGROUND: Colorectal cancer (CRC is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC. METHODOLOGY/PRINCIPAL FINDINGS: Using a PCR assay for analysis of Septin 9 (SEPT9 hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls. 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48% and 7/102 controls (7%. In the test study 73/126 CRCs (58% and 18/183 control samples (10% were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected while maintaining 90% specificity (19/183 for controls. Positive rates for plasmas from the other cancers (11/96 and non-cancerous conditions (41/315 were low. The rate of polyp detection (>1 cm was approximately 20%. CONCLUSIONS/SIGNIFICANCE: Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted.

  2. Case–control study of HLA-G promoter methylation status, HPV infection and cervical neoplasia in Curitiba, Brazil: a pilot analysis

    International Nuclear Information System (INIS)

    Gillio-Tos, Anna; Carvalho, Newton S; Maestri, Carlos A; Lacerda, Hadriano M; Zugna, Daniela; Richiardi, Lorenzo; Merletti, Franco; Bicalho, Maria da Graça; Fiano, Valentina; Grasso, Chiara; Tarallo, Valentina; De Marco, Laura; Trevisan, Morena; Xavier, MarinaBarbaradeSousa; Slowik, Renata

    2012-01-01

    The causal association between persistent human papillomavirus (HPV) infection and cervical cancer has been established, but the mechanisms that favor HPV persistence in cervical cells are still unknown. The diminished capability of the immune system to control and resolve HPV infection is one of several hypotheses. The tolerogenic protein HLA-G has shown aberrant expression in a variety of cancers, which has been suggested as a mechanism for tumor escape from immunosurveillance. In the present study we evaluate the role of epigenetic modification (promoter de-methylation) of the HLA-G gene on susceptibility to HPV infection and development of high-grade cervical lesions. A case–control study was carried out in Curitiba, Brazil, between February and June 2010. A total of 789 women aged 15–47 years were recruited: 510 controls with normal cervical cytology, and 279 cases with histologically confirmed cervical intraepithelial neoplasia grade 2 (CIN2, N = 150) or grade 3 (CIN3, N = 129). All women were administered a questionnaire by interview, which collected information on demographic and lifestyle factors, and a cervical sample was collected. HPV DNA detection was performed by GP5+/GP6+ primer-mediated PCR. HPV-positive samples were genotyped by multiplex PCR. A pilot analysis of HLA-G promoter methylation was carried out in a subset of the study population (96 cases and 76 controls) by pyrosequencing. HLA-G methylation and HPV infection status of cases and controls were compared, and confounding factors were computed by t Student and non-parametric Wilcoxon tests. Comparison of HLA-G methylation between cases and controls was assessed by the Bonferroni correction. The association of HLA-G methylation with CIN2/3 was evaluated by logistic regression. HPV prevalence was 19.6% in controls and 94.3% in CIN2/3 cases. HPV16, 31, 33, 35 and 18 were the most prevalent types. Methylation analysis of seven CpGs in the HLA-G promoter did not reveal any spontaneous de-methylation

  3. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer.

    Science.gov (United States)

    Zhao, Zhenzhen; Liu, Wen; Liu, Jincheng; Wang, Jiayi; Luo, Bing

    2017-10-01

    Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p. © 2017 Wiley Periodicals, Inc.

  4. Methylation associated transcriptional repression of ELOVL5 in novel colorectal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Arnoud Boot

    Full Text Available Genetic and epigenetic alterations mark colorectal cancer (CRC. Global hypomethylation is observed in nearly all CRC, but a distinct subset of CRC show the CpG Island Methylator Phenotype (CIMP. These tumors show DNA hypermethylation of a specific subset of CpG islands, resulting in transcriptional downregulation of nearby genes. Recently we reported the establishment of novel CRC cell lines derived from primary and metastatic CRC tissues. In this study we describe the DNA methylation profiling of these low passage CRC cell lines. We generated global DNA methylation profiles with Infinium HumanMethylation450 BeadChips and analysed them in conjunction with matching gene expression profiles. Multidimensional scaling of the DNA methylation and gene expression datasets showed that BRAF mutated cell lines form a distinct group. In this group we investigated the 706 loci which we have previously identified to be hypermethylated in BRAF mutant CRC. We validated the significant findings in the The Cancer Genome Atlas colon adenocarcinoma dataset. Our analysis identified ELOVL5, FAM127B, MTERF1, ZNF606 to be subject to transcriptional downregulation through DNA hypermethylation in CRC. We further investigated ELOVL5 with qPCR and immunohistochemical staining, validating our results, but did not find a clear relation between ELOVL5 expression and tumor stage or relapse free survival. ELOVL5, FAM127B, MTERF1, ZNF606 are involved in important cellular processes such as apoptosis, lipogenesis and the downstream transcriptional effect of the MAPK-pathway. We have identified a DNA methylation profile regulating key cellular processes in CRC, resulting in a growth advantage to the tumor cells.

  5. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  6. Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    You Wanhui

    2012-04-01

    Full Text Available Abstract Background In plants, transposons and non-protein-coding repeats are epigenetically silenced by CG and non-CG methylation. This pattern of methylation is mediated in part by small RNAs and two specialized RNA polymerases, termed Pol IV and Pol V, in a process called RNA-directed DNA methylation. By contrast, many protein-coding genes transcribed by Pol II contain in their gene bodies exclusively CG methylation that is independent of small RNAs and Pol IV/Pol V activities. It is unclear how the different methylation machineries distinguish between transposons and genes. Here we report on a group of atypical genes that display in their coding region a transposon-like methylation pattern, which is associated with gene silencing in sporophytic tissues. Results We performed a methylation-sensitive amplification polymorphism analysis to search for targets of RNA-directed DNA methylation in Arabidopsis thaliana and identified several members of a gene family encoding cysteine-rich peptides (CRPs. In leaves, the CRP genes are silent and their coding regions contain dense, transposon-like methylation in CG, CHG and CHH contexts, which depends partly on the Pol IV/Pol V pathway and small RNAs. Methylation in the coding region is reduced, however, in the synergid cells of the female gametophyte, where the CRP genes are specifically expressed. Further demonstrating that expressed CRP genes lack gene body methylation, a CRP4-GFP fusion gene under the control of the constitutive 35 S promoter remains unmethylated in leaves and is transcribed to produce a translatable mRNA. By contrast, a CRP4-GFP fusion gene under the control of a CRP4 promoter fragment acquires CG and non-CG methylation in the CRP coding region in leaves similar to the silent endogenous CRP4 gene. Conclusions Unlike CG methylation in gene bodies, which does not dramatically affect Pol II transcription, combined CG and non-CG methylation in CRP coding regions is likely to

  7. Absolute quantification by droplet digital PCR versus analog real-time PCR

    Science.gov (United States)

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  8. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

    Directory of Open Access Journals (Sweden)

    Tsang Percy CK

    2006-08-01

    Full Text Available Abstract Background Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management. Methods For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ2 or Fisher's exact test. Results APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2, endometrial cancer (CASP8, CDH13, hMLH1 and p73, and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1. The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer to the highest 56

  9. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

    International Nuclear Information System (INIS)

    Yang, Hui-Juan; Liu, Vincent WS; Wang, Yue; Tsang, Percy CK; Ngan, Hextan YS

    2006-01-01

    Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management. For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers) was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ 2 or Fisher's exact test. APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2), endometrial cancer (CASP8, CDH13, hMLH1 and p73), and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1). The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers) were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer) to the highest 56.7% (DAPK in cervical cancer). Aberrant methylation

  10. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    Science.gov (United States)

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  11. A novel method for identification and quantification of consistently differentially methylated regions.

    Directory of Open Access Journals (Sweden)

    Ching-Lin Hsiao

    Full Text Available Advances in biotechnology have resulted in large-scale studies of DNA methylation. A differentially methylated region (DMR is a genomic region with multiple adjacent CpG sites that exhibit different methylation statuses among multiple samples. Many so-called "supervised" methods have been established to identify DMRs between two or more comparison groups. Methods for the identification of DMRs without reference to phenotypic information are, however, less well studied. An alternative "unsupervised" approach was proposed, in which DMRs in studied samples were identified with consideration of nature dependence structure of methylation measurements between neighboring probes from tiling arrays. Through simulation study, we investigated effects of dependencies between neighboring probes on determining DMRs where a lot of spurious signals would be produced if the methylation data were analyzed independently of the probe. In contrast, our newly proposed method could successfully correct for this effect with a well-controlled false positive rate and a comparable sensitivity. By applying to two real datasets, we demonstrated that our method could provide a global picture of methylation variation in studied samples. R source codes to implement the proposed method were freely available at http://www.csjfann.ibms.sinica.edu.tw/eag/programlist/ICDMR/ICDMR.html.

  12. Methylation of MGMT Is Associated with Poor Prognosis in Patients with Stage III Duodenal Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Tao Fu

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT methylation status has not been extensively investigated in duodenal adenocarcinoma (DA. The aim of this study was to evaluate the MGMT methylation status and examine its possible prognostic value in patients with stage III DA.Demographics, tumor characteristics and survival were available for 64 patients with stage III DA. MGMT methylation was detected by using MethyLight. A Cox proportional hazard model was built to predict survival, adjusted for clinicopathological characteristics and tumor molecular features, including the CpG island methylator phenotype (CIMP, microsatellite instability (MSI, and KRAS mutations.MGMT methylation was detected in 17 of 64 (26.6% patients, and was not correlated with sex, age, tumor differentiation, CIMP, MSI, or KRAS mutations. MGMT methylation was the only one factor associated with both overall survival (OS and disease-free survival (DFS on both univariate and multivariate analyses. In patients treated with surgery alone, MGMT-methylated group had worse OS and DFS when compared with MGMT-unmethylated group. However, in patients treated with chemotherapy/radiotherapy, outcomes became comparable between the two groups.Our results demonstrate MGMT methylation is a reliable and independent prognostic factor in DAs. Methylation of MGMT is associated with poor prognosis in patients with stage III DAs.

  13. Methylation-Sensitive Amplification Length Polymorphism (MS-AFLP) Microarrays for Epigenetic Analysis of Human Genomes.

    Science.gov (United States)

    Alonso, Sergio; Suzuki, Koichi; Yamamoto, Fumiichiro; Perucho, Manuel

    2018-01-01

    Somatic, and in a minor scale also germ line, epigenetic aberrations are fundamental to carcinogenesis, cancer progression, and tumor phenotype. DNA methylation is the most extensively studied and arguably the best understood epigenetic mechanisms that become altered in cancer. Both somatic loss of methylation (hypomethylation) and gain of methylation (hypermethylation) are found in the genome of malignant cells. In general, the cancer cell epigenome is globally hypomethylated, while some regions-typically gene-associated CpG islands-become hypermethylated. Given the profound impact that DNA methylation exerts on the transcriptional profile and genomic stability of cancer cells, its characterization is essential to fully understand the complexity of cancer biology, improve tumor classification, and ultimately advance cancer patient management and treatment. A plethora of methods have been devised to analyze and quantify DNA methylation alterations. Several of the early-developed methods relied on the use of methylation-sensitive restriction enzymes, whose activity depends on the methylation status of their recognition sequences. Among these techniques, methylation-sensitive amplification length polymorphism (MS-AFLP) was developed in the early 2000s, and successfully adapted from its original gel electrophoresis fingerprinting format to a microarray format that notably increased its throughput and allowed the quantification of the methylation changes. This array-based platform interrogates over 9500 independent loci putatively amplified by the MS-AFLP technique, corresponding to the NotI sites mapped throughout the human genome.

  14. On the potential of models for location and scale for genome-wide DNA methylation data.

    Science.gov (United States)

    Wahl, Simone; Fenske, Nora; Zeilinger, Sonja; Suhre, Karsten; Gieger, Christian; Waldenberger, Melanie; Grallert, Harald; Schmid, Matthias

    2014-07-03

    With the help of epigenome-wide association studies (EWAS), increasing knowledge on the role of epigenetic mechanisms such as DNA methylation in disease processes is obtained. In addition, EWAS aid the understanding of behavioral and environmental effects on DNA methylation. In terms of statistical analysis, specific challenges arise from the characteristics of methylation data. First, methylation β-values represent proportions with skewed and heteroscedastic distributions. Thus, traditional modeling strategies assuming a normally distributed response might not be appropriate. Second, recent evidence suggests that not only mean differences but also variability in site-specific DNA methylation associates with diseases, including cancer. The purpose of this study was to compare different modeling strategies for methylation data in terms of model performance and performance of downstream hypothesis tests. Specifically, we used the generalized additive models for location, scale and shape (GAMLSS) framework to compare beta regression with Gaussian regression on raw, binary logit and arcsine square root transformed methylation data, with and without modeling a covariate effect on the scale parameter. Using simulated and real data from a large population-based study and an independent sample of cancer patients and healthy controls, we show that beta regression does not outperform competing strategies in terms of model performance. In addition, Gaussian models for location and scale showed an improved performance as compared to models for location only. The best performance was observed for the Gaussian model on binary logit transformed β-values, referred to as M-values. Our results further suggest that models for location and scale are specifically sensitive towards violations of the distribution assumption and towards outliers in the methylation data. Therefore, a resampling procedure is proposed as a mode of inference and shown to diminish type I error rate in

  15. Does DNA Methylation of PPARGC1A Influence Insulin Action in First Degree Relatives of Patients with Type 2 Diabetes?

    DEFF Research Database (Denmark)

    Gillberg, Linn; Jacobsen, Stine; Ribel-Madsen, Rasmus

    2013-01-01

    and in muscle from individuals at risk of T2D. This study aimed to investigate DNA promoter methylation and gene expression of PPARGC1A in skeletal muscle from first degree relatives (FDR) of T2D patients, and to determine the association with insulin action as well as the influence of family relation. We...... genetic regulation to play a role. No significant effect of familiality on DNA methylation was found. Taken together, increased DNA methylation of the PPARGC1A promoter is unlikely to play a major causal role for the development of insulin resistance in FDR of patients with T2D....... included 124 Danish FDR of T2D patients from 46 different families. Skeletal muscle biopsies were excised from vastus lateralis and insulin action was assessed by oral glucose tolerance tests. DNA methylation and mRNA expression levels were measured using bisulfite sequencing and quantitative real-time PCR...

  16. Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma

    Science.gov (United States)

    Navarro, Antonia; Yin, Ping; Monsivais, Diana; Lin, Simon M.; Du, Pan; Wei, Jian-Jun; Bulun, Serdar E.

    2012-01-01

    Background Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. Principal Findings We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. Conclusions These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women. PMID:22428009

  17. NGX6 gene mediated by promoter methylation as a potential molecular marker in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shen Shourong

    2010-04-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma associated gene 6 (NGX6 is down-regulated in most colon cancer cell lines and tumor tissues when compared with their normal tissue samples. As a novel suppress tumor gene, it could inhibit colon cancer cell growth and cell cycle progression. However, little is known about the transcriptional mechanisms controlling NGX6 gene expression. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC. In this study, we explored the role of DNA methylation in regulation of NGX6 transcription. Methods In the present study, we cloned the NGX6 promoter with characteristics of a CpG island by luciferase reporter assay. Then, the CpG methylation status around the NGX6 promoter region in colon cancer cell lines and colorectal tumor tissues was examined by methylation-specific PCR and bisulfite DNA sequencing. Finally, 5-Aza-2'-deoxycytidine (5-Aza-dC treatment was used to confirm the correlation between NGX6 promoter methylation and its gene inactivation. Results The sequence spanning positions -157 to +276 was identified as the NGX6 promoter, in which no canonical TATA boxes were found, while two CAAT boxes and GC boxes were discovered. Methylation status was observed more frequently in 40 colorectal cancer samples than in 40 adjacent normal mucosa samples (18/40 versus 7/40; P Conclusions Down-regulation of NGX6 gene is related to the promoter methylation. DNA methylation of NGX6 promoter might be a potential molecular marker for diagnosis or prognosis, or serve as a therapeutic target.

  18. A high-throughput and sensitive method to measure Global DNA Methylation: Application in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mamaev Sergey

    2008-08-01

    Full Text Available Abstract Background Genome-wide changes in DNA methylation are an epigenetic phenomenon that can lead to the development of disease. The study of global DNA methylation utilizes technology that requires both expensive equipment and highly specialized skill sets. Methods We have designed and developed an assay, CpGlobal, which is easy-to-use, does not utilize PCR, radioactivity and expensive equipment. CpGlobal utilizes methyl-sensitive restriction enzymes, HRP Neutravidin to detect the biotinylated nucleotides incorporated in an end-fill reaction and a luminometer to measure the chemiluminescence. The assay shows high accuracy and reproducibility in measuring global DNA methylation. Furthermore, CpGlobal correlates significantly with High Performance Capillary Electrophoresis (HPCE, a gold standard technology. We have applied the technology to understand the role of global DNA methylation in the natural history of lung cancer. World-wide, it is the leading cause of death attributed to any cancer. The survival rate is 15% over 5 years due to the lack of any clinical symptoms until the disease has progressed to a stage where cure is limited. Results Through the use of cell lines and paired normal/tumor samples from patients with non-small cell lung cancer (NSCLC we show that global DNA hypomethylation is highly associated with the progression of the tumor. In addition, the results provide the first indication that the normal part of the lung from a cancer patient has already experienced a loss of methylation compared to a normal individual. Conclusion By detecting these changes in global DNA methylation, CpGlobal may have a role as a barometer for the onset and development of lung cancer.

  19. DNA methylation in inflammatory genes among children with obstructive sleep apnea.

    Science.gov (United States)

    Kim, Jinkwan; Bhattacharjee, Rakesh; Khalyfa, Abdelnaby; Kheirandish-Gozal, Leila; Capdevila, Oscar Sans; Wang, Yang; Gozal, David

    2012-02-01

    Pediatric obstructive sleep apnea (OSA) leads to multiple end-organ morbidities that are mediated by the cumulative burden of oxidative stress and inflammation. Because not all children with OSA exhibit increased systemic inflammation, genetic and environmental factors may be affecting patterns of DNA methylation in genes subserving inflammatory functions. DNA from matched children with OSA with and without high levels of high-sensitivity C-reactive protein (hsCRP) were assessed for DNA methylation levels of 24 inflammatory-related genes. Primer-based polymerase chain reaction assays in a case-control setting involving 47 OSA cases and 31 control subjects were conducted to confirm the findings; hsCRP and myeloid-related protein (MRP) 8/14 levels were also assayed. Forkhead box P3 (FOXP3) and interferon regulatory factor 1 (IRF1) showed higher methylation in six children with OSA and high hsCRP levels compared with matched children with OSA and low hsCRP levels (P DNA methylation levels compared with children with OSA and low CRP levels and control subjects. IRF1 did not exhibit significant differences. FOXP3 DNA methylation levels correlated with hsCRP and MRP 8/14 levels and with apnea-hypopnea index (AHI), BMI z score, and apolipoprotein B levels. A stepwise multiple regression model showed that AHI was independently associated with FOXP3 DNA methylation levels (P gene, which regulates expression of T regulatory lymphocytes, is more likely to display increased methylation among children with OSA who exhibit increased systemic inflammatory responses. Thus, epigenetic modifications may constitute an important determinant of inflammatory phenotype in OSA, and FOXP3 DNA methylation levels may provide a potential biomarker for end-organ vulnerability.

  20. Eliminating PCR contamination

    International Nuclear Information System (INIS)

    Fox, J.C.; Ait-Khaled, Mounir; Webster, Alison; Emery, V.C.

    1991-01-01

    The sensitivity of polymerase chain reaction (PCR) can mean that even very low levels of contamination with the target DNA will result in a positive signal. At present this aspect is a major limitation in the use of PCR as a routine diagnostic method. By exposing PCR reagents to UV light, contaminating DNA can be inactivated, thus providing an opportunity to eradicate false positive reactions. UV irradiation was applied to PCR systems used for detection of human cytomegalovirus CMV and human immunodeficiency virus (HIV) and shown to be effective in eradicating both laboratory encountered contamination and plasmid DNA (below 100 pg) added to PCR systems prior to UV exposure. Sensitivity of a PCR system to amplify the long terminal repeat (LTR) sequence of HIV-1 was not affected by the irradiation procedure; however, ultimate sensitivity of a PCR system for the amplification of an early gene pro-motor sequence of the CMV genome was reduced 1000-fold. UV irradiation did not affect the size of the PCR product as determined by strand separating polyacrylamide gel electrophoresis of a 32 P-labelled amplimer. Thus, a simple pre-exposure to UV light would seem a worth-wile step to incorporate into PCR protocols provided that the effects on sensitivity have been determined empirically for each PCR system. (author). 11 refs.; 3 figs

  1. Analysis of RTEL1 and PCDHGB6 promoter methylation in circulating-free DNA of lung cancer patients using liquid biopsy: A pilot study.

    Science.gov (United States)

    Powrózek, Tomasz; Krawczyk, Paweł; Kuźnar-Kamińska, Barbara; Batura-Gabryel, Halina; Milanowski, Janusz

    2016-08-01

    Analysis of epigenetic alterations such as methylation of circulating-free DNA (cf-DNA) expression significantly broadened perspectives of lung cancer (LC) screening. Moreover, methylation of tumor suppressor genes may be analyzed with non-invasive manner in patients' blood samples (liquid biopsy), what underline necessity of detailed investigation of tumor cf-DNA. The purpose of current study was to assess methylation of RTEL1 and PCDHGB6 promoter regions in cf-DNA of 70 LC patients and 80 healthy individuals using qMSP-PCR technique. Methylation status of both genes has not been investigated in cf-DNA of LC patients before. PCDHGB6 promoter methylation was found in 41.4% of LC patients and in 1.3% of healthy individuals, whereas promoter of RTEL1 was found methylated in 51.4% of LC patients and in 8.8% of healthy individuals. Combined analysis of two markers improved test sensitivity up to 62.9% and specificity up to 90% with area under the curve (AUC) in receiver operating curve (ROC) of 0.755. The evaluation of RTEL1 and PCDHGB6 promoter methylation may be an useful tool for non-invasive diagnosis of LC in liquid biopsy.

  2. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors

    International Nuclear Information System (INIS)

    Amatruda, James F; Frazier, A Lindsay; Poynter, Jenny N; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh

    2013-01-01

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy

  3. Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver

    Science.gov (United States)

    Di Gioia, Sonia; Bianchi, Paolo; Destro, Annarita; Grizzi, Fabio; Malesci, Alberto; Laghi, Luigi; Levrero, Massimo; Morabito, Alberto; Roncalli, Massimo

    2006-01-01

    Background Epigenetic changes during ageing and their relationship with cancer are under the focus of intense research. RASSF1A and NORE1A are novel genes acting in concert in the proapoptotic pathway of the RAS signalling. While NORE1A has not been previously investigated in the human liver, recent reports have suggested that RASSF1A is frequently epigenetically methylated not only in HCC but also in the cirrhotic liver. Methods To address whether epigenetic changes take place in connection to age and/or to the underlying disease, we investigated RASSF1A and NORE1A gene promoter methylation by conventional methylation specific PCR and Real-Time MSP in a series of hepatitic and non-hepatitic livers harboring regenerative/hyperplastic (cirrhosis/focal nodular hyperplasia), dysplastic (large regenerative, low and high grade dysplastic nodules) and neoplastic (hepatocellular adenoma and carcinoma) growths. Results In the hepatitic liver (chronic hepatitic/cirrhosis, hepatocellular nodules and HCC) we found widespread RASSF1A gene promoter methylation with a methylation index that increased from regenerative conditions (cirrhosis) to hepatocellular nodules (p < 0.01) to HCC (p < 0.001). In the non-hepatitic liver a consistent pattern of gene methylation was also found in both lesional (focal nodular hyperplasia and hepatocellular adenoma) and non-lesional tissue. Specifically, hepatocellular adenomas (HA) showed a methylation index significantly higher than that detected in focal nodular hyperplasia (FNH) (p < 0.01) and in non-lesional tissue (p < 0.001). In non-lesional liver also the methylation index gradually increased by ageing (p = 0.002), suggesting a progressive spreading of methylated cells over time. As opposed to RASSF1A gene promoter methylation, NORE1A gene was never found epigenetically alterated in both hepatitic and non-hepatitic liver. Conclusion We have shown that in non-lesional, regenerative and neoplastic liver the RASSF1A gene is increasingly

  4. Clinical Significance of Retinoic Acid Receptor Beta Promoter Methylation in Prostate Cancer: A Meta-Analysis.

    Science.gov (United States)

    Dou, MengMeng; Zhou, XueLiang; Fan, ZhiRui; Ding, XianFei; Li, LiFeng; Wang, ShuLing; Xue, Wenhua; Wang, Hui; Suo, Zhenhe; Deng, XiaoMing

    2018-01-01

    Retinoic acid receptor beta (RAR beta) is a retinoic acid receptor gene that has been shown to play key roles during multiple cancer processes, including cell proliferation, apoptosis, migration and invasion. Numerous studies have found that methylation of the RAR beta promoter contributed to the occurrence and development of malignant tumors. However, the connection between RAR beta promoter methylation and prostate cancer (PCa) remains unknown. This meta-analysis evaluated the clinical significance of RAR beta promoter methylation in PCa. We searched all published records relevant to RAR beta and PCa in a series of databases, including PubMed, Embase, Cochrane Library, ISI Web of Science and CNKI. The rates of RAR beta promoter methylation in the PCa and control groups (including benign prostatic hyperplasia and normal prostate tissues) were summarized. In addition, we evaluated the source region of available samples and the methods used to detect methylation. To compare the incidence and variation in RAR beta promoter methylation in PCa and non-PCa tissues, the odds ratio (OR) and 95% confidence interval (CI) were calculated accordingly. All the data were analyzed with the statistical software STATA 12.0. Based on the inclusion and exclusion criteria, 15 articles assessing 1,339 samples were further analyzed. These data showed that the RAR beta promoter methylation rates in PCa tissues were significantly higher than the rates in the non-PCa group (OR=21.65, 95% CI: 9.27-50.57). Subgroup analysis according to the source region of samples showed that heterogeneity in Asia was small (I2=0.0%, P=0.430). Additional subgroup analysis based on the method used to detect RAR beta promoter methylation showed that the heterogeneity detected by MSP (methylation-specific PCR) was relatively small (I2=11.3%, P=0.343). Although studies reported different rates for RAR beta promoter methylation in PCa tissues, the total analysis demonstrated that RAR beta promoter methylation

  5. Clinical Significance of Retinoic Acid Receptor Beta Promoter Methylation in Prostate Cancer: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    MengMeng Dou

    2018-03-01

    Full Text Available Background/Aims: Retinoic acid receptor beta (RAR beta is a retinoic acid receptor gene that has been shown to play key roles during multiple cancer processes, including cell proliferation, apoptosis, migration and invasion. Numerous studies have found that methylation of the RAR beta promoter contributed to the occurrence and development of malignant tumors. However, the connection between RAR beta promoter methylation and prostate cancer (PCa remains unknown. This meta-analysis evaluated the clinical significance of RAR beta promoter methylation in PCa. Materials and Methods: We searched all published records relevant to RAR beta and PCa in a series of databases, including PubMed, Embase, Cochrane Library, ISI Web of Science and CNKI. The rates of RAR beta promoter methylation in the PCa and control groups (including benign prostatic hyperplasia and normal prostate tissues were summarized. In addition, we evaluated the source region of available samples and the methods used to detect methylation. To compare the incidence and variation in RAR beta promoter methylation in PCa and non-PCa tissues, the odds ratio (OR and 95% confidence interval (CI were calculated accordingly. All the data were analyzed with the statistical software STATA 12.0. Results: Based on the inclusion and exclusion criteria, 15 articles assessing 1,339 samples were further analyzed. These data showed that the RAR beta promoter methylation rates in PCa tissues were significantly higher than the rates in the non-PCa group (OR=21.65, 95% CI: 9.27-50.57. Subgroup analysis according to the source region of samples showed that heterogeneity in Asia was small (I2=0.0%, P=0.430. Additional subgroup analysis based on the method used to detect RAR beta promoter methylation showed that the heterogeneity detected by MSP (methylation-specific PCR was relatively small (I2=11.3%, P=0.343. Conclusion: Although studies reported different rates for RAR beta promoter methylation in PCa

  6. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  7. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  8. Regulation of homocysteine metabolism and methylation in human and mouse tissues

    Science.gov (United States)

    Chen, Natalie C.; Yang, Fan; Capecci, Louis M.; Gu, Ziyu; Schafer, Andrew I.; Durante, William; Yang, Xiao-Feng; Wang, Hong

    2010-01-01

    Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Homocysteine (Hcy) metabolism involves multiple enzymes; however, tissue Hcy metabolism and its relevance to methylation remain unknown. Here, we established gene expression profiles of 8 Hcy metabolic and 12 methylation enzymes in 20 human and 19 mouse tissues through bioinformatic analysis using expression sequence tag clone counts in tissue cDNA libraries. We analyzed correlations between gene expression, Hcy, S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM) levels, and SAM/SAH ratios in mouse tissues. Hcy metabolic and methylation enzymes were classified into two types. The expression of Type 1 enzymes positively correlated with tissue Hcy and SAH levels. These include cystathionine β-synthase, cystathionine-γ-lyase, paraxonase 1, 5,10-methylenetetrahydrofolate reductase, betaine:homocysteine methyltransferase, methionine adenosyltransferase, phosphatidylethanolamine N-methyltransferases and glycine N-methyltransferase. Type 2 enzyme expressions correlate with neither tissue Hcy nor SAH levels. These include SAH hydrolase, methionyl-tRNA synthase, 5-methyltetrahydrofolate:Hcy methyltransferase, S-adenosylmethionine decarboxylase, DNA methyltransferase 1/3a, isoprenylcysteine carboxyl methyltransferases, and histone-lysine N-methyltransferase. SAH is the only Hcy metabolite significantly correlated with Hcy levels and methylation enzyme expression. We established equations expressing combined effects of methylation enzymes on tissue SAH, SAM, and SAM/SAH ratios. Our study is the first to provide panoramic tissue gene expression profiles and mathematical models of tissue methylation regulation.—Chen, N. C., Yang, F., Capecci, L. M., Gu, Z., Schafer, A. I., Durante, W., Yang, X.-F., Wang, H. Regulation of homocysteine metabolism and methylation in human and mouse tissues. PMID:20305127

  9. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    Science.gov (United States)

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  10. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  11. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2010-11-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  12. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    Science.gov (United States)

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  13. CpG Island Methylator Phenotype Positive Tumors in the Absence of MLH1 Methylation Constitute a Distinct Subset of Duodenal Adenocarcinomas and Are Associated with Poor Prognosis

    Science.gov (United States)

    Fu, Tao; Pappou, Emmanouil P.; Guzzetta, Angela A.; Jeschke, Jana; Kwak, Ruby; Dave, Pujan; Hooker, Craig M.; Morgan, Richard; Baylin, Stephen B.; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Ahuja, Nita

    2012-01-01

    Purpose Little information is available on genetic and epigenetic changes in duodenal adenocarcinomas. The purpose was to identify possible subsets of duodenal adenocarcinomas based on microsatellite instability (MSI), DNA methylation, mutations in the KRAS and BRAF genes, clinicopathologic features, and prognosis. Experimental Design Demographics, tumor characteristics and survival were available for 99 duodenal adenocarcinoma patients. Testing for KRAS and BRAF mutations, MSI, MLH1 methylation and CpG island methylator phenotype (CIMP) status was performed. A Cox proportional hazard model was built to predict survival. Results CIMP+ was detected in 27 of 99 (27.3%) duodenal adenocarcinomas, and was associated with MSI (P = 0.011) and MLH1 methylation (P CIMP− tumors. No BRAF V600E mutation was detected. Among the CIMP+ tumors, 15 (55.6%) were CIMP+/MLH1-unmethylated (MLH1-U). Kaplan-Meier analysis showed tumors classified by CIMP, CIMP/MLH1 methylation status or CIMP/MSI status could predict overall survival (OS; P = 0.047, 0.002, and 0.002, respectively), while CIMP/MLH1 methylation status could also predict time-to-recurrence (TTR; P = 0.016). In multivariate analysis, CIMP/MLH1 methylation status showed a significant prognostic value regarding both OS (P CIMP+/MLH1-U tumors had the worst OS and TTR. Conclusions Our results demonstrate existence of CIMP in duodenal adenocarcinomas. The combination of CIMP+/MLH1-U appears to be independently associated with poor prognosis in patients with duodenal adenocarcinomas. This study also suggests that BRAF mutations are not involved in duodenal tumorigenesis, MSI or CIMP development. PMID:22825585

  14. The Effects of Lycopene on the Methylation of the GSTP1 Promoter and Global Methylation in Prostatic Cancer Cell Lines PC3 and LNCaP

    Directory of Open Access Journals (Sweden)

    Li-Juan Fu

    2014-01-01

    Full Text Available DNA (cytosine-5- methylation silencing of GSTP1 function occurs in prostate adenocarcinoma (PCa. Previous studies have shown that there is an inverse relationship between dietary lycopene intake and the risk of PCa. However, it is unknown whether lycopene reactivates the tumor suppressor gene glutathioneS-transferase-π (GSTP1 by demethylation of the hypermethylated CpGs that act to silence the GSTP1 promoter. Here, we demonstrated that lycopene treatment significantly decreased the methylation levels of the GSTP1 promoter and increased the mRNA and protein levels of GSTP1 in an androgen-independent PC-3 cell line. In contrast, lycopene treatment did not demethylate the GSTP1 promoter or increase GSTP1 expression in the androgen-dependent LNCaP cell line. DNA methyltransferase (DNMT 3A protein levels were downregulated in PC-3 cells following lycopene treatment; however, DNMT1 and DNMT3B levels were unchanged. Furthermore, the long interspersed element (LINE-1 and short interspersed element ALU were not demethylated when treated by lycopene. In LNCaP cells, lycopene treatment did not affect any detected DNMT protein expression, and the methylation levels of LINE-1 and ALU were decreased. These results indicated that the protective effect of lycopene on the prostate is different between androgen-dependent and androgen-independent derived PCa cells. Further, in vivo studies should be conducted to confirm these promising results and to evaluate the potential role of lycopene in the protection of the prostate.

  15. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  16. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Lee, Chang Hoon; Yoon, Kwon-Ha; Lee, Myeung Su

    2017-03-07

    In the field of bone research, various natural derivatives have emerged as candidates for osteoporosis treatment by targeting abnormally elevated osteoclastic activity. Methyl gallate, a plant-derived phenolic compound, is known to have numerous pharmacological effects against inflammation, oxidation, and cancer. Our purpose was to explore the relation between methyl gallate and bone metabolism. Herein, we performed screening using methyl gallate by tartrate resistant acid phosphatase (TRAP) staining and revealed intracellular mechanisms responsible for methyl gallate-mediated regulation of osteoclastogenesis by Western blotting and quantitative reverse transcription polymerase chain reaction (RT-PCR). Furthermore, we assessed the effects of methyl gallate on the characteristics of mature osteoclasts. We found that methyl gallate significantly suppressed osteoclast formation through Akt and Btk-PLCγ2-Ca 2+ signaling. The blockade of these pathways was confirmed through transduction of cells with a CA-Akt retrovirus and evaluation of Ca 2+ influx intensity (staining with Fluo-3/AM). Indeed, methyl gallate downregulated the formation of actin ring-positive osteoclasts and resorption pit areas. In agreement with in vitro results, we found that administration of methyl gallate restored osteoporotic phenotype stimulated by acute systemic injection of lipopolysaccharide in vivo according to micro-computed tomography and histological analysis. Our data strongly indicate that methyl gallate may be useful for the development of a plant-based antiosteoporotic agent.

  17. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2017-03-01

    Full Text Available In the field of bone research, various natural derivatives have emerged as candidates for osteoporosis treatment by targeting abnormally elevated osteoclastic activity. Methyl gallate, a plant-derived phenolic compound, is known to have numerous pharmacological effects against inflammation, oxidation, and cancer. Our purpose was to explore the relation between methyl gallate and bone metabolism. Herein, we performed screening using methyl gallate by tartrate resistant acid phosphatase (TRAP staining and revealed intracellular mechanisms responsible for methyl gallate-mediated regulation of osteoclastogenesis by Western blotting and quantitative reverse transcription polymerase chain reaction (RT-PCR. Furthermore, we assessed the effects of methyl gallate on the characteristics of mature osteoclasts. We found that methyl gallate significantly suppressed osteoclast formation through Akt and Btk-PLCγ2-Ca2+ signaling. The blockade of these pathways was confirmed through transduction of cells with a CA-Akt retrovirus and evaluation of Ca2+ influx intensity (staining with Fluo-3/AM. Indeed, methyl gallate downregulated the formation of actin ring-positive osteoclasts and resorption pit areas. In agreement with in vitro results, we found that administration of methyl gallate restored osteoporotic phenotype stimulated by acute systemic injection of lipopolysaccharide in vivo according to micro-computed tomography and histological analysis. Our data strongly indicate that methyl gallate may be useful for the development of a plant-based antiosteoporotic agent.

  18. SLC9B1 methylation predicts fetal intolerance of labor.

    Science.gov (United States)

    Knight, Anna K; Conneely, Karen N; Kilaru, Varun; Cobb, Dawayland; Payne, Jennifer L; Meilman, Samantha; Corwin, Elizabeth J; Kaminsky, Zachary A; Dunlop, Anne L; Smith, Alicia K

    2018-01-01

    Fetal intolerance of labor is a common indication for delivery by Caesarean section. Diagnosis is based on the presence of category III fetal heart rate tracing, which is an abnormal heart tracing associated with increased likelihood of fetal hypoxia and metabolic acidemia. This study analyzed data from 177 unique women who, during their prenatal visits (7-15 weeks and/or 24-32 weeks) to Atlanta area prenatal care clinics, consented to provide blood samples for DNA methylation (HumanMethylation450 BeadChip) and gene expression (Human HT-12 v4 Expression BeadChip) analyses. We focused on 57 women aged 18-36 (mean 25.4), who had DNA methylation data available from their second prenatal visit. DNA methylation patterns at CpG sites across the genome were interrogated for associations with fetal intolerance of labor. Four CpG sites (P value intolerance of labor. DNA methylation and gene expression were negatively associated when examined longitudinally during pregnancy using a linear mixed-effects model. Positive predictive values of methylation of these four sites ranged from 0.80 to 0.89, while negative predictive values ranged from 0.91 to 0.92. The four CpG sites were also associated with fetal intolerance of labor in an independent cohort (the Johns Hopkins Prospective PPD cohort). Therefore, fetal intolerance of labor could be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation. Fetal intolerance of labor may be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation by assessing DNA methylation patterns of SLC9B1. The identification of pregnant women at elevated risk for fetal intolerance of labor may allow for the development of targeted treatments or management plans.

  19. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    International Nuclear Information System (INIS)

    Müller, Imke; Wischnewski, Frank; Pantel, Klaus; Schwarzenbach, Heidi

    2010-01-01

    The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. This study is one of the first to reveal the histone code and MBD profile

  20. Increased expression and altered methylation of HERVWE1 in the human placentas of smaller fetuses from monozygotic, dichorionic, discordant twins.

    Directory of Open Access Journals (Sweden)

    Yu Gao

    Full Text Available BACKGROUND: The human endogenous retroviral family W, Env(C7, member 1 gene (HERVWE1 is thought to participate in trophoblast cell fusion, and its expression is diminished in the placentas of singleton intrauterine growth-retarded pregnancies. However, there is limited information about the role of HERVWE1 in discordant fetal growth in twins. This study was to compare HERVWE1 gene expression between the placentas of discordant monozygotic twins and to identify its regulation by methylation. METHODOLOGY/PRINCIPAL FINDINGS: Fetuses from twenty-one pairs of monozygotic, dichorionic, discordant twins were marked as "smaller" or "larger" according to birth weight. Placental HERVWE1 mRNA and protein expression profiles were analyzed using quantitative RT-PCR and immunohistochemistry (IHC staining. Methylation profiles of the HERVWE1 promoter region were analyzed using a pyrosequencing assay. DNA methyltransferase (DNMT transcript levels were analyzed by RT-PCR. 5-methyl cytosine (5-MC was stained using an immunohistochemical assay. There was a significant negative correlation between HERVWE1 mRNA levels and birth weight in twins (P0.05. The DNMT3b3 mRNA levels in the smaller group were significantly downregulated compared with the larger group in discordant twins(P<0.05, whereas the DNMT3b7 mRNA levels in the smaller group were significantly upregulated compared with the larger group in discordant twins(P<0.05. CONCLUSIONS/SIGNIFICANCE: In discordant, monozygotic, dichorionic twins, HERVWE1 expression was higher in smaller fetuses and lower in larger fetuses. Methylation of the HERVWE1 gene promoter region may participate in the regulation of HERVWE1 gene expression in discordant twin pregnancies.

  1. Increased Expression and Altered Methylation of HERVWE1 in the Human Placentas of Smaller Fetuses from Monozygotic, Dichorionic, Discordant Twins

    Science.gov (United States)

    Wang, Zilian; Luo, Yanmin; Sun, Hongyu; Zhou, Yi; Huang, Linhuan; Li, Manchao; Fang, Qun; Jiang, Shiwen

    2012-01-01

    Background The human endogenous retroviral family W, Env(C7), member 1 gene (HERVWE1) is thought to participate in trophoblast cell fusion, and its expression is diminished in the placentas of singleton intrauterine growth-retarded pregnancies. However, there is limited information about the role of HERVWE1 in discordant fetal growth in twins. This study was to compare HERVWE1 gene expression between the placentas of discordant monozygotic twins and to identify its regulation by methylation. Methodology/Principal Findings Fetuses from twenty-one pairs of monozygotic, dichorionic, discordant twins were marked as “smaller” or “larger” according to birth weight. Placental HERVWE1 mRNA and protein expression profiles were analyzed using quantitative RT-PCR and immunohistochemistry (IHC) staining. Methylation profiles of the HERVWE1 promoter region were analyzed using a pyrosequencing assay. DNA methyltransferase (DNMT) transcript levels were analyzed by RT-PCR. 5-methyl cytosine (5-MC) was stained using an immunohistochemical assay. There was a significant negative correlation between HERVWE1 mRNA levels and birth weight in twins (P0.05). The DNMT3b3 mRNA levels in the smaller group were significantly downregulated compared with the larger group in discordant twins(P<0.05), whereas the DNMT3b7 mRNA levels in the smaller group were significantly upregulated compared with the larger group in discordant twins(P<0.05). Conclusions/Significance In discordant, monozygotic, dichorionic twins, HERVWE1 expression was higher in smaller fetuses and lower in larger fetuses. Methylation of the HERVWE1 gene promoter region may participate in the regulation of HERVWE1 gene expression in discordant twin pregnancies. PMID:22457770

  2. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    Science.gov (United States)

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    Science.gov (United States)

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  4. Promoter Methylation of RASSF1A Associates to Adult Secondary Glioblastomas and Pediatric Glioblastomas.

    Science.gov (United States)

    Muñoz, Jorge; Inda, María Del Mar; Lázcoz, Paula; Zazpe, Idoya; Fan, Xing; Alfaro, Jorge; Tuñón, Teresa; Rey, Juan A; Castresana, Javier S

    2012-01-01

    While allelic losses and mutations of tumor suppressor genes implicated in the etiology of astrocytoma have been widely assessed, the role of epigenetics is still a matter of study. We analyzed the frequency of promoter hypermethylation by methylation-specific PCR (MSP) in five tumor suppressor genes (PTEN, MGMT, RASSF1A, p14(ARF), and p16(INK4A)), in astrocytoma samples and cell lines. RASSF1A was the most frequently hypermethylated gene in all grades of astrocytoma samples, in cell lines, and in adult secondary GBM. It was followed by MGMT. PTEN showed a slight methylation signal in only one GBM and one pilocytic astrocytoma, and in two cell lines; while p14(ARF) and p16(INK4A) did not show any evidence of methylation in primary tumors or cell lines. In pediatric GBM, RASSF1A was again the most frequently altered gene, followed by MGMT; PTEN, p14 and p16 showed no alterations. Lack or reduced expression of RASSF1A in cell lines was correlated with the presence of methylation. RASSF1A promoter hypermethylation might be used as a diagnostic marker for secondary GBM and pediatric GBM. Promoter hypermethylation might not be an important inactivation mechanism in other genes like PTEN, p14(ARF) and p16(INK4A), in which other alterations (mutations, homozygous deletions) are prevalent.

  5. The mGluR5 antagonist AFQ056 does not affect methylation and transcription of the mutant FMR1 gene in vitro

    Directory of Open Access Journals (Sweden)

    Tabolacci Elisabetta

    2012-03-01

    Full Text Available Abstract Background Fragile X syndrome (FXS, the leading cause of inherited mental retardation, is due to expansion and methylation of a CGG sequence in the FMR1 gene, which result in its silencing and consequent absence of FMRP protein. This absence causes loss of repression of metabotropic glutamate receptor 5 (mGluR5-mediated pathways resulting in the behavioral and cognitive impairments associated with FXS. In a randomized, double-blind trial it was recently demonstrated a beneficial effect of AFQ056, a selective inhibitor of metabotrobic glutamate receptor type 5 (mGluR5, on fully methylated FXS patients respect to partially methylated FXS ones. Methods To determine whether AFQ056 may have secondary effects on the methylation and transcription of FMR1, here we treated three FXS lymphoblastoid cell lines and one normal control male line. A quantitative RT-PCR was performed to assess transcriptional reactivation of the FMR1 gene. To assess the methylation status of the FMR1 gene promoter it was carried out a bisulphite sequencing analysis. Results Both FMR1-mRNA levels and DNA methylation were unmodified with respect to untreated controls. Conclusions These results demonstrate that the AFQ056 effect on fully methylated FXS patients is not due to a secondary effect on DNA methylation and consequent transcriptional activation of FMR1.

  6. IGFBP3 methylation is a novel diagnostic and predictive biomarker in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Lucia Perez-Carbonell

    Full Text Available Aberrant hypermethylation of cancer-related genes has emerged as a promising strategy for the development of diagnostic, prognostic and predictive biomarkers in human cancer, including colorectal cancer (CRC. The aim of this study was to perform a systematic and comprehensive analysis of a panel of CRC-specific genes as potential diagnostic, prognostic and predictive biomarkers in a large, population-based CRC cohort.Methylation status of the SEPT9, TWIST1, IGFBP3, GAS7, ALX4 and miR137 genes was studied by quantitative bisulfite pyrosequencing in a population-based cohort of 425 CRC patients.Methylation levels of all genes analyzed were significantly higher in tumor tissues compared to normal mucosa (p<0.0001; however, cancer-associated hypermethylation was most frequently observed for miR137 (86.7% and IGFBP3 (83% in CRC patients. Methylation analysis using the combination of these two genes demonstrated greatest accuracy for the identification of colonic tumors (sensitivity 95.5%; specificity 90.5%. Low levels of IGFBP3 promoter methylation emerged as an independent risk factor for predicting poor disease free survival in stage II and III CRC patients (HR = 0.49, 95% CI: 0.28-0.85, p = 0.01. Our results also suggest that stage II & III CRC patients with high levels of IGFBP3 methylation do not benefit from adjuvant 5FU-based chemotherapy.By analyzing a large, population-based CRC cohort, we demonstrate the potential clinical significance of miR137 and IGFBP3 hypermethylation as promising diagnostic biomarkers in CRC. Our data also revealed that IGFBP3 hypermethylation may serve as an independent prognostic and predictive biomarker in stage II and III CRC patients.

  7. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear overhauser enhancement spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, Vincenzo; Fawzi, Nicolas L.; Clore, G. Marius, E-mail: mariusc@mail.nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2011-11-15

    Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to {approx}1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the protein, nor experiments that transfer magnetization between methyl groups and the protein backbone, are required. PRE-derived assignments are refined by 4D methyl-methyl nuclear Overhauser enhancement data, eliminating ambiguities and errors that may arise due to the high sensitivity of PREs to the potential presence of sparsely-populated transient states.

  8. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach.

    Directory of Open Access Journals (Sweden)

    Michael M Mendelson

    2017-01-01

    Full Text Available The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain.We conducted an association study of body mass index (BMI and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1], demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83 of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination.We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.

  9. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach

    Science.gov (United States)

    Joehanes, Roby; Liu, Chunyu; Aslibekyan, Stella; Demerath, Ellen W.; Guan, Weihua; Zhi, Degui; Willinger, Christine; Courchesne, Paul; Multhaup, Michael; Irvin, Marguerite R.; Schadt, Eric E.; Bressler, Jan; North, Kari; Sundström, Johan; Gustafsson, Stefan; Shah, Sonia; McRae, Allan F.; Harris, Sarah E.; Gibson, Jude; Redmond, Paul; Corley, Janie; Starr, John M.; Visscher, Peter M.; Wray, Naomi R.; Krauss, Ronald M.; Feinberg, Andrew; Fornage, Myriam; Pankow, James S.; Lind, Lars; Fox, Caroline; Ingelsson, Erik; Arnett, Donna K.; Boerwinkle, Eric; Liang, Liming; Levy, Daniel; Deary, Ian J.

    2017-01-01

    Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases. PMID:28095459

  10. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1 gene reveals association with early age of diagnosis in colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Austin Y Shull

    Full Text Available The Cub and Sushi Multiple Domains 1 (CSMD1 gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients.We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A.Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%. The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014. This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%. Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years than those without somatic mutations (average age, 68 years. The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%, suggesting extensive cytosine methylation predisposing to somatic mutations.Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical

  11. Identifying DNA Methylation Biomarkers for Non-Endoscopic Detection of Barrett’s Esophagus

    Science.gov (United States)

    Moinova, Helen R.; LaFramboise, Thomas; Lutterbaugh, James D.; Chandar, Apoorva Krishna; Dumot, John; Faulx, Ashley; Brock, Wendy; De la Cruz Cabrera, Omar; Guda, Kishore; Barnholtz-Sloan, Jill S.; Iyer, Prasad G.; Canto, Marcia I.; Wang, Jean S.; Shaheen, Nicholas J.; Thota, Prashanti N.; Willis, Joseph E.; Chak, Amitabh; Markowitz, Sanford D.

    2018-01-01

    We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE), based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma (EAC). Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve (AUC)=0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals, who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 minutes. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE. PMID:29343623

  12. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    Science.gov (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  13. Trans-methylation reactions in plants: focus on the activated methyl cycle.

    Science.gov (United States)

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa

    2018-02-01

    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.

  14. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamagata

    Full Text Available The objective of this study was to characterize the genome-wide DNA methylation profiles of isolated endometrial stromal cells obtained from eutopic endometria with (euESCa and without endometriosis (euESCb and ovarian endometrial cysts (choESC. Three samples were analyzed in each group. The infinium methylation array identified more hypermethylated and hypomethylated CpGs in choESC than in euESCa, and only a few genes were methylated differently in euESCa and euESCb. A functional analysis revealed that signal transduction, developmental processes, immunity, etc. were different in choESC and euESCa. A clustering analysis and a principal component analysis performed based on the methylation levels segregated choESC from euESC, while euESCa and euESCb were identical. A transcriptome analysis was then conducted and the results were compared with those of the DNA methylation analysis. Interestingly, the hierarchical clustering and principal component analyses showed that choESC were segregated from euESCa and euESCb in the DNA methylation analysis, while no segregation was recognized in the transcriptome analysis. The mRNA expression levels of the epigenetic modification enzymes, including DNA methyltransferases, obtained from the specimens were not significantly different between the groups. Some of the differentially methylated and/or expressed genes (NR5A1, STAR, STRA6 and HSD17B2, which are related with steroidogenesis, were validated by independent methods in a larger number of samples. Our findings indicate that different DNA methylation profiles exist in ectopic ESC, highlighting the benefits of genome wide DNA methylation analyses over transcriptome analyses in clarifying the development and characterization of endometriosis.

  15. Real-time PCR (qPCR) primer design using free online software.

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  16. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus

    Science.gov (United States)

    Zhao, Ming; Zhou, Yin; Zhu, Bochen; Wan, Mengjie; Jiang, Tingting; Tan, Qiqun; Liu, Yan; Jiang, Juqing; Luo, Shuaihantian; Tan, Yixin; Wu, Haijing; Renauer, Paul; Gutiérrez, Maria del Mar Ayala; Palma, Maria Jesús Castillo; Castro, Rafaela Ortega; Fernández-Roldán, Concepción; Raya, Enrique; Faria, Raquel; Carvalho, Claudia; Alarcón-Riquelme, Marta E; Xiang, Zhongyuan; Chen, Jinwei; Li, Fen; Ling, Guanghui; Zhao, Hongjun; Liao, Xiangping; Lin, Youkun; Sawalha, Amr H; Lu, Qianjin

    2016-01-01

    Objective Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease with limited reliable diagnostic biomarkers. We investigated whether gene methylation could meet sensitivity and specificity criteria for a robust biomarker. Methods IFI44L promoter methylation was examined using DNA samples from a discovery set including 377 patients with SLE, 358 healthy controls (HCs) and 353 patients with rheumatoid arthritis (RA). Two independent sets including 1144 patients with SLE, 1350 HCs, 429 patients with RA and 199 patients with primary Sjögren’s syndrome (pSS) were used for validation. Results Significant hypomethylation of two CpG sites within IFI44L promoter, Site1 (Chr1: 79 085 222) and Site2 (Chr1: 79 085 250; cg06872964), was identified in patients with SLE compared with HCs, patients with RA and patients with pSS. In a comparison between patients with SLE and HCs included in the first validation cohort, Site1 methylation had a sensitivity of 93.6% and a specificity of 96.8% at a cut-off methylation level of 75.5% and Site2 methylation had a sensitivity of 94.1% and a specificity of 98.2% at a cut-off methylation level of 25.5%. The IFI44L promoter methylation marker was also validated in an European-derived cohort. In addition, the methylation levels of Site1 and Site2 within IFI44L promoter were significantly lower in patients with SLE with renal damage than those without renal damage. Patients with SLE showed significantly increased methylation levels of Site1 and Site2 during remission compared with active stage. Conclusions The methylation level of IFI44L promoter can distinguish patients with SLE from healthy persons and other autoimmune diseases, and is a highly sensitive and specific diagnostic marker for SLE. PMID:26787370

  17. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Science.gov (United States)

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  18. Detection of Turner syndrome using X-chromosome inactivation specific differentially methylated CpG sites: A pilot study.

    Science.gov (United States)

    Zhang, Qiang; Guo, Xiaohong; Tian, Tian; Wang, Teng; Li, Qiaoli; Wang, Lei; Liu, Yun; Xing, Qinghe; He, Lin; Zhao, Xinzhi

    2017-05-01

    Early diagnosis of Turner syndrome (TS) may improve preventive measures and treatment. X-chromosome inactivation specific differentially methylated CpG sites (XIDMSs) that are high methylated in inactive X chromosomes (Xi) and unmethylated in active X chromosomes (Xa) may be potential makers for TS detection. The candidate XIDMSs were screened from 9 male and 12 female DNA samples with normal karyotypes using the Illumina 450k array and validated by bisulfite sequencing PCR and pyrosequencing assay. X chromosome dosage was calculated according to the methylation level of multiple XIDMSs. Overall, 108 candidate XIDMSs were screened by the 450k array. Validations indicated that XIDMSs gathered and formed the X-chromosome inactivation specific differentially methylated regions (XIDMRs). Using 3 XIDMRs at SAT1, UXT and UTP14A loci, 36 TS, 22 normal female and 6 male samples were analyzed. Methylation levels of the 20 XIDMSs in the XIDMRs could distinguish between TS and normal female DNA samples, the X chromosome dosage was consistent with karyotyping data. Analyzing samples of 2 triple X syndrome and 3 Klinefelter syndrome patients suggested that this method could be used to detect X chromosome aneuploids other than TS. XIDMSs are widely spread along the X chromosome and might be effective markers for detection of TS and other X chromosome aneuploids. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

    International Nuclear Information System (INIS)

    Savva-Bordalo, Joana; Henrique, Rui; Jerónimo, Carmen; Ramalho-Carvalho, João; Pinheiro, Manuela; Costa, Vera L; Rodrigues, Ângelo; Dias, Paula C; Veiga, Isabel; Machado, Manuela; Teixeira, Manuel R

    2010-01-01

    Severe toxicity to 5-fluorouracil (5-FU) based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (DPYD). In this study, we evaluated DPYD promoter methylation through quantitative methylation-specific PCR and screened DPYD for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. DPYD promoter methylation was also assessed in tumor tissue from 29 patients Two cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A), and one case carrying the 1845 G > T missense mutation (c.1845G > T) in the DPYD gene were identified. However, DPYD promoter methylation and large DPYD intragenic rearrangements were absent in all cases analyzed. Our results indicate that DPYD promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity

  20. Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

    Directory of Open Access Journals (Sweden)

    Savva-Bordalo Joana

    2010-09-01

    Full Text Available Abstract Background Severe toxicity to 5-fluorouracil (5-FU based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (DPYD. Methods In this study, we evaluated DPYD promoter methylation through quantitative methylation-specific PCR and screened DPYD for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. DPYD promoter methylation was also assessed in tumor tissue from 29 patients Results Two cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A, and one case carrying the 1845 G > T missense mutation (c.1845G > T in the DPYD gene were identified. However, DPYD promoter methylation and large DPYD intragenic rearrangements were absent in all cases analyzed. Conclusions Our results indicate that DPYD promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity.

  1. Differential DNA Methylation in Relation to Age and Health Risks of Obesity

    Directory of Open Access Journals (Sweden)

    María Luisa Mansego

    2015-07-01

    Full Text Available The aim of this study was to evaluate whether genome-wide levels of DNA methylation are associated with age and the health risks of obesity (HRO; defined according to BMI categories as “Low HRO” (overweight and class 1 obesity versus “High HRO” (class 2 and class 3 obesity. Anthropometric measurements were assessed in a subsample of 48 volunteers from the Metabolic Syndrome Reduction in Navarra (RESMENA study and 24 women from another independent study, Effects of Lipoic Acid and Eicosapentaenoic Acid in Human Obesity (OBEPALIP study. In the pooled population; the methylation levels of 55 CpG sites were significantly associated with age after Benjamini-Hochberg correction. In addition, DNA methylation of three CpG sites located in ELOVL2; HOXC4 and PI4KB were further negatively associated with their mRNA levels. Although no differentially methylated CpG sites were identified in relation to HRO after multiple testing correction; several nominally significant CpG sites were identified in genes related to insulin signaling; energy and lipid metabolism. Moreover, statistically significant associations between BMI or mRNA levels and two HRO-related CpG sites located in GPR133 and ITGB5 are reported. As a conclusion, these findings from two Spanish cohorts add knowledge about the important role of DNA methylation in the age-related regulation of gene expression. In addition; a relevant influence of age on DNA methylation in white blood cells was found, as well as, on a trend level, novel associations between DNA methylation and obesity.

  2. A method to evaluate genome-wide methylation in archival formalin-fixed, paraffin-embedded ovarian epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qiling Li

    Full Text Available The use of DNA from archival formalin and paraffin embedded (FFPE tissue for genetic and epigenetic analyses may be problematic, since the DNA is often degraded and only limited amounts may be available. Thus, it is currently not known whether genome-wide methylation can be reliably assessed in DNA from archival FFPE tissue.Ovarian tissues, which were obtained and formalin-fixed and paraffin-embedded in either 1999 or 2011, were sectioned and stained with hematoxylin-eosin (H&E.Epithelial cells were captured by laser micro dissection, and their DNA subjected to whole genomic bisulfite conversion, whole genomic polymerase chain reaction (PCR amplification, and purification. Sequencing and software analyses were performed to identify the extent of genomic methylation. We observed that 31.7% of sequence reads from the DNA in the 1999 archival FFPE tissue, and 70.6% of the reads from the 2011 sample, could be matched with the genome. Methylation rates of CpG on the Watson and Crick strands were 32.2% and 45.5%, respectively, in the 1999 sample, and 65.1% and 42.7% in the 2011 sample.We have developed an efficient method that allows DNA methylation to be assessed in archival FFPE tissue samples.

  3. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons.

    Directory of Open Access Journals (Sweden)

    Kimberly D Siegmund

    Full Text Available The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's or lack thereof (schizophrenia--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.

  4. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, Hidden ... its response to environmental cues. .... have a great potential to become the most cost-effective ... hg18 reference genome (set to 0 if not present in retrieved reads). ..... DNA methylation patterns and epigenetic memory.

  5. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma

    Directory of Open Access Journals (Sweden)

    Wang Yifei

    2004-09-01

    Full Text Available Abstract Background Astrocytoma is a common aggressive intracranial tumor and presents a formidable challenge in the clinic. Association of altered DNA methylation patterns of the promoter CpG islands with the expression profile of cancer-related genes, has been found in many human tumors. Therefore, DNA methylation status as such may serve as an epigenetic biomarker for both diagnosis and prognosis of human tumors, including astrocytoma. Methods We used the methylation specific PCR in conjunction with sequencing verification to establish the methylation profile of the promoter CpG island of thirty four genes in astrocytoma tissues from fifty three patients (The WHO grading:. I: 14, II: 15, III: 12 and IV: 12 cases, respectively. In addition, compatible tissues (normal tissues distant from lesion from three non-astrocytoma patients were included as the control. Results Seventeen genes (ABL, APC, APAF1, BRCA1, CSPG2, DAPK1, hMLH1, LKB1, PTEN, p14ARF, p15INK4b, p27KIP1, p57KIP2, RASSF1C, RB1, SURVIVIN, and VHL displayed a uniformly unmethylated pattern in all the astrocytoma and non-astrocytoma tissues examined. However, the MAGEA1 gene that was inactivated and hypermethylated in non-astrocytoma tissues, was partially demethylated in 24.5% of the astrocytoma tissues (co-existence of the hypermethylated and demethylated alleles. Of the astrocytoma associated hypermethylated genes, the methylation pattern of the CDH13, cyclin a1, DBCCR1, EPO, MYOD1, and p16INK4a genes changed in no more than 5.66% (3/53 of astrocytoma tissues compared to non-astrocytoma controls, while the RASSF1A, p73, AR, MGMT, CDH1, OCT6,, MT1A, WT1, and IRF7 genes were more frequently hypermethylated in 69.8%, 47.2%, 41.5%, 35.8%, 32%, 30.2%, 30.2%, 30.2% and 26.4% of astrocytoma tissues, respectively. Demethylation mediated inducible expression of the CDH13, MAGEA1, MGMT, p73 and RASSF1A genes was established in an astrocytoma cell line (U251, demonstrating that expression of

  6. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera.

    Directory of Open Access Journals (Sweden)

    Gianpiero Marconi

    Full Text Available Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone and salinity-sensitive (Toccata rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4 and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site

  7. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    Science.gov (United States)

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  8. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    Science.gov (United States)

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  9. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    Science.gov (United States)

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  10. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  11. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis].

    Science.gov (United States)

    Yang, X J; Yuan, Y Z; Niu, Q

    2016-04-20

    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP gene may be associated with increased serum aluminium level, and downregulated methylation of the promoter region of APP gene may accelerate APP gene transcription.

  12. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  13. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (piAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  14. NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    Science.gov (United States)

    Zanos, Panos; Moaddel, Ruin; Morris, Patrick J.; Georgiou, Polymnia; Fischell, Jonathan; Elmer, Greg I.; Alkondon, Manickavasagom; Yuan, Peixiong; Pribut, Heather J.; Singh, Nagendra S.; Dossou, Katina S.S.; Fang, Yuhong; Huang, Xi-Ping; Mayo, Cheryl L.; Wainer, Irving W.; Albuquerque, Edson X.; Thompson, Scott M.; Thomas, Craig J.; Zarate, Carlos A.; Gould, Todd D.

    2016-01-01

    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants. PMID:27144355

  15. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  16. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    Science.gov (United States)

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  17. Gene mdpC plays a regulatory role in the methyl-tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1.

    Science.gov (United States)

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2015-04-01

    Among the few bacteria known to utilize methyl tert-butyl ether (MTBE) as a sole carbon source, Methylibium petroleiphilum PM1 is a well-characterized organism with a sequenced genome; however, knowledge of the genetic regulation of its MTBE degradation pathway is limited. We investigated the role of a putative transcriptional activator gene, mdpC, in the induction of MTBE-degradation genes mdpA (encoding MTBE monooxygenase) and mdpJ (encoding tert-butyl alcohol hydroxylase) of strain PM1 in a gene-knockout mutant mdpC(-). We also utilized quantitative reverse transcriptase PCR assays targeting genes mdpA, mdpJ and mdpC to determine the effects of the mutation on transcription of these genes. Our results indicate that gene mdpC is involved in the induction of both mdpA and mdpJ in response to MTBE and tert-butyl alcohol (TBA) exposure in PM1. An additional independent mechanism may be involved in the induction of mdpJ in the presence of TBA. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A genome-wide methylation study on obesity Differential variability and differential methylation

    NARCIS (Netherlands)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-01-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common

  19. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Sibel, E-mail: stopuz@istanbul.edu.tr [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul (Turkey); Turgut Kara, Neslihan [Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul (Turkey); Sezerman, Osman Ugur [Department of Biostatistics and Medical Informatics, Acibadem University, Istanbul (Turkey); Durasi, İlknur Melis [Biological Sciences and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul (Turkey); Chen, Tao [Department of Toxicology, School of Public Health, Soochow University, Suzhou (China); Demirel, Goksun; Alpertunga, Buket [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul (Turkey); Chipman, J. Kevin [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); Mally, Angela [Department of Toxicology, University of Würzburg, Würzburg (Germany)

    2015-12-01

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase activity

  20. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    International Nuclear Information System (INIS)

    Ozden, Sibel; Turgut Kara, Neslihan; Sezerman, Osman Ugur; Durasi, İlknur Melis; Chen, Tao; Demirel, Goksun; Alpertunga, Buket; Chipman, J. Kevin; Mally, Angela

    2015-01-01

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase activity

  1. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-01

    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  2. Extramural vascular invasion and response to neoadjuvant chemoradiotherapy in rectal cancer: Influence of the CpG island methylator phenotype.

    Science.gov (United States)

    Williamson, Jeremy Stuart; Jones, Huw Geraint; Williams, Namor; Griffiths, Anthony Paul; Jenkins, Gareth; Beynon, John; Harris, Dean Anthony

    2017-05-15

    To identify whether CpG island methylator phenotype (CIMP) is predictive of response to neoadjuvant chemoradiotherapy (NACRT) and outcomes in rectal cancer. Patients undergoing NACRT and surgical resection for rectal cancer in a tertiary referral centre between 2002-2011 were identified. Pre-treatment tumour biopsies were analysed for CIMP status (high, intermediate or low) using methylation specific PCR. KRAS and BRAF status were also determined using pyrosequencing analysis. Clinical information was extracted from case records and cancer services databases. Response to radiotherapy was measured by tumour regression scores determined upon histological examination of the resected specimen. The relationship between these molecular features, response to NACRT and oncological outcomes were analysed. There were 160 patients analysed with a median follow-up time of 46.4 mo. Twenty-one (13%) patients demonstrated high levels of CIMP methylation (CIMP-H) and this was significantly associated with increased risk of extramural vascular invasion (EMVI) compared with CIMP-L [8/21 (38%) vs 15/99 (15%), P = 0.028]. CIMP status was not related to tumour regression after radiotherapy or survival, however EMVI was significantly associated with adverse survival ( P CIMP status was significantly associated with KRAS mutation ( P = 0.01). There were 14 (9%) patients with a pathological complete response (pCR) compared to 116 (73%) patients having no or minimal regression after neoadjuvant chemoradiotherapy. Those patients with pCR had median survival of 106 mo compared to 65.8 mo with minimal regression, although this was not statistically significant ( P = 0.26). Binary logistic regression analysis of the relationship between EMVI and other prognostic features revealed, EMVI positivity was associated with poor overall survival, advanced "T" stage and CIMP-H but not nodal status, age, sex, KRAS mutation status and presence of local or systemic recurrence. We report a novel

  3. Genetic polymorphisms of PPAR gamma, arsenic methylation capacity and breast cancer risk in Mexican women.

    Science.gov (United States)

    Pineda-Belmontes, Cristina P; Hernández-Ramírez, Raúl U; Hernández-Alcaraz, César; Cebrián, Mariano E; López-Carrillo, Lizbeth

    2016-04-01

    To evaluate whether the presence of polymorphisms of peroxisome proliferator-activated receptor gamma PPARγ (Pro 1 2Ala) and PPARGC1B (Ala203Pro) modifies the association between the inorganic arsenic (iAs) methylation capacity and breast cancer (BC). Mexican women were interviewed, and blood and urine samples were collected from them (cases/controls= 197/220). The concentration of urinary arsenic species and the polymorphisms of interest were determined by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and polymerase chain reaction (PCR), respectively. In women with a high %MMA (urinary monomethyl arsenic) and high primary methylation ratio (PM = MMA/iAs), the risk of BC was increased (odds ratio [OR]%MMA T3 vs.T1= 3.60: 95% confidence interval [CI] 2.02-6.41, ORPMI T3 vs.T1= 3.47: 95%CI 1.95-6.17), which was maintained after adjusting for polymorphisms. No significant interactions were observed between the polymorphisms and the arsenic variables on the risk of BC. Pro 12Ala and Ala203Pro polymorphisms did not modify the association between the iAs methylation capacity and BC.

  4. Methylation associated inactivation of RASSF1A and its synergistic effect with activated K-Ras in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Jing

    2009-12-01

    Full Text Available Abstract Background Epigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis. RASSF1A is a candidate tumor suppressor gene which was found to be inactivated in many human cancers. Although we have had a prelimilary cognition about the function of RASSF1A, the exact mechanisms about how RASSF1A functions in human cancers were largely unknown. Moreover, the effect of mutated K-Ras gene on the function of RASSF1A is lacking. The aim of this study was to investigate the expression profile and methylation status of RASSF1A gene, and to explore its concrete mechanisms as a tumor suppressor gene in Nasopharyngeal Carcinoma. Methods We examined the expression profile and methylation status of RASSF1A in two NPC cell lines, 38 primary nasopharyngeal carcinoma and 14 normal nasopharyngeal epithelia using RT-PCR and methylated specific PCR(MSP respectively. 5-aza-dC was then added to confirm the correlation between hypermethylation status and inactivation of RASSF1A. The NPC cell line CNE-2 was transfected with exogenous pcDNA3.1(+/RASSF1A plasmid in the presence or absence of mutated K-Ras by liposome-mediated gene transfer method. Flow cytometry was used to examine the effect of RASSF1A on cell cycle modulation and apoptosis. Meanwhile, trypan blue dye exclusion assays was used to detect the effect of RASSF1A transfection alone and the co-transfection of RASSF1A and K-Ras on cell proliferation. Results Promoter methylation of RASSF1A could be detected in 71.05% (27/38 of NPC samples, but not in normal nasopharyngeal epithelia. RASSF1A expression in NPC primary tumors was lower than that in normal nasopharyngeal epithelial (p p p p Conclusion Expression of RASSF1A is down-regulated in NPC due to the hypermethylation of promoter. Exogenous expression of RASSF1A is able to induce growth inhibition effect and apoptosis in tumor cell lines, and this effect could be enhanced by activated

  5. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean.

    Directory of Open Access Journals (Sweden)

    Yuguang Song

    Full Text Available Epigenetic modification contributes to the regulation of gene expression and plant development under salinity stress. Here we describe the identification of 49 soybean transcription factors by microarray analysis as being inducible by salinity stress. A semi-quantitative RT-PCR-based expression assay confirmed the salinity stress inducibility of 45 of these 49 transcription factors, and showed that ten of them were up-regulated when seedlings were exposed to the demethylation agent 5-aza-2-deoxycytidine. Salinity stress was shown to affect the methylation status of four of these ten transcription factors (one MYB, one b-ZIP and two AP2/DREB family members using a combination of bisulfite sequencing and DNA methylation-sensitive DNA gel blot analysis. ChIP analysis indicated that the activation of three of the four DNA methylated transcription factors was correlated with an increased level of histone H3K4 trimethylation and H3K9 acetylation, and/or a reduced level of H3K9 demethylation in various parts of the promoter or coding regions. Our results suggest a critical role for some transcription factors' activation/repression by DNA methylation and/or histone modifications in soybean tolerance to salinity stress.

  6. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  7. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

    Science.gov (United States)

    Jenkins, Timothy G; Aston, Kenneth I; Pflueger, Christian; Cairns, Bradley R; Carrell, Douglas T

    2014-07-01

    Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc.), trinucleotide expansion associated diseases (myotonic dystrophy, Huntington's, etc.) and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body). Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists.

  8. Culture -independent Pathogenic Bacterial Communities in Bottled Mineral Water

    Directory of Open Access Journals (Sweden)

    Hamdy A. Hassan

    2015-08-01

    Full Text Available Bottled mineral water (BMW is an alternative to mains water and consider it to be better and safer. Access to safe BMW from the bacteria involving potential health hazard is essential to health. Cultivation-independent technique PCR-based single-strand conformation polymorphism (SSCP for genetic profiling of PCR-amplified 16S rRNA genes was performed using Com primer set targeting the 16S rRNA genes for detection of pathogenic bacteria in bottled mineral water from the final product of six factories for bottled mineral drinking water in Wadi El-natron region- Egypt. These factories use often ozone technology to treat large quantities of water because of its effectiveness in purifying and conditioning water. A total of 27 single products were isolated from the profiles by PCR re-amplification and cloning. Sequence analysis of 27 SSCP bands revealed that the 16S rRNA sequences were clustered into seven operational taxonomic units (OTUs and the compositions of the communities of the six samples were all common. The results showed that most communities from phyla Alphaproteobacteria and certainly in the Sphingomonas sp. Culture-independent approaches produced complementary information, thus generating a more accurate view for the bacterial community in the BMW, particularly in the disinfection step, as it constitutes the final barrier before BMW distribution to the consumer

  9. SASqPCR: robust and rapid analysis of RT-qPCR data in SAS.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available Reverse transcription quantitative real-time PCR (RT-qPCR is a key method for measurement of relative gene expression. Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses. SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list.

  10. The Aorta-Gonad-Mesonephros Organ Culture Recapitulates 5hmC Reorganization and Replication-Dependent and Independent Loss of DNA Methylation in the Germline.

    Science.gov (United States)

    Calvopina, Joseph Hargan; Cook, Helene; Vincent, John J; Nee, Kevin; Clark, Amander T

    2015-07-01

    Removal of cytosine methylation from the genome is critical for reprogramming and transdifferentiation and plays a central role in our understanding of the fundamental principles of embryo lineage development. One of the major models for studying cytosine demethylation is the mammalian germ line during the primordial germ cell (PGC) stage of embryo development. It is now understood that oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is required to remove cytosine methylation in a locus-specific manner in PGCs; however, the mechanisms downstream of 5hmC are controversial and hypothesized to involve either active demethylation or replication-coupled loss. In the current study, we used the aorta-gonad-mesonephros (AGM) organ culture model to show that this model recapitulates germ line reprogramming, including 5hmC reorganization and loss of cytosine methylation from Snrpn and H19 imprinting control centers (ICCs). To directly address the hypothesis that cell proliferation is required for cytosine demethylation, we blocked PI3-kinase-dependent PGC proliferation and show that this leads to a G1 and G2/M cell cycle arrest in PGCs, together with retained levels of cytosine methylation at the Snrpn ICC, but not at the H19 ICC. Taken together, the AGM organ culture model is an important tool to evaluate mechanisms of locus-specific demethylation and the role of PI3-kinase-dependent PGC proliferation in the locus-specific removal of cytosine methylation from the genome.

  11. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    Science.gov (United States)

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  12. DNA sequence explains seemingly disordered methylation levels in partially methylated domains of Mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Dimos Gaidatzis

    2014-02-01

    Full Text Available For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs, recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%-40% of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS. Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R(2 of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features.

  13. Aberrant TET1 Methylation Closely Associated with CpG Island Methylator Phenotype in Colorectal Cancer.

    Science.gov (United States)

    Ichimura, Norihisa; Shinjo, Keiko; An, Byonggu; Shimizu, Yasuhiro; Yamao, Kenji; Ohka, Fumiharu; Katsushima, Keisuke; Hatanaka, Akira; Tojo, Masayuki; Yamamoto, Eiichiro; Suzuki, Hiromu; Ueda, Minoru; Kondo, Yutaka

    2015-08-01

    Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer. ©2015 American Association for Cancer Research.

  14. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification.

    Science.gov (United States)

    Pavšič, Jernej; Žel, Jana; Milavec, Mojca

    2016-01-01

    Digital PCR (dPCR) is beginning to supersede real-time PCR (qPCR) for quantification of nucleic acids in many different applications. Several analytical properties of the two most commonly used dPCR platforms, namely the QX100 system (Bio-Rad) and the 12.765 array of the Biomark system (Fluidigm), have already been evaluated and compared with those of qPCR. However, to the best of our knowledge, direct comparison between the three of these platforms using the same DNA material has not been done, and the 37 K array on the Biomark system has also not been evaluated in terms of linearity, analytical sensitivity and limit of quantification. Here, a first assessment of qPCR, the QX100 system and both arrays of the Biomark system was performed with plasmid and genomic DNA from human cytomegalovirus. With use of PCR components that alter the efficiency of qPCR, each dPCR platform demonstrated consistent copy-number estimations, which indicates the high resilience of dPCR. Two approaches, one considering the total reaction volume and the other considering the effective reaction size, were used to assess linearity, analytical sensitivity and variability. When the total reaction volume was considered, the best performance was observed with qPCR, followed by the QX100 system and the Biomark system. In contrast, when the effective reaction size was considered, all three platforms showed almost equal limits of detection and variability. Although dPCR might not always be more appropriate than qPCR for quantification of low copy numbers, dPCR is a suitable method for robust and reproducible quantification of viral DNA, and a promising technology for the higher-order reference measurement method.

  15. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat.

    Science.gov (United States)

    Gao, Lihong; Diarso, Moussa; Zhang, Ai; Zhang, Huakun; Dong, Yuzhu; Liu, Lixia; Lv, Zhenling; Liu, Bao

    2016-01-01

    Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Real-time PCR for type-specific identification of herpes simplex in clinical samples: evaluation of type-specific results in the context of CNS diseases.

    Science.gov (United States)

    Meylan, Sylvain; Robert, Daniel; Estrade, Christine; Grimbuehler, Valérie; Péter, Olivier; Meylan, Pascal R; Sahli, Roland

    2008-02-01

    HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.

  17. Utility of MLH1 methylation analysis in the clinical evaluation of Lynch Syndrome in women with endometrial cancer.

    Science.gov (United States)

    Bruegl, Amanda S; Djordjevic, Bojana; Urbauer, Diana L; Westin, Shannon N; Soliman, Pamela T; Lu, Karen H; Luthra, Rajyalakshmi; Broaddus, Russell R

    2014-01-01

    Clinical screening criteria, such as young age of endometrial cancer diagnosis and family history of signature cancers, have traditionally been used to identify women with Lynch Syndrome, which is caused by mutation of a DNA mismatch repair gene. Immunohistochemistry and microsatellite instability analysis have evolved as important screening tools to evaluate endometrial cancer patients for Lynch Syndrome. A complicating factor is that 15-20% of sporadic endometrial cancers have immunohistochemical loss of the DNA mismatch repair protein MLH1 and high levels of microsatellite instability due to methylation of MLH1. The PCR-based MLH1 methylation assay potentially resolves this issue, yet many clinical laboratories do not perform this assay. The objective of this study was to determine if clinical and pathologic features help to distinguish sporadic endometrial carcinomas with MLH1 loss secondary to MLH1 methylation from Lynch Syndrome-associated endometrial carcinomas with MLH1 loss and absence of MLH1 methylation. Of 337 endometrial carcinomas examined, 54 had immunohistochemical loss of MLH1. 40/54 had MLH1 methylation and were designated as sporadic, while 14/54 lacked MLH1 methylation and were designated as Lynch Syndrome. Diabetes and deep myometrial invasion were associated with Lynch Syndrome; no other clinical or pathological variable distinguished the 2 groups. Combining Society of Gynecologic Oncology screening criteria with these 2 features accurately captured all Lynch Syndrome cases, but with low specificity. In summary, no single clinical/pathologic feature or screening criteria tool accurately identified all Lynch Syndrome-associated endometrial carcinomas, highlighting the importance of the MLH1 methylation assay in the clinical evaluation of these patients.

  18. One-stop polymerase chain reaction (PCR): An improved PCR ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... membrane filtration was carried out with a commercial PCR product purification kit (Generay, Shanghai), according to the manufacture's instruction. In brief, 50 µl PCR product was mixed thoroughly with binding buffer, and the resultant mixture was loaded directly onto a silica membrane Gelclean column.

  19. CpG promoter methylation of the ALKBH3 alkylation repair gene in breast cancer.

    Science.gov (United States)

    Stefansson, Olafur Andri; Hermanowicz, Stefan; van der Horst, Jasper; Hilmarsdottir, Holmfridur; Staszczak, Zuzanna; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Gudjonsson, Thorkell; Sigurdsson, Stefan

    2017-07-05

    DNA repair of alkylation damage is defective in various cancers. This occurs through somatically acquired inactivation of the MGMT gene in various cancer types, including breast cancers. In addition to MGMT, the two E. coli AlkB homologs ALKBH2 and ALKBH3 have also been linked to direct reversal of alkylation damage. However, it is currently unknown whether ALKBH2 or ALKBH3 are found inactivated in cancer. Methylome datasets (GSE52865, GSE20713, GSE69914), available through Omnibus, were used to determine whether ALKBH2 or ALKBH3 are found inactivated by CpG promoter methylation. TCGA dataset enabled us to then assess the impact of CpG promoter methylation on mRNA expression for both ALKBH2 and ALKBH3. DNA methylation analysis for the ALKBH3 promoter region was carried out by pyrosequencing (PyroMark Q24) in 265 primary breast tumours and 30 proximal normal breast tissue samples along with 8 breast-derived cell lines. ALKBH3 mRNA and protein expression were analysed in cell lines using RT-PCR and Western blotting, respectively. DNA alkylation damage assay was carried out in cell lines based on immunofluorescence and confocal imaging. Data on clinical parameters and survival outcomes in patients were obtained and assessed in relation to ALKBH3 promoter methylation. The ALKBH3 gene, but not ALKBH2, undergoes CpG promoter methylation and transcriptional silencing in breast cancer. We developed a quantitative alkylation DNA damage assay based on immunofluorescence and confocal imaging revealing higher levels of alkylation damage in association with epigenetic inactivation of the ALKBH3 gene (P = 0.029). In our cohort of 265 primary breast cancer, we found 72 cases showing aberrantly high CpG promoter methylation over the ALKBH3 promoter (27%; 72 out of 265). We further show that increasingly higher degree of ALKBH3 promoter methylation is associated with reduced breast-cancer specific survival times in patients. In this analysis, ALKBH3 promoter methylation at >20

  20. High frequency of p 16 promoter methylation in non-small cell lung carcinomas from Chile

    Directory of Open Access Journals (Sweden)

    LEDA M GUZMAN

    2007-01-01

    Full Text Available The inactivation of tumour suppressor genes by aberrant methylation of promoter regions has been described as a frequent event in neoplasia development, including lung cancer. The p16 gene is a tumour suppressor gene involved in the regulation of cell cycle progression that has been reported to be inactivated by promoter methylation in lung carcinomas at variable frequencies around the world in a smoking habit dependent manner. The purpose of this study was to investigate the methylation status of the promoter region of the p16 gene in 74 non-small cell lung carcinomas from Chile. The frequency of p16 gene inactivation by promoter methylation was determined as 79.7% (59/74. When we considered histological type, we observed that p16 promoter methylation was significantly higher in squamous cell carcinomas (30/33, 91% compared with adenocarcinomas (21/30, 70% (p=0.029. In addition, no association between p16 promoter methylation and gender, age or smoking habit was found (p=0.202, 0.202 and 0.147 respectively. Our results suggest that p16 promoter hypermethylation is a very frequent event in non-small cell lung carcinomas from Chile and could be smoking habit-independent

  1. Differentially Methylated DNA Regions in Monozygotic Twin Pairs Discordant for Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Svendsen, Anders J; Gervin, Kristina; Lyle, Robert

    2016-01-01

    : Smoking was significantly associated with hypomethylation of a DMR overlapping the promoter region of the RNF5 and the AGPAT1, which are implicated in inflammation and autoimmunity, whereas DMARD treatment induced hypermethylation of the same region. Additionally, the promotor region of both S100A6......OBJECTIVES: In an explorative epigenome-wide association study (EWAS) to search for gene independent, differentially methylated DNA positions and regions (DMRs) associated with rheumatoid arthritis (RA) by studying monozygotic (MZ) twin pairs discordant for RA. METHODS: Genomic DNA was isolated......: We identified several differentially methylated regions associated with RA, which may represent environmental effects or consequences of the disease and plausible biological pathways pertinent to the pathogenesis of RA....

  2. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    Science.gov (United States)

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  3. Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation

    International Nuclear Information System (INIS)

    Wu, Yanyuan; Alvarez, Monica; Slamon, Dennis J; Koeffler, Phillip; Vadgama, Jaydutt V

    2010-01-01

    Epigenetic changes associated with promoter DNA methylation results in silencing of several tumor suppressor genes that lead to increased risk for tumor formation and for progression of the cancer. Methylation specific PCR (MSP) and bisulfite sequencing were used for determination of proapoptotic gene Caspase 8 (CASP8) and the tumor suppressor gene maspin promoter methylation in four breast cancer and two non-tumorigenic breast cell lines. Involvement of histone H3 methylation in those cell lines were examined by CHIP assay. The CpG sites in the promoter region of CASP8 and maspin were methylated in all four breast cancer cell lines but not in two non-tumorigenic breast cell lines. Demethylation agent 5-aza-2'-deoxycytidine (5-aza-dc) selectively inhibits DNA methyltransferases, DNMT3a and DNMT3b, and restored CASP8 and maspin gene expression in breast cancer cells. 5-aza-dc also reduced histone H3k9me2 occupancy on CASP8 promoter in SKBR3cells, but not in MCF-7 cells. Combination of histone deacetylase inhibitor Trichostatin A (TSA) and 5-aza-dc significant decrease in nuclear expression of Di-methyl histone H3-Lys27 and slight increase in acetyl histone H3-Lys9 in MCF-7 cells. CASP8 mRNA and protein level in MCF-7 cells were increased by the 5-aza-dc in combination with TSA. Data from our study also demonstrated that treatment with 5-FU caused a significant increase in unmethylated CASP8 and in CASP8 mRNA in all 3 cancer lines. CASP8 and maspin expression were reduced in breast cancer cells due to promoter methylation. Selective application of demethylating agents could offer novel therapeutic opportunities in breast cancer

  4. 2-Methyl-1H-benzimidazol-3-ium hydrogen phthalate

    Directory of Open Access Journals (Sweden)

    YuanQi Yu

    2011-10-01

    Full Text Available The asymmetric unit of the title compound, C8H9N2+·C8H5O4−, contains two independent ion pairs. In each 2-methyl-1H-benzimidazolium ion, an intramolecular O—H...O bond forms an S(7 graph-set motif. In the crystal, the components are linked by N—H...O hydrogen bonds, forming chains along [210]. Further stabilization is provided by weak C—H...O hydrogen bonds.

  5. Genome-wide DNA methylation analysis in jejunum of Sus scrofa with intrauterine growth restriction.

    Science.gov (United States)

    Hu, Yue; Hu, Liang; Gong, Desheng; Lu, Hanlin; Xuan, Yue; Wang, Ru; Wu, De; Chen, Daiwen; Zhang, Keying; Gao, Fei; Che, Lianqiang

    2018-02-01

    Intrauterine growth restriction (IUGR) may elicit a series of postnatal body developmental and metabolic diseases due to their impaired growth and development in the mammalian embryo/fetus during pregnancy. In the present study, we hypothesized that IUGR may lead to abnormally regulated DNA methylation in the intestine, causing intestinal dysfunctions. We applied reduced representation bisulfite sequencing (RRBS) technology to study the jejunum tissues from four newborn IUGR piglets and their normal body weight (NBW) littermates. The results revealed extensively regional DNA methylation changes between IUGR/NBW pairs from different gilts, affecting dozens of genes. Hiseq-based bisulfite sequencing PCR (Hiseq-BSP) was used for validations of 19 genes with epigenetic abnormality, confirming three genes (AIFM1, MTMR1, and TWIST2) in extra samples. Furthermore, integrated analysis of these 19 genes with proteome data indicated that there were three main genes (BCAP31, IRAK1, and AIFM1) interacting with important immunity- or metabolism-related proteins, which could explain the potential intestinal dysfunctions of IUGR piglets. We conclude that IUGR can lead to disparate DNA methylation in the intestine and these changes may affect several important biological processes such as cell apoptosis, cell differentiation, and immunity, which provides more clues linking IUGR and its long-term complications.

  6. RT-PCR Detection of HIV in Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Golubinka Bosevska

    2008-11-01

    Full Text Available The aim of the study was to detect HIV RNA in seropositive patients using RT-PCR method and thus, to establish PCR methodology in the routine laboratory works.The total of 33 examined persons were divided in two groups: 1 13 persons seropositive for HIV; and 2 20 healthy persons - randomly selected blood donors that made the case control group. The subjects age was between 25 and 52 years (average 38,5.ELFA test for combined detection of HIV p24 antigen and anti HIV-1 + 2 IgG and ELISA test for detection of antibodies against HIV-1 and HIV-2, were performed for each examined person. RNA from the whole blood was extracted using a commercial kit based on salt precipitation. Detection of HIV RNA was performed using RT-PCR kit. Following nested PCR, the product was separated by electrophoresis in 1,5 % agarose gel. The result was scored positive if the band of 210bp was visible regardless of intensity Measures of precaution were taken during all the steps of the work and HIV infected materials were disposed of accordingly.In the group of blood donors ELFA, ELISA and RT-PCR were negative. Assuming that prevalence of HIV infection is zero, the clinical specificity of RT-PCR is 100 %. The analytical specificity of RT-PCR method was tested against Hepatitis C and B, Human Papiloma Virus, Cytomegalovirus, Herpes Simplex Virus, Rubella Virus, Mycobacterium tuberculosis, Chlamydia trachomatis. None of these templates yielded amplicon. In the group of 13 seropositive persons, 33 samples were analyzed. HIV RNA was detected in 15 samples. ELISA and ELFA test were positive in all samples. Different aliquots of the samples were tested independently and showed the same results. After different periods of storing the RNA samples at -70°C, RT-PCR reaction was identical to the one performed initially. The obtained amplicons were maintained frozen at -20°C for a week and the subsequently performed electrophoresis was identical to the previous one. The reaction is

  7. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.

    Science.gov (United States)

    Wang, Meng; Yang, Junjie; Gai, Zhongtao; Huo, Shengnan; Zhu, Jianhua; Li, Jun; Wang, Ranran; Xing, Sheng; Shi, Guosheng; Shi, Feng; Zhang, Lei

    2018-02-02

    As a kind of zero-tolerance foodborne pathogens, Salmonella typhimurium poses a great threat to quality of food products and public health. Hence, rapid and efficient approaches to identify Salmonella typhimurium are urgently needed. Combined with PCR and fluorescence technique, real-time PCR (qPCR) and digital PCR (ddPCR) are regarded as suitable tools for detecting foodborne pathogens. To compare the effect between qPCR and ddPCR in detecting Salmonella typhimurium, a series of nucleic acid, pure strain culture and spiking milk samples were applied and the resistance to inhibitors referred in this article as well. Compared with qPCR, ddPCR exhibited more sensitive (10 -4 ng/μl or 10 2 cfu/ml) and less pre-culturing time (saving 2h). Moreover, ddPCR had stronger resistance to inhibitors than qPCR, yet absolute quantification hardly performed when target's concentration over 1ng/μl or 10 6 cfu/ml. This study provides an alternative strategy in detecting foodborne Salmonella typhimurium. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages.

    Science.gov (United States)

    Rangel-Salazar, Rubén; Wickström-Lindholm, Marie; Aguilar-Salinas, Carlos A; Alvarado-Caudillo, Yolanda; Døssing, Kristina B V; Esteller, Manel; Labourier, Emmanuel; Lund, Gertrud; Nielsen, Finn C; Rodríguez-Ríos, Dalia; Solís-Martínez, Martha O; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio

    2011-11-25

    We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  9. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    International Nuclear Information System (INIS)

    Greco, Sonia A; Leggett, Barbara A; Whitehall, Vicki LJ; Chia, June; Inglis, Kelly J; Cozzi, Sarah-Jane; Ramsnes, Ingunn; Buttenshaw, Ronald L; Spring, Kevin J; Boyle, Glen M; Worthley, Daniel L

    2010-01-01

    Thrombospondin-4 (THBS4) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the

  10. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    Directory of Open Access Journals (Sweden)

    Greco Sonia A

    2010-09-01

    Full Text Available Abstract Background Thrombospondin-4 (THBS4 is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Methods Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. Results THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and

  11. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Timothy G Jenkins

    2014-07-01

    Full Text Available Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc., trinucleotide expansion associated diseases (myotonic dystrophy, Huntington's, etc. and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body. Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists.

  12. CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci.

    Science.gov (United States)

    Kawasaki, Takako; Ohnishi, Mutsuko; Nosho, Katsuhiko; Suemoto, Yuko; Kirkner, Gregory J; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2008-03-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct phenotype in colorectal cancer. However, the concept of CIMP-low with less extensive CpG island methylation is still evolving. Our aim is to examine whether density of methylation in individual CpG islands was different between CIMP-low and CIMP-high tumors. Utilizing MethyLight technology and 889 population-based colorectal cancers, we quantified DNA methylation (methylation index, percentage of methylated reference) at 14 CpG islands, including 8 CIMP-high-specific loci (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1). Methylation positivity in each locus was defined as methylation index>4. Low-level methylation (methylation index>0, CIMP-high-specific locus was significantly more common in 340 CIMP-low tumors (1/8-5/8 methylation-positive loci) than 133 CIMP-high tumors (> or =6/8 methylation-positive loci) and 416 CIMP-0 tumors (0/8 methylation-positive loci) (PCIMP-high, low-level methylation, was not persistently more prevalent in CIMP-low tumors. In conclusion, compared to CIMP-high and CIMP-0 tumors, CIMP-low colorectal cancers show not only few methylated CIMP-high-specific CpG islands, but also more frequent low-level methylation at individual loci. Our data may provide supporting evidence for a difference in pathogenesis of DNA methylation between CIMP-low and CIMP-high tumors.

  13. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Directory of Open Access Journals (Sweden)

    Schwarzenbach Heidi

    2010-06-01

    Full Text Available Abstract Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3 at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one

  14. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  15. Origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, G.A.; Lamb, N.A.; Maxwell, J.R.

    1986-03-01

    Treatment of 4-methylcholest-4-ene under mild acid conditions at low temperatures gives chemical evidence for certain features seen in the distributions of sedimentary 4-methyl steroid hydrocarbons, and further indicates that many low temperature diagenetic reactions of steroids are explicable in terms of acid catalyzed rearrangements. Specifically, the results provide: (i) Indirect evidence that the 4-ene skeleton is a key intermediate in the dehydration of 4-methyl stanols in sediments. (ii) An explanation for the distribution of 4-methyl sterenes and A-nor sterenes in the lacustrine Messel shale (Eocene). (iii) An explanation for the presence of 4..beta..-methyl steranes in relatively immature sedimentary rocks, despite the precursor stanols having the 4..cap alpha..-methyl configuration. With increasing maturity in the Paris Basin shales (Lower Toarcian), the less stable 4..beta..-methyl steranes decrease gradually in abundance relative to their 4..cap alpha..-methyl counterparts, at a rate fairly similar to the change in pristane stereochemistry.

  16. Analysis of DNA Cytosine Methylation Patterns Using Methylation-Sensitive Amplification Polymorphism (MSAP).

    Science.gov (United States)

    Guevara, María Ángeles; de María, Nuria; Sáez-Laguna, Enrique; Vélez, María Dolores; Cervera, María Teresa; Cabezas, José Antonio

    2017-01-01

    Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.

  17. Efficient detection of differentially methylated regions using DiMmeR

    DEFF Research Database (Denmark)

    Almeida, Diogo Marinho; Uhrenfeldt Skov, Ida; Silva, Artur

    2017-01-01

    in the programming language R, have no user interface, and do not offer all necessary steps to guide users from raw data all the way down to statistically significant differentially methylated regions (DMRs) and the associated genes. RESULTS: Here, we present DiMmeR (Discovery of Multiple Differentially Methylated...... Regions), the first free standalone software that interactively guides with a user-friendly graphical user interface (GUI) scientists the whole way through EWAS data analysis. It offers parallelized statistical methods for efficiently identifying DMRs in both Illumina 450K and 850K EPIC chip data. Di......MmeR computes empirical p-values through randomization tests, even for big data sets of hundreds of patients and thousands of permutations within a few minutes on a standard desktop PC. It is independent of any third-party libraries, computes regression coefficients, p-values and empirical p...

  18. Evidence for methyl group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis

    International Nuclear Information System (INIS)

    Bedale, W.A.; Nettleton, D.O.; Sopata, C.S.; Thoelke, M.S.; Ordal, G.W.

    1988-01-01

    The authors present evidence for methyl (as methyl or methoxy) transfer from the methyl-accepting chemotaxis proteins H1 and possibly H3 of Bacillus subtilis to the methyl-accepting chemotaxis protein H2. This methyl transfer, which has been observed in vitro was strongly stimulated by the chemoattractant aspartate and thus may plan an important role in the sensory processing system of this organism. Although radiolabeling of H1 and H3 began at once after the addition of [ 3 H] methionine, radiolabeling of H2 showed a lag. Furthermore, the addition of excess nonradioactive methionine caused immediate exponential delabeling of H1 and H3 while labeling of H2 continued to increase. Methylation of H2 required the chemotactic methyltransferase, probably to first methylate H1 and H3. Aspartate caused increased labeling of H2 and strongly decreased labeling of H1 and H3 after the addition of nonradioactive methionine. Without the addition of nonradioactive methionine, aspartate caused demethylation of H1 and to a lesser extent H3, with an approximately equal increase of methylation of H2

  19. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression.

    Science.gov (United States)

    Nilsson, Emil K; Boström, Adrian E; Mwinyi, Jessica; Schiöth, Helgi B

    2016-06-01

    Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.

  20. [Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique].

    Science.gov (United States)

    Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li

    2007-06-01

    The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.

  1. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Science.gov (United States)

    Hinrichsen, Inga; Kemp, Matthias; Peveling-Oberhag, Jan; Passmann, Sandra; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-01

    Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  2. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Directory of Open Access Journals (Sweden)

    Inga Hinrichsen

    Full Text Available Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV. However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16 in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  3. Nucleosomes correlate with in vivo progression pattern of de novo methylation of p16 CpG islands in human gastric carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Zhe-Ming Lu

    Full Text Available BACKGROUND: The exact relationship between nucleosome positioning and methylation of CpG islands in human pathogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the nucleosome position within the p16 CpG island and established a seeding methylation-specific PCR (sMSP assay based on bisulfite modification to enrich the p16 alleles containing methylated-CpG at the methylation "seeding" sites within its intron-1 in gastric carcinogenesis. The sMSP-positive rate in primary gastric carcinoma (GC samples (36/40 was significantly higher than that observed in gastritis (19/45 or normal samples (7/13 (P<0.01. Extensive clone sequencing of these sMSP products showed that the density of methylated-CpGs in p16 CpG islands increased gradually along with the severity of pathological changes in gastric tissues. In gastritis lesions the methylation was frequently observed in the region corresponding to the exon-1 coding-nucleosome and the 5'UTR-nucleosome; the methylation was further extended to the region corresponding to the promoter-nucleosome in GC samples. Only few methylated-CpG sites were randomly detected within p16 CpG islands in normal tissues. The significantly inversed relationship between the p16 exon-1 methylation and its transcription was observed in GC samples. An exact p16 promoter-specific 83 bp-MSP assay confirms the result of sMSP (33/55 vs. 1/6, P<0.01. In addition, p16 methylation in chronic gastritis lesions significantly correlated with H. pylori infection; however, such correlation was not observed in GC specimens. CONCLUSIONS/SIGNIFICANCE: It was determined that de novo methylation was initiated in the coding region of p16 exon-1 in gastritis, then progressed to its 5'UTR, and ultimately to the proximal promoter in GCs. Nucleosomes may function as the basic extension/progression unit of de novo methylation of p16 CpG islands in vivo.

  4. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine

    Science.gov (United States)

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.

    1973-01-01

    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  5. COMPARISON OF 16S rRNA-PCR-RFLP, LipL32-PCR AND OmpL1-PCR METHODS IN THE DIAGNOSIS OF LEPTOSPIROSIS

    Directory of Open Access Journals (Sweden)

    Tülin GÜVEN GÖKMEN

    Full Text Available SUMMARY Leptospirosis is still one of the most important health problems in developing countries located in humid tropical and subtropical regions. Human infections are generally caused by exposure to water, soil or food contaminated with the urine of infected wild and domestic animals such as rodents and dogs. The clinical course of leptospirosis is variable and may be difficult to distinguish from many other infectious diseases. The dark-field microscopy (DFM, serology and nucleic acid amplification techniques are used to diagnose leptospirosis, however, a distinctive standard reference method is still lacking. Therefore, in this study, we aimed to determine the presence of Leptospira spp., to differentiate the pathogenic L. interrogans and the non-pathogenic L. biflexa, and also to determine the sensitivity and specificity values of molecular methods as an alternative to conventional ones. A total of 133 serum samples, from 47 humans and 86 cattle were evaluated by two conventional tests: the Microagglutination Test (MAT and the DFM, as well as three molecular methods, the 16S rRNA-PCR followed by Restriction Fragment Lenght Polymorphism (RFLP of the amplification products 16S rRNA-PCR-RFLP, LipL32-PCR and OmpL1-PCR. In this study, for L. interrogans, the specificity and sensitivity rates of the 16S rRNA-PCR and the LipL32-PCR were considered similar (100% versus 98.25% and 100% versus 98.68%, respectively. The OmpL1-PCR was able to classify L. interrogans into two intergroups, but this PCR was less sensitive (87.01% than the other two PCR methods. The 16S rRNA-PCR-RFLP could detect L. biflexa DNA, but LipL32-PCR and OmpL1-PCR could not. The 16S rRNA-PCR-RFLP provided an early and accurate diagnosis and was able to distinguish pathogenic and non-pathogenic Leptospira species, hence it may be used as an alternative method to the conventional gold standard techniques for the rapid disgnosis of leptospirosis.

  6. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S

    2006-10-01

    p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.

  7. Synthesis of [methyl-14C]crotonobetaine from DL-[methyl-14C]carnitine

    International Nuclear Information System (INIS)

    Loester, H.; Seim, H.

    1996-01-01

    The causes of carnitine deficiency syndromes are not completely understood, but decomposition of L-carnitine in vivo is likely to be involved. Carnitine is metabolized to γ-butyrobetaine, and crotonobetaine is probably an intermediate in this pathway. To validate experimentally the precursor-product relationship between the three physiologically occuring γ-betaines - L-carnitine, crotonobetaine, γ-butyrobetaine - labelling with stable or radioactive isotopes became necessary. Methyl-labelled carnitine isomers (L(-)-, D(+)- or DL-) or γ-butyrobetaine can be easily synthesized by methylation of 4-amino-3-hydroxybutyric acid isomers or 4-aminobutyric acid, respectively. Because of problems with the 4-aminocrotonic acid, we synthesized labelled crotonbetaine from labelled carnitine. Thus, DL-[methyl- 14 C]carnitine was dehydrated by reaction with concentrated sulfuric acid. After removal of the latter the products were separated and purified by ion exchange chromatography on DOWEX 50 WX8 (200 - 400 mesh) and gradient elution with hydrochloric acid. In addition to the labelled main product [methyl- 14 C]crotonobetaine (yield about 50 %), [methyl- 14 C]glycine betaine and [methyl- 14 C]acetonyl-trimethylammonium (ATMA) were formed. The end products were identified by combined thin layer chromatography/autoradiography and quantified by liquid scintillation counting. (Author)

  8. Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation.

    Science.gov (United States)

    Dou, John; Schmidt, Rebecca J; Benke, Kelly S; Newschaffer, Craig; Hertz-Picciotto, Irva; Croen, Lisa A; Iosif, Ana-Maria; LaSalle, Janine M; Fallin, M Daniele; Bakulski, Kelly M

    2018-01-01

    Cord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells, generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability. We evaluated differences in cell composition and DNA methylation between cord blood buffy coat and whole cord blood samples. Cord blood DNA methylation was measured with the Infinium EPIC BeadChip (Illumina) in eight individuals, each contributing buffy coat and whole blood samples. We analyzed principal components (PC) of methylation, performed hierarchical clustering, and computed correlations of mean-centered methylation between pairs. We conducted moderated t-tests on single sites and estimated cell composition. DNA methylation PCs were associated with individual (P PC1 = 1.4 × 10 -9 ; P PC2 = 2.9 × 10 -5 ; P PC3 = 3.8 × 10 -5 ; P PC4 = 4.2 × 10 -6 ; P PC5 = 9.9 × 10 -13 , P PC6 = 1.3 × 10 -11 ) and not with sample type (P PC1-6 >0.7). Samples hierarchically clustered by individual. Pearson correlations of mean-centered methylation between paired samples ranged from r = 0.66 to r = 0.87. No individual site significantly differed between buffy coat and whole cord blood when adjusting for multiple comparisons (five sites had unadjusted Pcoat and whole cord blood are much lower than inter-individual variation, demonstrating that both sample preparation types can be analytically combined and compared.

  9. From the 'PCR' function to the 'PCR' profession; de la fonction 'PCR' au metier 'PCR'

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, L. [CERAP, 91 - Gif sur Yvette (France)

    2008-07-01

    After having recalled the legal context concerning the appointment and training of a radiation protection expert (PCR for 'personne competente en radioprotection'), the author outlines that the PCR's role has notably evolved: his function is now of primary importance in the company and his activity does not correspond to the legal framework any longer. Moreover, with the application of a European directive, some small establishments possessing ionizing radiation sources are disadvantaged, and the PCR is now facing an increasing number of missions and tasks. The author gives a list of them and assesses a needed time of 146 days per year: this means PCRs cannot have an other activity within their company

  10. Analysis of rRNA gene methylation in Arabidopsis thaliana by CHEF-Conventional 2D gel electrophoresis

    Science.gov (United States)

    Mohannath, Gireesha; Pikaard, Craig S.

    2017-01-01

    Summary Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb to 9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes and sub-chromosomal DNA fragments, etc. Here we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~ 4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  11. Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methanesulfonate

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1982-01-01

    Excision repair of ultraviolet damage in the DNA of normal and xeroderma pigmentosum (Groups C, D, and variant) cells was inactivated by exposure of cells to methyl methanesulfonate immediately before irradiation independent of the presence of 0 to 10% fetal calf serum. The inactivation could be represented by a semilog relationship between the amount of repair and methyl methanesulfonate concentration up to approximately 5 mM. The inactivation can be considered to occur as the result of alkylation of a large (about 10(6) daltons) repair enzyme complex, and the dose required to reduce repair to 37% for most cells types was between 4 and 7 mM. No consistent, large difference in sensitivity to methyl methanesulfonate was found in any xeroderma pigmentosum complementation group compared to normal cells, implying that reduced repair in these groups may be caused by small inherited changes in the amino acid composition (i.e., point mutations or small deletions) rather than by losses of major components of the repair enzyme complex

  12. Crystal structure, conformational analysis, and molecular dynamics of tetra-0-methyl-(+)-catechin

    Science.gov (United States)

    Frank R. Fronczek; Richard W. Hemingway; G. Wayne McGraw; Jan P. Steynberg; Carin A. Helfer; Wayne L. Mattice

    1993-01-01

    The structure of tetra-O-methyl-(+)-catechin has been determined in the crystalline state. Two independent molecules, denoted structure A and structure B, exist in the unit cell. Crystals are triclinic, space group P1, a=4.8125(2) Ǻ, b=12.9148(8) Ǻ, c=13.8862(11) Ǻ, α=86.962(6)°, β=89.120(5)°, γ=...

  13. Mapping DNA methylation by transverse current sequencing: Reduction of noise from neighboring nucleotides

    Science.gov (United States)

    Alvarez, Jose; Massey, Steven; Kalitsov, Alan; Velev, Julian

    Nanopore sequencing via transverse current has emerged as a competitive candidate for mapping DNA methylation without needed bisulfite-treatment, fluorescent tag, or PCR amplification. By eliminating the error producing amplification step, long read lengths become feasible, which greatly simplifies the assembly process and reduces the time and the cost inherent in current technologies. However, due to the large error rates of nanopore sequencing, single base resolution has not been reached. A very important source of noise is the intrinsic structural noise in the electric signature of the nucleotide arising from the influence of neighboring nucleotides. In this work we perform calculations of the tunneling current through DNA molecules in nanopores using the non-equilibrium electron transport method within an effective multi-orbital tight-binding model derived from first-principles calculations. We develop a base-calling algorithm accounting for the correlations of the current through neighboring bases, which in principle can reduce the error rate below any desired precision. Using this method we show that we can clearly distinguish DNA methylation and other base modifications based on the reading of the tunneling current.

  14. Methyl methacrylate oligomerically-modified clay and its poly(methyl methacrylate) nanocomposites

    International Nuclear Information System (INIS)

    Zheng Xiaoxia; Jiang, David D.; Wilkie, Charles A.

    2005-01-01

    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

  15. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies.

    Science.gov (United States)

    Needhamsen, Maria; Ewing, Ewoud; Lund, Harald; Gomez-Cabrero, David; Harris, Robert Adam; Kular, Lara; Jagodic, Maja

    2017-11-15

    The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.

  16. Diffuse large B-cell lymphoma with combined TP53 mutation and MIR34A> methylation

    DEFF Research Database (Denmark)

    Asmar, Fazila; Hother, Christoffer; Kulosman, Gorjan

    2014-01-01

    and MIR34A methylation ("double hit") and these patients have an exceedingly poor prognosis with a median survival of 9.4 months (Phit") influence on survival. The TP53/MIR34A "double-hit" is an independent...... negative prognostic factor for survival (P=0.0002). In 2 DLBCL-cell lines with both TP53 mutation and promoter methylation of MIR34A, miR34A-5p is upregulated by 5-aza-2'deoxycytidine. Thus, the TP53/MIR34A "double hit" characterizes a very aggressive subgroup of DLBCL, which may be treatable...

  17. Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays

    OpenAIRE

    Gooch, Adam; Murphy, Natasha S.; Thomson, Neil H.; Wilson, Andrew J.

    2013-01-01

    Derivatives of thymine have been extensively used to promote supramolecular materials assembly. Such derivatives can be synthetically challenging to access and may be susceptible to degradation. The current article uses a conformer-independent acceptor-donor-acceptor array (ureidopyrimidine) which forms moderate affinity interactions with diamidopyridine derivatives to effect supramolecular blend formation between polystyrene and poly(methyl methacrylate) polymers obtained by RAFT which have ...

  18. JC Virus T-Antigen in Colorectal Cancer Is Associated with p53 Expression and Chromosomal Instability, Independent of CpG Island Methylator Phenotype

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2009-01-01

    Full Text Available JC virus has a transforming gene encoding JC virus T-antigen (JCVT. JCVT may inactivate wild-type p53, cause chromosomal instability (CIN, and stabilize β-catenin. A link between JCVT and CpG island methylator phenotype (CIMP has been suggested. However, no large-scale study has examined the relations of JCVT with molecular alterations, clinical outcome, or prognosis in colon cancer. We detected JCVT expression (by immunohistochemistry in 271 (35% of 766 colorectal cancers. We quantified DNA methylation in eight CIMP-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1 and eight other loci (CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, WRN by MethyLight. We examined loss of heterozygosity in 2p, 5q, 17q, and 18q. JCVT was significantly associated with p53 expression (P < .0001, p21 loss (P < .0001, CIN (≥2 chromosomal segments with LOH; P < .0001, nuclear β-catenin (P = .006, LINE-1 hypomethylation (P = .002, and inversely with CIMP-high (P = .0005 and microsatellite instability (MSI (P < .0001, but not with PIK3CA mutation. In multivariate logistic regression analysis, the associations of JCVT with p53 [adjusted odds ratio (OR, 8.45; P < .0001], CIN (adjusted OR, 2.53; P = .003, cyclin D1 (adjusted OR, 1.57; P = .02, LINE-1 hypomethylation (adjusted OR, 1.97 for a 30% decline as a unit; P = .03, BRAF mutation (adjusted OR, 2.20; P = .04, and family history of colorectal cancer (adjusted OR, 0.64; P = .04 remained statistically significant. However, JCVT was no longer significantly associated with CIMP, MSI, β-catenin, or cyclooxygenase-2 expression in multivariate analysis. JCVT was unrelated with patient survival. In conclusion, JCVT expression in colorectal cancer is independently associated with p53 expression and CIN, which may lead to uncontrolled cell proliferation.

  19. A novel method to quantify local CpG methylation density by regional methylation elongation assay on microarray

    Directory of Open Access Journals (Sweden)

    Qiao Yingjuan

    2008-01-01

    Full Text Available Abstract Background DNA methylation based techniques are important tools in both clinical diagnostics and therapeutics. But most of these methods only analyze a few CpG sites in a target region. Indeed, difference of site-specific methylation may also lead to a change of methylation density in many cases, and it has been found that the density of methylation is more important than methylation of single CpG site for gene silencing. Results We have developed a novel approach for quantitative analysis of CpG methylation density on the basis of microarray-based hybridization and incorporation of Cy5-dCTP into the Cy3 labeled target DNA by using Taq DNA Polymerase on microarray. The quantification is achieved by measuring Cy5/Cy3 signal ratio which is proportional to methylation density. This methylation-sensitive technique, termed RMEAM (regional methylation elongation assay on microarray, provides several advantages over existing methods used for methylation analysis. It can determine an exact methylation density of the given region, and has potential of high throughput. We demonstrate a use of this method in determining the methylation density of the promoter region of the tumor-related gene MLH1, TERT and MGMT in colorectal carcinoma patients. Conclusion This technique allows for quantitative analysis of regional methylation density, which is the representative of all allelic methylation patterns in the sample. The results show that this technique has the characteristics of simplicity, rapidness, specificity and high-throughput.

  20. 5-Chloro-2-methyl-3-phenylsulfonyl-1-benzofuran

    Directory of Open Access Journals (Sweden)

    Hong Dae Choi

    2008-07-01

    Full Text Available The title compound, C15H11ClO3S, was prepared by the oxidation of 5-chloro-2-methyl-3-phenylsulfanyl-1-benzofuran with 3-chloroperoxybenzoic acid. There are two symmetry-independent molecules in the asymmetric unit. The dihedral angles formed by the phenyl ring and the plane of the benzofuran system are 77.80 (8 and 78.34 (8°. The crystal structure is stabilized by aromatic π–π stacking interactions between the furan ring and the benzene rings of neighbouring benzofuran fragments from two symmetry-independent molecules; the centroid–centroid distances within the stacks are 3.689 (4, 3.702 (4, 3.825 (4 and 3.826 (4 Å. Additionally, the stacked molecules exhibit inter- and intramolecular C—H...O interactions.

  1. Maternal Methyl-Group Donor Intake and Global DNA (HydroxyMethylation before and during Pregnancy

    Directory of Open Access Journals (Sweden)

    Sara Pauwels

    2016-08-01

    Full Text Available It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxylmethylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring’s Epigenome study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxymethylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxymethylation levels were highest pre-pregnancy and at weeks 18–22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04 and hydroxymethylation (p = 0.04. A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxymethylation percentage in weeks 11–13 and weeks 18–22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxymethylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy.

  2. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  3. Prognostic value of MLH1 promoter methylation in male patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wu, Dongping; Chen, Xiaoying; Xu, Yan; Wang, Haiyong; Yu, Guangmao; Jiang, Luping; Hong, Qingxiao; Duan, Shiwei

    2017-04-01

    The DNA mismatch repair (MMR) gene MutL homolog 1 ( MLH1 ) is critical for the maintenance of genomic integrity. Methylation of the MLH1 gene promoter was identified as a prognostic marker for numerous types of cancer including glioblastoma, colorectal, ovarian and gastric cancer. The present study aimed to determine whether MLH1 promoter methylation was associated with survival in male patients with esophageal squamous cell carcinoma (ESCC). Formalin-fixed, paraffin-embedded ESCC tissues were collected from 87 male patients. MLH1 promoter methylation was assessed using the methylation-specific polymerase chain reaction approach. Kaplan-Meier survival curves and log-rank tests were used to evaluate the association between MLH1 promoter methylation and overall survival (OS) in patients with ESCC. Cox regression analysis was used to obtain crude and multivariate hazard ratios (HR), and 95% confidence intervals (CI). The present study revealed that MLH1 promoter methylation was observed in 53/87 (60.9%) of male patients with ESCC. Kaplan-Meier survival analysis demonstrated that MLH1 promoter hypermethylation was significantly associated with poorer prognosis in patients with ESCC (P=0.048). Multivariate survival analysis revealed that MLH1 promoter hypermethylation was an independent predictor of poor OS in male patients with ESCC (HR=1.716; 95% CI=1.008-2.921). Therefore, MLH1 promoter hypermethylation may be a predictor of prognosis in male patients with ESCC.

  4. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; A S Langie, Sabine; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-02

    Maternal nutrition is critically involved in the development and health of the fetus. We evaluated maternal methyl-group donor intake through diet (methionine, betaine, choline, folate) and supplementation (folic acid) before and during pregnancy in relation to global DNA methylation and hydroxymethylation and gene specific (IGF2 DMR, DNMT1, LEP, RXRA) cord blood methylation. A total of 115 mother-infant pairs were enrolled in the MAternal Nutrition and Offspring's Epigenome (MANOE) study. The intake of methyl-group donors was assessed using a food-frequency questionnaire. LC-MS/MS and pyrosequencing were used to measure global and gene specific methylation, respectively. Dietary intake of methyl-groups before and during pregnancy was associated with changes in LEP, DNMT1, and RXRA cord blood methylation. Statistically significant higher cord blood LEP methylation was observed when mothers started folic acid supplementation more than 6 months before conception compared with 3-6 months before conception (34.6 ± 6.3% vs. 30.1 ± 3.6%, P = 0.011, LEP CpG1) or no folic acid used before conception (16.2 ± 4.4% vs. 13.9 ± 3%, P = 0.036 for LEP CpG3 and 24.5 ± 3.5% vs. 22.2 ± 3.5%, P = 0.045 for LEP mean CpG). Taking folic acid supplements during the entire pregnancy resulted in statistically significantly higher cord blood RXRA methylation as compared with stopping supplementation in the second trimester (12.3 ± 1.9% vs. 11.1 ± 2%, P = 0.008 for RXRA mean CpG). To conclude, long-term folic acid use before and during pregnancy was associated with higher LEP and RXRA cord blood methylation, respectively. To date, pregnant women are advised to take a folic acid supplement of 400 µg/day from 4 weeks before until 12 weeks of pregnancy. Our results suggest significant epigenetic modifications when taking a folic acid supplement beyond the current advice.

  5. Zinc sulfate contributes to promote telomere length extension via increasing telomerase gene expression, telomerase activity and change in the TERT gene promoter CpG island methylation status of human adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Raheleh Farahzadi

    Full Text Available The use of mesenchymal stem cells (MSCs for cell therapy and regenerative medicine has received widespread attention over the past few years, but their application can be complicated by factors such as reduction in proliferation potential, the senescent tendency of the MSCs upon expansion and their age-dependent decline in number and function. It was shown that all the mentioned features were accompanied by a reduction in telomerase activity and telomere shortening. Furthermore, the role of epigenetic changes in aging, especially changes in promoter methylation, was reported. In this study, MSCs were isolated from the adipose tissue with enzymatic digestion. In addition, immunocytochemistry staining and flow cytometric analysis were performed to investigate the cell-surface markers. In addition, alizarin red-S, sudan III, toluidine blue, and cresyl violet staining were performed to evaluate the multi-lineage differentiation of hADSCs. In order to improve the effective application of MSCs, these cells were treated with 1.5 × 10-8 and 2.99 × 10-10 M of ZnSO4 for 48 hours. The length of the absolute telomere, human telomerase reverse transcriptase (hTERT gene expression, telomerase activity, the investigation of methylation status of the hTERT gene promoter and the percentage of senescent cells were analyzed with quantitative real-time PCR, PCR-ELISA TRAP assay, methylation specific PCR (MSP, and beta-galactosidase (SA-β-gal staining, respectively. The results showed that the telomere length, the hTERT gene expression, and the telomerase activity had significantly increased. In addition, the percentage of senescent cells had significantly decreased and changes in the methylation status of the CpG islands in the hTERT promoter region under treatment with ZnSO4 were seen. In conclusion, it seems that ZnSO4 as a proper antioxidant could improve the aging-related features due to lengthening of the telomeres, increasing the telomerase gene expression

  6. Myopodin methylation is a prognostic biomarker and predicts antiangiogenic response in advanced kidney cancer.

    Science.gov (United States)

    Pompas-Veganzones, N; Sandonis, V; Perez-Lanzac, Alberto; Beltran, M; Beardo, P; Juárez, A; Vazquez, F; Cozar, J M; Alvarez-Ossorio, J L; Sanchez-Carbayo, Marta

    2016-10-01

    Myopodin is a cytoskeleton protein that shuttles to the nucleus depending on the cellular differentiation and stress. It has shown tumor suppressor functions. Myopodin methylation status was useful for staging bladder and colon tumors and predicting clinical outcome. To our knowledge, myopodin has not been tested in kidney cancer to date. The purpose of this study was to evaluate whether myopodin methylation status could be clinically useful in renal cancer (1) as a prognostic biomarker and 2) as a predictive factor of response to antiangiogenic therapy in patients with metastatic disease. Methylation-specific polymerase chain reactions (MS-PCR) were used to evaluate myopodin methylation in 88 kidney tumors. These belonged to patients with localized disease and no evidence of disease during follow-up (n = 25) (group 1), and 63 patients under antiangiogenic therapy (sunitinib, sorafenib, pazopanib, and temsirolimus), from which group 2 had non-metastatic disease at diagnosis (n = 32), and group 3 showed metastatic disease at diagnosis (n = 31). Univariate and multivariate Cox analyses were utilized to assess outcome and response to antiangiogenic agents taking progression, disease-specific survival, and overall survival as clinical endpoints. Myopodin was methylated in 50 out of the 88 kidney tumors (56.8 %). Among the 88 cases analyzed, 10 of them recurred (11.4 %), 51 progressed (57.9 %), and 40 died of disease (45.4 %). Myopodin methylation status correlated to MSKCC Risk score (p = 0.050) and the presence of distant metastasis (p = 0.039). Taking all patients, an unmethylated myopodin identified patients with shorter progression-free survival, disease-specific survival, and overall survival. Using also in univariate and multivariate models, an unmethylated myopodin predicted response to antiangiogenic therapy (groups 2 and 3) using progression-free survival, disease-specific, and overall survival as clinical endpoints. Myopodin was revealed

  7. Defective processing of methylated single-stranded DNA by E. coli alkB mutants

    Science.gov (United States)

    Dinglay, Suneet; Trewick, Sarah C.; Lindahl, Tomas; Sedgwick, Barbara

    2000-01-01

    Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated λ phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agent N-methyl-N-nitrosourea or by γ irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. A recA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells. PMID:10950872

  8. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.

    2001-07-01

    The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.

  9. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq data

    Directory of Open Access Journals (Sweden)

    Perkins James R

    2012-07-01

    Full Text Available Abstract Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s. Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  10. Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists

    International Nuclear Information System (INIS)

    Mossman, David; Kim, Kyu-Tae; Scott, Rodney J

    2010-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. Aberrant epigenetic gene silencing in tumours is a frequent event, yet the factors which dictate which genes are targeted for inactivation are unknown. DNA methylation and histone acetylation can be modified with the chemical agents 5-aza-2'-deoxycytidine (5-aza-dC) and Trichostatin A (TSA) respectively. The aim of this study was to analyse de-methylation and re-methylation and its affect on gene expression in colorectal cancer cell lines treated with 5-aza-dC alone and in combination with TSA. We also sought to identify methylation patterns associated with long term reactivation of previously silenced genes. Colorectal cancer cell lines were treated with 5-aza-dC, with and without TSA, to analyse global methylation decreases by High Performance Liquid Chromatography (HPLC). Re-methylation was observed with removal of drug treatments. Expression arrays identified silenced genes with differing patterns of expression after treatment, such as short term reactivation or long term reactivation. Sodium bisulfite sequencing was performed on the CpG island associated with these genes and expression was verified with real time PCR. Treatment with 5-aza-dC was found to affect genomic methylation and to a lesser extent gene specific methylation. Reactivated genes which remained expressed 10 days post 5-aza-dC treatment featured hypomethylated CpG sites adjacent to the transcription start site (TSS). In contrast, genes with uniformly hypermethylated CpG islands were only temporarily reactivated. These results imply that 5-aza-dC induces strong de-methylation of the genome and initiates reactivation of transcriptionally inactive genes, but this does not require gene associated CpG island de-methylation to occur. In addition, for three of our selected genes, hypomethylation at the TSS of an epigenetically silenced gene is associated with the long term reversion of

  11. Direct Detection and Identification of Enteroviruses from Faeces of Healthy Nigerian Children Using a Cell-Culture Independent RT-Seminested PCR Assay

    Directory of Open Access Journals (Sweden)

    Temitope Oluwasegun Cephas Faleye

    2016-01-01

    Full Text Available Recently, a cell-culture independent protocol for detection of enteroviruses from clinical specimen was recommended by the WHO for surveillance alongside the previously established protocols. Here, we investigated whether this new protocol will show the same enterovirus diversity landscape as the established cell-culture dependent protocols. Faecal samples were collected from sixty apparently healthy children in Ibadan, Nigeria. Samples were resuspended in phosphate buffered saline, RNA was extracted, and the VP1 gene was amplified using WHO recommended RT-snPCR protocol. Amplicons were sequenced and sequences subjected to phylogenetic analysis. Fifteen (25% of the 60 samples yielded the expected band size. Of the 15 amplicons sequenced, 12 were exploitable. The remaining 3 had electropherograms with multiple peaks and were unexploitable. Eleven of the 12 exploitable sequences were identified as Coxsackievirus A1 (CVA1, CVA3, CVA4, CVA8, CVA20, echovirus 32 (E32, enterovirus 71 (EV71, EVB80, and EVC99. Subsequently, the last exploitable sequence was identified as enterobacteriophage baseplate gene by nucleotide BLAST. The results of this study document the first description of molecular sequence data on CVA1, CVA8, and E32 strains present in Nigeria. The result further showed that species A enteroviruses were more commonly detected in the region when cell-culture bias is bypassed.

  12. Genomic imprinting of IGF2 in marsupials is methylation dependent

    Directory of Open Access Journals (Sweden)

    Imumorin Ikhide

    2008-05-01

    Full Text Available Abstract Background- Parent-specific methylation of specific CpG residues is critical to imprinting in eutherian mammals, but its importance to imprinting in marsupials and, thus, the evolutionary origins of the imprinting mechanism have been the subject of controversy. This has been particularly true for the imprinted Insulin-like Growth Factor II (IGF2, a key regulator of embryonic growth in vertebrates and a focal point of the selective forces leading to genomic imprinting. The presence of the essential imprinting effector, DNMT3L, in marsupial genomes and the demonstration of a differentially methylated region (DMR in the retrotransposon-derived imprinted gene, PEG10, in tammar wallaby argue for a role for methylation in imprinting, but several studies have found no evidence of parent-specific methylation at other imprinted loci in marsupials. Results- We performed the most extensive search to date for allele-specific patterns of CpG methylation within CpG isochores or CpG enriched segments across a 22 kilobase region surrounding the IGF2 gene in the South American opossum Monodelphis domestica. We identified a previously unknown 5'-untranslated exon for opossum IGF2, which is flanked by sequences defining a putative neonatal promoter, a DMR and an active Matrix Attachment Region (MAR. Demethylation of this DMR in opossum neonatal fibroblasts results in abherrant biallelic expression of IGF2. Conclusion- The demonstration of a DMR and an active MAR in the 5' flank of opossum IGF2 mirrors the regulatory features of the 5' flank of Igf2 in mice. However, demethylation induced activation of the maternal allele of IGF2 in opossum differs from the demethylation induced repression of the paternal Igf2 allele in mice. While it can now be concluded that parent-specific DNA methylation is an epigentic mark common to Marsupialia and Eutheria, the molecular mechanisms of transcriptional silencing at imprinted loci have clearly evolved along independent

  13. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  14. External PCR, ASN's decision

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The French law imposes in some situations the presence of a person skilled in radiation protection (PCR). This article describes the cases when this person must belong to the staff of the enterprise or when this person may be sub-contracted. For instance in most nuclear facilities the PCR must be on the payroll, for enterprises dedicated to nuclear transport the PCR's job can be sub-contracted. A decision given by the ASN (French Nuclear Safety Authority) sets the minimal requests (in terms of training, job contract, activities) of the sub-contracted PCR. (A.C.)

  15. Identification of genes for normalization of real-time RT-PCR data in breast carcinomas

    DEFF Research Database (Denmark)

    Lyng, Maria B; Laenkholm, Anne-Vibeke; Pallisgaard, Niels

    2008-01-01

    BACKGROUND: Quantitative real-time RT-PCR (RT-qPCR) has become a valuable molecular technique in basic and translational biomedical research, and is emerging as an equally valuable clinical tool. Correlation of inter-sample values requires data normalization, which can be accomplished by various...... means, the most common of which is normalization to internal, stably expressed, reference genes. Recently, such traditionally utilized reference genes as GAPDH and B2M have been found to be regulated in various circumstances in different tissues, emphasizing the need to identify genes independent...... of factors influencing the tissue, and that are stably expressed within the experimental milieu. In this study, we identified genes for normalization of RT-qPCR data for invasive breast cancer (IBC), with special emphasis on estrogen receptor positive (ER+) IBC, but also examined their applicability to ER...

  16. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    Directory of Open Access Journals (Sweden)

    Rangel-Salazar Rubén

    2011-11-01

    Full Text Available Abstract Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20 hypermethylation in THP-1 macrophages. Here, we: 1 ask what gene expression changes accompany these epigenetic responses; 2 test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1 surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2 independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  17. PCR melting profile (PCR MP - a new tool for differentiation of Candida albicans strains

    Directory of Open Access Journals (Sweden)

    Nowak Magdalena

    2009-11-01

    Full Text Available Abstract Background We have previously reported the use of PCR Melting Profile (PCR MP technique based on using low denaturation temperatures during ligation mediated PCR (LM PCR for bacterial strain differentiation. The aim of the current study was to evaluate this method for intra-species differentiation of Candida albicans strains. Methods In total 123 Candida albicans strains (including 7 reference, 11 clinical unrelated, and 105 isolates from patients of two hospitals in Poland were examined using three genotyping methods: PCR MP, macrorestriction analysis of the chromosomal DNA by pulsed-field gel electrophoresis (REA-PFGE and RAPD techniques. Results The genotyping results of the PCR MP were compared with results from REA-PFGE and RAPD techniques giving 27, 26 and 25 unique types, respectively. The results showed that the PCR MP technique has at least the same discriminatory power as REA-PFGE and RAPD. Conclusion Data presented here show for the first time the evaluation of PCR MP technique for candidial strains differentiation and we propose that this can be used as a relatively simple and cheap technique for epidemiological studies in short period of time in hospital.

  18. Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation.

    Science.gov (United States)

    Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao

    2014-10-01

    We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.

  19. The origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes

    Science.gov (United States)

    Wolff, George A.; Lamb, Neil A.; Maxwell, James R.

    1986-03-01

    Treatment of 4-methylcholest-4-ene under mild acid conditions at low temperatures gives chemical evidence for certain features seen in the distributions of sedimentary 4-methyl steroid hydrocarbons, and further indicates that many low temperature diagenetic reactions of steroids are explicable in terms of acid catalysed rearrangements. Specifically, the results provide: (i) Indirect evidence that the 4-ene skeleton is a key intermediate in the dehydration of 4-methyl stanols in sediments. (ii) An explanation for the distribution of 4-methyl sterenes and A-nor sterenes in the lacustrine Messel shale (Eocene). (iii) An explanation for the presence of 4β-methyl steranes in relatively immature sedimentary rocks, despite the precursor stanols having the 4α-methyl configuration. With increasing maturity in the Paris Basin shales (Lower Toarcian), the less stable 4β-methyl steranes decrease gradually in abundance relative to their 4α-methyl counterparts, at a rate fairly similar to the change in pristane stereochemistry.

  20. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    Directory of Open Access Journals (Sweden)

    Yogita Maheshwari

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative PCR (qPCR for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  1. Detection and discrimination of maintenance and de novo CpG methylation events using MethylBreak.

    Science.gov (United States)

    Hsu, William; Mercado, Augustus T; Hsiao, George; Yeh, Jui-Ming; Chen, Chung-Yung

    2017-05-15

    Understanding the principles governing the establishment and maintenance activities of DNA methyltransferases (DNMTs) can help in the development of predictive biomarkers associated with genetic disorders and diseases. A detection system was developed that distinguishes and quantifies methylation events using methylation-sensitive endonucleases and molecular beacon technology. MethylBreak (MB) is a 22-mer oligonucleotide with one hemimethylated and two unmethylated CpG sites, which are also recognition sites for Sau96I and SacII, and is attached to a fluorophore and a quencher. Maintenance methylation was quantified by fluorescence emission due to the digestion of SacII when the hemimethylated CpG site is methylated, which inhibits Sau96I cleavage. The signal difference between SacII digestion of both MB substrate and maintenance methylated MB corresponds to de novo methylation event. Our technology successfully discriminated and measured both methylation activities at different concentrations of MB and achieved a high correlation coefficient of R 2 =0.997. Additionally, MB was effectively applied to normal and cancer cell lines and in the analysis of enzymatic kinetics and RNA inhibition of recombinant human DNMT1. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular diagnostic PCR handbook

    International Nuclear Information System (INIS)

    Viljoen, G.J.; Crowther, J.R.; Nel, L.H.

    2005-01-01

    The uses of nucleic acid-directed methods have increased significantly in the past five years and have made important contributions to disease control country programmes for improving national and international trade. These developments include the more routine use of PCR as a diagnostic tool in veterinary diagnostic laboratories. However, there are many problems associated with the transfer and particularly, the application of this technology. These include lack of consideration of: the establishment of quality-assured procedures, the required set-up of the laboratory and the proper training of staff. This can lead to a situation where results are not assured. This book gives a comprehensive account of the practical aspects of PCR and strong consideration is given to ensure its optimal use in a laboratory environment. This includes the setting-up of a PCR laboratory; Good Laboratory Practice and standardised PCR protocols to detect animal disease pathogens. Examples of Standard Operating Procedures as used in individual specialist laboratories and an outline of training materials necessary for PCR technology transfer are presented. The difficulties, advantages and disadvantages in PCR applications are explained and placed in context with other test systems. Emphasis is placed on the use of PCR for detection of pathogens, with a particular focus on diagnosticians and scientists from the developing world. It is hoped that this book will enable readers from various disciplines and levels of expertise to better judge the merits of PCR and to increase their skills and knowledge in order to assist in a more logical, efficient and assured use of this technology

  3. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    Science.gov (United States)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  4. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells.

    Science.gov (United States)

    Toghill, Bradley J; Saratzis, Athanasios; Freeman, Peter J; Sylvius, Nicolas; Bown, Matthew J

    2018-01-01

    Abdominal aortic aneurysm (AAA) is a deadly cardiovascular disease characterised by the gradual, irreversible dilation of the abdominal aorta. AAA is a complex genetic disease but little is known about the role of epigenetics. Our objective was to determine if global DNA methylation and CpG-specific methylation at known AAA risk loci is associated with AAA, and the functional effects of methylation changes. We assessed global methylation in peripheral blood mononuclear cell DNA from 92 individuals with AAA and 93 controls using enzyme-linked immunosorbent assays, identifying hyper-methylation in those with large AAA and a positive linear association with AAA diameter ( P  AAA risk loci identified in genome-wide association studies, using bisulphite next-generation sequencing (NGS) in vascular smooth muscle cells (VSMCs) taken from aortic tissues of 44 individuals (24 AAAs and 20 controls). In IL6R , 2 CpGs were hyper-methylated ( P  = 0.0145); in ERG , 13 CpGs were hyper-methylated ( P  = 0.0005); in SERPINB9 , 6 CpGs were hypo-methylated ( P  = 0.0037) and 1 CpG was hyper-methylated ( P  = 0.0098); and in SMYD2 , 4 CpGs were hypo-methylated ( P  = 0.0012).RT-qPCR was performed for each differentially methylated gene on mRNA from the same VSMCs and compared with methylation. This analysis revealed downregulation of SMYD2 and SERPINB9 in AAA, and a direct linear relationship between SMYD2 promoter methylation and SMYD2 expression ( P  = 0.038). Furthermore, downregulation of SMYD2 at the site of aneurysm in the aortic wall was further corroborated in 6 of the same samples used for methylation and gene expression analysis with immunohistochemistry. This study is the first to assess DNA methylation in VSMCs from individuals with AAA using NGS, and provides further evidence there is an epigenetic basis to AAA. Our study shows that methylation status of the SMYD2 promoter may be linked with decreased SMYD2 expression in disease pathobiology. In

  5. Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease

    Directory of Open Access Journals (Sweden)

    Anh Le

    2014-05-01

    Full Text Available Background: Wilson disease (WD is characterized by hepatic copper accumulation with progressive liver damage to cirrhosis. This study aimed to characterize the toxic milk mouse from The Jackson Laboratory (Bar Harbor, ME, USA (tx-j mouse model of WD according to changes over time in hepatic copper concentrations, methionine metabolism, global DNA methylation, and gene expression from gestational day 17 (fetal to adulthood (28 weeks. Methods: Included liver histology and relevant biochemical analyses including hepatic copper quantification, S-adenosylmethionine (SAM and S-adenosylhomocysteine (SAH liver levels, qPCR for transcript levels of genes relevant to methionine metabolism and liver damage, and DNA dot blot for global DNA methylation. Results: Hepatic copper was lower in tx-j fetuses but higher in weanling (three weeks and adult tx-j mice compared to controls. S-adenosylhomocysteinase transcript levels were significantly lower at all time points, except at three weeks, correlating negatively with copper levels and with consequent changes in the SAM:SAH methylation ratio and global DNA methylation. Conclusion: Compared to controls, methionine metabolism including S-adenosylhomocysteinase gene expression is persistently different in the tx-j mice with consequent alterations in global DNA methylation in more advanced stages of liver disease. The inhibitory effect of copper accumulation on S-adenosylhomocysteinase expression is associated with progressively abnormal methionine metabolism and decreased methylation capacity and DNA global methylation.

  6. Methylation and Transcripts Expression at the Imprinted GNAS Locus in Human Embryonic and Induced Pluripotent Stem Cells and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Virginie Grybek

    2014-09-01

    Full Text Available Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs. GNAS is an imprinted locus that produces one biallelic (Gsα and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B transcripts due to differential methylation of their promoters (DMR. To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B expression in human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs derived from two human fibroblasts and their progenies. Results showed that (1 methylation at the GNAS locus DMRs is DMR and cell line specific, (2 changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3 interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B.

  7. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants.

    Science.gov (United States)

    Bewick, Adam J; Niederhuth, Chad E; Ji, Lexiang; Rohr, Nicholas A; Griffin, Patrick T; Leebens-Mack, Jim; Schmitz, Robert J

    2017-05-01

    The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.

  9. Decreased expression level of BER genes in Alzheimer's disease patients is not derivative of their DNA methylation status.

    Science.gov (United States)

    Sliwinska, Agnieszka; Sitarek, Przemysław; Toma, Monika; Czarny, Piotr; Synowiec, Ewelina; Krupa, Renata; Wigner, Paulina; Bialek, Katarzyna; Kwiatkowski, Dominik; Korycinska, Anna; Majsterek, Ireneusz; Szemraj, Janusz; Galecki, Piotr; Sliwinski, Tomasz

    2017-10-03

    Neurodegeneration in Alzheimer's disease can be caused by accumulation of oxidative DNA damage resulting from altered expression of genes involved in the base excision repair system (BER). Promoter methylation can affect the profile of BER genes expression. Decreased expression of BER genes was observed in the brains of AD patients. The aim of our study was to compare the expression and methylation profiles of six genes coding for proteins involved in BER, namely: hOGG1, APE1, MUTYH, NEIL1, PARP1 and XRCC1, in the peripheral blood cells of AD patients and healthy volunteers. The study consisted of 100 persons diagnosed with Alzheimer's disease according to DSM-IV criteria, and 110 healthy volunteers. DNA and total RNA were isolated from venous blood cells. Promoter methylation profiles were obtained by High Resolution Melting (HRM) analysis of bisulfide converted DNA samples. Real-time PCR with TaqMan probes was employed for gene expression analysis. APE1, hOGG1, MUTYH, PARP1 and NEIL1 were significantly (pgenes. The methylation status of promoters is not associated with downregulation of BER genes. Our results show that downregulation of BER genes detected in peripheral blood samples could reflect the changes occurring in the brain of patients with AD, and may be a useful biomarker of this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Androgenic effect of honeybee drone milk in castrated rats: roles of methyl palmitate and methyl oleate.

    Science.gov (United States)

    Seres, A B; Ducza, E; Báthori, M; Hunyadi, A; Béni, Z; Dékány, M; Hajagos-Tóth, J; Verli, J; Gáspár, Róbert

    2014-04-28

    Numerous honeybee (Apis mellifera) products have been used in traditional medicine to treat infertility and to increase vitality in both men and women. Drone milk (DM) is a relatively little-known honeybee product with a putative sexual hormone effect. The oestrogenic effect of a fraction of DM has recently been reported in rats. However, no information is available on the androgenic effects of DM. The purpose of the present study was to determine the androgen-like effect of DM in male rats and to identify effective compounds. A modified Hershberger assay was used to investigate the androgenic effect of crude DM, and the plasma level of testosterone was measured. The prostatic mRNA and protein expression of Spot14-like androgen-inducible protein (SLAP) were also examined with real-time PCR and Western blot techniques. GC-MS and NMR spectroscopic investigations were performed to identify the active components gained by bioactivity-guided fractionation. The crude DM increased the relative weights of the androgen-dependent organs and the plasma testosterone level in castrated rats and these actions were flutamide-sensitive. DM increased the tissue mRNA and protein level of SLAP, providing further evidence of its androgen-like character. After bioactivity-guided fractionation, two fatty acid esters, methyl palmitate (MP) and methyl oleate (MO), were identified as active compounds. MP alone showed an androgenic effect, whereas MO increased the weight of androgen-sensitive tissues and the plasma testosterone level only in combination. The experimental data of DM and its active compounds (MO and MP) show androgenic activity confirming the traditional usage of DM. DM or MP or/and MO treatments may project a natural mode for the therapy of male infertility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Aberrant DNA methylation of matrix remodeling and cell adhesion related genes in pterygium.

    Directory of Open Access Journals (Sweden)

    Andri K Riau

    Full Text Available BACKGROUND: Pterygium is a common ocular surface disease characterized by abnormal epithelial and fibrovascular proliferation, invasion, and matrix remodeling. This lesion, which migrates from the periphery to the center of the cornea, impairs vision and causes considerable irritation. The mechanism of pterygium formation remains ambiguous, and current treatment is solely surgical excision, with a significant risk of recurrence after surgery. Here, we investigate the role of methylation in DNA sequences that regulate matrix remodeling and cell adhesion in pterygium formation. METHODOLOGY/PRINCIPAL FINDINGS: Pterygium and uninvolved conjunctiva samples were obtained from the same eye of patients undergoing surgery. The EpiTYPER Sequenom technology, based on differential base cleavage and bisulfite sequencing was used to evaluate the extent of methylation of 29 matrix and adhesion related genes. In pterygium, three CpG sites at -268, -32 and -29 bp upstream of transglutaminase 2 (TGM-2 transcription initiation were significantly hypermethylated (p<0.05, whereas hypomethylation was detected at CpGs +484 and +602 bp downstream of matrix metalloproteinase 2 (MMP-2 transcription start site, and -809, -762, -631 and -629 bp upstream of the CD24 transcription start site. RT-qPCR, western blot and immunofluorescent staining showed that transcript and protein expression were reduced for TGM-2 and increased for MMP-2 and CD24. Inhibition of methylation in cultured conjunctival epithelial cells increased these transcripts. CONCLUSIONS/SIGNIFICANCE: We found regions of aberrant DNA methylation which were consistent with alteration of TGM-2, MMP-2, and CD24 transcript and protein expression, and that inhibition of methylation in cultured cells can increase the expression of these genes. Since these genes were related to cell adhesion and matrix remodeling, dysregulation may lead to fibroblastic and neovascular changes and pterygium formation. These results

  12. Pneumocystis PCR: It Is Time to Make PCR the Test of Choice.

    Science.gov (United States)

    Doyle, Laura; Vogel, Sherilynn; Procop, Gary W

    2017-01-01

    The testing strategy for Pneumocystis at the Cleveland Clinic changed from toluidine blue staining to polymerase chain reaction (PCR). We studied the differences in positivity rates for these assays and compared each with the detection of Pneumocystis in companion specimens by cytology and surgical pathology. We reviewed the results of all Pneumocystis test orders 1 year before and 1 year after the implementation of a Pneumocystis -specific PCR. We also reviewed the corresponding cytology and surgical pathology results, if performed. Finally, we reviewed the medical records of patients with rare Pneumocystis detected by PCR in an effort to differentiate colonization vs true disease. Toluidine blue staining and surgical pathology had similar sensitivities and negative predictive values, both of which were superior to cytology. There was a >4-fold increase in the annual detection of Pneumocystis by PCR compared with toluidine blue staining (toluidine blue staining: 11/1583 [0.69%] vs PCR: 44/1457 [3.0%]; chi-square P < .001). PCR detected 1 more case than surgical pathology and was far more sensitive than cytology. Chart review demonstrated that the vast majority of patients with rare Pneumocystis detected were immunosuppressed, had radiologic findings supportive of this infection, had no other pathogens detected, and were treated for pneumocystosis by the clinical team. PCR was the most sensitive method for the detection of Pneumocystis and should be considered the diagnostic test of choice. Correlation with clinical and radiologic findings affords discrimination of early true disease from the far rarer instances of colonization.

  13. O6-methylguanine-DNA methyltransferase activity is associated with response to alkylating agent therapy and with MGMT promoter methylation in glioblastoma and anaplastic glioma

    Science.gov (United States)

    Bobola, Michael S.; Alnoor, Mohammad; Chen, John Y.-S.; Kolstoe, Douglas D.; Silbergeld, Daniel L.; Rostomily, Robert C.; Blank, A.; Chamberlain, Marc C.; Silber, John R.

    2014-01-01

    Background CpG methylation in the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with better outcome following alkylating agent chemotherapy in glioblastoma (GBM) and anaplastic glioma (AG). To what extent improved response reflects low or absent MGMT activity in glioma tissue has not been unequivocally assessed. This information is central to developing anti-resistance therapies. Methods We examined the relationship of MGMT activity in 91 GBMs and 84 AGs with progression-free survival (PFS) following alkylator therapy and with promoter methylation status determined by methylation-specific PCR (MSP). Results Cox regression analysis revealed that GBMs with high activity had a significantly greater risk for progression in dichotomous (P ≤ 0.001) and continuous (P ≤ 0.003) models, an association observed for different alkylator regimens, including concurrent chemo-radiation with temozolomide. Analysis of MGMT promoter methylation status in 47 of the GBMs revealed that methylated tumors had significantly lower activity (P ≤ 0.005) and longer PFS (P ≤ 0.036) compared to unmethylated tumors, despite overlapping activities. PFS was also significantly greater in methylated vs. unmethylated GBMs with comparable activity (P ≤ 0.005), and among unmethylated tumors with less than median activity (P ≤ 0.026), suggesting that mechanisms in addition to MGMT promote alkylator resistance. Similar associations of MGMT activity with PFS and promoter methylation status were observed for AGs. Conclusions Our results provide strong support for the hypotheses that MGMT activity promotes alkylator resistance and reflects promoter methylation status in malignant gliomas. General significance MGMT activity is an attractive target for anti-resistance therapy regardless of methylation status. PMID:25558448

  14. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    Science.gov (United States)

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  15. Analytical Performance of Four Polymerase Chain Reaction (PCR and Real Time PCR (qPCR Assays for the Detection of Six Leishmania Species DNA in Colombia

    Directory of Open Access Journals (Sweden)

    Cielo M. León

    2017-10-01

    Full Text Available Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR, limit of detection (LoD and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia. Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.

  16. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    Science.gov (United States)

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  17. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients.

    Science.gov (United States)

    Balgkouranidou, I; Matthaios, D; Karayiannakis, A; Bolanaki, H; Michailidis, P; Xenidis, N; Amarantidis, K; Chelis, L; Trypsianis, G; Chatzaki, E; Lianidou, E S; Kakolyris, S

    2015-08-01

    Gastric carcinogenesis is a multistep process including not only genetic mutations but also epigenetic alterations. The best known and more frequent epigenetic alteration is DNA methylation affecting tumor suppressor genes that may be involved in various carcinogenetic pathways. The aim of the present study was to investigate the methylation status of APC promoter 1A and RASSF1A promoter in cell free DNA of operable gastric cancer patients. Using methylation specific PCR, we examined the methylation status of APC promoter 1A and RASSF1A promoter in 73 blood samples obtained from patients with gastric cancer. APC and RASSF1A promoters were found to be methylated in 61 (83.6%) and 50 (68.5%) of the 73 gastric cancer samples examined, but in none of the healthy control samples (p APC promoter and elevated CEA (p = 0.033) as well as CA-19.9 (p = 0.032) levels, was noticed. The Kaplan-Meier estimates of survival, significantly favored patients with a non-methylated APC promoter status (p = 0.008). No other significant correlations between APC and RASSF1A methylation status and different tumor variables examined was observed. Serum RASSF1A and APC promoter hypermethylation is a frequent epigenetic event in patients with early operable gastric cancer. The observed correlations between APC promoter methylation status and survival as well as between a hypermethylated RASSF1A promoter and nodal positivity may be indicative of a prognostic role for those genes in early operable gastric cancer. Additional studies, in a larger cohort of patients are required to further explore whether these findings could serve as potential molecular biomarkers of survival and/or response to specific treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Why do results conflict regarding the prognostic value of the methylation status in colon cancers? the role of the preservation method

    Directory of Open Access Journals (Sweden)

    Tournier Benjamin

    2012-01-01

    Full Text Available Abstract Background In colorectal carcinoma, extensive gene promoter hypermethylation is called the CpG island methylator phenotype (CIMP. Explaining why studies on CIMP and survival yield conflicting results is essential. Most experiments to measure DNA methylation rely on the sodium bisulfite conversion of unmethylated cytosines into uracils. No study has evaluated the performance of bisulfite conversion and methylation levels from matched cryo-preserved and Formalin-Fixed Paraffin Embedded (FFPE samples using pyrosequencing. Methods Couples of matched cryo-preserved and FFPE samples from 40 colon adenocarcinomas were analyzed. Rates of bisulfite conversion and levels of methylation of LINE-1, MLH1 and MGMT markers were measured. Results For the reproducibility of bisulfite conversion, the mean of bisulfite-to-bisulfite standard deviation (SD was 1.3%. The mean of run-to-run SD of PCR/pyrosequencing was 0.9%. Of the 40 DNA couples, only 67.5%, 55.0%, and 57.5% of FFPE DNA were interpretable for LINE-1, MLH1, and MGMT markers, respectively, after the first analysis. On frozen samples the proportion of well converted samples was 95.0%, 97.4% and 87.2% respectively. For DNA showing a total bisulfite conversion, 8 couples (27.6% for LINE-1, 4 couples (15.4% for MLH1 and 8 couples (25.8% for MGMT displayed significant differences in methylation levels. Conclusions Frozen samples gave reproducible results for bisulfite conversion and reliable methylation levels. FFPE samples gave unsatisfactory and non reproducible bisulfite conversions leading to random results for methylation levels. The use of FFPE collections to assess DNA methylation by bisulfite methods must not be recommended. This can partly explain the conflicting results on the prognosis of CIMP colon cancers.

  19. A seven-gene CpG-island methylation panel predicts breast cancer progression

    International Nuclear Information System (INIS)

    Li, Yan; Melnikov, Anatoliy A.; Levenson, Victor; Guerra, Emanuela; Simeone, Pasquale; Alberti, Saverio; Deng, Youping

    2015-01-01

    DNA methylation regulates gene expression, through the inhibition/activation of gene transcription of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors. CpG-island methylation was evaluated on a 56-gene cancer-specific biomarker microarray in metastatic versus non-metastatic breast cancers in a multi-institutional case series of 123 breast cancer patients. Global statistical modeling and unsupervised hierarchical clustering were applied to identify a multi-gene binary classifier with high sensitivity and specificity. Network analysis was utilized to quantify the connectivity of the identified genes. Seven genes (BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL) were found informative for prognosis of metastatic diffusion and were used to calculate classifier accuracy versus the entire data-set. Individual-gene performances showed sensitivities of 63–79 %, 53–84 % specificities, positive predictive values of 59–83 % and negative predictive values of 63–80 %. When modelled together, these seven genes reached a sensitivity of 93 %, 100 % specificity, a positive predictive value of 100 % and a negative predictive value of 93 %, with high statistical power. Unsupervised hierarchical clustering independently confirmed these findings, in close agreement with the accuracy measurements. Network analyses indicated tight interrelationship between the identified genes, suggesting this to be a functionally-coordinated module, linked to breast cancer progression. Our findings identify CpG-island methylation profiles with deep impact on clinical outcome, paving the way for use as novel prognostic assays in clinical settings. The online version of this article (doi:10.1186/s12885-015-1412-9) contains supplementary

  20. IDENTIFIKASI DAGING BABI MENGGUNAKAN METODE PCR-RFLP GEN Cytochrome b DAN PCR PRIMER SPESIFIK GEN AMELOGENIN (Pork Identification Using PCR-RFLP of Cytochrome b Gene and Species Specific PCR of Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Yuny Erwanto

    2013-03-01

    Full Text Available A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP and species specific PCR methods had been applied for identifying pork in mixture of meat. Pork sample in various levels (1, 3, 5 and 10% was prepared in mixture with beef, chicken and mutton. The primary CYTb1 and CYTb2 were designed in the mitochondrial cytochrome b b (cytochrome b gene and PCR successfully amplified fragments of 359 bp. To distinguish pig species existence, the amplified PCR products of mitochondrial DNA were cut by BseDI restriction enzyme. The result showed that pig mitochondrial DNA was cut into 131 and 228 bp fragments. A polymerase chain reaction (PCR method based on the nucleotide sequence variation in the amelogenin gene has been chosen for the specific identification of pork DNAs in mixture meat. The primers designed generated specific fragments of 353 and 312 bp length for pork. The specificity of the primary designed was tested on 4 animal species including pig, cattle, chicken and goat species. Analysis of experimental mixture meat demonstrated that 1% of raw pork tissues could be detected using PCR-RFLP with BseDI restriction enzyme but detection using species-specific PCR showed the cross reactivity to beef, chicken and mutton. The cytochrome b PCR-RFLP species identification assay yielded excellent results for identification of pig species. PCR-RFLP is a potentially reliable technique for detection of the existence of pork in animal food product for Halal authentication. Keywords: Pork identification, cytochrome b, amelogenin, polymerase chain reaction   ABSTRAK   Penelitian ini dilakukan untuk mengaplikasikan metode deteksi daging babi dalam campuan daging dengan sapi, kambing dan ayam melalui PCR-RFLP dan PCR dengan primer spesifik untuk babi. Level kontaminasi daging babi dibuat sebesar 1, 3, 5 dan 10% dari total daging dalam campuran. Metode PCR-RFLP menggunakan sepasang primer yaitu gen cytochrome b dari mitokondria yang

  1. DNA methylation and memory formation.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2010-11-01

    Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.

  2. Replication-independent chromatin loading of Dnmt1 during G2 and M phases

    Science.gov (United States)

    Easwaran, Hariharan P; Schermelleh, Lothar; Leonhardt, Heinrich; Cardoso, M Cristina

    2004-01-01

    The major DNA methyltransferase, Dnmt1, associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand. In view of the slow kinetics of Dnmt1 in vitro versus the fast progression of the replication fork, we have tested whether Dnmt1 associates with chromatin beyond S phase. Using time-lapse microscopy of mammalian cells expressing green-fluorescent-protein-tagged Dnmt1 and DsRed-tagged DNA Ligase I as a cell cycle progression marker, we have found that Dnmt1 associates with chromatin during G2 and M. This association is mediated by a specific targeting sequence, shows strong preference for constitutive but not facultative heterochromatin and is independent of heterochromatin-specific histone H3 Lys 9 trimethylation, SUV39H and HP1. Moreover, photobleaching analyses showed that Dnmt1 is continuously loaded onto chromatin throughout G2 and M, indicating a replication-independent role of Dnmt1 that could represent a novel and separate pathway to maintain DNA methylation. PMID:15550930

  3. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR) for detection of avian metapneumovirus subtype A

    OpenAIRE

    Ferreira, HL; Spilki, FR; dos Santos, MMAB; de Almeida, RS; Arns, CW

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  4. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  5. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  6. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  7. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Knothe, Gerhard

    2013-01-01

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1 H and 13 C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  8. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  9. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Hagen Jeffrey A

    2007-10-01

    Full Text Available Abstract Background Lung cancer is the number one cancer killer of both men and women in the United States. Three quarters of lung cancer patients are diagnosed with regionally or distantly disseminated disease; their 5-year survival is only 15%. DNA hypermethylation at promoter CpG islands shows great promise as a cancer-specific marker that would complement visual lung cancer screening tools such as spiral CT, improving early detection. In lung cancer patients, such hypermethylation is detectable in a variety of samples ranging from tumor material to blood and sputum. To date the penetrance of DNA methylation at any single locus has been too low to provide great clinical sensitivity. We used the real-time PCR-based method MethyLight to examine DNA methylation quantitatively at twenty-eight loci in 51 primary human lung adenocarcinomas, 38 adjacent non-tumor lung samples, and 11 lung samples from non-lung cancer patients. Results We identified thirteen loci showing significant differential DNA methylation levels between tumor and non-tumor lung; eight of these show highly significant hypermethylation in adenocarcinoma: CDH13, CDKN2A EX2, CDX2, HOXA1, OPCML, RASSF1, SFPR1, and TWIST1 (p-value Conclusion The identification of eight CpG island loci showing highly significant hypermethylation in lung adenocarcinoma provides strong candidates for evaluation in patient remote media such as plasma and sputum. The four most highly ranked loci, CDKN2A EX2, CDX2, HOXA1 and OPCML, which show significant DNA methylation even in stage IA tumor samples, merit further investigation as some of the most promising lung adenocarcinoma markers identified to date.

  10. Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.

    Science.gov (United States)

    Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek

    2013-12-01

    Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. HumMeth27QCReport: an R package for quality control and primary analysis of Illumina Infinium methylation data

    Directory of Open Access Journals (Sweden)

    Mancuso Francesco M

    2011-12-01

    Full Text Available Abstract Background The study of the human DNA methylome has gained particular interest in the last few years. Researchers can nowadays investigate the potential role of DNA methylation in common disorders by taking advantage of new high-throughput technologies. Among these, Illumina Infinium assays can interrogate the methylation levels of hundreds of thousands of CpG sites, offering an ideal solution for genome-wide methylation profiling. However, like for other high-throughput technologies, the main bottleneck remains at the stage of data analysis rather than data production. Findings We have developed HumMeth27QCReport, an R package devoted to researchers wanting to quickly analyse their Illumina Infinium methylation arrays. This package automates quality control steps by generating a report including sample-independent and sample-dependent quality plots, and performs primary analysis of raw methylation calls by computing data normalization, statistics, and sample similarities. This package is available at CRAN repository, and can be integrated in any Galaxy instance through the implementation of ad-hoc scripts accessible at Galaxy Tool Shed. Conclusions Our package provides users of the Illumina Infinium Methylation assays with a simplified, automated, open-source quality control and primary analysis of their methylation data. Moreover, to enhance its use by experimental researchers, the tool is being distributed along with the scripts necessary for its implementation in the Galaxy workbench. Finally, although it was originally developed for HumanMethylation27, we proved its compatibility with data generated with the HumanMethylation450 Bead Chip.

  12. Real-time colorimetric detection of DNA methylation of the PAX1 gene in cervical scrapings for cervical cancer screening with thiol-labeled PCR primers and gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Huang J

    2016-10-01

    Full Text Available Jin Huang,1,2 Yu-Ligh Liou,1,2 Ya-Nan Kang,3 Zhi-Rong Tan,1,2 Ming-Jing Peng,1,2 Hong-Hao Zhou1,2 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 2Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 3Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China Background: DNA methylation can induce carcinogenesis by silencing key tumor suppressor genes. Analysis of aberrant methylation of tumor suppressor genes can be used as a prognostic and predictive biomarker for cancer. In this study, we propose a colorimetric method for the detection of DNA methylation of the paired box gene 1 (PAX1 gene in cervical scrapings obtained from 42 patients who underwent cervical colposcopic biopsy. Methods: A thiolated methylation-specific polymerase chain reaction (MSP primer was used to generate MSP products labeled with the thiol group at one end. After bisulfite conversion and MSP amplification, the unmodified gold nanoparticles (AuNPs were placed in a reaction tube and NaCl was added to induce aggregation of bare AuNPs without generating polymerase chain reaction products. After salt addition, the color of AuNPs remained red in the methylated PAX1 gene samples because of binding to the MSP-amplified products. By contrast, the color of the AuNP colloid solution changed from red to blue in the non-methylated PAX1 gene samples because of aggregation of AuNPs in the absence of the MSP-amplified products. Furthermore, PAX1 methylation was quantitatively detected in cervical scrapings of patients with varied pathological degrees of cervical cancer. Conventional quantitative MSP (qMSP was also performed for comparison. Results: The two methods showed a significant correlation of the methylation frequency of the PAX1 gene in cervical scrapings with severity of cervical cancer (n=42, P<0.05. The results of the

  13. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars.

    Science.gov (United States)

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y

    2015-11-26

    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  14. CpG methylation differences between neurons and glia are highly conserved from mouse to human.

    Science.gov (United States)

    Kessler, Noah J; Van Baak, Timothy E; Baker, Maria S; Laritsky, Eleonora; Coarfa, Cristian; Waterland, Robert A

    2016-01-15

    Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That study minimized the importance of cell type-specific differences in CpG methylation, claiming these are restricted to localized genomic regions, and instead emphasized that widespread and highly conserved differences in non-CpG methylation distinguish neurons and glia. We reanalyzed the data from that study and came to markedly different conclusions. In particular, we found widespread cell type-specific differences in CpG methylation, with a genome-wide tendency for neuronal CpG-hypermethylation punctuated by regions of glia-specific hypermethylation. Alarmingly, our analysis indicated that the majority of genes identified by the primary study as exhibiting cell type-specific CpG methylation differences were misclassified. To verify the accuracy of our analysis, we isolated neuronal and glial DNA from mouse cortex and performed quantitative bisulfite pyrosequencing at nine loci. The pyrosequencing results corroborated our analysis, without exception. Most interestingly, we found that gene-associated neuron vs. glia CpG methylation differences are highly conserved across human and mouse, and are very likely to be functional. In addition to underscoring the importance of independent verification to confirm the conclusions of genome-wide epigenetic analyses, our data indicate that CpG methylation plays a major role in neuroepigenetics, and that the mouse is likely an excellent model in which to study the role of DNA methylation in human neurodevelopment and disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3 and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  16. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Science.gov (United States)

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  17. DNA methylation in sugarcane somaclonal variants assessed through methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Francischini, J H M B; Kemper, E L; Costa, J B; Manechini, J R V; Pinto, L R

    2017-05-04

    Micropropagation is an important tool for large-scale multiplication of plant superior genotypes. However, somaclonal variation is one of the drawbacks of this process. Changes in DNA methylation have been widely reported as one of the main causes of somaclonal variations in plants. In order to investigate the occurrence of changes in the methylation pattern of sugarcane somaclonal variants, the MSAP (methylation-sensitive amplified polymorphism) technique was applied to micro-propagated plantlets sampled at the third subculture phase. The mother plant, in vitro normal plantlets, and in vitro abnormal plantlets (somaclonal variants) of four sugarcane clones were screened against 16 MSAP selective primers for EcoRI/MspI and EcoRI/HpaII restriction enzymes. A total of 1005 and 1200 MSAP-derived markers with polymorphism percentages of 28.36 and 40.67 were obtained for EcoRI/HpaII and EcoRI/MspI restriction enzyme combinations, respectively. The genetic similarity between the mother plant and the somaclonal variants ranged from 0.877 to 0.911 (EcoRI/MspI) and from 0.928 to 0.955 (EcoRI/HpaII). Most of the MASPs among mother plant and micro-propagated plantlets were derived from EcoRI/MspI restriction enzymes suggesting alteration due to gain or loss of internal cytosine methylation. A higher rate of loss of methylation (hypomethylation) than gain of methylation (hypermethylation) was observed in the abnormal in vitro sugarcane plantlets. Although changes in the methylation pattern were also observed in the in vitro normal plantlets, they were lower than those observed for the in vitro abnormal plantlets. The MASP technique proved to be a promising tool to early assessment of genetic fidelity of micro-propagated sugarcane plants.

  18. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development.

    Science.gov (United States)

    Rocchi, V; Janni, M; Bellincampi, D; Giardina, T; D'Ovidio, R

    2012-03-01

    Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus.

    Science.gov (United States)

    Arroyo-Jousse, Viviana; Garcia-Diaz, Diego F; Codner, Ethel; Pérez-Bravo, Francisco

    2016-12-01

    TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case-control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r -0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.

  20. N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine.

    Science.gov (United States)

    Vallejo-López, Montserrat; Écija, Patricia; Vogt, Natalja; Demaison, Jean; Lesarri, Alberto; Basterretxea, Francisco J; Cocinero, Emilio J

    2017-11-21

    A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of N axial /N equatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Ou, Xiufang; Zhang, Yunhong; Xu, Chunming; Lin, Xiuyun; Zang, Qi; Zhuang, Tingting; Jiang, Lili; von Wettstein, Diter; Liu, Bao

    2012-01-01

    DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest

  2. Droplet digital PCR analysis of NOTCH1 gene mutations in chronic lymphocytic leukemia.

    Science.gov (United States)

    Minervini, Angela; Francesco Minervini, Crescenzio; Anelli, Luisa; Zagaria, Antonella; Casieri, Paola; Coccaro, Nicoletta; Cumbo, Cosimo; Tota, Giuseppina; Impera, Luciana; Orsini, Paola; Brunetti, Claudia; Giordano, Annamaria; Specchia, Giorgina; Albano, Francesco

    2016-12-27

    In chronic lymphocytic leukemia (CLL), NOTCH1 gene mutations (NOTCH1mut) have been associated with adverse prognostic features but the independence of these as a prognostic factor is still controversial. In our study we validated a c.7541-7542delCT NOTCH1 mutation assay based on droplet digital PCR (ddPCR); we also analyzed the NOTCH1mut allelic burden, expressed as fractional abundance (FA), in 88 CLL patients at diagnosis to assess its prognostic role and made a longitudinal ddPCR analysis in 10 cases harboring NOTCH1mut to verify the FA variation over time. Our data revealed that with the ddPCR approach the incidence of NOTCH1mut in CLL was much higher (53.4%) than expected. However, longitudinal ddPCR analysis of CLL cases showed a statistically significant reduction of the NOTCH1mut FA detected at diagnosis after treatment (median FA 11.67 % vs 0.09 %, respectively, p = 0.01); the same difference, in terms of NOTCH1mut FA, was observed in the relapsed cases compared to the NOTCH1mut allelic fraction observed in patients in complete or partial remission (median FA 4.75% vs 0.43%, respectively, p = 0.007). Our study demonstrated a much higher incidence of NOTCH1mut in CLL than has previously been reported, and showed that the NOTCH1mut allelic burden evaluation by ddPCR might identify patients in need of a closer clinical follow-up during the "watch and wait" interval and after standard chemotherapy.

  3. Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study

    Science.gov (United States)

    A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing. Here, we evaluated ten of these methods (BacH, BacHum-UCD, B. thetaiotaomic...

  4. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood.

    Science.gov (United States)

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.

  5. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain

    Science.gov (United States)

    Nguyen, AnhThu; Rauch, Tibor A.; Pfeifer, Gerd P.; Hu, Valerie W.

    2010-01-01

    Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.—Nguyen, A., Rauch, T. A., Pfeifer, G. P., Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. PMID:20375269

  6. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  7. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients.

    Science.gov (United States)

    Ponomaryova, Anastasia A; Rykova, Elena Yu; Cherdyntseva, Nadezda V; Skvortsova, Tatiana E; Dobrodeev, Alexey Yu; Zav'yalov, Alexander A; Bryzgalov, Leonid O; Tuzikov, Sergey A; Vlassov, Valentin V; Laktionov, Pavel P

    2013-09-01

    To date, aberrant DNA methylation has been shown to be one of the most common and early causes of malignant cell transformation and tumors of different localizations, including lung cancer. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA circulating in the blood (cirDNA) is a convenient tumor-associated DNA marker that can be used as a minimally invasive diagnostic test. In the current study, we investigated the methylation status in blood samples of 32 healthy donors and 60 lung cancer patients before and after treatment with neoadjuvant chemotherapy followed by total tumor resection. Using quantitative methylation-specific PCR, we found that the index of methylation (IM), calculated as IM = 100 × [copy number of methylated/(copy number of methylated + unmethylated gene)], for the RASSF1A and RARB2 genes in the cirDNA isolated from blood plasma and cell-surface-bound cirDNA was elevated 2- to 3-fold in lung cancer patients compared with healthy donors. Random forest classification tree model based on these variables combined (RARB2 and RASSF1A IM in both plasma and cell-surface-bound cirDNA) lead to NSCLC patients' and healthy subjects' differentiation with 87% sensitivity and 75% specificity. An association of increased IM values with an advanced stage of non-small-cell lung cancer was found for RARB2 but not for RASSF1A. Chemotherapy and total tumor resection resulted in a significant decrease in the IM for RARB2 and RASSF1A, in both cirDNA fractions, comparable to the IM level of healthy subjects. Importantly, a rise in the IM for RARB2 was detected in patients within the follow-up period, which manifested in disease relapse at 9 months, confirmed with instrumental and pathologic methods. Our data indicate that quantitative analysis of the methylation status of the RARB2 and RASSF1A tumor suppressor genes in both cirDNA fractions is a useful tool for lung cancer diagnostics, evaluation of cancer

  8. A single whole-body low dose X-irradiation does not affect L1, B1 and IAP repeat element DNA methylation longitudinally.

    Directory of Open Access Journals (Sweden)

    Michelle R Newman

    Full Text Available The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1, B1 and Intracisternal-A-Particle (IAP repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons. By 420 days post-irradiation, neither radiation- or aging-related changes in the methylation of peripheral blood, spleen or liver L1, B1 and IAP elements were observed. Analysis of the spleen and liver tissues of cohorts of untreated aging mice showed that the 17-19 month age group exhibited higher repeat element methylation than younger or older mice, with no overall decline in methylation detected with age. This is the first temporal analysis of the effect of low dose radiation on repeat element methylation in mouse peripheral blood and the first to examine the long term effect of this dose on repeat element methylation in a radiosensitive tissue (spleen and a tissue fundamental to the aging process (liver. Our data indicate that the methylation of murine DNA repeat elements can fluctuate with age, but unlike human studies, do not demonstrate an overall aging-related decline. Furthermore, our results indicate that a low dose of ionising radiation does not induce detectable changes to murine repeat element DNA methylation in the tissues and at the time-points examined in this study. This radiation dose is relevant to human diagnostic radiation exposures and suggests that a dose of 10 mGy X-rays, unlike high dose radiation, does not cause significant short or long term changes to repeat element or global DNA

  9. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.

    Science.gov (United States)

    Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy

    2014-06-01

    The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.

  10. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).

    Science.gov (United States)

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  11. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh..

    Directory of Open Access Journals (Sweden)

    Gulshan Kumar

    Full Text Available Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover

  12. The correlations between alteration of p16 gene and clinicopathological factors and prognosis in squamous cell carcinomas of the buccal mucosa.

    Science.gov (United States)

    Dong, Yuying; Wang, Jie; Dong, Fusheng; Wang, Xu; Zhang, Yinghuai

    2012-07-01

    To evaluate relationships between the alteration of p16 gene and the clinical status and prognosis of the patients with squamous cell carcinoma of the buccal mucosa. Thirty buccal cancers were included in the analysis. Deletion analysis was performed by PCR. Point mutation analysis was used by PCR-SSCP and direct sequencing. Methylation-specific PCR methods were adopted for the evaluation of p16 methylation. The correlation between alteration of p16 gene and clinicopathological factors buccal cancer was evaluated by Fisher's exact test. Kaplan-Meier and Cox regression were used to investigate the relationship between p16 alteration and survival time. The frequency of p16 alteration was 63.3% in buccal carcinomas. P16 deletion was associated significantly with tumor size (P = 0.01). P16 point mutation was associated significantly with differentiation (P = 0.006). P16 methylation was associated significantly with nodes metastasis (P = 0.027). The overall survival rate of 30 buccal carcinomas was 53.3%. The Log-rank test (P = 0.021) and univariate Cox regression analysis (P = 0.030) revealed that p16 methylation was significantly associated with the overall survival rate. Multivariate analysis showed that p16 deletion, p16 mutation, and p16 methylation were not statistically significant. The alterations of p16 gene may play a major role in malignancy and development and metastases of buccal carcinoma and may be an excellent marker of aggressive clinical behavior. P16 methylation has a prognostic value in buccal carcinoma but not an independent prognosis factor. P16 point mutation and p16 deletion have not prognostic significance in buccal carcinoma. © 2012 John Wiley & Sons A/S.

  13. Association between the CpG island methylator phenotype and its prognostic significance in primary pulmonary adenocarcinoma.

    Science.gov (United States)

    Koh, Young Wha; Chun, Sung-Min; Park, Young-Soo; Song, Joon Seon; Lee, Geon Kook; Khang, Shin Kwang; Jang, Se Jin

    2016-08-01

    Aberrant methylation of promoter CpG islands is one of the most important inactivation mechanisms for tumor suppressor and tumor-related genes. Previous studies using genome-wide DNA methylation microarray analysis have suggested the existence of a CpG island methylator phenotype (CIMP) in lung adenocarcinomas. Although the biological behavior of these tumors varies according to tumor stage, no large-scale study has examined the CIMP in lung adenocarcinoma patients according to tumor stage. Furthermore, there have been no reported results regarding the clinical significance of each of the six CIMP markers. To examine the CIMP in patients with pulmonary adenocarcinoma after a surgical resection, we performed methylation analysis of six genes (CCNA1, ACAN, GFRA1, EDARADD, MGC45800, and p16 (INK4A)) in 230 pulmonary adenocarcinoma cases using the SEQUENOM MassARRAY platform. Fifty-four patients (28 %, 54/191) were in the CIMP-high (CIMP-H) group associated with high nodal stage (P = 0.007), the presence of micropapillary or solid histology (P = 0.003), and the absence of an epidermal growth factor receptor (EGFR) mutation (P = 0.002). By multivariate analysis, CIMP was an independent prognostic marker for overall survival (OS) and disease-specific survival (P = 0.03 and P = 0.43, respectively). In the stage I subgroups alone, CIMP-H patients had lower OS rates than the CIMP-low (CIMP-L) group (P = 0.041). Of the six CIMP markers, ACAN alone was significantly associated with patient survival. CIMP predicted the risk of progression independently of clinicopathological variables and enables the stratification of pulmonary adenocarcinoma patients, particularly among stage I cases.

  14. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes.

    Science.gov (United States)

    Proudhon, Charlotte; Duffié, Rachel; Ajjan, Sophie; Cowley, Michael; Iranzo, Julian; Carbajosa, Guillermo; Saadeh, Heba; Holland, Michelle L; Oakey, Rebecca J; Rakyan, Vardhman K; Schulz, Reiner; Bourc'his, Déborah

    2012-09-28

    Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  16. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    International Nuclear Information System (INIS)

    Pilatti, Marcia M.; Andrade, Antero S.R.; Ferreira, Sidney A.

    2009-01-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with 32 P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  17. Interlaboratory reproducibility of DiversiLab rep-PCR typing and clustering of Acinetobacter baumannii isolates.

    Science.gov (United States)

    Higgins, Paul G; Hujer, Andrea M; Hujer, Kristine M; Bonomo, Robert A; Seifert, Harald

    2012-01-01

    We have investigated the reproducibility of DiversiLab rep-PCR fingerprints between two laboratories with the aim of determining if the fingerprints and clustering are laboratory-specific or portable. One-hundred non-duplicate Acinetobacter baumannii isolates were used in this study. DNA isolation and rep-PCR were each performed separately in two laboratories and rep-PCR patterns generated in laboratory A were compared with those from laboratory B. Twelve A. baumannii isolates processed in laboratory A showed ≥98 % pattern similarity with the corresponding 12 isolates tested in laboratory B and were considered identical. Sixty-four isolates showed 95-97.9 % similarity with their corresponding isolates. Twenty-three isolates showed 90-94 % similarity with the corresponding isolates, while one isolate showed only 87.4 % similarity. However, intra-laboratory clustering was conserved: isolates that clustered in laboratory A also clustered in laboratory B. While clustering was conserved and reproducible at two different laboratories, demonstrating the robustness of rep-PCR, interlaboratory comparison of individual isolate fingerprints showed more variability. This comparison allows conclusions regarding clonality to be reached independent of the laboratory where the analysis is performed.

  18. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    Science.gov (United States)

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  19. Characterization of microbes in prosthetic joint specimens by culture-independent molecular methods

    DEFF Research Database (Denmark)

    Xu, Yijuan; Rudkjøbing, Vibeke Børsholt; Simonsen, Ole

    Prosthetic joint infection (PJI) is one of the most challenging complications of joint alloplasty. Formation of biofilm is a prominent feature of PJIs and constitutes a challenge to current sampling procedures and culture practices to obtain a reliable diagnosis. The aim of the study was to inves......Prosthetic joint infection (PJI) is one of the most challenging complications of joint alloplasty. Formation of biofilm is a prominent feature of PJIs and constitutes a challenge to current sampling procedures and culture practices to obtain a reliable diagnosis. The aim of the study...... was to investigate the microbial diversity in surgical samples (eg. synovial fluid, periprosthetic tissue, removed prosthesis) from 22 prosthetic patients using a range of culture-independent molecular methods including broad range 16S rRNA gene PCR, cloning, phylogeny, quantitative PCR (qPCR), and fluorescence...

  20. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Science.gov (United States)

    Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-08-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.

  1. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Directory of Open Access Journals (Sweden)

    Anupam Paliwal

    2013-08-01

    Full Text Available Allele-specific DNA methylation (ASM is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons, one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs, each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS peaks near CTCF binding sites with ASM.

  2. Structure, function and carcinogenicity of metabolites of methylated and non-methylated polycyclic aromatic hydrocarbons: a comprehensive review.

    Science.gov (United States)

    Flesher, James W; Lehner, Andreas F

    2016-01-01

    The Unified Theory of PAH Carcinogenicity accommodates the activities of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) and states that substitution of methyl groups on meso-methyl substituted PAHs with hydroxy, acetoxy, chloride, bromide or sulfuric acid ester groups imparts potent cancer producing properties. It incorporates specific predictions from past researchers on the mechanism of carcinogenesis by methyl-substituted hydrocarbons, including (1) requirement for metabolism to an ArCH2X type structure where X is a good leaving group and (2) biological substitution of a meso-methyl group at the most reactive center in non-methylated hydrocarbons. The Theory incorporates strong inferences of Fieser: (1) The mechanism of carcinogenesis involves a specific metabolic substitution of a hydrocarbon at its most reactive center and (2) Metabolic elimination of a carcinogen is a detoxifying process competitive with that of carcinogenesis and occurring by a different mechanism. According to this outlook, chemical or biochemical substitution of a methyl group at the reactive meso-position of non-methylated hydrocarbons is the first step in the mechanism of carcinogenesis for most, if not all, PAHs and the most potent metabolites of PAHs are to be found among the meso methyl-substituted hydrocarbons. Some PAHs and their known or potential metabolites and closely related compounds have been tested in rats for production of sarcomas at the site of subcutaneous injection and the results strongly support the specific predictions of the Unified Theory.

  3. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  4. CD133 expression is not an independent prognostic factor in stage II and III colorectal cancer but may predict the better outcome in patients with adjuvant therapy

    International Nuclear Information System (INIS)

    Mia-Jan, Khalilullah; Jung, So Young; Kim, Ik-Yong; Oh, Sung Soo; Choi, EunHee; Chang, Sei Jin; Kang, Tae Young; Cho, Mee-Yon

    2013-01-01

    Cancer stem cells (CSCs) are notorious for their capacity of tumor progression, metastasis or resistance to chemo-radiotherapy. However, the undisputed role of cancer stem marker, CD133, in colorectal cancers (CRCs) is not clear yet. We assessed 271 surgically-resected stage II and III primary CRCs with (171) and without (100) adjuvant therapy after surgery. CD133 expression was analyzed by immunohistochemical (IHC) staining and real-time RT-PCR. CD133 promoter methylation was quantified by pyrosequencing. The CD133 IHC expression was significantly correlated with mRNA expression (p=0.0257) and inversely correlated with the promoter methylation (p=0.0001). CD133 was expressed more frequently in rectal cancer (p=0.0035), and in moderately differentiated tumors (p=0.0378). In survival analysis, CD133 expression was not significantly correlated with overall survival (OS) (p=0.9689) as well as disease-free survival (DFS) (p=0.2103). However, CD133+ tumors were significantly associated with better OS in patients with adjuvant therapy compared to those without adjuvant therapy (p<0.0001, HR 0.125, 95% CI 0.052-0.299). But the patients with CD133- tumors did not show any significant difference of survival according to adjuvant therapy (p=0.055, HR 0.500, 95% CI 0.247-1.015). In stage II and III CRCs, CD133 IHC expression may signify the benefit for adjuvant therapy although it is not an independent prognostic factor

  5. Are clinicopathological features of colorectal cancers with methylation in half of CpG island methylator phenotype panel markers different from those of CpG island methylator phenotype-high colorectal cancers?

    Science.gov (United States)

    Bae, Jeong Mo; Rhee, Ye-Young; Kim, Kyung Ju; Wen, Xianyu; Song, Young Seok; Cho, Nam-Yun; Kim, Jung Ho; Kang, Gyeong Hoon

    2016-01-01

    CpG island methylator phenotype (CIMP)-high (CIMP-H) colorectal cancer (CRC) is defined when a tumor shows methylation at greater than or equal to 60% of CIMP panel markers. Although CRCs with methylation at 50% of panel markers are classified as CIMP-low/CIMP-0 tumors, little is known regarding the clinicopathological and molecular features of CRCs with methylation at 4/8 panel markers (4/8 methylated markers) and whether they are akin to CIMP-H or CIMP-low/CIMP-0 CRCs in terms of their clinicopathological or molecular features. A total of 1164 cases of surgically resected CRC were analyzed for their methylation status in 8 CIMP panel markers, and the frequencies of various clinicopathological and molecular features were compared between CRCs with 0/8, 1/8 to 3/8, 4/8, and 5/8 to 8/8 methylated markers. CRCs with 4/8 methylated markers were closer to CRCs with 5/8 to 8/8 methylated markers in terms of sex distribution, mucin production, serration, nodal metastasis, CK7 expression, CK20 loss, and CDX2 loss frequencies and overall survival rate. CRCs with methylation at 4/8 markers were closer to CRCs with 1/8 to 3/8 methylated markers in terms of less frequent right colon location and poor differentiation. CRCs with 4/8 methylated markers showed the shortest overall survival time compared with CRCs with 0/8, 1/8 to 3/8, 4/8, or 5/8 to 8/8 methylated markers. In terms of clinicopathological and molecular features, CRCs with 4/8 methylated markers appeared to be closer to CIMP-H than to CIMP-low/CIMP-0 and would thus be better classified as CIMP-H if the CRCs require classification into either CIMP-H or CIMP-low/CIMP-0. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.

    Science.gov (United States)

    Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes

    2017-06-01

    The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  7. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Ping, Jie, E-mail: pingjie@whu.edu.cn [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wang, Hui [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2015-06-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  8. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    International Nuclear Information System (INIS)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long; Ping, Jie; Wang, Hui

    2015-01-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  9. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  10. Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort.

    Directory of Open Access Journals (Sweden)

    Jukka S Alasaari

    Full Text Available Shift-working nurses are exposed to a stressful work environment, which puts them at an increased risk for burnout and depression. We explored the effect of environmental stress on serotonin transporter gene (SLC6A4 promoter methylation among nurses from high and low work stress environments.Using bisulfite sequencing, we investigated the methylation status of five CpG residues of a CpG-rich region in the promoter of SLC6A4 by comparing female shift working nurses from a high work stress environment (n = 24 to low work stress environment (n = 25. We also analyzed the association of 5-HTTLPR polymorphism at 5' end of SLC6A4. Work stress was assessed by the Karasek's Model and possible signs of burnout or depression were measured by the Maslach Burnout Index General Survey and Beck Depression Index. Methylation levels were assessed by bisulfite sequencing of DNA extracted from peripheral blood leucocytes. Restriction enzyme treatment followed by standard PCR was used to identify 5-HTTLPR genotypes.We found that nurses in the high stress environment had significantly lower promoter methylation levels at all five CpG residues compared to nurses in the low stress environment (p<0.01. There was no significant interaction of 5-HTTLPR genotype and work stress with methylation (p = 0.58. In unadjusted (bivariate analysis, burnout was not significantly associated to methylation levels. However, when mutually adjusted for both, burnout and work stress were significant contributors (p = 0.038 and p<0.0001 respectively to methylation levels.Our findings show that environmental stress is concurrent with decreased methylation of the SLC6A4 promoter. This may lead to increased transcriptional activity of the gene, increased reuptake of serotonin from synaptic clefts, and termination of the activity of serotonin. This could present a possible coping mechanism for environmental stress in humans that could eventually increase risk for disturbed functional

  11. DAPK1 Promoter Methylation and Cervical Cancer Risk: A Systematic Review and a Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Antonella Agodi

    Full Text Available The Death-Associated Protein Kinase 1 (DAPK1 gene has been frequently investigated in cervical cancer (CC. The aim of the present study was to carry out a systematic review and a meta-analysis in order to evaluate DAPK1 promoter methylation as an epigenetic marker for CC risk.A systematic literature search was carried out. The Cochrane software package Review Manager 5.2 was used. The fixed-effects or random-effects models, according to heterogeneity across studies, were used to calculate odds ratios (ORs and 95% Confidence Intervals (CIs. Furthermore, subgroup analyses were conducted by histological type, assays used to evaluate DAPK1 promoter methylation, and control sample source.A total of 20 papers, published between 2001 and 2014, on 1929 samples, were included in the meta-analysis. DAPK1 promoter methylation was associated with an increased CC risk based on the random effects model (OR: 21.20; 95%CI = 11.14-40.35. Omitting the most heterogeneous study, the between study heterogeneity decreased and the association increased (OR: 24.13; 95% CI = 15.83-36.78. The association was also confirmed in all the subgroups analyses.A significant strong association between DAPK1 promoter methylation and CC was shown and confirmed independently by histological tumor type, method used to evaluate methylation and source of control samples. Methylation markers may have value in early detection of CC precursor lesions, provide added reassurances of safety for women who are candidates for less frequent screens, and predict outcomes of women infected with human papilloma virus.

  12. Blood global DNA methylation is decreased in non-severe chronic obstructive pulmonary disease (COPD) patients.

    Science.gov (United States)

    Zinellu, Angelo; Sotgiu, Elisabetta; Fois, Alessandro G; Zinellu, Elisabetta; Sotgia, Salvatore; Ena, Sara; Mangoni, Arduino A; Carru, Ciriaco; Pirina, Pietro

    2017-10-01

    Alterations in global DNA methylation have been associated with oxidative stress (OS). Since chronic obstructive pulmonary disease (COPD) is characterized by increased oxidative stress we aimed to evaluate the levels of global DNA methylation in this patient group. We assessed methylcytosine (mCyt) levels in DNA from blood collected in 43 COPD patients (29 with mild and 14 with moderate disease) and 43 age- and sex-matched healthy controls. DNA methylation was significantly lower in COPD patients vs. controls (4.20 ± 0.18% mCyt vs. 4.29 ± 0.18% mCyt, p = 0.02). Furthermore, DNA methylation in COPD patients with moderate disease was significantly lower than that in patients with mild disease (4.14 ± 0.15% mCyt vs. 4.23 ± 0.19% mCyt, p COPD (crude OR = 0.06, 95% CI 0.00 to 0.67, p = 0.023). This relationship remained significant after adjusting for several confounders (OR 0.03, 95% CI 0.00 to 0.67; p = 0.028). Receiver operating characteristics (ROC) curve analysis demonstrated the area under the curve of mCyt was 0.646, with 46.6% sensitivity and 79.1% specificity for presence of COPD. There were no significant correlations between methylation and OS indices. The presence and severity of COPD is associated with progressively lower DNA methylation in blood. However, this epigenetic alteration seems independent of oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles?

    Science.gov (United States)

    Kossoski, F.; Varella, M. T. do N.

    2017-10-01

    The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.

  14. Comparative validation using quantitative real-time PCR (qPCR and conventional PCR of bovine semen centrifuged in continuous density gradient

    Directory of Open Access Journals (Sweden)

    M.V. Resende

    2011-06-01

    Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.

  15. Dissociation dynamics of methylal

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The dissociation of methylal is investigated using mass spectrometry, combined with a pyrolytic radical source and femtosecond pump probe experiments. Based on preliminary results two reaction paths of methylal dissociation are proposed and discussed. (author) 4 fig., 3 refs.

  16. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress.

    Science.gov (United States)

    Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang

    2011-09-20

    DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.

  17. Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants.

    Science.gov (United States)

    Martino, David; Dang, Thanh; Sexton-Oates, Alexandra; Prescott, Susan; Tang, Mimi L K; Dharmage, Shyamali; Gurrin, Lyle; Koplin, Jennifer; Ponsonby, Anne-Louise; Allen, Katrina J; Saffery, Richard

    2015-05-01

    The diagnosis of food allergy (FA) can be challenging because approximately half of food-sensitized patients are asymptomatic. Current diagnostic tests are excellent makers of sensitization but poor predictors of clinical reactivity. Thus oral food challenges (OFCs) are required to determine a patient's risk of reactivity. We sought to discover genomic biomarkers of clinical FA with utility for predicting food challenge outcomes. Genome-wide DNA methylation (DNAm) profiling was performed on blood mononuclear cells from volunteers who had undergone objective OFCs, concurrent skin prick tests, and specific IgE tests. Fifty-eight food-sensitized patients (aged 11-15 months) were assessed, half of whom were clinically reactive. Thirteen nonallergic control subjects were also assessed. Reproducibility was assessed in an additional 48 samples by using methylation data from an independent population of patients with clinical FA. Using a supervised learning approach, we discovered a DNAm signature of 96 CpG sites that predict clinical outcomes. Diagnostic scores were derived from these 96 methylation sites, and cutoffs were determined in a sensitivity analysis. Methylation biomarkers outperformed allergen-specific IgE and skin prick tests for predicting OFC outcomes. FA status was correctly predicted in the replication cohort with an accuracy of 79.2%. DNAm biomarkers with clinical utility for predicting food challenge outcomes are readily detectable in blood. The development of this technology in detailed follow-up studies will yield highly innovative diagnostic assays. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Characterization of Diazotrophs Containing Mo-Independent Nitrogenases, Isolated from Diverse Natural Environments▿

    Science.gov (United States)

    Betancourt, Doris A.; Loveless, Telisa M.; Brown, James W.; Bishop, Paul E.

    2008-01-01

    Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Mo-independent nitrogenases from aquatic environments. In the present study, we extend these results to include diazotrophs isolated from wood chip mulch, soil, “paraffin dirt,” and sediments from mangrove swamps. Mo-deficient, N-free media under both aerobic and anaerobic conditions were used for the isolations. A total of 26 isolates were genetically and physiologically characterized. Their phylogenetic placement was determined using 16S rRNA gene sequence analysis. Most of the isolates are members of the gamma subdivision of the class Proteobacteria and appear to be specifically related to fluorescent pseudomonads and azotobacteria. Two other isolates, AN1 and LPF4, are closely related to Enterobacter spp. and Paenibacillus spp., respectively. PCR and/or Southern hybridization were used to detect the presence of nitrogenase genes in the isolates. PCR amplification of vnfG and anfG was used to detect the genetic potential for the expression of the vanadium-containing nitrogenase and the iron-only nitrogenase in the isolates. This study demonstrates that diazotrophs with Mo-independent nitrogenases can be readily isolated from diverse natural environments. PMID:18378646

  19. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers

    Directory of Open Access Journals (Sweden)

    Vatn Morten

    2008-12-01

    Full Text Available Abstract Background Multiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential. The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1 was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI, BRAF-, KRAS-, and TP53 mutation status. Results The mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes. Conclusion Methylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.

  20. MTHFR methylation moderates the impact of smoking on DNA methylation at AHRR for African American young adults.

    Science.gov (United States)

    Beach, Steven R H; Lei, Man Kit; Ong, Mei Ling; Brody, Gene H; Dogan, Meeshanthini V; Philibert, Robert A

    2017-09-01

    Smoking has been shown to have a large, reliable, and rapid effect on demethylation of AHRR, particularly at cg05575921, suggesting that methylation may be used as an index of cigarette consumption. Because the availability of methyl donors may also influence the degree of demethylation in response to smoking, factors that affect the activity of methylene tetrahydrofolate reductase (MTHFR), a key regulator of methyl group availability, may be of interest. In the current investigation, we examined the extent to which individual differences in methylation of MTHFR moderated the association between smoking and demethylation at cg05575921 as well as at other loci on AHRR associated with a main effect of smoking. Using a discovery sample (AIM, N = 293), and a confirmatory sample (SHAPE, N = 368) of young adult African Americans, degree of methylation of loci in the first exon of MTHFR was associated with amplification of the association between smoking and AHRR demethylation at cg05575921. However, genetic variation at a commonly studied MTHFR variant, C677T, did not influence cg05575921 methylation. The significant interaction between MTHFR methylation and the smoking-induced response at cg05575921 suggests a role for individual differences in methyl cycle regulation in understanding the effects of cigarette consumption on genome wide DNA methylation. © 2017 Wiley Periodicals, Inc.