WorldWideScience

Sample records for methods nir spectra

  1. [Outlier sample discriminating methods for building calibration model in melons quality detecting using NIR spectra].

    Science.gov (United States)

    Tian, Hai-Qing; Wang, Chun-Guang; Zhang, Hai-Jun; Yu, Zhi-Hong; Li, Jian-Kang

    2012-11-01

    Outlier samples strongly influence the precision of the calibration model in soluble solids content measurement of melons using NIR Spectra. According to the possible sources of outlier samples, three methods (predicted concentration residual test; Chauvenet test; leverage and studentized residual test) were used to discriminate these outliers respectively. Nine suspicious outliers were detected from calibration set which including 85 fruit samples. Considering the 9 suspicious outlier samples maybe contain some no-outlier samples, they were reclaimed to the model one by one to see whether they influence the model and prediction precision or not. In this way, 5 samples which were helpful to the model joined in calibration set again, and a new model was developed with the correlation coefficient (r) 0. 889 and root mean square errors for calibration (RMSEC) 0.6010 Brix. For 35 unknown samples, the root mean square errors prediction (RMSEP) was 0.854 degrees Brix. The performance of this model was more better than that developed with non outlier was eliminated from calibration set (r = 0.797, RMSEC= 0.849 degrees Brix, RMSEP = 1.19 degrees Brix), and more representative and stable with all 9 samples were eliminated from calibration set (r = 0.892, RMSEC = 0.605 degrees Brix, RMSEP = 0.862 degrees).

  2. Defects in UV-vis-NIR reflectance spectra as method for forgery detections in writing documents

    Energy Technology Data Exchange (ETDEWEB)

    Somma, F; Aloe, P; Schirripa Spagnolo, G

    2010-11-01

    Documents have taken up a very important place in our society. Frauds committed in connection with documents are not at all uncommon, and, in fact, represent a very large domain of the forensic science called 'questioned documents'. In the field of forensic examination of questioned documents, the legitimacy of an ink entry is often an essential question. A common type of forgery consists in materially altering an existing writing or adding a new writing. These changes can be characterized by means of optical spectroscopy. The aim of this work is to perform the UV-vis-NIR reflectance spectrophotometry to analyze a range of blue and black commercial ballpoint pens, in order to investigate the discriminating abilities of the different inks found on the same document.

  3. [The NIR spectra based variety discrimination for single soybean seed].

    Science.gov (United States)

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  4. Interrelating meteorite and asteroid spectra at UV-Vis-NIR wavelengths using novel multiple-scattering methods

    Science.gov (United States)

    Martikainen, Julia; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-10-01

    Asteroids have remained mostly the same for the past 4.5 billion years, and provide us information on the origin, evolution and current state of the Solar System. Asteroids and meteorites can be linked by matching their respective reflectance spectra. This is difficult, because spectral features depend strongly on the surface properties, and meteorite surfaces are free of regolith dust present in asteroids. Furthermore, asteroid surfaces experience space weathering which affects their spectral features.We present a novel simulation framework for assessing the spectral properties of meteorites and asteroids and matching their reflectance spectra. The simulations are carried out by utilizing a light-scattering code that takes inhomogeneous waves into account and simulates light scattering by Gaussian-random-sphere particles large compared to the wavelength of the incident light. The code uses incoherent input and computes phase matrices by utilizing incoherent scattering matrices. Reflectance spectra are modeled by combining olivine, pyroxene, and iron, the most common materials that dominate the spectral features of asteroids and meteorites. Space weathering is taken into account by adding nanoiron into the modeled asteroid spectrum. The complex refractive indices needed for the simulations are obtained from existing databases, or derived using an optimization that utilizes our ray-optics code and the measured spectrum of the material.We demonstrate our approach by applying it to the reflectance spectrum of (4) Vesta and the reflectance spectrum of the Johnstown meteorite measured with the University of Helsinki integrating-sphere UV-Vis-NIR spectrometer.Acknowledgments. The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL).

  5. HARDERSEN IRTF ASTEROID NIR REFLECTANCE SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  6. Estimation of Anthocyanin Content of Berries by NIR Method

    International Nuclear Information System (INIS)

    Zsivanovits, G.; Ludneva, D.; Iliev, A.

    2010-01-01

    Anthocyanin contents of fruits were estimated by VIS spectrophotometer and compared with spectra measured by NIR spectrophotometer (600-1100 nm step 10 nm). The aim was to find a relationship between NIR method and traditional spectrophotometric method. The testing protocol, using NIR, is easier, faster and non-destructive. NIR spectra were prepared in pairs, reflectance and transmittance. A modular spectrocomputer, realized on the basis of a monochromator and peripherals Bentham Instruments Ltd (GB) and a photometric camera created at Canning Research Institute, were used. An important feature of this camera is the possibility offered for a simultaneous measurement of both transmittance and reflectance with geometry patterns T0/180 and R0/45. The collected spectra were analyzed by CAMO Unscrambler 9.1 software, with PCA, PLS, PCR methods. Based on the analyzed spectra quality and quantity sensitive calibrations were prepared. The results showed that the NIR method allows measuring of the total anthocyanin content in fresh berry fruits or processed products without destroying them.

  7. Standardization from a benchtop to a handheld NIR spectrometer using mathematically mixed NIR spectra to determine fuel quality parameters

    DEFF Research Database (Denmark)

    da Silva, Neirivaldo Cavalcante; Cavalcanti, Claudia Jessica; Honorato, Fernanda Araujo

    2017-01-01

    spectral responses of fuel samples (gasoline and biodiesel blends) from a high-resolution benchtop Frontier FT-NIR (PerkinElmer) spectrometer and a handheld MicroNIR™1700 (JDSU). These virtual standards can be created by mathematically mixing spectra from the pure solvents present in gasoline or diesel...... to the handheld MicroNIR using virtual standards as transfer samples...

  8. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    Science.gov (United States)

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  9. Application of Wavelets and Quaternions to NIR Spectra Classification

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J.C.

    2003-01-01

    This document describes how multi resolution analysis can combine with the use of quaternions to identify near infrared spectra. The method is applied to spectra of plastics usually present in domestic wastes. First, Haar wavelet is applied to spectrum. With the coefficients obtained, a quaternion is built. We named this quaternion a characteristic quaternion. Distances to characteristic quaternions are used to classify new quaternions. (Author) 54 refs

  10. [Study on Vis/NIR spectra detecting system for watermelons and quality predicting in motion].

    Science.gov (United States)

    Tian, Hai-Qing; Ying, Yi-Bin; Xu, Hui-Rong; Lu, Hui-Shan; Xie, Li-Juan

    2009-06-01

    To make Vis/NIR diffuse transmittance technique applied to quality prediction for watermelon in motion, the dynamic spectra detecting system was rebuilt. Spectra detecting experiments were conducted and the effects of noises caused by motion on spectra were analyzed. Then the least--square filtering method and Norris differential filtering method were adopted to eliminate the effects of noise on spectra smoothing, and statistical models between the spectra and soluble solids content were developed using partial least square method. The performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples, root mean square errors of calibration (RMSEC) and root mean square errors of prediction (RMSEP). Calibration and prediction results indicated that Norris differential method was an effective method to smooth spectra and improve calibration and prediction results, especially, with r of 0.895, RMSEC of 0.549, and RMSEP of 0.760 for the calibration and prediction result of the first derivative spectra.

  11. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration

    International Nuclear Information System (INIS)

    Xu Lu; Zhou Yanping; Tang Lijuan; Wu Hailong; Jiang Jianhui; Shen Guoli; Yu Ruqin

    2008-01-01

    Preprocessing of raw near-infrared (NIR) spectral data is indispensable in multivariate calibration when the measured spectra are subject to significant noises, baselines and other undesirable factors. However, due to the lack of sufficient prior information and an incomplete knowledge of the raw data, NIR spectra preprocessing in multivariate calibration is still trial and error. How to select a proper method depends largely on both the nature of the data and the expertise and experience of the practitioners. This might limit the applications of multivariate calibration in many fields, where researchers are not very familiar with the characteristics of many preprocessing methods unique in chemometrics and have difficulties to select the most suitable methods. Another problem is many preprocessing methods, when used alone, might degrade the data in certain aspects or lose some useful information while improving certain qualities of the data. In order to tackle these problems, this paper proposes a new concept of data preprocessing, ensemble preprocessing method, where partial least squares (PLSs) models built on differently preprocessed data are combined by Monte Carlo cross validation (MCCV) stacked regression. Little or no prior information of the data and expertise are required. Moreover, fusion of complementary information obtained by different preprocessing methods often leads to a more stable and accurate calibration model. The investigation of two real data sets has demonstrated the advantages of the proposed method

  12. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    Science.gov (United States)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  13. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  14. NIR-Red Spectra-Based Disaggregation of SMAP Soil Moisture to 250 m Resolution Based on SMAPEx-4/5 in Southeastern Australia

    Directory of Open Access Journals (Sweden)

    Nengcheng Chen

    2017-01-01

    Full Text Available To meet the demand of regional hydrological and agricultural applications, a new method named near infrared-red (NIR-red spectra-based disaggregation (NRSD was proposed to perform a disaggregation of Soil Moisture Active Passive (SMAP products from 36 km to 250 m resolution. The NRSD combined proposed normalized soil moisture index (NSMI with SMAP data to obtain 250 m resolution soil moisture mapping. The experiment was conducted in southeastern Australia during SMAP Experiments (SMAPEx 4/5 and validated with the in situ SMAPEx network. Results showed that NRSD performed a decent downscaling (root-mean-square error (RMSE = 0.04 m3/m3 and 0.12 m3/m3 during SMAPEx-4 and SMAPEx-5, respectively. Based on the validation, it was found that the proposed NSMI was a new alternative indicator for denoting the heterogeneity of soil moisture at sub-kilometer scales. Attributed to the excellent performance of the NSMI, NRSD has a higher overall accuracy, finer spatial representation within SMAP pixels and wider applicable scope on usability tests for land cover, vegetation density and drought condition than the disaggregation based on physical and theoretical scale change (DISPATCH has at 250 m resolution. This revealed that the NRSD method is expected to provide soil moisture mapping at 250-resolution for large-scale hydrological and agricultural studies.

  15. Development and validation of NIR-chemometric methods for chemical and pharmaceutical characterization of meloxicam tablets.

    Science.gov (United States)

    Tomuta, Ioan; Iovanov, Rares; Bodoki, Ede; Vonica, Loredana

    2014-04-01

    Near-Infrared (NIR) spectroscopy is an important component of a Process Analytical Technology (PAT) toolbox and is a key technology for enabling the rapid analysis of pharmaceutical tablets. The aim of this research work was to develop and validate NIR-chemometric methods not only for the determination of active pharmaceutical ingredients content but also pharmaceutical properties (crushing strength, disintegration time) of meloxicam tablets. The development of the method for active content assay was performed on samples corresponding to 80%, 90%, 100%, 110% and 120% of meloxicam content and the development of the methods for pharmaceutical characterization was performed on samples prepared at seven different compression forces (ranging from 7 to 45 kN) using NIR transmission spectra of intact tablets and PLS as a regression method. The results show that the developed methods have good trueness, precision and accuracy and are appropriate for direct active content assay in tablets (ranging from 12 to 18 mg/tablet) and also for predicting crushing strength and disintegration time of intact meloxicam tablets. The comparative data show that the proposed methods are in good agreement with the reference methods currently used for the characterization of meloxicam tablets (HPLC-UV methods for the assay and European Pharmacopeia methods for determining the crushing strength and disintegration time). The results show the possibility to predict both chemical properties (active content) and physical/pharmaceutical properties (crushing strength and disintegration time) directly, without any sample preparation, from the same NIR transmission spectrum of meloxicam tablets.

  16. Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis-NIR fibre optics reflection spectra.

    Science.gov (United States)

    Gál, Lukáš; Oravec, Michal; Gemeiner, Pavol; Čeppan, Michal

    2015-12-01

    Nineteen black inkjet inks of six different brands were examined by fibre optics reflection spectroscopy in Visible and Near Infrared Region (Vis-NIR FORS) directly on paper with a view to achieving good resolution between them. These different inks were tested on nineteen different inkjet printers from three brands. Samples were obtained from prints by reflection probe. Processed reflection spectra in the range 500-1000 nm were used as samples in principal component analysis. Variability between spectra of the same ink obtained from different prints, as well as between spectra of square areas and lines was examined. For both spectra obtained from square areas and lines reference, Principal Component Analysis (PCA) models were created. According to these models, the inkjet inks were divided into clusters. PCA method is able to separate inks containing carbon black as main colorant from the other inks using other colorants. Some spectra were recorded from another piece of printer and used as validation samples. Spectra of validation samples were projected onto reference PCA models. According to position of validation samples in score plots it can be concluded that PCA based on Vis-NIR FORS can reliably differentiate inkjet inks which are included in the reference database. The presented method appears to be a suitable tool for forensic examination of questioned documents containing inkjet inks. Inkjet inks spectra were obtained without extraction or cutting sample with possibility to measure out of the laboratory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Prediction of Caffeine Content in Java Preanger Coffee Beans by NIR Spectroscopy Using PLS and MLR Method

    Science.gov (United States)

    Budiastra, I. W.; Sutrisno; Widyotomo, S.; Ayu, P. C.

    2018-05-01

    Caffeine is one of important components in coffee that contributes to the coffee beverages flavor. Caffeine concentration in coffee bean is usually determined by chemical method which is time consuming and destructive method. A nondestructive method using NIR spectroscopy was successfully applied to determine the caffeine concentration of Arabica gayo coffee bean. In this study, NIR Spectroscopy was assessed to determine the caffeine concentration of java preanger coffee bean. A hundred samples, each consist of 96 g coffee beans were prepared for reflectance and chemical measurement. Reflectance of the sample was measured by FT-NIR spectrometer in the wavelength of 1000-2500 nm (10000-4000 cm-1) followed by determination of caffeine content using LCMS method. Calibration of NIR spectra and the caffeine content was carried out using PLS and MLR methods. Several spectra data processing was conducted to increase the accuracy of prediction. The result of the study showed that caffeine content could be determined by PLS model using 7 factors and spectra data processing of combination of the first derivative and MSC of spectra absorbance (r = 0.946; CV = 1.54 %; RPD = 2.28). A lower accuracy was obtained by MLR model consisted of three caffeine and other four absorption wavelengths (r = 0.683; CV = 3.31%; RPD = 1.18).

  18. Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol.

    Science.gov (United States)

    Grabska, Justyna; Czarnecki, Mirosław A; Beć, Krzysztof B; Ozaki, Yukihiro

    2017-10-19

    In this work, we studied methanol and its deuterated derivatives (CH 3 OH, CH 3 OD, CD 3 OH, CD 3 OD) by NIR spectroscopy and anharmonic quantum chemical calculations. Vibrational bands corresponding to up to three quanta transitions (first and second overtones, binary and ternary combination modes) were predicted by the use of the VPT2 route. The accuracy of prediction of NIR modes was evaluated through density functional theory (DFT) with selected density functionals and basis sets. On the basis of the theoretical NIR spectra, detailed band assignments for all studied molecules were proposed. It was found that the pattern of bands in NIR spectra of deuterated methanols can be used for identification of isotopically equalized forms. Calculations of NIR spectra of all possible forms of CXXXOX (X = H, D) molecules demonstrated that the isotopic contamination can be identified due to a coexistence of bands specific to OH and OD groups. Also, bands from partially deuterated methyl groups can be distinguished in NIR spectra. Since the VPT2 framework is known to be sensitive to inaccuracy in the case of highly anharmonic modes, we obtained an independent insight by numerical solving of the time-independent Schrödinger equation corresponding to the O-X stretching mode scanned within -0.4 to 2.0 Å over a dense grid of 0.005 Å. This way the energies of vibrational levels of the CX1X2X3OX4 (X = H, D) isotopomers and the corresponding transition frequencies were obtained with high accuracy (<0.1 cm -1 ). The change in normal coordinate influences the reduced mass of the oscillator and thus its frequency. Our results lead to a conclusion that the effect of deuterization of the methyl group introduces a very specific and consistent frequency shift of the first overtone of the O-X stretching mode depending on the substitution of X1, X2, or X3 positions (<2 cm -1 ). However, the pattern of this shift is not reproduced accurately and is also largely overestimated by VPT2

  19. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  20. Spectra-structure correlations in NIR region: Spectroscopic and anharmonic DFT study of n-hexanol, cyclohexanol and phenol

    Science.gov (United States)

    Beć, Krzysztof B.; Grabska, Justyna; Czarnecki, Mirosław A.

    2018-05-01

    We investigated near-infrared (7500-4000 cm-1) spectra of n-hexanol, cyclohexanol and phenol in CCl4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules.

  1. A simple method to fabricate an NIR detector by PbTe nanowires in a large scale

    International Nuclear Information System (INIS)

    Baghchesara, Mohammad Amin; Yousefi, Ramin; Cheraghizade, Mohsen; Jamali-Sheini, Farid; Saáedi, Abdolhossein; Mahmmoudian, M.R.

    2016-01-01

    Highlights: • PbTe nanowires were grown by tellurization of the Pb sheets for the first time. • It was observed a band gap value for the PbTe nanostructures in the NIR region. • NIR detector was fabricated in a large scale using a simple method. • Effect of Te concentration on morphology of PbTe nanostructures was investigated. - Abstract: A simple method was used to fabricate a near-infrared (NIR) detector using PbTe nanostructures. Samples were synthesized by tellurization of lead sheets in a tube furnace. PbTe nanostructures with wires and flakes shapes were grown on the lead sheets that were placed at 300 and 330 °C, respectively, while, PbTe nanoporous were grown at 360 and 390 °C. X-ray diffraction patterns and X-ray photoelectron spectra results indicated that, the PbTe phase was formed in all samples. UV–vis diffuse reflectance spectra measurements showed a band gap for the PbTe nanostructures in the near-infrared region of the electromagnetic spectrum. Actually, the results indicated that, the band gap values of the PbTe nanowires and nanoporous were 1.54 eV and 1.61 eV, respectively. Finally, the PbTe nanostructures were used as a simple photoresponse device under a red light source. The photoresponse results revealed, PbTe nanowires are promising for photoelectrical applications in the NIR region.

  2. Data preprocessing methods of FT-NIR spectral data for the classification cooking oil

    Science.gov (United States)

    Ruah, Mas Ezatul Nadia Mohd; Rasaruddin, Nor Fazila; Fong, Sim Siong; Jaafar, Mohd Zuli

    2014-12-01

    This recent work describes the data pre-processing method of FT-NIR spectroscopy datasets of cooking oil and its quality parameters with chemometrics method. Pre-processing of near-infrared (NIR) spectral data has become an integral part of chemometrics modelling. Hence, this work is dedicated to investigate the utility and effectiveness of pre-processing algorithms namely row scaling, column scaling and single scaling process with Standard Normal Variate (SNV). The combinations of these scaling methods have impact on exploratory analysis and classification via Principle Component Analysis plot (PCA). The samples were divided into palm oil and non-palm cooking oil. The classification model was build using FT-NIR cooking oil spectra datasets in absorbance mode at the range of 4000cm-1-14000cm-1. Savitzky Golay derivative was applied before developing the classification model. Then, the data was separated into two sets which were training set and test set by using Duplex method. The number of each class was kept equal to 2/3 of the class that has the minimum number of sample. Then, the sample was employed t-statistic as variable selection method in order to select which variable is significant towards the classification models. The evaluation of data pre-processing were looking at value of modified silhouette width (mSW), PCA and also Percentage Correctly Classified (%CC). The results show that different data processing strategies resulting to substantial amount of model performances quality. The effects of several data pre-processing i.e. row scaling, column standardisation and single scaling process with Standard Normal Variate indicated by mSW and %CC. At two PCs model, all five classifier gave high %CC except Quadratic Distance Analysis.

  3. Development of a NIR-based blend uniformity method for a drug product containing multiple structurally similar actives by using the quality by design principles.

    Science.gov (United States)

    Lin, Yiqing; Li, Weiyong; Xu, Jin; Boulas, Pierre

    2015-07-05

    The aim of this study is to develop an at-line near infrared (NIR) method for the rapid and simultaneous determination of four structurally similar active pharmaceutical ingredients (APIs) in powder blends intended for the manufacturing of tablets. Two of the four APIs in the formula are present in relatively small amounts, one at 0.95% and the other at 0.57%. Such small amounts in addition to the similarity in structures add significant complexity to the blend uniformity analysis. The NIR method is developed using spectra from six laboratory-created calibration samples augmented by a small set of spectra from a large-scale blending sample. Applying the quality by design (QbD) principles, the calibration design included concentration variations of the four APIs and a main excipient, microcrystalline cellulose. A bench-top FT-NIR instrument was used to acquire the spectra. The obtained NIR spectra were analyzed by applying principal component analysis (PCA) before calibration model development. Score patterns from the PCA were analyzed to reveal relationship between latent variables and concentration variations of the APIs. In calibration model development, both PLS-1 and PLS-2 models were created and evaluated for their effectiveness in predicting API concentrations in the blending samples. The final NIR method shows satisfactory specificity and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Application of Wavelets and Quaternions to NIR Spectra Classification; Aplicacion de las Wavelests y los Cuaterniones a la Clasificaciond e Espectros NIR

    Energy Technology Data Exchange (ETDEWEB)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J.C.

    2003-07-01

    This document describes how multi resolution analysis can combine with the use of quaternions to identify near infrared spectra. The method is applied to spectra of plastics usually present in domestic wastes. First, Haar wavelet is applied to spectrum. With the coefficients obtained, a quaternion is built. We named this quaternion a characteristic quaternion. Distances to characteristic quaternions are used to classify new quaternions. (Author) 54 refs.

  5. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

    Science.gov (United States)

    Funane, Tsukasa; Sato, Hiroki; Yahata, Noriaki; Takizawa, Ryu; Nishimura, Yukika; Kinoshita, Akihide; Katura, Takusige; Atsumori, Hirokazu; Fukuda, Masato; Kasai, Kiyoto; Koizumi, Hideaki; Kiguchi, Masashi

    2015-01-01

    Abstract. It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, pdeep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method. PMID:26157983

  6. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.

    Science.gov (United States)

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-μm sized cosmochemical analogues

    Science.gov (United States)

    Rousseau, B.; Érard, S.; Beck, P.; Quirico, É.; Schmitt, B.; Brissaud, O.; Montes-Hernandez, G.; Capaccioni, F.; Filacchione, G.; Bockelée-Morvan, D.; Leyrat, C.; Ciarniello, M.; Raponi, A.; Kappel, D.; Arnold, G.; Moroz, L. V.; Palomba, E.; Tosi, F.; Virtis Team

    2018-05-01

    Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 μm, excluding the organics band centred at 3.2 μm. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role.

  8. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  9. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  10. The feasibility of using explicit method for linear correction of the particle size variation using NIR Spectroscopy combined with PLS2regression method

    Science.gov (United States)

    Yulia, M.; Suhandy, D.

    2018-03-01

    NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.

  11. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.

    Science.gov (United States)

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil

    2014-06-21

    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  12. A consensus successive projections algorithm--multiple linear regression method for analyzing near infrared spectra.

    Science.gov (United States)

    Liu, Ke; Chen, Xiaojing; Li, Limin; Chen, Huiling; Ruan, Xiukai; Liu, Wenbin

    2015-02-09

    The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named "consensus SPA-MLR" (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Use of NIR spectroscopy and multivariate process spectra calibration methodology for pharmaceutical solid samples analysis

    OpenAIRE

    Cárdenas Espitia, Vanessa

    2012-01-01

    Accomplish high quality of final products in pharmaceutical industry is a challenge that requires the control and supervision of all the manufacturing steps. This request created the necessity of developing fast and accurate analytical methods. Near infrared spectroscopy together with chemometrics, fulfill this growing demand. The high speed providing relevant information and the versatility of its application to different types of samples lead these combined techniques as one of the most app...

  14. An adaptive method for γ spectra smoothing

    International Nuclear Information System (INIS)

    Xiao Gang; Zhou Chunlin; Li Tiantuo; Han Feng; Di Yuming

    2001-01-01

    Adaptive wavelet method and multinomial fitting gliding method are used for smoothing γ spectra, respectively, and then FWHM of 1332 keV peak of 60 Co and activities of 238 U standard specimen are calculated. Calculated results show that adaptive wavelet method is better than the other

  15. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy

    Science.gov (United States)

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  16. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. 801.7 Section 801.7 Agriculture Regulations of the Department of Agriculture...), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.7 Reference...

  17. Moisture content determination in solid biofuels by dielectric and NIR reflection methods

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter Daugbjerg; Morsing, Merete [Department of Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe (TFZ), Schulgasse 18, D-94315 Straubing (Germany); Temmerman, Michael; Rabier, Fabienne [Departement Genie Rural, Chee de Namur 146, B-5030 Gembloux (Belgium)

    2006-11-15

    One near infrared (NIR) reflectance and five dielectric moisture meters were tested for their capability of measuring moisture content (MC) in solid biofuels. Ninety-eight samples were tested at up to eight moisture levels covering the MC range from fresh fuel to approximately 10% MC (w.b.). The fuel types ranged from typical solid biofuels such as coniferous and deciduous wood chips over short rotation coppice (SRC) to sunflower seed and olive stones. The most promising calibrations were obtained with the NIR reflection method and two dielectric devices where the sample is placed in a container integrated in the device. The calibration equations developed show that there is a profound influence from both laboratory and fuel type. It is suggested that individual calibrations that are based on the specific fuel types used at the individual heating plant could be applied. (author)

  18. Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs

    International Nuclear Information System (INIS)

    Fernández-Ahumada, E; Gómez, A; Vallesquino, P; Guerrero, J E; Pérez-Marín, D; Garrido-Varo, A; Fearn, T

    2008-01-01

    According to the current demands of the authorities, the manufacturers and the consumers, controls and assessments of the feed compound manufacturing process have become a key concern. Among others, it must be assured that a given compound feed is well manufactured and labelled in terms of the ingredient composition. When near-infrared spectroscopy (NIRS) together with linear models were used for the prediction of the ingredient composition, the results were not always acceptable. Therefore, the performance of nonlinear methods has been investigated. Artificial neural networks and least squares support vector machines (LS-SVM) have been applied to a large (N = 20 320) and heterogeneous population of non-milled feed compounds for the NIR prediction of the inclusion percentage of wheat and sunflower meal, as representative of two different classes of ingredients. Compared to partial least squares regression, results showed considerable reductions of standard error of prediction values for both methods and ingredients: reductions of 45% with ANN and 49% with LS-SVM for wheat and reductions of 44% with ANN and 46% with LS-SVM for sunflower meal. These improvements together with the facility of NIRS technology to be implemented in the process make it ideal for meeting the requirements of the animal feed industry

  19. Pharmaceutical applications using NIR technology in the cloud

    Science.gov (United States)

    Grossmann, Luiz; Borges, Marco A.

    2017-05-01

    NIR technology has been available for a long time, certainly more than 50 years. Without any doubt, it has found many niche applications, especially in the pharmaceutical, food, agriculture and other industries due to its flexibility. There are a number of advantages over other existing analytical technologies we can list, for example virtually no need for sample preparation; usually NIR does not demand sample destruction and subsequent discard; NIR provides fast results; NIR does not require extensive operator training and carries small operating costs. However, the key point about NIR technology is the fact that it's more related to statistics than chemistry or, in other words, we are more concerned about analyzing and distinguishing features within the data than looking deep into the chemical entities themselves. A simple scan reading in the NIR range usually involves huge inflows of data points. Usually we decompose the signals into hundreds of predictor variables and use complex algorithms to predict classes or quantify specific content. NIR is all about math, especially by converting chemical information into numbers. Easier said than done. A NIR signal is a very complex one. Usually the signal responses are not specific to a particular material, rather, each grouṕs responses add up, thus providing low specificity of a spectral reading. This paper proposes a simple and efficient method to analyze and compare NIR spectra for the purpose of identifying the presence of active pharmaceutical ingredients in finished products using low cost NIR scanning devices connected to the internet cloud.

  20. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    Science.gov (United States)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  1. A comprehensive quality evaluation method by FT-NIR spectroscopy and chemometric: Fine classification and untargeted authentication against multiple frauds for Chinese Ganoderma lucidum

    Science.gov (United States)

    Fu, Haiyan; Yin, Qiaobo; Xu, Lu; Wang, Weizheng; Chen, Feng; Yang, Tianming

    2017-07-01

    The origins and authenticity against frauds are two essential aspects of food quality. In this work, a comprehensive quality evaluation method by FT-NIR spectroscopy and chemometrics were suggested to address the geographical origins and authentication of Chinese Ganoderma lucidum (GL). Classification for 25 groups of GL samples (7 common species from 15 producing areas) was performed using near-infrared spectroscopy and interval-combination One-Versus-One least squares support vector machine (IC-OVO-LS-SVM). Untargeted analysis of 4 adulterants of cheaper mushrooms was performed by one-class partial least squares (OCPLS) modeling for each of the 7 GL species. After outlier diagnosis and comparing the influences of different preprocessing methods and spectral intervals on classification, IC-OVO-LS-SVM with standard normal variate (SNV) spectra obtained a total classification accuracy of 0.9317, an average sensitivity and specificity of 0.9306 and 0.9971, respectively. With SNV or second-order derivative (D2) spectra, OCPLS could detect at least 2% or more doping levels of adulterants for 5 of the 7 GL species and 5% or more doping levels for the other 2 GL species. This study demonstrates the feasibility of using new chemometrics and NIR spectroscopy for fine classification of GL geographical origins and species as well as for untargeted analysis of multiple adulterants.

  2. Single seed NIR as a fast method to predict germination ability in Pak Choi

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Olesen, Merete Halkjær

    2012-01-01

    Single seed NIR has further been tested to determine the applicability for prediction of seed viability in radish (Raphanus sativus L.) seeds and spinach (Spinacia oleracea L.) seeds. The studies show the possibility of using NIR spectroscopy in a seed separating process in the future, provided...

  3. Spectra of linear energy transfer and other dosimetry characteristics as measured in C290 MeV/n MONO and SOBP ion beams at HIMAC-BIO (NIRS (Japan)) with different detectors

    International Nuclear Information System (INIS)

    Spurny, F.; Pachnerovy Brabcovy, K.; Ploc, O.; Ambrozovy, I.; Mrazova, Z.

    2011-01-01

    Active mobile dosimetry unit (Liulin), passive plastic nuclear track detectors (PNTD) and thermoluminescent detectors (TLD) were exposed in a C290 MeV/n beam at HIMAC-BIO (NIRS (Japan)). Two different types of beam configuration were used-monoenergetic beam (MONO) and spread-out Bragg peak (SOBP); the detectors were placed at several depths from the entrance up to the depths behind the Bragg peak. Relative response of TLDs in beams has been studied as a function of the depth, and it was re-proved that it can depend on the linear energy transfer (LET). Liulin measures energy deposition in Si; the spectra of energy deposited in Si can be transformed to the spectra of lineal energy or LET. PNTDs are able to determine the LET of registered particles directly. The limitation of both methods is in the range in which they can determine the LET-Liulin is able to measure perpendicularly incident charged particles up to ∼35 keV/μm (in water), PNTD can measure from ∼7 to 400 keV/μm, independently of the registration angle. The results from both methods are compared and combined for both beams' configuration, and a good agreement is observed. (authors)

  4. Electrical and mechanical anharmonicities from NIR-VCD spectra of compounds exhibiting axial and planar chirality: the cases of (S)-2,3-pentadiene and methyl-d(3) (R)- and (S)-[2.2]paracyclophane-4-carboxylate.

    Science.gov (United States)

    Abbate, Sergio; Longhi, Giovanna; Gangemi, Fabrizio; Gangemi, Roberto; Superchi, Stefano; Caporusso, Anna Maria; Ruzziconi, Renzo

    2011-10-01

    The IR and Near infrared (NIR) vibrational circular dichroism (VCD) spectra of molecules endowed with noncentral chirality have been investigated. Data for fundamental, first, and second overtone regions of (S)-2,3-pentadiene, exhibiting axial chirality, and methyl-d(3) (R)- and (S)-[2.2]paracyclophane-4-carboxylate, exhibiting planar chirality have been measured and analyzed. The analysis of NIR and IR VCD spectra was based on the local-mode model and the use of density functional theory (DFT), providing mechanical and electrical anharmonic terms for all CH-bonds. The comparison of experimental and calculated spectra is satisfactory and allows one to monitor fine details in the asymmetric charge distribution in the molecules: these details consist in the harmonic frequencies, in the principal anharmonicity constants, in both the atomic polar and axial tensors and in their first and second derivatives with respect to the CH-stretching coordinates. Copyright © 2011 Wiley-Liss, Inc.

  5. [Identification of special quality eggs with NIR spectroscopy technology based on symbol entropy feature extraction method].

    Science.gov (United States)

    Zhao, Yong; Hong, Wen-Xue

    2011-11-01

    Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.

  6. Prediction of quality attributes of chicken breast fillets by using Vis/NIR spectroscopy combined with factor analysis method

    Science.gov (United States)

    Visible/near-infrared (Vis/NIR) spectroscopy with wavelength range between 400 and 2500 nm combined with factor analysis method was tested to predict quality attributes of chicken breast fillets. Quality attributes, including color (L*, a*, b*), pH, and drip loss were analyzed using factor analysis ...

  7. A method to enhance the resolution of broadened spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Jimenez D, H.; Torres V, M.; Azorin N, J.; Gutierrez C, A.; Gonzalez M, P.R.; Lopez E, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Fuentes Z, G.A.; Cordoba, A. [UAM-I, 09340 Mexico D.F. (Mexico)

    1992-02-15

    A deconvolution method to analyze line overlapping broadened spectra is presented. Two approximation expressions from which the user can remove, either a Lorentzian or a Gaussian line from observed spectra are utilized. Moessbauer spectra, EPR and Thermoluminescence spectroscopies are analyzed. It is shown that in each case, the de convolved spectrum may provide valuable data to get a much closer characterization of a substance. (Author)

  8. A method to enhance the resolution of broadened spectra

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez D, H.; Torres V, M.; Azorin N, J.; Gutierrez C, A.; Gonzalez M, P.R.; Lopez E, J.; Fuentes Z, G.A.; Cordoba, A.

    1992-02-01

    A deconvolution method to analyze line overlapping broadened spectra is presented. Two approximation expressions from which the user can remove, either a Lorentzian or a Gaussian line from observed spectra are utilized. Moessbauer spectra, EPR and Thermoluminescence spectroscopies are analyzed. It is shown that in each case, the de convolved spectrum may provide valuable data to get a much closer characterization of a substance. (Author)

  9. [Research progress on standardization study of NIR spectroscopy based method for quality control of traditional Chinese medicine].

    Science.gov (United States)

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In recent years, the near infrared (NIR) spectroscopy has gained wide acceptance within the quantitative analysis of traditional Chinese medicine (TCM). However, the lack of technical standards is the bottleneck problem in this process. To address this issue, standardization study of the NIR spectroscopy based method for the quantitative analysis of TCM is needed, in which the specific characteristics of TCM should be given full considerations. The main research contents include:the scope definition for the application of NIR spectroscopy in the TCM quantitative analysis field, the selection criteria for the sample pretreatment and spectral acquisition conditions, the rules for the model optimization and evaluation, and the regulations for the model update and transfer. In this paper, some foreign studies in the agricultural areas are reviewed for reference. Different chemometrics methods reported in the literature are investigated and compared systematically. This research is important actual significance to the theoretical development of NIR spectroscopy analytical techniques, and will effectively promote the application of the technology in the TCM industry. Furthermore, it is beneficial to improve the technical level of TCM quality control, and can also be used as references to achieve similar purposes for other natural products. Copyright© by the Chinese Pharmaceutical Association.

  10. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique*

    OpenAIRE

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-01-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyz...

  11. [Research on modeling method to analyze Lonicerae Japonicae Flos extraction process with online MEMS-NIR based on two types of error detection theory].

    Science.gov (United States)

    Du, Chen-Zhao; Wu, Zhi-Sheng; Zhao, Na; Zhou, Zheng; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2016-10-01

    To establish a rapid quantitative analysis method for online monitoring of chlorogenic acid in aqueous solution of Lonicera Japonica Flos extraction by using micro-electromechanical near infrared spectroscopy (MEMS-NIR). High performance liquid chromatography(HPLC) was used as reference method.Kennard-Stone (K-S) algorithm was used to divide sample sets, and partial least square(PLS) regression was adopted to establish the multivariate analysis model between the HPLC analysis contents and NIR spectra. The synergy interval partial least squares (SiPLS) was used to selected modeling waveband to establish PLS models. RPD was used to evaluate the prediction performance of the models. MDLs was calculated based on two types of error detection theory, on-line analytical modeling approach of Lonicera Japonica Flos extraction process was expressed scientifically by MDL. The result shows that the model established by multiplicative scatter correction(MSC) was the best, with the root mean square with cross validation(RMSECV), root mean square error of correction(RMSEC) and root mean square error of prediction(RMSEP) of chlorogenic acid as 1.707, 1.489, 2.362, respectively, the determination coefficient of the calibration model was 0.998 5, and the determination coefficient of the prediction was 0.988 1.The value of RPD is 9.468.The MDL (0.042 15 g•L⁻¹) selected by SiPLS is less than the original,which demonstrated that SiPLS was beneficial to improve the prediction performance of the model. In this study, a more accurate expression of the prediction performance of the model from the two types of error detection theory, to further illustrate MEMS-NIR spectroscopy can be used for on-line monitoring of Lonicera Japonica Flos extraction process. Copyright© by the Chinese Pharmaceutical Association.

  12. Gamma-ray spectra deconvolution by maximum-entropy methods

    International Nuclear Information System (INIS)

    Los Arcos, J.M.

    1996-01-01

    A maximum-entropy method which includes the response of detectors and the statistical fluctuations of spectra is described and applied to the deconvolution of γ-ray spectra. Resolution enhancement of 25% can be reached for experimental peaks and up to 50% for simulated ones, while the intensities are conserved within 1-2%. (orig.)

  13. Decomposition of spectra in EPR dosimetry using the matrix method

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.

    2003-01-01

    The matrix method of EPR spectra decomposition is developed and adapted for routine application in retrospective EPR dosimetry with teeth. According to this method, the initial EPR spectra are decomposed (using methods of matrix algebra) into several reference components (reference matrices) that are specific for each material. Proposed procedure has been tested on the example of tooth enamel. Reference spectra were a spectrum of an empty sample tube and three standard signals of enamel (two at g=2.0045, both for the native signal and one at g perpendicular =2.0018, g parallel =1.9973 for the dosimetric signal). Values of dosimetric signals obtained using the given method have been compared with data obtained by manual manipulation of spectra, and good coincidence was observed. This allows considering the proposed method as potent for application in routine EPR dosimetry

  14. Background elimination methods for multidimensional coincidence γ-ray spectra

    International Nuclear Information System (INIS)

    Morhac, M.

    1997-01-01

    In the paper new methods to separate useful information from background in one, two, three and multidimensional spectra (histograms) measured in large multidetector γ-ray arrays are derived. The sensitive nonlinear peak clipping algorithm is the basis of the methods for estimation of the background in multidimensional spectra. The derived procedures are simple and therefore have a very low cost in terms of computing time. (orig.)

  15. Development of nondestructive sorting method for brown bloody eggs using VIS/NIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Seock; Kim, Dae Yong; Kandpal, Lalit Mohan; Lee, Sang Dae; Cho, Byoung Kwan [Dept. of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeun; Hong, Soon Jung [Rural Development Administration, Jeonju (Korea, Republic of)

    2014-02-15

    The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

  16. International intercomparison of neutron spectra evaluating methods using activation detectors

    International Nuclear Information System (INIS)

    Fischer, A.

    1975-06-01

    The international intercomparison of neutron spectrum evaluation methods using activation detectors was organized by the IAEA in 1971 - 1972. All of the contributions and the results of a critical evaluation are presented here. The spectra of different contributors are compared to a reference spectrum by means of different integrals and weighting functions. Different cross section sets, foil numbers, energy point systems, guess spectra used by the contributors cause differences in the resulting spectra. The possible ways of separating these effects are also investigated. Suggestions are made for the organization of a new intercomparison on the basis of more uniform input data. (orig.) [de

  17. Characterization of pigment/binder - systems in arts via FTIR and UV/Vis/NIR - spectroscopy with special consideration of nondestructive methods

    International Nuclear Information System (INIS)

    Vetter, W.A.

    2014-01-01

    The main focus of this doctoral thesis is on the non-destructive analysis of art objects by using compound specific reflection-UV/Vis/NIR and reflection-FTIR spectroscopy. Based on commercially available instruments, measuring systems have been designed and built to meet the specific requirements of material analysis in the field of art. These systems have been utilized to analyse different types of art objects (watercolour paintings, easel paintings, contemporary graphic art objects) in order to identify the materials used by the artists. Furthermore, two new procedures are presented which allow to build up adequate reference databases from only minimal sample amounts of original watercolour materials of the 19th century. This is a crucial point as both methods require references for the identification of the materials. The results obtained demonstrate that UV/Vis/NIR and FTIR spectroscopy in reflection mode enable the non-destructive identification of a variety of both, organic and inorganic materials, particularly in combination with element specific XRF (X-ray fluorescence analysis) and thus are valuable tools for the analysis of cultural heritage objects. Furthermore, the results have shown that a comparison of the complementary methods strongly facilitated the evaluation of spectra obtained by the particular analytical techniques and hence reliable results could be obtained in many cases. As expected, several frequently used pigments e.g. carbon based blacks, earth pigments and lake pigments could not be identified unambiguously due to methodical limitations. Therefore, the use of additional complementary methods such as Raman spectroscopy and X-ray diffraction (XRD) would be highly desirable. Except a few examples, the characteristics of the radiation used for the investigations did not allow to draw conclusions about the distribution of materials in multilayer structures. For this reason, it still remains necessary to analyse cross-sections of samples for a

  18. Detection - NIR, Luminescence and Other Rapid Methods-Pit Falls and Opportunities

    International Nuclear Information System (INIS)

    Trudil, D.

    2007-01-01

    The proliferation of rapid, on-site biological detectors over the last 15 years has caused confusion within the user community and in some cases a diversion of resources. There remains no panacea; all systems have issues and no system provides the total answer. In 1995, with much enthusiasm, members of a US National Lab presented a mock-up of a hand held Biological Detector. This system, compared to a 'Tricorder' from science fiction, was envisioned to be available within 5 years. It would be able to scan a substance and within minutes provide an answer. Clearly that remains the goal of detector programs, but unfortunately science is the limiting factor. There are technologies, such as fluorescence and luminescence that provide minimally acceptable results when utilizing a defined bio-air sample. Many of these systems are also expensive, limiting their utility. But when these FLAPS, BARTS, BAWS, BioLerts and other are challenged with dirty or non-aerosol samples, they begin to have problems. With the relatively high cost of test kits, the significant number of potential hoax or negative samples; the issue of usefulness versus performance versus cost has further complicated the environment. Consequently, the utilization of cost effective, simple screening systems is needed for on site use. The current trend is to determine cost effective approaches to triage samples prior to in depth analysis. Therefore, a pH test, protein strip and Bioluminescence screen can indicate threat/non-threat prior to in-depth analysis. Experiences from 2001/2002 indicate over 90% of the first responder events are hoax related. Adapting the paradigm, screening out negatives become a priority. Near Infra Red (NIR) has been utilized in chemical agent detection and has been recently utilized to identify powders, salts, sugars and numerous potential hoax samples. The system is a non-destructive screening method that can be integrated with other technologies as a front end triage system

  19. Heavy meson mass spectra by general relativistic methods

    International Nuclear Information System (INIS)

    Italiano, A.; Lattuada, M.; Maccarrone, G.D.; Recami, E.; Riggi, F.; Vinciguerra, D.

    1984-01-01

    By applying the classical methods of general relativity to elementary particles one can get, in a natural way, the observed confinement of their constituents, avoiding any recourse to phenome-nological models such as bag model and allowing the deduction of the heavy meson (i.e. charmonium (J/psi) and bottomium (UPSILON)) mass spectra

  20. Experiment of bias probe method at NIRS-18 GHz ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Jincho, Kaoru; Yamamoto, Mitsugu; Okada, Takanori; Takasugi, Wataru; Sakuma, Tetsuya; Miyoshi, Tomohiro [Accelerator Engineering Corp., Chiba (Japan); Kitagawa, Atsushi; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Biri, Sandor [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary)

    2000-11-01

    An 18 GHz ECR ion source (NIRS-HEC) has been developed to produce highly charged heavy ions from Ar to Xe. In order to increase the beam intensity of highly charged ion, we tried a technique of supplying cold electrons into the ECR plasma. In this paper, enhancement of the beam intensity is discussed in detail. The bias voltage is applied on the probe to repel cold electrons which flow from a plasma. The output beam current is 130 e{mu}A for Ar{sup 11+}. (J.P.N.)

  1. Experiment of bias probe method at NIRS-18 GHz ECR ion source

    International Nuclear Information System (INIS)

    Jincho, Kaoru; Yamamoto, Mitsugu; Okada, Takanori; Takasugi, Wataru; Sakuma, Tetsuya; Miyoshi, Tomohiro; Kitagawa, Atsushi; Muramatsu, Masayuki; Biri, Sandor

    2000-01-01

    An 18 GHz ECR ion source (NIRS-HEC) has been developed to produce highly charged heavy ions from Ar to Xe. In order to increase the beam intensity of highly charged ion, we tried a technique of supplying cold electrons into the ECR plasma. In this paper, enhancement of the beam intensity is discussed in detail. The bias voltage is applied on the probe to repel cold electrons which flow from a plasma. The output beam current is 130 eμA for Ar 11+ . (J.P.N.)

  2. Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press.

    Science.gov (United States)

    De Leersnyder, Fien; Peeters, Elisabeth; Djalabi, Hasna; Vanhoorne, Valérie; Van Snick, Bernd; Hong, Ke; Hammond, Stephen; Liu, Angela Yang; Ziemons, Eric; Vervaet, Chris; De Beer, Thomas

    2018-03-20

    A calibration model for in-line API quantification based on near infrared (NIR) spectra collection during tableting in the tablet press feed frame was developed and validated. First, the measurement set-up was optimised and the effect of filling degree of the feed frame on the NIR spectra was investigated. Secondly, a predictive API quantification model was developed and validated by calculating the accuracy profile based on the analysis results of validation experiments. Furthermore, based on the data of the accuracy profile, the measurement uncertainty was determined. Finally, the robustness of the API quantification model was evaluated. An NIR probe (SentroPAT FO) was implemented into the feed frame of a rotary tablet press (Modul™ P) to monitor physical mixtures of a model API (sodium saccharine) and excipients with two different API target concentrations: 5 and 20% (w/w). Cutting notches into the paddle wheel fingers did avoid disturbances of the NIR signal caused by the rotating paddle wheel fingers and hence allowed better and more complete feed frame monitoring. The effect of the design of the notched paddle wheel fingers was also investigated and elucidated that straight paddle wheel fingers did cause less variation in NIR signal compared to curved paddle wheel fingers. The filling degree of the feed frame was reflected in the raw NIR spectra. Several different calibration models for the prediction of the API content were developed, based on the use of single spectra or averaged spectra, and using partial least squares (PLS) regression or ratio models. These predictive models were then evaluated and validated by processing physical mixtures with different API concentrations not used in the calibration models (validation set). The β-expectation tolerance intervals were calculated for each model and for each of the validated API concentration levels (β was set at 95%). PLS models showed the best predictive performance. For each examined saccharine

  3. An exploratory fNIRS study with immersive virtual reality: a new method for technical implementation.

    Science.gov (United States)

    Seraglia, Bruno; Gamberini, Luciano; Priftis, Konstantinos; Scatturin, Pietro; Martinelli, Massimiliano; Cutini, Simone

    2011-01-01

    For over two decades Virtual Reality (VR) has been used as a useful tool in several fields, from medical and psychological treatments, to industrial and military applications. Only in recent years researchers have begun to study the neural correlates that subtend VR experiences. Even if the functional Magnetic Resonance Imaging (fMRI) is the most common and used technique, it suffers several limitations and problems. Here we present a methodology that involves the use of a new and growing brain imaging technique, functional Near-infrared Spectroscopy (fNIRS), while participants experience immersive VR. In order to allow a proper fNIRS probe application, a custom-made VR helmet was created. To test the adapted helmet, a virtual version of the line bisection task was used. Participants could bisect the lines in a virtual peripersonal or extrapersonal space, through the manipulation of a Nintendo Wiimote ® controller in order for the participants to move a virtual laser pointer. Although no neural correlates of the dissociation between peripersonal and extrapersonal space were found, a significant hemodynamic activity with respect to the baseline was present in the right parietal and occipital areas. Both advantages and disadvantages of the presented methodology are discussed.

  4. An Exploratory fNIRS Study with Immersive Virtual Reality: A New Method for Technical Implementation

    Directory of Open Access Journals (Sweden)

    Bruno eSeraglia

    2011-12-01

    Full Text Available For over two decades Virtual Reality has been used as a useful tool in several fields, from medical and psychological treatments, to industrial and military applications. Only in recent years researchers have begun to study the neural correlates that subtend virtual reality experiences. Even if the fMRI brain image technique is the most common and used technique, it suffers several limitations and problems. Here we present a methodology that involves the use of a new and growing brain imaging technique, fNIRS functional Near-infrared Spectroscopy, while participants experience immersive virtual reality. In order to allow a proper fNIRS probe application, a custom-made virtual reality helmet was created. To test the adapted helmet, a virtual version of the line bisection task was used. Participants could bisect the lines in a virtual peripersonal or extrapersonal space, through the manipulation of a Wiimote controller in order for the participants to move a virtual laser pointer. Although no neural correlates of the dissociation between peripersonal and extrapersonal space were found, a significant hemodynamic activity with respect to the baseline was present in the right parietal and occipital areas. Both advantages and disadvantages of the presented methodology are discussed.

  5. NIRS in Space?

    Science.gov (United States)

    Peterson, David L.; Condon, Estelle (Technical Monitor)

    2000-01-01

    Proponents of near infrared reflectance spectroscopy (NIRS) have been exceptionally successful in applying NIRS techniques to many instances of organic material analyses. While this research and development began in the 1950s, in recent years, stimulation of advancements in instrumentation is allowing NIRS to begin to find its way into the food processing systems, into food quality and safety, textiles and much more. And, imaging high spectral resolution spectrometers are now being evaluated for the rapid scanning of foodstuffs, such as the inspection of whole chicken carcasses for fecal contamination. The imaging methods are also finding their way into medical applications, such as the non-intrusive monitoring of blood oxygenation in newborns. Can these scientific insights also be taken into space and successfully used to measure the Earth's condition? Is there an analog between the organic analyses in the laboratory and clinical settings and the study of Earth's living biosphere? How are the methods comparable and how do they differ?

  6. Model independent method to deconvolve hard X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1984-07-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented.

  7. A improved method for the analysis of alpha spectra

    International Nuclear Information System (INIS)

    Equillor, Hugo E.

    2004-01-01

    In this work we describe a methodology, developed in the last years, for the analysis of alpha emitters spectra, obtained with implanted ion detectors, that tend to solve some of the problems that shows this type of spectra. This is an improved methodology respect to that described in a previous publication. The method is based on the application of a mathematical function that allows to model the tail of an alpha peak, to evaluate the part of the peak that is not seen in the cases of partial superposition with another peak. Also, a calculation program that works in a semiautomatic way, with the possibility of interactive intervention of the analyst, has been developed simultaneously and is described in detail. (author)

  8. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    Science.gov (United States)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral

  9. [Determination of wine original regions using information fusion of NIR and MIR spectroscopy].

    Science.gov (United States)

    Xiang, Ling-Li; Li, Meng-Hua; Li, Jing-Mingz; Li, Jun-Hui; Zhang, Lu-Da; Zhao, Long-Lian

    2014-10-01

    Geographical origins of wine grapes are significant factors affecting wine quality and wine prices. Tasters' evaluation is a good method but has some limitations. It is important to discriminate different wine original regions quickly and accurately. The present paper proposed a method to determine wine original regions based on Bayesian information fusion that fused near-infrared (NIR) transmission spectra information and mid-infrared (MIR) ATR spectra information of wines. This method improved the determination results by expanding the sources of analysis information. NIR spectra and MIR spectra of 153 wine samples from four different regions of grape growing were collected by near-infrared and mid-infrared Fourier transform spe trometer separately. These four different regions are Huailai, Yantai, Gansu and Changli, which areall typical geographical originals for Chinese wines. NIR and MIR discriminant models for wine regions were established using partial least squares discriminant analysis (PLS-DA) based on NIR spectra and MIR spectra separately. In PLS-DA, the regions of wine samples are presented in group of binary code. There are four wine regions in this paper, thereby using four nodes standing for categorical variables. The output nodes values for each sample in NIR and MIR models were normalized first. These values stand for the probabilities of each sample belonging to each category. They seemed as the input to the Bayesian discriminant formula as a priori probability value. The probabilities were substituteed into the Bayesian formula to get posterior probabilities, by which we can judge the new class characteristics of these samples. Considering the stability of PLS-DA models, all the wine samples were divided into calibration sets and validation sets randomly for ten times. The results of NIR and MIR discriminant models of four wine regions were as follows: the average accuracy rates of calibration sets were 78.21% (NIR) and 82.57% (MIR), and the

  10. A new method to evaluate neutron spectra for bnct

    International Nuclear Information System (INIS)

    Martin Hernandez, Guido

    2001-01-01

    This paper deals with the development of a method to evaluate neutron spectra for BNCT. Physical dose deposition calculations for different neutron energies, ranging from thermal to fast, were performed. A matrix, containing dose for each energy and position in the beam center line was obtained. MCNP 4B and Snyder's head model were used. A simple computer code containing the matrix calculates the dose for each point in the beam center line depending on the input energy spectrum to be evaluated. The output of this program is the dose distribution in the brain and the dose gain, that is the ratio between dose to tumor and maximum dose to healthy tissue maximum

  11. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  12. NIRS methods of specifying carbon ion dose verification of RBE and tumour specific radiosensitivity

    International Nuclear Information System (INIS)

    Matsufuji, Naruhiro; Kanai, Tatsuaki; Kanematsu, Nobuyuki

    2006-01-01

    Clinical dose distribution of therapeutic carbon beams, currently used at National Institute of Radiological Sciences (NIRS) Heavy Ion Medical Accelerator in Chiba (HIMAC), is designed based on in-vitro Human Salivary Gland (HSG) cell survival response and clinical experiences of fast neutron radiotherapy. At first, the biological dose distribution is designed so as to cause a flat biological effect on HSG cells in spread-out Bragg peak (SOBP) region. Then, the entire biological dose distribution is evenly raised in order to attain relative biological effectiveness (RBE)=3.0 at a depth where dose-averaged linear energy transfer (LET) is 80 keV/μm. A retrospective analysis was made to examine appropriateness on the estimation of the biological effectiveness of carbon-ion radiotherapy using resultant data of clinical trials at HIMAC. Using this RBE system, over 2,700 patients have been treated by carbon beams. As a part of these patient data, local control rate of non-small lung cancer, were analysed to verify the clinical RBE of the carbon beam. The local control rate was compared with those for published by groups of Gunma University and Massachusetts General Hospital. Using a simplified tumour control probability (TCP) model, clinical RBE values were obtained for different level of the tumour control probability. For the 50% level of the clinical TCP, the RBE values nearly coincide with those of in-vitro human salivary gland cell survival at 10%. For the higher level of the clinical TCP, the RBE values approach closer to those adapted in clinical trials at HIMAC. The approach was also applied for those of chordoma, bone and soft tissue sarcoma and rectal cancer. Difference in radiosensitivity is observed for the tumours. (author)

  13. Transient responses of SFG spectra of D 2O ice/CO/Pt(1 1 1) interface with irradiation of ultra-short NIR pump pulses

    Science.gov (United States)

    Kubota, Jun; Wada, Akihide; Domen, Kazunari; Kano, Satoru S.

    2002-08-01

    The behavior of D 2O ice on CO/Pt(1 1 1) and Pt(1 1 1) under the irradiation of near-IR pulses (NIR) was studied by sum-frequency generation (SFG) spectroscopy. The peaks assigned to the O-D stretching modes of ice were obtained for the first 30 molecular layers on Pt(1 1 1). When the D2O/ CO/ Pt(1 1 1) was irradiated, the signal of D 2O was weakened after 500 ps, but that of CO was weakened immediately after the pumping. A similar time response was observed for the D 2O peak in D2O/ Pt(1 1 1) . The weakening of SFG is attributed to the broadening of bands due to thermal excitation. This indicates that the energy of the pump pulse is deposited on the Pt(1 1 1) surface and diffused into the layers of D 2O ice in the 500 ps timescale.

  14. Analysis of Fe species in zeolites by UV-VIS-NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Kreibich, Viktor; Dědeček, Jiří; Grygar, Tomáš; Wichterlová, Blanka; Sobalík, Zdeněk; Martens, J. A.; Brosius, R.; Tokarová, V.

    2005-01-01

    Roč. 80, 1-3 (2005), s. 279-289 ISSN 1387-1811 R&D Projects: GA MŠk OC D15.20 Grant - others:European Union(XE) G5RD-CT-2001-00595 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fe-zeolites * UV-VIS spectra * IR spectra * voltammetry * Fe complexes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.355, year: 2005

  15. DANTE, Activation Analysis Neutron Spectra Unfolding by Covariance Matrix Method

    International Nuclear Information System (INIS)

    Petilli, M.

    1981-01-01

    1 - Description of problem or function: The program evaluates activation measurements of reactor neutron spectra and unfolds the results for dosimetry purposes. Different evaluation options are foreseen: absolute or relative fluxes and different iteration algorithms. 2 - Method of solution: A least-square fit method is used. A correlation between available data and their uncertainties has been introduced by means of flux and activity variance-covariance matrices. Cross sections are assumed to be constant, i.e. with variance-covariance matrix equal to zero. The Lagrange multipliers method has been used for calculating the solution. 3 - Restrictions on the complexity of the problem: 9 activation experiments can be analyzed. 75 energy groups are accepted

  16. Analytical method of spectra calculations in the Bargmann representation

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz

    2014-01-01

    We formulate a universal method for solving an arbitrary quantum system which, in the Bargmann representation, is described by a system of linear equations with one independent variable, such as one- and multi-photon Rabi models, or N level systems interacting with a single mode of the electromagnetic field and their various generalizations. We explain three types of conditions that determine the spectrum and show their usage for two deformations of the Rabi model. We prove that the spectra of both models are just zeros of transcendental functions, which in one case are given explicitly in terms of confluent Heun functions. - Highlights: • Analytical method of spectrum determination in Bargmann representation is proposed. • Three types of conditions determining spectrum are identified. • Method to two generalizations of the Rabi system is applied

  17. A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.

    Science.gov (United States)

    Pinti, Paola; Merla, Arcangelo; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul W; Tachtsidis, Ilias

    2017-07-15

    Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy (fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely challenging and time-consuming. Here, we present a novel analysis method based on the general linear model (GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task (involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of 89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data recorded by a wearable system on one participant during a complex real-world prospective memory experiment conducted outside the lab. As part of the experiment, there were four and six events (actions where participants had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data from the video recordings of the movements and actions of the participant. Our results suggest that "brain-first" rather than "behaviour-first" analysis is

  18. Application of the Oslo method to high resolution gamma spectra

    Science.gov (United States)

    Simon, A.; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.

    2015-10-01

    Hauser-Feshbach statistical model is a widely used tool for calculation of the reaction cross section, in particular for astrophysical processes. The HF model requires as an input an optical potential, gamma-strength function (GSF) and level density (LD) to properly model the statistical properties of the nucleus. The Oslo method is a well established technique to extract GSFs and LDs from experimental data, typically used for gamma-spectra obtained with scintillation detectors. Here, the first application of the Oslo method to high-resolution data obtained using the Ge detectors of the STARLITER setup at TAMU is discussed. The GSFs and LDs extracted from (p,d) and (p,t) reactions on 152154 ,Sm targets will be presented.

  19. Activation method for measuring the neutron spectra parameters. Computer software

    International Nuclear Information System (INIS)

    Efimov, B.V.; Ionov, V.S.; Konyaev, S.I.; Marin, S.V.

    2005-01-01

    The description of mathematical statement of a task for definition the spectral characteristics of neutron fields with use developed in RRC KI unified activation detectors (UKD) is resulted. The method of processing of results offered by authors activation measurements and calculation of the parameters used for an estimation of the neutron spectra characteristics is discussed. Features of processing of the experimental data received at measurements of activation with using UKD are considered. Activation detectors UKD contain a little bit specially the picked up isotopes giving at irradiation peaks scale of activity in the common spectrum scale of activity. Computing processing of results of the measurements is applied on definition of spectrum parameters for nuclear reactor installations with thermal and close to such power spectrum of neutrons. The example of the data processing, the measurements received at carrying out at RRC KI research reactor F-1 is resulted [ru

  20. PENENTUAN BAHAN KERING BUAH SAWO SECARA TIDAK MERUSAK MENGGUNAKAN NIR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available This work was conducted to develop a new measuring system for nondestructive dry matter prediction in sawo fruit using short wavelength near infrared (SW-NIR spectroscopy. In this research, a number of 100 sawo fruits were used as samples. Spectra were acquired using a portable spectrometer (VIS-NIR USB4000, The Ocean Optics, USA with 100 ms integration time and 50 scans for number of scanning. Dry matter was measured using oven drying. The calibration and validation model was developed using the partial least squares (PLS regression method. The result showed that the best calibration model could be developed for original spectra in the wavelength range of  700-990 nm with F= 8, r = 0.92, SEC = 0.68 and  SEP = 0.86. Keywords:   Absorbance mode, dry matter, nondestructive method, sawo fruit, SW-NIR spectroscopy.

  1. Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy

    Science.gov (United States)

    Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao

    2006-10-01

    To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.

  2. Use of new spectral analysis methods in gamma spectra deconvolution

    International Nuclear Information System (INIS)

    Pinault, J.L.

    1991-01-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252 Cf source; the detector is a BGO 3 in.x8 in. scintillator. The principle of the methods rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given. (orig.)

  3. Age determination of bottled Chinese rice wine by VIS-NIR spectroscopy

    Science.gov (United States)

    Yu, Haiyan; Lin, Tao; Ying, Yibin; Pan, Xingxiang

    2006-10-01

    The feasibility of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining wine age (1, 2, 3, 4, and 5 years) of Chinese rice wine was investigated. Samples of Chinese rice wine were analyzed in 600 mL square brown glass bottles with side length of approximately 64 mm at room temperature. VIS-NIR spectra of 100 bottled Chinese rice wine samples were collected in transmission mode in the wavelength range of 350-1200 nm by a fiber spectrometer system. Discriminant models were developed based on discriminant analysis (DA) together with raw, first and second derivative spectra. The concentration of alcoholic degree, total acid, and °Brix was determined to validate the NIR results. The calibration result for raw spectra was better than that for first and second derivative spectra. The percentage of samples correctly classified for raw spectra was 98%. For 1-, 2-, and 3-year-old sample groups, the sample were all correctly classified, and for 4- and 5-year-old sample groups, the percentage of samples correctly classified was 92.9%, respectively. In validation analysis, the percentage of samples correctly classified was 100%. The results demonstrated that VIS-NIR spectroscopic technique could be used as a non-invasive, rapid and reliable method for predicting wine age of bottled Chinese rice wine.

  4. Measurement of internal quality of watermelon by Vis/NIR diffuse transmittance technique

    Science.gov (United States)

    Tian, Haiqing; Xu, Huirong; Ying, Yibin; Lu, Huishan; Yu, Haiyan

    2006-10-01

    Watermelon is a popular fruit in the world. Soluble solids content (SSC) is major characteristic used for assessing watermelon internal quality. This study was about a method for nondestructive internal quality detection of watermelons by means of visible/Near Infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer when the watermelon was in motion (1.4m/s) and in static state. Spectra data were analyzed by partial least squares (PLS) method. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models and the PLS method can provide good results. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon both in motion and in static state, and the predicted values were highly correlated with destructively measured values. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon internal quality in a nondestructive way.

  5. Using Massive Multivariate NIRS Data in Ryegrass

    DEFF Research Database (Denmark)

    Edriss, Vahid; Greve-Pedersen, Morten; Jensen, Christian S

    2015-01-01

    Near infrared spectroscopy (NIRS) analytical techniques is a simple, fast and low cost method of high dimensional phenotyping compared to usual chemical techniques. To use this method there is no need for special sample preparation. The aim of this study is to use NIRS data to predict plant traits...... (e.g. dry matter, protein content, etc.) for the next generation. In total 1984 NIRS data from 995 ryegrass families (first cut) were used. The Absorption of radiation in the region of 960 – 1690 nm in every 2 nm distance produced 366 bins to represent the NIRS spectrum. The amount of genetic...

  6. Discrimination methods of biological contamination on fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    Science.gov (United States)

    Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms on fresh-cut lettuce. The optimal wavebands that detect worm on fresh-cut lettuce for each type of HSI were investigated using the one-way...

  7. Greenhouse cooling by NIR-reflection

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2007-01-01

    Wageningen UR investigated the potential of several NIR-filtering methods to be applied in horticulture. In this paper the analysis of the optical properties of available NIR-filtering materials is given including a calculation method to quantify the energy reduction under these materials and to

  8. Neutron spectra determination methods using the measured reaction rates in SAPIS

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1980-01-01

    Mathematical basis of algorithms is given for methods of neutron spectra restoration in accordance with the measured reaction rates of the activation detectors included into the information-determination system SAIPS aimed at generalization of the most popular home and foreign neutron spectra determination methods as well as the establishment of their mutual relations. The following neutron spectra determination methods are described: SAND-II, CRYSTAL BALL, WINDOWS, SPECTRA, RESP, JUL; polynominal and directed divergence methods. The algorithms have been realized on the ES computer

  9. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  10. Suitability of faecal near-infrared reflectance spectroscopy (NIRS) predictions for estimating gross calorific value

    Energy Technology Data Exchange (ETDEWEB)

    De la Roza-Delgado, B.; Modroño, S.; Vicente, F.; Martínez-Fernández, A.; Soldado, A.

    2015-07-01

    A total of 220 faecal pig and poultry samples, collected from different experimental trials were employed with the aim to demonstrate the suitability of Near Infrared Reflectance Spectroscopy (NIRS) technology for estimation of gross calorific value on faeces as output products in energy balances studies. NIR spectra from dried and grounded faeces samples were analyzed using a Foss NIRSystem 6500 instrument, scanning over the wavelength range 400-2500 nm. Validation studies for quantitative analytical models were carried out to estimate the relevance of method performance associated to reference values to obtain an appropriate, accuracy and precision. The results for prediction of gross calorific value (GCV) of NIRS calibrations obtained for individual species showed high correlation coefficients comparing chemical analysis and NIRS predictions, ranged from 0.92 to 0.97 for poultry and pig. For external validation, the ratio between the standard error of cross validation (SECV) and the standard error of prediction (SEP) varied between 0.73 and 0.86 for poultry and pig respectively, indicating a sufficiently precision of calibrations. In addition a global model to estimate GCV in both species was developed and externally validated. It showed correlation coefficients of 0.99 for calibration, 0.98 for cross-validation and 0.97 for external validation. Finally, relative uncertainty was calculated for NIRS developed prediction models with the final value when applying individual NIRS species model of 1.3% and 1.5% for NIRS global prediction. This study suggests that NIRS is a suitable and accurate method for the determination of GCV in faeces, decreasing cost, timeless and for convenient handling of unpleasant samples.. (Author)

  11. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    Science.gov (United States)

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique.

    Science.gov (United States)

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-02-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 degrees Brix (QL); 0.58 degrees Brix (ZC)], low RMSEC [0.48 degrees Brix (QL); 0.34 degrees Brix (ZC)] and small difference between the RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a

  13. The criteria for selecting a method for unfolding neutron spectra based on the information entropy theory

    International Nuclear Information System (INIS)

    Zhu, Qingjun; Song, Fengquan; Ren, Jie; Chen, Xueyong; Zhou, Bin

    2014-01-01

    To further expand the application of an artificial neural network in the field of neutron spectrometry, the criteria for choosing between an artificial neural network and the maximum entropy method for the purpose of unfolding neutron spectra was presented. The counts of the Bonner spheres for IAEA neutron spectra were used as a database, and the artificial neural network and the maximum entropy method were used to unfold neutron spectra; the mean squares of the spectra were defined as the differences between the desired and unfolded spectra. After the information entropy of each spectrum was calculated using information entropy theory, the relationship between the mean squares of the spectra and the information entropy was acquired. Useful information from the information entropy guided the selection of unfolding methods. Due to the importance of the information entropy, the method for predicting the information entropy using the Bonner spheres' counts was established. The criteria based on the information entropy theory can be used to choose between the artificial neural network and the maximum entropy method unfolding methods. The application of an artificial neural network to unfold neutron spectra was expanded. - Highlights: • Two neutron spectra unfolding methods, ANN and MEM, were compared. • The spectrum's entropy offers useful information for selecting unfolding methods. • For the spectrum with low entropy, the ANN was generally better than MEM. • The spectrum's entropy was predicted based on the Bonner spheres' counts

  14. NIR detects, destroys insect pests

    International Nuclear Information System (INIS)

    McGraw, L.C.

    1998-01-01

    What’s good for Georgia peanuts may also be good for Kansas wheat. An electric eye that scans all food-grade peanuts for visual defects could one day do the same for wheat kernels. For peanuts, it’s a proven method for monitoring quality. In wheat, scanning with near-infrared (NIR) energy can reveal hidden insect infestations that lower wheat quality. ARS entomologists James E. Throne and James E. Baker and ARS agricultural engineer Floyd E. Dowell are the first to combine NIR with an automated grain-handling system to rapidly detect insects hidden in single wheat kernels

  15. Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry.

    Science.gov (United States)

    Castritius, Stefan; Kron, Alexander; Schäfer, Thomas; Rädle, Matthias; Harms, Diedrich

    2010-12-22

    A new approach of combination of near-infrared (NIR) spectroscopy and refractometry was developed in this work to determine the concentration of alcohol and real extract in various beer samples. A partial least-squares (PLS) regression, as multivariate calibration method, was used to evaluate the correlation between the data of spectroscopy/refractometry and alcohol/extract concentration. This multivariate combination of spectroscopy and refractometry enhanced the precision in the determination of alcohol, compared to single spectroscopy measurements, due to the effect of high extract concentration on the spectral data, especially of nonalcoholic beer samples. For NIR calibration, two mathematical pretreatments (first-order derivation and linear baseline correction) were applied to eliminate light scattering effects. A sample grouping of the refractometry data was also applied to increase the accuracy of the determined concentration. The root mean squared errors of validation (RMSEV) of the validation process concerning alcohol and extract concentration were 0.23 Mas% (method A), 0.12 Mas% (method B), and 0.19 Mas% (method C) and 0.11 Mas% (method A), 0.11 Mas% (method B), and 0.11 Mas% (method C), respectively.

  16. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  17. Fast neutron spectra unfolding with SAND-11 and maximum likelihoed methods

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.

    1980-01-01

    Mutual comparison of the methods SAND-II and maximal likeness for neutron spectra determination are represented. Spectra were restored according to the measures reaction rate of ten activation detectors using the device B-2 of the reactor BR-5 behind two thicknesses of steel-graphite shielding: Z=6.5 cm and Z=42.5 cm. The influence of earlier information on the results of neutron spectra determination was studied. Differential and integral energy dependences of neutron flux density for three initial spectra and two cross section libraries (BGS-1 and ZACRSS) are presented. The both methods yield close differential spectra (discrepancies < 10 %) when identical cross section libraries and reference spectra are used

  18. Meeting the Cool Neighbors. XII. An Optically Anchored Analysis of the Near-infrared Spectra of L Dwarfs

    Science.gov (United States)

    Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny

    2018-01-01

    Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.

  19. Frequency domain fatigue damage estimation methods suitable for deterministic load spectra

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.R.; Patel, M.H. [University Coll., Dept. of Mechanical Engineering, London (United Kingdom)

    2000-07-01

    The evaluation of fatigue damage due to load spectra, directly in the frequency domain, is a complex phenomena but with the benefit of significant computation time savings. Various formulae have been suggested but have usually relating to a specific application only. The Dirlik method is the exception and is applicable to general cases of continuous stochastic spectra. This paper describes three approaches for evaluating discrete deterministic load spectra generated by the floating wind turbine model developed the UCL/RAL research project. (Author)

  20. Evaluation of methods used for the direct generation of response spectra

    International Nuclear Information System (INIS)

    Mayers, R.L.; Muraki, T.; Jones, L.R.; Donikian, R.

    1983-01-01

    The paper presents an alternate methodology by which seismic in-structure response spectra may be generated directly from either ground or floor excitation spectra. The method is based upon stochastic concepts and utilizes the modal superposition solution. The philosophy of the method is based upon the notion that the evaluation of 'peak' response in uncertain excitation environments is only meaningful in a probabilistic sense. This interpretation of response spectra facilitates the generation of in-structure spectra for any non-exceedance probability (NEP). The method is validated by comparisons with a set of deterministic time-history analyses with three example models: an eleven-story building model, a containment structure stick model, and a floor mounted control panel, subjected to ten input spectrum compatible acceleration time-histories. A significant finding resulting from these examples is that the time-history method portrayed substantial variation in the resulting in-structure spectra, and therefore is unreliable for the generation of spectra. It is shown that the average of the time-history generated spectra can be estimated by the direct generation procedure, and reliable spectra may be generated for 85 NEP levels. The methodology presented herein is shown to be valid for both primary and secondary systems. Also included in the paper, is a review of the stochastic methods proposed by Singh and Der Kiureghian et. al., and the Fourier transform method proposed by Scanlan et al. (orig./HP)

  1. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  2. Application of NIRS coupled with PLS regression as a rapid, non-destructive alternative method for quantification of KBA in Boswellia sacra

    Science.gov (United States)

    Al-Harrasi, Ahmed; Rehman, Najeeb Ur; Mabood, Fazal; Albroumi, Muhammaed; Ali, Liaqat; Hussain, Javid; Hussain, Hidayat; Csuk, René; Khan, Abdul Latif; Alam, Tanveer; Alameri, Saif

    2017-09-01

    In the present study, for the first time, NIR spectroscopy coupled with PLS regression as a rapid and alternative method was developed to quantify the amount of Keto-β-Boswellic Acid (KBA) in different plant parts of Boswellia sacra and the resin exudates of the trunk. NIR spectroscopy was used for the measurement of KBA standards and B. sacra samples in absorption mode in the wavelength range from 700-2500 nm. PLS regression model was built from the obtained spectral data using 70% of KBA standards (training set) in the range from 0.1 ppm to 100 ppm. The PLS regression model obtained was having R-square value of 98% with 0.99 corelationship value and having good prediction with RMSEP value 3.2 and correlation of 0.99. It was then used to quantify the amount of KBA in the samples of B. sacra. The results indicated that the MeOH extract of resin has the highest concentration of KBA (0.6%) followed by essential oil (0.1%). However, no KBA was found in the aqueous extract. The MeOH extract of the resin was subjected to column chromatography to get various sub-fractions at different polarity of organic solvents. The sub-fraction at 4% MeOH/CHCl3 (4.1% of KBA) was found to contain the highest percentage of KBA followed by another sub-fraction at 2% MeOH/CHCl3 (2.2% of KBA). The present results also indicated that KBA is only present in the gum-resin of the trunk and not in all parts of the plant. These results were further confirmed through HPLC analysis and therefore it is concluded that NIRS coupled with PLS regression is a rapid and alternate method for quantification of KBA in Boswellia sacra. It is non-destructive, rapid, sensitive and uses simple methods of sample preparation.

  3. Method for the deconvolution of incompletely resolved CARS spectra in chemical dynamics experiments

    International Nuclear Information System (INIS)

    Anda, A.A.; Phillips, D.L.; Valentini, J.J.

    1986-01-01

    We describe a method for deconvoluting incompletely resolved CARS spectra to obtain quantum state population distributions. No particular form for the rotational and vibrational state distribution is assumed, the population of each quantum state is treated as an independent quantity. This method of analysis differs from previously developed approaches for the deconvolution of CARS spectra, all of which assume that the population distribution is Boltzmann, and thus are limited to the analysis of CARS spectra taken under conditions of thermal equilibrium. The method of analysis reported here has been developed to deconvolute CARS spectra of photofragments and chemical reaction products obtained in chemical dynamics experiments under nonequilibrium conditions. The deconvolution procedure has been incorporated into a computer code. The application of that code to the deconvolution of CARS spectra obtained for samples at thermal equilibrium and not at thermal equilibrium is reported. The method is accurate and computationally efficient

  4. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  5. A digital processing method for the analysis of complex nuclear spectra

    International Nuclear Information System (INIS)

    Madan, V.K.; Abani, M.C.; Bairi, B.R.

    1994-01-01

    This paper describes a digital processing method using frequency power spectra for the analysis of complex nuclear spectra. The power spectra were estimated by employing modified discrete Fourier transform. The method was applied to observed spectral envelopes. The results for separating closely-spaced doublets in nuclear spectra of low statistical precision compared favorably with those obtained by using a popular peak fitting program SAMPO. The paper also describes limitations of the peak fitting methods. It describes the advantages of digital processing techniques for type II digital signals including nuclear spectra. A compact computer program occupying less than 2.5 kByte of memory space was written in BASIC for the processing of observed spectral envelopes. (orig.)

  6. Estimation of Sensory Analysis Cupping Test Arabica Coffee Using NIR Spectroscopy

    Science.gov (United States)

    Safrizal; Sutrisno; Lilik, P. E. N.; Ahmad, U.; Samsudin

    2018-05-01

    Flavors have become the most important coffee quality parameters now day, many coffee consuming countries require certain taste scores for the coffee to be ordered, the currently used cupping method of appraisal is the method designed by The Specialty Coffee Association Of America (SCAA), from several previous studies was found that Near-Infrared Spectroscopy (NIRS) can be used to detect chemical composition of certain materials including those associated with flavor so it is possible also to be applied to coffee powder. The aim of this research is to get correlation between NIRS spectrum with cupping scoring by tester, then look at the possibility of testing coffee taste sensors using NIRS spectrum. The coffee samples were taken from various places, altitudes and postharvest handling methods, then the samples were prepared following the SCAA protocol, for sensory analysis was done in two ways, with the expert tester and with the NIRS test. The calibration between both found that Without pretreatment using PLS get RMSE cross validation 6.14, using Multiplicative Scatter Correction spectra obtained RMSE cross validation 5.43, the best RMSE cross-validation was 1.73 achieved by de-trending correction, NIRS can be used to predict the score of cupping.

  7. [Study on predicting firmness of watermelon by Vis/NIR diffuse transmittance technique].

    Science.gov (United States)

    Tian, Hai-Qing; Ying, Yi-Bin; Lu, Hui-Shan; Xu, Hui-Rong; Xie, Li-Juan; Fu, Xia-Ping; Yu, Hai-Yan

    2007-06-01

    Watermelon is a popular fruit in the world and firmness (FM) is one of the major characteristics used for assessing watermelon quality. The objective of the present research was to study the potential of visible/near Infrared (Vis/NIR) diffuse transmittance spectroscopy as a way for the nondestructive measurement of FM of watermelon. Statistical models between the spectra and FM were developed using partial least square (PLS) and principle component regression (PCR) methods. Performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples and root mean square errors of prediction (RMSEP). Models for three kinds of mathematical treatments of spectra (original, first derivative and second derivative) were established. Savitsky-Goaly filter smoothing method was used for spectra data smoothing. The PLS model of the second derivative spectra gave the best prediction of FM, with a correlation coefficient (r) of 0. 974 and root mean square errors of prediction (RMSEP) of 0. 589 N using Savitsky-Goaly filter smoothing method. The results of this study indicate that NIR diffuse transmittance spectroscopy can be used to predict the FM of watermelon. The Vis/NIR diffuse transmittance technique will be valuable for the nandestructive detection large shape and thick peel fruits'.

  8. A chemometric method for correcting FTIR spectra of biomaterials for interference from water in KBr discs

    Science.gov (United States)

    FTIR analysis of solid biomaterials by the familiar KBr disc technique is very often frustrated by water interference in the important protein (amide I) and carbohydrate (hydroxyl) regions of their spectra. A method was therefore devised that overcomes the difficulty and measures FTIR spectra of so...

  9. Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan

    2017-09-01

    The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.

  10. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, Rene

    2011-01-01

    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to quantify fructan concentration in samples from seven grass species. Savitzky-Golay first derivative with filter width 7 and polynomial order 2 with mean centering was applied as a spectral pre-treatment method...... to remove unimportant baseline signals. In order to model the NIR spectroscopy data the partial least squares regression (PLSR) approach was used on the full spectra. Variable selection based on PLSR by jack-knifing within a cross-model validation (CMV) framework was applied in order to remove non...... quantification of fructans by NIR spectroscopy is possible and that jack-knifing PLSR within a CMV framework is an effective way to eliminate the wavelengths of no interest. Jack-knifing PLSR did not improve the predictive ability because the root mean square error of prediction (RMSEP) increased (1.37) compared...

  11. Determination of SFC, FFA, and equivalent reaction time for enzymatically interestified oils using NIRS

    DEFF Research Database (Denmark)

    Houmøller, Lars P.; Kristensen, Dorthe; Rosager, Helle

    2007-01-01

    The use of near infrared spectroscopy (NIRS) for rapid determination of the degree of interesterification of blends of palm stearin, coconut oil, and rapeseed oil obtained using an immobilized Thermomyces lanuginosa lipase at 70 ◦C was investigated. Interesterification was carried out by applying...... that NIRS could be used to replace the traditional methods for determining FFA and SFC in vegetable oils.It was possible to monitor the activity of the immobilized enzyme for interesterification of margarine oils by predicting the equivalent reaction time in a batch reactor from NIR spectra. Root mean...... square errors of prediction for two different oil blends interesterified for 300 and 170 min were 21 and 12 min, respectively....

  12. Studies of the Raman Spectra of Cyclic and Acyclic Molecules: Combination and Prediction Spectrum Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-02

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  13. The dynamic method for time-of-flight measurement of thermal neutron spectra from pulsed sources

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Chuklyaev, S.V.; Tulaev, A.B.; Bobrakov, V.F.

    1995-01-01

    A time-of-flight method for measurement of thermal neutron spectra in pulsed neutron sources with an efficiency more than 10 5 times higher than the standard method is described. The main problems associated with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of special neutron detector design and other questions are discussed. Some experimental results for spectra from the surfaces of water and solid methane moderators obtained at the IBR-2 pulsed reactor (Dubna, Russia) are presented. (orig.)

  14. A simple method for generation of back-ground-free gamma-ray spectra

    International Nuclear Information System (INIS)

    Kawarasaki, Y.

    1976-01-01

    A simple and versatile method of generating background-free γ-ray spectra is presented. This method is equivalent to the generation of a continuous background baseline over the entire energy range of spectra corresponding to the original ones obtained with a Ge(Li) detector. These background curves can not be generally expressed in a single and simple analytic form nor in the form of a power series. These background-free spectra thus obtained make it feasible to assign many tiny peaks at the stage of visual inspection of the spectra, which is difficult to do with the original ones. The automatic peak-finding and peak area calculation procedures are both applicable to these background-free spectra. Examples of the application are illustrated. The effect of the peak-shape distortion is also discussed. (Auth.)

  15. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon

    Directory of Open Access Journals (Sweden)

    Said Nawar

    2017-10-01

    Full Text Available Accurate and detailed spatial soil information about within-field variability is essential for variable-rate applications of farm resources. Soil total nitrogen (TN and total carbon (TC are important fertility parameters that can be measured with on-line (mobile visible and near infrared (vis-NIR spectroscopy. This study compares the performance of local farm scale calibrations with those based on the spiking of selected local samples from both fields into an European dataset for TN and TC estimation using three modelling techniques, namely gradient boosted machines (GBM, artificial neural networks (ANNs and random forests (RF. The on-line measurements were carried out using a mobile, fiber type, vis-NIR spectrophotometer (305–2200 nm (AgroSpec from tec5, Germany, during which soil spectra were recorded in diffuse reflectance mode from two fields in the UK. After spectra pre-processing, the entire datasets were then divided into calibration (75% and prediction (25% sets, and calibration models for TN and TC were developed using GBM, ANN and RF with leave-one-out cross-validation. Results of cross-validation showed that the effect of spiking of local samples collected from a field into an European dataset when combined with RF has resulted in the highest coefficients of determination (R2 values of 0.97 and 0.98, the lowest root mean square error (RMSE of 0.01% and 0.10%, and the highest residual prediction deviations (RPD of 5.58 and 7.54, for TN and TC, respectively. Results for laboratory and on-line predictions generally followed the same trend as for cross-validation in one field, where the spiked European dataset-based RF calibration models outperformed the corresponding GBM and ANN models. In the second field ANN has replaced RF in being the best performing. However, the local field calibrations provided lower R2 and RPD in most cases. Therefore, from a cost-effective point of view, it is recommended to adopt the spiked European dataset

  16. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  17. Envelope method for background elimination from X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Monakhov, V.V.; Naumenko, P.A.; Chashinskaya, O.A.

    2006-01-01

    The influence of the background noise caused by Bremsstrahlung on the accuracy of the envelope method at x-ray fluorescence spectra processing is studied. This is carried out by the example of model spectra at different forms of Bremsstrahlung noise as well as at the presence of background noise in spectra. The interpolation by parabolic splines is used for the estimation of the error of the envelope method for the elimination of continuos background noise. It is found out that the error of the proposed method constitutes decimal parts of percent. It is shown that the envelope method is the effective technique for the elimination of the continuous Bremsstrahlung from x-ray fluorescence spectra of the first order [ru

  18. Method of spectra parametrization of (n, x) and (n, nx) reactions induced by DT-neutrons

    International Nuclear Information System (INIS)

    Aleksandrov, D.V.; Kovrigin, B.S.

    1980-01-01

    A method for parmetrization of experimental spectra has been developed for more convenient carrying out a process of separating competing mechanisms contributions in spectra of the (n, x) and (n, nx) reactions induced with DT neutrons. Differential cross sections of competing partial processes are used. as expanding coefficients. Model spectra may be represented in the form of tabulated-given functions calculated separately from formulae of any complexity degree. Fit of model expressions is performed by the least square method (lsm). Step-by-step algorithm of nonlinear optimization is used for search for lsm- evaluations of theoretical models parameters [ru

  19. The Dynamic Method for Time-of-Flight Measurement of Thermal Neutron Spectra from Pulsed Sources

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tulaev, A.B.; Bobrakov, V.F.

    1994-01-01

    The time-of-flight method for a measurement of thermal neutron spectra in the pulsed neutron sources with high efficiency of neutron registration, more than 10 5 times higher in comparison with traditional one, is described. The main problems connected with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of a special neutron detector design and other questions are discussed. Some experimental results, spectra from surfaces of the water and solid methane moderators, obtained in the pulsed reactor IBR-2 (Dubna, Russia) are presented. 4 refs., 5 figs

  20. An Expansion Method to Unfold Proton Recoil Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kockum, J

    1970-07-01

    A method is given to obtain a good estimate of the input neutron spectrum from a pulse-height distribution measured with proportional counters filled with a hydrogenous gas. The method consists of expanding the sought estimate as a product of two functions where one is obtained by differentiating the pulse-height distribution and the other is a power series of the neutron energy. The coefficients of this series are determined by a least-squares fit of the calculated pulse-height distribution to the measured one. The method has been tested on pulse-height distributions obtained by calculations from a realistic neutron spectrum and response functions for a spherical counter 3. 94 cm in diameter and filled with 7 atm. of methane and 1 atm. of hydrogen, respectively. In the former case it is possible with the method described, to unfold pulse-height distributions up to a neutron energy of about 3 MeV to within 10 % of the input spectrum. The differentiating procedure included in the method ensures that all spectral details not smoothed out by the finite resolution of the counter, are kept in the spectrum estimate. A realistic estimate of the statistical uncertainty of each neutron spectrum value is given. Some of the possible systematical errors caused by uncertainties in input data have been investigated.

  1. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    Science.gov (United States)

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  2. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves

    Science.gov (United States)

    Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.

    2018-06-01

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.

  3. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves.

    Science.gov (United States)

    Haq, Quazi M I; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S M; Al-Khanbashi, Fatema H S; Al-Fahdi, Amira A M; Al-Zaabi, Ahoud K A; Al-Shuraiqi, Fatma A M; Al-Bahaisi, Iman M

    2018-06-05

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Energy spectra of fast neutrons by nuclear emulsion method

    International Nuclear Information System (INIS)

    Quaresma, A.A.

    1977-01-01

    An experimental method which uses nuclear emulsion plates to determine the energy spectrum of fission neutrons is described. By using this technique, we have obtained the energy distribution of neutrons from spontaneous fission of Cf 2 5 2 . The results are in good agreement with whose obtained previously by others authors who have used different detection techniques, and they are consistent with a Maxwellian distribution as expected by Weisskopf's nuclear evaporation theory. (author)

  5. The mechanical spectra of deposited materials by a composite reed vibration method

    International Nuclear Information System (INIS)

    Ying, X.N.; Zhang, L.; Yuan, Y.H.

    2010-01-01

    Recently a composite reed vibration method has been designed to measure the mechanical spectra (complex Young's modulus) of materials from liquid to solid state. The mechanical spectra of materials can be obtained from a composite system consisting of a substrate reed and of materials deposited on it. In this report, two sets of formulas to calculate the mechanical spectra of deposited materials are further analyzed. The proof is given for the previous named 'approximate formulas' (labeled as Formula II). Then the composite reed vibration method can be safely used as an extension of the mechanical spectrum method of the thin solid film. At the same time, some comments are made on previous analytical formulas (labeled as Formula I). At last, more experiments with a small amount of deposited materials are performed. It is found that smaller quantity is more favorable to achieve the intrinsic mechanical spectra of deposited materials.

  6. Preliminary report on an intercomparison of methods for processing Ge(Li) gamma-ray spectra

    International Nuclear Information System (INIS)

    Parr, R.M.; Houtermans, H.; Schaerf, K.

    1978-01-01

    An intercomparison has been organized by the IAEA for the purpose of evaluating methods for processing Ge(Li) gamma-ray spectra. These spectra cover an energy range of about 1MeV and, with one exception, contain only well separated single peaks; another spectrum contains double peaks with various relative intensities and degrees of overlap. The spectra were prepared in such a way that the areas and positions of all peaks, relative to a standard spectrum which is also provided, are known exactly. The intercomparison enables the user to test the ability of his methods (1) to detect small peaks near the limit of detectability; (2) to determine the position and area of more easily detectable peaks, and (3) to determine the position and area of overlapping double peaks. The method of preparation of the spectra and the organization of the intercomparison are described in this report. (author)

  7. A nonlinear wavelet method for data smoothing of low-level gamma-ray spectra

    International Nuclear Information System (INIS)

    Gang Xiao; Li Deng; Benai Zhang; Jianshi Zhu

    2004-01-01

    A nonlinear wavelet method was designed for smoothing low-level gamma-ray spectra. The spectra of a 60 Co graduated radioactive source and a mixed soil sample were smoothed respectively according to this method and a 5 point smoothing method. The FWHM of 1,332 keV peak of 60 Co source and the absolute activities of 238 U of soil sample were calculated. The results show that the nonlinear wavelet method is better than the traditional method, with less loss of spectral peak and a more complete reduction of statistical fluctuation. (author)

  8. Use of the foil activation method with arbitrary trial functions to determine neutron energy spectra

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-01-01

    Neutron Spectra have been measured by the foil activation method in thirteen different environments in and around the Sandia Pulsed Reactor (SPR-III), the White Sands Missile Range FBR, and the Annular Core Research Reactor (ACRR). The unfolded spectra were obtained by using the SANDII code in a manner which was not dependent on the initial trial. This altered technique is, therefore, better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial functions

  9. A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures

    Science.gov (United States)

    Youssef, Rasha M.; Maher, Hadir M.

    2008-10-01

    A new spectrophotometric method was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This method is based on convolution of the double divisor ratio spectra, obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of two of the three compounds in the mixture, using combined trigonometric Fourier functions. The magnitude of the Fourier function coefficients, at either maximum or minimum points, is related to the concentration of each drug in the mixture. The mathematical explanation of the procedure is illustrated. The method was applied for the assay of a model mixture consisting of isoniazid (ISN), rifampicin (RIF) and pyrazinamide (PYZ) in synthetic mixtures, commercial tablets and human urine samples. The developed method was compared with the double divisor ratio spectra derivative method (DDRD) and derivative ratio spectra-zero-crossing method (DRSZ). Linearity, validation, accuracy, precision, limits of detection, limits of quantitation, and other aspects of analytical validation are included in the text.

  10. Spectrophotometric versus NIR-MIR assessments of cowpea pods for discriminating the impact of freezing.

    Science.gov (United States)

    Machado, Nelson; Domínguez-Perles, Raúl; Ramos, Ana; Rosa, Eduardo As; Barros, Ana Irna

    2017-10-01

    Freezing represents an important storage method for vegetal foodstuffs, such as cowpea pods, and thus the impact of this process on the chemical composition of these matrices arises as a prominent issue. In this sense, the phytochemical contents in frozen cowpea pods (i.e. at 6 and 9 months) have been compared with fresh cowpea pods material, with the samples being concomitantly assessed by Fourier-transform infrared spectroscopy (FTIR), both mid-infrared (MIR) and near infrared (NIR), aiming to evaluate the potential of these techniques as a rapid tool for the traceability of these matrices. A decrease in phytochemical contents during freezing was observed, allowing the classification of samples according to the freezing period based on such variations. Also, MIR and NIR allowed discrimination of samples: the use of the first derivative demonstrated a better performance for this purpose, whereas the use of the normalized spectra gave the best correlations between the spectra and specific contents. In both cases, NIR displayed the best performance. Freezing of cowpea pods leads to a decrease of phytochemical contents, which can be monitored by FTIR spectroscopy, both within the MIR and NIR ranges, whereas the use of this technique, in tandem with chemometrics, constitutes a suitable methodology for the traceability of these matrices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. NIR analysis of cellulose and lactose--application to ecstasy tablet analysis.

    Science.gov (United States)

    Baer, Ines; Gurny, Robert; Margot, Pierre

    2007-04-11

    Cellulose and lactose are the most frequently used excipients in illicit ecstasy production. The aim of this project was to use near infrared reflectance spectroscopy (NIRS) for the determination of the different chemical forms of these two substances, as well as for the differentiation of their origin (producer). It was possible to distinguish between the different chemical forms of both compounds, as well as between their origins (producers), although within limits. Furthermore, the possibilities to apply NIR for the analysis of substances such as found in illicit tablets were studied. First, a few cellulose and lactose samples were chosen to make mixtures with amphetamine at three degrees of purity (5, 10 and 15%), in order to study the resulting changes in the spectra as well as to simultaneously quantify amphetamine and identify the excipient. A PLS2 model could be build to predict concentrations and excipient. Secondarily, the technique was to be applied to real ecstasy tablets. About 40 ecstasy seizures were analysed with the aim to determine the excipient and to check them against each other. Identification of the excipients was not always obvious, especially when more than one excipient were present. However, a comparison between tablets appeared to give groups of similar samples. NIR analysis results in spectra representing the tablet blend as a whole taking into account all absorbing compounds. Although NIRS seems to be an appropriate method for ecstasy profiling, little is known about intra- and intervariability of compression batches.

  12. Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra

    International Nuclear Information System (INIS)

    Shirley, T.E.; Laster, S.J.; Meek, R.A.

    1987-01-01

    The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis

  13. Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of Amlodipine and Atorvastatin

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeiny, Badr A.

    2011-12-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for the simultaneous determination of Amlodipine besylate (AM) and Atorvastatin calcium (AT) in tablet dosage forms. The first method is first derivative of the ratio spectra ( 1DD), the second is ratio subtraction and the third is the method of mean centering of ratio spectra. The calibration curve is linear over the concentration range of 3-40 and 8-32 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Standard deviation is <1.5 in the assay of raw materials and tablets. Methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit.

  14. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy

    DEFF Research Database (Denmark)

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-01-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination...... on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded...... less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles....

  15. Quantitative Evaluation of gamma-Spectrum Analysis Methods using IAEA Test Spectra

    DEFF Research Database (Denmark)

    Nielsen, Sven Poul

    1982-01-01

    A description is given of a γ-spectrum analysis method based on nonlinear least-squares fitting. The quality of the method is investigated by using statistical tests on the results from analyses of IAEA test spectra. By applying an empirical correction factor of 0.75 to the calculated peak-area u...

  16. A method to reproduce alpha-particle spectra measured with semiconductor detectors.

    Science.gov (United States)

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín

    2010-01-01

    A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. A high-resolution neutron spectra unfolding method using the Genetic Algorithm technique

    CERN Document Server

    Mukherjee, B

    2002-01-01

    The Bonner sphere spectrometers (BSS) are commonly used to determine the neutron spectra within various nuclear facilities. Sophisticated mathematical tools are used to unfold the neutron energy distribution from the output data of the BSS. This paper highlights a novel high-resolution neutron spectra-unfolding method using the Genetic Algorithm (GA) technique. The GA imitates the biological evolution process prevailing in the nature to solve complex optimisation problems. The GA method was utilised to evaluate the neutron energy distribution, average energy, fluence and equivalent dose rates at important work places of a DIDO class research reactor and a high-energy superconducting heavy ion cyclotron. The spectrometer was calibrated with a sup 2 sup 4 sup 1 Am/Be (alpha,n) neutron standard source. The results of the GA method agreed satisfactorily with the results obtained by using the well-known BUNKI neutron spectra unfolding code.

  18. Measurement of neutron spectra in varied environments by the foil-activation method with arbitrary trials

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-12-01

    Neutron spectra have been measured by the foil-activation method in 13 different environments in and around the Sandia Pulsed Reactor, the White Sands Missile Range Fast Burst Reactor, and the Sandia Annular Core Research Reactor. The spectra were obtained by using the SANDII code in a manner that was not dependent on the initial trial. This altered technique is better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial-dependent methods. For some of the configurations, studies have also been made of how well the solution is determined in each energy region. The experimental methods and the techniques used in the analyses are thoroughly explained. 34 refs., 51 figs., 40 tabs

  19. Model-independent separation of poorly resolved hypperfine split spectra by a linear combination method

    International Nuclear Information System (INIS)

    Nagy, D.L.; Dengler, J.; Ritter, G.

    1988-01-01

    A model-independent evaluation of the components of poorly resolved Moessbauer spectra based on a linear combination method is possible if there is a parameter as a function of which the shape of the individual components do not but their intensities do change and the dependence of the intensities on this parameter is known. The efficiency of the method is demonstrated on the example of low temperature magnetically split spectra of the high-T c superconductor YBa 2 (Cu 0.9 Fe 0 .1 ) 3 O 7-y . (author)

  20. [Rapid assessment of critical quality attributes of Chinese materia medica (II): strategy of NIR assignment].

    Science.gov (United States)

    Pei, Yan-Ling; Wu, Zhi-Sheng; Shi, Xin-Yuan; Zhou, Lu-Wei; Qiao, Yan-Jiang

    2014-09-01

    The present paper firstly reviewed the research progress and main methods of NIR spectral assignment coupled with our research results. Principal component analysis was focused on characteristic signal extraction to reflect spectral differences. Partial least squares method was concerned with variable selection to discover characteristic absorption band. Two-dimensional correlation spectroscopy was mainly adopted for spectral assignment. Autocorrelation peaks were obtained from spectral changes, which were disturbed by external factors, such as concentration, temperature and pressure. Density functional theory was used to calculate energy from substance structure to establish the relationship between molecular energy and spectra change. Based on the above reviewed method, taking a NIR spectral assignment of chlorogenic acid as example, a reliable spectral assignment for critical quality attributes of Chinese materia medica (CMM) was established using deuterium technology and spectral variable selection. The result demonstrated the assignment consistency according to spectral features of different concentrations of chlorogenic acid and variable selection region of online NIR model in extract process. Although spectral assignment was initial using an active pharmaceutical ingredient, it is meaningful to look forward to the futurity of the complex components in CMM. Therefore, it provided methodology for NIR spectral assignment of critical quality attributes in CMM.

  1. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    Science.gov (United States)

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Decoding vigilance with NIRS.

    Science.gov (United States)

    Bogler, Carsten; Mehnert, Jan; Steinbrink, Jens; Haynes, John-Dylan

    2014-01-01

    Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS). NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  3. Decoding vigilance with NIRS.

    Directory of Open Access Journals (Sweden)

    Carsten Bogler

    Full Text Available Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS. NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  4. Near infrared spectroscopic (NIRS) analysis of grapes and red-wines

    International Nuclear Information System (INIS)

    Guggenbichler, W.

    2003-04-01

    In this work vine varieties of the genus Vitis as well as grape-must and fully developed wines were examined by Near Infrared Spectroscopy (NIRS). The spectra were obtained by methods of transflection and transmission measurements. It was shown, that spectra of different varieties of grapes and red-wines can be combined in clusters by means of NIR spectroscopy and subsequent principle components analysis (PCA). In addition to this, it was possible to identify blends of two different varieties of wines as such and to determine the ratio of mixture. In several varieties of grape-must these NIR spectroscopic measurements further allowed a quantitative determination of important parameters concerning the quality of grapes, such as: sugar, total acidity, tartaric acid, malic acid, and pH-value. The content of polyphenols in grapes was also analyzed by this method. The total parameter for polyphenols in grapes is a helpful indicator for the optimal harvest time and the quality of grapes. All quantitative calculations were made by the method of partial least square regression (PLS). As these spectroscopic measurements require minimal sample preparations and due to the fact that measurements can be accomplished and results obtained within a few seconds, this method turned out to be a promising option in order to classify wines and to quantify relevant ingredients in grapes. (author)

  5. NIR Techniques Create Added Values for the Pellet and Biofuel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Johnsson, Bo; Grothage, Morgan [Casco Adhesives AB, Sundsvall (Sweden)

    2006-07-15

    biofuels for heating. The factors varied were: high and low values of drying temperature and of wood powder dryness, and binary mixes of sawdust from the conifers Norway spruce and Scots pine. The mixes of raw sawdust was dried and milled into powder before pelletizing. In all 11 runs including three center points were conducted. Each run gave about 10 Mg of wood Pellets. The validation of a running multivariate calibration model for on-line NIR spectra in the pellet plant showed high accuracy with a prediction error of 0.42 % water content in the milled sawdust dried to c. 7-11 % water content. Also the NIR based models for drying temperature and binary mixes of sawdust from the two species gave good predictions. Validation of the model for drying temperature of saw dust resulted in lower prediction accuracy for prolonged periods. The findings indicate that also chemical contents, for example contents of extractives, such as fatty and resin acids, in dried and milled sawdust, can be predicted by on-line NIR technique as these contents are highly correlated with the used tree species and pretreatments of the sawdust. Multivariate statistical methods, besides resulting in calibrations, are also useful in model interpretation of the wide and overlapping peaks in the NIR wavelength region. The possibilities to meet costumer specifications and create added values are enhanced by the NIR technique that, further, can be used as an important tool in the monitoring and control of the pelletizing process as well as in characterization and standardization of biofuels on the world market. The NIR technique can also be implemented in process analytical technology that has the ultimate goal to understand and control the manufacturing process to ensure the quality of the final product to the consumer. (Full text of contribution)

  6. General and efficient method for calculating modulation ressponses and noise spectra of active semiconductor waveguides

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We present a theoretical method for obtaining small-signal responses in a spatially resolved active semiconductor waveguide including finite end-facet reflectivities and amplified spontaneous emission. RF-modulation responses and output noise spectra of an SOA are shown....

  7. A method for comparison of experimental and theoretical differential neutron spectra in the Zenith reactor

    International Nuclear Information System (INIS)

    Reed, D.L.; Symons, C.R.

    1965-01-01

    A method of calculation is given which assists the analyses of chopper measurements of spectra from ZENITH and enables complex multigroup theoretical calculations of the spectra to be put into a form which may be compared with experiment. In addition the theory of the cut-off function has been extended to give analytical expressions which take into account the effects of sub-collimators, off centre slits and of a rotor made of a material partially transparent to neutrons. The theoretical cut-off function suggested shows good agreement with experiment. (author)

  8. A simple method for conversion of airborne gamma-ray spectra to ground level doses

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Bargholz, Kim

    1996-01-01

    A new and simple method for conversion of airborne NaI(Tl) gamma-ray spectra to dose rates at ground level has been developed. By weighting the channel count rates with the channel numbers a spectrum dose index (SDI) is calculated for each spectrum. Ground level dose rates then are determined...... by multiplying the SDI by an altitude dependent conversion factor. The conversion factors are determined from spectra based on Monte Carlo calculations. The results are compared with measurements in a laboratory calibration set-up. IT-NT-27. June 1996. 27 p....

  9. A method for comparison of experimental and theoretical differential neutron spectra in the Zenith reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D L; Symons, C R [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-01-15

    A method of calculation is given which assists the analyses of chopper measurements of spectra from ZENITH and enables complex multigroup theoretical calculations of the spectra to be put into a form which may be compared with experiment. In addition the theory of the cut-off function has been extended to give analytical expressions which take into account the effects of sub-collimators, off centre slits and of a rotor made of a material partially transparent to neutrons. The theoretical cut-off function suggested shows good agreement with experiment. (author)

  10. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...

  11. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  12. AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Grinberg, Victoria [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, UMBC, Baltimore, MD 21250 (United States); Rothschild, Richard E., E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@mit.edu, E-mail: grinberg@space.mit.edu, E-mail: katja@milkyway.gsfc.nasa.gov, E-mail: rrothschild@ucsd.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA (United States)

    2016-03-01

    We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37 million counts in total for Cluster A and 39 million counts for Cluster B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster A is free of instrumental artifacts while that of Cluster B contains significant features with amplitudes ∼1%; the most prominent is in the energy range 30–50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster B, via an iterative procedure we created the calibration tool hexBcorr for correcting any Cluster B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper.

  13. One photopeaks' analysis of gamma spectra for the minimum square method through one data processing system

    International Nuclear Information System (INIS)

    Baez Pedrajo, A.B.

    1974-01-01

    The essence of the work is a computer program by which the gamma spectrum of a radioisotope mixture can be analysed in accordance with a library of spectra for the elements assumed to make up the mixture. The program forms a linear combination of standards by the method of least linear squares, analyses the spectrum obtained with respect to the original, and applies to the results the criteria of mean value, variance, standard deviation, γ 2 and its quotient ratio, and the correlation coefficient. The program, written in Fortran, has no limitations as regards the number of channels for each spectrum or the number of spectra, provided all spectra are compatible (same number of channels). As the experimental part of the work a numerical example is given and analysed in critical form to evaluate the suitability of the computer program. (author)

  14. Method for total automation of many-dimensionl diffraction spectra analysis

    International Nuclear Information System (INIS)

    Zlokazov, V.B.

    1985-01-01

    A method meant for automatic analysis of amplitude many-dimensional spectra is described. At the first stage peak search including the procedures of smoothing, identification of peak vertices and their sorting is realized. The method is used in the FIND 2 and DOMUS FORTRAN programs that can operate both on the ES-1040 and CDC-6500 type large computers and SM-3 and SM-4 type small computers

  15. Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: Exploring the combinations of channels

    Directory of Open Access Journals (Sweden)

    Hiroko eIchikawa

    2014-07-01

    Full Text Available Near-infrared spectroscopy (NIRS in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention attention-deficit / hyperactivity disorder (ADHD and children with autism spectrum disorders (ASD showed different hemodynamic responses to their own mother’s face. Based on this finding, we may be able to classify their hemodynamic data into two those groups and predict which diagnostic group an unknown participant belongs to. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM, we searched the combination of measurement channels at which the hemodynamic response differed between the two groups; ADHD and ASD. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimentional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy while the subset contains all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups.

  16. Full-sky formulae for weak lensing power spectra from total angular momentum method

    International Nuclear Information System (INIS)

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya

    2013-01-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra

  17. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    International Nuclear Information System (INIS)

    Liu Bin; Liu Jian-Zhong; Zhang Guang-Liang; Zou Yong-Liao; Ling Zong-Cheng; Zhang Jiang; He Zhi-Ping; Yang Ben-Yong

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ detection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.

  18. Determination of electron clinical spectra from percentage depth dose (PDD) curves by classical simulated annealing method

    International Nuclear Information System (INIS)

    Visbal, Jorge H. Wilches; Costa, Alessandro M.

    2016-01-01

    Percentage depth dose of electron beams represents an important item of data in radiation therapy treatment since it describes the dosimetric properties of these. Using an accurate transport theory, or the Monte Carlo method, has been shown obvious differences between the dose distribution of electron beams of a clinical accelerator in a water simulator object and the dose distribution of monoenergetic electrons of nominal energy of the clinical accelerator in water. In radiotherapy, the electron spectra should be considered to improve the accuracy of dose calculation since the shape of PDP curve depends of way how radiation particles deposit their energy in patient/phantom, that is, the spectrum. Exist three principal approaches to obtain electron energy spectra from central PDP: Monte Carlo Method, Direct Measurement and Inverse Reconstruction. In this work it will be presented the Simulated Annealing method as a practical, reliable and simple approach of inverse reconstruction as being an optimal alternative to other options. (author)

  19. Use of orthonormal polynomial expansion method to the description of the energy spectra of biological liquids

    International Nuclear Information System (INIS)

    Bogdanova, N.B.; Todorov, S.T.; Ososkov, G.A.

    2015-01-01

    Orthonormal polynomial expansion method (OPEM) is applied to the data obtained by the method of energy spectra to the liquid of the biomass of wheat in the case when herbicides are used. Since the biomass of a biological object contains liquid composed mainly of water, the method of water spectra is applicable to this case as well. For comparison, the similar data obtained from control sample consisting of wheat liquid without the application of herbicides are shown. The total variance OPEM is involved including errors in both dependent and independent variables. Special criteria are used for evaluating the optimal polynomial degree and the number of iterations. The presented numerical results show good agreement with the experimental data. The developed analysis frame is of interest for future analysis in theoretical ecology.

  20. Comparison of methods for H*(10) calculation from measured LaBr3(Ce) detector spectra.

    Science.gov (United States)

    Vargas, A; Cornejo, N; Camp, A

    2018-07-01

    The Universitat Politecnica de Catalunya (UPC) and the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) have evaluated methods based on stripping, conversion coefficients and Maximum Likelihood Estimation using Expectation Maximization (ML-EM) in calculating the H*(10) rates from photon pulse-height spectra acquired with a spectrometric LaBr 3 (Ce)(1.5″ × 1.5″) detector. There is a good agreement between results of the different H*(10) rate calculation methods using the spectra measured at the UPC secondary standard calibration laboratory in Barcelona. From the outdoor study at ESMERALDA station in Madrid, it can be concluded that the analysed methods provide results quite similar to those obtained with the reference RSS ionization chamber. In addition, the spectrometric detectors can also facilitate radionuclide identification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  2. Efficient algorithm for generating spectra using line-by-line methods

    International Nuclear Information System (INIS)

    Sonnad, V.; Iglesias, C.A.

    2011-01-01

    A method is presented for efficient generation of spectra using line-by-line approaches. The only approximation is replacing the line shape function with an interpolation procedure, which makes the method independent of the line profile functional form. The resulting computational savings for large number of lines is proportional to the number of frequency points in the spectral range. Therefore, for large-scale problems the method can provide speedups of two orders of magnitude or more. A method was presented to generate line-by-line spectra efficiently. The first step was to replace the explicit calculation of the profile by the Newton divided-differences interpolating polynomial. The second step is to accumulate the lines effectively reducing their number to the number of frequency points. The final step is recognizing the resulting expression as a convolution and amenable to FFT methods. The reduction in computational effort for a configuration-to-configuration transition array with large number of lines is proportional to the number of frequency points. The method involves no approximations except for replacing the explicit profile evaluation by interpolation. Specifically, the line accumulation and convolution are exact given the interpolation procedure. Furthermore, the interpolation makes the method independent of the line profile functional form contrary to other schemes using FFT methods to generate line-by-line spectra but relying on the analytic form of the profile Fourier transform. Finally, the method relies on a uniform frequency mesh. For non-uniform frequency meshes, however, the method can be applied by using a suitable temporary uniform mesh and the results interpolated onto the final mesh with little additional cost.

  3. A method to unfold the efficiency of gaseous detectors exposed to broad X-ray spectra

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines S. de; Lopes, Ricardo T.

    2000-01-01

    A method to obtain the efficiency of a gaseous detector exposed to broad energy X-ray spectra was developed. It consists in the de-convolution of the integrated detector response using the shapes of those spectra as a tool to unfold the aimed detector efficiency curve. For this purpose, the spectra emitted by a X-ray tube under several anode voltages, were properly characterized through measurements with a NaI(Tl) spectrometer. A Lorentz function was then fitted to each of the spectra, and their parameters expressed as a function of the anode voltage, by using polynomial and gaussian fittings. The integral of the product of each Lorentz function, by another unknown Lorentz function, expressing the detector efficiency curve, represents the response of the detector for each anode tension, e.g., each X-ray spectrum. The symbolical integration of that product, produces a general function containing the unknown parameters of the unknown efficiency curve. A non-linear fitting of this general function, to the detector response points, as experimentally obtained, generates the aimed parameters for the efficiency curve. The final detector efficiency curve is obtained after normalization procedures. (author)

  4. Application of NASVD method in the CE1-GRS spectra analysis

    International Nuclear Information System (INIS)

    Yang Jia; Ge Liangquan; Xiong Shengqing

    2010-01-01

    From the spectral shape features of the Chang'e-1 gamma-ray spectrometer (CE1-GRS) spectra data of level 3, it is difficult to identify elemental composition of the lunar surface. The paper proposes using Noise Adjusted Singular Value Decomposition (NASVD) method to qualitative analysis of CE1-GRS spectra. The result shows that a number of possible elements such as U, Th, K, Fe, Ti, Si, O, Al, Mg and Ca are qualitatively determined by this method.On the other hand, for each measured spectrum, the absolute value of the amplitude corresponding to the first spectral component indicates the total activity of its corresponding lunar surface region's radioactivity. (authors)

  5. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther

    2015-01-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes...... tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases......, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase...

  6. Gamma ray energy loss spectra simulation in NaI detectors with the Monte Carlo method

    International Nuclear Information System (INIS)

    Vieira, W.J.

    1982-01-01

    With the aim of studying and applying the Monte Carlo method, a computer code was developed to calculate the pulse height spectra and detector efficiencies for gamma rays incident on NaI (Tl) crystals. The basic detector processes in NaI (Tl) detectors are given together with an outline of Monte Carlo methods and a general review of relevant published works. A detailed description of the application of Monte Carlo methods to ν-ray detection in NaI (Tl) detectors is given. Comparisons are made with published, calculated and experimental, data. (Author) [pt

  7. A model independent method to deconvolve hard X-ray spectra

    International Nuclear Information System (INIS)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C.

    1984-01-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented. (orig.)

  8. Method for improving the gamma-transition cascade spectra amplitude resolution during coincidence code computerized processing

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    1984-01-01

    A method of unfolding the differential γ-cascade spectra during radiation capture of slow neutrons based on the computeri-- zed processing of the results of measurements performed, by means of a spectrometer with two Ge(Li) detectors is suggested. The efficiency of the method is illustrated using as an example the spectrum of 35 Cl(n, γ) reaction corresponding to the 8580 keV peak. It is shown that the above approach permits to improve the resolution by 1.2-2.6 times without decrease in registration efficiency within the framework of the method of coincidence pulse amplitude summation

  9. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    Science.gov (United States)

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  10. NIRS as an alternative to conventional soil analysis for Greenland soils (focus on SOC)

    DEFF Research Database (Denmark)

    Knadel, Maria; Ogric, Mateja; Adhikari, Kabindra

    Soil organic carbon (SOC) is an important soil property. It is the main constituents of soil organic matter and a good indicator of soil quality. The estimation and mapping of SOC content could be used to select potential agricultural areas in the Arctic areas. However, conventional analysis of SOC...... are time consuming and expensive. They involve a lot of sample preparation, and chemicals and are destructive. Near infrared spectroscopy (NIRS) in the range between 400 and 2500 nm is an alternative method for SOC analysis. It is fast and non-destructive. The aims of this study where to test...... the feasibility of using NIRS to estimate SOC content on a landscape and field scale in Greenland. Partial Least squares regression models were built to correlated soil spectra and their reference SOC data to develop calibration models. Very good predictive ability for both landscape and field scale were obtained...

  11. The Cheshire-cat-like Behavior of 2nu(sub 3) Overtone of Co2 near 2.134 micron: NIR Lab Spectra of Solid CO2 in H2O and CH3OH

    Science.gov (United States)

    Bernstein, Max; Sandford, Scott; Cruikshank, Dale

    2005-01-01

    Infrared (IR) spectra have demonstrated that solid H2O is very common in the outer Solar System, and solid carbon dioxide (CO2) has been detected on icy satellites, comets, and planetismals throughout the outer Solar System. In such environments, CO2 and H2O must sometimes be mixed at a molecular level, changing their IR absorption features. In fact, the IR spectra of CO2-H2O mixtures are not equivalent to a linear combination of the spectra of the pure materials. Laboratory IR spectra of pure CO2 and H2O have been published but a lack of near-IR spectra of CO2-H2O mixtures has made the interpretation of outer Solar System spectra more difficult. We present near infrared (IR) spectra of CO2 in H2O and in CH3OH compared to that of pure solid CO2 and find significant differences. Peaks not present in either pure H2O or pure CO2 spectra become evident. First, the CO2 (2nu(sub 3)) overtone near 2.134 micron (4685/ cm) that is not seen in pure solid CO2 is prominent in the spectrum of a CO2/H2O = 25 mixture. Second, a 2.74 micron (3650/ cm) dangling OH feature of water (and a potentially related peak at 1.89 micron) appear in the spectra of CO2-H2O ice mixtures, but may not be specific to the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with water. Changes in CO2 peak positions and profiles on warming of a CO2/H2O = 5 mixture are consistent with 'segregation' of the ice into nearly pure separate components. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 ( 2nu(sub 3)) overtone near 2.134 micron (4685/ cm) is not present in pure CO2 but prominent in mixtures it may be a good observational indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. Significant changes in the near IR spectrum of solid CO2 in the presence of H2O and CH3OH means that the abundance of solid CO2 in the

  12. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  13. Reconstruction of X-rays spectra of clinical linear accelerators using the generalized simulated annealing method

    International Nuclear Information System (INIS)

    Manrique, John Peter O.; Costa, Alessandro M.

    2016-01-01

    The spectral distribution of megavoltage X-rays used in radiotherapy departments is a fundamental quantity from which, in principle, all relevant information required for radiotherapy treatments can be determined. To calculate the dose delivered to the patient who make radiation therapy, are used treatment planning systems (TPS), which make use of convolution and superposition algorithms and which requires prior knowledge of the photon fluence spectrum to perform the calculation of three-dimensional doses and thus ensure better accuracy in the tumor control probabilities preserving the normal tissue complication probabilities low. In this work we have obtained the photon fluence spectrum of X-ray of the SIEMENS ONCOR linear accelerator of 6 MV, using an character-inverse method to the reconstruction of the spectra of photons from transmission curves measured for different thicknesses of aluminum; the method used for reconstruction of the spectra is a stochastic technique known as generalized simulated annealing (GSA), based on the work of quasi-equilibrium statistic of Tsallis. For the validation of the reconstructed spectra we calculated the curve of percentage depth dose (PDD) for energy of 6 MV, using Monte Carlo simulation with Penelope code, and from the PDD then calculate the beam quality index TPR_2_0_/_1_0. (author)

  14. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  15. Use of FT-NIR Spectroscopy for Bovine Colostrum Analysis

    Directory of Open Access Journals (Sweden)

    P. Navrátilová

    2006-01-01

    Full Text Available Fourier transformation near infrared spectroscopy (FT-NIR in combination with partial least squares (PLS method were used to determine the content of total solids, fat, non-fatty solids, lactose and proteins in bovine colostrum. Spectra of 90 samples were measured in the reflectance mode with a transflectance cuvette in the 10000-4000 cm-1 spectral ranges with 100 scans. Calibration was performed and statistical values of correlation coefficients (R and standard error of calibration values (SEC were computed for total solids (0.986 and 0.919, respectively, fat (0.997 and 0.285, respectively, non-fatty solids (0.995 and 0.451, respectively, lactose (0.934 and 0.285, respectively and protein (0.999 and 0.149, respectively. The calibration models developed were verified by cross validation. It follows from the study that FT-NIR spectroscopy can be used to determine the components of bovine colostrum.

  16. An innovative method for extracting isotopic information from low-resolution gamma spectra

    International Nuclear Information System (INIS)

    Miko, D.; Estep, R.J.; Rawool-Sullivan, M.W.

    1998-01-01

    A method is described for the extraction of isotopic information from attenuated gamma ray spectra using the gross-count material basis set (GC-MBS) model. This method solves for the isotopic composition of an unknown mixture of isotopes attenuated through an absorber of unknown material. For binary isotopic combinations the problem is nonlinear in only one variable and is easily solved using standard line optimization techniques. Results are presented for NaI spectrum analyses of various binary combinations of enriched uranium, depleted uranium, low burnup Pu, 137 Cs, and 133 Ba attenuated through a suite of absorbers ranging in Z from polyethylene through lead. The GC-MBS method results are compared to those computed using ordinary response function fitting and with a simple net peak area method. The GC-MBS method was found to be significantly more accurate than the other methods over the range of absorbers and isotopic blends studied

  17. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.

    Science.gov (United States)

    de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes

    2012-01-05

    This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  19. ADVANCEMENTS IN TIME-SPECTRA ANALYSIS METHODS FOR LEAD SLOWING-DOWN SPECTROSCOPY

    International Nuclear Information System (INIS)

    Smith, Leon E.; Anderson, Kevin K.; Gesh, Christopher J.; Shaver, Mark W.

    2010-01-01

    Direct measurement of Pu in spent nuclear fuel remains a key challenge for safeguarding nuclear fuel cycles of today and tomorrow. Lead slowing-down spectroscopy (LSDS) is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic mass with an uncertainty lower than the approximately 10 percent typical of today's confirmatory assay methods. Pacific Northwest National Laboratory's (PNNL) previous work to assess the viability of LSDS for the assay of pressurized water reactor (PWR) assemblies indicated that the method could provide direct assay of Pu-239 and U-235 (and possibly Pu-240 and Pu-241) with uncertainties less than a few percent, assuming suitably efficient instrumentation, an intense pulsed neutron source, and improvements in the time-spectra analysis methods used to extract isotopic information from a complex LSDS signal. This previous simulation-based evaluation used relatively simple PWR fuel assembly definitions (e.g. constant burnup across the assembly) and a constant initial enrichment and cooling time. The time-spectra analysis method was founded on a preliminary analytical model of self-shielding intended to correct for assay-signal nonlinearities introduced by attenuation of the interrogating neutron flux within the assembly.

  20. Using the SAND-II and MLM methods to reconstruct fast neutron spectra

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.

    1981-01-01

    The reconstruction of fast neutron spectra from measured reaction rates may be reduced to the solution of Fredholm's integral equation of the first kind. This problem falls in the category of incorrectly formulated problems, and so additional information is required concerning the unknown function i.e. concerning the differential energy dependence of the neutron, flux density sup(phi)(E). There are various methods for seeking a solution to the problem as formulated above. One of the best-known methods used in the USSR is the maximum likelihood method (MLM) (or directional difference method (DDM)), whereas SAND-II is commonly used abroad. The purpose of this paper is to compare the MLM and SAND-II methods, taking as an example the processing of measurement data which were obtained in the B-2 beam line at the BR-10 reactor in order to determine the composition of shielding for a fast reactor

  1. On children's dyslexia with NIRS

    Science.gov (United States)

    Gan, Zhuo; Li, Chengjun; Gong, Hui; Luo, Qingming; Yao, Bin; Song, Ranran; Wu, Hanrong

    2003-12-01

    Developmental dyslexia is a kind of prevalent psychologic disease. Some functional imaging technologies, such as FMRI and PET, have been used to study the brain activities of dyslexics. NIRS is a kind of novel technology which is more and more widely being used for study of the cognitive psychology. However, there aren"t reports about the dyslexic research using NIRS to be found until now. This paper introduces a NIRS system of four measuring channels. Brain activities of dyslexic subjects and normal subjects during reading task were studied with the NIRS system. Two groups of subjects, the group of dyslexia and the group of normal, were appointed to perform two reading tasks. At the same time, their cortical activities were measured with the NIRS system. This experimental result indicates that the brain activities of the dyslexic group were significantly higher than the control group in BA 48 and that NIRS can be used for the study of human brain activity.

  2. Study on thermal neutron spectra in reactor moderators by time-of-flight method

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-12-01

    Prediction of thermal neutron spectra in a reactor core plays very important role in the neutronic design of the reactor for obtaining the accurate thermal group constants. It is well known that the neutron scattering properties of the moderator materials markedly influence the thermal neutron spectra. Therefore, 0 0 angular dependent thermal neutron spectra were measured by the time-of-flight method in the following moderator bulks 1) Graphite bulk poisoned with boron at the temperatures from 20 to 800 0 C, 2) Light water bulk poisoned with Cadmium and/or Indium, 3) Light water-natural uranium heterogeneous bulk. The measured results were compared with calculation utilizing Young-Koppel and Haywood scattering model for graphite and light water respectively. On the other hand, a variety of 20% enriched uranium loaded and graphite moderated cores consisting of the different lattice cell in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments related to Very High Temperature Reactor (VHTR). The experimental data were for the critical masses in 235 U, reactivity worths of experimental burnable poison rods, thorium rods, natural-uranium rods and experimental control rods and kinetic parameters. It is made clear from comparison between measurement and calculation that the accurate thermal group constants can be obtained by use of the Young-Koppel and Haywood neutron scattering models if heterogeneity of reactor core lattices is taken into account precisely. (author)

  3. The method of extraction of subspectra with appreciably different values of hyperfine interaction parameters from Moessbauer spectra

    International Nuclear Information System (INIS)

    Nemtsova, O.M.

    2006-01-01

    The task of Moessbauer spectra processing of complex locally inhomogeneous or multi-phase systems is to reveal subspectral contributions with appreciably different values of hyperfine interaction parameters (HFI) in them. A universal method of processing such spectra is suggested which allows to extract the probability density distribution (PDD) of HFI parameters corresponding to the subspectra with essentially different parameters values. The basis of the method is Tikhonov's regularization method with selection for each subspectrum its own value of the regularization parameter. The universal application of the method is demonstrated in the examples of processing real spectra with different sets of subspectral contributions

  4. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.; Lomakina, Ekaterina I.

    2010-01-01

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm -1 NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  5. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation); Lomakina, Ekaterina I. [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm{sup -1} NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  6. Proton recoil spectra in spherical proportional counters calculated with finite element and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)

    2008-08-11

    Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.

  7. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.

  8. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics.

    Science.gov (United States)

    Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L

    2016-07-01

    The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison of alternative methods for multiplet deconvolution in the analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Blaauw, Menno; Keyser, Ronald M.; Fazekas, Bela

    1999-01-01

    Three methods for multiplet deconvolution were tested using the 1995 IAEA reference spectra: Total area determination, iterative fitting and the library-oriented approach. It is concluded that, if statistical control (i.e. the ability to report results that agree with the known, true values to within the reported uncertainties) is required, the total area determination method performs the best. If high deconvolution power is required and a good, internally consistent library is available, the library oriented method yields the best results. Neither Erdtmann and Soyka's gamma-ray catalogue nor Browne and Firestone's Table of Radioactive Isotopes were found to be internally consistent enough in this respect. In the absence of a good library, iterative fitting with restricted peak width variation performs the best. The ultimate approach as yet to be implemented might be library-oriented fitting with allowed peak position variation according to the peak energy uncertainty specified in the library. (author)

  10. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    International Nuclear Information System (INIS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-01-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd 3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho 3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb 3+ to Yb 3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar + laser, Kr + laser, Ti:sapphire laser, etc

  11. Fast and Convenient NIR Spectroscopy Procedure for Determination of Metformin Hydrochloride in Tablets

    Science.gov (United States)

    Pyzowski, J.; Lenartowicz, M.; Sobańska, A. W.; Brzezińska, E.

    2017-09-01

    A rapid and convenient near-infrared (NIR) reflectance spectroscopic procedure for the determination of metformin hydrochloride in tablets is presented. Determination was based on calibration curves that were obtained using a range of standards containing different concentrations of metformin hydrochloride blended with polyvinylpyrrolidone. The raw spectra of the standards, neat PVP, metformin hydrochloride, and powdered tablets were processed using a Multiplicative Scatter Correction filter as well as by the derivative spectroscopy method to give a basis for the calibration curve construction. The results were validated by thin-layer chromatography followed by UV-densitometry.

  12. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    Science.gov (United States)

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Determination of fast neutrons energy spectra by Monte-Carlo Method

    International Nuclear Information System (INIS)

    Chetaine, A.

    1986-01-01

    Two computation codes based on the Monte-Carlo method are established for studying the spectrometry of neutrons with 14 Mev as initial energy. The spectra are determined, on one hand, around a neutron generator Ti-T target and, on the other hand, in a big paraffin cylinder. One code allows to determine the spectrum of neutrons irradiating the sample at various distances from the Ti-T target versus accelerator parameters: high voltage, atomic or molecular nature of deuterons beam, target thickness and materials surrounding the target. The other code determines neutron spectra at various positions inside and outside the 30 x 30 cm paraffin cylinder. The validity of the procedure used in these codes is verified by determining the spectrum of neutrons crossing a big surface, using the procedure in question and using direct simulation method. The biasing procedure used in the two codes permits to have results with good statistics from a reduced number of drawings. 70 figs.; 62 refs.; 1 tab. (author)

  14. Thermo-dynamical contours of electronic-vibrational spectra simulated using the statistical quantum-mechanical methods

    DEFF Research Database (Denmark)

    Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel

    2011-01-01

    Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradiol...

  15. Separation of the overlapping effects in spectra for WDXRF using the Rietveld method

    International Nuclear Information System (INIS)

    Salvador, Vera Lucia Ribeiro

    2005-01-01

    This work presents a new methodology for the overlapping spectra separation obtained by the technique of wavelength dispersion X-ray fluorescence (WDXRF). This methodology allows to improve the conventional analytic results and to facilitate the determination of chemical species of a same element without chemical separation, by means of the separation of coming spectra of electronic transitions of valence electrons or chemical effects in internal electrons. With the software 'GSAS-EXPGUI' and the method of Rietveld overcomes the problem of overlapping lines of the present species in the sample and it facilitates the determination of the same ones simultaneously, without the need of samples patterns and calibration curves, what means an expressive gain in relation to other techniques. The preparation of the surface of the sample for the collection of the spectrum represents a critical stage for the acting of the analysis whose effects can be minimized being used the refinement of Rietveld, that allows the determination of the relationships of the intensities of the lines put upon by means of mathematical models, what establishes the basic conditions for obtaining of more precise results in the quantitative analysis. In the case of the determination of chemical species it can separate, for example Cr (III), Cr (VI) and Fe (II), Fe(III) that present overlapping of almost 100%. (author)

  16. A metric space for Type Ia supernova spectra: a new method to assess explosion scenarios

    Science.gov (United States)

    Sasdelli, Michele; Hillebrandt, W.; Kromer, M.; Ishida, E. E. O.; Röpke, F. K.; Sim, S. A.; Pakmor, R.; Seitenzahl, I. R.; Fink, M.

    2017-04-01

    Over the past years, Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, and considerable attention has been given to, both, observations and models of these events. However, until now, their progenitors are not known. The observed diversity of light curves and spectra seems to point at different progenitor channels and explosion mechanisms. Here, we present a new way to compare model predictions with observations in a systematic way. Our method is based on the construction of a metric space for SN Ia spectra by means of linear principal component analysis, taking care of missing and/or noisy data, and making use of partial least-squares regression to find correlations between spectral properties and photometric data. We investigate realizations of the three major classes of explosion models that are presently discussed: delayed-detonation Chandrasekhar-mass explosions, sub-Chandrasekhar-mass detonations and double-degenerate mergers, and compare them with data. We show that in the principal component space, all scenarios have observed counterparts, supporting the idea that different progenitors are likely. However, all classes of models face problems in reproducing the observed correlations between spectral properties and light curves and colours. Possible reasons are briefly discussed.

  17. Methods to develop site specific spectra and a review of the important parameters that influence the spectra

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1979-05-01

    Problems with using risk analysis methodologies to estimate the seismic hazard at a site are discussed in the context of the U.S. Nuclear Regulatory Commission's Systematic Evaluation Program (SEP). Various methodologies that may reasonably define seismic hazard are outlined. The major assumptions that can lead to significant variations in the predicted hazard are identified. Guidance is provided to appropriate choices of parameters, and possible corrections that can extend the meager earthquake data base for sites located in the eastern United States are presented. A method that incorporates various interpretations of the same data is recommended

  18. Novel absorptivity centering method utilizing normalized and factorized spectra for analysis of mixtures with overlapping spectra in different matrices using built-in spectrophotometer software.

    Science.gov (United States)

    Lotfy, Hayam Mahmoud; Omran, Yasmin Rostom

    2018-07-05

    A novel, simple, rapid, accurate, and economical spectrophotometric method, namely absorptivity centering (a-Centering) has been developed and validated for the simultaneous determination of mixtures with partially and completely overlapping spectra in different matrices using either normalized or factorized spectrum using built-in spectrophotometer software without a need of special purchased program. Mixture I (Mix I) composed of Simvastatin (SM) and Ezetimibe (EZ) is the one with partial overlapping spectra formulated as tablets, while mixture II (Mix II) formed by Chloramphenicol (CPL) and Prednisolone acetate (PA) is that with complete overlapping spectra formulated as eye drops. These procedures do not require any separation steps. Resolution of spectrally overlapping binary mixtures has been achieved getting recovered zero-order (D 0 ) spectrum of each drug, then absorbance was recorded at their maxima 238, 233.5, 273 and 242.5 nm for SM, EZ, CPL and PA, respectively. Calibration graphs were established with good correlation coefficients. The method shows significant advantages as simplicity, minimal data manipulation besides maximum reproducibility and robustness. Moreover, it was validated according to ICH guidelines. Selectivity was tested using laboratory-prepared mixtures. Accuracy, precision and repeatability were found to be within the acceptable limits. The proposed method is good enough to be applied to an assay of drugs in their combined formulations without any interference from excipients. The obtained results were statistically compared with those of the reported and official methods by applying t-test and F-test at 95% confidence level concluding that there is no significant difference with regard to accuracy and precision. Generally, this method could be used successfully for the routine quality control testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In-line monitoring and interpretation of an indomethacin anti-solvent crystallization process by near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Lee, Hea-Eun; Lee, Min-Jeong; Kim, Woo-Sik; Jeong, Myung-Yung; Cho, Young-Sang; Choi, Guang Jin

    2011-11-28

    PAT (process analytical technology) has been emphasized as one of key elements for the full implementation of QbD (quality-by-design) in the pharmaceutical area. NIRS (near-infrared spectroscopy) has been studied intensively as an in-line/on-line monitoring tool in chemical and biomedical industries. A precise and reliable monitoring of the particle characteristics during crystallization along with a suitable control strategy should be highly encouraged for the conformance to new quality system of pharmaceutical products. In this study, the anti-solvent crystallization process of indomethacin (IMC) was monitored using an in-line NIRS. IMC powders were produced via anti-solvent crystallization using two schemes; 'S-to-A' (solvent-to-antisolvent) and 'A-to-S' (antisolvent-to-solvent). In-line NIR spectra were analyzed by a PCA (principal component analysis) method. Although pure α-form IMC powder was resulted under A-to-S scheme, a mixture of the α-form and γ-form was produced for S-to-A case. By integrating the PCA results with off-line characterization (SEM, XRD, DSC) data, the crystallization process under each scheme was elucidated by three distinct consecutive steps. It was demonstrated that in-line NIRS, combined with PCA, can be very useful to monitor in real time and interpret the anti-solvent crystallization process with respect to the polymorphism and particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  1. Neutrino emission spectra of collapsing degenerate stellar cores - Calculations by the Monte Carlo method

    International Nuclear Information System (INIS)

    Levitan, Iu.L.; Sobol, I.M.; Khlopov, M.Iu.; Chechetkin, V.M.

    1982-01-01

    The variation of the hard part of the neutrino emission spectra of collapsing degenerate stellar cores with matter having a small optical depth to neutrinos is analyzed. The interaction of neutrinos with the degenerate matter is determined by processes of neutrino scattering on nuclei (without a change in neutrino energy) and neutrino scattering on degenerate electrons, in which the neutrino energy can only decrease. The neutrino emission spectrum of a collapsing stellar core in the initial stage of the onset of opacity is calculated by the Monte Carlo method: using a central density of 10 trillion g/cu cm and, in the stage of deep collapse, for a central density of 60 trillion g/cu cm. In the latter case the calculation of the spectrum without allowance for effects of neutrino degeneration in the central part of the collapsing stellar core corresponds to the maximum possible suppression of the hard part of the neutrino emission spectrum

  2. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra

    International Nuclear Information System (INIS)

    Avila, Gustavo; Carrington, Tucker

    2015-01-01

    In this paper, we improve the collocation method for computing vibrational spectra that was presented in Avila and Carrington, Jr. [J. Chem. Phys. 139, 134114 (2013)]. Using an iterative eigensolver, energy levels and wavefunctions are determined from values of the potential on a Smolyak grid. The kinetic energy matrix-vector product is evaluated by transforming a vector labelled with (nondirect product) grid indices to a vector labelled by (nondirect product) basis indices. Both the transformation and application of the kinetic energy operator (KEO) scale favorably. Collocation facilitates dealing with complicated KEOs because it obviates the need to calculate integrals of coordinate dependent coefficients of differential operators. The ideas are tested by computing energy levels of HONO using a KEO in bond coordinates

  3. Measurement and analysis of fast neutron spectra in reactor materials by time-of-flight method

    International Nuclear Information System (INIS)

    Hayashi, Shuhei; Kimura, Itsuro; Kobayashi, Shohei; Yamamoto, Shuji; Nishihara, Hiroshi.

    1982-01-01

    The LINAC-TOF experiments have been done to measure the neutron energy spectra in the assemblies of reactor materials. The sample materials to be measured were iron, stainless steel, aluminum, nickel, zirconium, thorium, lithium, and so on. The shapes of assemblies were piles (rectangular parallelopiped, sphere, and polyhedron) and slab. A photoneutron target was set at the center of the pile assemblies. Each assembly has an electron injection hole and a re-entrant hole. In case of a slab, a photo neutron target was placed at the outside of the slab. Neutrons were generated by using an electron linear accelerator (LINAC). The length of the flight path was 20 m. The neutron detectors were a Li-6 glass scintillator and a B-10 vaseline-NaI(Tl) scintillator. The spatial distributions of neutrons in the piles were measured by the foil activation method. The neutron transport calculation was performed, and the evaluation of group constants was made. (Kato, T.)

  4. A method of analyzing the scaling violation of inclusive spectra in hard processes

    International Nuclear Information System (INIS)

    Furmanski, W.; Petronzio, R.

    1982-01-01

    The analytic solution of the evolution equations in QCD is given in the form of a series of Laguerre polynomials in the variable y = ln(1/x). The Laguerre series converges very quickly and it can be truncated after few terms with a reasonable accuracy. Also high precision calculations are possible since the coefficients of the series are given by simple recurrence formulae. The method works both for non-singlet and for singlet spectra and it can be applied to any hard process. The inclusion of higher order effects is immediate. The Laguerre technique provides a natural framework for extracting from the data the input quark and gluon distributions without any prejudices concerning their particular analytic form. (orig.)

  5. Predicting glycogen concentration in the foot muscle of abalone using near infrared reflectance spectroscopy (NIRS).

    Science.gov (United States)

    Fluckiger, Miriam; Brown, Malcolm R; Ward, Louise R; Moltschaniwskyj, Natalie A

    2011-06-15

    Near infrared reflectance spectroscopy (NIRS) was used to predict glycogen concentrations in the foot muscle of cultured abalone. NIR spectra of live, shucked and freeze-dried abalones were modelled against chemically measured glycogen data (range: 0.77-40.9% of dry weight (DW)) using partial least squares (PLS) regression. The calibration models were then used to predict glycogen concentrations of test abalone samples and model robustness was assessed from coefficient of determination of the validation (R2(val)) and standard error of prediction (SEP) values. The model for freeze-dried abalone gave the best prediction (R2(val) 0.97, SEP=1.71), making it suitable for quantifying glycogen. Models for live and shucked abalones had R2(val) of 0.86 and 0.90, and SEP of 3.46 and 3.07 respectively, making them suitable for producing estimations of glycogen concentration. As glycogen is a taste-active component associated with palatability in abalone, this study demonstrated the potential of NIRS as a rapid method to monitor the factors associated with abalone quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Influence of Neutron Spectra Unfolding Method on Fast Neutron Dose Determination

    International Nuclear Information System (INIS)

    Marinkovic, P.

    1991-01-01

    Full text: Accuracy of knowing the fast neutron spectra has great influence on equivalent dose determination. In usual fast neutron spectrum measurements with scintillation detectors based on proton recoil, the main difficulty is confidence of unfolding method. In former ones variance of obtained result is usually great and negative values are possible too, which does means that we don't now exactly is obtained neutron spectrum real one. The new unfolding method based on Shanon's information theory, which gives non-negative spectrum and relative low variance, is obtained and appropriate numerical code for application in fast neutron spectrometry based on proton recoil is realized. In this method principle of maximum entropy and maximum likelihood are used together. Unknown group density distribution functions, which are considered as desired normalized mean neutron group flux, are constl u cted using only constrain of knowing mean value. Obtained distributions are consistent to available information (counts in NCA from proton recoil), while being maximally noncommittal with respect to all other unknown circumstances. For maximum likelihood principle, distribution functions around mean value of counts in the channels of MCA are taken to be Gauss function shape. Optimal non-negative solution is searched by means of Lagrange parameter method. Nonlinear system of equations, is solved using gradient and Newton iterative algorithm. Error covariance matrix is obtained too. (author)

  7. A time-minimizing hybrid method for fitting complex Moessbauer spectra

    International Nuclear Information System (INIS)

    Steiner, K.J.

    2000-07-01

    The process of fitting complex Moessbauer-spectra is known to be time-consuming. The fitting process involves a mathematical model for the combined hyperfine interaction which can be solved by an iteration method only. The iteration method is very sensitive to its input-parameters. In other words, with arbitrary input-parameters it is most unlikely that the iteration method will converge. Up to now a scientist has to spent her/his time to guess appropriate input parameters for the iteration process. The idea is to replace the guessing phase by a genetic algorithm. The genetic algorithm starts with an initial population of arbitrary input parameters. Each parameter set is called an individual. The first step is to evaluate the fitness of all individuals. Afterwards the current population is recombined to form a new population. The process of recombination involves the successive application of genetic operators which are selection, crossover, and mutation. These operators mimic the process of natural evolution, i.e. the concept of the survival of the fittest. Even though there is no formal proof that the genetic algorithm will eventually converge, there is an excellent chance that there will be a population with very good individuals after some generations. The hybrid method presented in the following combines a very modern version of a genetic algorithm with a conventional least-square routine solving the combined interaction Hamiltonian i.e. providing a physical solution with the original Moessbauer parameters by a minimum of input. (author)

  8. Designing and testing a wearable, wireless fNIRS patch.

    Science.gov (United States)

    Abtahi, Mohammadreza; Cay, Gozde; Saikia, Manob Jyoti; Mankodiya, Kunal

    2016-08-01

    Optical brain monitoring using near infrared (NIR) light has got a lot of attention in order to study the complexity of the brain due to several advantages as oppose to other methods such as EEG, fMRI and PET. There are a few commercially available functional NIR spectroscopy (fNIRS) brain monitoring systems, but they are still non-wearable and pose difficulties in scanning the brain while the participants are in motion. In this work, we present our endeavors to design and test a low-cost, wireless fNIRS patch using NIR light sources at wavelengths of 770 and 830nm, photodetectors and a microcontroller to trigger the light sources, read photodetector's output and transfer data wirelessly (via Bluetooth) to a smart-phone. The patch is essentially a 3-D printed wearable system, recording and displaying the brain hemodynamic responses on smartphone, also eliminates the need for complicated wiring of the electrodes. We have performed rigorous lab experiments on the presented system for its functionality. In a proof of concept experiment, the patch detected the NIR absorption on the arm. Another experiment revealed that the patch's battery could last up to several hours with continuous fNIRS recording with and without wireless data transfer.

  9. IAEA intercomparison of methods for processing Ge(Li) gamma-ray spectra: a preliminary report

    International Nuclear Information System (INIS)

    Parr, R.M.; Houtermans, H.; Schaerf, K.

    1979-01-01

    Nine spectra were provided, each covering an energy range of about 1 MeV and, with one exception, containing only well-separated single peaks; the exception was a spectrum containing double peaks. The intercomparison enables the user to test the ability of his methods: (1) to detect small peaks near the limit of detectability, (2) to determine the positions and areas of more easily detectable peaks, and (3) to determine the positions and areas of overlapping double peaks. A total of 212 sets of results was finally received for evaluation from 163 laboratories in 34 member states of the IAEA. For all the different types of tests involved, the methods reported covered a wide range of performance. Classification of these methods did not reveal any group offering a significantly restricted range of performance, though some groups of methods did appear, in the best hands, to be capable of producing better results than others: (1) for peak detection: visual methods and the use of the second derivative, (2) for peak-position (single peaks) determination: the fitting of a parabola or modified Gaussian function, and (3) for peak-area (single peaks) and peak-position and area (double peaks) determination: the fitting of a modified Gaussian function. Many methods reported gave either no estimates or poor estimates of error. With the exception of manual methods, the operating environment (e.g., large or small computer) did not appear to have any significant influence on the results. A comparison of four commonly used computer programs showed that the best results were obtained by SAMPO

  10. Shed a light of wireless technology on portable mobile design of NIRS

    Science.gov (United States)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  11. Numerical methods to analyze alpha spectra and application to the study of neptunium 237 and neptunium 236

    International Nuclear Information System (INIS)

    Garcia-Torano, E.

    1990-01-01

    A set of numerical methods to analize alpha spectra measured with semiconductor detectors are presented. The methods can be divided in two groups, the first being based in the X 2 minimization ands the second in the use of the Fourier Transform. The methods based in the minimization of X 2 can, in turn, be divided according to the model used to fit the spectra. Some of them use a monoenergetic line for the intercomparison with the other peaks in the same spectrum. The others take into account the analytical function developed to represent an alpha line. Both allow the determination of positions and areas of the components, as well as the uncertainties of the results. The Fast Fourier Transform is applied to the second group of methods, which include the smoothing of experimental data, and the deconvolution of spectra. Examples are given of the application of these methods to real spectra. The alpha spectra of 237 Np and 236 Np are studied by using some of the methods described in this work. (Author)

  12. NIR annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The fourth annual report of the Niedersaechsisches Institut fuer Radiooekologie (NIR) is intended to describe the scientific work of the institute and its members in 1987. The central part of this publication are the fourteen reports on scientific activities, to be divided into four large categories: - Behaviour of tritium in the atmosphere and the soil - on this, important new knowledge was gained in 1987 in an experiment in Canada on the release of this substance; - Investigations in the radioecology of iodine 129, the dependence of its mobility in the soil on humus substances and microorganisms, and its enrichment in the human thyroid gland; - Establishment of transfer factors in the food chain for fission products like cesium 137, cesium 134 and strontium 90 - this being a field where exact knowledge has regained great importance after the accident at Chernobyl; - Aerosol-physical investigations: on the one hand, to obtain data on the propagation of nutrient aerosols and aerosols carrying harmful substances in areas with vegetation, and on the other hand to measure 'snow-out' and 'fog-out' coefficients. To this are added a number of papers on the stability of the decontamination substance for cesium 137 - ammonium-iron-hexacyanoferrate (AIHCF) - in the soil, on the translocation of cesium in apple-trees, and on the improvement of the analytics for uranium and plutonium in environmental specimens. (orig./MG) [de

  13. Combined data mining/NIR spectroscopy for purity assessment of lime juice

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid

    2018-06-01

    This paper reports the data mining study on the NIR spectrum of lime juice samples to determine their purity (natural or synthetic). NIR spectra for 72 pure and synthetic lime juice samples were recorded in reflectance mode. Sample outliers were removed using PCA analysis. Different data mining techniques for feature selection (Genetic Algorithm (GA)) and classification (including the radial basis function (RBF) network, Support Vector Machine (SVM), and Random Forest (RF) tree) were employed. Based on the results, SVM proved to be the most accurate classifier as it achieved the highest accuracy (97%) using the raw spectrum information. The classifier accuracy dropped to 93% when selected feature vector by GA search method was applied as classifier input. It can be concluded that some relevant features which produce good performance with the SVM classifier are removed by feature selection. Also, reduced spectra using PCA do not show acceptable performance (total accuracy of 66% by RBFNN), which indicates that dimensional reduction methods such as PCA do not always lead to more accurate results. These findings demonstrate the potential of data mining combination with near-infrared spectroscopy for monitoring lime juice quality in terms of natural or synthetic nature.

  14. Generate tri-directional spectra-compatible time histories using HHT method

    International Nuclear Information System (INIS)

    Li, Bo; Xie, Wei-Chau; Pandey, Mahesh D.

    2016-01-01

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  15. Generate tri-directional spectra-compatible time histories using HHT method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Xie, Wei-Chau, E-mail: xie@uwaterloo.ca; Pandey, Mahesh D.

    2016-11-15

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  16. Study of spectral response of a neutron filter. Design of a method to adjust spectra

    International Nuclear Information System (INIS)

    Colomb-Dolci, F.

    1999-02-01

    The first part of this thesis describes an experimental method which intends to determine a neutron spectrum in the epithermal range [1 eV -10 keV]. Based on measurements of reaction rates provided by activation foils, it gives flux level in each energy range corresponding to each probe. This method can be used in any reactor location or in a neutron beam. It can determine scepter on eight energy groups, five groups in the epithermal range. The second part of this thesis presents a study of an epithermal neutron beam design, in the frame of Neutron Capture Therapy. A beam tube was specially built to test filters made up of different materials. Its geometry was designed to favour epithermal neutron crossing and to cut thermal and fast neutrons. A code scheme was validated to simulate the device response with a Monte Carlo code. Measurements were made at ISIS reactor and experimental spectra were compared to calculated ones. This validated code scheme was used to simulate different materials usable as shields in the tube. A study of these shields is presented at the end of this thesis. (author)

  17. A method for interpolating asymmetric peak shapes in multiplet γ-ray spectra

    International Nuclear Information System (INIS)

    Wang Siguang; Mao Yajun; Zhu Bo; Liang Yutie; Tang Peijia

    2009-01-01

    The peak shapes of γ-rays at various energies must be known before unfolding the multiplet spectra obtained by using semiconductor or scintillation detectors. Traditional methods describe isolated peaks with multi-parameter fitting functions, and assume that most of these parameters do not vary with energy because it is rare to find a spectrum with enough isolated peaks to constrain their dependence. We present an algorithm for interpolating the γ-ray profile at any intermediate energy given a pair of isolated γ-ray peaks from the spectrum under consideration. The algorithm is tested on experimental data and leads to a good agreement between the interpolated profile and the fitting function. This method is more accurate than the traditional approach, since all aspects of the peak shape are allowed to vary with energy. New definitions of Left-Half Width at Half Maximum, and Right-Half Width at Half Maximum for peak shape description are introduced in this paper. (authors)

  18. A new automated assign and analysing method for high-resolution rotationally resolved spectra using genetic algorithms

    NARCIS (Netherlands)

    Meerts, W.L.; Schmitt, M.

    2006-01-01

    This paper describes a numerical technique that has recently been developed to automatically assign and fit high-resolution spectra. The method makes use of genetic algorithms (GA). The current algorithm is compared with previously used analysing methods. The general features of the GA and its

  19. Microbeam facility at NIRS

    International Nuclear Information System (INIS)

    Sato, Yukio; Yamaguchi, Hiroshi

    2000-01-01

    Radiation biophysics or microdosimetry has suggested radiation effect mechanism. Full understanding of it has not yet been obtained. There are vast variety of events in physical, chemical and biological processes from at the time of irradiation to biological endpoints. Analysis of RBE-LET relation for biological endpoints like survival, mutation and transformation in cultured mammalian cells is still the leading subject to study the physical processes. The biological and repair processes have been studied phenomenologically through dose rate effect or fractionation experiment. Human genome project has accelerated biological sciences as a whole taking methodology of the molecular biology, where the mechanism is explained by molecules involved. We have thus to know entity and its (biological) function in every single process. Molecular biological approach in radiation biology has started and revealed several proteins being involved in the repair processes. Quantitative relation between phenomenological data like cell survivals and molecular processes, however, has been little known yet. A promising approach to fill this gap should be the study by microbeam, which enables us to see, for example, a deletion in chromosomal level by a single particle traverse of cell nucleus and may suggest possible molecular processes. Under this motivation we started feasibility study on installation of a microbeam port in our Tandem accelerator (5.1 MeV 4 He 2+ ). We have planned to adopt a lens focusing and a scanning system developed (by the Oxford microbeam Ltd) for the existing micro PIXE system in NIRS, which has basically achieved irradiation to a cell within a position resolution of 2 micrometer. There are two practical requirements, i.e. precise positioning and faster irradiation. These are described including research subjects planned. (author)

  20. Determination of the fast neutrons spectra by the Elastic scattering method (n, p)

    International Nuclear Information System (INIS)

    Elizalde D, J.

    1973-01-01

    This work consists in determining the fast neutron spectra emitted by a Pu-Be isotopic source. The implemented technique is based in the spectrometry (n, p). This consists in making to fall on a fast neutrons beams (polyenergetic) over a thin film of hydrogenated material, detecting the spectra of emitted protons at a fix angle. The polyethylene film and the used solid state detector are inside of a vacuum chamber. The detector is placed at 30 degree with respect to direction of the incident neutrons beam. The protons spectra is stored in a multichannel. the energy is obtained with the prior calibration of the system. The data processing involves the transformation of the protons spectra observed at the falling on neutrons spectra over the film. The energy of the neutrons is related with that of the protons, according to the collision kinematical equations. The cross section of elastic collision of the neutrons with the hydrogen atoms is obtained from literature. Applying these relations to the observed spectra it is obtained the falling on neutron spectra over the film. (Author)

  1. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  2. A rapid method of estimating the solar irradiance spectra with potential lighting applications

    NARCIS (Netherlands)

    Gao, Y.; Dong, J.; Isabella, O.; Zeman, M.; Zhang, G

    2016-01-01

    Diverse solar irradiance spectra can be observed under different conditions of time, date, location, weather, etc. Since the solar irradiance spectrum is required by certain scientific and engineering applications, obtaining accurate spectral data is essential. Measurements by spectrophotometers are

  3. Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    Directory of Open Access Journals (Sweden)

    Ronghui ZHENG

    2017-12-01

    Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test

  4. THE CBS SPECTRA INVESTIGATION AS METHOD OF THE PN CHEMICAL COMPOSITION ANALYSIS

    OpenAIRE

    Shimanskaya, N. N.; Shimansky, V. V.; Bikmaev, I. F.; Sakhibullin, N. A.; Zhuchkov, R. Ya.

    2007-01-01

    We report the results of the investigations of chemical composition of close binaries which had gone through the stage of common envelope and which are the remnants of planetary nebular cores. High resolution spectra for different phases of orbital period of V471 Tau were taken by RTT-150 telescope and were investigated by the modified SYNTH-K program. It was found that the spectra show noticeable variability with appearance of emission components depended on the orbital period phase. For che...

  5. Acrylamide inverse miniemulsion polymerization: in situ, real-time monitoring using nir spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. E. Colmán

    2014-12-01

    Full Text Available In this work, the ability of on-line NIR spectroscopy for the prediction of the evolution of monomer concentration, conversion and average particle diameter in acrylamide inverse miniemulsion polymerization was evaluated. The spectral ranges were chosen as those representing the decrease in concentration of monomer. An increase in the baseline shift indicated that the NIR spectra were affected by particle size. Multivariate partial least squares calibration models were developed to relate NIR spectra collected by the immersion probe with off-line conversion and polymer particle size data. The results showed good agreement between off-line data and values predicted by the NIR calibration models and these latter were also able to detect different types of operational disturbances. These results indicate that it is possible to monitor variables of interest during acrylamide inverse miniemulsion polymerizations.

  6. Calculation of emission and absorption spectra of LTE plasma by the STA method

    International Nuclear Information System (INIS)

    Oreg, A.B.J.; Goldstein, W.H.

    1991-01-01

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for LTE plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations to a specific one-electron transition is then represented by a Gaussian whose moments (total intensity, average energy and variance) are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the superconfiguration the authors use zeroeth order energies in the Boltzmann factor corrected by a superconfiguration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed UTA structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions. The authors also take into account orbital relaxation by calculating orbitals and energies for each superconfiguration in its own, optimized potential

  7. Filtering natural light at the greenhouse covering - better greenhouse climate and higher production by filtering out NIR?

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2006-01-01

    Wageningen UR investigated the potentials of several NIR-filtering methods to be applied in Dutch horticulture. NIR-filtering can be done by the greenhouse covering or by internal or external moveable screens. The objective of this investigation was to quantify the effect of different NIR-filtering

  8. [On-site evaluation of raw milk qualities by portable Vis/NIR transmittance technique].

    Science.gov (United States)

    Wang, Jia-Hua; Zhang, Xiao-Wei; Wang, Jun; Han, Dong-Hai

    2014-10-01

    To ensure the material safety of dairy products, visible (Vis)/near infrared (NIR) spectroscopy combined with che- mometrics methods was used to develop models for fat, protein, dry matter (DM) and lactose on-site evaluation. A total of 88 raw milk samples were collected from individual livestocks in different years. The spectral of raw milk were measured by a porta- ble Vis/NIR spectrometer with diffused transmittance accessory. To remove the scatter effect and baseline drift, the diffused transmittance spectra were preprocessed by 2nd order derivative with Savitsky-Golay (polynomial order 2, data point 25). Changeable size moving window partial least squares (CSMWPLS) and genetic algorithms partial least squares (GAPLS) meth- ods were suggested to select informative regions for PLS calibration. The PLS and multiple linear regression (MLR) methods were used to develop models for predicting quality index of raw milk. The prediction performance of CSMWPLS models were similar to GAPLS models for fat, protein, DM and lactose evaluation, the root mean standard errors of prediction (RMSEP) were 0.115 6/0.103 3, 0.096 2/0.113 7, 0.201 3/0.123 7 and 0.077 4/0.066 8, and the relative standard deviations of prediction (RPD) were 8.99/10.06, 3.53/2.99, 5.76/9.38 and 1.81/2.10, respectively. Meanwhile, the MLR models were also cal- ibrated with 8, 10, 9 and 7 variables for fat, protein, DM and lactose, respectively. The prediction performance of MLR models was better than or close to PLS models. The MLR models to predict fat, protein, DM and lactose yielded the RMSEP of 0.107 0, 0.093 0, 0.136 0 and 0.065 8, and the RPD of 9.72, 3.66, 8.53 and 2.13, respectively. The results demonstrated the usefulness of Vis/NIR spectra combined with multivariate calibration methods as an objective and rapid method for the quality evaluation of complicated raw milks. And the results obtained also highlight the potential of portable Vis/NIR instruments for on-site assessing quality indexes of

  9. Using decision trees and their ensembles for analysis of NIR spectroscopic data

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey V.

    and interpretation of the models. In this presentation, we are going to discuss an applicability of decision trees based methods (including gradient boosting) for solving classification and regression tasks with NIR spectra as predictors. We will cover such aspects as evaluation, optimization and validation......Advanced machine learning methods, like convolutional neural networks and decision trees, became extremely popular in the last decade. This, first of all, is directly related to the current boom in Big data analysis, where traditional statistical methods are not efficient. According to the kaggle.......com — the most popular online resource for Big data problems and solutions — methods based on decision trees and their ensembles are most widely used for solving the problems. It can be noted that the decision trees and convolutional neural networks are not very popular in Chemometrics. One of the reasons...

  10. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    Science.gov (United States)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  11. [Growth of codoped CdWO4 crystals by Bridgman method and their optical spectra].

    Science.gov (United States)

    Yu, Can; Xia, Hai-Ping; Wang, Dong-Jie; Chen, Hong-Bing

    2011-09-01

    The CdWO4 crystals with good quality in the size of Phi25 mm x 120 mm, doped with Co in 0.5% molar fraction in the raw composition, were grown by the Bridgman method by taking -70 degrees C x cm(-1) of solid-liquid interface and -0.50 mm x h(-1) growth rate. The crystal presents transparence and deep blue. The X-ray diffraction (XRD) was used to characterize the crystals. Three absorption peaks at 518, 564 and 655 nm respectively, which are attributed to the overlapping of 4 T1 (4F) --> 4A2 (4F) and 4 T1 (4F) --> 4 T1 (4P) of Co2+ octahedrons, and a wide band centered at 1 863 nm, which is attributed to 4Ti (4F) --> 4 T2 (4F), was observed. The absorption results indicated that the Co ions presented +2 valence in crystal and located within the distorted oxygen octahedrons. The crystal-field parameter D(q) and the Racah parameter B were estimated to be 990 and 726.3 cm(-1) respectively based on the absorption spectra. A fluorescence emission at 778 nm (4T1 (4P) --> 4 T1 (4F)) for codoped CdWO4 crystals was observed under excitation by 520 nm light. It can be deduced from the changes in absorption and emission intensity of different parts of crystal that the concentration of Co2+ ion in crystal increased along growing direction and the effective distribution coefficient of Co2+ ion in CdWO4 crystal is less than 1.

  12. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    Science.gov (United States)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  13. A solution of nonlinear equation for the gravity wave spectra from Adomian decomposition method: a first approach

    Directory of Open Access Journals (Sweden)

    Antonio Gledson Goulart

    2013-12-01

    Full Text Available In this paper, the equation for the gravity wave spectra in mean atmosphere is analytically solved without linearization by the Adomian decomposition method. As a consequence, the nonlinear nature of problem is preserved and the errors found in the results are only due to the parameterization. The results, with the parameterization applied in the simulations, indicate that the linear solution of the equation is a good approximation only for heights shorter than ten kilometers, because the linearization the equation leads to a solution that does not correctly describe the kinetic energy spectra.

  14. High-throughput prediction of tablet weight and trimethoprim content of compound sulfamethoxazole tablets for controlling the uniformity of dosage units by NIR.

    Science.gov (United States)

    Dong, Yanhong; Li, Juan; Zhong, Xiaoxiao; Cao, Liya; Luo, Yang; Fan, Qi

    2016-04-15

    This paper establishes a novel method to simultaneously predict the tablet weight (TW) and trimethoprim (TMP) content of compound sulfamethoxazole tablets (SMZCO) by near infrared (NIR) spectroscopy with partial least squares (PLS) regression for controlling the uniformity of dosage units (UODU). The NIR spectra for 257 samples were measured using the optimized parameter values and pretreated using the optimized chemometric techniques. After the outliers were ignored, two PLS models for predicting TW and TMP content were respectively established by using the selected spectral sub-ranges and the reference values. The TW model reaches the correlation coefficient of calibration (R(c)) 0.9543 and the TMP content model has the R(c) 0.9205. The experimental results indicate that this strategy expands the NIR application in controlling UODU, especially in the high-throughput and rapid analysis of TWs and contents of the compound pharmaceutical tablets, and may be an important complement to the common NIR on-line analytical method for pharmaceutical tablets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.

    Science.gov (United States)

    Schulze, H Georg; Turner, Robin F B

    2014-01-01

    Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses, they must be removed. Although both hardware-based and software-based spike removal methods exist, they typically require parameter and threshold specification dependent on well-considered user input. Here, we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes, and those that are required (e.g., standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.

  16. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    Science.gov (United States)

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av

  17. Kernel principal component analysis residual diagnosis (KPCARD): An automated method for cosmic ray artifact removal in Raman spectra

    International Nuclear Information System (INIS)

    Li, Boyan; Calvet, Amandine; Casamayou-Boucau, Yannick; Ryder, Alan G.

    2016-01-01

    A new, fully automated, rapid method, referred to as kernel principal component analysis residual diagnosis (KPCARD), is proposed for removing cosmic ray artifacts (CRAs) in Raman spectra, and in particular for large Raman imaging datasets. KPCARD identifies CRAs via a statistical analysis of the residuals obtained at each wavenumber in the spectra. The method utilizes the stochastic nature of CRAs; therefore, the most significant components in principal component analysis (PCA) of large numbers of Raman spectra should not contain any CRAs. The process worked by first implementing kernel PCA (kPCA) on all the Raman mapping data and second accurately estimating the inter- and intra-spectrum noise to generate two threshold values. CRA identification was then achieved by using the threshold values to evaluate the residuals for each spectrum and assess if a CRA was present. CRA correction was achieved by spectral replacement where, the nearest neighbor (NN) spectrum, most spectroscopically similar to the CRA contaminated spectrum and principal components (PCs) obtained by kPCA were both used to generate a robust, best curve fit to the CRA contaminated spectrum. This best fit spectrum then replaced the CRA contaminated spectrum in the dataset. KPCARD efficacy was demonstrated by using simulated data and real Raman spectra collected from solid-state materials. The results showed that KPCARD was fast ( 1 million) Raman datasets. - Highlights: • New rapid, automatable method for cosmic ray artifact correction of Raman spectra. • Uses combination of kernel PCA and noise estimation for artifact identification. • Implements a best fit spectrum replacement correction approach.

  18. Application of FT NIR Spectroscopy in the Determination of Basic Physical and Chemical Properties of Sausages

    Directory of Open Access Journals (Sweden)

    Zuzana Procházková

    2010-01-01

    Full Text Available The objectives of this study were to develop calibration models for determination of water activity and the content of fat, dry matter, salt, non collagen muscle protein and pH in dry cooked sausages. Samples (n = 42 were scanned in FT-NIR Analyzer and simultaneously analyzed by standard methods. The spectra were measured in the reflectance mode with a compressive cell between 10 000 and 4 000 cm-1, averaging 100 scans. Calibration models were developed using the partial least squares (PLS method. These calibration models were checked later by crossvalidation. The following statistical values were obtained: R (correlation coefficient = 0.997 and SEC (standard error of calibration = 0.002 for water activity, R = 0.966 and SEC = 0.023 for pH, R = 0.995 and SEC = 0.970 for dry matter content, R = 0.995 and SEC = 0.045 for salt content, R = 0.965 and SEC = 0.652 for non collagen muscle protein, R = 0.996 and SEC = 0.559 for fat content. The results of the study showed that FT-NIR is a suitable method for rapid analysis of physical and chemical properties of sausages.

  19. NIR techniques create added values for the pellet and biofuel industry.

    Science.gov (United States)

    Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan

    2009-02-01

    A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.

  20. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    Science.gov (United States)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  1. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib

    2007-01-01

    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis...... aluminium content in aluminium hydroxide suspension. (c) 2007 Elsevier Ltd. All rights reserved....

  2. Automatic moisture content determination on biomass with NIR and radio frequency spectroscopy; Automatisk fukthaltsmaetning paa biobraenslen med NIR samt radiofrekvent spektroskopi

    Energy Technology Data Exchange (ETDEWEB)

    Dahlquist, Erik; Nystroem, Jenny; Thorin, Eva; Paz, Ana de la [Maelardalen Univ. (Sweden). Dept. of Public Technology; Axrup, Lars [Stora Enso AB (Sweden)

    2005-08-01

    possible. The average of five gravimetric analyses from the homogenized overall sample was used to calibrate the instruments. Models were built using multi variable data analysis from the spectra together with these gravimetric reference measurements. The result was that we achieved a RMSEP (standard deviation between the instrument measurement and the reference measurement) of 2,2 % moisture for the RF-methods for all fuels (wood, root-branch-top, flakes, bark and reuse wood) except peat, and for the whole moisture range (30-72% moisture content). A separate calibration was performed on peat, which has a very different density than the other materials. RMSEP for peat was 3.1 % moisture. For a more limited moisture range and only separate fuel fractions the RMSEP could be < 2 %. For the NIR-method the FT-NIR achieved a RMSEP of 1.6 % moisture when all fuels except peat and reuse fuel were used for calibration, and for the whole moisture range (34-72%). For peat the RMSEP was 4.8 % moisture due to the inhomogeneous material. For the DA-NIR instrument the corresponding figures were RMSEP 2.1 and 3.5 %. When we include also sampling from the large volume the instrument measurements will normally be better than the manual sampling followed by the gravimetric analysis used today, with few samples. The gravimetric reference method has a standard deviation of 1,1- 3,6 % moisture depending on the fuel type. To this we have to add the uncertainty in the sampling with respect to the complete delivery of a large volume. As the inaccuracy of the reference method is included in the RMSEP, we can never achieve a better RMSEP than the standard deviation of the reference method. This is important to notice, and partly explains the apparently high values of the RMSEP. The conclusion is that both the RF and the NIR-methods can be used instead of the lab methods used today. These instruments are very fast and the price level should be acceptable compared to the cost of lab-measurements and

  3. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  4. Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopy for rapid quality assessment of Chinese medicine preparation Honghua Oil.

    Science.gov (United States)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Leung, Hei-Wun

    2008-02-13

    Honghua Oil (HHO), a traditional Chinese medicine (TCM) oil preparation, is a mixture of several plant essential oils. In this text, the extended ranges of Fourier transform mid-infrared (FT-MIR) and near infrared (FT-NIR) were recorded for 48 commercially available HHOs of different batches from nine manufacturers. The qualitative and quantitative analysis of three marker components, alpha-pinene, methyl salicylate and eugenol, in different HHO products were performed rapidly by the two vibrational spectroscopic methods, i.e. MIR with horizontal attenuated total reflection (HATR) accessory and NIR with direct sampling technique, followed by partial least squares (PLS) regression treatment of the set of spectra obtained. The results indicated that it was successful to identify alpha-pinene, methyl salicylate and eugenol in all of the samples by simple inspection of the MIR-HATR spectra. Both PLS models established with MIR-HATR and NIR spectral data using gas chromatography (GC) peak areas as calibration reference showed a good linear correlation for each of all three target substances in HHO samples. The above spectroscopic techniques may be the promising methods for the rapid quality assessment/quality control (QA/QC) of TCM oil preparations.

  5. Measurement of fast assembly spectra using time-of-flight method

    International Nuclear Information System (INIS)

    Duquesne, Henry; Rotival, Michel; Schmitt, Andre; Allard, Christian; De Keyser, Albert; Hortsmann, Henri

    1975-07-01

    Measurement of neutron spectra made in fast subcritical assemblies HUG 3 and PHUG 3 (uranium-graphite and plutonium-graphite) utilizing time-of-flight techniques are described. The matrix were excited by the pulsed neutron source from the BCMN Linac beam impinging on a target of natural uranium. Details of the experimental procedure, safety studies, detector calibration and data reduction are given [fr

  6. Quasi-classical integral method for spectra calculation of symmetric central problems

    International Nuclear Information System (INIS)

    Lobashev, A.A.; Trunov, N.N.

    2000-01-01

    The new approach to the quantization quasi-classical conditions is developed. It is based on general exact properties of the wave equations and their spectra and it does not use asymptotic decompositions. The quantization conditions for the central-symmetric potentials depend only on the totality of integrals, including the classical pulse degrees. The energy level values, calculated by means of this conditions, are in good agreement with the numerical data [ru

  7. Method to generate generic floor response spectra for operating nuclear power plant

    International Nuclear Information System (INIS)

    Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.

    1985-01-01

    The general approach in the development of the response spectra was to study the effects on the dynamic characteristics of each of the elements in the chain of events that goes between the loads and the responses. This includes the loads, the soils and the structures. A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were then varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels

  8. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  9. A method to generate generic floor response spectra for operating nuclear power plants

    International Nuclear Information System (INIS)

    Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.

    1985-01-01

    A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were than varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels. (orig./HP)

  10. Sequential coating upconversion NaYF{sub 4}:Yb,Tm nanocrystals with SiO{sub 2} and ZnO layers for NIR-driven photocatalytic and antibacterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Tou, Meijie; Luo, Zhenguo; Bai, Song; Liu, Fangying; Chai, Qunxia; Li, Sheng; Li, Zhengquan, E-mail: zqli@zjnu.edu.cn

    2017-01-01

    ZnO is one of the most promising materials for both photocatalytic and antibacterial applications, but its wide bandgap requires the excitation of UV light which limits their applications under visible and NIR bands. Herein, we demonstrate a facile approach to synthesize core-shell-shell hybrid nanoparticles consisting of hexagonal NaYF{sub 4}:Yb,Tm, amorphous SiO{sub 2} and wurtzite ZnO. The upconversion nanocrystals are used as the core seeds and sequentially coated with an insulting shell and a semiconductor layer. Such hybrid nanoparticles can efficiently utilize the NIR light through the upconverting process, and display notable photocatalytic performance and antibacterial activity under NIR irradiation. The developed NaYF{sub 4}:Yb,Tm@SiO{sub 2}@ZnO nanoparticles are characterized with TEM, XRD, EDS, XPS and PL spectra, and their working mechanism is also elucidated. - Highlights: • Core-shell NaYF{sub 4}:Yb,Tm@SiO{sub 2}@TiO{sub 2} NPs were synthesized via a sequential coating method. • Hybrid NaYF{sub 4}:Yb,Tm@SiO{sub 2}@TiO{sub 2} NPs show NIR-light enhanced photocatalytic activity. • NIR-driven antibacterial performance has been realized with NaYF{sub 4}:Yb,Tm@SiO{sub 2}@TiO{sub 2} NPs. • Working mechanism of the hybrid photocatalysts as antibacterial agents was proposed.

  11. Qualitative Analysis of Chang'e-1 γ-ray Spectrometer Spectra Using Noise Adjusted Singular Value Decomposition Method

    International Nuclear Information System (INIS)

    Yang Jia; Ge Liangquan; Xiong Shengqing

    2010-01-01

    From the features of spectra shape of Chang'e-1 γ-ray spectrometer(CE1-GRS) data, it is difficult to determine elemental compositions on the lunar surface. Aimed at this problem, this paper proposes using noise adjusted singular value decomposition (NASVD) method to extract orthogonal spectral components from CE1-GRS data. Then the peak signals in the spectra of lower-order layers corresponding to the observed spectrum of each lunar region are respectively analyzed. Elemental compositions of each lunar region can be determined based upon whether the energy corresponding to each peak signal equals to the energy corresponding to the characteristic gamma-ray line emissions of specific elements. The result shows that a number of elements such as U, Th, K, Fe, Ti, Si, O, Al, Mg, Ca and Na are qualitatively determined by this method. (authors)

  12. Correction of measured charged-particle spectra for energy losses in the target - A comparison of three methods

    CERN Document Server

    Soederberg, J; Alm-Carlsson, G; Olsson, N

    2002-01-01

    The experimental facility, MEDLEY, at the The Svedberg Laboratory in Uppsala, has been constructed to measure neutron-induced charged-particle production cross-sections for (n, xp), (n, xd), (n, xt), (n, x sup 3 He) and (n, x alpha) reactions at neutron energies up to 100 MeV. Corrections for the energy loss of the charged particles in the target are needed in these measurements, as well as for loss of particles. Different approaches have been used in the literature to solve this problem. In this work, a stripping method is developed, which is compared with other methods developed by Rezentes et al. and Slypen et al. The results obtained using the three codes are similar and they could all be used for correction of experimental charged-particle spectra. Statistical fluctuations in the measured spectra cause problems independent of the applied technique, but the way to handle it differs in the three codes.

  13. NIR spectroscopy as a tool for discriminating between lichens exposed to air pollution.

    Science.gov (United States)

    Casale, Monica; Bagnasco, Lucia; Giordani, Paolo; Mariotti, Mauro Giorgio; Malaspina, Paola

    2015-09-01

    Lichens are used as biomonitors of air pollution because they are extremely sensitive to the presence of substances that alter atmospheric composition. Fifty-one thalli of two different varieties of Pseudevernia furfuracea (var. furfuracea and var. ceratea) were collected far from local sources of air pollution. Twenty-six of these thalli were then exposed to the air for one month in the industrial port of Genoa, which has high levels of environmental pollution. The possibility of using Near-infrared spectroscopy (NIRS) for generating a 'fingerprint' of lichens was investigated. Chemometric methods were successfully applied to discriminate between samples from polluted and non-polluted areas. In particular, Principal Component Analysis (PCA) was applied as a multivariate display method on the NIR spectra to visualise the data structure. This showed that the difference between samples of different varieties was not significant in comparison to the difference between samples exposed to different levels of environmental pollution. Then Linear Discriminant Analysis (LDA) was carried out to discriminate between lichens based on their exposure to pollutants. The distinction between control samples (not exposed) and samples exposed to the air in the industrial port of Genoa was evaluated. On average, 95.2% of samples were correctly classified, 93.0% of total internal prediction (5 cross-validation groups) and 100.0% of external prediction (on the test set) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique : a review

    Directory of Open Access Journals (Sweden)

    Li eXiao

    2014-08-01

    Full Text Available Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR and pyrolysis-molecular beam mass spectrometry (Py-mbms are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis and for building regression models (partial least square regression between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated

  15. NIRS of body and tissues in growing rabbits fed diets with different fat sources and supplemented with Curcuma longa

    Directory of Open Access Journals (Sweden)

    Pier Giorgio Peiretti

    2013-06-01

    Full Text Available A portable Near Infrared Reflectance Spectroscopy (NIRS instrument was applied to 40 growing rabbits to determine body and tissue differences induced by experimental factors. The rabbits were examined at 2 live sites, in 7 warm carcass tissues and in longissimus dorsi muscle samples prepared in ethanol. For this purpose, the method was applied in a bi-factorial experiment concerning the dietary oil source (O (maize vs. palm oil and Curcuma longa (C supplementation (0 and 3 g/kg, respectively. Significant chemical differences emerged for palmitic, oleic and linoleic acids in the longissimus dorsi muscle due to the O factor and for linolenic acid due to the C factor. The NIRS spectra and chemical analyses were elaborated by the Partial Least Squares (PLS method, and the rsquares in cross-validation (R2cv were retained as measure of the unoriented differentiation between the levels of the planned factor for each landmark and fatty acid (FA profile. Multivariate PLS analysis of the FA muscular fat showed that the O factor induced strong differentiation (R2cv: 0.96, while less influence (0.33 was observed for the C factor. The model based on the NIRS radiation of the landmarks clearly shows the O factor effects, not only in the perirenal (0.90 and scapular (0.85 fats, but also in the belly (0.76, liver (0.73 and hind legs (0.72. Whereas the C effects were only expressed in the live animals (ears: 0.66 and abdominal wall: 0.58 and in post-mortem (liver: 0.60. It was concluded that a preliminary NIRS scan of the carcass and of live rabbits can point out the presence of intrinsic experimental effects concerning the lipid metabolism of polyunsaturated FA of the n-6 series (O factor and n-3 series (C factor.

  16. Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra

    Science.gov (United States)

    Sulc, Miroslav; Hernandez, Henar; Martinez, Todd J.; Vanicek, Jiri

    2014-03-01

    We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that cellularization yields further acceleration [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing its accuracy by first implementing an exact Gaussian basis method (GBM) combining the accuracy of quantum dynamics and efficiency of classical dynamics. The DR is then derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These include the Gaussian DR (GDR), an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussians evolving classically with an average Hamiltonian. The methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0 /S1 model, and quartic oscillator. Both the GBM and the GDR are shown to increase the accuracy of the DR. Surprisingly, in chaotic systems the GDR can outperform the presumably more accurate GBM, in which the two bases evolve separately. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  17. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  18. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  19. A new non-iterative method for fitting Lorentzian to Moessbauer spectra

    International Nuclear Information System (INIS)

    Mukoyama, T.; Vegh, J.

    1980-01-01

    A new method for fitting a Lorentzian function without an iterative procedure is presented. The method is quicker and simpler than the previously proposed method of non-iterative fitting. Comparison with the previous method and with the conventional iterative method has been made. It is shown that the present method gives satisfactory results. (orig.)

  20. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    Science.gov (United States)

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  1. A validated near-infrared spectroscopic method for methanol detection in biodiesel

    Science.gov (United States)

    Paul, Andrea; Bräuer, Bastian; Nieuwenkamp, Gerard; Ent, Hugo; Bremser, Wolfram

    2016-06-01

    Biodiesel quality control is a relevant issue as biodiesel properties influence diesel engine performance and integrity. Within the European metrology research program (EMRP) ENG09 project ‘Metrology for Biofuels’, an on-line/at-site suitable near-infrared spectroscopy (NIRS) method has been developed in parallel with an improved EN14110 headspace gas chromatography (GC) analysis method for methanol in biodiesel. Both methods have been optimized for a methanol content of 0.2 mass% as this represents the maximum limit of methanol content in FAME according to EN 14214:2009. The NIRS method is based on a mobile NIR spectrometer equipped with a fiber-optic coupled probe. Due to the high volatility of methanol, a tailored air-tight adaptor was constructed to prevent methanol evaporation during measurement. The methanol content of biodiesel was determined from evaluation of NIRS spectra by partial least squares regression (PLS). Both GC analysis and NIRS exhibited a significant dependence on biodiesel feedstock. The NIRS method is applicable to a content range of 0.1% (m/m) to 0.4% (m/m) of methanol with uncertainties at around 6% relative for the different feedstocks. A direct comparison of headspace GC and NIRS for samples of FAMEs yielded that the results of both methods are fully compatible within their stated uncertainties.

  2. A validated near-infrared spectroscopic method for methanol detection in biodiesel

    International Nuclear Information System (INIS)

    Paul, Andrea; Bräuer, Bastian; Bremser, Wolfram; Nieuwenkamp, Gerard; Ent, Hugo

    2016-01-01

    Biodiesel quality control is a relevant issue as biodiesel properties influence diesel engine performance and integrity. Within the European metrology research program (EMRP) ENG09 project ‘Metrology for Biofuels’, an on-line/at-site suitable near-infrared spectroscopy (NIRS) method has been developed in parallel with an improved EN14110 headspace gas chromatography (GC) analysis method for methanol in biodiesel. Both methods have been optimized for a methanol content of 0.2 mass% as this represents the maximum limit of methanol content in FAME according to EN 14214:2009. The NIRS method is based on a mobile NIR spectrometer equipped with a fiber-optic coupled probe. Due to the high volatility of methanol, a tailored air-tight adaptor was constructed to prevent methanol evaporation during measurement. The methanol content of biodiesel was determined from evaluation of NIRS spectra by partial least squares regression (PLS). Both GC analysis and NIRS exhibited a significant dependence on biodiesel feedstock. The NIRS method is applicable to a content range of 0.1% (m/m) to 0.4% (m/m) of methanol with uncertainties at around 6% relative for the different feedstocks. A direct comparison of headspace GC and NIRS for samples of FAMEs yielded that the results of both methods are fully compatible within their stated uncertainties. (paper)

  3. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulatio...... amplifiers and an injection-locked laser. We also demonstrate the applicability of the method to analyze slow and fast light effects in semiconductor waveguides. Finite reflectivities of the facets are found to influence the phase changes of the injected microwave-modulated light....

  4. Adsorption of petroleum resins and asphaltenes onto reservoir rock sands studied by near infrared (NIR) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syunyaev, R.Z.; Balabin, R.M. [Russian State Univ. of Oil and Gas, Moscow (Russian Federation). Dept. of Physics; Akhatov, I.S. [North Dakota State Univ., Fargo, ND (United States). Dept. of Mechanical Engineering and Center for Nanoscale Science and Engineering

    2008-07-01

    The presence of asphaltene and resin in crude oil is known to cause well bore plugging and pipeline deposition; stabilization of water/oil emulsions; sedimentation and plugging during crude oil storage; adsorption on refining equipment and coke formation. Kinetic and thermodynamic parameters of adsorption are also known to influence wettability and the capillary number. In this study, adsorption parameters of petroleum resins and asphaltenes were evaluated by Near Infrared (NIR) spectroscopy. Fractioned quartz, dolomite, mica and kaolinite sands were used as adsorbent. The particle size distribution was evaluated using an optical microscope. Porosity and permeability of each fraction were designed and benzene was used as the solvent. Various approaches for calibrating NIR spectra-macromolecules concentration were discussed. In this study, the partial least squares (PLS) regression method was used and the Langmuir model was chosen for experimental data fitting. Kinetic and isothermic data was used to evaluate the maximal adsorbed mass density, the equilibrium constant of adsorption, and the rate constants of adsorption and desorption. The rate constants of resins adsorption and desorption depended on the concentration. A numerical algorithm was developed to estimate the diffusion coefficient and relaxation time from the experimental data.

  5. Dynamic Filtering Improves Attentional State Prediction with fNIRS

    Science.gov (United States)

    Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.

    2016-01-01

    Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).

  6. Spectrally constrained NIR tomography for breast imaging: simulations and clinical results

    Science.gov (United States)

    Srinivasan, Subhadra; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Paulsen, Keith D.

    2005-04-01

    A multi-spectral direct chromophore and scattering reconstruction for frequency domain NIR tomography has been implemented using constraints of the known molar spectra of the chromophores and a Mie theory approximation for scattering. This was tested in a tumor-simulating phantom containing an inclusion with higher hemoglobin, lower oxygenation and contrast in scatter. The recovered images were quantitatively accurate and showed substantial improvement over existing methods; and in addition, showed robust results tested for up to 5% noise in amplitude and phase measurements. When applied to a clinical subject with fibrocystic disease, the tumor was visible in hemoglobin and water, but no decrease in oxygenation was observed, making oxygen saturation, a potential diagnostic indicator.

  7. Type II Supernova Light Curves and Spectra from the CfA

    Science.gov (United States)

    Hicken, Malcolm; Friedman, Andrew S.; Blondin, Stephane; Challis, Peter; Berlind, Perry; Calkins, Mike; Esquerdo, Gil; Matheson, Thomas; Modjaz, Maryam; Rest, Armin; Kirshner, Robert P.

    2017-11-01

    We present multiband photometry of 60 spectroscopically confirmed supernovae (SNe): 39 SNe II/IIP, 19 IIn, 1 IIb, and 1 that was originally classified as a IIn but later as a Ibn. Of these, 46 have only optical photometry, 6 have only near-infrared (NIR) photometry, and 8 have both optical and NIR. The median redshift of the sample is 0.016. We also present 195 optical spectra for 48 of the 60 SN. There are 26 optical and 2 NIR light curves of SNe II/IIP with redshifts z> 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2 m and 1.3 m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the u\\prime {UBVRIr}\\prime I\\prime {{JHK}}s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5 m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with select samples from the literature: two-thirds of our star sequences have average V offsets within ±0.02 mag and roughly three-quarters of our light curves have average differences within ±0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.

  8. Comparisons of peak-search and photopeak-integration methods in the computer analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Baedecker, P.A.

    1980-01-01

    Myriad methods have been devised for extracting quantitative information from gamma-ray spectra by means of a computer, and a critical evaluation of the relative merits of the various programs that have been written would represent a Herculean, if not an impossible, task. The results from the International Atomic Energy Agency (IAEA) intercomparison, which may represent the most straightforward approach to making such an evaluation, showed a wide range in the quality of the results - even among laboratories where similar methods were used. The most clear-cut way of differentiating between programs is by the method used to evaluate peak areas: by the iterative fitting of the spectral features to an often complex model, or by a simple summation procedure. Previous comparisons have shown that relatively simple algorithms can compete favorably with fitting procedures, although fitting holds the greatest promise for the detection and measurement of complex peaks. However, fitting algorithms, which are generally complex and time consuming, are often ruled out by practical limitations based on the type of computing equipment available, cost limitations, the number of spectra to be processed in a given time period, and the ultimate goal of the analysis. Comparisons of methods can be useful, however, in helping to illustrate the limitations of the various algorithms that have been devised. This paper presents a limited review of some of the more common peak-search and peak-integration methods, along with Peak-search procedures

  9. Automated method of phasing difficult nuclear magnetic resonance spectra with application to the unsaturated carbon analysis of oils

    Energy Technology Data Exchange (ETDEWEB)

    Sterna, L.L.; Tong, V.P. (Shell Development Company, Houston, TX (USA). Westhollow Research Center)

    1991-08-01

    A new method for the automated phasing of n.m.r. spectra is described. The basis of the automation is that the software performs the phasing in the same fashion as a trained n.m.r. operator rather than using mathematical relationships between absorptive and dispersive spectra. The method is illustrated with processing of the {sup 13}C n.m.r. spectrum of a catalytic cracking feedstock. The software readily phased the spectrum even though the spectrum had very broad features and a significant baseline correction. The software performed well even when the time-domain data was left-shifted to introduce a large first-order phase error. The method was applied to measure the percentage of unsaturated carbon in hydrocarbons. Extensive tests were performed to compare automated processing with manual processing for this application; the automated method was found to give both better precision and accuracy. The method can be easily tailored to many other types of analyses. 9 refs., 4 figs., 3 tabs.

  10. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  11. [Advances of NIR spectroscopy technology applied in seed quality detection].

    Science.gov (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min

    2015-02-01

    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  12. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo, E-mail: jxliuyd@163.com [School of Mechatronics Engineering, East China Jiaotong University, Changbei Open and Developing District, Nanchang, 330013 (China)

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62{sup 0}Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  13. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    International Nuclear Information System (INIS)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62 0 Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  14. The application of near-infrared spectra micro-image in the imaging analysis of biology samples

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-07-01

    Full Text Available In this research, suitable imaging methods were used for acquiring single compound images of biology samples of chicken pectorales tissue section, tobacco dry leaf, fresh leaf and plant glandular hair, respectively. The adverse effects caused by the high water content and the thermal effect of near infrared (NIR light were effectively solved during the experiment procedures and the data processing. PCA algorithm was applied to the NIR micro-image of chicken pectorales tissue. Comparing the loading vector of PC3 with the NIR spectrum of dry albumen, the information of PC3 was confirmed to be provided mainly by protein, i.e., the 3rd score image represents the distribution trend of protein mainly. PCA algorithm was applied to the NIR micro-image of tobacco dry leaf. The information of PC2 was confirmed to be provided by carbohydrate including starch mainly. Compared to the 2nd score image of tobacco dry leaf, the compared correlation image with the reference spectrum of starch had the same distribution trend as the 2nd score image. The comparative correlation images with the reference spectra of protein, glucose, fructose and the total plant alkaloid were acquired to confirm the distribution trend of these compounds in tobacco dry leaf respectively. Comparative correlation images of fresh leaf with the reference spectra of protein, starch, fructose, glucose and water were acquired to confirm the distribution trend of these compounds in fresh leaf. Chemimap imaging of plant glandular hair was acquired to show the tubular structure clearly.

  15. VIS/NIR imaging application for honey floral origin determination

    NARCIS (Netherlands)

    Minaei, Saeid; Shafiee, Sahameh; Polder, Gerrit; Moghadam-Charkari, Nasrolah; Ruth, van Saskia; Barzegar, Mohsen; Zahiri, Javad; Alewijn, Martin; Kuś, Piotr M.

    2017-01-01

    Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in

  16. Activation method for measuring the reaction rates and studying the neutron spectra parameters, based on using the unified composition detectors

    International Nuclear Information System (INIS)

    Demidov, A.M.; Dikarev, V.S.; Efimov, B.V.; Ionov, V.S.; Marin, S.V.

    2005-01-01

    The method proposed for estimation of parameters thermal and epithermal parts of energy distribution of neutrons is described. The method based on application of activation measuring with use of unified composition detectors (UCD) and samples of fuel. The method is applicable for definition of neutron spectrum parameters and velocities of division in fuel of nuclear installations. Theoretical bases and the description of a method, expedients of manufacturing and calibration for the detectors, the experimental data, carried out in RRC KI are given and processing of experimental data, and also. The parametric model of a spectrum constructed on the basis of Westcott's formalism is described. The parameter of stiffness is entered and its role for temperature of neutron gas, spectral coefficients of isotopes of detectors, the transition area thermal and epithermal parts of neutron spectra is observationally appreciated. It is offered to confirm the found results by calculations with use of MCU Monte Carlo code [ru

  17. Quantitative Analysis of Adulterations in Oat Flour by FT-NIR Spectroscopy, Incomplete Unbalanced Randomized Block Design, and Partial Least Squares

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2014-01-01

    Full Text Available This paper developed a rapid and nondestructive method for quantitative analysis of a cheaper adulterant (wheat flour in oat flour by NIR spectroscopy and chemometrics. Reflectance FT-NIR spectra in the range of 4000 to 12000 cm−1 of 300 oat flour objects adulterated with wheat flour were measured. The doping levels of wheat flour ranged from 5% to 50% (w/w. To ensure the generalization performance of the method, both the oat and the wheat flour samples were collected from different producing areas and an incomplete unbalanced randomized block (IURB design was performed to include the significant variations that may be encountered in future samples. Partial least squares regression (PLSR was used to develop calibration models for predicting the levels of wheat flour. Different preprocessing methods including smoothing, taking second-order derivative (D2, and standard normal variate (SNV transformation were investigated to improve the model accuracy of PLS. The root mean squared error of Monte Carlo cross-validation (RMSEMCCV and root mean squared error of prediction (RMSEP were 1.921 and 1.975 (%, w/w by D2-PLS, respectively. The results indicate that NIR and chemometrics can provide a rapid method for quantitative analysis of wheat flour in oat flour.

  18. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    Science.gov (United States)

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra.

    Science.gov (United States)

    Gao, Qun; Liu, Yan; Li, Hao; Chen, Hui; Chai, Yifeng; Lu, Feng

    2014-06-01

    Some expired drugs are difficult to detect by conventional means. If they are repackaged and sold back into market, they will constitute a new public health challenge. For the detection of repackaged expired drugs within specification, paracetamol tablet from a manufacturer was used as a model drug in this study for comparison of Raman spectra-based library verification and classification methods. Raman spectra of different batches of paracetamol tablets were collected and a library including standard spectra of unexpired batches of tablets was established. The Raman spectrum of each sample was identified by cosine and correlation with the standard spectrum. The average HQI of the suspicious samples and the standard spectrum were calculated. The optimum threshold values were 0.997 and 0.998 respectively as a result of ROC and four evaluations, for which the accuracy was up to 97%. Three supervised classifiers, PLS-DA, SVM and k-NN, were chosen to establish two-class classification models and compared subsequently. They were used to establish a classification of expired batches and an unexpired batch, and predict the suspect samples. The average accuracy was 90.12%, 96.80% and 89.37% respectively. Different pre-processing techniques were tried to find that first derivative was optimal for methods of libraries and max-min normalization was optimal for that of classifiers. The results obtained from these studies indicated both libraries and classifier methods could detect the expired drugs effectively, and they should be used complementarily in the fast-screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    Science.gov (United States)

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.

  1. Relationship between wine scores and visible-near-infrared spectra of Australian red wines.

    Science.gov (United States)

    Cozzolino, D; Cowey, G; Lattey, K A; Godden, P; Cynkar, W U; Dambergs, R G; Janik, L; Gishen, M

    2008-06-01

    Sensory analysis of wine involves the measurement, interpretation and understanding of human responses to the properties perceived by the senses such as sight, smell and taste. The sensory evaluation of wine is often carried out by wine judges, winemakers and technical staff, and allows characterization of the quality of the wine. However, this method is lengthy, expensive, and its results depend on panel training and the specific vocabulary used by the panel. A robust, rapid, unbiased and inexpensive method to assist in quality assessment purposes will therefore be beneficial for the modern wine industry. This study aims to investigate the relationship between sensory analysis, visible (VIS) and near-infrared (NIR) spectroscopy to assess sensory properties of commercial Australian wine varieties. For the purposes of this study 118 red wine samples (Cabernet Sauvignon, Shiraz, Pinot Noir, Tempranillo, Nebbiolo and blends) graded by a panel of experienced tasters and scored according to the Australian wine show system were scanned in transmission in the VIS and NIR range (400-2,500 nm). Partial least squares regression models were developed between the overall score given by the judges and the combined VIS-NIR spectra, using full cross validation (leave-one-out method). The results showed that NIR spectroscopy was able to predict wine quality scores in red wine samples (R = 0.61 and standard error of prediction of 0.81). The practical implication of this study is that instrumental methods such as VIS-NIR spectroscopy can be used to complement sensory analysis and can facilitate the task at early stages of product development, making high-throughput screening of novel products feasible or maintaining the consistency of the product.

  2. Commutator perturbation method in the study of vibrational-rotational spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Matamala-Vasquez, A.; Karwowski, J.

    2000-01-01

    The commutator perturbation method, an algebraic version of the Van Vleck-Primas perturbation method, expressed in terms of ladder operators, has been applied to solving the eigenvalue problem of the Hamiltonian describing the vibrational-rotational motion of a diatomic molecule. The physical model used in this work is based on Dunham's approach. The method facilitates obtaining both energies and eigenvectors in an algebraic way

  3. Application of the equivalent radiator method for radiative corrections to the spectra of elastic electron scattering by nuclei

    Directory of Open Access Journals (Sweden)

    I. S. Timchenko

    2015-07-01

    Full Text Available For calculating the radiative tails in the spectra of inelastic electron scattering by nuclei, the approximation, namely, the equivalent radiator method (ERM, is used. However, the applicability of this method for evaluating the radiative tail from the elastic scattering peak has been little investigated, and therefore, it has become the subject of the present study for the case of light nuclei. As a result, spectral regions were found, where a significant discrepancy between the ERM calculation and the exact-formula calculation was observed. A link was established between this phenomenon and the diffraction minimum of the squared form-factor of the nuclear ground state. Varieties of calculations were carried out for different kinematics of electron scattering by nuclei. The analysis of the calculation results has shown the conditions, at which the equivalent radiator method can be applied for adequately evaluating the radiative tail of the elastic scattering peak.

  4. Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.

    Science.gov (United States)

    Tardaguila, Javier; Fernández-Novales, Juan; Gutiérrez, Salvador; Diago, Maria Paz

    2017-08-01

    Until now, the majority of methods employed to assess grapevine water status have been destructive, time-intensive, costly and provide information of a limited number of samples, thus the ability of revealing within-field water status variability is reduced. The goal of this work was to evaluate the capability of non-invasive, portable near infrared (NIR) spectroscopy acquired in the field, to assess the grapevine water status in diverse varieties, grown under different environmental conditions, in a fast and reliable way. The research was conducted 2 weeks before harvest in 2012, in two commercial vineyards, planted with eight different varieties. Spectral measurements were acquired in the field on the adaxial and abaxial sides of 160 individual leaves (20 leaves per variety) using a commercially available handheld spectrophotometer (1600-2400 nm). Principal component analysis (PCA) and modified partial least squares (MPLS) were used to interpret the spectra and to develop reliable prediction models for stem water potential (Ψ s ) (cross-validation correlation coefficient (r cv ) ranged from 0.77 to 0.93, and standard error of cross validation (SECV) ranged from 0.10 to 0.23), and leaf relative water content (RWC) (r cv ranged from 0.66 to 0.81, and SECV between 1.93 and 3.20). The performance differences between models built from abaxial and adaxial-acquired spectra is also discussed. The capability of non-invasive NIR spectroscopy to reliably assess the grapevine water status under field conditions was proved. This technique can be a suitable and promising tool to appraise within-field variability of plant water status, helpful to define optimised irrigation strategies in the wine industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    Science.gov (United States)

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  7. Carbon monoxide stunning of Atlantic salmon (Salmo salar L.) modifies rigor mortis and sensory traits as revealed by NIRS and other instruments.

    Science.gov (United States)

    Concollato, Anna; Parisi, Giuliana; Masoero, Giorgio; Romvàri, Robert; Olsen, Rolf-Erik; Dalle Zotte, Antonella

    2016-08-01

    Methods of stunning used in salmon slaughter are still the subject of research. Fish quality can be influenced by pre-, ante- and post-mortem conditions, including handling before slaughter, slaughter methods and storage conditions. Carbon monoxide (CO) is known to improve colour stability in red muscle and to reduce microbial growth and lipid oxidation in live fish exposed to CO. Quality differences in Atlantic salmon, Salmo salar L., stunned by CO or percussion, were evaluated and compared by different techniques [near infrared reflectance spectroscopy (NIRS), electronic nose (EN), electronic tongue (ET)] and sensory analysis. Thawed samples, freeze-dried preparates and NIRS devices proved to be the most efficient combinations for discriminating the treatments applied to salmon, i.e. first the stunning methods adopted, then the back-prediction of the maximum time to reach rigor mortis and finally to correlate some sensory attributes. A trained panel found significant differences between control and CO-stunned salmon: reduced tactile crumbliness, reduced odour and aroma intensities, and reduced tenderness of CO-treated fillets. CO stunning reduced radiation absorbance in spectra of thawed and freeze-dried fillets, but not fillet samples stored in ethanol, where it may have interacted with myoglobin and myosin. The good results in a rapid discrimination of thawed samples detected by NIRS suggest suitable applications in the fish industry. CO treatment could mitigate sensory perception, but consumer tests are needed to confirm our findings. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. `VIS/NIR mapping of TOC and extent of organic soils in the Nørre Å valley

    Science.gov (United States)

    Knadel, M.; Greve, M. H.; Thomsen, A.

    2009-04-01

    Organic soils represent a substantial pool of carbon in Denmark. The need for carbon stock assessment calls for more rapid and effective mapping methods to be developed. The aim of this study was to compare traditional soil mapping with maps produced from the results of a mobile VIS/NIR system and to evaluate the ability to estimate TOC and map the area of organic soils. The Veris mobile VIS/NIR spectroscopy system was compared to traditional manual sampling. The system is developed for in-situ near surface measurements of soil carbon content. It measures diffuse reflectance in the 350 nm-2200 nm region. The system consists of two spectrophotometers mounted on a toolbar and pulled by a tractor. Optical measurements are made through a sapphire window at the bottom of the shank. The shank was pulled at a depth of 5-7 cm at a speed of 4-5 km/hr. 20-25 spectra per second with 8 nm resolution were acquired by the spectrometers. Measurements were made on 10-12 m spaced transects. The system also acquired soil electrical conductivity (EC) for two soil depths: shallow EC-SH (0- 31 cm) and deep conductivity EC-DP (0- 91 cm). The conductivity was recorded together with GPS coordinates and spectral data for further construction of the calibration models. Two maps of organic soils in the Nørre Å valley (Central Jutland) were generated: (i) based on a conventional 25 m grid with 162 sampling points and laboratory analysis of TOC, (ii) based on in-situ VIS/NIR measurements supported by chemometrics. Before regression analysis, spectral information was compressed by calculating principal components. The outliers were determined by a mahalanobis distance equation and removed. Clustering using a fuzzy c- means algorithm was conducted. Within each cluster a location with the minimal spatial variability was selected. A map of 15 representative sample locations was proposed. The interpolation of the spectra into a single spectrum was performed using a Gaussian kernel weighting

  9. Nuclear material enrichment identification method based on cross-correlation and high order spectra

    International Nuclear Information System (INIS)

    Yang Fan; Wei Biao; Feng Peng; Mi Deling; Ren Yong

    2013-01-01

    In order to enhance the sensitivity of nuclear material identification system (NMIS) against the change of nuclear material enrichment, the principle of high order statistic feature is introduced and applied to traditional NMIS. We present a new enrichment identification method based on cross-correlation and high order spectrum algorithm. By applying the identification method to NMIS, the 3D graphs with nuclear material character are presented and can be used as new signatures to identify the enrichment of nuclear materials. The simulation result shows that the identification method could suppress the background noises, electronic system noises, and improve the sensitivity against enrichment change to exponential order with no system structure modification. (authors)

  10. Methods for surveillance of noise signals from nuclear power plants using auto power spectra

    International Nuclear Information System (INIS)

    Streich, M.

    1988-01-01

    A survey of methods for noise diagnostics applied in the nuclear power plant 'Bruno Leuschner' for surveillance of primary circuit is given. Considering a special example concept of surveillance of standard deviations is explained. (author)

  11. [Exploration of rapidly determining quality of traditional Chinese medicines by (NIR) spectroscopy based on internet sharing mode].

    Science.gov (United States)

    Ni, Li-Jun; Luan, Shao-Rong; Zhang, Li-Guo

    2016-10-01

    Because of the numerous varieties of herbal species and active ingredients in the traditional Chinese medicine(TCM),the traditional methods employed could hardly satisfy the current determination requirements of TCM.The present work proposed an idea to realize rapid determination of the quality of TCM based on near infrared(NIR)spectroscopy and internet sharing mode. Low cost and portable multi-source composite spectrometer was invented by our group for in-site fast measurement of spectra of TCM samples. The database could be set up by sharing spectra and quality detection data of TCM samples among TCM enterprises based on the internet platform.A novel method called as keeping same relationship between X and Y space based on K nearest neighbors(KNN-KSR for short)was applied to predict the contents of effective compounds of the samples. In addition,a comparative study between KNN-KSR and partial least squares(PLS)was conducted. Two datasets were applied to validate above idea:one was about 58 Ginkgo Folium samples samples measured with four near-infrared spectroscopy instruments and two multi-source composite spectrometers,another one was about 80 corn samples available online measured with three NIR instruments. The results show that the KNN-KSR method could obtain more reliable outcomes without correcting spectrum.However transforming the PLS models to other instruments could hardly acquire better predictive results until spectral calibration is performed. Meanwhile,the similar analysis results of total flavonoids and total lactones of Ginkgo Folium samples are achieved on the multi-source composite spectrometers and near-infrared spectroscopy instruments,and the prediction results of KNN-KSR are better than PLS. The idea proposed in present study is in urgent need of more samples spectra, and then to be verified by more case studies. Copyright© by the Chinese Pharmaceutical Association.

  12. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  13. Photometric method for determination of acidity constants through integral spectra analysis.

    Science.gov (United States)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-15

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Photometric method for determination of acidity constants through integral spectra analysis

    Science.gov (United States)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-01

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature.

  15. THE MASS-METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Brett H.; Martini, Paul, E-mail: andrews@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2013-03-10

    The relation between galaxy stellar mass and gas-phase metallicity is a sensitive diagnostic of the main processes that drive galaxy evolution, namely cosmological gas inflow, metal production in stars, and gas outflow via galactic winds. We employed the direct method to measure the metallicities of {approx}200,000 star-forming galaxies from the Sloan Digital Sky Survey that were stacked in bins of (1) stellar mass and (2) both stellar mass and star formation rate (SFR) to significantly enhance the signal-to-noise ratio of the weak [O III] {lambda}4363 and [O II] {lambda}{lambda}7320, 7330 auroral lines required to apply the direct method. These metallicity measurements span three decades in stellar mass from log(M{sub *}/M{sub Sun }) = 7.4-10.5, which allows the direct method mass-metallicity relation to simultaneously capture the high-mass turnover and extend a full decade lower in mass than previous studies that employed more uncertain strong line methods. The direct method mass-metallicity relation rises steeply at low mass (O/H {proportional_to} M{sub *} {sup 1/2}) until it turns over at log(M{sub *}/M{sub Sun }) = 8.9 and asymptotes to 12 + log(O/H) = 8.8 at high mass. The direct method mass-metallicity relation has a steeper slope, a lower turnover mass, and a factor of two to three greater dependence on SFR than strong line mass-metallicity relations. Furthermore, the SFR-dependence appears monotonic with stellar mass, unlike strong line mass-metallicity relations. We also measure the N/O abundance ratio, an important tracer of star formation history, and find the clear signature of primary and secondary nitrogen enrichment. N/O correlates tightly with oxygen abundance, and even more so with stellar mass.

  16. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Zavaljevski, N.

    1992-01-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (orig.)

  17. Simple method of obtaining the band strengths in the electronic spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Gowda, L.S.; Balaji, V.N.

    1977-01-01

    It is shown that relative band strengths of diatomic molecules for which the product of Franck-Condon factor and r-centroid is approximately equal to 1 for (0,0) band can be determined by a simple method which is in good agreement with the smoothed array of experimental values. Such values for the Swan bands of the C 2 molecule are compared with the band strengths of the simple method. It is noted that the Swan bands are one of the outstanding features of R- and N-type stars and of the heads of comets

  18. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Avdic, S.; Pesic, M.; Zavaljevski, N

    1992-09-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (author)

  19. Application of correlation constrained multivariate curve resolution alternating least-squares methods for determination of compounds of interest in biodiesel blends using NIR and UV-visible spectroscopic data.

    Science.gov (United States)

    de Oliveira, Rodrigo Rocha; de Lima, Kássio Michell Gomes; Tauler, Romà; de Juan, Anna

    2014-07-01

    This study describes two applications of a variant of the multivariate curve resolution alternating least squares (MCR-ALS) method with a correlation constraint. The first application describes the use of MCR-ALS for the determination of biodiesel concentrations in biodiesel blends using near infrared (NIR) spectroscopic data. In the second application, the proposed method allowed the determination of the synthetic antioxidant N,N'-Di-sec-butyl-p-phenylenediamine (PDA) present in biodiesel mixtures from different vegetable sources using UV-visible spectroscopy. Well established multivariate regression algorithm, partial least squares (PLS), were calculated for comparison of the quantification performance in the models developed in both applications. The correlation constraint has been adapted to handle the presence of batch-to-batch matrix effects due to ageing effects, which might occur when different groups of samples were used to build a calibration model in the first application. Different data set configurations and diverse modes of application of the correlation constraint are explored and guidelines are given to cope with different type of analytical problems, such as the correction of matrix effects among biodiesel samples, where MCR-ALS outperformed PLS reducing the relative error of prediction RE (%) from 9.82% to 4.85% in the first application, or the determination of minor compound with overlapped weak spectroscopic signals, where MCR-ALS gave higher (RE (%)=3.16%) for prediction of PDA compared to PLS (RE (%)=1.99%), but with the advantage of recovering the related pure spectral profile of analytes and interferences. The obtained results show the potential of the MCR-ALS method with correlation constraint to be adapted to diverse data set configurations and analytical problems related to the determination of biodiesel mixtures and added compounds therein. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Automatic determination of moisture content in biofuels based on NIR-measurements; Automatisk fukthaltsbestaemning av biobraenslen med NIR-metoden

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Wiklund, Sven Erik [AaF-Process AB, Stockholm (Sweden); Karlsson, Mikael; Tryzell, Robert [Bestwood AB, Sundbyberg (Sweden)

    2005-07-01

    The determination of moisture content of biofuel is of large importance for the energy sector. The used methods for moisture determination are based on fuels samples taken from the bulk followed by drying and weighing. To be able to instead determine the moisture content based on a method with good accuracy and with a short response time would be a large improvement. Both for the fuel sampling and the following analysis there are Swedish standards but concerning the fuel sampling the standards are often not followed. The main reason is the difficulties to sample fuel samples from different depth from a delivery. This is one of the reasons that some plants have installed mechanical samplers but the investment cost for these is relatively high. The aim of this project was to investigate the use of the NIR-method for automatic moisture determination in biofuels. Within the project the NIR-method was used to determine the moisture content on withdrawn fuel samples, in addition the possibility to integrate the NIR-method in an automatic sampling system is also described. A large number of samples, in total over 200 samples, have been evaluated with the NIR-method and compared with the reference method, oven drying and gravimetric determination of moisture content. That the NIR-method can be used to determine moisture content in a number of well defined materials have previously been shown. In this report it has moreover been shown that the method can be used under the conditions at the fuel delivery station and for a large spectrum of biofuels. The accuracy that can be achieved with the NIR-method is in the same magnitude as the standard method, i.e. the reference method used for the measurements. Altogether this shows that the NIR-method is an interesting alternative for integration in an automatic measurement system for determination of fuel moisture content in biofuels. To be able to use the NIR-method for automatic determination of fuel moisture content at the

  1. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    Science.gov (United States)

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  2. A method to increase optical timing spectra measurement rates using a multi-hit TDC

    International Nuclear Information System (INIS)

    Moses, W.W.

    1993-01-01

    A method is presented for using a modern time to digital converter (TDC) to increase the data collection rate for optical timing measurements such as scintillator decay times. It extends the conventional delayed coincidence method, where a synchronization signal ''starts'' a TDC and a photomultiplier tube (PMT) sampling the optical signal ''stops'' the TDC. Data acquisition rates are low with the conventional method because ε, the light collection efficiency of the ''stop'' PMT, is artificially limited to ε∼0.01 photons per ''start'' signal to reduce the probability of detecting more than one photon during the sampling period. With conventional TDCs, these multiple photon events bias the time spectrum since only the first ''stop'' pulse is digitized. The new method uses a modern TDC to detect whether additional ''stop'' signals occur during the sampling period, and actively reject these multiple photon events. This allows ε to be increased to almost 1 photon per ''start'' signal, which maximizes the data acquisition rate at a value nearly 20 times higher. Multi-hit TDCs can digitize the arrival times of n ''stop'' signals per ''start'' signal, which allows ε to be increased to ∼3n/4. While overlap of the ''stop'' signals prevents the full gain in data collection rate to be realized, significant improvements are possible for most applications. (orig.)

  3. Deconvolution of charged particle spectra from neutron depth profiling using Simplex method

    Czech Academy of Sciences Publication Activity Database

    Hnatowicz, Vladimír; Vacík, Jiří; Fink, Dietmar

    2010-01-01

    Roč. 81, č. 7 (2010), 073906/1-073906/7 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron depth profiling * Simplex method * NDP Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.598, year: 2010

  4. The background cross section method for calculating the epithermal neutron spectra

    International Nuclear Information System (INIS)

    Martinez, A.S.

    1983-01-01

    We have developed a new methodology to the multigroup constants calculations, for thermal and fast reactors. The method to obtain the constants is extremely fast and simple, and it avoid repeated computations of the detailed neutron spectrum for different cell configurations (composition, geometry and temperature). (author) [pt

  5. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Abolfazl, E-mail: sahosseini@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Tehran 8639-11365 (Iran, Islamic Republic of); Afrakoti, Iman Esmaili Paeen [Faculty of Engineering & Technology, University of Mazandaran, Pasdaran Street, P.O. Box: 416, Babolsar 47415 (Iran, Islamic Republic of)

    2017-04-11

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The {sup 241}Am-{sup 9}Be and {sup 252}Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions. - Highlights: • The neutron pulse height distribution was simulated using MCNPX-ESUT. • The energy spectrum of the neutron source was unfolded using GMDH. • The energy spectrum of the neutron source was

  6. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    Science.gov (United States)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  7. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qinghu Jiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC is an essential property for soil function, fertility and sustainability of agricultural systems. It can be measured with visible and near-infrared reflectance (VIS-NIR spectroscopy efficiently based on empirical equations and spectra data for air/oven-dried samples. However, the spectral signal is interfered with by soil moisture content (MC under in situ conditions, which will affect the accuracy of measurements and calibration transfer among different areas. This study aimed to (1 quantify the influences of MC on SOC prediction by VIS-NIR spectroscopy; and (2 explore the potentials of orthogonal signal correction (OSC and generalized least squares weighting (GLSW methods in the removal of moisture interference. Ninety-eight samples were collected from the Jianghan plain, China, and eight MCs were obtained for each sample by a rewetting process. The VIS-NIR spectra of the rewetted soil samples were measured in the laboratory. Partial least squares regression (PLSR was used to develop SOC prediction models. Specifically, three validation strategies, namely moisture level validation, transferability validation and mixed-moisture validation, were designed to test the potentials of OSC and GLSW in removing the MC effect. Results showed that all of the PLSR models generated at different moisture levels (e.g., 50–100, 250–300 g·kg−1 were moderately successful in SOC predictions (r2pre = 0.58–0.85, RPD = 1.55–2.55. These models, however, could not be transferred to soil samples with different moisture levels. OSC and GLSW methods are useful filter transformations improving model transferability. The GLSW-PLSR model (mean of r2pre = 0.77, root mean square error for prediction (RMSEP = 3.08 g·kg−1, and residual prediction deviations (RPD = 2.09 outperforms the OSC-PLSR model (mean of r2pre = 0.67, RMSEP = 3.67 g·kg−1, and RPD = 1.76 when the moisture-mixed protocol is used. Results demonstrated the use of OSC

  8. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    Science.gov (United States)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  9. Accuracy improvement of the laplace transformation method for determination of the bremsstrahlung spectra in clinical accelerators

    International Nuclear Information System (INIS)

    Scheithauer, M.; Schwedas, M.; Wiezorek, T.; Wendt, T.

    2003-01-01

    The present study focused on the reconstruction of the bremsstrahlung spectrum of a clinical linear accelerator from the measured transmission curve, with the aim of improving the accuracy of this method. The essence of the method was the analytic inverse Laplace transform of a parameter function fitted to the measured transmission curve. We tested known fitting functions, however they resulted in considerable fitting inaccuracy, leading to inaccuracies of the bremsstrahlung spectrum. In order to minimise the fitting errors, we employed a linear combination of n equations with 2n-1 parameters. The fitting errors are now considerably smaller. The measurement of the transmission function requires that the energy-dependent detector response is taken into account. We analysed the underlying physical context and developed a function that corrects for the energy-dependent detector response. The factors of this function were experimentally determined or calculated from tabulated values. (orig.) [de

  10. Molecular structure and vibrational spectra of 6-methylquinoline and 8-methylquinoline molecules by quantum mechanical methods

    International Nuclear Information System (INIS)

    Kurt, M.

    2005-01-01

    The molecular geometry and vibrational frequencies of 6-methylquinoline(6MQ) and 8-methylquinolines(8MQ) in the ground state have been calculated by using the Hartree-Fock and density functional methods (B3LYP and BLYP) with 6-31G (d) as the basis set. The optimized geometric bond lengths obtained by using B3LYP and bond angles obtained by BLYP were given corresponding experimental values of similar molecule. Comparison of the observed fundamental vibrational frequencies of these molecules and calculated results by density functional B3LYP, BLYP and Hartree-Fock methods indicates that B3LYP is superior to the scaled Hartree- Fock and BLYP approach for molecular vibrational problems

  11. Analysis of SPECTROX method of multigroup spectra calculation in unitary reactor cells

    International Nuclear Information System (INIS)

    Leite, Sergio de Q. Bogado

    2005-01-01

    The thermal neutron spectrum in a lattice cell is strongly space-dependent. In addition, in many situations, as for example in core design calculations, a more precise energetic and spatial representation of the flux is needed, which cannot be provided by few group diffusion theory. In such cases, the well-known SPECTROX method, employing diffusion theory in the moderator, where it is supposed sufficiently accurate, and collision probability theory in the fuel, together with appropriate interface current relations for assuring neutron conservation, has been widely used by WIMS as well as other codes. In this work, the approximations leading to the SPECTROX equations are reviewed and the calculated average fluxes in the fuel are compared with accurate values obtained from the solution of the transport equation by the FN method. (author)

  12. Instruments and methods of scintillation spectra processing for radiation control tasks

    International Nuclear Information System (INIS)

    Antropov, S.Yu.; Ermilov, A.P.; Ermilov, S.A.; Komarov, N.A.; Krokhin, I.I.

    2005-01-01

    On gamma-spectrometer the response function could be calculated on the base of sensitivity data, energy resolution and form of Compton spectrum part. On the scintillation gamma-spectrometer with Na-I(Tl) crystal 63x63 mm the method allows to divide the 5-10 components mixtures, and on the beta-spectrometer of 2-3 component mixtures. The approach is realized in the 'Progress' program-instrumental complexes

  13. Equation of motion method in appearance potential spectra of simple metals

    International Nuclear Information System (INIS)

    Tay, G.

    2004-01-01

    Full Text. The equation of motion method is applied to function Tk 1 K 2 K 3 K 4 which describes, the propagation of two particles in the presence of the core hole. Neglecting final state interactions and assuming constant matrix elements, X-ray yield and the associated appearance potential spectrum is found to depend on the convolution of the empty density of states above the Fermi level of the metal. (author)

  14. A-VCI: A flexible method to efficiently compute vibrational spectra

    Science.gov (United States)

    Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2017-06-01

    The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm-1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm-1 is the most accurate computation that exists today on such systems.

  15. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  16. Application of the variational method for calculation of neutron spectra and group constants - Master thesis

    International Nuclear Information System (INIS)

    Milosevic, M.

    1979-01-01

    One-dimensional variational method for cylindrical configuration was applied for calculating group constants, together with effects of elastic slowing down, anisotropic elastic scattering, inelastic scattering, heterogeneous resonance absorption with the aim to include the presence of a number of different isotopes and effects of neutron leakage from the reactor core. Neutron flux shape P 3 and adjoint function are proposed in order to enable calculation of smaller size reactors and inclusion of heterogeneity effects by cell calculations. Microscopic multigroup constants were prepared based on the UKNDL data library. Analytical-numerical approach was applied for solving the equations of the P 3 approximation to obtain neutron flux moments and adjoint functions

  17. [Induction and analysis for NIR features of frequently-used mineral traditional Chinese medicines].

    Science.gov (United States)

    Chen, Long; Yuan, Ming-Yang; Chen, Ke-Li

    2016-10-01

    In order to provide theoretical basis for the rapid identification of mineral traditional Chinese medicines(TCM) with near infrared (NIR)diffuse reflectance spectroscopy, Characteristic NIR spectra of 51 kinds of mineral TCMs were generalized and compared on the basis of the previous research, and the characteristic spectral bands were determined and analyzed by referring to mineralogical and geological literatures. It turned out that the NIR features of mineral TCMs were mainly at 8 000-4 000 cm ⁻¹ wavebands, which can be assigned as the absorption of water, -OH and[CO3 ²⁻] and so on. Absorption peaks of water has regularity as follows, the structure water and -OH had a combined peak which was strong and keen-edged around 7 000 cm ⁻¹, the crystal water had two strong peak around 7 000 cm ⁻¹ and 5 100 cm ⁻¹, and water only has a broad peak around 5 100 cm ⁻¹. Due to the differences in the crystal form and the contents of water in mineral TCMs, NIR features of water in mineral TCMs which could be used for identification were different. Mineral TCMs containing sulfate are rich in crystal water, mineral TCMs containing silicate generally had structure water, and mineral TCMs containing carbonate merely had a little of water, so it was reasonable for the use of NIR spectroscopy to classify mineral TCMs with anionic type. In addition, because of the differences in cationic type, impurities, crystal form and crystallinity, mineral TCMs have exclusive NIR features at 4 600-4 000 cm ⁻¹, which can be assigned as Al-OH, Mg-OH, Fe-OH, Si-OH,[CO3 ²⁻] and so on. Calcined mineral TCMs are often associated with water and main composition changes, also changes of the NIR features, which could be used for the monitoring of the processing, and to provide references for the quality control of mineral TCMs. The adaptability and limitation of NIR analysis for mineral TCMs were also discussed:the majority of mineral TCMs had noteworthy NIR features which could be

  18. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Shin, H. S.; Song, T. Y.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  20. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Shin, H S; Song, T Y; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  1. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  2. Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method

    International Nuclear Information System (INIS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.

    2009-01-01

    We present the reconstruction of neutron energy spectra from time-of-flight signals. This technique is useful in experiments with the time of neutron production in the range of about tens or hundreds of nanoseconds. The neutron signals were obtained by a common hard X-ray and neutron fast plastic scintillation detectors. The reconstruction is based on the Monte Carlo method which has been improved by simultaneous usage of neutron detectors placed on two opposite sides from the neutron source. Although the reconstruction from detectors placed on two opposite sides is more difficult and a little bit inaccurate (it followed from several presumptions during the inclusion of both sides of detection), there are some advantages. The most important advantage is smaller influence of scattered neutrons on the reconstruction. Finally, we describe the estimation of the error of this reconstruction.

  3. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shigeyoshi, E-mail: syamamot@lets.chukyo-u.ac.jp [School of International Liberal Studies, Chukyo University, 101-2 Yagoto-Honmachi, Showa-ku, Nagoya 466-8666 (Japan); Tatewaki, Hiroshi [Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota 470-0393 (Japan); Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501 (Japan)

    2015-03-07

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.

  4. Use of stochastic methods for robust parameter extraction from impedance spectra

    International Nuclear Information System (INIS)

    Bueschel, Paul; Troeltzsch, Uwe; Kanoun, Olfa

    2011-01-01

    The fitting of impedance models to measured data is an essential step in impedance spectroscopy (IS). Due to often complicated, nonlinear models, big number of parameters, large search spaces and presence of noise, an automated determination of the unknown parameters is a challenging task. The stronger the nonlinear behavior of a model, the weaker is the convergence of the corresponding regression and the probability to trap into local minima increases during parameter extraction. For fast measurements or automatic measurement systems these problems became the limiting factors of use. We compared the usability of stochastic algorithms, evolution, simulated annealing and particle filter with the widely used tool LEVM for parameter extraction for IS. The comparison is based on one reference model by J.R. Macdonald and a battery model used with noisy measurement data. The results show different performances of the algorithms for these two problems depending on the search space and the model used for optimization. The obtained results by particle filter were the best for both models. This method delivers the most reliable result for both cases even for the ill posed battery model.

  5. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer.

    Science.gov (United States)

    Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang

    2018-08-05

    N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.

  6. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    Science.gov (United States)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  7. Application of an expectation maximization method to the reconstruction of X-ray-tube spectra from transmission data

    International Nuclear Information System (INIS)

    Endrizzi, M.; Delogu, P.; Oliva, P.

    2014-01-01

    An expectation maximization method is applied to the reconstruction of X-ray tube spectra from transmission measurements in the energy range 7–40 keV. A semiconductor single-photon counting detector, ionization chambers and a scintillator-based detector are used for the experimental measurement of the transmission. The number of iterations required to reach an approximate solution is estimated on the basis of the measurement error, according to the discrepancy principle. The effectiveness of the stopping rule is studied on simulated data and validated with experiments. The quality of the reconstruction depends on the information available on the source itself and the possibility to add this knowledge to the solution process is investigated. The method can produce good approximations provided that the amount of noise in the data can be estimated. - Highlights: • An expectation maximization method was used together with the discrepancy principle. • The discrepancy principle is a suitable criterion for stopping the iteration. • The method can be applied to a variety of detectors/experimental conditions. • The minimum information required is the amount of noise that affects the data. • Improved results are achieved by inserting more information when available

  8. A data analysis workflow to enhance clay and organic carbon models using proximal Vis-NIR data

    DEFF Research Database (Denmark)

    Tabatabai, Salman; Knadel, Maria; Greve, Mogens Humlekrog

    Modelling proximal sensors data is becoming a norm in soil characterization and mapping. In many cases, these models still have low predictive capabilities and lack robustness due to the large amount of noise from several environmental factors. In this study we proposed a combination of extensive...... data preprocessing (preprocessing survey) and two variable selection methods to significantly increase visible near-infrared spectroscopy (Vis-NIRS) model performance and stability. Spectra of eight agricultural fields were measured in the range of 350-2200 nm using a mobile sensor platform (Veris...... Technologies, USA) towed by a tractor. A fuzzy c-means clustering was performed based on the first 3 principal components to select 15 representative sampling locations in each field. Clay and organic carbon (OC) were determined for all calibration samples using pipette and ignition methods, respectively...

  9. IN-VIVO DIAGNOSIS OF CHEMICALLY INDUCED MELANOMA IN AN ANIMAL MODEL USING UV-VISIBLE AND NIR ELASTIC SCATTERING SPECTROSCOPY: PRELIMINARY TESTING.

    Energy Technology Data Exchange (ETDEWEB)

    C. A' AMAR; R. LEY; ET AL

    2001-01-01

    Elastic light scattering spectroscopy (ESS) has the potential to provide spectra that contain both morphological and chromophore information from tissue. We report on a preliminary study of this technique, with the hope of developing a method for diagnosis of highly-pigmented skin lesions, commonly associated with skin cancer. Four opossums were treated with dimethylbenz(a)anthracene to induce both malignant melanoma and benign pigmented lesions. Skin lesions were examined in vivo using both UV-visible and near infrared (NIR) ESS, with wavelength ranges of 330-900 nm and 900-1700 nm, respectively. Both portable systems used identical fiber-optic probe geometry throughout all of the measurements. The core diameters for illuminating and collecting fibers were 400 and 200 {micro}m, respectively, with center-to-center separation of 350 {micro}m. The probe was placed in optical contact with the tissue under investigation. Biopsies from lesions were analyzed by two standard histopathological procedures. Taking into account only the biopsied lesions, UV-visible ESS showed distinct spectral correlation for 11/13 lesions. The NIR-ESS correlated well with 12/13 lesions correctly. The results of these experiments showed that UV-visible and NIR-ESS have the potential to classify benign and malignant skin lesions, with encouraging agreement to that provided by standard histopathological examination. These initial results show potential for ESS based diagnosis of pigmented skin lesions, but further trials are required in order to substantiate the technique.

  10. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  11. Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans.

    Science.gov (United States)

    Tolessa, Kassaye; Rademaker, Michael; De Baets, Bernard; Boeckx, Pascal

    2016-04-01

    The growing global demand for specialty coffee increases the need for improved coffee quality assessment methods. Green bean coffee quality analysis is usually carried out by physical (e.g. black beans, immature beans) and cup quality (e.g. acidity, flavour) evaluation. However, these evaluation methods are subjective, costly, time consuming, require sample preparation and may end up in poor grading systems. This calls for the development of a rapid, low-cost, reliable and reproducible analytical method to evaluate coffee quality attributes and eventually chemical compounds of interest (e.g. chlorogenic acid) in coffee beans. The aim of this study was to develop a model able to predict coffee cup quality based on NIR spectra of green coffee beans. NIR spectra of 86 samples of green Arabica beans of varying quality were analysed. Partial least squares (PLS) regression method was used to develop a model correlating spectral data to cupping score data (cup quality). The selected PLS model had a good predictive power for total specialty cup quality and its individual quality attributes (overall cup preference, acidity, body and aftertaste) showing a high correlation coefficient with r-values of 90, 90,78, 72 and 72, respectively, between measured and predicted cupping scores for 20 out of 86 samples. The corresponding root mean square error of prediction (RMSEP) was 1.04, 0.22, 0.27, 0.24 and 0.27 for total specialty cup quality, overall cup preference, acidity, body and aftertaste, respectively. The results obtained suggest that NIR spectra of green coffee beans are a promising tool for fast and accurate prediction of coffee quality and for classifying green coffee beans into different specialty grades. However, the model should be further tested for coffee samples from different regions in Ethiopia and test if one generic or region-specific model should be developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    Science.gov (United States)

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  13. High-resolution pyrimidine- and ribose-specific 4D HCCH-COSY spectra of RNA using the filter diagonalization method

    International Nuclear Information System (INIS)

    Douglas, Justin T.; Latham, Michael P.; Armstrong, Geoffrey S.; Bendiak, Brad; Pardi, Arthur

    2008-01-01

    The NMR spectra of nucleic acids suffer from severe peak overlap, which complicates resonance assignments. 4D NMR experiments can overcome much of the degeneracy in 2D and 3D spectra; however, the linear increase in acquisition time with each new dimension makes it impractical to acquire high-resolution 4D spectra using standard Fourier transform (FT) techniques. The filter diagonalization method (FDM) is a numerically efficient algorithm that fits the entire multi-dimensional time-domain data to a set of multi-dimensional oscillators. Selective 4D constant-time HCCH-COSY experiments that correlate the H5-C5-C6-H6 base spin systems of pyrimidines or the H1'-C1'-C2'-H2' spin systems of ribose sugars were acquired on the 13 C-labeled iron responsive element (IRE) RNA. FDM-processing of these 4D experiments recorded with only 8 complex points in the indirect dimensions showed superior spectral resolution than FT-processed spectra. Practical aspects of obtaining optimal FDM-processed spectra are discussed. The results here demonstrate that FDM-processing can be used to obtain high-resolution 4D spectra on a medium sized RNA in a fraction of the acquisition time normally required for high-resolution, high-dimensional spectra

  14. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    Science.gov (United States)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  15. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    Science.gov (United States)

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms.

    Science.gov (United States)

    Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina

    2017-04-01

    The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats.

    Science.gov (United States)

    Núñez-Sánchez, N; Martínez-Marín, A L; Polvillo, O; Fernández-Cabanás, V M; Carrizosa, J; Urrutia, B; Serradilla, J M

    2016-01-01

    Milk fatty acid (FA) composition is important for the goat dairy industry because of its influence on cheese properties and human health. The aim of the present work was to evaluate the feasibility of NIRS reflectance (oven-dried milk using the DESIR method) and transflectance (liquid milk) analysis to predict milk FA profile and groups of fats in milk samples from individual goats. NIRS analysis of milk samples allowed to estimate FA contents and their ratios and indexes in fat with high precision and accuracy. In general, transflectance analysis gave better or similar results than reflectance mode. Interestingly, NIRS analysis allowed direct prediction of the Atherogenicity and Thrombogenicity indexes, which are useful for the interpretation of the nutritional value of goat milk. Therefore, the calibrations obtained in the present work confirm the viability of NIRS as a fast, reliable and effective analytical method to provide nutritional information of milk samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Classification of maize kernels using NIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Williams, Paul; Kucheryavskiy, Sergey V.

    2016-01-01

    NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... and specificity of 0.95 and 0.93). Both feature extraction methods can be recommended for classification of maize kernels on production scale....

  19. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  20. Is there Place for Perfectionism in the NIR Spectral Data Reduction?

    Science.gov (United States)

    Chilingarian, Igor

    2017-09-01

    "Despite the crucial importance of the near-infrared spectral domain for understanding the star formation and galaxy evolution, NIR observations and data reduction represent a significant challenge. The known complexity of NIR detectors is aggravated by the airglow emission in the upper atmosphere and the water absorption in the troposphere so that up until now, the astronomical community is divided on the issue whether ground based NIR spectroscopy has a future or should it move completely to space (JWST, Euclid, WFIRST). I will share my experience of pipeline development for low- and intermediate-resolution spectrographs operated at Magellan and MMT. The MMIRS data reduction pipeline became the first example of the sky subtraction quality approaching the limit set by the Poisson photon noise and demonstrated the feasibility of low-resolution (R=1200-3000) NIR spectroscopy from the ground even for very faint (J=24.5) continuum sources. On the other hand, the FIRE Bright Source Pipeline developed specifically for high signal-to-noise intermediate resolution stellar spectra proves that systematics in the flux calibration and telluric absorption correction can be pushed down to the (sub-)percent level. My conclusion is that even though substantial effort and time investment is needed to design and develop NIR spectroscopic pipelines for ground based instruments, it will pay off, if done properly, and open new windows of opportunity in the ELT era."

  1. Study on Dihydrated Praseodymium Acetylacetonate by Photoacoustic Spectra with Broad Wavelength Range

    Institute of Scientific and Technical Information of China (English)

    于锡娟; 伍荣护; 宋慧宇; 苏庆德

    2003-01-01

    The UV-Vis, NIR and MIR photoacoustic spectra of Pr(aa)3*2H2O were measured and most f-f transition peaks of Pr3+ are detected. The peak split and peak shift are studied also. The covalency parameter is calculated and it turns out that the covalent bonds between Pr(Ⅲ) ions and ligands exist. The results conclude that photoacoustic spectroscopy offers a unique and complementary method in analysis of solid rare earth complexes. Compared with conventional FT-IR transmission and absorption approaches, PAS has the advantages of fast, nondestructive analysis and high resolution.

  2. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  3. Compensation techniques in NIRS proton beam radiotherapy

    International Nuclear Information System (INIS)

    Akanuma, A.; Majima, H.; Furukawa, S.

    1982-01-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods

  4. Compensation techniques in NIRS proton beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Akanuma, A. (Univ. of Tokyo, Japan); Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  5. Development of a near-infrared spectroscopy method (NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica).

    Science.gov (United States)

    Sahamishirazi, Samira; Zikeli, Sabine; Fleck, Michael; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2017-10-01

    This study describes the development of near-infrared spectroscopy (NIRS) calibration to determine individual and total glucosinolates (GSLs) content of 12 new-bred open-pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica). Six individual GSLs were identified using high-performance-liquid chromatography (HPLC). The NIRS calibration was established based on modified partial least squares regression with reference values of HPLC. The calibration was analyzed using coefficient of determination in prediction (R 2 ) and ratio of preference of determination (RPD). Large variation occurred in the calibrations, R 2 and RPD due to the variability of the samples. Derived calibrations for total-GSLs, aliphatic-GSLs, glucoraphanin and 4-methoxyglucobrassicin were quantitative with a high accuracy (RPD=1.36, 1.65, 1.63, 1.11) while, for indole-GSLs, glucosinigrin, glucoiberin, glucobrassicin and 1-methoxyglucobrassicin were more qualitative (RPD=0.95, 0.62, 0.67, 0.81, 0.56). Overall, the results indicated NIRS has a good potential to determine different GSLs in a large sample pool of broccoli quantitatively and qualitatively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. What's next in carbon ion radiotherapy at NIRS?

    International Nuclear Information System (INIS)

    Kamada, Tadashi

    2011-01-01

    Since its launch by the National Institute of Radiological Sciences (NIRS) in 1994, cancer therapy using heavy ion beams (carbon ion beams) has been used in approximately 5,500 patients. Accumulated clinical experience has identified certain types of malignant tumors that respond exclusively to this treatment. It has also been made clear that this therapy is capable of treating several other types of cancers safely in a relatively short period of time, effecting remission and/or cure without pain or discomfort in a few days or weeks. We can reasonably state that heavy ion radiotherapy has been established as a safe and effective treatment method. NIRS researchers are continuing to make every effort to develop more effective, efficient, and patient-friendly heavy ion irradiation systems. The result of this research and development is also expected to slash the attendant costs of heavy ion radiotherapy. (author)

  7. Simultaneous determination of the brand new two-drug combination for the treatment of hepatitis C: Sofosbuvir/ledipasvir using smart spectrophotometric methods manipulating ratio spectra

    Science.gov (United States)

    Eissa, Maya S.

    2017-08-01

    In this work, various sensitive and selective spectrophotometric methods were first introduced for the simultaneous determination of sofosbuvir and ledipasvir in their binary mixture without preliminary separation. Ledipasvir was determined simply by zero-order spectrophotometric method at its λmax = 333.0 nm in a linear range of 2.5-30.0 μg/ml without any interference of sofosbuvir even in low or high concentrations and with mean percentage recovery of 100.05 ± 0.632. Sofosbuvir can be quantitatively estimated by one of the following smart spectrophotometric methods based on ratio spectra developed for the resolution of the overlapped spectra of their binary mixture; ratio difference spectrophotometric method (RD) by computing the difference between the amplitudes of sofosbuvir ratio spectra at 228 nm and 270 nm, first derivative (DD1) of ratio spectra by measuring the sum of amplitude of trough and peak at 265 nm and 277 nm, respectively, ratio subtraction (RS) spectrophotometric method in which sofosbuvir can be successfully determined at its λmax = 261.0 nm and mean centering (MC) of ratio spectra by measuring the mean centering values at 270 nm. All of the above mentioned spectrophotometric methods can estimate sofosbuvir in a linear range of 7.5-90.0 μg/ml with mean percentage recoveries of 100.57 ± 0.810, 99.92 ± 0.759, 99.51 ± 0.475 and 100.75 ± 0.672, respectively. These methods were successfully applied to the analysis of their combined dosage form and bulk powder. The adopted methods were also validated as per ICH guidelines and statistically compared to an in-house HPLC method.

  8. Mean centering of ratio spectra and successive derivative ratio spectrophotometric methods for determination of isopropamide iodide, trifluoperazine hydrochloride and trifluoperazine oxidative degradate

    Directory of Open Access Journals (Sweden)

    Maha M. Abdelrahman

    2016-09-01

    Full Text Available Two sensitive, selective and precise stability indicating methods for the determination of isopropamide iodide (ISO, trifluoperazine hydrochloride (TPZ and trifluoperazine oxidative degradate (DEG were developed and validated. Method A is a successive derivative ratio spectrophotometric one, which depends on the successive derivative of ratio spectra in two steps using 0.1 N HCl as a solvent and measuring TPZ at 250.4 and 257.2 nm, ISO at 223 and 228 nm and DEG at 210.6, 213 and 270.2 nm. Method B is mean centering of ratio spectra which depends on using the mean centered ratio spectra in two successive steps and measuring the mean centered values of the second ratio spectra at 322, 355 and 339 nm for TPZ, ISO and DEG, respectively. Factors affecting the developed methods were studied and optimized, moreover, they have been validated as per ICH guidelines and the results demonstrated that the suggested methods are reliable, reproducible and suitable for routine use with short analysis time. Statistical analysis of the two developed methods with the reported one using F- and Student’s t-test showed no significant difference regarding accuracy and precision.

  9. Development and validation of different methods manipulating zero order and first order spectra for determination of the partially overlapped mixture benazepril and amlodipine: A comparative study

    Science.gov (United States)

    Hemdan, A.

    2016-07-01

    Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238 nm or from their first order spectra at 253 nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240 nm and 238 nm, respectively, or from their first order spectra at 214 nm and 253 nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60 μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits.

  10. Use of chemometrics to compare NIR and HPLC for the simultaneous determination of drug levels in fixed-dose combination tablets employed in tuberculosis treatment.

    Science.gov (United States)

    Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly

    2018-02-05

    The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  12. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    Science.gov (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  13. Rheo-optical near-infrared (NIR) spectroscopy study of partially miscible polymer blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG)

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-03-01

    Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.

  14. Benchmark of the non-parametric Bayesian deconvolution method implemented in the SINBAD code for X/γ rays spectra processing

    Energy Technology Data Exchange (ETDEWEB)

    Rohée, E. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Coulon, R., E-mail: romain.coulon@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Carrel, F. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Dautremer, T.; Barat, E.; Montagu, T. [CEA, LIST, Laboratoire de Modélisation et Simulation des Systèmes, F-91191 Gif-sur-Yvette (France); Normand, S. [CEA, DAM, Le Ponant, DPN/STXN, F-75015 Paris (France); Jammes, C. [CEA, DEN, Cadarache, DER/SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-11

    Radionuclide identification and quantification are a serious concern for many applications as for in situ monitoring at nuclear facilities, laboratory analysis, special nuclear materials detection, environmental monitoring, and waste measurements. High resolution gamma-ray spectrometry based on high purity germanium diode detectors is the best solution available for isotopic identification. Over the last decades, methods have been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when full energy peaks are folded together with high ratio between their amplitudes, and when the Compton background is much larger compared to the signal of a single peak. In this context, this study deals with the comparison between a conventional analysis based on “iterative peak fitting deconvolution” method and a “nonparametric Bayesian deconvolution” approach developed by the CEA LIST and implemented into the SINBAD code. The iterative peak fit deconvolution is used in this study as a reference method largely validated by industrial standards to unfold complex spectra from HPGe detectors. Complex cases of spectra are studied from IAEA benchmark protocol tests and with measured spectra. The SINBAD code shows promising deconvolution capabilities compared to the conventional method without any expert parameter fine tuning.

  15. Assessment of electron propagator methods for the simulation of vibrationally-resolved valence and core photoionization spectra

    Science.gov (United States)

    Baiardi, A.; Paoloni, L.; Barone, V.; Zakrzewski, V.G.; Ortiz, J.V.

    2017-01-01

    The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Due to the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally-resolved electronic spectra has been generalized to support also photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate non-diagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies, but diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally-resolved bandshapes. PMID:28521087

  16. Analytical Methods to Distinguish the Positive and Negative Spectra of Mineral and Environmental Elements Using Deep Ablation Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J

    2018-01-01

    Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.

  17. Molecular structure and vibrational spectra of MHal3 (M = Sc, Y, La, Lu; Hal = F, Cl, Br, I): ab initio calculations by the CISD+Q method

    International Nuclear Information System (INIS)

    Solomonik, V.G.; Marochko, O.Yu.

    2000-01-01

    Structure and vibrational spectra of MHal 3 molecules (M = Sc, Y, La, Lu; Hal = F, Cl, Br, I) are studied by the CISD+Q method. It is ascertained that equilibrium configuration of nuclei in all the molecules, except LaF 3 , is plane (D 3h symmetry), while that of LaF 3 molecule - pyramidal (C 3c symmetry). Results of the calculations are compared with previously published experimental data. Band reference in IR spectra of ScBr 3 , YF 3 and YCl 3 molecules has been corrected [ru

  18. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    Science.gov (United States)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  19. Methods for determining fast neutron spectra using threshold detectors; Les methodes de determination des spectres de neutrons rapides a l'aide de detecteurs a seuil

    Energy Technology Data Exchange (ETDEWEB)

    Delattre, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We propose to examine all the methods by which fast neutron spectra can be determined using the response of threshold detectors (activation or fission chamber detectors). Most of these methods have been proposed and often even used by various authors of which a list will be found in the bibliography. The aim of the present report is thus not to present original work but rather to gather into a single article and to present in a rational form a whole series of methods which have already been described in articles scattered throughout the specialised literature. Up to the present, each author has in general studied one or two methods and no comparative study of all the possible methods seems to have been made. The most comprehensive study on this topic is that of P.M. UTHE from whose article much has been borrowed. We have tried here to develop a useful tool which should facilitate the systematic experimental study leading to the recognition of the respective merits of the methods proposed. (author) [French] On se propose d'examiner l'ensemble des methodes permettant de determiner les spectres de neutrons rapides a partir des reponses de detecteurs a seuil (detecteurs par activation ou chambre a fission). La plupart de ces methodes ont deja ete proposees, et souvent meme utilisees, par differents auteurs dont on trouvera la liste en bibliographie. Le but du present rapport n'est donc pas de faire oeuvre originale mais plutot de rassembler dans un meme document et de presenter de maniere homogene toute une serie de methodes qui ont deja fait l'objet d'articles disperses dans la litterature specialisee. Jusqu'a present, chaque auteur s'est en general limite a l'etude experimentale d'une ou deux methodes et aucune etude comparative de l'ensemble des methodes possibles ne semble avoir ete faite. Le rapport le plus complet a ce sujet est celui de P.M. UTHE auquel de larges emprunts ont ete faits. On s'est efforce ici d'elaborer un outil de travail commode qui devrait

  20. Optical-NIR dust extinction towards Galactic O stars

    Science.gov (United States)

    Maíz Apellániz, J.; Barbá, R. H.

    2018-05-01

    Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting the Galactic O-Star Spectroscopic Survey (GOSSS), which is generating a large sample of O stars with accurate spectral types within several kpc of the Sun. Aims: We aim to obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods: We have processed a carefully selected photometric set with the CHORIZOS code to measure the amount [E(4405 - 5495)] and type [R5495] of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results: The Maíz Apellániz et al. (2014, A&A, 564, A63) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989, ApJ, 345, 245) or Fitzpatrick (1999, PASP, 111, 63) families, so it should be preferentially used when analysing samples similar to the one in this paper. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R5495 effect of molecular clouds and others by the large-grain-size, high-R5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust

  1. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    Science.gov (United States)

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  2. Hemodynamic response to Interictal Epileptiform Discharges addressed by personalized EEG-fNIRS recordings

    Directory of Open Access Journals (Sweden)

    Giovanni ePellegrino

    2016-03-01

    Full Text Available Objective: We aimed at studying the hemodynamic response (HR to Interictal Epileptic Discharges (IEDs using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG and functional Near InfraRed Spectroscopy (fNIRS recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (7 patients, followed by oxy-hemoglobin decreases (6 patients. HR was lateralized in 6 patients and lasted from 8.5 to 30s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result. The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30s. Conclusions: i EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; ii cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function iii the HR is often bilateral and lasts up to 30s.

  3. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language.

    Science.gov (United States)

    Soltanlou, Mojtaba; Sitnikova, Maria A; Nuerk, Hans-Christoph; Dresler, Thomas

    2018-01-01

    In this review, we aim to highlight the application of functional near-infrared spectroscopy (fNIRS) as a useful neuroimaging technique for the investigation of cognitive development. We focus on brain activation changes during the development of mathematics and language skills in schoolchildren. We discuss how technical limitations of common neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have resulted in our limited understanding of neural changes during development, while fNIRS would be a suitable and child-friendly method to examine cognitive development. Moreover, this technique enables us to go to schools to collect large samples of data from children in ecologically valid settings. Furthermore, we report findings of fNIRS studies in the fields of mathematics and language, followed by a discussion of the outlook of fNIRS in these fields. We suggest fNIRS as an additional technique to track brain activation changes in the field of educational neuroscience.

  4. Two-trace two-dimensional (2T2D) correlation spectroscopy - A method for extracting useful information from a pair of spectra

    Science.gov (United States)

    Noda, Isao

    2018-05-01

    Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.

  5. An intercomparison of methods for solving the stochastic collection equation with a focus on cloud radar Doppler spectra in drizzling stratocumulus

    Science.gov (United States)

    Lee, H.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.

    2017-12-01

    Cloud radar Doppler spectra provide rich information for evaluating the fidelity of particle size distributions from cloud models. The intrinsic simplifications of bulk microphysics schemes generally preclude the generation of plausible Doppler spectra, unlike bin microphysics schemes, which develop particle size distributions more organically at substantial computational expense. However, bin microphysics schemes face the difficulty of numerical diffusion leading to overly rapid large drop formation, particularly while solving the stochastic collection equation (SCE). Because such numerical diffusion can cause an even greater overestimation of radar reflectivity, an accurate method for solving the SCE is essential for bin microphysics schemes to accurately simulate Doppler spectra. While several methods have been proposed to solve the SCE, here we examine those of Berry and Reinhardt (1974, BR74), Jacobson et al. (1994, J94), and Bott (2000, B00). Using a simple box model to simulate drop size distribution evolution during precipitation formation with a realistic kernel, it is shown that each method yields a converged solution as the resolution of the drop size grid increases. However, the BR74 and B00 methods yield nearly identical size distributions in time, whereas the J94 method produces consistently larger drops throughout the simulation. In contrast to an earlier study, the performance of the B00 method is found to be satisfactory; it converges at relatively low resolution and long time steps, and its computational efficiency is the best among the three methods considered here. Finally, a series of idealized stratocumulus large-eddy simulations are performed using the J94 and B00 methods. The reflectivity size distributions and Doppler spectra obtained from the different SCE solution methods are presented and compared with observations.

  6. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy - Performance comparison of interference elimination techniques using glucose-water system

    Science.gov (United States)

    Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.

    2018-05-01

    The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.

  7. Prediction of CP and starch concentrations in ruminal in situ studies and ruminal degradation of cereal grains using NIRS.

    Science.gov (United States)

    Krieg, J; Koenzen, E; Seifried, N; Steingass, H; Schenkel, H; Rodehutscord, M

    2018-03-01

    Ruminal in situ incubations are widely used to assess the nutritional value of feedstuffs for ruminants. In in situ methods, feed samples are ruminally incubated in indigestible bags over a predefined timespan and the disappearance of nutrients from the bags is recorded. To describe the degradation of specific nutrients, information on the concentration of feed samples and undegraded feed after in situ incubation ('bag residues') is needed. For cereal and pea grains, CP and starch (ST) analyses are of interest. The numerous analyses of residues following ruminal incubation contribute greatly to the substantial investments in labour and money, and faster methods would be beneficial. Therefore, calibrations were developed to estimate CP and ST concentrations in grains and bag residues following in situ incubations by using their near-infrared spectra recorded from 680 to 2500 nm. The samples comprised rye, triticale, barley, wheat, and maize grains (20 genotypes each), and 15 durum wheat and 13 pea grains. In addition, residues after ruminal incubation were included (at least from four samples per species for various incubation times). To establish CP and ST calibrations, 620 and 610 samples (grains and bag residues after incubation, respectively) were chemically analysed for their CP and ST concentration. Calibrations using wavelengths from 1250 to 2450 nm and the first derivative of the spectra produced the best results (R 2 Validation=0.99 for CP and ST; standard error of prediction=0.47 and 2.10% DM for CP and ST, respectively). Hence, CP and ST concentration in cereal grains and peas and their bag residues could be predicted with high precision by NIRS for use in in situ studies. No differences were found between the effective ruminal degradation calculated from NIRS estimations and those calculated from chemical analyses (P>0.70). Calibrations were also calculated to predict ruminal degradation kinetics of cereal grains from the spectra of ground grains

  8. NIR: optimerer produktionen af gammeldags modnede sild

    DEFF Research Database (Denmark)

    Svensson, T.; Bro, Rasmus; Nielsen, Henrik Hauch

    2005-01-01

    Måling med nærinfrarødt (NIR) lys er et godt supplement til de nuværende metoder til at følge modningen af sild saltede i tønder. Det viser resultaterne af et forskningsprojekt udført i samarbejde mellem Lykkeberg A/S, Danmarks Fiskeriundersøgelser og Den Kgl Veterinær- og Landbohøjskole. Ved hjælp...... af avanceret matematik er det nemt og hurtigt at bestemme modningsgraden af sild direkte fra en NIR måling....

  9. LS-SVM: uma nova ferramenta quimiométrica para regressão multivariada. Comparação de modelos de regressão LS-SVM e PLS na quantificação de adulterantes em leite em pó empregando NIR LS-SVM: a new chemometric tool for multivariate regression. Comparison of LS-SVM and pls regression for determination of common adulterants in powdered milk by nir spectroscopy

    Directory of Open Access Journals (Sweden)

    Marco F. Ferrão

    2007-08-01

    Full Text Available Least-squares support vector machines (LS-SVM were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.

  10. [A review on studies and applications of near infrared spectroscopy technique(NIRS) in detecting quality of hay].

    Science.gov (United States)

    Ding, Wu-Rong; Gan, You-Min; Guo, Xu-Sheng; Yang, Fu-Yu

    2009-02-01

    The quality of hay can directly affect the price of hay and also livestock productivity. Many kinds of methods have been developed for detecting the quality of hay and the method of near infrared spectroscopy (NIRS) has been widely used with consideration of its fast, effective and nondestructive characteristics during detecting process. In the present paper, the feasibility and effectiveness of application of NIRS to detecting hay quality were expounded. Meanwhile, the advance in the study of using NIRS to detect chemical compositions, extent of incursion by epiphyte, amount of toxicant excreted by endogenetic epiphyte and some minim components that can not be detected by using chemical methods were also introduced detailedly. Based on the review of the progresses in using NIRS to detect the quality of hay, it can be concluded that using NIRS to detect hay quality can avoid the disadvantages of time wasting, complication and high cost when using traditional chemical method. And for better utilization of NIRS in practice, some more studies still need to be implemented to further perfect and improve the utilization of NIRS for detecting forage quality, and more accurate modes and systematic analysis software need to be established in times to come.

  11. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV.

    Science.gov (United States)

    Boone, J M; Seibert, J A

    1997-11-01

    A tungsten anode spectral model using interpolating polynomials (TASMIP) was used to compute x-ray spectra at 1 keV intervals over the range from 30 kV to 140 kV. The TASMIP is not semi-empirical and uses no physical assumptions regarding x-ray production, but rather interpolates measured constant potential x-ray spectra published by Fewell et al. [Handbook of Computed Tomography X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1981)]. X-ray output measurements (mR/mAs measured at 1 m) were made on a calibrated constant potential generator in our laboratory from 50 kV to 124 kV, and with 0-5 mm added aluminum filtration. The Fewell spectra were slightly modified (numerically hardened) and normalized based on the attenuation and output characteristics of a constant potential generator and metal-insert x-ray tube in our laboratory. Then, using the modified Fewell spectra of different kVs, the photon fluence phi at each 1 keV energy bin (E) over energies from 10 keV to 140 keV was characterized using polynomial functions of the form phi (E) = a0[E] + a1[E] kV + a2[E] kV2 + ... + a(n)[E] kVn. A total of 131 polynomial functions were used to calculate accurate x-ray spectra, each function requiring between two and four terms. The resulting TASMIP algorithm produced x-ray spectra that match both the quality and quantity characteristics of the x-ray system in our laboratory. For photon fluences above 10% of the peak fluence in the spectrum, the average percent difference (and standard deviation) between the modified Fewell spectra and the TASMIP photon fluence was -1.43% (3.8%) for the 50 kV spectrum, -0.89% (1.37%) for the 70 kV spectrum, and for the 80, 90, 100, 110, 120, 130 and 140 kV spectra, the mean differences between spectra were all less than 0.20% and the standard deviations were less than approximately 1.1%. The model was also extended to include the effects of generator-induced kV ripple. Finally, the x-ray photon fluence in the units of

  12. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures

    Science.gov (United States)

    Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.

    2018-04-01

    A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.

  13. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    Science.gov (United States)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  14. Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Djéssica Tatiana Raspe

    2013-01-01

    Full Text Available This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS. The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production.

  15. Monitoring of whey quality with NIR spectroscopy

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Lomborg, Carina

    2015-01-01

    The possibility of using near-infrared (NIR) spectroscopy for monitoring of liquid whey quality parameters during protein production process has been tested. The parameters included total solids, lactose, protein and fat content. The samples for the experiment were taken from real industrial...

  16. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1992-01-01

    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  17. Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics

    International Nuclear Information System (INIS)

    Tiziani, Stefano; Lodi, Alessia; Ludwig, Christian; Parsons, Helen M.; Viant, Mark R.

    2008-01-01

    Two dimensional (2D) homonuclear 1 H J-resolved (JRES) nuclear magnetic resonance spectroscopy is increasingly used in metabolomics. This approach visualises metabolite chemical shifts and scalar couplings along different spectral dimensions, thereby increasing peak dispersion and facilitating spectral assignments and accurate quantification. Here, we optimise the processing of 2D JRES spectra by evaluating different window functions, a traditional sine-bell (SINE) and a combined sine-bell-exponential (SEM) function. Furthermore, we evaluate different projection methods for generating 1D projected spectra (pJRES). Spectra were recorded from three disparate types of biological samples and evaluated in terms of sensitivity, reproducibility and resolution. Overall, the SEM window function yielded considerably higher sensitivity and comparable spectral reproducibility and resolution compared to SINE, for both 1D pJRES and 2D JRES datasets. Furthermore, for pJRES spectra, the highest spectral quality was obtained using SEM combined with skyline projection. These improvements lend further support to utilising 2D J-resolved spectroscopy in metabolomics

  18. Field applications of stand-off sensing using visible/NIR multivariate optical computing

    Science.gov (United States)

    Eastwood, DeLyle; Soyemi, Olusola O.; Karunamuni, Jeevanandra; Zhang, Lixia; Li, Hongli; Myrick, Michael L.

    2001-02-01

    12 A novel multivariate visible/NIR optical computing approach applicable to standoff sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is to develop environmental or counter-terrorism sensors for chemicals such as organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared spectral region. The mathematical operation that characterizes prediction of properties via regression from optical spectra is a calculation of inner products between the spectrum and the pre-determined regression vector. The result is scaled appropriately and offset to correspond to the basis from which the regression vector is derived. The process involves collecting spectroscopic data and synthesizing a multivariate vector using a pattern recognition method. Then, an interference coating is designed that reproduces the pattern of the multivariate vector in its transmission or reflection spectrum, and appropriate interference filters are fabricated. High and low refractive index materials such as Nb2O5 and SiO2 are excellent choices for the visible and near infrared regions. The proof of concept has now been established for this system in the visible and will later be extended to chemicals such as OP compounds in the near and mid-infrared.

  19. A novel baseline-correction method for standard addition based derivative spectra and its application to quantitative analysis of benzo(a)pyrene in vegetable oil samples.

    Science.gov (United States)

    Li, Na; Li, Xiu-Ying; Zou, Zhe-Xiang; Lin, Li-Rong; Li, Yao-Qun

    2011-07-07

    In the present work, a baseline-correction method based on peak-to-derivative baseline measurement was proposed for the elimination of complex matrix interference that was mainly caused by unknown components and/or background in the analysis of derivative spectra. This novel method was applicable particularly when the matrix interfering components showed a broad spectral band, which was common in practical analysis. The derivative baseline was established by connecting two crossing points of the spectral curves obtained with a standard addition method (SAM). The applicability and reliability of the proposed method was demonstrated through both theoretical simulation and practical application. Firstly, Gaussian bands were used to simulate 'interfering' and 'analyte' bands to investigate the effect of different parameters of interfering band on the derivative baseline. This simulation analysis verified that the accuracy of the proposed method was remarkably better than other conventional methods such as peak-to-zero, tangent, and peak-to-peak measurements. Then the above proposed baseline-correction method was applied to the determination of benzo(a)pyrene (BaP) in vegetable oil samples by second-derivative synchronous fluorescence spectroscopy. The satisfactory results were obtained by using this new method to analyze a certified reference material (coconut oil, BCR(®)-458) with a relative error of -3.2% from the certified BaP concentration. Potentially, the proposed method can be applied to various types of derivative spectra in different fields such as UV-visible absorption spectroscopy, fluorescence spectroscopy and infrared spectroscopy.

  20. Simultaneous determination of some antiprotozoal drugs in different combined dosage forms by mean centering of ratio spectra and multivariate calibration with model updating methods

    Directory of Open Access Journals (Sweden)

    Abdelaleem Eglal A

    2012-04-01

    Full Text Available Abstract Background Metronidazole (MET and Diloxanide Furoate (DF, act as antiprotozoal drugs, in their ternary mixtures with Mebeverine HCl (MEH, an effective antispasmodic drug. This work concerns with the development and validation of two simple, specific and cost effective methods mainly for simultaneous determination of the proposed ternary mixture. In addition, the developed multivariate calibration model has been updated to determine Metronidazole benzoate (METB in its binary mixture with DF in Dimetrol® suspension. Results Method (I is the mean centering of ratio spectra spectrophotometric method (MCR that depends on using the mean centered ratio spectra in two successive steps that eliminates the derivative steps and therefore the signal to noise ratio is enhanced. The developed MCR method has been successfully applied for determination of MET, DF and MEH in different laboratory prepared mixtures and in tablets. Method (II is the partial least square (PLS multivariate calibration method that has been optimized for determination of MET, DF and MEH in Dimetrol ® tablets and by updating the developed model, it has been successfully used for prediction of binary mixtures of DF and Metronidazole Benzoate ester (METB in Dimetrol ® suspension with good accuracy and precision without reconstruction of the calibration set. Conclusion The developed methods have been validated; accuracy, precision and specificity were found to be within the acceptable limits. Moreover results obtained by the suggested methods showed no significant difference when compared with those obtained by reported methods. Graphical Abstract

  1. Determination of the Mechanical Properties of Rubber by FT-NIR

    Directory of Open Access Journals (Sweden)

    Rattapol Pornprasit

    2016-01-01

    Full Text Available Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR, styrene butadiene rubber (SBR, nitrile butadiene rubber (NBR, and ethylene propylene diene monomer (EPDM, were evaluated using a near infrared (NIR spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-NIR spectrometer and fitted with an integration sphere working in a diffused reflectance mode. The spectra were correlated with hardness and tensile properties. Partial least square (PLS calibration models were built from the spectra datasets with preprocessing techniques, that is, smoothing and second derivative. This indicated that reasonably accurate models, that is, with a coefficient of determination [R2] of the validation greater than 0.9, could be achieved for the hardness and tensile properties of rubber materials. This study demonstrated that FT-NIR analysis can be applied to determine hardness and tensile values in rubbers and rubber blends effectively.

  2. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra

    International Nuclear Information System (INIS)

    Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-01-01

    The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra. - Highlights: • We propose a precise material identification method to be used as a photon counting system. • Beam hardening correction is important, even when the analysis is applied to the short energy regions in the X-ray spectrum. • Experiments using a single probe-type CdTe detector were performed, and Monte Carlo simulation was also carried out. • We described the applicability of our method for clinical diagnostic X-ray imaging in the near future.

  3. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  4. [Modeling of sugar content based on NIRS during cider-making fermentation].

    Science.gov (United States)

    Peng, Bang-Zhu; Yue, Tian-Li; Yuan, Ya-Hong; Gao, Zhen-Peng

    2009-03-01

    The sugar content and the matrix always are being changed during cider-making fermentation. In order to measure and monitor sugar content accurately and rapidly, it is necessary for the spectra to be sorted. Calibration models were established at different fermentation stages based on near infrared spectroscopy with artificial neural network. NIR spectral data were collected in the spectral region of 12 000-4 000 cm(-1) for the next analysis. After the different conditions for modeling sugar content were analyzed and discussed, the results indicated that the calibration models developed by the spectral data pretreatment of straight line subtraction(SLS) in the characteristic absorption spectra ranges of 7 502-6 472.1 cm(-1) at stage I and 6 102-5 446.2 cm(-1) at stage II were the best for sugar content. The result of comparison of different data pretreatment methods for establishing calibration model showed that the correlation coefficients of the models (R2) for stage I and II were 98.93% and 99.34% respectively and the root mean square errors of cross validation(RMSECV) for stage I and II were 4.42 and 1.21 g x L(-1) respectively. Then the models were tested and the results showed that the root mean square error of prediction (RMSEP) was 4.07 g x L(-1) and 1.13 g x L(-1) respectively. These demonstrated that the models the authors established are very well and can be applied to quick determination and monitoring of sugar content during cider-making fermentation.

  5. Near-infrared microscopic methods for the detection and quantification of processed by-products of animal origin

    Science.gov (United States)

    Abbas, O.; Fernández Pierna, J. A.; Dardenne, P.; Baeten, V.

    2010-04-01

    Since the BSE crisis, researches concern mainly the detection, identification, and quantification of meat and bone meal with an important focus on the development of new analytical methods. Microscopic based spectroscopy methods (NIR microscopy - NIRM or/and NIR hyperspectral imaging) have been proposed as complementary methods to the official method; the optical microscopy. NIR spectroscopy offers the advantage of being rapid, accurate and independent of human analyst skills. The combination of an NIR detector and a microscope or a camera allows the collection of high quality spectra for small feed particles having a size larger than 50 μm. Several studies undertaken have demonstrated the clear potential of NIR microscopic methods for the detection of animal particles in both raw and sediment fractions. Samples are sieved and only the gross fraction (superior than 250 μm) is investigated. Proposed methodologies have been developed to assure, with an acceptable level of confidence (95%), the detection of at least one animal particle when a feed sample is adulterated at a level of 0.1%. NIRM and NIR hyperspectral imaging are running under accreditation ISO 17025 since 2005 at CRA-W. A quantitative NIRM approach has been developed in order to fulfill the new requirements of the European commission policies. The capacities of NIRM method have been improved; only the raw fraction is analyzed, both the gross and the fine fractions of the samples are considered, and the acquisition parameters are optimized (the aperture, the gap, and the composition of the animal feed). A mapping method for a faster collection of spectra is also developed. The aim of this work is to show the new advances in the analytical methods developed in the frame of the feed ban applied in Europe.

  6. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong

    2011-04-15

    A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.

  7. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging

    Science.gov (United States)

    Hemmer, Eva; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Hattori, Akito; Ebina, Yoshie; Kishimoto, Hidehiro; Soga, Kohei

    2013-11-01

    In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near

  8. Clinical uses of I-123 produced by 127I(p, 5n)123Xe to 123I reaction in NIRS

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Uchiyama, Guio; Tateno, Yukio; Rikitake, Tomoyuki.

    1978-01-01

    123 I capsules produced by NIRS which are believed to be uncontaminated by radioactive impurities other than 125 I were compared with commercial 123 I capsules regarding gamma-ray spectra, thyroid phantoms and clinical scintigrams. Absorbed radiation doses of 123 I contaminated with nuclides other than 123 I to thyroid and whole body were also estimated. Regarding gamma-ray spectra, any nuclides other than 125 I(0.53%) did not contaminate in 123 I produced by NIRS, and it was superior to commercial capsules. Regarding phantoms and clinical scintigrams, background counts around the thyroid gland seemed to be slightly higher in commercial capsules than that produced by NIRS because of contamination with other nuclides. Exposed doses in thyroid and whole body were counted. Ratios in thyroid and whole body were increased by 30% and 9%, respectively in 123 I produced by NIRS because of contamination with 0.53% of 125 I in the event that the intake ratio of thyroid was determined as 25%. In commercial capsules the doses in thyroid and whole body were increased by 500% and 150%, respectively. Doses of commercial capsules and NIRS capsules were 7.87 rad and 1.72 rad, respectively per 100 μCi in thyroid. The ratio of NIRS capsules to commercial capsules in thyroid was 1/4.6, and that in the whole body was less than 1/2. (Ichikawa, K.)

  9. Supplementing predictive mapping of acid sulfate soil occurrence with Vis-NIR spectroscopy

    DEFF Research Database (Denmark)

    Beucher, Amélie; Peng, Yi; Knadel, Maria

    , including geology, landscape type and terrain parameters. Visible-Near-Infrared (Vis-NIR) spectroscopy constitutes a rapid and cheap alternative to soil analysis, and was successfully utilized for the prediction of soil chemical, physical and biological properties. In particular, the Vis-NIR spectra contain......Releasing acidity and metals into watercourses, acid sulfate soils represent a critical environmental problem worldwide. Identifying the spatial distribution of these soils enables to target the strategic areas for risk management. In Denmark, the occurrence of acid sulfate soils was first studied...... during the 1980’s through conventional mapping (i.e. soil sampling and the subsequent determination of pH at the time of sampling and after incubation, the pyrite content and the acid-neutralizing capacity). Since acid sulfate soils mostly occur in wetlands, the survey specifically targeted these areas...

  10. Radioecological studies in early period of NIRS

    International Nuclear Information System (INIS)

    Ichikawa, Ryushi

    2004-01-01

    Japanese tuna-fishing boat Fukuryumaru No.5 was exposed to heavy radioactive fallout due to the nuclear test explosion carried out by U.S.A. at Bikini Atoll of Marshal Islands in the central part of Pacific Ocean on March 1, 1954. Following this accident, radioactivity was detected in various environmental samples including rain, marine fishes and agricultural crops. Science Council of Japan organized the new research group of many scientists in the field of fisheries, agricultural, medical and biological studies and radiation protection studies. Government of Japan established National Institute of Radiological Sciences (NIRS) in 1957. In this Institute various radioecological studies have been carried out. In this paper, some of these radioecological studies carried out in early period of NIRS are described. (author)

  11. NIR spectroscopic properties of aqueous acids solutions.

    Science.gov (United States)

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  12. COMPARISON OF TWO TEMPERATURE MEASUREMENT METHODS BY UPCONVERSION FLUORESCENCE SPECTRA OF ERBIUM-DOPED LEAD-FLUORIDE NANO-GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2015-05-01

    Full Text Available The study and compare of two temperature measurement methods is performed for the case of a lead-fluoride nano-glassceramics in the range from 317 to 423 K with a view to their application to temperature sensors. A method of temperature measurement by means of violet, green and red upconversion fluorescence spectra regression on latent structures and a method of temperature measurement by two fluorescence bands intensity ratio in green range are considered. It is shown that a four-dimensional space of latent structures is an optimum one in terms of temperature measurement accuracy. It made possible temperature determining with a relative error not larger than 0.15% at temperatures higher than 340 K by making use of fluorescence spectra training set with the step of 10 K. The method using two green bands fluorescence intensity ratio is inferior by the accuracy. Independence of pump power fluctuations is a significant advantage of the second method. To take advantage of the first method a stabilization of the pump power is necessary. The results of the work can be taken into account while developing optical temperature sensors with a better performance (in relation to accuracy and measurement range compared to existing ones which utilize temperature redistribution of fluorescence intensities in two closely-spaced bands or temperature dependence of fluorescence lifetime.

  13. Agricultural applications of NIR reflectance and transmittance

    DEFF Research Database (Denmark)

    Gislum, René

    2009-01-01

    There has been a considerable increase in the use of near infrared (NIR) reflectance and transmittance spectroscopy technologies for rapid determination of quality parameters in agriculture, including applications within crop product quality, feed and food quality, manure quality, soil analyses etc....... As a result it was decided to arrange a seminar within the Nordic Association of Agricultural Scientists. This is a report of the meeting....

  14. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  15. NIRS database of the original research database

    International Nuclear Information System (INIS)

    Morita, Kyoko

    1991-01-01

    Recently, library staffs arranged and compiled the original research papers that have been written by researchers for 33 years since National Institute of Radiological Sciences (NIRS) established. This papers describes how the internal database of original research papers has been created. This is a small sample of hand-made database. This has been cumulating by staffs who have any knowledge about computer machine or computer programming. (author)

  16. Design and construction of a NIR spectrometer

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Molero Menendez, F.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs

  17. A New Platform for Investigating In-Situ NIR Reflectance in Snow

    Science.gov (United States)

    Johnson, M.; Taubenheim, J. R. L.; Stevenson, R.; Eldred, D.

    2017-12-01

    In-situ near infrared (NIR) reflectance measurements of the snowpack have been shown to have correlations to valuable snowpack properties. To-date many studies take these measurements by digging a pit and setting up a NIR camera to take images of the wall. This setup is cumbersome, making it challenging to investigate things like spatial variability. Over the course of 3 winters, a new device has been developed capable of mitigating some of the downfalls of NIR open pit photography. This new instrument is a NIR profiler capable of taking NIR reflectance measurements without digging a pit, with most measurements taking less than 30 seconds to retrieve data. The latest prototype is built into a ski pole and automatically transfers data wirelessly to the users smartphone. During 2016-2017 winter, the device was used by 37 different users resulting in over 4000 measurements in the Western United States, demonstrating a dramatic reduction in time to data when compared to other methods. Presented here are some initial findings from a full winter of using the ski pole version of this device.

  18. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Didier, E-mail: didier.brunet@ird.f [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France); Woignier, Thierry [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); CNRS - Centre National de la Recherche Scientifique, Universite Montpellier 2, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Lesueur-Jannoyer, Magalie; Achard, Raphael [CIRAD (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), PRAM, BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Rangon, Luc [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Barthes, Bernard G. [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France)

    2009-11-15

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q{sup 2} = 0.75, R{sup 2} = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg{sup -1} or when the sample set was rather homogeneous (Q{sup 2} = 0.91, R{sup 2} = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg{sup -1}, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  19. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    International Nuclear Information System (INIS)

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphael; Rangon, Luc; Barthes, Bernard G.

    2009-01-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q 2 = 0.75, R 2 = 0.82 for the total set), especially for samples with chlordecone content -1 or when the sample set was rather homogeneous (Q 2 = 0.91, R 2 = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg -1 , nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  20. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    Science.gov (United States)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this

  1. Towards NIRS-based hand movement recognition.

    Science.gov (United States)

    Paleari, Marco; Luciani, Riccardo; Ariano, Paolo

    2017-07-01

    This work reports on preliminary results about on hand movement recognition with Near InfraRed Spectroscopy (NIRS) and surface ElectroMyoGraphy (sEMG). Either basing on physical contact (touchscreens, data-gloves, etc.), vision techniques (Microsoft Kinect, Sony PlayStation Move, etc.), or other modalities, hand movement recognition is a pervasive function in today environment and it is at the base of many gaming, social, and medical applications. Albeit, in recent years, the use of muscle information extracted by sEMG has spread out from the medical applications to contaminate the consumer world, this technique still falls short when dealing with movements of the hand. We tested NIRS as a technique to get another point of view on the muscle phenomena and proved that, within a specific movements selection, NIRS can be used to recognize movements and return information regarding muscles at different depths. Furthermore, we propose here three different multimodal movement recognition approaches and compare their performances.

  2. Distraction decreases prefrontal oxygenation: A NIRS study.

    Science.gov (United States)

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A method for analyzing low statistics high resolution spectra from 210Pb in underground coal miners from Brazil

    International Nuclear Information System (INIS)

    Dantas, A.L.A.; Dantas, B.M.; Lipsztein, J.L.; Spitz, H.B.

    2006-01-01

    A survey conducted by the IRD-CNEN determined that some workers from an underground coal mine in the south of Brazil were exposed to elevated airborne concentrations of 222 Rn. Because inhalation of high airborne concentrations of 222 Rn can lead to an increase of 210 Pb in bone, in vivo measurements of 210 Pb in the skeleton were performed in selected underground workers from this mine. Measurements were performed using an array of high-resolution germanium detectors positioned around the head and knee to detect the low abundant 46.5 keV photon emitted by 210 Pb. The gamma-ray spectra were analyzed using a moving median smoothing function to detect the presence of a photopeak at 46.5 keV. The minimum detectable activity of 210 Pb in the skeleton using this methodology was 50 Bq. (author)

  4. Relative Contribution of nirK- and nirS- Bacterial Denitrifiers as Well as Fungal Denitrifiers to Nitrous Oxide Production from Dairy Manure Compost.

    Science.gov (United States)

    Maeda, Koki; Toyoda, Sakae; Philippot, Laurent; Hattori, Shohei; Nakajima, Keiichi; Ito, Yumi; Yoshida, Naohiro

    2017-12-19

    The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N 2 O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N 2 O were surveyed to isotopocule analysis, and its 15 N site preference (SP) and δ 18 O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N 2 O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N 2 O production. N 2 O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ 18 O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N 2 O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N 2 O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N 2 O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.

  5. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  6. Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery

    Science.gov (United States)

    Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.

    2013-01-01

    This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.

  7. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  8. Espectroscopía NIR como Técnica Exploratoria Rápida para Detección de Amarillamiento Hojas Crisantemo (Dendranthema grandiflora var. Zembla / NIR Spectroscopy as Quick Exploratory Technique for Detection of Chrysanthemum Leaf Yellowing (Dendranthema

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pérez Naranjo

    2014-03-01

    . Spectral NIR data from intact leaves showing different levels of yellowing (healthy leaves, slightly deformed leaves or highly deformed leaves with advanced yellowing, used in conjunction with multivariate statistical analysis of NIR spectra, were used to build a descriptive model for chrysanthemum leaf yellowing classification. The descriptive model indicated the presence of two groups of NIR spectra belonging to asymptomatic or symptomatic leaves, with no further differentiation of NIR spectra from leaves showing mild or severe yellowing symptoms. Not without the drawbacks of a low number of NIR spectra, these results suggests that it is possible to develop a fast, accurate and nondestructive, spectroscopic based system to detect this disease on blind plant samples. Improvements to the sensitivity of this model in detecting multiple stages of this disease will depend on obtaining and adding new NIR leaf spectra obtained from clearly defined ratings of the disease. Due to its sensitivity and wide application, NIR spectroscopy appear to be a core technique to further develop new systems for the early detection of chrysanthemum leaf yellowing and other plant diseases. This in turn may result in the design of opportune and timely systems for plant disease control.

  9. Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm.

    Science.gov (United States)

    de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino

    2018-05-01

    This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.

  10. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    M. F. Heringa

    2012-02-01

    Full Text Available Organic aerosol (OA represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm mass. Secondary organic aerosol (SOA is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS and compared to SOA from α-pinene.

    The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production.

    Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25–0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions.

    The HR data of the four sources could be clustered and separated using

  11. The application of Near Infrared Reflectance Spectroscopy (NIRS for the quantitative analysis of hydrocortisone in primary materials

    Directory of Open Access Journals (Sweden)

    A. PITTAS

    2001-03-01

    Full Text Available Near Infrared Reflectance Spectroscopy (NIRS, coupled with fiber optic probes, has been shown to be a quick and reliable analytical tool for quality assurance and quality control in the pharmaceutical industry, both for verifications of raw materials and quantification of the active ingredients in final products. In this paper, a typical pharmaceutical product, hydrocortisone sodium succinate, is used as an example for the application of NIR spectroscopy for quality control. In order to develop an NIRS method with higher precision and accuracy than the official UV/VIS spectroscopic method (BP '99, 19 samples, taken from one year’s production and several prepared in the laboratory, having a hydrocortisone sodium succinate concentration in the range from 89.05%to 95.83 %, were analysed by NIR and UV/VIS spectroscopy. Three frequency ranges: 5939.73–5627.32 cm-1; 4863.64 – 4574.36 cm-1; 4308.23–4200.24 cm-1, with the best positive correlation between the changes in the spectral and concentration data, were chosen. The validity of the developed NIRS chemometric method for the determination of the hydrocortisone sodium succinate concentration, constructed by the partial least squares (PLS regression technique, is discussed. A correlation coefficient of 0.9758 and a standard error of cross validation (RMSECVof 1.06%were found between the UV/VI Sand òhe NIR spectroscopic results of the hydrocortisone sodium succinate concentration in the samples.

  12. Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared Spectra

    Directory of Open Access Journals (Sweden)

    Lanfa Liu

    2017-12-01

    Full Text Available Soil spectroscopy has experienced a tremendous increase in soil property characterisation, and can be used not only in the laboratory but also from the space (imaging spectroscopy. Partial least squares (PLS regression is one of the most common approaches for the calibration of soil properties using soil spectra. Besides functioning as a calibration method, PLS can also be used as a dimension reduction tool, which has scarcely been studied in soil spectroscopy. PLS components retained from high-dimensional spectral data can further be explored with the gradient-boosted decision tree (GBDT method. Three soil sample categories were extracted from the Land Use/Land Cover Area Frame Survey (LUCAS soil library according to the type of land cover (woodland, grassland, and cropland. First, PLS regression and GBDT were separately applied to build the spectroscopic models for soil organic carbon (OC, total nitrogen content (N, and clay for each soil category. Then, PLS-derived components were used as input variables for the GBDT model. The results demonstrate that the combined PLS-GBDT approach has better performance than PLS or GBDT alone. The relative important variables for soil property estimation revealed by the proposed method demonstrated that the PLS method is a useful dimension reduction tool for soil spectra to retain target-related information.

  13. Time-to-Fatigue and Intramuscular pH Measured via NIRS During Handgrip Exercise in Trained and Sedentary Individuals

    Science.gov (United States)

    Everett, M. E.; Lee, S. M. C.; Stroud, L.; Scott, P.; Hagan, R. D.; Soller, B. R.

    2009-01-01

    In exercising muscles force production and muscular endurance are impaired by a decrease in intramuscular pH. The effects of aerobic training (AT) on preventing acidosis and prolonging exercise time in muscles not specifically targeted by the training are unknown. Purpose: To compare interstitial pH, measured non-invasively with near infrared spectroscopy (NIRS), in the flexor digitorum profundus (FDP) during rhythmic handgrip exercise in sedentary subjects and those who participate in AT activities that target the lower body. Methods: Maximal isometric force (MIF) was measured on three separate days in AT (n=5) and sedentary (n=8) subjects using a handgrip dynamometer (HGD). Isometric muscular endurance (IME) was measured during five trials, each separated by at least 48 hrs. For each IME trial subjects rhythmically squeezed (4 sec at 40% of MVC) and relaxed (2 sec) to fatigue or failure to reach the target force in three consecutive contractions or four non-consecutive contractions. Interstitial pH was derived from spectra collected using a NIRS sensor adhered to the skin over the FDP. The first four IME trials served to familiarize subjects with the protocol; the fifth trial was used for analysis. NIRS-derived pH was averaged in 30 sec increments. Between group differences in MIF and exercise time were tested using paired t-tests. A repeated measures ANOVA was used to analyze effects of AT and exercise time on pH. Results: MIF was not different between groups (mean SD; aerobic=415.6 95.4 N vs. sedentary =505.1 107.4 N). Time to fatigue was greater in the AT than in the sedentary group (mean SD: 611 173 sec vs. 377 162 sec, p<0.05). pH was not different between groups at any time point. Average pH decreased (p<0.05) in both groups from rest (pH=7.4) through 90 sec of exercise (pH=6.9), but did not decrease further throughout the remainder of exercise. Conclusion: Although between group differences in pH were not detected, differences during the onset of exercise

  14. Prediction of pH and color in pork meat using VIS-NIR Near-infrared Spectroscopy (NIRS

    Directory of Open Access Journals (Sweden)

    Elton Jhones Granemann FURTADO

    2018-06-01

    Full Text Available Abstract The potential of near-infrared spectroscopy (NIRS to predict the physicochemical characteristics of the porcine longissimus dorsi (LD muscle was evaluated in comparison to the standard methods of pH and color for meat quality analysis compared to the pH results with Colorimeter and pH meter. Spectral information from each sample (n = 77 was obtained as the average of 32 successive scans acquired over a spectral range from 400 - 2498 nm with a 2 - nm gap for calibration and validation models. Partial least squares (PLS regression was used for each individual model. An R2 and a residual predictive deviation (RPD of 0.67/1.7, 0.86/2, and 0.76/1.9 were estimated for color parameters L*, a *, and b*, respectively. Final pH had an R2 of 0.67 and a RPD of 1.6. NIRS showed great potential to predict color parameter a * of porcine LD muscle. Further studies with larger samples should help improve model quality.

  15. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  16. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples

    Science.gov (United States)

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2016-12-01

    Calibration transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. For most of calibration transfer methods, standard samples are necessary to construct the transfer model using the spectra of the samples measured on two instruments, named as master and slave instrument, respectively. In this work, a method named as linear model correction (LMC) is proposed for calibration transfer without standard samples. The method is based on the fact that, for the samples with similar physical and chemical properties, the spectra measured on different instruments are linearly correlated. The fact makes the coefficients of the linear models constructed by the spectra measured on different instruments are similar in profile. Therefore, by using the constrained optimization method, the coefficients of the master model can be transferred into that of the slave model with a few spectra measured on slave instrument. Two NIR datasets of corn and plant leaf samples measured with different instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra can be correctly predicted using the transferred partial least squares (PLS) models. Because standard samples are not necessary in the method, it may be more useful in practical uses.

  17. Surface-enhanced Raman scattering spectra revealing the inter-cultivar differences for Chinese ornamental Flos Chrysanthemum: a new promising method for plant taxonomy

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2017-10-01

    Full Text Available Abstract Background Flos Chrysanthemi, as a part of Chinese culture for a long history, is valuable for not only environmental decoration but also the medicine and food additive. Due to their voluminously various breeds and extensive distributions worldwide, it is burdensome to make recognition and classification among numerous cultivars with conventional methods which still rest on the level of morphologic observation and description. As a fingerprint spectrum for parsing molecular information, surface-enhanced Raman scattering (SERS could be a suitable candidate technique to characterize and distinguish the inter-cultivar differences at molecular level. Results SERS spectra were used to analyze the inter-cultivar differences among 26 cultivars of Chinese ornamental Flos Chrysanthemum. The characteristic peaks distribution patterns were abstracted from SERS spectra and varied from cultivars to cultivars. For the bands distributed in the pattern map, the similarities in general showed their commonality while in the finer scales, the deviations and especially the particular bands owned by few cultivars revealed their individualities. Since the Raman peaks could characterize specific chemical components, those diversity of patterns could indicate the inter-cultivar differences at the chemical level in fact. Conclusion In this paper, SERS technique is feasible for distinguishing the inter-cultivar differences among Flos Chrysanthemum. The Raman spectral library was built with SERS characteristic peak distribution patterns. A new method was proposed for Flos Chrysanthemum recognition and taxonomy.

  18. Remote Estimation of Chlorophyll-a in Inland Waters by a NIR-Red-Based Algorithm: Validation in Asian Lakes

    Directory of Open Access Journals (Sweden)

    Gongliang Yu

    2014-04-01

    Full Text Available Satellite remote sensing is a highly useful tool for monitoring chlorophyll-a concentration (Chl-a in water bodies. Remote sensing algorithms based on near-infrared-red (NIR-red wavelengths have demonstrated great potential for retrieving Chl-a in inland waters. This study tested the performance of a recently developed NIR-red based algorithm, SAMO-LUT (Semi-Analytical Model Optimizing and Look-Up Tables, using an extensive dataset collected from five Asian lakes. Results demonstrated that Chl-a retrieved by the SAMO-LUT algorithm was strongly correlated with measured Chl-a (R2 = 0.94, and the root-mean-square error (RMSE and normalized root-mean-square error (NRMS were 8.9 mg∙m−3 and 72.6%, respectively. However, the SAMO-LUT algorithm yielded large errors for sites where Chl-a was less than 10 mg∙m−3 (RMSE = 1.8 mg∙m−3 and NRMS = 217.9%. This was because differences in water-leaving radiances at the NIR-red wavelengths (i.e., 665 nm, 705 nm and 754 nm used in the SAMO-LUT were too small due to low concentrations of water constituents. Using a blue-green algorithm (OC4E instead of the SAMO-LUT for the waters with low constituent concentrations would have reduced the RMSE and NRMS to 1.0 mg∙m−3 and 16.0%, respectively. This indicates (1 the NIR-red algorithm does not work well when water constituent concentrations are relatively low; (2 different algorithms should be used in light of water constituent concentration; and thus (3 it is necessary to develop a classification method for selecting the appropriate algorithm.

  19. Errors of absolute methods of reactor neutron activation analysis caused by non-1/E epithermal neutron spectra

    International Nuclear Information System (INIS)

    Erdtmann, G.

    1993-08-01

    A sufficiently accurate characterization of the neutron flux and spectrum, i.e. the determination of the thermal flux, the flux ratio and the epithermal flux spectrum shape factor, α, is a prerequisite for all types of absolute and monostandard methods of reactor neutron activation analysis. A convenient method for these measurements is the bare triple monitor method. However, the results of this method, are very imprecise, because there are high error propagation factors form the counting errors of the monitor activities. Procedures are described to calculate the errors of the flux parameters, the α-dependent cross-section ratios, and of the analytical results from the errors of the activities of the monitor isotopes. They are included in FORTRAN programs which also allow a graphical representation of the results. A great number of examples were calculated for ten different irradiation facilities in four reactors and for 28 elements. Plots of the results are presented and discussed. (orig./HP) [de

  20. METHODS OF ANALYSIS AND CLASSIFICATION OF THE COMPONENTS OF GRAIN MIXTURES BASED ON MEASURING THE REFLECTION AND TRANSMISSION SPECTRA

    Directory of Open Access Journals (Sweden)

    Artem O. Donskikh*

    2017-10-01

    Full Text Available The paper considers methods of classification of grain mixture components based on spectral analysis in visible and near-infrared wavelength ranges using various measurement approaches - reflection, transmission and combined spectrum methods. It also describes the experimental measuring units used and suggests the prototype of a multispectral grain mixture analyzer. The results of the spectral measurement were processed using neural network based classification algorithms. The probabilities of incorrect recognition for various numbers of spectral parts and combinations of spectral methods were estimated. The paper demonstrates that combined usage of two spectral analysis methods leads to higher classification accuracy and allows for reducing the number of the analyzed spectral parts. A detailed description of the proposed measurement device for high-performance real-time multispectral analysis of the components of grain mixtures is given.

  1. An automatic gain matching method for {gamma}-ray spectra obtained with a multi-detector array

    Energy Technology Data Exchange (ETDEWEB)

    Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S. E-mail: ssg@alpha.iuc.res.in

    2004-07-01

    The increasing size of data sets from large multi-detector arrays makes the traditional approach to the pre-evaluation of the data difficult and time consuming. The pre-sorting involves detection and correction of the observed on-line drifts followed by calibration of the raw data. A new method for automatic detection and correction of these instrumental drifts is presented. An application of this method to the data acquired using a multi-Clover array is discussed.

  2. An automatic gain matching method for γ-ray spectra obtained with a multi-detector array

    International Nuclear Information System (INIS)

    Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S.

    2004-01-01

    The increasing size of data sets from large multi-detector arrays makes the traditional approach to the pre-evaluation of the data difficult and time consuming. The pre-sorting involves detection and correction of the observed on-line drifts followed by calibration of the raw data. A new method for automatic detection and correction of these instrumental drifts is presented. An application of this method to the data acquired using a multi-Clover array is discussed

  3. Resonance Raman spectra of phthalocyanine monolayers on different supports. A normal mode analysis of zinc phthalocyanine by means of the MNDO method

    NARCIS (Netherlands)

    Palys, Barbara J.; van den Ham, Dirk M.W.; van den Ham, D.M.W.; Briels, Willem J.; Feil, D.; Feil, Dirk

    1995-01-01

    Resonance Raman spectra of monolayers of transition metal phthalocyanines reveal specific interaction with the support. To elucidate its mechanism, Raman spectra of zinc phthalocyanine monolayers were studied. The analysis was based largely on the results of MNDO calculations. Calculated wavenumbers

  4. New laser design for NIR lidar applications

    Science.gov (United States)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  5. Comparative study between different simple methods manipulating ratio spectra for the analysis of alogliptin and metformin co-formulated with highly different concentrations.

    Science.gov (United States)

    Zaghary, Wafaa A; Mowaka, Shereen; Hassan, Mostafa A; Ayoub, Bassam M

    2017-11-05

    Different simple spectrophotometric methods were developed for simultaneous determination of alogliptin and metformin manipulating their ratio spectra with successful application on recently approved combination, Kazano® tablets. Spiking was implemented to detect alogliptin in spite of its low contribution in the pharmaceutical formulation as low quantity in comparison to metformin. Linearity was acceptable over the concentration range of 2.5-25.0μg/mL and 2.5-15.0μg/mL for alogliptin and metformin, respectively using derivative ratio, ratio subtraction coupled with extended ratio subtraction and spectrum subtraction coupled with constant multiplication. The optimized methods were compared using one-way analysis of variance (ANOVA) and proved to be accurate for assay of the investigated drugs in their pharmaceutical dosage form. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Investigation of the properties of the flux and interaction of ultrahigh-energy cosmic rays by the method of local-muon-density spectra

    International Nuclear Information System (INIS)

    Bogdanov, A. G.; Gromushkin, D. M.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Trinchero, G.; Chernov, D. V.; Shutenko, V. V.; Yashin, I. I.

    2010-01-01

    A new method for studying extensive air showers is considered. The method is based on the phenomenology of the localmuon density. It is shown that measurement ofmuon-density spectra at various zenith angles makes it possible to obtain information about the energy spectrum, mass composition, and interaction of cosmic rays over a broad range of energies (10 15 -10 18 eV) by using a single array of comparatively small size. The results obtained from a comparison of experimental data on muon bundles from the DECOR coordinate detector with the results of simulation performed under various assumptions on the properties of the primary flux and for various hadron-interaction models are presented, and possible versions of the interpretation of these results are discussed.

  7. On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.

    Science.gov (United States)

    Aydöre, Sergül; Mihçak, M Kivanç; Ciftçi, Koray; Akin, Ata

    2010-03-01

    Functional near-infrared spectroscopy (fNIRS) is an optical imaging method, which monitors the brain activation by measuring the successive changes in the concentration of oxy- and deoxyhemoglobin in real time. In this study, we present a method to investigate the functional connectivity of prefrontal cortex (PFC) Sby applying a Gauss-Markov model to fNIRS signals. The hemodynamic changes on PFC during the performance of cognitive paradigm are measured by fNIRS for 17 healthy adults. The color-word matching Stroop task is performed to activate 16 different regions of PFC. There are three different types of stimuli in this task, which can be listed as incongruent stimulus (IS), congruent stimulus (CS), and neutral stimulus (NS), respectively. We introduce a new measure, called "information transfer metric" (ITM) for each time sample. The behavior of ITMs during IS are significantly different from the ITMs during CS and NS, which is consistent with the outcome of the previous research, which concentrated on fNIRS signal analysis via color-word matching Stroop task. Our analysis shows that the functional connectivity of PFC is highly relevant with the cognitive load, i.e., functional connectivity increases with the increasing cognitive load.

  8. Rheo-optical two-dimensional (2D) near-infrared (NIR) correlation spectroscopy for probing strain-induced molecular chain deformation of annealed and quenched Nylon 6 films

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-04-01

    A rheo-optical characterization technique based on the combination of a near-infrared (NIR) spectrometer and a tensile testing machine is presented here. In the rheo-optical NIR spectroscopy, tensile deformations are applied to polymers to induce displacement of ordered or disordered molecular chains. The molecular-level variation of the sample occurring on short time scales is readily captured as a form of strain-dependent NIR spectra by taking an advantage of an acousto-optic tunable filter (AOTF) equipped with the NIR spectrometer. In addition, the utilization of NIR with much less intense absorption makes it possible to measure transmittance spectra of relatively thick samples which are often required for conventional tensile testing. An illustrative example of the rheo-optical technique is given with annealed and quenched Nylon 6 samples to show how this technique can be utilized to derive more penetrating insight even from the seemingly simple polymers. The analysis of the sets of strain-dependent NIR spectra suggests the presence of polymer structures undergoing different variations during the tensile elongation. For instance, the tensile deformation of the semi-crystalline Nylon 6 involves a separate step of elongation of the rubbery amorphous chains and subsequent disintegration of the rigid crystalline structure. Excess amount of crystalline phase in Nylon 6, however, results in the retardation of the elastic deformation mainly achieved by the amorphous structure, which eventually leads to the simultaneous orientation of both amorphous and crystalline structures.

  9. Mathematical methods in the problem of reconstruction of hadron interaction characteristics and primary cosmic ray spectra at superhigh energies

    International Nuclear Information System (INIS)

    Astaf'ev, V.A.

    1985-01-01

    The paper reviews the mathematical methods used for analyzing the experimental data obtained in investigations of cosmic rays of superhigh energies (10 14 -10 19 eV). The analysis is carried out on the basis of the direct problem solution, i.e. calculation of the characteristics of nuclear-electromagnetic cascade showers developed in the atmosphere with regard to the specific features of experimental devices. The analytical and numerical metods for solving equations describing shower development, as well as simulation of cascade processes by the Monte Carlo method are applied herein

  10. A new method for obtaining time resolved optical spectra of transients produced by a single pulse of electrons

    International Nuclear Information System (INIS)

    Gordon, S.; Schmidt, K.H.; Martin, J.E.

    1975-01-01

    The essential features of the kinetic spectroscopic method and the kinetic spectrophotometric method are summarized. It is stated that the new method embodies some of the advantages of both. A diagram of the apparatus is shown. This is essentially a version of a conventional pulse radiolysis experimental arrangement with the modification that the usual monochromator is replaced by a spectrograph equipped with a horizontal and a vertical slit and the usual photomultiplier-amplifier detector is replaced by a streak camera (TRW) incorporating an image converter tube (ICT) and a TV camera interfaced to a 2000 channel Biomation transient recorder. The time resolved absorption spectrum (or emission spectrum) is displayed on the P-11 phosphor of the ICT. This image is focussed on the photoelements of the TV tube. The TV camera scans the image of the spectrum stored on these elements and the output of this scan is stored in the Biomation. This recorder is in turn interfaced to a Sigma 5 computer. Results are presented for several experiments, from which it is concluded that with the present equipment absorbances down to 0.02 can be measured, and a time resolution of 1ns can be achieved. It is stated that with improved equipment it should be possible to extend the time resolution of the method to less than 50 picoseconds. (U.K.)

  11. Application of the instanton method for analyzing tunneling splitting spectra of nonrigid molecular systems : II. Excited states

    NARCIS (Netherlands)

    Iroshnikov, GS; Sukhanov, LP

    For nonrigid molecules with two equivalent minima on their potential energy surface, expressions are obtained in terms of the instanton method for the calculation of the magnitude of the tunneling splitting of vibrational levels with the number n greater than or equal to 0 both in the harmonic

  12. Communication: On the consistency of approximate quantum dynamics simulation methods for vibrational spectra in the condensed phase.

    Science.gov (United States)

    Rossi, Mariana; Liu, Hanchao; Paesani, Francesco; Bowman, Joel; Ceriotti, Michele

    2014-11-14

    Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here, we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer model and a mixed quantum-classical model as representatives of the first family of methods, and centroid molecular dynamics and thermostatted ring polymer molecular dynamics as examples of the latter. We use as benchmarks D2O doped with HOD and pure H2O at three distinct thermodynamic state points (ice Ih at 150 K, and the liquid at 300 K and 600 K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm(-1). Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.

  13. A beam energy measurement system at NIRS-930 cyclotron

    International Nuclear Information System (INIS)

    Hojo, S.; Honma, T.; Sakamoto, Y.; Miyahara, N.; Okada, T.; Komatsu, K.; Tsuji, N.; Yamada, S.

    2005-01-01

    A beam energy measurement system employing a set of capacitive probes has been developed at NIRS-930 cyclotron. Principle of the measurement is applying a modified-TOF method, so that the two proves are installed at one of the straight section in the beam transport line. Usually they are separated about 5.8 m, which is equivalent to the almost final path length of the beam extracted in the cyclotron. In the measurement, two beam signals are superimposed by adjusting a position of the downstream-probe along the beam direction with watching an oscilloscope screen roughly. In order to determine the beam energy accurately the signals are processed by MCA with suitable electric module. (author)

  14. Method for improvement of gamma-transition cascade spectra amplitude resolution by computer processing of coincidence codes

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    1982-01-01

    A method of improvement of amplitude resolution in the case of record of coinciding codes on the magnetic tape is suggested. It is shown on the record with Ge(Li) detectors of cascades of gamma-transitions from the 35 Cl(n, #betta#) reaction that total width at a half maximum of the peak may decrease by a factor of 2.6 for quanta with the energy similar to the neutron binding energy. Efficiency loss is absent

  15. Deconvolution of gamma energy spectra from NaI (Tl) detector using the Nelder-Mead zero order optimisation method

    International Nuclear Information System (INIS)

    RAVELONJATO, R.H.M.

    2010-01-01

    The aim of this work is to develop a method for gamma ray spectrum deconvolution from NaI(Tl) detector. Deconvolution programs edited with Matlab 7.6 using Nelder-Mead method were developed to determine multiplet shape parameters. The simulation parameters were: centroid distance/FWHM ratio, Signal/Continuum ratio and counting rate. The test using synthetic spectrum was built with 3σ uncertainty. The tests gave suitable results for centroid distance/FWHM ratio≥2, Signal/Continuum ratio ≥2 and counting level 100 counts. The technique was applied to measure the activity of soils and rocks samples from the Anosy region. The rock activity varies from (140±8) Bq.kg -1 to (190±17)Bq.kg -1 for potassium-40; from (343±7)Bq.Kg -1 to (881±6)Bq.kg -1 for thorium-213 and from (100±3)Bq.kg -1 to (164 ±4) Bq.kg -1 for uranium-238. The soil activity varies from (148±1) Bq.kg -1 to (652±31)Bq.kg -1 for potassium-40; from (1100±11)Bq.kg -1 to (5700 ± 40)Bq.kg -1 for thorium-232 and from (190 ±2) Bq.kg -1 to (779 ±15) Bq -1 for uranium -238. Among 11 samples, the activity value discrepancies compared to high resolution HPGe detector varies from 0.62% to 42.86%. The fitting residuals are between -20% and +20%. The Figure of Merit values are around 5%. These results show that the method developed is reliable for such activity range and the convergence is good. So, NaI(Tl) detector combined with deconvolution method developed may replace HPGe detector within an acceptable limit, if the identification of each nuclides in the radioactive series is not required [fr

  16. Study of Vis/NIR spectroscopy measurement on acidity of yogurt

    Science.gov (United States)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.

  17. WIRELESS DISTRIBUTED ACQUISITION SYSTEM FOR NEAR INFRARED SPECTROSCOPY – WDA-NIRS

    Directory of Open Access Journals (Sweden)

    J. SAFAIE

    2013-07-01

    Full Text Available The wireless distributed acquisition system for near infrared spectroscopy (WDA-NIRS is a portable, ultra-compact, continuous wave (CW NIRS system. Its main advantage is that it allows continuous synchronized multi-site hemodynamic monitoring. The WDA-NIRS system calculates online changes in hemoglobin concentration based on modified Beer–Lambert law and the tissue oxygenation index based on the spatial-resolved spectroscopy method. It consists of up to seven signal acquisition units, sufficiently small to be easily attached to any part of the body. These units are remotely synchronized by a PC base station for independent acquisition of NIRS signals. Each acquisition module can be freely adapted to individual requirements such as local skin properties and the microcirculation of interest, e.g., different muscles, brain, skin, etc. For this purpose, the light emitted by each LED can be individually, interactively or automatically adjusted to local needs. Furthermore, the user can freely create an emitter time-multiplexing protocol and choose the detector sensitivity most suitable to a particular situation. The potential diagnostic value of this advanced device is demonstrated by three typical applications.

  18. A study of selective spectrophotometric methods for simultaneous determination of Itopride hydrochloride and Rabeprazole sodium binary mixture: Resolving sever overlapping spectra

    Science.gov (United States)

    Mohamed, Heba M.

    2015-02-01

    Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110 μg/μL for Itopride hydrochloride and 4-44 μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB.

  19. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions.

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, Maria P

    2016-02-16

    Plant phenotyping is a very important topic in agriculture. In this context, data mining strategies may be applied to agricultural data retrieved with new non-invasive devices, with the aim of yielding useful, reliable and objective information. This work presents some applications of machine learning algorithms along with in-field acquired NIR spectral data for plant phenotyping in viticulture, specifically for grapevine variety discrimination and assessment of plant water status. Support vector machine (SVM), rotation forests and M5 trees models were built using NIR spectra acquired in the field directly on the adaxial side of grapevine leaves, with a non-invasive portable spectrophotometer working in the spectral range between 1600 and 2400 nm. The ν-SVM algorithm was used for the training of a model for varietal classification. The classifiers' performance for the 10 varieties reached, for cross- and external validations, the 88.7% and 92.5% marks, respectively. For water stress assessment, the models developed using the absorbance spectra of six varieties yielded the same determination coefficient for both cross- and external validations (R² = 0.84; RMSEs of 0.164 and 0.165 MPa, respectively). Furthermore, a variety-specific model trained only with samples of Tempranillo from two different vintages yielded R² = 0.76 and RMSE of 0.16 MPa for cross-validation and R² = 0.79, RMSE of 0.17 MPa for external validation. These results show the power of the combined use of data mining and non-invasive NIR sensing for in-field grapevine phenotyping and their usefulness for the wine industry and precision viticulture implementations.

  20. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    2016-02-01

    Full Text Available Plant phenotyping is a very important topic in agriculture. In this context, data mining strategies may be applied to agricultural data retrieved with new non-invasive devices, with the aim of yielding useful, reliable and objective information. This work presents some applications of machine learning algorithms along with in-field acquired NIR spectral data for plant phenotyping in viticulture, specifically for grapevine variety discrimination and assessment of plant water status. Support vector machine (SVM, rotation forests and M5 trees models were built using NIR spectra acquired in the field directly on the adaxial side of grapevine leaves, with a non-invasive portable spectrophotometer working in the spectral range between 1600 and 2400 nm. The ν-SVM algorithm was used for the training of a model for varietal classification. The classifiers’ performance for the 10 varieties reached, for cross- and external validations, the 88.7% and 92.5% marks, respectively. For water stress assessment, the models developed using the absorbance spectra of six varieties yielded the same determination coefficient for both cross- and external validations (R2 = 0.84; RMSEs of 0.164 and 0.165 MPa, respectively. Furthermore, a variety-specific model trained only with samples of Tempranillo from two different vintages yielded R2 = 0.76 and RMSE of 0.16 MPa for cross-validation and R2 = 0.79, RMSE of 0.17 MPa for external validation. These results show the power of the combined use of data mining and non-invasive NIR sensing for in-field grapevine phenotyping and their usefulness for the wine industry and precision viticulture implementations.

  1. A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations

    International Nuclear Information System (INIS)

    Turner, Adam C.; Zhang Di; Kim, Hyun J.; DeMarco, John J.; Cagnon, Chris H.; Angel, Erin; Cody, Dianna D.; Stevens, Donna M.; Primak, Andrew N.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-01-01

    The purpose of this study was to present a method for generating x-ray source models for performing Monte Carlo (MC) radiation dosimetry simulations of multidetector row CT (MDCT) scanners. These so-called ''equivalent'' source models consist of an energy spectrum and filtration description that are generated based wholly on the measured values and can be used in place of proprietary manufacturer's data for scanner-specific MDCT MC simulations. Required measurements include the half value layers (HVL 1 and HVL 2 ) and the bowtie profile (exposure values across the fan beam) for the MDCT scanner of interest. Using these measured values, a method was described (a) to numerically construct a spectrum with the calculated HVLs approximately equal to those measured (equivalent spectrum) and then (b) to determine a filtration scheme (equivalent filter) that attenuates the equivalent spectrum in a similar fashion as the actual filtration attenuates the actual x-ray beam, as measured by the bowtie profile measurements. Using this method, two types of equivalent source models were generated: One using a spectrum based on both HVL 1 and HVL 2 measurements and its corresponding filtration scheme and the second consisting of a spectrum based only on the measured HVL 1 and its corresponding filtration scheme. Finally, a third type of source model was built based on the spectrum and filtration data provided by the scanner's manufacturer. MC simulations using each of these three source model types were evaluated by comparing the accuracy of multiple CT dose index (CTDI) simulations to measured CTDI values for 64-slice scanners from the four major MDCT manufacturers. Comprehensive evaluations were carried out for each scanner using each kVp and bowtie filter combination available. CTDI experiments were performed for both head (16 cm in diameter) and body (32 cm in diameter) CTDI phantoms using both central and peripheral measurement positions. Both equivalent source model types

  2. Aqueous-Phase Synthesis of Silver Nanodiscs and Nanorods in Methyl Cellulose Matrix: Photophysical Study and Simulation of UV–Vis Extinction Spectra Using DDA Method

    Directory of Open Access Journals (Sweden)

    Sarkar Priyanka

    2010-01-01

    Full Text Available Abstract We present a very simple and effective way for the synthesis of tunable coloured silver sols having different morphologies. The procedure is based on the seed-mediated growth approach where methyl cellulose (MC has been used as soft-template in the growth solution. Nanostructures of varying morphologies as well as colour of the silver sols are controlled by altering the concentration of citrate in the growth solution. Similar to the polymers in the solution, citrate ions also dynamically adsorbed on the growing silver nanoparticles and promote one (1-D and two-dimensional (2-D growth of nanoparticles. Silver nanostructures are characterized using UV–vis and HR-TEM spectroscopic study. Simulation of the UV–vis extinction spectra of our synthesized silver nanostructures has been carried out using discrete dipole approximation (DDA method.

  3. Influence of the growth method on the photoluminescence spectra and electronic properties of CuInS{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mudryi, A.V. [Scientific-Practical material Research Centre of the National Academy of Sciences of Belarus, P.Brovki 19, 220072 Minsk (Belarus); Department of Physics, SUPA, Strathclyde University, G4 0NG Glasgow (United Kingdom); Yakushev, M.V., E-mail: michael.yakushev@strath.ac.uk [Department of Physics, SUPA, Strathclyde University, G4 0NG Glasgow (United Kingdom); Ural Federal University, Ekaterinburg 620002 (Russian Federation); Institute of Solid State Chemistry of the Urals Branch of the Russian Academy of Scienses, Ekaterinburg 620990 (Russian Federation); Volkov, V.A. [Ural Federal University, Ekaterinburg 620002 (Russian Federation); Zhivulko, V.D.; Borodavchenko, O.M. [Scientific-Practical material Research Centre of the National Academy of Sciences of Belarus, P.Brovki 19, 220072 Minsk (Belarus); Martin, R.W. [Department of Physics, SUPA, Strathclyde University, G4 0NG Glasgow (United Kingdom)

    2017-06-15

    A comparative analysis of free and bound excitons in the photoluminescence (PL) spectra of CuInS{sub 2} single crystals grown by the traveling heater (THM) and the chemical vapor transport (CVT) methods is presented. The values of the binding energy of the A free exciton (18.5 and 19.7 meV), determined by measurements of the spectral positions of the ground and excited states, allowed the Bohr radii (3.8 and 3.7 nm), bandgaps (1.5536 and 1.5548 eV) and dielectric constants (10.2 and 9.9) to be calculated for CuInS{sub 2} crystals grown by THM and CVT, respectively.

  4. Sequential Analysis of Gamma Spectra

    International Nuclear Information System (INIS)

    Fayez-Hassan, M.; Hella, Kh.M.

    2009-01-01

    This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.

  5. Diseno y construccion de un espectrometro NIR; Design and construction of a NIR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Barcala Riveira, J M; Fernandez Marron, J L; Alberdi Primicia, J; Molero Menendez, F; Navarrete Marin, J J; Oller Gonzalez, J C

    2003-07-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  6. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    Science.gov (United States)

    Casoli, Pierre; Grégoire, Gilles; Rousseau, Guillaume; Jacquet, Xavier; Authier, Nicolas

    2016-02-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  7. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    Directory of Open Access Journals (Sweden)

    Casoli Pierre

    2016-01-01

    Full Text Available CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  8. Improvements of the Vis-NIRS Model in the Prediction of Soil Organic Matter Content Using Spectral Pretreatments, Sample Selection, and Wavelength Optimization

    Science.gov (United States)

    Lin, Z. D.; Wang, Y. B.; Wang, R. J.; Wang, L. S.; Lu, C. P.; Zhang, Z. Y.; Song, L. T.; Liu, Y.

    2017-07-01

    A total of 130 topsoil samples collected from Guoyang County, Anhui Province, China, were used to establish a Vis-NIR model for the prediction of organic matter content (OMC) in lime concretion black soils. Different spectral pretreatments were applied for minimizing the irrelevant and useless information of the spectra and increasing the spectra correlation with the measured values. Subsequently, the Kennard-Stone (KS) method and sample set partitioning based on joint x-y distances (SPXY) were used to select the training set. Successive projection algorithm (SPA) and genetic algorithm (GA) were then applied for wavelength optimization. Finally, the principal component regression (PCR) model was constructed, in which the optimal number of principal components was determined using the leave-one-out cross validation technique. The results show that the combination of the Savitzky-Golay (SG) filter for smoothing and multiplicative scatter correction (MSC) can eliminate the effect of noise and baseline drift; the SPXY method is preferable to KS in the sample selection; both the SPA and the GA can significantly reduce the number of wavelength variables and favorably increase the accuracy, especially GA, which greatly improved the prediction accuracy of soil OMC with Rcc, RMSEP, and RPD up to 0.9316, 0.2142, and 2.3195, respectively.

  9. Deconvoluting double Doppler spectra

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Chan, K.L.; Tang, H.W.

    2001-01-01

    The successful deconvolution of data from double Doppler broadening of annihilation radiation (D-DBAR) spectroscopy is a promising area of endeavour aimed at producing momentum distributions of a quality comparable to those of the angular correlation technique. The deconvolution procedure we test in the present study is the constrained generalized least square method. Trials with computer simulated DDBAR spectra are generated and deconvoluted in order to find the best form of regularizer and the regularization parameter. For these trials the Neumann (reflective) boundary condition is used to give a single matrix operation in Fourier space. Experimental D-DBAR spectra are also subject to the same type of deconvolution after having carried out a background subtraction and using a symmetrize resolution function obtained from an 85 Sr source with wide coincidence windows. (orig.)

  10. Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS)

    Science.gov (United States)

    Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; de Araújo, Mário César Ugulino; Di Nezio, María Susana; Pistonesi, Marcelo Fabián; Centurión, María Eugenia

    2018-01-01

    Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg- 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w- 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg- 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis.

  11. Time domain functional NIRS imaging for human brain mapping.

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  13. NIRS inaugurated as IAEA Collaborating Centre. Its presence and function

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Watanabe, Naoyuki; Sakai, Kazuo; Kamada, Tadashi; Imai, Reiko; Fujibayashi, Yasuhisa; Nakane, Takeshi; Burkart, W.; Chhem, R.; Matsuura, Shojiro

    2010-01-01

    The feature article is the collection of documents commemorating the 2010 designation of National Institute of Radiological Sciences (NIRS) as one of International Atomic Energy Agency (IAEA) Collaborating Centres (CC) again, involving 4 introductory chapters containing 9 sections in total. The IAEA-CC concept, essentially for the 4-year project, started to globally give shape by designating 3 organizations in some countries in 2004, NIRS as a CC worked from 2006 and the present designation is the renewed one. There are 17 IAEA-CCs at present. The title of Chapter 1 of the article is the same as above title by NIRS President and of Chapter 2, ''IAEA-CC scheme'' by NIRS Senior Specialist/ professor of Gunma Pref. College of Health Sciences/ former IAEA staff. Chapter 3 entitled ''Research Development of Next Four Years in Three Collaboration Areas'', contains 3 topics of the very areas mainly responsible to the project, of biological effect and mechanism of low dose radiation by NIRS Director of Res. Center for Radiation Protection, IAEA-CC plan (radiotherapy) by the Director for Charged Particle Therapy, and IAEA-CC activity and research at Molecular Imaging Center by its Director. Chapter 4 entitled ''Expectation to NIRS'' contains four topics; Expectations for the reinforcement of collaboration with IAEA whose new priority is cancer control by the Japanese Ambassador Extraordinary and Plenipotentiary in Vienna; Welcoming NIRS to join IAEA-CC network (an interview with IAEA Deputy Director General and Head of Nuclear Sciences and Applications); Honoured to invite NIRS to establish a new partnership with IAEA (an interview with IAEA Director of Division of Human Health, Dept. of Nuclear Sciences and Applications); Expectation to NIRS in peaceful use of nuclear and radiation by President of the Nuclear Safety Research Association. (T.T.)

  14. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  15. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0582 TITLE: Brain Functional Connectivity in MS: An EEG -NIRS Study PRINCIPAL INVESTIGATOR: Heather Wishart...Functional Connectivity in MS: An EEG -NIRS Study 5b. GRANT NUMBER W81XWH-14-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Heather...electrical ( EEG ) and blood volume and blood oxygen-based (NIRS and fMRI) signals, and to use the results to help optimize blood oxygen level

  16. Investigating the fermentation of cocoa by correlating denaturing gradient gel electrophoresis profiles and near infrared spectra

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Snitkjær, Pia; van der Berg, Franciscus Winfried J

    2008-01-01

    demonstrating the microbial succession taking place during the fermentation. Subsequently the DGGE spectra were correlated to the NIR spectra using Partial Least Squares regression models (PLS2). Correlations of 0.87 (bacterial derived DGGE spectra) and 0.81 (yeast derived DGGE spectra) were obtained indicating......Raw cocoa has an astringent, unpleasant taste and flavour, and has to be fermented, dried and roasted in order to obtain the characteristic cocoa flavour and taste. During the fermentation microbial activity outside the cocoa beans induces biochemical and physical changes inside the beans...... of the beans and the chemical processes inside the beans have been carried out previously. Recently it has been shown that Denaturing Gradient Gel Electrophoresis (DGGE) offers an efficient tool for monitoring the microbiological changes taking place during the fermentation of cocoa. Near Infrared (NIR...

  17. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  18. Effect of Shear Applied During a Pharmaceutical Process on Near Infrared Spectra.

    Science.gov (United States)

    Hernández, Eduardo; Pawar, Pallavi; Rodriguez, Sandra; Lysenko, Sergiy; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-03-01

    This study describes changes observed in the near-infrared (NIR) diffuse reflectance (DR) spectra of pharmaceutical tablets after these tablets were subjected to different levels of strain (exposure to shear) during the mixing process. Powder shearing is important in the mixing of powders that are cohesive. Shear stress is created in a system by moving one surface over another causing displacements in the direction of the moving surface and is part of the mixing dynamics of particulates in many industries including the pharmaceutical industry. In continuous mixing, shear strain is developed within the process when powder particles are in constant movement and can affect the quality attributes of the final product such as dissolution. These changes in the NIR spectra could affect results obtained from NIR calibration models. The aim of the study was to understand changes in the NIR diffuse reflectance spectra that can be associated with different levels of strain developed during blend shearing of laboratory samples. Shear was applied using a Couette cell and tablets were produced using a tablet press emulator. Tablets with different shear levels were measured using NIR spectroscopy in the diffuse reflectance mode. The NIR spectra were baseline corrected to maintain the scattering effect associated with the physical properties of the tablet surface. Principal component analysis was used to establish the principal sources of variation within the samples. The angular dependence of elastic light scattering shows that the shear treatment reduces the size of particles and produces their uniform and highly isotropic distribution. Tablet compaction further reduces the diffuse component of scattering due to realignment of particles. © The Author(s) 2016.

  19. Multi-block methods in multivariate process control

    DEFF Research Database (Denmark)

    Kohonen, J.; Reinikainen, S.P.; Aaljoki, K.

    2008-01-01

    methods the effect of a sub-process can be seen and an example with two blocks, near infra-red, NIR, and process data, is shown. The results show improvements in modelling task, when a MB-based approach is used. This way of working with data gives more information on the process than if all data...... are in one X-matrix. The procedure is demonstrated by an industrial continuous process, where knowledge about the sub-processes is available and X-matrix can be divided into blocks between process variables and NIR spectra.......In chemometric studies all predictor variables are usually collected in one data matrix X. This matrix is then analyzed by PLS regression or other methods. When data from several different sub-processes are collected in one matrix, there is a possibility that the effects of some sub-processes may...

  20. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves

  1. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    Full Text Available The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L. varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years

  2. The Effect of Motion Artifacts on Near-Infrared Spectroscopy (NIRS Data and Proposal of a Video-NIRS System

    Directory of Open Access Journals (Sweden)

    Masayuki Satoh

    2017-11-01

    Full Text Available Aims: The aims of this study were (1 to investigate the influence of physical movement on near-infrared spectroscopy (NIRS data, (2 to establish a video-NIRS system which simultaneously records NIRS data and the subject’s movement, and (3 to measure the oxygenated hemoglobin (oxy-Hb concentration change (Δoxy-Hb during a word fluency (WF task. Experiment 1: In 5 healthy volunteers, we measured the oxy-Hb and deoxygenated hemoglobin (deoxy-Hb concentrations during 11 kinds of facial, head, and extremity movements. The probes were set in the bilateral frontal regions. The deoxy-Hb concentration was increased in 85% of the measurements. Experiment 2: Using a pillow on the backrest of the chair, we established the video-NIRS system with data acquisition and video capture software. One hundred and seventy-six elderly people performed the WF task. The deoxy-Hb concentration was decreased in 167 subjects (95%. Experiment 3: Using the video-NIRS system, we measured the Δoxy-Hb, and compared it with the results of the WF task. Δoxy-Hb was significantly correlated with the number of words. Conclusion: Like the blood oxygen level-dependent imaging effect in functional MRI, the deoxy-Hb concentration will decrease if the data correctly reflect the change in neural activity. The video-NIRS system might be useful to collect NIRS data by recording the waveforms and the subject’s appearance simultaneously.

  3. Use of details in secondary emission spectra in order to take into account element composition in the radioisotopic, x-ray-fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyukovich, G A; Meier, V A; Nakhabtsev, V S

    1974-01-01

    A study is made of secondary emission spectra applicable to the conditions of determining tin in complex iron ores. Use is made of recorders having an intermediate target of samarium oxide, which assure measurement under geometry of a direct field of vision. It is shown that the integral count rate with a definite selection of the initial condition of discrimination or the count rate in the 32 to 34 keV interval of energies characterizes mainly the composition of the filler. With the purpose of increasing the accuracy and decreasing the effect of equipment factors it is more suitable to estimate the filler composition from the integral count rate. Methods are considered for taking into account the effect of composition of the medium on the measurement results according to the method of spectral ratios by means of a nomogram and analytical expressions. With measurements on models the error of determining the tin content was +- 5 percent in effective atomic number range of 13 to 20, while the error was 50 percent without the introduction of corrections. 10 refs. (tr-auth)

  4. Prediction of the Chemical Composition and Fermentation Parameters of Pasture Silage by Near Infrered Reflectance Spectroscopy (NIRS Predicción de la Composición Química y Parámetros Fermentativos de Ensilajes de Pradera Mediante Espectroscopía de Reflectancia en el Infrarrojo Cercano (NIRS

    Directory of Open Access Journals (Sweden)

    Lorena Ibáñez

    2008-12-01

    Full Text Available The capability of near infrared reflectance spectroscopy (NIRS was evaluated to predict the content of total ash (TA, crude protein (CP, crude fiber (CF, neutral detergent fiber (NDF, acid detergent fiber (ADF and metabolizable energy (ME; as well as pH and ammonia nitrogen content (N-NH3, in pasture silage, with and without additives. Nine hundred and twenty dried and ground samples of pasture silage, with known chemical composition, were scanned over the visible and NIR region (400 to 2500 nm at 2 nm intervals. Calibration equations were developed by modified partial least square regression models (MPLS with different mathematical treatments and light scatter correction as standard normal variation and Detrend (SNV & D of the spectra. For each parameter, the optimum calibration was evaluated on the basis of the cross validation determination coefficient (1-VR and standard error of cross validation (SECV. NIRS showed a high predictive ability, with 1-VR > 0.89 and SECV (% of 5.14, 6.69, 9.96, 16.01 and 9.15 for A, CP, CF, NDF and ADF, respectively. NIRS showed moderate accuracy for ME, with 1-VR > 0.87, SECV: 0.07 Mcal kg-1 and low accuracy, although with feasibility as a ranking method, for pH and N-NH3, with 1-VR > 0.72 and SECV of 0.14 and 1.49, respectively. It is concluded that the equations obtained can be used to predict the nutritional composition of pasture silages.Se evaluó la capacidad de la espectroscopía de reflectancia en el infrarrojo cercano (NIRS para predecir la composición química: cenizas totales (CT, proteína cruda (PC, fibra cruda (FC, fibra detergente neutro (FDN, fibra detergente ácido (FDA, energía metabolizable (EM y parámetros fermentativos: pH y nitrógeno amoniacal (N-NH3, en ensilajes de pradera con y sin aditivos. Se tomaron espectros (400 a 2500 nm, cada 2 nm de muestras secas y molidas (n = 920 de ensilajes de pradera con composición química conocida. Se desarrollaron calibraciones evaluando diferentes

  5. Developing and refining NIR calibrations for total carbohydrate composition and isoflavones and saponins in ground whole soy meal

    Science.gov (United States)

    Although many near infrared (NIR) spectrometric calibrations exist for a variety of components in soy, current calibration methods are often limited by either a small sample size on which the calibrations are based or a wide variation in sample preparation and measurement methods, which yields unrel...

  6. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    International Nuclear Information System (INIS)

    Juliasih, N; Buchari; Noviandri, I

    2017-01-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 – 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room. (paper)

  7. SHARK-NIR system design analysis overview

    Science.gov (United States)

    Viotto, Valentina; Farinato, Jacopo; Greggio, Davide; Vassallo, Daniele; Carolo, Elena; Baruffolo, Andrea; Bergomi, Maria; Carlotti, Alexis; De Pascale, Marco; D'Orazi, Valentina; Fantinel, Daniela; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Ragazzoni, Roberto; Salasnich, Bernardo; Verinaud, Christophe

    2016-08-01

    In this paper, we present an overview of the System Design Analysis carried on for SHARK-NIR, the coronagraphic camera designed to take advantage of the outstanding performance that can be obtained with the FLAO facility at the LBT, in the near infrared regime. Born as a fast-track project, the system now foresees both coronagraphic direct imaging and spectroscopic observing mode, together with a first order wavefront correction tool. The analysis we here report includes several trade-offs for the selection of the baseline design, in terms of optical and mechanical engineering, and the choice of the coronagraphic techniques to be implemented, to satisfy both the main scientific drivers and the technical requirements set at the level of the telescope. Further care has been taken on the possible exploitation of the synergy with other LBT instrumentation, like LBTI. A set of system specifications is then flown down from the upper level requirements to finally ensure the fulfillment of the science drivers. The preliminary performance budgets are presented, both in terms of the main optical planes stability and of the image quality, including the contributions of the main error sources in different observing modes.

  8. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    Science.gov (United States)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  9. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  10. Determination of the fast neutrons spectra by the Elastic scattering method (n, p); Determinacion del espectro de neutrones rapidos por el metodo de la dispersion elastica (n, p)

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde D, J

    1973-07-01

    This work consists in determining the fast neutron spectra emitted by a Pu-Be isotopic source. The implemented technique is based in the spectrometry (n, p). This consists in making to fall on a fast neutrons beams (polyenergetic) over a thin film of hydrogenated material, detecting the spectra of emitted protons at a fix angle. The polyethylene film and the used solid state detector are inside of a vacuum chamber. The detector is placed at 30 degree with respect to direction of the incident neutrons beam. The protons spectra is stored in a multichannel. the energy is obtained with the prior calibration of the system. The data processing involves the transformation of the protons spectra observed at the falling on neutrons spectra over the film. The energy of the neutrons is related with that of the protons, according to the collision kinematical equations. The cross section of elastic collision of the neutrons with the hydrogen atoms is obtained from literature. Applying these relations to the observed spectra it is obtained the falling on neutron spectra over the film. (Author)

  11. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey; Harrivel, Angela; Hearn, Tristan; Floyd, Bertram

    2014-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  12. A new method for the reconstruction of very-high-energy gamma-ray spectra and application to galatic cosmic-ray accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Milton Virgilio

    2014-09-15

    In this thesis, high-energy (HE; E>0.1 GeV) and very-high-energy (VHE; E>0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESSJ1646-458 (2.2 in size) towards the SC Westerlund 1 (Wd1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESSJ1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the

  13. A new method for the reconstruction of very-high-energy gamma-ray spectra and application to galatic cosmic-ray accelerators

    International Nuclear Information System (INIS)

    Fernandes, Milton Virgilio

    2014-09-01

    In this thesis, high-energy (HE; E>0.1 GeV) and very-high-energy (VHE; E>0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESSJ1646-458 (2.2 in size) towards the SC Westerlund 1 (Wd1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESSJ1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the

  14. The molecular structure and vibrational spectra of N-(2,2-diphenylacetyl)- N'-(naphthalen-1yl)-thiourea by Hartree-Fock and density functional methods

    Science.gov (United States)

    Arslan, Hakan; Mansuroglu, Demet Sezgin; VanDerveer, Don; Binzet, Gun

    2009-04-01

    N-(2,2-Diphenylacetyl)- N'-(naphthalen-1yl)-thiourea (PANT) has been synthesized and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, Z = 2 with a = 10.284(2) Å, b = 10.790(2) Å, c = 11.305(2) Å, α = 64.92(3)°, β = 89.88(3)°, γ = 62.99(3)°, V = 983.7(3) Å 3 and Dcalc = 1.339 Mg/m 3. The molecular structure, vibrational frequencies and infrared intensities of PANT were calculated by the Hartree-Fock and density functional theory methods (BLYP and B3LYP) using the 6-31G* basis set. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. We obtained 22 stable conformers for the title compound; however Conformer 1 is approximately 9.53 kcal/mol more stable than Conformer 22. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of Conformer 17. The harmonic vibrations computed for this compound by the B3LYP/6-31G* method are in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the VEDA 4 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program.

  15. Epoch making NIRS studies seen through citation trends

    International Nuclear Information System (INIS)

    Dan, Ippeita

    2009-01-01

    Near-infrared spectroscopy (NIRS) studies through citation trends are investigated of literature concerning only the brain function measurement and its methodology together with NIRS principle, technological development, present state and future view. Investigation is conducted firstly for the survey of important author name of those concerned papers in Web of Science and Google Scholar with search words of NIRS, brain and optical topography as an option. Second, >100 papers of those authors citing any of them are picked up and their papers are ranked in accordance with Web of Science citation number, of which top-nineteen are presented here. Impact and epoch making papers are reviewed with explanations of: the establishment of measuring technology of cerebral blood flow change and subsequent brain function by NIRS; development with multi-channel detection; simultaneous measurement with other imaging modalities; examination of NIRS validity; spatial analysis of NIRS; and measurement of brain function. The highest times of citation are 1,238 of the paper by F. F. Jobsis in 'Science' (1977). It should be noted that 10 of top 19 papers are those by Japanese authors. However, review articles omitted in the present literature survey are mostly described by foreign authors: an effort to systemize the concerned fields might be required in this country. (K.T.)

  16. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterisation of PDO olive oil Chianti Classico by non-selective (UV–visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    International Nuclear Information System (INIS)

    Casale, M.; Oliveri, P.; Casolino, C.; Sinelli, N.; Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S.

    2012-01-01

    Highlights: ► Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. ► Comparison between non-selective (UV–vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. ► Synergy among spectroscopic techniques, by the fusion of the respective spectra. ► Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV–visible (UV–vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV–vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV–vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV–vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico.

  18. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Casale, M., E-mail: monica@dictfa.unige.it [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Oliveri, P.; Casolino, C. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Sinelli, N. [Universita degli Studi di Milano, Department of Food Science and Technology, Via Celoria, 2 - I-20133 Milan (Italy); Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. Black-Right-Pointing-Pointer Comparison between non-selective (UV-vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Black-Right-Pointing-Pointer Synergy among spectroscopic techniques, by the fusion of the respective spectra. Black-Right-Pointing-Pointer Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil

  19. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques.

    Science.gov (United States)

    Casale, M; Oliveri, P; Casolino, C; Sinelli, N; Zunin, P; Armanino, C; Forina, M; Lanteri, S

    2012-01-27

    An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    Science.gov (United States)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  1. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

    Science.gov (United States)

    Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro

    2016-12-01

    Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.

  2. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    Science.gov (United States)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  3. Characterizing and Authenticating Montilla-Moriles PDO Vinegars Using Near Infrared Reflectance Spectroscopy (NIRS Technology

    Directory of Open Access Journals (Sweden)

    María-José De la Haba

    2014-02-01

    Full Text Available This study assessed the potential of near infrared (NIR spectroscopy as a non-destructive method for characterizing Protected Designation of Origin (PDO “Vinagres de Montilla-Moriles” wine vinegars and for classifying them as a function of the manufacturing process used. Three spectrophotometers were evaluated for this purpose: two monochromator instruments (Foss NIRSystems 6500 SY-I and Foss NIRSystems 6500 SY-II; spectral range 400–2,500 nm in both cases and a diode-array instrument (Corona 45 VIS/NIR; spectral range 380–1,700 nm. A total of 70 samples were used to predict major chemical quality parameters (total acidity, fixed acidity, volatile acidity, pH, dry extract, ash, acetoin, methanol, total polyphenols, color (tonality and intensity, and alcohol content, and to construct models for the classification of vinegars as a function of the manufacturing method used. The results obtained indicate that this non-invasive technology can be used successfully by the vinegar industry and by PDO regulators for the routine analysis of vinegars in order to authenticate them and to detect potential fraud. Slightly better results were achieved with the two monochromator instruments. The findings also highlight the potential of these NIR instruments for predicting the manufacturing process used, this being of particular value for the industrial authentication of traditional wine vinegars.

  4. Penggunaan Vis-NIR untuk Deteksi Serangan Huanglongbing pada Daun Jeruk

    Directory of Open Access Journals (Sweden)

    Raden Arief Firmansyah

    2017-04-01

    Full Text Available Abstract Huanglongbing is citrus disease which is a major threat for citrus orchard. Neither disease has a cure nor an efficient means of control. Early detection is important to prevent development and spread of the disease. The most effective detection used DNA test by PCR. However, identification used DNA test required sample preparation, time-consuming and expensive. The objective of this study was to build detection of healthy and HLB-infected leaves software. The leaf samples collected from citrus orchard in Situgede village, Bogor. Sample leaves divided into three group, Huanglongbing-infected leaves, healthy leaves and asymptomatic leaves. All samples was tested by PCR for verification visual symptoms of huanglongbing. Vis-NIR spectrometer with a spectra range of 339 to 1022nm was used to acquisition HLB-infected and healthy leaves spectral data. MSC, SNV, baseline correction, first and second derivative were used for pretreatment method. Artificial neural network was used to build classification model. X-loading plot from principal component analysis was used to obtain sensitive wavelength. Classification for healthy and HLB-infected classs used sensitive wavelength baseline correction-based had the best performance and high accuracy (100%. The classification model was embedded in software PC-desktop based which was used visual basic programming language. Asymptomatic leaves spectral from HLB-positive tree were used to testing classification model. Model classified data into HLB-infected group, which was consistent with PCR test. The result from this study indicated that developed software could be used to HLB detection in early stage of disease. Abstrak Huanglongbing adalah penyakit jeruk yang merupakan ancaman utama bagi budidaya jeruk. Tidak ada pengendalian yang tepat untuk Huanglongbing. Deteksi dini penting untuk mencegah penyebaran dan pengembangan penyakit ini. Deteksi dini yang paling efektif menggunakan tes DNA dengan PCR

  5. Fat and Moisture Content in Chinese Fried Bread Sticks: Assessment and Rapid Near-Infrared Spectroscopic Method Development

    Directory of Open Access Journals (Sweden)

    Zhuqing Xiao

    2013-01-01

    Full Text Available Fried bread sticks (FBS are one of the most widely consumed deep fried food products in China. Understanding the fat and moisture content in FBS will help consumers make healthy food choices as well as assist food processors to provide FBS with desirable quality. Rapid Fourier transform near-infrared methods (FT-NIR were developed for determining fat and moisture content in FBS collected from 123 different vendors in Shanghai, China. FBS samples with minimum sample preparation (either finely or coarsely ground were used for NIR analyses. Spectra of FBS were treated with different mathematic pretreatments before being used to build models between the spectral information and fat (7.71%–30.89% or moisture (17.39%–32.65% content in FBS. Finely ground samples may lead to slightly more robust PLS models, but the particle sizes of ground FBS samples did not seriously affect the predictability of the models with appropriate mathematical treatments. The fat and moisture content in FBS predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (fat, R2=0.965; moisture, R2=0.983, which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of fat and moisture content in FBS.

  6. Deep brain two-photon NIR fluorescence imaging for study of Alzheimer's disease

    Science.gov (United States)

    Chen, Congping; Liang, Zhuoyi; Zhou, Biao; Ip, Nancy Y.; Qu, Jianan Y.

    2018-02-01

    Amyloid depositions in the brain represent the characteristic hallmarks of Alzheimer's disease (AD) pathology. The abnormal accumulation of extracellular amyloid-beta (Aβ) and resulting toxic amyloid plaques are considered to be responsible for the clinical deficits including cognitive decline and memory loss. In vivo two-photon fluorescence imaging of amyloid plaques in live AD mouse model through a chronic imaging window (thinned skull or craniotomy) provides a mean to greatly facilitate the study of the pathological mechanism of AD owing to its high spatial resolution and long-term continuous monitoring. However, the imaging depth for amyloid plaques is largely limited to upper cortical layers due to the short-wavelength fluorescence emission of commonly used amyloid probes. In this work, we reported that CRANAD-3, a near-infrared (NIR) probe for amyloid species with excitation wavelength at 900 nm and emission wavelength around 650 nm, has great advantages over conventionally used probes and is well suited for twophoton deep imaging of amyloid plaques in AD mouse brain. Compared with a commonly used MeO-X04 probe, the imaging depth of CRANAD-3 is largely extended for open skull cranial window. Furthermore, by using two-photon excited fluorescence spectroscopic imaging, we characterized the intrinsic fluorescence of the "aging pigment" lipofuscin in vivo, which has distinct spectra from CRANAD-3 labeled plaques. This study reveals the unique potential of NIR probes for in vivo, high-resolution and deep imaging of brain amyloid in Alzheimer's disease.

  7. NIR detection of honey adulteration reveals differences in water spectral pattern.

    Science.gov (United States)

    Bázár, György; Romvári, Róbert; Szabó, András; Somogyi, Tamás; Éles, Viktória; Tsenkova, Roumiana

    2016-03-01

    High fructose corn syrup (HFCS) was mixed with four artisanal Robinia honeys at various ratios (0-40%) and near infrared (NIR) spectra were recorded with a fiber optic immersion probe. Levels of HFCS adulteration could be detected accurately using leave-one-honey-out cross-validation (RMSECV=1.48; R(2)CV=0.987), partial least squares regression and the 1300-1800nm spectral interval containing absorption bands related to both water and carbohydrates. Aquaphotomics-based evaluations showed that unifloral honeys contained more highly organized water than the industrial sugar syrup, supposedly because of the greater variety of molecules dissolved in the multi-component honeys. Adulteration with HFCS caused a gradual reduction of water molecular structures, especially water trimers, which facilitate interaction with other molecules. Quick, non-destructive NIR spectroscopy combined with aquaphotomics could be used to describe water molecular structures in honey and to detect a rather common form of adulteration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Sensitivity of fNIRS to cognitive state and load

    Directory of Open Access Journals (Sweden)

    Frank Anthony Fishburn

    2014-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-minute resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC, bilateral ventrolateral PFC (vlPFC, frontopolar cortex (FP, and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.

  9. Evaluation of factors in development of Vis/NIR spectroscopy models for discriminating PSE, DFD and normal broiler breast meat

    Science.gov (United States)

    1. To evaluate the performance of visible and near-infrared (Vis/NIR) spectroscopic models for discriminating true pale, soft and exudative (PSE), normal and dark, firm and dry (DFD) broiler breast meat in different conditions of preprocessing methods, spectral ranges, characteristic wavelength sele...

  10. Approaches to contactless optical thermometer in the NIR spectral range based on Nd{sup 3+} doped crystalline nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaldvee, K.; Nefedova, A.V. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Fedorenko, S.G. [Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090 (Russian Federation); Vanetsev, A.S. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Orlovskaya, E.O. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Puust, L.; Pärs, M.; Sildos, I. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Ryabova, A.V. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway, 31, Moscow 115409 (Russian Federation); Orlovskii, Yu.V., E-mail: orlovski@Lst.gpi.ru [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation)

    2017-03-15

    The fluorescence kinetics and spectral intensity ratio (FIR) methods for contactless optical temperature measurement in the NIR spectral range with Nd{sup 3+} doped YAG micro- and YPO{sub 4} nanocrystals are considered and the problems are revealed. The requirements for good temperature RE doped crystalline nanoparticles sensor are formulated.

  11. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals.

    Directory of Open Access Journals (Sweden)

    Neethu Robinson

    Full Text Available Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS for developing Brain-Computer Interface (BCI by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM, so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity.

  12. Development of a method for the determination of caffeine anhydrate in various designed intact tablets [correction of tables] by near-infrared spectroscopy: a comparison between reflectance and transmittance technique.

    Science.gov (United States)

    Ito, Masatomo; Suzuki, Tatsuya; Yada, Shuichi; Kusai, Akira; Nakagami, Hiroaki; Yonemochi, Etsuo; Terada, Katsuhide

    2008-08-05

    Using near-infrared (NIR) spectroscopy, an assay method which is not affected by such elements of tablet design as thickness, shape, embossing and scored line was developed. Tablets containing caffeine anhydrate were prepared by direct compression at various compression force levels using different shaped punches. NIR spectra were obtained from these intact tablets using the reflectance and transmittance techniques. A reference assay was performed by high-performance liquid chromatography (HPLC). Calibration models were generated by the partial least-squares (PLS) regression. Changes in the tablet thickness, shape, embossing and scored line caused NIR spectral changes in different ways, depending on the technique used. As a result, noticeable errors in drug content prediction occurred using calibration models generated according to the conventional method. On the other hand, when the various tablet design elements which caused the NIR spectral changes were included in the model, the prediction of the drug content in the tablets was scarcely affected by those elements when using either of the techniques. A comparison of these techniques resulted in higher predictability under the tablet design variations using the transmittance technique with preferable linearity and accuracy. This is probably attributed to the transmittance spectra which sensitively reflect the differences in tablet thickness or shape as a result of obtaining information inside the tablets.

  13. Automatic identification of mass spectra

    International Nuclear Information System (INIS)

    Drabloes, F.

    1992-01-01

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs

  14. Motion tracking and electromyography assist the removal of mirror hand contributions to fNIRS images acquired during a finger tapping task performed by children with cerebral palsy

    Science.gov (United States)

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2013-03-01

    Functional neurological imaging has been shown to be valuable in evaluating brain plasticity in children with cerebral palsy (CP). In recent studies it has been demonstrated that functional near-infrared spectroscopy (fNIRS) is a viable and sensitive method for imaging motor cortex activities in children with CP. However, during unilateral finger tapping tasks children with CP often exhibit mirror motions (unintended motions in the non-tapping hand), and current fNIRS image formation techniques do not account for this. Therefore, the resulting fNIRS images contain activation from intended and unintended motions. In this study, cortical activity was mapped with fNIRS on four children with CP and five controls during a finger tapping task. Finger motion and arm muscle activation were concurrently measured using motion tracking cameras and electromyography (EMG). Subject-specific regressors were created from motion capture and EMG data and used in a general linear model (GLM) analysis in an attempt to create fNIRS images representative of different motions. The analysis provided an fNIRS image representing activation due to motion and muscle activity for each hand. This method could prove to be valuable in monitoring brain plasticity in children with CP by providing more consistent images between measurements. Additionally, muscle effort versus cortical effort was compared between control and CP subjects. More cortical effort was required to produce similar muscle effort in children with CP. It is possible this metric could be a valuable diagnostic tool in determining response to treatment.

  15. Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform

    DEFF Research Database (Denmark)

    Knadel, Maria; Thomsen, Anton Gårde; Schelde, Kirsten

    2015-01-01

    Soil organic carbon (SOC) is an important parameter in the climate change mitigation strategies and it is crucial for the function of ecosystems and agriculture. Particle size fractions affect strongly the physical and chemical properties of soil and thus also SOC. Conventional analyses of SOC...... predictive ability for SOC was obtained using a fusion of