WorldWideScience

Sample records for methods including x-ray

  1. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    Science.gov (United States)

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  2. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  3. Two methods for studying the X-ray variability

    NARCIS (Netherlands)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-01-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray

  4. X-ray spectrum local method

    International Nuclear Information System (INIS)

    Avdonin, S.A.

    1985-01-01

    General characteristic and bases of X-ray spectrum local method used for qualitative and quantitative analyses of the mineral chemical composition with volumetric locality of several cubic micrometers. The method is based on the excitation in a sample of characteristic and bremsstrahlung spectra by means of a narrow electron beam at 5-50 keV accelerating voltage. Application of the method when studying uranium minerals and ores is considered. The method allows to determine the uranium presence forms in the ores, morphological features of the minerals, mineral microstructure, UO 2 and UO 3 ratios for unhydrous uraninites and pitchblendes and also to determine mineralization age

  5. Method and apparatus for scanning x-ray tomography

    International Nuclear Information System (INIS)

    Albert, R.D.

    1988-01-01

    In a method of producing a tomographic image of a subject that includes the steps of generating X-rays at a moving origin point by directing a charged particle beam to a target surface, deflecting the charged particle beam to travel the origin point through a predetermined raster scan at the surface, detecting variations of X-ray intensity during the course of the raster scan at spaced apart detection points situated at the opposite side of the subject from the origin point, generating a first sequence of data values that is indicative of variations of X-ray intensity at a first of the detection points at successive times during the course of the raster scan and generating at least a second sequence of data values that is indicative of variations of X-ray intensity at a second of the detection points at successive times during the course of the same raster scan, the improvement is described comprising: combining successive individual data values of the first sequence that are generated by X-rays from successive particular locations in the raster scan with at least individual data values of the second sequence that are generated by X-rays from predetermined successive different locations in the same raster scan in order to produce a composite sequence of data values, and producing an image corresponding to at least a portion of the raster scan which depicts variations of the magnitude of successive data values of the composite sequence

  6. Methods of X-ray examination of condylar knee replacement

    International Nuclear Information System (INIS)

    Vavrik, P.

    1988-01-01

    A detailed description is presented of the methodology of X-ray examination of patients with a condylar knee replacement. Preoperative examination includes standard anterio-posterior and lateral projections, axial projection of the patella in 30 deg flexion of the knee, examination of the mechanical axis of the extremity on a 90 x 30 format and the radioscopic assessment of the centre of the hip joint, essential for the correct centering of the knee implant. Immediately after surgery the position of the implant is checked in two standard projections. Another X-ray check is made after six weeks, before partial loading of the joint is permitted. A complete X-ray examination is made prior to the full loading of the knee joint. The methods are also discussed of the X-ray evaluation of complications such as aseptic loosening of the components, infection, instability, fractures. The general solution od these problems is described. The necessity is underlined of the deliberate and qualified indication of X-ray examinations. The basic prerequisites are listed for reducing the present considerable radiation burden of these patients in the course of the many X-ray examinations. (author). 7 figs., 3 tab., 6 refs

  7. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2004-01-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kα doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images

  8. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  9. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  10. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roemelt, Michael; Maganas, Dimitrios; Neese, Frank [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); DeBeer, Serena [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2013-05-28

    A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S Prime = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with M{sub S}= S, Horizontal-Ellipsis , -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row

  11. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  12. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  13. X-ray and synchrotron methods in studies of cultural heritage sites

    Energy Technology Data Exchange (ETDEWEB)

    Koval’chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu., E-mail: elenatereschenko@yandex.ru; Prosekov, P. A.; Dyakova, Yu. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-09-15

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  14. X-ray and synchrotron methods in studies of cultural heritage sites

    International Nuclear Information System (INIS)

    Koval’chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu.; Prosekov, P. A.; Dyakova, Yu. A.

    2016-01-01

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  15. A portable x-ray source and method for radiography

    International Nuclear Information System (INIS)

    Golovanivsky, K.S.

    1996-01-01

    A portable x-ray source that produces a sufficient x-ray flux to produce high quality x-ray images on x-ray films. The source includes a vacuum chamber filled with a heavy atomic weight gas at low pressure and an x-ray emitter. The chamber is in a magnetic field and an oscillating electric field and generates electron cyclotron resonance (ECR) plasma having a ring of energetic electrons inside the chamber. The electrons bombard the x-ray emitter which in turn produces x-ray. A pair of magnetic members generate an axisymmetric magnetic mirror trap inside the chamber. The chamber may be nested within a microwave resonant cavity and between the magnets or the chamber and the microwave cavity may be a single composite structure. (author)

  16. A novel x-ray circularly polarized ranging method

    International Nuclear Information System (INIS)

    Song Shi-Bin; Xu Lu-Ping; Zhang Hua; Shen Yang-He; Gao Na

    2015-01-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. (paper)

  17. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  18. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors

    Directory of Open Access Journals (Sweden)

    Shibin Song

    2015-09-01

    Full Text Available The further development of X-ray pulsar-based NAVigation (XNAV is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments.

  19. X-Ray analysis and methods for nondestructive control (On the 100-anniversary of X-ray foundation)

    International Nuclear Information System (INIS)

    Sosnin, F.R.

    1995-01-01

    Brief consideration is given to the history of X-ray discovery, formation of domestic X-ray industry. Principles of operation and potentialities of X-ray diffraction analysis, gammagraphy, radioscopy, radiometric analysis are described briefly. Domestic and foreign scientists, institutes and companies who contributed much to development of methods for nondestructive control are listed

  20. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  1. A novel x-ray circularly polarized ranging method

    Science.gov (United States)

    Song, Shi-Bin; Xu, Lu-Ping; Zhang, Hua; Gao, Na; Shen, Yang-He

    2015-05-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. Projects supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014 CXJJ-DH 12), the Xi’an Science and Technology Plan, China (Grant No. CXY1350(4)), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 201413B, 201412B, and JB141303), and the Open Fund of Key Laboratory of Precision Navigation and Timing Technology, National Time Service Center, Chinese

  2. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    Science.gov (United States)

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  3. Modified X-ray method of a study of duodenum

    Energy Technology Data Exchange (ETDEWEB)

    Korolyuk, I.P.; Bugakov, V.M.; Shinkin, V.M.

    A modified X-ray examination of duodenum under hypotension conditions is described. In comparison with the existing method, the above-mentioned modification allows one to investigate the duodenum by using double contrast - the high-concentrated barium suspension and the gas, formed after the gasificated powder dose. 327 patients have been examined by the given method, 126 of them have been diagnosed to suffer from inflammatory diseases of the stomach and the duodenum, 22 of them suffering from the duodenum peptic ulcer, 107 of them - pancreatitis, 48-cholelithiasis, 24 - the tumor of the pancreatoduodenum zone. 65 patients have been operated on. Roentgenomorphologic comparisons have been carried out for 66 patients suffering from inflammatory deseases of the duodenum. Duodenum visualization of 283 patients is found to be good and satisfactory. The given method may be used under any conditions, including polyclinics, due to the sparing nature.

  4. Model independent method to deconvolve hard X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1984-07-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented.

  5. Standardized method for reproducing the sequential X-rays flap

    International Nuclear Information System (INIS)

    Brenes, Alejandra; Molina, Katherine; Gudino, Sylvia

    2009-01-01

    A method is validated to estandardize in the taking, developing and analysis of bite-wing radiographs taken in sequential way, in order to compare and evaluate detectable changes in the evolution of the interproximal lesions through time. A radiographic positioner called XCP® is modified by means of a rigid acrylic guide, to achieve proper of the X ray equipment core positioning relative to the XCP® ring and the reorientation during the sequential x-rays process. 16 subjects of 4 to 40 years old are studied for a total number of 32 registries. Two x-rays of the same block of teeth of each subject have been taken in sequential way, with a minimal difference of 30 minutes between each one, before the placement of radiographic attachment. The images have been digitized with a Super Cam® scanner and imported to a software. The measurements in X and Y-axis for both x-rays were performed to proceed to compare. The intraclass correlation index (ICI) has shown that the proposed method is statistically related to measurement (mm) obtained in the X and Y-axis for both sequential series of x-rays (p=0.01). The measures of central tendency and dispersion have shown that the usual occurrence is indifferent between the two measurements (Mode 0.000 and S = 0083 and 0.109) and that the probability of occurrence of different values is lower than expected. (author) [es

  6. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  7. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  8. Direct methods for surface X-ray diffraction

    International Nuclear Information System (INIS)

    Saldin, D. K.; Harder, R.; Shneerson, V. L.; Vogler, H.; Moritz, W.

    2000-01-01

    We develop of a direct method for surface X-ray diffraction that exploits the holographic feature of a known reference wave from the substrate. A Bayesian analysis of the optimal inference to be made from an incomplete data set suggests a maximum entropy algorithm that balances agreement with the data and other statistical considerations

  9. X-ray film cassette and method of making

    International Nuclear Information System (INIS)

    1980-01-01

    An x-ray film cassette which is capable of providing forces on the film that vary across the surface of the cassette is described. Methods of manufacture are discussed. The system is of particular use when large area films are used in conjunction with intensifying screens. (U.K.)

  10. Geometric estimation method for x-ray digital intraoral tomosynthesis

    Science.gov (United States)

    Li, Liang; Yang, Yao; Chen, Zhiqiang

    2016-06-01

    It is essential for accurate image reconstruction to obtain a set of parameters that describes the x-ray scanning geometry. A geometric estimation method is presented for x-ray digital intraoral tomosynthesis (DIT) in which the detector remains stationary while the x-ray source rotates. The main idea is to estimate the three-dimensional (3-D) coordinates of each shot position using at least two small opaque balls adhering to the detector surface as the positioning markers. From the radiographs containing these balls, the position of each x-ray focal spot can be calculated independently relative to the detector center no matter what kind of scanning trajectory is used. A 3-D phantom which roughly simulates DIT was designed to evaluate the performance of this method both quantitatively and qualitatively in the sense of mean square error and structural similarity. Results are also presented for real data acquired with a DIT experimental system. These results prove the validity of this geometric estimation method.

  11. Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method

    International Nuclear Information System (INIS)

    Dilmanian, F.A.; Ren, B.; Wu, X.Y.; Orion, I.; Zhong, Z.; Thomlinson, W.C.; Chapman, L.D.

    2000-01-01

    Diffraction enhanced imaging (DEI) is a new, synchrotron-based, x-ray radiography method that uses monochromatic, fan-shaped beams, with an analyser crystal positioned between the subject and the detector. The analyser allows the detection of only those x-rays transmitted by the subject that fall into the acceptance angle (central part of the rocking curve) of the monochromator/analyser system. As shown by Chapman et al , in addition to the x-ray attenuation, the method provides information on the out-of-plane angular deviation of x-rays. New images result in which the image contrast depends on the x-ray index of refraction and on the yield of small-angle scattering, respectively. We implemented DEI in the tomography mode at the National Synchrotron Light Source using 22 keV x-rays, and imaged a cylindrical acrylic phantom that included oil-filled, slanted channels. The resulting 'refraction CT image' shows the pure image of the out-of-plane gradient of the x-ray index of refraction. No image artefacts were present, indicating that the CT projection data were a consistent set. The 'refraction CT image' signal is linear with the gradient of the refractive index, and its value is equal to that expected. The method, at the energy used or higher, has the potential for use in clinical radiography and in industry. (author)

  12. Analysis of fresco paintings by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Gerndt, J.; Musilek, L.; Kopecka, I.

    2000-01-01

    In this work we present the application of X-ray fluorescence analysis (XRFA) to examine fresco paintings from the Karlstejn castle. The X-ray fluorescence apparatus built and operated in the Laboratory of Quantitative Methods in Research of Ancient Monuments was used for the purpose of fresco paintings measurements. The X-ray sources (radionuclides) generate the characteristic X-ray photons from the sample. The Si(Li) detector measures numbers and energies of photons emitted from the specimen. The energy and number of photons detected can be converted into kind and amount of measured atoms. These results give data for qualitative and quantitative analysis of samples. XRFA is relatively simple and non-destructive method. Capability of in-situ measurement is one of big advantages of this method. The radionuclide sources of exciting radiation (e.g. 55 Fe enables the excitation of elements with Z up to 23, 238 Pu is used in interval of Z from 20 to 39 etc.) were used. An Si(Li) semiconductor detector with a 5 l Dewar vessel and portable spectroscopy system enable the in situ measurement. Narrow collimation of the exciting beam makes it possible to select the measured area of fresco painting. The valuable fresco paintings from the Karlstejn castle were investigated in this way. The measurements were carried out in collaboration with the Analytical Laboratory of the State Institute for the Preservation of Historic Monuments. A suitable analysis of paintings makes it possible to detect the kind of colours and evaluate changes in the surface colour of paintings and suggest useful and timely procedures for their conservation and restoration. (author)

  13. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  14. Smoothed Particle Inference: A Kilo-Parametric Method for X-ray Galaxy Cluster Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, John R.; Marshall, P.J.; /KIPAC, Menlo Park; Andersson, K.; /Stockholm U. /SLAC

    2005-08-05

    We propose an ambitious new method that models the intracluster medium in clusters of galaxies as a set of X-ray emitting smoothed particles of plasma. Each smoothed particle is described by a handful of parameters including temperature, location, size, and elemental abundances. Hundreds to thousands of these particles are used to construct a model cluster of galaxies, with the appropriate complexity estimated from the data quality. This model is then compared iteratively with X-ray data in the form of adaptively binned photon lists via a two-sample likelihood statistic and iterated via Markov Chain Monte Carlo. The complex cluster model is propagated through the X-ray instrument response using direct sampling Monte Carlo methods. Using this approach the method can reproduce many of the features observed in the X-ray emission in a less assumption-dependent way that traditional analyses, and it allows for a more detailed characterization of the density, temperature, and metal abundance structure of clusters. Multi-instrument X-ray analyses and simultaneous X-ray, Sunyaev-Zeldovich (SZ), and lensing analyses are a straight-forward extension of this methodology. Significant challenges still exist in understanding the degeneracy in these models and the statistical noise induced by the complexity of the models.

  15. Method of making tomographic images of X-rayed objects

    International Nuclear Information System (INIS)

    Eickel, R.

    1979-01-01

    A tomographic image of a selected layer of a stationary object is made by moving the source of X-rays along a first path at one side of the selected layer and by moving an ionography imaging chamber which contains a dielectric receptor sheet along a second path at the other side of the selected layer. The movement of the sheet is synchronized with movement of the source of X-rays and includes a translatory movement in a direction counter to the direction of movement of the source, a pivotal movement to maintain the sheet in a plane which is normal to the central beam of the bundle of X-rays, and a sidewise movement to vary the distance between the selected layer and the sheet so that the length of the projection of selected layer upon the sheet remains unchanged. If the sheet is rectangular, the pivotal movement is performed about an axis which is located in the plane of the selected layer and is parallel to the shorter sides of the sheet

  16. Methods for X-ray examinations of the maxillodental system

    International Nuclear Information System (INIS)

    Rabukhina, N.A.; Arzhantsev, A.P.

    1992-01-01

    Only two roentgenography methods (periapical and occlusion) are used for production of dental roentgenograms. Periapical survey must be used only for revealing state of bone tissue around tooth root tops. In parodontology it is necessary to use occlusion survey. Perfection of the methods and improvement of quality of tooth roentgenograpms demand to change the design of native dental X-ray unit: elongation of its tube, increase of radiator power. Introduction of orthopantomography as basis method of roengenography in stomatology is the most radical decision of methodological problems. Orthopantomography is replaced by intra- and extra-oral roentgenography of teeth and jaws

  17. Method of X-ray examination of upper respiratory tracts

    International Nuclear Information System (INIS)

    Portnoj, L.M.; Surenchik, V.I.; Shuster, M.A.; Sal'nikova, Eh.A.

    1982-01-01

    Method of X-ray examination of upper respiratory tracts by radiography both in direct and lateral projection with an introduction of radiocontrast media through tracheostoma is described. The main objective of the invention is to improve accuracy of diagnostics of larynx and trachea cicatrix structures in children. The objective is attained by the examination under general anesthesia; barium sulfate is simultaneously introduced through laryngoscope and tracheostoma, and polypositional radiography is accomplished just in the moment of air introduction under 130-170 mm Hg pressure in the amounts of 60-200 ml

  18. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  19. Precision test method by x-ray absorbent clay

    International Nuclear Information System (INIS)

    Nakadai, Toru; Matsukawa, Hideyuki; Sekita, Jun-ichiro; Murakoshi, Atsushi.

    1982-01-01

    In X-ray penetration photography of such as welds with reinforcing metal and castings of complex shape, the X-ray absorbent clay developed to eliminate various disadvantages of the conventional absorbents was further studied for better application. The results of the usage are as follows. Because the X-ray absorbent is clay, it is flexible in form, and gives good adhesion to test objects. In the welds and castings mentioned, it is effective for reducing the scattered ray, accordingly, it results in superior images. The following matters are described: contrast in radiographs, the required conditions for X-ray absorbents in general, the properties of the absorbent (absorption coefficient, consistency, density), improvement in radiographs by means of the X-ray absorbent clay (wall thickness compensation, masking, the application together with narrow-field irradiation photography). (Mori, K.)

  20. Feasibility study on X-ray source with pinhole imaging method

    International Nuclear Information System (INIS)

    Qiu Rui; Li Junli

    2007-01-01

    In order to verify the feasibility of study on X-ray source with pinhole imaging method, and optimize the design of X-ray pinhole imaging system, an X-ray pinhole imaging equipment was set up. The change of image due to the change of the position and intensity of X-ray source was estimated with mathematical method and validated with experiment. The results show that the change of the spot position and gray of the spot is linearly related with the change of the position and intensity of X-ray source, so it is feasible to study X-ray source with pinhole imaging method in this application. The results provide some references for the design of X-ray pinhole imaging system. (authors)

  1. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  2. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    Science.gov (United States)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  3. Tokamak physics studies using x-ray diagnostic methods

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; von Goeler, S.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10 5 m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments

  4. Solid-state x-ray receptor and method of making same

    International Nuclear Information System (INIS)

    Dorman, A.; Glave, W.K.; Birnbach, C.

    1985-01-01

    An X-ray receptor for producing electrical signals representative of an X-ray image is discussed. An array of semiconductor elements is mounted on at least one support, each element being formed of semiconductor material which is an element of Group 4A of the Periodic Table of Elements or a compound of such an element, or which is at least one element of Group 3A of the Periodic Table of Elements together with at least one element of Group 5A of the Periodic Table of Elements, and having at least one PN junction therein. The array is positioned to receive impinging X-rays and to produce electrical signals in response thereto. Electrical conducting leads are supported on the support, and the electrical signals which are produced by respective ones of the semiconductor elements are coupled to these electrical conducting leads. Output terminals also are supported on the support to provide output image signals; and circuitry including multiplexing circuits additionally is supported on the support for processing and multiplexing the electrical signals from the electrical conducting leads to the output terminals. Also disclosed is a method by which the X-ray receptor is made

  5. Characterization of cryogenic materials by x-ray absorption methods

    International Nuclear Information System (INIS)

    Heald, S.M.; Tranquada, J.M.

    1985-01-01

    X-ray absorption techniques have in recent years been developed into powerful probes of the electronic and structural properties of materials difficult to study by other techniques. In particular, the extended x-ray absorption fine structure (EXAFS) technique can be applied to a variety of cryogenic materials. Three examples are used to demonstrate the power of the technique. The first is the determination of the lattice location of dilute alloying additions such as Ta and Zr in Nb 3 Sn. The Ta additions are shown to reside predominately in Nb lattice sites, while Zr is not uniquely located at either Nb or Sn sites. In addition to structural information, temperature dependent EXAFS studies can be used to determine the rms deviations of atomic bond lengths, providing information about the temperature dependence of interatomic force constants. For Nb 3 Sn deviations are found from simple harmonic behavior at low temperatures which indicate a softening of the Nb-Sn bond strength. The final example is the study of interfacial properties in thin film systems. This is accomplished by making x-ray absorption measurements under conditions of total external reflection of the incident x-rays. As some examples show, this technique has great potential for studying interfacial reactions, a process used in the fabrication of many superconducting materials

  6. The methods for detecting multiple small nodules from 3D chest X-ray CT images

    International Nuclear Information System (INIS)

    Hayase, Yosuke; Mekada, Yoshito; Mori, Kensaku; Toriwaki, Jun-ichiro; Natori, Hiroshi

    2004-01-01

    This paper describes a method for detecting small nodules, whose CT values and diameters are more than -600 Hounsfield unit (H.U.) and 2 mm, from three-dimensional chest X-ray CT images. The proposed method roughly consists of two submodules: initial detection of nodule candidates by discriminating between nodule regions and other regions such as blood vessels or bronchi using a shape feature computed from distance values inside the regions and reduction of false positive (FP) regions by using a minimum directional difference filter called minimum directional difference filter (Min-DD) changing its radius suit to the size of the initial candidates. The performance of the proposed method was evaluated by using seven cases of chest X-ray CT images including six abnormal cases where multiple lung cancers are observed. The experimental results for nodules (361 regions in total) showed that sensitivity and FP regions are 71% and 7.4 regions in average per case. (author)

  7. On the methods of determination of x-ray sources protection quality in x-ray diagnostic equipment

    International Nuclear Information System (INIS)

    Vladimirov, L.V.

    1973-01-01

    Existing procedures for assessing the quality of shielding of X-ray radiators are compared; these procedures are shown to have a number of shortcomings and to be very time-consuming. A procedure is offered in which shielding quality is tested in two stages: (1) X-ray tests aimed at determining the quality of protection of the X-ray tube unit; and (2) dosimeter tests proper. The results of measurements are compared with maximum permissible dosage rate

  8. X-ray computed tomography imaging method which is immune to beam hardening effect

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Uesaka, Akio; Nomiya, Seiichiro; Onabe, Hideaki

    2009-01-01

    For the easy treatment of cancers, early finding of them is an important theme of study. X-ray transmission measurement and computed tomography (CT) are powerful tools for finding cancers. The x-ray CT shows cross sectional view of human body and is able to detect small cancers such as 1 cm in diameter. The CT, however, gives very high dose exposure to human body: some 10 to 1000 times higher dose exposure than the chest radiography. It is not possible to have medical health check using CT frequently, in view of both individual and public accumulated dose exposures. The authors have been working on the reduction of dose exposure in x-ray transmission measurements in case of detecting iodine contrast media, which concentrates in cancers. In our method, energy information of x-rays is employed: in conventional x-ray transmission measurements, x-rays are measured as current and the energy of each x-ray is ignored. The numbers of x-ray events, φ 1 and φ 2 , of which energies are lower and higher than the one of iodine K-edge, respectively, are used for the estimation of iodine thickness in cancers. Moreover, high energy x-rays, which are not sensitive to the absorption by iodine, are cut by a filter made of higher atomic number material than iodine. We call this method filtered x-ray energy subtraction (FIX-ES) method. This FIX-ES method was shown twice as sensitive to iodine than current measurement method. With the choice of filter thickness, minimum dose exposure in FIX-ES is 30% of that when white x-rays are employed. In the study described above, we concentrated on the observation of cancer part. In this study, a cancer phantom in normal tissue is observed by FIX-ES method. The results are compared with the ones obtained by current measurement method. (author)

  9. Sulfur content measurement in coal by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Thinova, L.

    2001-01-01

    X-ray fluorescence, using backscattering, was employed in the determination of sulfur content and ash content measurement in coal. The results of the methods are given to illustrate the differences between the chemical analysis and X-ray fluorescence method.

  10. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  11. Required doses for projection methods in X-ray diagnosis

    International Nuclear Information System (INIS)

    Hagemann, G.

    1992-01-01

    The ideal dose requirement has been stated by Cohen et al. (1981) by a formula basing on parallel beam, maximum quantum yield and Bucky grid effect depending on the signal to noise ratio and object contrast. This was checked by means of contrast detail diagrams measured at the hole phantom, and was additionally compared with measurement results obtained with acrylic glass phantoms. The optimal dose requirement is obtained by the maximum technically possible approach to the ideal requirement level. Examples are given, besides for x-ray equipment with Gd 2 O 2 S screen film systems for grid screen mammography, and new thoracic examination systems for mass screenings. Finally, a few values concerning the dose requirement or the analogous time required for fluorscent screening in angiography and interventional radiology, are stated, as well as for dentistry and paediatric x-ray diagnostics. (orig./HP) [de

  12. Method and apparatus involving the generation of x-rays

    International Nuclear Information System (INIS)

    Neal, W.R.; Little, R.G.

    1978-01-01

    An electron gun assembly generates an accelerated and sharply focused electron beam which is deflected in a predetermined path to impinge upon an extended split anode structure in a selected scanning pattern with approximately half the beam current impinging on each half of the split anode. A signal proportional to the difference between the two currents from each half of the split anode provides feedback control to the beam deflection system for constraining the beam to follow the fissure of the split anode. X-rays which are generated at the point of beam impingement on the split anode constitute a moving source of x-rays as the point of beam impingement travels in the selected pattern along the anode

  13. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  14. Method and device for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Jagoutz, E.; Palme, C.

    1978-01-01

    In the x-ray fluorescence analyzer the useful signal can be completely separated from the spurious signals, and especially the pulse can be determined. For this purpose the output of the radiation detector is connected with a multichannel pulse height discriminator. The measured signal determined in the pulse heigth discriminator may be indicated by a visual display or processed by a computer (coincidence circuits). (DG) [de

  15. ASSESSMENT OF RESTORATION METHODS OF X-RAY IMAGES WITH EMPHASIS ON MEDICAL PHOTOGRAMMETRIC USAGE

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2016-06-01

    Full Text Available Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  16. X-ray studies on electrochemical systems. Synchrotron methods for energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Artur [Empa. Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland)

    2017-07-01

    This book is your graduate level entrance into battery, fuel cell and solar cell research at synchrotron X-ray sources. Materials scientists find numerous examples for the combination of electrochemical experiments with simple and with highly complex X-ray scattering and spectroscopy methods. Physicists and chemists can link applied electrochemistry with fundamental concepts of condensed matter physics, physical chemistry and surface science.

  17. Standard test methods for chemical analysis of ceramic whiteware materials using wavelength dispersive X-Ray fluorescence spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover the determination of ten major elements (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO, and LOI in ceramic whitewares clays and minerals using wavelength dispersive X-ray fluorescence spectrometry (WDXRF). The sample is first ignited, then fused with lithium tetraborate and the resultant glass disc is introduced into a wavelength dispersive X-ray spectrometer. The disc is irradiated with X-rays from an X-ray tube. X-ray photons emitted by the elements in the samples are counted and concentrations determined using previously prepared calibration standards. (1) In addition to 10 major elements, the method provides a gravimetric loss-on-ignition. Note 1—Much of the text of this test method is derived directly from Major element analysis by wavelength dispersive X-ray fluorescence spectrometry, included in Ref (1). 1.2 Interferences, with analysis by WDXRF, may result from mineralogical or other structural effects, line overlaps, and matrix effects. The structure of the...

  18. New methods of X-ray diffraction spectrometry. II

    International Nuclear Information System (INIS)

    Soerum, H.; Bremer, J.

    1980-01-01

    The construction principles for a flexible X-ray spectrometer can be equipped either with a single curved crystal or with two curved crystals are described. A few of the theoretical 4+32 possible working modes are selected for a closer investigation and examples of recorded spectra are given. It is shown in the general single-crystal case that for a wavelength close to a cut-off energy the narrow diffraction cone has an elliptic section, as predicted by the theory. The spectrometer is discussed in terms of intensity, resolution and dispersive power. A comparison with other types of spectrometer is made. (Auth.)

  19. X-ray topographic method of investigation of phase objects

    International Nuclear Information System (INIS)

    Levonyan, L.V.

    2001-01-01

    The intensity distribution of the monochromatized synchrotron radiation transmitting through the phase object and crystal-analyzer in Laue geometry is considered. It is shown that the local angular deviation of the incident radiation caused by the refraction on structural inhomogeneities of the object under investigation is directly transferred to the X-ray topographic image. In the absence of the phase object the latter consists of parallel straight fringes with a slowly decreasing period. The presence of the phase object changes the shape and period of fringes. The influence of the spatial and temporal coherence on the image is discussed. 5 refs

  20. Measurement of thickness of thin films by the X-ray diffraction method

    International Nuclear Information System (INIS)

    Srinivasan, C.; Balasingh, C.; Singh, A.K.

    1979-07-01

    X-ray diffraction method can be used to measure the thickness of thin films (coatings). The principle and the experimental details of the x-ray diffraction methods are described. The intensities of the diffracted beams are derived assuming a random orientation of the crystallites in the diffracting medium. Consequently, the expressions are not valid when the sample has preferred orientation. To check the performance of the method, thicknesses of nickel deposits on mild steel plates were determined by the x-ray diffraction method and the results compared with those obtained by the weighing method and metallographic examination. The weighing method which gives an accuracy of +- 0.1 micron is taken as the standard. The x-ray diffraction methods and the metallographic examinations give values within +- 1 micron of the value obtained by the weighing method. (author)

  1. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  2. Improved image alignment method in application to X-ray images and biological images.

    Science.gov (United States)

    Wang, Ching-Wei; Chen, Hsiang-Chou

    2013-08-01

    Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging because of variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images. An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental X-ray images and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44 and 88.93% averaged registration accuracies for biological tissue images and X-ray images, respectively, and outperforms the benchmark methods. Based on the Tukey's honestly significant difference test and Fisher's least square difference test tests, the presented method performs significantly better than all existing methods (P ≤ 0.001) for tissue image alignment, and for the X-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (P < 0.001). The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use (http://www-o.ntust.edu.tw/∼cweiwang/ImprovedImageRegistration/). cweiwang@mail.ntust.edu.tw.

  3. Correction method and software for image distortion and nonuniform response in charge-coupled device-based x-ray detectors utilizing x-ray image intensifier

    International Nuclear Information System (INIS)

    Ito, Kazuki; Kamikubo, Hironari; Yagi, Naoto; Amemiya, Yoshiyuki

    2005-01-01

    An on-site method of correcting the image distortion and nonuniform response of a charge-coupled device (CCD)-based X-ray detector was developed using the response of the imaging plate as a reference. The CCD-based X-ray detector consists of a beryllium-windowed X-ray image intensifier (Be-XRII) and a CCD as the image sensor. An image distortion of 29% was improved to less than 1% after the correction. In the correction of nonuniform response due to image distortion, subpixel approximation was performed for the redistribution of pixel values. The optimal number of subpixels was also discussed. In an experiment with polystyrene (PS) latex, it was verified that the correction of both image distortion and nonuniform response worked properly. The correction for the 'contrast reduction' problem was also demonstrated for an isotropic X-ray scattering pattern from the PS latex. (author)

  4. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  5. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    Science.gov (United States)

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  6. Use of the maximum entropy method in X-ray astronomy

    International Nuclear Information System (INIS)

    Willingale, R.

    1981-01-01

    An algorithm used to apply the maximum entropy method in X-ray astronomy is described. It is easy to programme on a digital computer and fast enough to allow processing of two-dimensional images. The method gives good noise suppression without loss of instrumental resolution and has been successfully applied to several data analysis problems in X-ray astronomy. The restoration of a high-resolution image from the Einstein Observatory demonstrates the use of the algorithm. (author)

  7. Determination of chlorine in coal by X-ray fluorescence spectrometry method

    Energy Technology Data Exchange (ETDEWEB)

    Marek, S.; Bojarska, K. [Central Mining Institute, Katowice (Poland). Dept. of Environmental Monitoring

    1997-12-31

    Determination of chlorine contents in coal is essential for both environmental protection and its technological use. The existing method of chlorine determination in coal are titration methods which have considerable errors particularly in the low concentration range. The elaborated method with the use of X-ray fluorescence spectrometry in a comparison to the other methods is much faster and has better precision and accuracy. The principle of the method lies in the measurement of X-ray fluorescence radiation intensity which is emitted by chlorine in a sample and its comparison with standards. The calibration of the elaborated XRF method is based on natural coals having various concentrations of chlorine within the whole range of its occurrence in Polish coals. Concentrations for the calibration purpose were obtained by the determination of chlorine contents in selected coals by atomic absorption spectrometry method. The procedure of sample preparation for direct X-ray measurements, instrumental measuring conditions and the way of calibration curve preparation are described in the paper. All X-ray measurements were done with a Phillips sequential X-ray fluorescence spectrometer. A double anode Cr-Au X-ray tube with maximum power 3000 MW was used as the excitation source. 5 figs., 4 tabs.

  8. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  9. Injection Methods and Instrumentation for Serial X-ray Free Electron Laser Experiments

    Science.gov (United States)

    James, Daniel

    Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a "diffract and destroy" methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection. Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly. This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.

  10. On the evaluation of X-ray diffraction experiments by the regularization method

    Energy Technology Data Exchange (ETDEWEB)

    Trubin, V.A.; Szasz, A. (Lab. of Surface and Interface Physics, Eoetvoes Univ., Budapest (Hungary))

    1991-05-16

    The characteristic property of diffractometers as the presence of occasional and systematic errors in measured patterns requires such an evaluation which is as informative as possible. This circumstance gives rise to the problem of optimal planning of the experiment. The X-ray diffraction optimization problem with application of the regularization method is studied. The proposal permits to determine more accurately the unknown true characteristics of the X-ray diffraction experiment. (orig.).

  11. On the evaluation of X-ray diffraction experiments by the regularization method

    International Nuclear Information System (INIS)

    Trubin, V.A.; Szasz, A.

    1991-01-01

    The characteristic property of diffractometers as the presence of occasional and systematic errors in measured patterns requires such an evaluation which is as informative as possible. This circumstance gives rise to the problem of optimal planning of the experiment. The X-ray diffraction optimization problem with application of the regularization method is studied. The proposal permits to determine more accurately the unknown true characteristics of the X-ray diffraction experiment. (orig.)

  12. Calibration method of the pulsed X-ray relative sensitivity for ST401 plastic scintillators

    International Nuclear Information System (INIS)

    Xie Hongwei; Song Guzhou; Wang Kuilu

    2011-01-01

    The relative sensitivity calibration method of the pulsed X-ray in ST401 plastic scintillator is presented. Experimental relative sensitivity calibrations of the plastic scintillators of different thicknesses from 1 mm to 50 mm are accomplished on the 'Chenguang' pulsed X-ray source and a Co radioactive source, The uncertainty of the calibration data is evaluated, which can be treated as the experimental evidence for the relative sensitivity conversion of ST401 plastic scintillator. (authors)

  13. Finite difference method calculations of X-ray absorption fine structure for copper

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2007-01-15

    The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.

  14. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  15. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-01-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a

  16. The reduction methods of operator's radiation dose for portable dental X-ray machines.

    Science.gov (United States)

    Cho, Jeong-Yeon; Han, Won-Jeong

    2012-08-01

    This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

  17. Methods for reduction of scattered x-ray in measuring MTF with the square chart

    International Nuclear Information System (INIS)

    Hatagawa, Masakatsu; Yoshida, Rie

    1982-01-01

    A square wave chart has been used to measure the MTF of a screen-film system. The problem is that the scattered X-ray from the chart may give rise to measurement errors. In this paper, the authors proposed two methods to reduce the scattered X-ray: the first method is the use of a Pb mask and second is to provide for an air gap between the chart and the screen-film system. In these methods, the scattered X-ray from the chart was reduced. MTFs were measured by both of the new methods and the conventional method, and MTF values of the new methods were in good agreement while that of the conventional method was not. It was concluded that these new methods are able to reduce errors in the measurement of MTF. (author)

  18. System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging Modalities

    Science.gov (United States)

    Guan, Huifeng

    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the

  19. Study of properties of chemically modified samples of halloysite mineral with X-ray fluorescence and X-ray powder diffraction methods

    International Nuclear Information System (INIS)

    Banaś, D.; Kubala-Kukuś, A.; Braziewicz, J.; Majewska, U.; Pajek, M.; Wudarczyk-Moćko, J.; Czech, K.; Garnuszek, M.; Słomkiewicz, P.; Szczepanik, B.

    2013-01-01

    Elemental and chemical composition of raw and activated samples of halloysite mineral using wavelength dispersive X-ray fluorescence (WDXRF), total reflection X-ray fluorescence (TXRF) and X-ray powder diffraction (XRPD) methods were determined. As the result, it has been shown that application of the complementary X-ray spectrometry techniques allows very precise observation of changes in composition of halloysite mineral samples caused by its chemical modifications. Sample preparation procedure and usability of the research methods applied are described in details. Procedure of activation of raw halloysite mineral samples by etching them in sulfuric acid of various concentrations has been described and discussed. The ability of the samples to adsorb lead from intentionally contaminated water was tested and confirmed. - Author-Highlights: • We measured elemental and chemical composition of raw and activated halloysite mineral samples. • We showed that X-ray techniques allow precise study of changes in the sample composition. • We describe procedure of activation of the samples by etching them in sulfuric acid. • We tested ability of halloysite mineral to absorb lead from contaminated water

  20. Role of X-ray examination methods in the diagnosis of endophytic stomach carcinomas

    International Nuclear Information System (INIS)

    Gorshkov, A.N.; Akberov, R.F.

    1998-01-01

    Results of studying potentialities of radiographic methods in the diagnosis of stomach endophytic neoplasms (130 cases) are presented. All of patients were exposed to complex radiographic-endoscopic studies of stomach. X-ray computerized tomography is used as an additional method. It is shown that the complex approach to the diagnosis of endophytic neoplasms of stomach is necessary. Radiographic method is proposed to be used as an initial examination method. Endoscopic method with multiple biopsy is also used. X-ray computerized tomography is used for certain anatomic stomach section at the final stage [ru

  1. Integration of the ATHENA mirror modules: development of indirect and x-ray direct AIT methods

    Science.gov (United States)

    Vernani, Dervis; Blum, Steffen; Seure, Thibault; Bavdaz, Marcos; Wille, Eric; Schaeffer, Uwe; Lièvre, Nicolas; Nazeeruddin, Adeeb; Barrière, Nicolas M.; Collon, Maximilien J.; Cibik, Levent; Krumrey, Michael; Müller, Peter; Burwitz, Vadim

    2017-08-01

    Within the ATHENA optics technology plan, activities are on-going for demonstrating the feasibility of the mirror module Assembly Integration and Testing (AIT). Each mirror module has to be accurately attached to the mirror structure by means of three isostatic mounts ensuring minimal distortion under environmental loads. This work reports on the status of one of the two parallel activities initiated by ESA to address this demanding task. In this study awarded to the industrial consortium, the integration relies on opto-mechanical metrology and direct X-ray alignment. For the first or "indirect" method the X-ray alignment results are accurately referenced, by means of a laser tracking system, to optical fiducial targets mounted on the mirror modules and finally linked to the mirror structure coordinate system. With the second or "direct" method the alignment is monitored in the X-ray domain, providing figures of merit directly comparable to the final performance. The integration being designed and here presented, foresees combining the indirect method to the X-ray direct method. The characterization of the single mirror modules is planned at PTB's X-ray Parallel Beam Facility (XPBF 2.0) at BESSY II, and the integration and testing campaign at Panter. It is foreseen to integrate and test a demonstrator with two real mirror modules manufactured by cosine.

  2. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  3. Simulation study on unfolding methods for diagnostic X-rays and mixed gamma rays

    International Nuclear Information System (INIS)

    Hashimoto, Makoto; Ohtaka, Masahiko; Ara, Kuniaki; Kanno, Ikuo; Imamura, Ryo; Mikami, Kenta; Nomiya, Seiichiro; Onabe, Hideaki

    2009-01-01

    A photon detector operating in current mode that can sense X-ray energy distribution has been reported. This detector consists of a row of several segment detectors. The energy distribution is derived using an unfolding technique. In this paper, comparisons of the unfolding techniques among error reduction, spectrum surveillance, and neural network methods are discussed through simulation studies on the detection of diagnostic X-rays and gamma rays emitted by a mixture of 137 Cs and 60 Co. For diagnostic X-ray measurement, the spectrum surveillance and neural network methods appeared promising, while the error reduction method yielded poor results. However, in the case of measuring mixtures of gamma rays, the error reduction method was both sufficient and effective. (author)

  4. A fit method for the determination of inherent filtration with diagnostic x-ray units

    International Nuclear Information System (INIS)

    Meghzifene, K; Nowotny, R; Aiginger, H

    2006-01-01

    A method for the determination of total inherent filtration for clinical x-ray units using attenuation curves was devised. A model for the calculation of x-ray spectra is used to calculate kerma values which are then adjusted to the experimental data in minimizing the sum of the squared relative differences in kerma using a modified simplex fit process. The model considers tube voltage, voltage ripple, anode angle and additional filters. Fit parameters are the thickness of an additional inherent Al filter and a general normalization factor. Nineteen sets of measurements including attenuation data for three tube voltages and five Al-filter settings each were obtained. Relative differences of experimental and calculated kerma using the data for the additional filter thickness are within a range of -7.6% to 6.4%. Quality curves, i.e. the relationship of additional filtration to HVL, are often used to determine filtration but the results show that standard quality curves do not reflect the variety of conditions encountered in practice. To relate the thickness of the additional filter to the condition of the anode surface, the data fits were also made using tungsten as the filter material. These fits gave an identical fit quality compared to aluminium with a tungsten filter thickness of 2.12-8.21 μm which is within the range of the additional absorbing layers determined for rough anodes

  5. Method for calculating required shielding in medical x-ray rooms

    International Nuclear Information System (INIS)

    Karppinen, J.

    1997-10-01

    The new annual radiation dose limits - 20 mSv (previously 50 mSv) for radiation workers and 1 mSv (previously 5 mSv) for other persons - implies that the adequacy of existing radiation shielding must be re-evaluated. In principle, one could assume that the thicknesses of old radiation shields should be increased by about one or two half-value layers in order to comply with the new dose limits. However, the assumptions made in the earlier shielding calculations are highly conservative; the required shielding was often determined by applying the maximum high-voltage of the x-ray tube for the whole workload. A more realistic calculation shows that increased shielding is typically not necessary if more practical x-ray tube voltages are used in the evaluation. We have developed a PC-based calculation method for calculating the x-ray shielding which is more realistic than the highly conservative method formerly used. The method may be used to evaluate an existing shield for compliance with new regulations. As examples of these calculations, typical x-ray rooms are considered. The lead and concrete thickness requirements as a function of x-ray tube voltage and workload are also given in tables. (author)

  6. Cluster cosmological analysis with X ray instrumental observables: introduction and testing of AsPIX method

    International Nuclear Information System (INIS)

    Valotti, Andrea

    2016-01-01

    Cosmology is one of the fundamental pillars of astrophysics, as such it contains many unsolved puzzles. To investigate some of those puzzles, we analyze X-ray surveys of galaxy clusters. These surveys are possible thanks to the bremsstrahlung emission of the intra-cluster medium. The simultaneous fit of cluster counts as a function of mass and distance provides an independent measure of cosmological parameters such as Ω m , σ s , and the dark energy equation of state w0. A novel approach to cosmological analysis using galaxy cluster data, called top-down, was developed in N. Clerc et al. (2012). This top-down approach is based purely on instrumental observables that are considered in a two-dimensional X-ray color-magnitude diagram. The method self-consistently includes selection effects and scaling relationships. It also provides a means of bypassing the computation of individual cluster masses. My work presents an extension of the top-down method by introducing the apparent size of the cluster, creating a three-dimensional X-ray cluster diagram. The size of a cluster is sensitive to both the cluster mass and its angular diameter, so it must also be included in the assessment of selection effects. The performance of this new method is investigated using a Fisher analysis. In parallel, I have studied the effects of the intrinsic scatter in the cluster size scaling relation on the sample selection as well as on the obtained cosmological parameters. To validate the method, I estimate uncertainties of cosmological parameters with MCMC method Amoeba minimization routine and using two simulated XMM surveys that have an increasing level of complexity. The first simulated survey is a set of toy catalogues of 100 and 10000 deg 2 , whereas the second is a 1000 deg 2 catalogue that was generated using an Aardvark semi-analytical N-body simulation. This comparison corroborates the conclusions of the Fisher analysis. In conclusion, I find that a cluster diagram that accounts

  7. Method of producing a pseudo-color photograph with X-rays

    International Nuclear Information System (INIS)

    Tajima, Mataichi.

    1965-01-01

    Conventional black and white X-ray photography cannot simultaneously produce an image on photographic film of a subject having regions of high and low X-ray absorption due to the limitation of photographic density range, gradation and exposure tolerance. This invention records both regions as images of different colors on the same color photographic film. According to a method of this invention for making an X-ray pseudo-color photograph, the subject is directly irradiated by an X-ray beam emergent from an X-ray beam generator, and an X-ray permeation image of the subject is converted into and displayed as a visible light image by means of a fluorescent screen. In one aspect of this invention, there is used a color photographic film which has at least two kinds of sensitive and coloring layers exhibiting the same sensitivity. During the period in which the visible image is displayed, the film is exposed to the visible light in such a way that at least two color filters differing in color and density are successively interposed between the film and the fluorescent screen. In another aspect, a color photographic film is employed having at least two kinds of sensitive and coloring layers exhibiting different sensitivities. During the period in which the visible image is displayed, the film is exposed to visible light by sequentially interposing at least two color filters of different color but of equal density. In this manner, regions comparatively low in X-ray absorption, such as the lungs, and regions comparatively high in absorption, such as the heart, appear as, for example, a blue image and a red image on the color photographic film, respectively. (Takasuka, S.)

  8. Method of producing a pseudo-color photograph with X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, M

    1965-05-08

    Conventional black and white X-ray photography cannot simultaneously produce an image on photographic film of a subject having regions of high and low X-ray absorption due to the limitation of photographic density range, gradation and exposure tolerance. This invention records both regions as images of different colors on the same color photographic film. According to a method of this invention for making an X-ray pseudo-color photograph, the subject is directly irradiated by an X-ray beam emergent from an X-ray beam generator, and an X-ray permeation image of the subject is converted into and displayed as a visible light image by means of a fluorescent screen. In one aspect of this invention, there is used a color photographic film which has at least two kinds of sensitive and coloring layers exhibiting the same sensitivity. During the period in which the visible image is displayed, the film is exposed to the visible light in such a way that at least two color filters differing in color and density are successively interposed between the film and the fluorescent screen. In another aspect, a color photographic film is employed having at least two kinds of sensitive and coloring layers exhibiting different sensitivities. During the period in which the visible image is displayed, the film is exposed to visible light by sequentially interposing at least two color filters of different color but of equal density. In this manner, regions comparatively low in X-ray absorption, such as the lungs, and regions comparatively high in absorption, such as the heart, appear as, for example, a blue image and a red image on the color photographic film, respectively.

  9. Nuclear Enhanced X-ray Maximum Entropy Method Used to Analyze Local Distortions in Simple Structures

    DEFF Research Database (Denmark)

    Christensen, Sebastian; Bindzus, Niels; Christensen, Mogens

    We introduce a novel method for reconstructing pseudo nuclear density distributions (NDDs): Nuclear Enhanced X-ray Maximum Entropy Method (NEXMEM). NEXMEM offers an alternative route to experimental NDDs, exploiting the superior quality of synchrotron X-ray data compared to neutron data. The method...... proposed to result from anharmonic phonon scattering or from local fluctuating dipoles on the Pb site.[1,2] No macroscopic symmetry change are associated with these effects, rendering them invisible to conventional crystallographic techniques. For this reason PbX was until recently believed to adopt...

  10. A model independent method to deconvolve hard X-ray spectra

    International Nuclear Information System (INIS)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C.

    1984-01-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented. (orig.)

  11. X-ray and nuclear methods for comparative analysis of environmental samples

    International Nuclear Information System (INIS)

    Kudryashov, V.I.; Gundorina, S.F.; Frontas'eva, M.V.; Saidmuradov, Zh.

    1988-01-01

    X-ray and instrumental neutron activation methods, and in some cases methods of photon activation (X-ray spectral analysis with proton activation and analysis on the basis of (p, n) reaction) were used to obtain elementary content of different water samples. The possibility of getting space-time dependences of trace elementary concentrations in water (and under certain conditions in atmosphere) is shown. These data are to be used at a complex investigation of sanitary norms of water systems. The advantages of abovementined methods are discussed for obtaining different elementary content in water in different ways

  12. The study on the X-ray correction method of long fracture displacement

    International Nuclear Information System (INIS)

    Jia Bin; Huang Ailing; Chen Fuzhong; Men Chunyan; Sui Chengzong; Cui Yiming; Yang Yundong

    2010-01-01

    Objective: To explore the image correction of fracture displacement by conventional X-ray photography (ortho tropic and lateral) and test by computed tomography (CT). Methods: The correction method of fracture displacement was designed according to geometry of X-ray photography. Selected one midhumeral fracture specimen which designed with lateral shift and angular displacement, and scanned from anteroposterior and position respectively, and also volume scanned using CT, the data obtained from volume scan were processed using multiplanar reconstruction (MPR) and shaded surface display (SSD). The displacement data relied on X-ray image, CT with MPR and SSD processing, actual design of specimens were compared respectively. Results: The direction and degree of displacement among correction data of X-ray images and the data from MPR and SSD, actual design of specimen were little difference, location difference <1.5 mm, degree difference <1.5 degree. Conclusion: It is really reliable for fracture displacement by conventional X-ray photography with coordinate correction, and it is helpful to obviously improve the diagnostic accuracy of the degree of fracture displacement. (authors)

  13. Synchrotron radiation spectroscopy including X-ray absorption spectroscopy and industrial applications

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2016-01-01

    Recent trends of synchrotron radiation spectroscopy, especially X-ray absorption spectroscopy for industrial applications are introduced based on our latest results for energy efficient devices such as magnetic RAM, LSI and organic FET, power generation devices such as fuel cells, and energy storage devices such as Li ion batteries. Furthermore, future prospects of spectroscopy with higher energy resolution, higher spatial resolution, higher temporal resolution and operando spectroscopy taking advantage of much brighter synchrotron radiation beam at low emittance SR rings are discussed from the view point of practical applications. (author)

  14. Application of the nuclear x-ray fluorescence method to prospecting for gold in-situ

    International Nuclear Information System (INIS)

    Zhang, Y.; Xie, T.; Zhou, S.; Ge, L.

    1989-01-01

    Arsenic and chalcophile elements are often associated with gold, and can be considered indicator elements when prospecting for gold deposits. The nuclear geophysics X-ray fluorescence method can be used to search for hidden gold deposits by measuring fluorescence intensities of the indicator elements in situ. The method can speed geologic investigation and reduce exploration cost. Three types of portable radioisotope X-ray fluorescence analyzers, designed and manufactured by Chengdu College of Geology and Chongqing Geological Instrument Factory, are briefly introduced. These analyzers are widely used in different stages of geologic investigation for gold in China. In the two case histories presented five anomalous zones of X-ray fluorescence intensity related to gold mineralization are located and one hidden gold deposit is discovered with gold content of 23 g/t

  15. Non-contact micro mass evaluation method using an X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiseok; Sun, Gwang Min; Baek, Ha Ni; Hoang, Sy Minh Tuan; Park, Sun Ae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-07-15

    For the mass inspection of attached foils such as printed electrodes, mass should be measured by a non-contact method with the capacity to measure a small mass of micrograms. In this study, the masses of 1 mg to 10 mg electrodes were evaluated using an X-ray microscope. The results were compared with the masses determined by using a digital scale with a 0.005 mg error. The average of the relative error between the mass measurements using the X-ray microscope and those using the digital scale was less than 2.51%. The results show that X-ray mass evaluation method can be used for mass measurement of micro objects by replacing a digital scale.

  16. Development of X-ray radiography examination technology by image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Duck Kee; Koo, Dae Seo; Kim, Eun Ka [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    Because the dimension of nuclear fuel rods was measured with rapidity and accuracy by X-ray radiography examination, the set-up of image processing system which was composed of 979 CCD-L camera, image processing card and fluorescent lighting was carried out, and the image processing system enabled image processing to perform. The examination technology of X-ray radiography, which enabled dimension measurement of nuclear fuel rods to perform, was developed by image processing method. The result of dimension measurement of standard fuel rod by image processing method was 2% reduction in relative measuring error than that of X-ray radiography film, while the former was better by 100 {approx} 200 {mu}m in measuring accuracy than the latter. (author). 9 refs., 22 figs., 3 tabs.

  17. High resolution x-ray CMT: Reconstruction methods

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.K.

    1997-02-01

    This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited for high accuracy, tomographic reconstruction codes.

  18. Method of evaluation of structural (screen) and quantum graininess of X-ray pictures

    Energy Technology Data Exchange (ETDEWEB)

    Gurvich, A M; Shamanov, A A; Erofeeva, N D [Nauchno-Issledovatel' skij Inst. Rentgenologii i Radiologii, Moscow (USSR)

    1979-03-01

    Proposed is a method for quantitative determination of graininess of X-ray pictures (gamma-ray images), the graininess being conditioned by the structure of amplifying screens and quantum fluctuations. The method is based on the determination of threshold brightness at which the picture graininess becomes obvious. It is shown that at low effective quantum energy (Esub(eff.) <= 50 keV) the graininess observed is for the most part structural (screen). Its growth is connected with quantum fluctuations when increasing Esub(eff.) up to 150 keV and using screens with high output values of X-ray luminescence and the coefficient of spectral accordance to the film.

  19. Development of direct observation aparatus of coal carbonization process by x-ray computerized tomography method

    International Nuclear Information System (INIS)

    Sakawa, Mitsuhiro; Shiraishi, Katsuhiko; Sakurai, Yoshihisa; Shimomura, Yasuto

    1987-01-01

    Coke production by chamber ovens has a long history and efforts are being continued to make the manufacturing process efficient and to preserve the environment. In this production by this method, however, it is hardly possible to obtain direct information during coal carbonization. Since the elements that compose coal and coke are carbon, hydrogen, oxygen, etc. and are similar to those of the human body, authors has developed a coke oven that permits the direct observation of the coal carbonization process using a soft X-ray computerized tomography (CT) apparatus used in medical treatment. The following phenomena can be observed as images by the coke oven for the CT method : 1) Changes in the bulk density of charge coal (including the difference in the water content), 2) Width of the plastic layer and movement of the plastic layer in the coke oven chamber, 3) Expansion and shrinkage of the charge in the coke oven chamber, 4) Initiation and growth of cracks. (author)

  20. Research of x-ray automatic image mosaic method

    Science.gov (United States)

    Liu, Bin; Chen, Shunan; Guo, Lianpeng; Xu, Wanpeng

    2013-10-01

    Image mosaic has widely applications value in the fields of medical image analysis, and it is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. In this paper, the method of grayscale cutting pseudo-color enhancement was firstly used to complete the mapping transformation from gray to the pseudo-color, and to extract SIFT features from the images. And then by making use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), the method of RANSAC (Random Sample Consensus) was used to exclude the pseudofeature points right in order to complete the exact match of feature points. Finally, seamless mosaic and color fusion were completed by using wavelet multi-decomposition. The experiment shows that the method we used can effectively improve the precision and automation of the medical image mosaic, and provide an effective technical approach for automatic medical image mosaic.

  1. Computerized method for X-ray angular distribution simulation in radiological systems

    International Nuclear Information System (INIS)

    Marques, Marcio A.; Oliveira, Henrique J.Q. de; Frere, Annie F.; Schiabel, Homero; Marques, Paulo M.A.

    1996-01-01

    A method to simulate the changes in X-ray angular distribution (the Heel effect) for radiologic imaging systems is presented. This simulation method is described as to predict images for any exposure technique considering that the distribution is the cause of the intensity variation along the radiation field

  2. Precision evaluation of pressed pastille preparation different methods for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Lima, Raquel Franco de Souza; Melo Junior, Germano; Sa, Jaziel Martins

    1997-01-01

    This work relates the comparison between the results obtained with the two different methods of preparing pressed pastilles from the crushed sample. In this study, the reproductivity is evaluated, aiming to define the method that furnishes a better analytic precision. These analyses were realized with a X-ray fluorescence spectrometer at the Geology Department of the Federal University of Rio Grande do Norte

  3. Method for x-ray determination of three axial stresses of general orientation

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, H; Hauk, V [Technische Hochschule Aachen (Germany, F.R.). Inst. fuer Werkstoffkunde; Juehe, H H; Krause, H [Technische Hochschule Aachen (Germany, F.R.). Lehrgebiet Abnutzung der Werkstoffe

    1976-11-01

    The authors describe a method of detecting three-dimensional self-stress/self-strain systems by means of X-ray measurements of the distances between the lattice planes in three directions of the sample surface. The method is illustrated by a study of a sample from a type of an electric railcar which had been deformed mainly by tangential forces.

  4. Quantitative phase analysis of uranium carbide from x-ray diffraction data using the Rietveld method

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.; Krishnan, K.

    2003-01-01

    Quantitative phase analysis of a uranium carbide sample was carried out from the x-ray diffraction data by Rietveld profile fitting method. The method does not require the addition of any reference material. The percentage of UC, UC 2 and UO 2 phases in the sample were determined. (author)

  5. The method of quantitative X-ray microanalysis of fine inclusions in copper

    International Nuclear Information System (INIS)

    Morawiec, H.; Kubica, L.; Piszczek, J.

    1978-01-01

    The method of correction for the matrix effect in quantitative x-ray microanalysis was presented. The application of the method was discussed on the example of quantitative analysis of fine inclusions of Cu 2 S and Cu 2 O in copper. (author)

  6. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...

  7. Inspection method of optical fiber preforms by x-ray absorption measurements

    International Nuclear Information System (INIS)

    Takahashi, H.; Nakamura, K.; Shibuya, S.; Kuroha, T.

    1980-01-01

    A method for measuring the refractive index distribution of optical fiber preforms has been developed by application of the theory of X-ray radiography. The composition of quartz optical fiber materials is, in most cases, limited to the group of five elements - Ge, P, Si, O and B. Of them, Ge is an essential element to determine the structure of refractive index of an optical fiber and the distribution of its density can be regarded approximately as the distribution of refractive index. On the other hand, the coefficient of low-energy X-ray absorption by the elements depends markedly on their atomic numbers, and Ge has a far larger absorption coefficient than the other four elements. Therefore, analysis of the intensity of X-ray absorbed by optical fiber preforms makes it possible to determine the distribution of Ge density and consequently the distribution of refractive index. (author)

  8. Determination of Ti, Cr, Cu and Ta in niobium oxide by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Dixit, R.M.; Deshpande, S.S.

    1986-01-01

    An x-ray fluorescence method for the determination of Ti, Cr, Cu and Ta in niobium oxide has been developed. Samples/standards in powder form are mixed with boric acid in the proportion of 1:1 (400 mg. each). Double layer pellets are prepared by pressing this mixture over a primary boric acid pellet. Philips PW-1220, a semiautomatic x-ray spectrometer with tungsten target x-ray tube for excitation and LiF (200) crystal for dispersion have been used. The determination range is from 0.005 to 0.1per cent for Ti and Cr, 0.01 to 0.1per cent for Cu and 0.05 to 1per cent for Ta. (author)

  9. Note: Loading method of molecular fluorine using x-ray induced chemistry

    International Nuclear Information System (INIS)

    Pravica, Michael; Sneed, Daniel; White, Melanie; Wang, Yonggang

    2014-01-01

    We have successfully loaded molecular fluorine into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of perfluorohexane (C 6 F 14 ). “White” x-ray radiation from the Advanced Photon Source was used to initiate the chemical decomposition of C 6 F 14 , which resulted in the in situ production of F 2 as verified via Raman spectroscopy. Due to the toxic nature of fluorine, this method will offer significant advantages in the ability to easily load a relatively nontoxic and inert substance into a chamber (such as a diamond anvil cell) that, when sealed with other reactants and irradiate with hard x-rays (>7 keV), releases highly reactive and toxic fluorine into the sample/reaction chamber to enable novel chemical synthesis under isolated and/or extreme conditions

  10. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    International Nuclear Information System (INIS)

    Ramamurthy, Senthil; D’Orsi, Carl J; Sechopoulos, Ioannis

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360° with a perforated tungsten plate in the path of the x-ray beam. To make patient testing feasible, a wirelessly controlled electronic positioner for the tungsten plate was designed and added to a breast CT system. Other improvements to the algorithm were implemented, including automated exclusion of non-valid primary estimate points and the use of a different approximation method to estimate the full scatter signal. To evaluate the effectiveness of the algorithm, evaluation of the resulting image quality was performed with a breast phantom and with nine patient images. The improvements in the algorithm resulted in the avoidance of introduction of artifacts, especially at the object borders, which was an issue in the previous implementation in some cases. Both contrast, in terms of signal difference and signal difference-to-noise ratio were improved with the proposed method, as opposed to with the correction algorithm incorporated in the system, which does not recover contrast. Patient image evaluation also showed enhanced contrast, better cupping correction, and more consistent voxel values for the different tissues. The algorithm also reduces artifacts present in reconstructions of non-regularly shaped breasts. With the implemented hardware and software improvements, the proposed method can be reliably used during patient breast CT imaging, resulting in improvement of image quality, no introduction of artifacts, and in some cases reduction of artifacts already present. The impact of the algorithm on actual clinical performance for detection, diagnosis and other clinical tasks in breast imaging remains to be evaluated. (paper)

  11. Long wave-length x-ray diffraction crystal and method of manufacturing same

    International Nuclear Information System (INIS)

    Zingaro, W.P.; Sicignano, A.

    1980-01-01

    An x-ray diffraction crystal of the Langemuir-Blodgett type capable of detecting radiation having a wavelength greater than 50 Arystroms and a method of making such a crystal are described. The crystal consists of a pair of alternate monolayers, one a heavy metal soap, and one a light metal soap. Selecting cation pairs with a significant difference in atomic number and dispersing power, such as Pb and Be, Mg, or Ca, increases the effective interplanar distance since the Pb planes cause the predominant x-ray diffraction. (LL)

  12. Note: A novel method for in situ loading of gases via x-ray induced chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Park, Changyong; Liu, Yu; Galley, Martin; Robinson, John; Bhattacharya, Neelanjan (UNLV); (CIW)

    2011-12-14

    We have developed and demonstrated a novel method to load oxygen in a sealed diamond anvil cell via the x-ray induced decomposition of potassium chlorate. By irradiating a pressurized sample of an oxidizer (KClO{sub 3}) with either monochromatic or white beam x-rays from the Advanced Photon Source at ambient temperature and variable pressure, we succeeded in creating a localized region of molecular oxygen surrounded by unreacted sample which was confirmed via Raman spectroscopy. We anticipate that this technique will be useful in loading even more challenging, difficult-to-load gases such as hydrogen and also to load multiple gases.

  13. Note: A novel method for in situ loading of gases via x-ray induced chemistry

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Park, Changyong; Liu, Yu; Galley, Martin; Robinson, John; Bhattacharya, Neelanjan

    2011-10-01

    We have developed and demonstrated a novel method to load oxygen in a sealed diamond anvil cell via the x-ray induced decomposition of potassium chlorate. By irradiating a pressurized sample of an oxidizer (KClO3) with either monochromatic or white beam x-rays from the Advanced Photon Source at ambient temperature and variable pressure, we succeeded in creating a localized region of molecular oxygen surrounded by unreacted sample which was confirmed via Raman spectroscopy. We anticipate that this technique will be useful in loading even more challenging, difficult-to-load gases such as hydrogen and also to load multiple gases.

  14. Advanced x-ray stress analysis method for a single crystal using different diffraction plane families

    International Nuclear Information System (INIS)

    Imafuku, Muneyuki; Suzuki, Hiroshi; Sueyoshi, Kazuyuki; Akita, Koichi; Ohya, Shin-ichi

    2008-01-01

    Generalized formula of the x-ray stress analysis for a single crystal with unknown stress-free lattice parameter was proposed. This method enables us to evaluate the plane stress states with any combination of diffraction planes. We can choose and combine the appropriate x-ray sources and diffraction plane families, depending on the sample orientation and the apparatus, whenever diffraction condition is satisfied. The analysis of plane stress distributions in an iron single crystal was demonstrated combining with the diffraction data for Fe{211} and Fe{310} plane families

  15. Detection methods of pulsed X-rays for transmission tomography with a linear accelerator

    International Nuclear Information System (INIS)

    Glasser, F.

    1988-07-01

    Appropriate detection methods are studied for the development of a high energy tomograph using a linear accelerator for nondestructive testing of bulky objects. The aim is the selection of detectors adapted to a pulsed X-ray source and with a good behavior under X-ray radiations of several MeV. Performance of semiconductors (HgI 2 , Cl doped CdTe, GaAs, Bi 12 Ge0 20 ) and a scintillator (Bi 4 Ge 3 0 12 ) are examined. A prototype tomograph gave images that show the validity of detectors for analysis of medium size equipment such as a concrete drum of 60 cm in diameter [fr

  16. Preliminary study of determination of UO2 grain size using X-ray diffraction method

    International Nuclear Information System (INIS)

    Mulyana, T.; Sambodo, G. D.; Juanda, D.; Fatchatul, B.

    1998-01-01

    The determination of UO 2 grain size has accomplished using x-ray diffraction method. The UO 2 powder is obtained from sol-gel process. A copper target as radiation source in the x-ray diffractometer was used in this experiment with CμKα characteristic wavelength 1.54433 Angstrom. The result indicate that the UO 2 mean grain size on presintered (temperature 800 o C) has the value 456.8500 Angstrom and the UO 2 mean grain size on sintered (temperature 1700 o C) has value 651.4934 Angstrom

  17. Radiation exposure in X-ray angiography and comparisons between digital and conventional methods of imaging

    International Nuclear Information System (INIS)

    Schaberg, J.

    1987-01-01

    The more recent developments and techniques in the field of angiography are examined for associated radiation exposure risks for patients and investigators and then compared to the conventional methods of angiography. It could be shown that digital subtraction angiography is generally associated with a lesser risk of somatic exposure of the patient, provided that the equipment used offers an adjustable useful-beam range and focus. The fact that above-table X-ray tubes are now generally replaced with X-ray systems installed under the examination table permits the relatively high doses, to which investigators are exposed during angiography, to be reduced by a factor of 3. (DG) [de

  18. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  19. Statistical analysis of x-ray stress measurement by centroid method

    International Nuclear Information System (INIS)

    Kurita, Masanori; Amano, Jun; Sakamoto, Isao

    1982-01-01

    The X-ray technique allows a nondestructive and rapid measurement of residual stresses in metallic materials. The centroid method has an advantage over other X-ray methods in that it can determine the angular position of a diffraction line, from which the stress is calculated, even with an asymmetrical line profile. An equation for the standard deviation of the angular position of a diffraction line, σsub(p), caused by statistical fluctuation was derived, which is a fundamental source of scatter in X-ray stress measurements. This equation shows that an increase of X-ray counts by a factor of k results in a decrease of σsub(p) by a factor of 1/√k. It also shows that σsub(p) increases rapidly as the angular range used in calculating the centroid increases. It is therefore important to calculate the centroid using the narrow angular range between the two ends of the diffraction line where it starts to deviate from the straight background line. By using quenched structural steels JIS S35C and S45C, the residual stresses and their standard deviations were calculated by the centroid, parabola, Gaussian curve, and half-width methods, and the results were compared. The centroid of a diffraction line was affected greatly by the background line used. The standard deviation of the stress measured by the centroid method was found to be the largest among the four methods. (author)

  20. Improvement of the detector resolution in X-ray spectrometry by using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernández, Jorge E.; Scot, Viviana; Giulio, Eugenio Di; Sabbatucci, Lorenzo

    2015-01-01

    In every X-ray spectroscopy measurement the influence of the detection system causes loss of information. Different mechanisms contribute to form the so-called detector response function (DRF): the detector efficiency, the escape of photons as a consequence of photoelectric or scattering interactions, the spectrum smearing due to the energy resolution, and, in solid states detectors (SSD), the charge collection artifacts. To recover the original spectrum, it is necessary to remove the detector influence by solving the so-called inverse problem. The maximum entropy unfolding technique solves this problem by imposing a set of constraints, taking advantage of the known a priori information and preserving the positive-defined character of the X-ray spectrum. This method has been included in the tool UMESTRAT (Unfolding Maximum Entropy STRATegy), which adopts a semi-automatic strategy to solve the unfolding problem based on a suitable combination of the codes MAXED and GRAVEL, developed at PTB. In the past UMESTRAT proved the capability to resolve characteristic peaks which were revealed as overlapped by a Si SSD, giving good qualitative results. In order to obtain quantitative results, UMESTRAT has been modified to include the additional constraint of the total number of photons of the spectrum, which can be easily determined by inverting the diagonal efficiency matrix. The features of the improved code are illustrated with some examples of unfolding from three commonly used SSD like Si, Ge, and CdTe. The quantitative unfolding can be considered as a software improvement of the detector resolution. - Highlights: • Radiation detection introduces distortions in X- and Gamma-ray spectrum measurements. • UMESTRAT is a graphical tool to unfold X- and Gamma-ray spectra. • UMESTRAT uses the maximum entropy method. • UMESTRAT’s new version produces unfolded spectra with quantitative meaning. • UMESTRAT is a software tool to improve the detector resolution.

  1. Rating of the X-ray method of measurement of stresses in steels

    International Nuclear Information System (INIS)

    Skrzypinski, A.

    1977-01-01

    The possibilities of utilization of some dependencies occuring in the X-ray technique of measurement of natural stresses for determination of distances of a between - plane lattice without natural stresses (d 0 ) are discussed. The proposed methodics of determination of d 0 is illustrated with the investigations which were carried-out on bearing steel LH15. (author)

  2. The X-ray fluorescent method for determination of total sulphur in bituminous coals

    International Nuclear Information System (INIS)

    Widowska-Kusmierska, J.; Siess, K.

    1979-01-01

    The X-ray fluorescent technique for the determination of total sulphur covering concentrations from 0,1 to 10% has been applied for bituminous coals showing a great variability in qualitative and quantitative composition of mineral matter (ash). The described method is a quick one giving results during one hour. The obtained good accuracy of determinations gives prospects for wide industrial application. (author)

  3. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data

    DEFF Research Database (Denmark)

    Kulshreshth, Arun Kumar; Alpers, Andreas; Herman, Gabor T.

    2009-01-01

    An iterative search method is proposed for obtaining orientation maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which...

  4. Matching methods evaluation framework for stereoscopic breast x-ray images.

    Science.gov (United States)

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps.

  5. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  6. A method of simultaneous no-screen X-ray film taking with direct twofold magnification of hands and feet

    International Nuclear Information System (INIS)

    Zajgner, J.; Szymanska-Prach, H.

    1978-01-01

    The authors propose an original method of X-ray examination of hands and feet which makes possible simultaneous radiography without screen and direct twofold magnified film taking. The method is not connected with the necessity of exposing the patient to an additional dose of X-rays. It has been tried in 20 patients with suspected rheumatoid arthritis. It requires an X-ray tube with 0.3 x 0.3 mm microfocus. (author)

  7. A convenient method for X-ray analysis in TEM that measures mass thickness and composition

    Science.gov (United States)

    Statham, P.; Sagar, J.; Holland, J.; Pinard, P.; Lozano-Perez, S.

    2018-01-01

    We consider a new approach for quantitative analysis in transmission electron microscopy (TEM) that offers the same convenience as single-standard quantitative analysis in scanning electron microscopy (SEM). Instead of a bulk standard, a thin film with known mass thickness is used as a reference. The procedure involves recording an X-ray spectrum from the reference film for each session of acquisitions on real specimens. There is no need to measure the beam current; the current only needs to be stable for the duration of the session. A new reference standard with a large (1 mm x 1 mm) area of uniform thickness of 100 nm silicon nitride is used to reveal regions of X-ray detector occlusion that would give misleading results for any X-ray method that measures thickness. Unlike previous methods, the new X-ray method does not require an accurate beam current monitor but delivers equivalent accuracy in mass thickness measurement. Quantitative compositional results are also automatically corrected for specimen self-absorption. The new method is tested using a wedge specimen of Inconel 600 that is used to calibrate the high angle angular dark field (HAADF) signal to provide a thickness reference and results are compared with electron energy-loss spectrometry (EELS) measurements. For the new X-ray method, element composition results are consistent with the expected composition for the alloy and the mass thickness measurement is shown to provide an accurate alternative to EELS for thickness determination in TEM without the uncertainty associated with mean free path estimates.

  8. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  9. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  10. Abstracts of the 8th Conference on total reflection x-ray fluorescence analysis and related methods

    International Nuclear Information System (INIS)

    Wobrauschek, P.

    2000-01-01

    The 8. conference on total reflection x-ray fluorescence analysis and related methods held from 25.9 to 29.9.2000 contains 79 abstracts about x-ray fluorescence analysis (XRFA) as a powerful tool used for industrial production, geological prospecting and for environmental control. Total reflection x-ray fluorescence spectroscopy is also a tool used for chemical analysis in medicine, industry and research. (E.B.)

  11. Development of X-ray and ion diagnostic methods for plasma focus research

    International Nuclear Information System (INIS)

    Sadowski, M.

    1986-12-01

    A review of experimental methods used for investigation of X-rays and ion-beams emmited from plasma focus facilities is presented. The research program has been realized at the Institute for Nuclear Studies in Swierk and at the Institut fuer Plasmaforschung in Stuttgart, within the frames of an international co-operation. The studies on ion emission from different PF facilities are reviewed. The application of CN-films with Al-filters and of different ion-pinhole cameras is described. The use of a Thomson mass-spectrometer adopted for plasma studies is presented. The time-resolved measurements combined with a simultaneous mass- and energy-analysis of the ion beams are also described. The most important results of these studies are summarized. Particular attention is also paid to the studies of the X-ray emission. The use of stereoscopic sets of vacuum pinhole cameras with thin Be-filters is described. The application of X-ray pinhole cameras equipped with miniature scintillators for time-resolved measurements is also presented. The most important results of the X-ray emission studies are summarized. 35 refs., 12 figs. (author)

  12. Assessment of a synchrotron X-ray method for quantitative analysis of calcium hydroxide

    International Nuclear Information System (INIS)

    Williams, P. Jason; Biernacki, Joseph J.; Bai Jianming; Rawn, Claudia J.

    2003-01-01

    Thermogravimetric analysis (TGA) and quantitative X-ray diffraction (QXRD) are widely used to determine the calcium hydroxide (CH) content in cementitious systems containing blends of Portland cement, fly ash, blast furnace slag, silica fume and other pozzolanic and hydraulic materials. These techniques, however, are destructive to cement samples and subject to various forms of error. While precise weight losses can be measured by TGA, extracting information from samples with multiple overlapping thermal events is difficult. And, however, while QXRD can offer easier deconvolution, the accuracy for components below about 5 wt.% is typically poor when a laboratory X-ray source is used. Furthermore, the destructive nature of both techniques prevents using them to study the in situ hydration of a single contiguous sample for kinetic analysis. In an attempt to overcome these problems, the present research evaluated the use of synchrotron X-rays for quantitative analysis of CH. A synchrotron X-ray source was used to develop calibration data for quantification of the amount of CH in mixtures with fly ash. These data were compared to conventional laboratory XRD data for like samples. While both methods were found to offer good quantification, synchrotron XRD (SXRD) provided a broader range of detectability and higher accuracy than laboratory diffraction and removed the subjectivity as compared to TGA analysis. Further, the sealed glass capillaries used with the synchrotron source provided a nondestructive closed, in situ environment for tracking hydrating specimens from zero to any desired age

  13. Diffractometric method for obtaining of x-ray diffraction patterns of transplutonium element compounds

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.; Aleksandrov, B.M.; Baranov, Yu.I.; Golubev, V.A.; Nikolaev, V.B.

    1986-01-01

    Method allowing to carry out X-ray radiographic investigations of powders of high radioactive α-sources (transuranium and transplutonium compounds) by the diffractometric method have been developed. The method is tested for three americium compounds crystallizing in different syngonies - dioxide, formiate, oxalate. The substance quantity necessary for analysis is 0.5-1 mg. The investigations can be carried out with diffractometers of general purpose of DRON-UMI and DRON-20 types

  14. Applications of the Warren-Averbach method of X-ray diffraction line profile analysis

    International Nuclear Information System (INIS)

    Ichikawa, Rodrigo Uchida

    2013-01-01

    The objective of this work was to develop and implement a methodology of X-ray Line Profile Analysis (XLPA) for the study and determination of the mean crystallite sizes and microstrains in materials. A computer program was developed to speed up the treatment of diffraction peaks and perform the deconvolution utilizing the Stokes method to correct the instrumental contribution in the X-ray diffraction measurements. The XLPA methods used were the Scherrer, Williamson-Hall and Single-Line methods, which can be called real space methods, and the Fourier space method of Warren-Averbach. Furthermore, considering a mathematical modelling it was possible to calculate the crystallite size distribution, considering the log-normal distribution and spherical crystallites. It was possible to demonstrate the proposed theory can provide reliable results evaluating a dispersion parameter. The methodologies described above were applied in two distinct materials: in the alloy Zircaloy-4 and in ZnO. (author)

  15. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum

    Directory of Open Access Journals (Sweden)

    Pan Liu

    2017-05-01

    Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  16. Long-term storage method for soft X-ray irradiated 'Hyuganatsu' pollen

    International Nuclear Information System (INIS)

    Yano, S.; Tanaka, M.; Ohara, N.

    2008-01-01

    The long-term storage conditions for 'Hyuganatsu ' pollen that had been irradiated with soft X-rays was examined. This study, was aimed at production of 'Tosa-buntan' without formation of nuclear fruit. 1. We evaluated the germination rate of pollen that had been irradiated with soft X-ray (500 or 1,000 Gy) and stored at 3 deg C, -20 deg C, and -40 deg C. The germination rate was the same as that of unirradiated pollen, even after storage for 1 year. Soft X-ray irradiation did not influence the storage attributes of pollen. 2. In unirradiated pollen and pollen that had been irradiated with soft X-ray (500 or 1,000 Gy), temperature conditions necessary for storing from 3 months to 1 year were -20 deg C or less, and pollen stored at -40 deg C had a higher germination rate after 1 year. 3. The germination rate was 1% or less in 4 months if silica gel was sealed into a gas barrier bag with 1,000 Gy-irradiated pollen at a rate of 10:1 (w/w). The ability to germinate was completely lost after 1 year in these conditions. 4. We evaluated the effect of sealing methods on 1,000 Gy-irradiated pollen stored at -20 deg C. There was no difference in germination rates among pollen stored in gas-barrier bags, vacuum-packaged pollen, and pollen stored with nitrogen in gas-barrier bags. Moreover, the germination rate of 750 Gy-irradiated pollen stored at -20 deg C decreased from 3 months onwards when pollen was stored with a free-oxygen absorber (Ageless ZP). 5. Pollen that was treated with acetone before or after soft X-ray irradiation (750 Gy) withstood long-term storage of 1 year. Long-term storage was possible if pollen was stored at -20 deg C, as is the case for rough pollen

  17. Envelope method for background elimination from X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Monakhov, V.V.; Naumenko, P.A.; Chashinskaya, O.A.

    2006-01-01

    The influence of the background noise caused by Bremsstrahlung on the accuracy of the envelope method at x-ray fluorescence spectra processing is studied. This is carried out by the example of model spectra at different forms of Bremsstrahlung noise as well as at the presence of background noise in spectra. The interpolation by parabolic splines is used for the estimation of the error of the envelope method for the elimination of continuos background noise. It is found out that the error of the proposed method constitutes decimal parts of percent. It is shown that the envelope method is the effective technique for the elimination of the continuous Bremsstrahlung from x-ray fluorescence spectra of the first order [ru

  18. Residual stress measurement by X-ray diffraction with the Gaussian curve method and its automation

    International Nuclear Information System (INIS)

    Kurita, M.

    1987-01-01

    X-ray technique with the Gaussian curve method and its automation are described for rapid and nondestructive measurement of residual stress. A simplified equation for measuring the stress by the Gaussian curve method is derived because in its previous form this method required laborious calculation. The residual stress can be measured in a few minutes, depending on materials, using an automated X-ray stress analyzer with a microcomputer which was developed in the laboratory. The residual stress distribution of a partially induction hardened and tempered (at 280 0 C) steel bar was measured with the Gaussian curve method. A sharp residual tensile stress peak of 182 MPa appeared right outside the hardened region at which fatigue failure is liable to occur

  19. Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method

    International Nuclear Information System (INIS)

    Prandel, L.V.; Saab, S.C.; Brinatti, A.M.; Giarola, N.F.B.; Leite, W.C.; Cassaro, F.A.M.

    2014-01-01

    Diffraction and spectroscopic techniques have been shown to be suitable for obtaining physical and mineralogical properties in polycrystalline soil samples, and also in their precursor compounds. For instance, the X-ray fluorescence (XRF) spectroscopy allows obtaining the elemental composition of an investigated sample, while the X-ray diffraction (XRD) technique permits obtaining qualitative and quantitative composition of the soil minerals through the Rietveld method (RM). In this study Yellow Latosol (Oxisol), Yellow Argisol (Ultisol) and Gray Argisol (Ultisol) soil samples, classified as “hardsetting soils”, extracted from areas located at Northeast and Southeast of Brazilian coast were investigated. The soils and their fractions were analyzed in an EDX-700 and an XRD-6000 (Cu K α radiation). XRF results indicate high percentages of Si and Al, and small percentage of Fe and Ti in the investigated samples. The DRX data and RM indicate that there was a predominance of kaolinite and halloysite minerals (kaolin group minerals) in the clay fractions, which are presumably responsible for the formation of kaolinitic plasma in these soils. Also, the obtained results showed that the XRF, XRD techniques and RM were very helpful for investigating the mineralogical composition of a hardsetting soil. - Highlights: ► Elemental composition of soil samples through X-Ray fluorescence. ► Mineralogical quantification through X-ray diffraction and Rietveld method. ► Oxisol and Ultisol, Brazil ‘Barreiras’ formation. ► High amounts of Si and Al oxides and low amounts of Fe and Ti oxides. ► Predominance of kaolinite in the clay fraction

  20. Synchrotron x-ray methods in studies of thin organic film structure

    International Nuclear Information System (INIS)

    Gentle, I.

    2002-01-01

    Full text: In recent years, the study of the structures of organic films as thin as a single monolayer has been revolutionized by methods that take advantage of the characteristics of synchrotron radiation. In particular, the methods of grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity have led to a number of valuable insights into structural aspects of thin films at molecular resolution. Our group has been studying films formed at the air/water interface as insoluble monolayers and subsequently transferred to solid substrates using either the vertical (Langmuir-Blodgett) or horizontal (Langmuir-Schaeffer) methods. The main aim of these experiments is to exert control over film structure in the direction parallel to the substrate surface. This is highly desirable in order to design devices that exploit the optical and electrooptical properties of functional materials, but is difficult to do. By varying the chemical structure of the film materials and controlling deposition conditions a degree of control is possible, but only using synchrotron methods can it be easily verified. We have also developed a novel method of rapidly collecting data from GIXD measurements by the application of area detection (imaging plates), which has made possible measurements of dynamic processes such as in-situ annealing. Such measurements are not possible using traditional scanning methods. One area of current interest is films composed of porphyrins as functional materials, either alone or as mixed films with fatty acids. We have been investigating ways of assembling porphyrins in such a way as to overcome the tendency to aggregate, and to produce patterning and ordered structures in the plane of the interface. Examples will be given of how film composition and deposition method affects the final structure, and of how X-ray methods can be used to elucidate both the structures and the mechanisms. Copyright (2002) Australian X-ray Analytical Association Inc

  1. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  2. Method and multichannel equipment for chemical analysis by X-ray emission

    International Nuclear Information System (INIS)

    Bacso, J.; Horkay, Gy.; Kalinka, G.; Kertesz, Zs.; Kiss Varga, M.; Lakatos, T.; Mathe, Gy.; Paal, A.; Sulik, B.

    1978-01-01

    In the patent a simple method and an apparatus are described for chemical analysis based on X-ray emission generated by irradiation. The concentrations of pre-selected elements can be determined easily by this method using an equipment containing microprocessor. The number of channels and the elements to be determined can be modified by a simple change in the program. (Sz.J.)

  3. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  4. Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

    International Nuclear Information System (INIS)

    Chaparian, A.; Oghabian, M. A.; Changizi, V.

    2009-01-01

    Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo codes are the best option for radiation simulation: however, one permanent defect with Monte Carlo codes has been the lack of a sufficient physical model for coherent (Rayleigh) scattering, including molecular interference effects. Materials and Methods: It was decided to obtain molecular interference functions of coherent X-ray scattering for normal breast tissues by combination of modeling and experimental methods. A Monte Carlo simulation program was written to simulate the angular distribution of scattered photons for the normal breast tissue samples. Moreover, experimental diffraction patterns of these tissues were measured by means of energy dispersive X-ray diffraction method. The simulation and experimental data were used to obtain a tabulation of molecular interference functions for breast tissues. Results: With this study a tabulation of molecular interference functions for normal breast tissues Was prepared to facilitate the simulation diffraction patterns of the tissues without any experimental. Conclusion: The method may lead to design new systems for early detection of breast cancer.

  5. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  6. Temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.; Hing, F.S.

    1987-01-01

    A method that enables temperature-composition phase diagram construction at unprecedented rates is described and evaluated. The method involves establishing a known temperature gradient along the length of a metal rod. Samples of different compositions contained in long, thin-walled capillaries are positioned lengthwise on the rod and equilibrated such that the temperature gradient is communicated into the sample. The sample is then moved through a focused, monochromatic synchrotron-derived x-ray beam and the image-intensified diffraction pattern from the sample is recorded on videotape continuously in live-time as a function of position and, thus, temperature. The temperature at which the diffraction pattern changes corresponds to a phase boundary, and the phase(s) existing (coexisting) on either side of the boundary can be identified on the basis of the diffraction pattern. Repeating the measurement on samples covering the entire composition range completes the phase diagram. These additional samples can be conveniently placed at different locations around the perimeter of the cylindrical rod and rotated into position for diffraction measurement. Temperature-composition phase diagrams for the fully hydrated binary mixtures, dimyristoylphosphatidylcholine (DMPC)/dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE)/DPPC, have been constructed using the new temperature gradient method. They agree well with and extend the results obtained by other techniques. In the DPPE/DPPC system structural parameters as a function of temperature in the various phases including the subgel phase are reported. The potential limitations of this steady-state method are discussed

  7. A NEW METHOD TO QUANTIFY X-RAY SUBSTRUCTURES IN CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-Santos, Felipe; Lima Neto, Gastao B.; Lagana, Tatiana F. [Departamento de Astronomia, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Geofisica e Ciencias Atmosfericas, Rua do Matao 1226, Cidade Universitaria, 05508-090 Sao Paulo, SP (Brazil)

    2012-02-20

    We present a new method to quantify substructures in clusters of galaxies, based on the analysis of the intensity of structures. This analysis is done in a residual image that is the result of the subtraction of a surface brightness model, obtained by fitting a two-dimensional analytical model ({beta}-model or Sersic profile) with elliptical symmetry, from the X-ray image. Our method is applied to 34 clusters observed by the Chandra Space Telescope that are in the redshift range z in [0.02, 0.2] and have a signal-to-noise ratio (S/N) greater than 100. We present the calibration of the method and the relations between the substructure level with physical quantities, such as the mass, X-ray luminosity, temperature, and cluster redshift. We use our method to separate the clusters in two sub-samples of high- and low-substructure levels. We conclude, using Monte Carlo simulations, that the method recuperates very well the true amount of substructure for small angular core radii clusters (with respect to the whole image size) and good S/N observations. We find no evidence of correlation between the substructure level and physical properties of the clusters such as gas temperature, X-ray luminosity, and redshift; however, analysis suggest a trend between the substructure level and cluster mass. The scaling relations for the two sub-samples (high- and low-substructure level clusters) are different (they present an offset, i.e., given a fixed mass or temperature, low-substructure clusters tend to be more X-ray luminous), which is an important result for cosmological tests using the mass-luminosity relation to obtain the cluster mass function, since they rely on the assumption that clusters do not present different scaling relations according to their dynamical state.

  8. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-05-15

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  9. X-ray microprobe analysis of platelets. Principles, methods and review of the literature.

    Science.gov (United States)

    Yarom, R

    1983-01-01

    Platelets are well suited to X-ray microanalysis as there is no need for chemical fixation or sectioning, and the concentrations of calcium and phosphorus are above 10(-3). The principles of the technique, the methods of specimen preparation, instrumental conditions during analysis and ways of quantitation are described. This is followed by a review of published reports and a brief summary of the author's own work in the field.

  10. New applications of elemental analysis methods using X-rays at the INPE Cyclotron

    International Nuclear Information System (INIS)

    Constantinescu, B.; Constantin, F.; Dima, S.; Plostinaru, D.; Popa-Simil, L.

    1990-01-01

    Some results in various samples elemental analysis using PIXE(Particle Induced X-ray Emission) method at INPE U-120 Cyclotron are presented. The main purpose of the research was the determination of metal concentration (Ca,Cr,Mn,Fe,Ni,Cu,Zn) in drug industry materials and products, some tree seeds as environmental pollution indicator, mineral oil and gasoline used in mechanical engineering, cooling water for oil industry equipment. (Author)

  11. Methods for deconvoluting and interpreting complex gamma- and x-ray spectral regions

    International Nuclear Information System (INIS)

    Gunnink, R.

    1983-06-01

    Germanium and silicon detectors are now widely used for the detection and measurement of x and gamma radiation. However, some analysis situations and spectral regions have heretofore been too complex to deconvolute and interpret by techniques in general use. One example is the L x-ray spectrum of an element taken with a Ge or Si detector. This paper describes some new tools and methods that were developed to analyze complex spectral regions; they are illustrated with examples

  12. Determination of calcium and iron in limestone by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Sovtsova, M.K.

    1977-01-01

    The results of determining calcium and iron content in limestone by X-ray fluorescence method are described. The 109 Cd isotape was chosen as a source for excitation, as it permited to reduce the concentration degeneration in the range of large Ca contents due to the larger energy of the primary radiation. The root-mean-square deviation from the data of chemical analysis was +-0.02%FeO and +-0.22%CaO

  13. The comparative study of contents of zinc and lead in ore samples of Namtu-Bawdwin Mine by wet analysis, X-ray fluorescence and X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw-Soe,

    1990-05-01

    Lead-zinc ores taken from Namtu-Bawdwin area had been analyzed by wet processes in the Department of Chemistry, 1984. These ore samples have been analyzed by energy dispersive X-ray fluorescence method in the Department of Physics and X-ray diffraction method is also used to determine elements of lead and zinc compounds in these ore samples in the University`s Research Centre. In brief, we study comparatively the contents of lead and zinc and their compounds using the methods of wet processes, X-ray fluorescence and X-ray diffraction. (author).

  14. Expanded image database of pistachio x-ray images and classification by conventional methods

    Science.gov (United States)

    Keagy, Pamela M.; Schatzki, Thomas F.; Le, Lan Chau; Casasent, David P.; Weber, David

    1996-12-01

    In order to develop sorting methods for insect damaged pistachio nuts, a large data set of pistachio x-ray images (6,759 nuts) was created. Both film and linescan sensor images were acquired, nuts dissected and internal conditions coded using the U.S. Grade standards and definitions for pistachios. A subset of 1199 good and 686 insect damaged nuts was used to calculate and test discriminant functions. Statistical parameters of image histograms were evaluated for inclusion by forward stepwise discrimination. Using three variables in the discriminant function, 89% of test set nuts were correctly identified. Comparable data for 6 human subjects ranged from 67 to 92%. If the loss of good nuts is held to 1% by requiring a high probability to discard a nut as insect damaged, approximately half of the insect damage present in clean pistachio nuts may be detected and removed by x-ray inspection.

  15. Application of X-ray methods to assess grain vulnerability to damage resulting from multiple loads

    International Nuclear Information System (INIS)

    Zlobecki, A.

    1995-01-01

    The aim of the work is to describe wheat grain behavior under multiple dynamic loads with various multipliers. The experiments were conducted on Almari variety grain. Grain moisture was 11, 16, 21 and 28%. A special ram stand was used for loading the grain. The experiments were carried out using an 8 g weight, equivalent to impact energy of 4,6 x 10 -3 [J]. The X-ray method was used to assess damage. The exposure time was 8 minutes with X-ray lamp voltage equal to 15 kV. The position index was used as the measure of the damage. The investigation results were elaborated statistically. Based on the results of analysis of variance, regression analysis, the d-Duncan test and the Kolmogorov-Smirnov test, the damage number was shown to depend greatly on the number of impacts for the whole range of moisture of the grain loaded. (author)

  16. A simple method to improve the quantification accuracy of energy-dispersive X-ray microanalysis

    International Nuclear Information System (INIS)

    Walther, T

    2008-01-01

    Energy-dispersive X-ray spectroscopy in a transmission electron microscope is a standard tool for chemical microanalysis and routinely provides qualitative information on the presence of all major elements above Z=5 (boron) in a sample. Spectrum quantification relies on suitable corrections for absorption and fluorescence, in particular for thick samples and soft X-rays. A brief presentation is given of an easy way to improve quantification accuracy by evaluating the intensity ratio of two measurements acquired at different detector take-off angles. As the take-off angle determines the effective sample thickness seen by the detector this method corresponds to taking two measurements from the same position at two different thicknesses, which allows to correct absorption and fluorescence more reliably. An analytical solution for determining the depth of a feature embedded in the specimen foil is also provided.

  17. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  18. Investigation of radiation absorption and X-ray fluorescence properties of medical imaging scintillators by Monte Carlo methods

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Kandarakis, I.; Cavouras, D.; Valais, I.; Linardatos, D.; Michail, C.; David, S.; Gaitanis, A.; Nomicos, C.; Louizi, A.

    2006-01-01

    X-ray absorption and X-ray fluorescence properties of medical imaging scintillating screens were studied by Monte Carlo methods as a function of the incident photon energy and screen-coating thickness. The scintillating materials examined were Gd 2 O 2 S (GOS) Gd 2 SiO 5 (GSO) YAlO 3 (YAP), Y 3 Al 5 O 12 (YAG), LuSiO 5 (LSO), LuAlO 3 (LuAP) and ZnS. Monoenergetic photon exposures were modeled in the range from 10 to 100 keV. The corresponding ranges of coating thicknesses of the investigated scintillating screens ranged up to 200 mg cm -2 . Results indicated that X-ray absorption and X-ray fluorescence are affected by the incident photon energy and the screen's coating thickness. Regarding incident photon energy, this X-ray absorption and fluorescence was found to exhibit very intense changes near the corresponding K edge of the heaviest element in the screen's scintillating material. Regarding coating thickness, thicker screens exhibited higher X-ray absorption and X-ray fluorescence. Results also indicated that a significant fraction of the generated X-ray fluorescent quanta escape from the scintillating screen. This fraction was found to increase with screen's coating thickness. At the energy range studied, most of the incident photons were found to be absorbed via one-hit photoelectric effect. As a result, the reabsorption of scattered radiation was found to be of rather minor importance; nevertheless this was found to increase with the screen's coating thickness. Differences in X-ray absorption and X-ray fluorescence were found among the various scintillators studied. LSO scintillator was found to be the most attractive material for use in many X-ray imaging applications, exhibiting the best absorption properties in the largest part of the energy range studied. Y-based scintillators were also found to be of significant absorption performance within the low energy ranges

  19. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  20. A standardless method of quantitative ceramic analysis using X-ray powder diffraction

    International Nuclear Information System (INIS)

    Mazumdar, S.

    1999-01-01

    A new procedure using X-ray powder diffraction data for quantitative estimation of the crystalline as well as the amorphous phase in ceramics is described. Classification of the crystalline and amorphous X-ray scattering was achieved by comparison of the slopes at two successive points of the powder pattern at scattering angles at which the crystalline and amorphous phases superimpose. If the second slope exceeds the first by a stipulated value, the intensity is taken as crystalline; otherwise the scattering is considered as amorphous. Crystalline phase analysis is obtained by linear programming techniques using the concept that each observed X-ray diffraction peak has contributions from n component phases, the proportionate analysis of which is required. The method does not require the measurement of calibration data for use as an internal standard, but knowledge of the approximate crystal structure of each phase of interest in the mixture is necessary. The technique is also helpful in qualitative analysis because each suspected phase is characterized by the probability that it will be present when a reflection zone is considered in which the suspected crystalline phase could contribute. The amorphous phases are determined prior to the crystalline ones. The method is applied to ceramic materials and some results are presented. (orig.)

  1. Non-destructive investigations of Swiss museums objects with neutron and x-ray imaging methods

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Deschler, E.; Pernet, L.; Vontobel, P.

    2004-01-01

    Many objects of archaeological relevance found in Switzerland are from the Celtic and Roman era. Because of their uniqueness in most cases it is demanded to perform any investigation with such samples non-destructively. Depending on the structure and size of the objects a transmission experiment performed either with X-ray or neutron can alight inner structures, composition, defects or the principles of the manufacturing procedures. Furthermore, the treatment by conservators and restaurateurs becomes visible in many cases. This report describes some examples of such investigations. In the case of neutron investigations, beside the transmission imaging as a radiograph the three-dimensional structure was observed with a tomography technique. For X-ray radiography, the images were obtained in the same digital format because the similar experimental method (imaging plates) was applied. It becomes evident in the described examples that the combination and complementary use of both methods (neutrons and X-ray) brings insights in different aspects of the samples properties and treatment. This approach to study museums objects stored and exhibit in Switzerland can be extrapolated to other countries where these techniques are also simultaneously available in order to investigate other objects of relevance. The European network COST-G8 entitled 'Non-destructive analysis and testing of museum objects' can help to support initiatives in this direction. (author)

  2. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Science.gov (United States)

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  3. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  4. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    International Nuclear Information System (INIS)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F.; Suarez, G.; Aglietti, E.F.; Rendtorff, N.M.

    2014-01-01

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  5. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina); Suarez, G.; Aglietti, E.F.; Rendtorff, N.M., E-mail: rendtorff@cetmic.unlp.edu.ar [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Fac. de Ciencias Exactas. Dept. de Quimica

    2014-10-15

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  6. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Directory of Open Access Journals (Sweden)

    M. S. Conconi

    2014-12-01

    Full Text Available The firing transformations of traditional (clay based ceramics are of technological and archeological interest, and are usually reported qualitatively or semiquantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite, the low crystalline (metakaolinite and/or spinel type pre-mullite and glassy phases evolution of a triaxial (clay-quartz-feldspar ceramic fired in a wide temperature range between 900 and 1300 ºC. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 ºC spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and

  7. Experimental validation of a multi-energy x-ray adapted scatter separation method

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  8. Spectrum unfolding in X-ray spectrometry using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernandez, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2014-01-01

    The solution of the unfolding problem is an ever-present issue in X-ray spectrometry. The maximum entropy technique solves this problem by taking advantage of some known a priori physical information and by ensuring an outcome with only positive values. This method is implemented in MAXED (MAXimum Entropy Deconvolution), a software code contained in the package UMG (Unfolding with MAXED and GRAVEL) developed at PTB and distributed by NEA Data Bank. This package contains also the code GRAVEL (used to estimate the precision of the solution). This article introduces the new code UMESTRAT (Unfolding Maximum Entropy STRATegy) which applies a semi-automatic strategy to solve the unfolding problem by using a suitable combination of MAXED and GRAVEL for applications in X-ray spectrometry. Some examples of the use of UMESTRAT are shown, demonstrating its capability to remove detector artifacts from the measured spectrum consistently with the model used for the detector response function (DRF). - Highlights: ► A new strategy to solve the unfolding problem in X-ray spectrometry is presented. ► The presented strategy uses a suitable combination of the codes MAXED and GRAVEL. ► The applied strategy provides additional information on the Detector Response Function. ► The code UMESTRAT is developed to apply this new strategy in a semi-automatic mode

  9. A method to unfold the efficiency of gaseous detectors exposed to broad X-ray spectra

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines S. de; Lopes, Ricardo T.

    2000-01-01

    A method to obtain the efficiency of a gaseous detector exposed to broad energy X-ray spectra was developed. It consists in the de-convolution of the integrated detector response using the shapes of those spectra as a tool to unfold the aimed detector efficiency curve. For this purpose, the spectra emitted by a X-ray tube under several anode voltages, were properly characterized through measurements with a NaI(Tl) spectrometer. A Lorentz function was then fitted to each of the spectra, and their parameters expressed as a function of the anode voltage, by using polynomial and gaussian fittings. The integral of the product of each Lorentz function, by another unknown Lorentz function, expressing the detector efficiency curve, represents the response of the detector for each anode tension, e.g., each X-ray spectrum. The symbolical integration of that product, produces a general function containing the unknown parameters of the unknown efficiency curve. A non-linear fitting of this general function, to the detector response points, as experimentally obtained, generates the aimed parameters for the efficiency curve. The final detector efficiency curve is obtained after normalization procedures. (author)

  10. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  11. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    International Nuclear Information System (INIS)

    Xu, Jin; Yu, Yaming; Van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete; Connors, Alanna; Meng, Xiao-Li

    2014-01-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  12. Determinations of silicon and phosphorus in Pepperbush standard reference material by neutron activation and x-ray fluorescence methods

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Nishio, Hirofumi; Hayashi, Takeshi; Kusakabe, Toshio; Iwata, Shiro.

    1987-01-01

    Silicon and phosphorus contents in Pepperbush standard reference material were determined by neutron activation and X-ray fluorescence methods. In neutron activation analysis, β-ray spectra of 32 P produced by 31 P(n,γ) 32 P reaction on Pepperbush and standard samples were measured by a low background β-ray spectrometer. In X-ray fluorescence analysis, the standard samples were prepared by mixing the Pepperbush powder with silicon dioxide and diammonium hydrogenphosphate. Characteristic X-rays from the samples were analyzed by a wavelength dispersive X-ray fluorescence spectrometer. From the β and X-ray intensities, silicon and phosphorus contents in Pepperbush were determined to be 1840 ± 80 and 1200 ± 50 μg g -1 , respectively. (author)

  13. Final Report for X-ray Diffraction Sample Preparation Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ely, T. M. [Hanford Site (HNF), Richland, WA (United States); Meznarich, H. K. [Hanford Site (HNF), Richland, WA (United States); Valero, T. [Hanford Site (HNF), Richland, WA (United States)

    2018-01-30

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  14. Toward the standard population synthesis model of the X-ray background: Evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Yoshihiro [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Akiyama, Masayuki [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Hasinger, Günther [Institute for Astronomy, 2680 Woodlawn Drive Honolulu, HI 96822-1839 (United States); Miyaji, Takamitsu [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California (Mexico); Watson, Michael G. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-05-10

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  15. A simple method for controlling the line width of SASE X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-04-01

    This paper describes a novel single-bunch self-seeding scheme for generating highly monochromatic X-rays from a baseline XFEL undulator. A self-seeded XFEL consists of two undulators with an X-ray monochromator located between them. Previous self-seeding schemes made use of a four-crystal fixed-exit monochromator in Bragg geometry. In such monochromator the X-ray pulse acquires a cm-long path delay, which must be compensated. For a single-bunch self-seeding scheme this requires a long electron beam bypass, implying modifications of the baseline undulator configuration. To avoid this problem, a double bunch self-seeding scheme based on a special photoinjector setup was recently proposed. At variance, here we propose a new time-domain method of monochromatization exploiting a single crystal in the transmission direction, thus avoiding the problem of extra-path delay for the X-ray pulse. The method can be realized using a temporal windowing technique, requiring a magnetic delay for the electron bunch only. When the incident X-ray beam satisfies the Bragg diffraction condition, multiple scattering takes place and the transmittance spectrum in the crystal exhibits an absorption resonance with a narrow linewidth. Then, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. The radiation power within this wake is much larger than the shot noise power. At the entrance of the second undulator, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch, and amplified up to saturation level. The proposed setup is extremely simple and composed of as few as two simple elements. These are the crystal and the short magnetic chicane, which accomplishes three tasks by itself. It creates an offset for crystal installation, it removes the electron micro-bunching produced in the first undulator, and it acts as a delay line for temporal windowing. Using a single crystal installed within a short magnetic

  16. Selection of polychlorinated plastics in plastic waste by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Kumasaki, H.; Shinozaki, Y.

    1979-01-01

    The X-ray fluorescence method using a small source of 55 Fe was examined and found to be applicable for the selection of polychlorinated plastics from plastic waste in model areas in Tokyo designated for investigating their content in the waste. The weight ratios of soft and hard polychlorinated plastics to the total plastic waste estimated by this method were found to be 15.6% and 0.29% respectively. These values agree well with the results obtained with the Beilstein method. (author)

  17. X-ray diagnosis of complications of duodenum ulcer diseases

    International Nuclear Information System (INIS)

    Momot, N.V.

    1989-01-01

    To standardize the methods of X-ray examination, improvement and systematization of X-ray semiotics of stenosing and penetrating duodenum ulcers 157 patients are examined. X-ray examination includes traditional composition, polyprojectional examination using double contrasting with differential application of pharmaceuticals. It is shown that application of complex methods X-ray examination and adequate interpretation of examination results facilitate early diagnosis of duodenum ulcer disease complications. 8 refs.; 3 figs

  18. Development and exploitation of the slit method for the characterization of x-ray screen-film combinations

    International Nuclear Information System (INIS)

    Hoeschen, D.

    1987-01-01

    For the determination of the modulation transfer function (MTF) of screen-film combinations which are used in medical x-ray diagnostics a measuring method has been developed: the screen-film combination is exposed to x-rays behind a thin slit and the modulation transfer function is calculated from the resulting rather broad slit images on the film. After solving many technical and photographic problems, the slit method provides high precision in the MTF determination. The only objection against this method is the necessary high dose variation which has to be provided by the x-ray machine

  19. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  20. A practical material decomposition method for x-ray dual spectral computed tomography.

    Science.gov (United States)

    Hu, Jingjing; Zhao, Xing

    2016-03-17

    X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements.

  1. Quantitative analysis of scaling error compensation methods in dimensional X-ray computed tomography

    DEFF Research Database (Denmark)

    Müller, P.; Hiller, Jochen; Dai, Y.

    2015-01-01

    X-ray Computed Tomography (CT) has become an important technology for quality control of industrial components. As with other technologies, e.g., tactile coordinate measurements or optical measurements, CT is influenced by numerous quantities which may have negative impact on the accuracy...... errors of the manipulator system (magnification axis). This article also introduces a new compensation method for scaling errors using a database of reference scaling factors and discusses its advantages and disadvantages. In total, three methods for the correction of scaling errors – using the CT ball...

  2. Hard X-ray nanoimaging method using local diffraction from metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hidekazu, E-mail: htakano@sci.u-hyogo.ac.jp; Konishi, Shigeki; Shimomura, Sho; Azuma, Hiroaki; Tsusaka, Yoshiyuki; Kagoshima, Yasushi [Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2014-01-13

    A simple hard X-ray imaging method achieving a high spatial resolution is proposed. Images are obtained by scanning a metal wire through the wave field to be measured and rotating the sample to collect data for back projection calculations; the local diffraction occurring at the edges of the metal wire operates as a narrow line probe. In-line holograms of a test sample were obtained with a spatial resolution of better than 100 nm. The potential high spatial resolution of this method is shown by calculations using diffraction theory.

  3. Compound refractive X-ray lens

    International Nuclear Information System (INIS)

    Nygren, D.R.; Cahn, R.; Cederstrom, B.; Danielsson, M.; Vestlund, J.

    2000-01-01

    An apparatus and method are disclosed for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point

  4. Compound refractive X-ray lens

    Science.gov (United States)

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  5. Determination of preferential molecular orientation in porphyrin-fullerene dyad ZnDHD6ee monolayers by the X-ray standing-wave method and X-ray reflectometry

    NARCIS (Netherlands)

    Seregin, A. Y.; D' Yakova, Y. A.; Yakunin, S. N.; Makhotkin, I. A.; Alekseev, A. S.; Klechkovskaya, V. V.; Tereschenko, E. Y.; Tkachenko, N. V.; Lemmetyinen, H.; Feigin, L. A.; Kovalchuk, M. V.

    2013-01-01

    Monolayers of porphyrin-fullerene dyad molecules with zinc atoms incorporated into the porphyrin ring (ZnDHD6ee) on the surface of aqueous subphase and on Si substrates have been investigated by the X-ray standing-wave method and X-ray reflectometry. The experiments have been performed under

  6. Comparison of various filtering methods for digital X-ray image processing

    International Nuclear Information System (INIS)

    Pfluger, T.; Reinfelder, H.E.; Dorschky, K.; Oppelt, A.; Siemens A.G., Erlangen

    1987-01-01

    Three filtering methods are explained and compared that are used for border edge enhancement of digitally processed X-ray images. The filters are compared by two examples, a radiograph of the chest, and one of the knee joint. The unsharpness mask is found to yield the best compromise between edge enhancement and image noise intensifying effect, whereas the results obtained by the high-pass filter or the Wallis filter are less good for diagnostic evaluation. The filtered images better display narrow lines, structural borders and edges, and finely spotted areas, than the original radiograph, so that diagnostic evaluation is easier after image filtering. (orig.) [de

  7. New analytical method for asbestos determination in Syrian soils using X-ray diffraction

    International Nuclear Information System (INIS)

    Kassem, M.

    2009-07-01

    In this work, a standard samples have been prepared by mixing a definite quantity of soil with calculated concentration of asbestos; 1, 2, 4, 8, 10, 20, 40, 60, 80, 100% wt . The samples have been analyzed by x-ray powder diffraction using the same parameters ; 2θ between 5-90, detector step= 0.5 /30 sec. The diffraction peaks intensities have been chosen such a manner than no superposition with those of the soil. confidence levels has been used as accuracy method for error calculation of the peaks positions. (author)

  8. A method for assessing the structural shielding in diagnostic x-ray facilities

    International Nuclear Information System (INIS)

    Almeida, F.; Martinez de la Fuente, O.; Perez, C.

    1992-01-01

    The design of each X-Ray medical facility involves, in order to guarantee the optimun levels of Radiologic safety for everybody who could be exposed during the performance of the examinations the need of assessing the required shieldings for the room which contains the emiter tubes. In such sense, this paper gives a number of criteria to calculate the structural requirements for the diverse configurations which exist in Health Centres using the method proposed by NCRP in its Report 49 as a reference. (author)

  9. A novel process control method for a TT-300 E-Beam/X-Ray system

    Science.gov (United States)

    Mittendorfer, Josef; Gallnböck-Wagner, Bernhard

    2018-02-01

    This paper presents some aspects of the process control method for a TT-300 E-Beam/X-Ray system at Mediscan, Austria. The novelty of the approach is the seamless integration of routine monitoring dosimetry with process data. This allows to calculate a parametric dose for each production unit and consequently a fine grain and holistic process performance monitoring. Process performance is documented in process control charts for the analysis of individual runs as well as historic trending of runs of specific process categories over a specified time range.

  10. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  11. Application of proton-induced X-ray emission method to determination of lead content in blood

    International Nuclear Information System (INIS)

    Slominska, D.; Jarczyk, L.; Rokita, E.; Strzalkowski, A.; Losiowski, A.; Macheta, A.; Sych, M.; Moszkowicz, S.

    1979-01-01

    The proton induced X-ray emission method is applied for determination of lead content in the blood of the people exposed to contact with ethyline vapours and people working in lead-zinc works. (author)

  12. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  13. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Science.gov (United States)

    Bartle, C. M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K.

    2011-09-01

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a 10B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  14. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bartle, C.M., E-mail: m.bartle@gns.cri.nz [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5040 (New Zealand); Edgar, A.; Dixie, L.; Varoy, C. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand); Piltz, R. [Bragg Institute, ANSTO, PMB 1, Menai NSW 2234 (Australia); Buchanan, S.; Rutherford, K. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand)

    2011-09-21

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a {sup 10}B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  15. New X-ray testing methods of aerosol products for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bozydar Knyziak, Adrian, E-mail: a.knyziak@gum.gov.pl; Rzodkiewicz, Witold, E-mail: w.rzodkiewicz@gum.gov.pl; Kaczorowska, Ewa, E-mail: e.kaczorowska@gum.gov.pl; Derlacinski, Michal, E-mail: m.derlacinski@gum.gov.pl

    2017-02-01

    An amount of product in e.g. an aerosol canister is not difficult to estimate by weighing a filled can and subtracting the tare of packaging. In this way, we can obtain the net weight of the ingredients present in the can. Although, this does not indicate the volumetric content. Therefore, in the paper, the fundamental (the weight method and given by FEICA) and new methods (given by authors) related to the determination of the volumetric content of canister filled with aeorosol products are presented. The new methods are based on direct digital radiography (DR) using X-ray radiation. For the needs of new methods, the X-ray CCD-DR imaging system was built and developed in our Laboratory in Department of Radiation and Vibration at the Central Office of Measures. For comparison purposes, with regard to the volumetric content, a lot of metal cans of capacities 140, 185, 450, 700 ml were inspected. In future, computed tomography (CT) for industrial radiography in our laboratory will be used. Currently, an algorithm for CT is being tested. It will give us possibility for very precise measurements to determine volumetric content of examined canisters.

  16. Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods

    Directory of Open Access Journals (Sweden)

    Christian eDavid

    2015-07-01

    Full Text Available Several methods are compared for the detection of moving capillary fronts in spontaneous imbibition experiments where water invades dry porous rocks. These methods are: (i the continuous monitoring of the mass increase during imbibition, (ii the imaging of the water front motion using X-ray CT scanning, (iii the use of ultrasonic measurements allowing the detection of velocity, amplitude and spectral content of the propagating elastic waves, and (iv the combined use of X-ray CT scanning and ultrasonic monitoring. It is shown that the properties of capillary fronts depend on the heterogeneity of the rocks, and that the information derived from each method on the dynamics of capillary motion can be significantly different. One important result from the direct comparison of the moving capillary front position and the P wave attributes is that the wave amplitude is strongly impacted before the capillary front reaches the sensors, in contrast with the velocity change which is concomitant with the fluid front arrival in the sensors plane.

  17. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  18. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    International Nuclear Information System (INIS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S

    2006-01-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process

  19. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-dong, Daejeon (Korea, Republic of)

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process.

  20. Reconstruction of X-rays spectra of clinical linear accelerators using the generalized simulated annealing method

    International Nuclear Information System (INIS)

    Manrique, John Peter O.; Costa, Alessandro M.

    2016-01-01

    The spectral distribution of megavoltage X-rays used in radiotherapy departments is a fundamental quantity from which, in principle, all relevant information required for radiotherapy treatments can be determined. To calculate the dose delivered to the patient who make radiation therapy, are used treatment planning systems (TPS), which make use of convolution and superposition algorithms and which requires prior knowledge of the photon fluence spectrum to perform the calculation of three-dimensional doses and thus ensure better accuracy in the tumor control probabilities preserving the normal tissue complication probabilities low. In this work we have obtained the photon fluence spectrum of X-ray of the SIEMENS ONCOR linear accelerator of 6 MV, using an character-inverse method to the reconstruction of the spectra of photons from transmission curves measured for different thicknesses of aluminum; the method used for reconstruction of the spectra is a stochastic technique known as generalized simulated annealing (GSA), based on the work of quasi-equilibrium statistic of Tsallis. For the validation of the reconstructed spectra we calculated the curve of percentage depth dose (PDD) for energy of 6 MV, using Monte Carlo simulation with Penelope code, and from the PDD then calculate the beam quality index TPR_2_0_/_1_0. (author)

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  3. Importance of X-ray diagnosis of colorectal polyps as compared to the endoscopic method

    International Nuclear Information System (INIS)

    Lass, B.

    1980-01-01

    The importance of X-ray diagnosis of colorectal polyps as compared with endoscopy is assessed on the basis of the literature and the authoress's own investigations. These make clean that the double contrast method attains a degree of accuracy approaching that of endoscopy. Some investigations by the authoress in 98 patients show that the procedure permits to recognize 72% of polyps under 1 cm of length and 81% above if the patients are well prepared. 4 out of 129 polyps were not detected by endoscopy. Coloscopy is not an infallible method. Both methods should not be viewed as rivalling but as complementary ones. Knowledge of the limitations and methods, and contant endeavour to combine all methods will entail the best diagnostic results. (orig.) [de

  4. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    International Nuclear Information System (INIS)

    Souza Neto, Narcizo

    2016-01-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10 14 photons/sec with beam size down to 0.5 x 0.5 μm 2 ) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  5. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    Energy Technology Data Exchange (ETDEWEB)

    Souza Neto, Narcizo, E-mail: narcizo.souza@lnls.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil)

    2016-07-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10{sup 14} photons/sec with beam size down to 0.5 x 0.5 μm{sup 2}) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  6. Heavy metals analysis in fishes by the X-ray fluorescence method

    International Nuclear Information System (INIS)

    Perez Novara, Ana Ma.

    1986-04-01

    Among the sources of contamination in human beings we find ingestion of heavy metals. As it is common practice to pour industrial wastes in waters where fishes feed, some toxic elements present in water may pass to human beings through ingestion. It is therefore important to determine the concentrations of heavy metals present in fishes, mainly in those living in waters close to industrial zones or villages. Concentrations of heavy metals in tissue of fishes amount to ppm, hence making necessary the use of very sensitive analytical techniques which do not require a too complex preparation of the sample in order to avoid the loss or contamination of interesting elements of analysis while handling them, thus falsifying the results. The X-Ray Fluorescence method covers these requirements and is not destructive nor multi-elemental. The development of the technique of element analysis in fishes by X-Ray Fluorescence comprised several aspects. from sampling and storage to quantification, specially stressing the preparation of samples. The work was carried out with a Si-Li detector/monitor for solid state and associated electronic equipment. Cd-109 and Pu-238 sources were used to produce excitation, detection limits near 1 ppm were obtained in the majority of elements the technique attained for the analysis of this kind of samples fulfills the celerity, precision, accuracy, and sensitivity requirements. (author)

  7. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); King, Glen C. (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  8. Direct method of deconvolution. Application to the interpretation of X ray diffraction line profiles

    International Nuclear Information System (INIS)

    Louer, Daniel

    1969-01-01

    In the first parts of this research thesis, the author reports the development of an original method of correction of X ray profiles, and the comparison of the different correction schemes within the frame of the analysis of a specific aberration of the diffractometer: the receiver slot. Based on corrected profiles, the author applied the different methods leading to the calculation of the dimensions and shape of particles which form a hydroxide nickel powder. He reports the physical-chemical analysis of nickel and zinc basic nitrates. Although some basic salts lead to widened X diffraction profiles the interpretation of which remains to be made, this work remained limited to the application of the described methods to the nickel hydroxide sample resulting from an extended hydrolysis of nickel basic nitrates

  9. Basis material decomposition method for material discrimination with a new spectrometric X-ray imaging detector

    Science.gov (United States)

    Brambilla, A.; Gorecki, A.; Potop, A.; Paulus, C.; Verger, L.

    2017-08-01

    Energy sensitive photon counting X-ray detectors provide energy dependent information which can be exploited for material identification. The attenuation of an X-ray beam as a function of energy depends on the effective atomic number Zeff and the density. However, the measured attenuation is degraded by the imperfections of the detector response such as charge sharing or pile-up. These imperfections lead to non-linearities that limit the benefits of energy resolved imaging. This work aims to implement a basis material decomposition method which overcomes these problems. Basis material decomposition is based on the fact that the attenuation of any material or complex object can be accurately reproduced by a combination of equivalent thicknesses of basis materials. Our method is based on a calibration phase to learn the response of the detector for different combinations of thicknesses of the basis materials. The decomposition algorithm finds the thicknesses of basis material whose spectrum is closest to the measurement, using a maximum likelihood criterion assuming a Poisson law distribution of photon counts for each energy bin. The method was used with a ME100 linear array spectrometric X-ray imager to decompose different plastic materials on a Polyethylene and Polyvinyl Chloride base. The resulting equivalent thicknesses were used to estimate the effective atomic number Zeff. The results are in good agreement with the theoretical Zeff, regardless of the plastic sample thickness. The linear behaviour of the equivalent lengths makes it possible to process overlapped materials. Moreover, the method was tested with a 3 materials base by adding gadolinium, whose K-edge is not taken into account by the other two materials. The proposed method has the advantage that it can be used with any number of energy channels, taking full advantage of the high energy resolution of the ME100 detector. Although in principle two channels are sufficient, experimental measurements show

  10. Feasibility of using continuous X-ray to simulate cable response under X-ray environment

    International Nuclear Information System (INIS)

    Ma Liang; Zhou Hui; Cheng Yinhui; Wu Wei; Li Jinxi; Zhao Mo; Guo Jinghai

    2014-01-01

    The mechanism and simulating method of cable response induced by X-ray were researched, and the relationship of cable response irradiated by continuous and pulsed X-ray was analyzed. A one-dimension model of strip line irradiation response of X-ray was given, which includes the gap between cable shield and dielectric, and induced conductivity in cable dielectric. The calculation result using the model indicates that the cable responses of continuous and rectangular-pulsed X-ray have the similar current waveform and the same gap voltages. Therefore, continuous X-ray can be used to research some cable responses of pulsed X-ray irradiation under the mechanism described in the one-dimension model. (authors)

  11. Qualitative Evaluation of Digital Hand X-rays is Not a Reliable Method to Assess Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    AndrewJ. Miller

    2017-01-01

    Full Text Available Object: The gold standard for evaluating bone mineral density is dual energy x-ray absorptiometry (DEXA.  Prior studies have shown poor reliability using analog wrist X-rays in diagnosing osteoporosis. Our goal was to investigate if there was improved diagnostic value to visual assessment of digital hand X-rays in osteoporosis screening. We hypothesized that similar to analog counterparts, digital hand X-rays have poor correlation and reliability in determining bone mineral density (BMD relative to DEXA.Methods: We prospectively evaluated female patients older than 65 years who presented to our hand clinic with digital hand and wrist X-rays as part of their evaluation over six months. Patients who had a fracture and were without DEXA scans within the past two years were excluded. Five fellowship-trained hand surgeons, blinded to DEXA T-scores, evaluated the x-rays over two assessments separated by four weeks and classified them as osteoporotic, osteopenic, or normal BMD.  Accuracy relative to DEXA T-score, interobserver and intraobserver rates were calculated.Results: Thirty four patients met the inclusion criteria and a total of 340 x-rays reviews were performed.  The assessments were correct in 169 cases (49% as compared to the DEXA T-scores. A mean weighted kappa coefficient of agreement between observers was 0.29 (range 0.02-0.41 reflecting a fair agreement. The first and second assessment for all five physicians was 0.46 (range 0.19-0.78 reflecting a moderate agreement.  Grouping osteoporosis and osteopenia together compared to normal, the accuracy, interobserver and intraobserver rates increased to 63%, 0.42 and 0.54 respectively.Conclusion: Abnormally low BMD is a common occurrence in patients treated for upper extremity disorders. There is poor accuracy relative to DEXA scan and only fair agreement in diagnosing osteoporosis using visual assessments of digital x-rays.

  12. A software-based x-ray scatter correction method for breast tomosynthesis

    International Nuclear Information System (INIS)

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients. Methods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF). Results: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01). The IMS of the masses in the 5 cm thick phantom also improved by 15%-29%, while the IMS of the masses in the 8 cm thick phantom improved by 26%-62% (p < 0.01). Some embedded microcalcifications in the tomosynthesis phantoms were visible only in the scatter

  13. Validation of the X-ray fluorescence analysis method for coffee grain testing

    International Nuclear Information System (INIS)

    Samaniego, Carlos

    1992-01-01

    Trace elements were qualitatively and quantitatively searched for in coffee samples for analysis were prepared in tablet from before irradiation, this latter having been performed with a Cd 109 radioactive source and with an X-ray tube; with ZnO as the secondary target. Several spectra were obtained. The areas of the spectral peaks were adjusted with the aid of AXIL computer program wich is based on the least squares method. Further on, elemental concentrations were determined by means of sensitivity and regression curves (intensity vs. concentration), methods that demanded the use of pertinent standards, concentration in organic standard certified samples furthermore, atomic absorption was also used to perform comparative checks on results

  14. A General Method for Motion Compensation in X-ray Computed Tomography

    CERN Document Server

    AUTHOR|(CDS)2067162; Dosanjh, Manjit; Soleimani, Manuchehr

    2017-01-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D X-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  15. A general method for motion compensation in x-ray computed tomography.

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-07-24

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  16. A general method for motion compensation in x-ray computed tomography

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-08-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  17. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation

    Science.gov (United States)

    Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.

    1992-05-01

    Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  19. Reconstruction of computed tomographic image from a few x-ray projections by means of accelerative gradient method

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1982-01-01

    A method of the reconstruction of computed tomographic images was proposed to reduce the exposure dose to X-ray. The method is the small number of X-ray projection method by accelerative gradient method. The procedures of computation are described. The algorithm of these procedures is simple, the convergence of the computation is fast, and the required memory capacity is small. Numerical simulation was carried out to conform the validity of this method. A sample of simple shape was considered, projection data were given, and the images were reconstructed from 6 views. Good results were obtained, and the method is considered to be useful. (Kato, T.)

  20. Simulation of AZ-PN100 resist pattern fluctuation in X-ray lithography, including synchrotron beam polarization

    International Nuclear Information System (INIS)

    Scheckler, E.W.; Ogawa, Taro; Tanaka, Toshihiko; Takeda, Eiji; Oizumi, Hiroaki.

    1993-01-01

    A new simulation model for nanometer-scale pattern fluctuation in X-ray lithography is presented and applied to a study of AZ-PN100 negative chemical amplification resist. The exposure simulation considers polarized photons from a synchrotron radiation (SR) source. Monte Carlo simulation of Auger and photoelectron generation is followed by electron scattering simulation to determine the deposited energy distribution at the nanometer scale, including beam polarization effects. An acid-catalyst random walk model simulates the post-exposure bake (PEB) step. Fourier transform infrared (FTIR) spectroscopy and developed resist thickness measurements are used to fit PEB and rate models for AZ-PN100. A polymer removal model for development simulation predicts the macroscopic resist shape and pattern roughness. The simulated 3σ linewidth variation is in excess of 24 nm. Simulation also shows a detrimental effect if the beam polarization is perpendicular to the line. Simulation assuming a theoretical ideal exposure yields a 50 nm minimum line for standard process conditions. (author)

  1. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  2. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  3. The two-wave X-ray field calculated by means of integral-equation methods

    International Nuclear Information System (INIS)

    Bremer, J.

    1984-01-01

    The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)

  4. Determining sulfur in metallurgical coke by the X-ray fluorescent method

    Energy Technology Data Exchange (ETDEWEB)

    Sofilic, T.; Kesic-Racan, M.; Sindler, M.; Sokolean, D.

    1979-01-01

    A method is described of X-ray fluorescent analysis for current determination of sulfur in the concentration range of 0.5-1.16% in metallurgical coke. To do this, the analyzed material (coke) is ground to a particle size of 200 mu and mixed in a 1:1 ratio with an organic binder (soluble starch). The mixture is briquetted in meshes of a certain size under a pressure of 25 tons/cm/sub 2/. The tablets obtained are analyzed in a Phillips spectrometer with a Cr anticathode. The presence is noted of a linear dependence between the S content and the instrument reading; the correlation factor is 0.91; the mean detection error, 0.0596.

  5. A method for the quantitative analysis of heavy elements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Souza Caillaux, Z. de

    1981-01-01

    A study of quantitative analysis methodology by X-ray fluorescence analysis is presented. With no damage to precision it makes possible an analysis of heavy elements in samples with the form and texture as they present themselves. Some binary alloys were examined such as: FeCo; CuNi; CuZn; AgCd; AgPd; AuPt e PtIr. The possibility of application of this method is based on the compromise solutIon of wave lengths and the intensity of the homologous emission and absorption edges of constituents with the quantic efficiency of the detector, the dispersion and the wave lenght resolution of crystal analyser, and the uniformity of the excitation intensity. (Author) [pt

  6. Particle induced X-ray emission and complementary nuclear methods for trace element determination; Plenary lecture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, S A.E. [Lund Univ. (Sweden). Dept. of Nuclear Physics

    1992-03-01

    In this review the state-of-the-art of particle induced X-ray emission (PIXE) methods for the determination of trace elements is described. The developmental work has mostly been carried out in nuclear physics laboratories, where accelerators are available, but now the increased interest has led to the establishment of other dedicated PIXE facilities. The reason for this interest is the versatility, high sensitivity and multi-element capability of PIXE analysis. A further very important advantage is that PIXE can be combined with the microbeam technique, which makes elemental mapping with a spatial resolution of about 1 {mu}m possible. As a technique, PIXE can also be combined with other nuclear reactions such as elastic scattering and particle-induced gamma emission, so that light elements can be determined. The usefulness of PIXE is illustrated by a number of typical applications in biology, medicine, geology, air pollution research, archaeology and the arts. (author).

  7. Accelerated gradient methods for the x-ray imaging of solar flares

    Science.gov (United States)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  8. Forensic classification of counterfeit banknote paper by X-ray fluorescence and multivariate statistical methods.

    Science.gov (United States)

    Guo, Hongling; Yin, Baohua; Zhang, Jie; Quan, Yangke; Shi, Gaojun

    2016-09-01

    Counterfeiting of banknotes is a crime and seriously harmful to economy. Examination of the paper, ink and toners used to make counterfeit banknotes can provide useful information to classify and link different cases in which the suspects use the same raw materials. In this paper, 21 paper samples of counterfeit banknotes seized from 13 cases were analyzed by wavelength dispersive X-ray fluorescence. After measuring the elemental composition in paper semi-quantitatively, the normalized weight percentage data of 10 elements were processed by multivariate statistical methods of cluster analysis and principle component analysis. All these paper samples were mainly classified into 3 groups. Nine separate cases were successfully linked. It is demonstrated that elemental composition measured by XRF is a useful way to compare and classify papers used in different cases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. A method for measuring the time structure of synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1989-08-01

    We describe a method employing a plastic scintillator coupled to a fast photomultiplier tube to generate a timing pulse from the x-ray bursts emitted from a synchrotron radiation source. This technique is useful for performing synchrotron experiments where detailed knowledge of the timing distribution is necessary, such as time resolved spectroscopy or fluorescence lifetime experiments. By digitizing the time difference between the timing signal generated on one beam crossing with the timing signal generated on the next beam crossing, the time structure of a synchrotron beam can be analyzed. Using this technique, we have investigated the single bunch time structure at the National Synchrotron Light Source (NSLS) during pilot runs in January, 1989, and found that the majority of the beam (96%) is contained in one rf bucket, while the remainder of the beam (4%) is contained in satellite rf buckets preceeding and following the main rf bucket by 19 ns. 1 ref., 4 figs

  10. [Near infrared distance sensing method for Chang'e-3 alpha particle X-ray spectrometer].

    Science.gov (United States)

    Liang, Xiao-Hua; Wu, Ming-Ye; Wang, Huan-Yu; Peng, Wen-Xi; Zhang, Cheng-Mo; Cui, Xing-Zhu; Wang, Jin-Zhou; Zhang, Jia-Yu; Yang, Jia-Wei; Fan, Rui-Rui; Gao, Min; Liu, Ya-Qing; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya

    2013-05-01

    Alpha particle X-ray spectrometer (APXS) is one of the payloads of Chang'E-3 lunar rover, the scientific objective of which is in-situ observation and off-line analysis of lunar regolith and rock. Distance measurement is one of the important functions for APXS to perform effective detection on the moon. The present paper will first give a brief introduction to APXS, and then analyze the specific requirements and constraints to realize distance measurement, at last present a new near infrared distance sensing algorithm by using the inflection point of response curve. The theoretical analysis and the experiment results verify the feasibility of this algorithm. Although the theoretical analysis shows that this method is not sensitive to the operating temperature and reflectance of the lunar surface, the solar infrared radiant intensity may make photosensor saturation. The solutions are reducing the gain of device and avoiding direct exposure to sun light.

  11. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  12. Comparison of the dose surface product in patients with X-ray contrast examinations of the stomach with intermittent and continuous radiographic methods

    International Nuclear Information System (INIS)

    Porzel, C.

    1975-01-01

    After commenting on the proplems of radiation exposure during X-raying and a brief survey of the development of image storage systems, the author explains the pulsed storage system used for X-raying the stomach instead of conventional X-raying. Applying the intermittent X-raying method, the exposure dose could be reduced by 75%, especially in patients with a strong abdominal girth. Advantages and disadvantages and possible ways to use the method for angiography, angiocardiography and X-raying in connection with bone operations are discussed. (ORU) [de

  13. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhang, Kai [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Peiping; Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  14. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations

  15. Some Applications of X-Ray Based Elemental Analysis Methods for Romanian Gold Minerals Studies

    International Nuclear Information System (INIS)

    Stan, D.; Constantinescu, B.; Pauna, C.; Neacsu, A.; Popescu, G.

    2009-01-01

    The elemental composition of gold, gold minerals and gold associated minerals releases important information's both from scientific (geologic) and economic point of view. In the present work, we focused on samples from Rosia Montana and Musariu ore deposits, from so called T ransylvanian gold of the golden q uadrilateral , Metaliferi Mountains. Our investigation started using optical microscopy. On the sample from Rosia Montana native gold band could be macroscopically seen. Gold occurs also like native gold in carbonate minerals, or associated with galena, sphalerite, chalcopyrite and quartz. The sample from Musariu shows native gold distributed at the border of sphalerite, native gold enclosed and along the margins of sphalerite and native gold between quartz grains. Three X-ray (the emission of characteristic lines spectra for each element present in the sample) based elemental analysis methods were also used: X-Ray Fluorescence (XRF), micro Synchrotron Radiation induced X-Ray Fluorescence (micro-SR-XRF) and micro Proton Induced X-Ray Emission (micro-PIXE). Our XRF methods are based on Xray tube spectrometers: a portable one - X-MET 3000TX and a stationary one - Spectro MIDEX. The two Rosia Montana and Musariu gold samples were studied using the micro-PIXE technique at the AN2000 accelerator of Laboratory Nazionale di Legnaro (LNL), INFN, Italy - maps and point spectra. The experiment was carried out with a 2 MeV proton microbeam (9 μm 2 beam area), maximum beam current 400 pA. The characteristic X-rays were measured with a Canberra HPGe detector (with 180 eV FWHM at 5.9 keV). Complementary experiments on the samples due the improved condition offered by the high energy X-rays, namely -Sb, Sn, Te detection, were performed at BESSY Synchrotron Radiation Facility, Berlin - point spectra. During the experiment, point spectra were acquired at 35 keV, excitation energy, using a spatially resolved synchrotron-radiation XRF setup detected to analyses. The XRF

  16. Methods for improvement of some parameters of medical X-ray diagnostic equipment. Basic faults in selection of appropriate new or used units

    International Nuclear Information System (INIS)

    Tonev, M.; Danev, N.; Constantinov, B.

    2004-01-01

    An analysis is made of the factors determining the quality and performance of the main types of medical equipment: conventional radiographic and fluoroscopic X-ray unit; X-ray computer tomograph (CT); angiographic, mammographic, densitometric and dental X-ray equipment; magnetic resonance MRI. The aim is to give certain directions for the method one should adopt on choosing and purchasing X-ray equipment. Also one should take into consideration the new Health law and the Regulation for radiation protection of persons undergoing medical examination or treatment. The problems can be solved with the close cooperation between radiologists, medical physicists and x-ray engineers

  17. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo

    2016-10-20

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured to receive x- rays diffracted from the test object; and a computing device configured to determine a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the test object. In another example, a method for determining a microstructure of a material includes illuminating a beam spot on the material with a beam of incident x-rays; detecting, with a grid detector, x-rays diffracted from the material; and determining, by a computing device, a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the material.

  18. Standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a procedure for experimentally determining the effective elastic parameter, Eeff, for the evaluation of residual and applied stresses by X-ray diffraction techniques. The effective elastic parameter relates macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. Eeff should not be confused with E, the modulus of elasticity. Rather, it is nominally equivalent to E/(1 + ν) for the particular crystallographic direction, where ν is Poisson's ratio. The effective elastic parameter is influenced by elastic anisotropy and preferred orientation of the sample material. 1.2 This test method is applicable to all X-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing. 1.3 This test method is applicable to all X-ray diffraction techniques for residual stress measurem...

  19. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    Science.gov (United States)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  20. Scatter correction method for x-ray CT using primary modulation: Phantom studies

    International Nuclear Information System (INIS)

    Gao Hewei; Fahrig, Rebecca; Bennett, N. Robert; Sun Mingshan; Star-Lack, Josh; Zhu Lei

    2010-01-01

    Purpose: Scatter correction is a major challenge in x-ray imaging using large area detectors. Recently, the authors proposed a promising scatter correction method for x-ray computed tomography (CT) using primary modulation. Proof of concept was previously illustrated by Monte Carlo simulations and physical experiments on a small phantom with a simple geometry. In this work, the authors provide a quantitative evaluation of the primary modulation technique and demonstrate its performance in applications where scatter correction is more challenging. Methods: The authors first analyze the potential errors of the estimated scatter in the primary modulation method. On two tabletop CT systems, the method is investigated using three phantoms: A Catphan(c)600 phantom, an anthropomorphic chest phantom, and the Catphan(c)600 phantom with two annuli. Two different primary modulators are also designed to show the impact of the modulator parameters on the scatter correction efficiency. The first is an aluminum modulator with a weak modulation and a low modulation frequency, and the second is a copper modulator with a strong modulation and a high modulation frequency. Results: On the Catphan(c)600 phantom in the first study, the method reduces the error of the CT number in the selected regions of interest (ROIs) from 371.4 to 21.9 Hounsfield units (HU); the contrast to noise ratio also increases from 10.9 to 19.2. On the anthropomorphic chest phantom in the second study, which represents a more difficult case due to the high scatter signals and object heterogeneity, the method reduces the error of the CT number from 327 to 19 HU in the selected ROIs and from 31.4% to 5.7% on the overall average. The third study is to investigate the impact of object size on the efficiency of our method. The scatter-to-primary ratio estimation error on the Catphan(c)600 phantom without any annulus (20 cm in diameter) is at the level of 0.04, it rises to 0.07 and 0.1 on the phantom with an

  1. A method for volumetric imaging in radiotherapy using single x-ray projection

    International Nuclear Information System (INIS)

    Xu, Yuan; Yan, Hao; Ouyang, Luo; Wang, Jing; Jiang, Steve B.; Jia, Xun; Zhou, Linghong; Cervino, Laura

    2015-01-01

    Purpose: It is an intriguing problem to generate an instantaneous volumetric image based on the corresponding x-ray projection. The purpose of this study is to develop a new method to achieve this goal via a sparse learning approach. Methods: To extract motion information hidden in projection images, the authors partitioned a projection image into small rectangular patches. The authors utilized a sparse learning method to automatically select patches that have a high correlation with principal component analysis (PCA) coefficients of a lung motion model. A model that maps the patch intensity to the PCA coefficients was built along with the patch selection process. Based on this model, a measured projection can be used to predict the PCA coefficients, which are then further used to generate a motion vector field and hence a volumetric image. The authors have also proposed an intensity baseline correction method based on the partitioned projection, in which the first and the second moments of pixel intensities at a patch in a simulated projection image are matched with those in a measured one via a linear transformation. The proposed method has been validated in both simulated data and real phantom data. Results: The algorithm is able to identify patches that contain relevant motion information such as the diaphragm region. It is found that an intensity baseline correction step is important to remove the systematic error in the motion prediction. For the simulation case, the sparse learning model reduced the prediction error for the first PCA coefficient to 5%, compared to the 10% error when sparse learning was not used, and the 95th percentile error for the predicted motion vector was reduced from 2.40 to 0.92 mm. In the phantom case with a regular tumor motion, the predicted tumor trajectory was successfully reconstructed with a 0.82 mm error for tumor center localization compared to a 1.66 mm error without using the sparse learning method. When the tumor motion

  2. Fundamental parameters method for quantitative energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Demirel, H.; Zararsiz, A.

    1986-01-01

    In this study, the requirement of the standart material in photon excited energy distributed X-ray fluorescence analysis has been removed. The interaction of X-rays with matter has been taken into account. A computer program has been developed by using the fundamental parameters of X-ray fluorescence technique and the spectral intensity 'K' of pure elements at saturation thickness has been obtained. For experimental purpose a convenient source-target-detector geometry has been designed. In order to excite the samples,Cd-109 radioisotope source has been used. The peak intensities has been obtained in a vacum chamber by counting the emitted X-rays. The calculation of concentration has been performed for double mixed samples correcting the effects of absorption and enchancement factors. The results were in conformity with their certificate values. (author)

  3. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  4. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  5. Simulation of x-rays in refractive structure by the Monte Carlo method using the supercomputer SKIF

    International Nuclear Information System (INIS)

    Yaskevich, Yu.R.; Kravchenko, O.I.; Soroka, I.I.; Chembrovskij, A.G.; Kolesnik, A.S.; Serikova, N.V.; Petrov, P.V.; Kol'chevskij, N.N.

    2013-01-01

    Software 'Xray-SKIF' for the simulation of the X-rays in refractive structures by the Monte-Carlo method using the supercomputer SKIF BSU are developed. The program generates a large number of rays propagated from a source to the refractive structure. The ray trajectory under assumption of geometrical optics is calculated. Absorption is calculated for each ray inside of refractive structure. Dynamic arrays are used for results of calculation rays parameters, its restore the X-ray field distributions very fast at different position of detector. It was found that increasing the number of processors leads to proportional decreasing of calculation time: simulation of 10 8 X-rays using supercomputer with the number of processors from 1 to 30 run-times equal 3 hours and 6 minutes, respectively. 10 9 X-rays are calculated by software 'Xray-SKIF' which allows to reconstruct the X-ray field after refractive structure with a special resolution of 1 micron. (authors)

  6. X-ray fluorescence analysis of strontium in environmental water by using barium carbonate coprecipitation method

    International Nuclear Information System (INIS)

    Nishioka, Hiroshi; Yoneda, Akio; Maeda, Yoshimichi; Azumi, Takatugu

    1986-01-01

    Determination of strontium in environmental water was studied by a coprecipitation method with barium carbonate and the subsequent X-ray fluorescence analysis. Fifty mg of barium ion and 1 g of sodium carbonate were added to sample water, which was then mixed for one hour by a magnetic stirrer. Precipitate was gathered onto a membrane filter paper to measure its XF intensity. The amount of strontium from 2 to 150 μg could be repeatedly determined by means of the calibration curve method, and the limit of detection was found to be 0.6 μg of strontium. A large amount of calcium and magnesium ions was found to interfere with the coprecipitation of strontium ion. However, this interference could be eliminated by using a small amount of sample water. Strontium in several environmental waters was determined by the above method. The results obtained from the calibration curve method and the standard addition method agreed with each other, and also agreed with those from the atomic absorption spectrometry. (author)

  7. Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changhyuk; Zuo, Zhili [University of Minnesota, Department of Mechanical Engineering (United States); Finger, Hartmut; Haep, Stefan; Asbach, Christof; Fissan, Heinz [Institute of Energy and Environmental Technology (IUTA e. V.) (Germany); Pui, David Y. H., E-mail: dyhpui@umn.edu [University of Minnesota, Department of Mechanical Engineering (United States)

    2015-03-15

    Airborne molecular contaminations (AMCs) represent a wide range of gaseous contaminants in cleanrooms. Due to the unintentional nanoparticle or haze formation as well as doping caused by AMCs, improved monitoring and controlling methods for AMCs are urgent in the semiconductor industry. However, measuring ultra-low concentrations of AMCs in cleanrooms is difficult, especially, behind a gas filter. In this study, a novel detection method for AMCs, which is on-line, economical, and applicable for diverse AMCs, was developed by employing gas-to-particle conversion with soft X-ray, and then measuring the generated nanoparticles. Feasibility study of this method was conducted through the evaluations of granular-activated carbons (GACs), which are widely used AMC filter media. Sulfur dioxide (SO{sub 2}) was used as an AMC for the feasibility study. Using this method, the ultra-low concentrations of SO{sub 2} behind GACs were determined in terms of concentrations of generated sulfuric acid (H{sub 2}SO{sub 4}) nanoparticles. By calculating SO{sub 2} concentrations from the nanoparticle concentrations using empirical correlation equations between them, remarkable sensitivity of this method to SO{sub 2} was shown, down to parts-per-trillions, which are too low to detect using commercial gas sensors. Also, the calculated SO{sub 2} concentrations showed good agreement with those measured simultaneously by a commercial SO{sub 2} monitor at parts-per-billions.

  8. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    International Nuclear Information System (INIS)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.

    2014-01-01

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses

  9. Studies of X-ray tube aging by non-invasive methods

    International Nuclear Information System (INIS)

    Bottaro, Marcio.

    2007-01-01

    The objective of the present work was the evaluation of an x ray tube aging with an anode made of tungsten, used in radio diagnostic. Workloads were applied, in accordance with Brazilian workload distribution, and periodic measurements of quantities related to the radiation quality of the beam were performed. For the purpose of this work, a single phase, full bridge clinical system was employed. For the long term x ray tube characteristics evaluation related to the applied workload, it was necessary to measure parameters that could quantitatively represent the tube aging, with special attention to the anode roughening. For the indirect measurement of tube aging, four parameters were chosen, some of them normally applied in x ray diagnostic quality control: first and second half value layers (HVL), focal spot dimensions, non invasive measurement of Practical Peak Voltage (PPV) and x ray spectroscopy. These parameters were measured before any workload and after each workload intervals. To assure confidence of the results reproducibility conditions were stated to each evaluated parameter. The uncertainties involved in all measurement processes were calculated to evaluate the real contributions of x ray tube aging effects on non invasive parameters. Within all evaluated parameters, the most sensitive to long term workload were the mean energy obtained from spectroscopy and half value layers. A model related to these parameters was applied and estimates of x ray tube aging rate for different acceleration voltages and anodic currents were calculated. (author)

  10. Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting

    International Nuclear Information System (INIS)

    Fuller, Clifton David; Jr, Charles R Thomas; Schwartz, Scott; Golden, Nanalei; Ting, Joe; Wong, Adrian; Erdogmus, Deniz; Scarbrough, Todd J

    2006-01-01

    Several measurement techniques have been developed to address the capability for target volume reduction via target localization in image-guided radiotherapy; among these have been ultrasound (US) and fiducial marker (FM) software-assisted localization. In order to assess interchangeability between methods, US and FM localization were compared using established techniques for determination of agreement between measurement methods when a 'gold-standard' comparator does not exist, after performing both techniques daily on a sequential series of patients. At least 3 days prior to CT simulation, four gold seeds were placed within the prostate. FM software-assisted localization utilized the ExacTrac X-Ray 6D (BrainLab AG, Germany) kVp x-ray image acquisition system to determine prostate position; US prostate targeting was performed on each patient using the SonArray (Varian, Palo Alto, CA). Patients were aligned daily using laser alignment of skin marks. Directional shifts were then calculated by each respective system in the X, Y and Z dimensions before each daily treatment fraction, previous to any treatment or couch adjustment, as well as a composite vector of displacement. Directional shift agreement in each axis was compared using Altman-Bland limits of agreement, Lin's concordance coefficient with Partik's grading schema, and Deming orthogonal bias-weighted correlation methodology. 1019 software-assisted shifts were suggested by US and FM in 39 patients. The 95% limits of agreement in X, Y and Z axes were ±9.4 mm, ±11.3 mm and ±13.4, respectively. Three-dimensionally, measurements agreed within 13.4 mm in 95% of all paired measures. In all axes, concordance was graded as 'poor' or 'unacceptable'. Deming regression detected proportional bias in both directional axes and three-dimensional vectors. Our data suggest substantial differences between US and FM image-guided measures and subsequent suggested directional shifts. Analysis reveals that the vast majority of

  11. Application of x-ray fluorescence (XRF) absolute analysis method for silica refractories

    International Nuclear Information System (INIS)

    Asakura, Hideo; Yamada, Yasujiro; Kansai, Kouhei; Tomatsu, Ichirou; Murata, Mamoru

    2015-01-01

    X-ray fluorescence (XRF) analysis is a rapid and precise quantitative analytical method for the determination of major and trace elements in many industries and academics. XRF analytical values are relative due to the use of the calibration curves calculated from measuring the reference standard materials such as Japanese Refractory Reference Materials (JRRM) series with certified values determined by wet chemical analysis. The development of the XRF analytical method from relative to absolute analysis will help much to determine the absolute values of samples from the fields where reference standard samples have not been prepared, and thus can be applied widely in many industries. The implement of the absolute XRF analysis for silica refractories requires high purity reagents and/or reference standard solution for the binary basic calibration curve, and theoretical matrix correction coefficients for the multi-components silica refractories analysis. The reproducibility and repeatability of this method for Al 2 O 3 5 mass% sample were 0.009 and 0.006 mass% in Al 2 O 3 and showed better values that those of ICP-AES recognized as an absolute method in JIS R 2212-2, which yielded 0.028 and 0.031 mass%, respectively. The XRF absolute analysis for JRRM 200 series, 201a and 205a does not show a bias but coincides with their certified values. (author)

  12. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  13. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  14. A novel and simple method for analyzing elements using x-ray induced with femto-second laser

    International Nuclear Information System (INIS)

    Fukushima, M.; Yomogihata, K.; Ono, H.; Hatanaka, K.; Fukumura, H.

    2005-01-01

    It is well known that x-ray emission is induced when materials are irradiated by an intense femto-second laser. Since the x-ray properties of atoms are almost independent of chemical forms or physical states, the induced x-ray emission spectrum is useful for analytical purposes. A new and simple method for analyzing elements in solid and liquid samples has been developed using a femto-second laser with sufficient power to generate x-ray emission. Femto-second pulses from a Ti: sapphire laser system were focused with a microscopic objective lens on samples, and x-ray emission spectra were measured by solid state detector. Though the sensitivity for elements is not so high, this method has several advantages; (1) available to analyze under daylight, (2) available to analyze in the air, (3) no need for the license to radioactive source. Moreover, this laser system can be taken to outside. It means this method can be used for in site analysis. Various kinds of samples were tested; commercial crystal glass, NIST SRM-1633b Coal Fly Ash: GSJ Reference Sample JMn-1 Mn nodule sample, several kinds of geological rocks, law fish slice, and gelatin gel of salt solutions. As a-result, specific x-rays were observed from elements more than l wt% contents in the spectral range of 3-8 keV, For analyzing liquid samples, laser pulses were focused on the surface of water jet stream or filter paper in which solution has soaked. Details of the results will be presented.

  15. Chromatic X-ray magnifying method and apparatus by Bragg reflective planes on the surface of Abbe sphere

    Science.gov (United States)

    Thoe, Robert S.

    1991-01-01

    Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.

  16. Method and apparatus for producing and selectively directing x-rays to different points on an object

    International Nuclear Information System (INIS)

    Haimson, J.

    1981-01-01

    The invention relates to apparatus suitable for use in a computer tomography X-ray scanner. High intensity X-rays are produced and directed towards the object of interest from any of a plurality of preselected coplanar points spaced from the object and spaced radially about a line through the object. There are no moving parts. The electron beam, which produces X-rays as a consequence of impact with the target, is directed selectively to preselected points on the stationary target. Beam-direction compensates for the beam spreading effect of space charge forces acting on the beam, and beam-shaping shapes the beam to a predetermined cross-sectional configuration at its point of incidence with the target. Beam aberrations including sextupole aberrations are corrected. (U.K.)

  17. Validation of the method of quantitative phase analysis by X-ray diffraction in API: case of Tibolone

    International Nuclear Information System (INIS)

    Silva, R P; Ambrósio, M F S; Epprecht, E K; Avillez, R R; Achete, C A; Kuznetsov, A; Visentin, L C

    2016-01-01

    In this study, different structural and microstructural models applied to X-ray analysis of powder diffraction data of polymorphic mixtures of known concentrations of Tibolone were investigated. The X-ray data obtained in different diffraction instruments were analysed via Rietveld method using the same analytical models. The results of quantitative phase analysis show that regardless of the instrument used, the values of the calculated concentrations follow the same systematics with respect to the final errors. The strategy to select a specific analytical model that leads to lower measurement errors is here presented. (paper)

  18. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  19. Handbook on simultaneous x-ray and γ-ray ion beam methods for fine particle analysis

    International Nuclear Information System (INIS)

    Cohen, D.D.

    2000-01-01

    Sampling, measurement, characterisation and source appointment of fine atmospheric particles has become increasingly important in recent times. This is due in part to the realisation that the fine particle pollution caused by anthropogenic activities plays a key role in certain aspects of human health, pollution transport and global climate change. This publication discusses accelerator based ion beam analysis (IBA) methods of particle induced X-ray emission (PIXE) and particle induced γ-ray emission (PIGE) as applied to aerosol analysis. These techniques are sensitive, multielemental, mainly non-destructive, require no sample preparation, have short analysis times and can be used to analyse hundreds of filter samples a day in batch processing with minimum operator interaction. The aspects discussed in the publication include: the basics of the techniques; spectrum analysis; system calibration and blank subtraction; quantification; sensitivity; measurement errors

  20. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  1. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  2. Comparison of methods for suppressing edge and aliasing artefacts in iterative x-ray CT reconstruction

    International Nuclear Information System (INIS)

    Zbijewski, Wojciech; Beekman, Freek J

    2006-01-01

    X-ray CT images obtained with iterative reconstruction (IR) can be hampered by the so-called edge and aliasing artefacts, which appear as interference patterns and severe overshoots in the areas of sharp intensity transitions. Previously, we have demonstrated that these artefacts are caused by discretization errors during the projection simulation step in IR. Although these errors are inherent to IR, they can be adequately suppressed by reconstruction on an image grid that is finer than that typically used for analytical methods such as filtered back-projection. Two other methods that may prevent edge artefacts are: (i) smoothing the projections prior to reconstruction or (ii) using an image representation different from voxels; spherically symmetric Kaiser-Bessel functions are a frequently employed example of such a representation. In this paper, we compare reconstruction on a fine grid with the two above-mentioned alternative strategies for edge artefact reduction. We show that the use of a fine grid results in a more adequate suppression of artefacts than the smoothing of projections or using the Kaiser-Bessel image representation

  3. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Directory of Open Access Journals (Sweden)

    Xue Mengfan

    2016-06-01

    Full Text Available X-ray pulsar-based navigation (XPNAV is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint probability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC and nonlinear least squares (NLS estimators, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML estimators.

  4. A method for describing the doses delivered by transmission x-ray computed tomography

    International Nuclear Information System (INIS)

    Shope, T.B.; Gagne, R.M.; Johnson, G.C.

    1981-01-01

    A method for describing the absorbed dose delivered by x-ray transmission computed tomography (CT) is proposed which provides a means to characterize the dose resulting from CT procedures consisting of a series of adjacent scans. The dose descriptor chosen is the average dose at several locations in the imaged volume of the central scan of the series. It is shown that this average dose, as defined, for locations in the central scan of the series can be obtained from the integral of the dose profile perpendicular to the scan plane at these same locations for a single scan. This method for estimating the average dose from a CT procedure has been evaluated as a function of the number of scans in the multiple scan procedure and location in the dosimetry phantom using single scan dose profiles obtained from five different types of CT systems. For the higher dose regions in the phantoms, the multiple scan dose descriptor derived from the single scan dose profiles overestimates the multiple scan average dose by no more than 10%, provided the procedure consists of at least eight scans

  5. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.

    Science.gov (United States)

    Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo

    2012-01-01

    The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  6. Stellar X-ray sources

    International Nuclear Information System (INIS)

    Katz, J.I.; Washington Univ., St. Louis, MO

    1988-01-01

    I Review some of the salient accomplishments of X-rap studies of compact objects. Progress in this field has closely followed the improvement of observational methods, particularly in angular resolution and duration of exposure. Luminous compact X-ray sources are accreting neutron stars or black holes. Accreting neutron stars may have characteristic temporal signatures, but the only way to establish that an X-ray source is a black hole is to measure its mass. A rough phenomenological theory is succesful, but the transport of angular momentum in accretion flows is not onderstood. A number of interesting complications have been observed, including precessing accretion discs, X-ray bursts, and the acceleration of jets in SS433. Many puzzles remain unsolved, including the excitation of disc precession, the nature of the enigmatic A- and gamma-ray source Cyg X-3, the mechanism by which slowly spinning accreting neutron stars lose angular momentum, and the superabundance of X-ray sources in globular clusters. 41 refs.; 5 figs

  7. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  8. Use of x-ray radiographic methods in the study of clay liners

    International Nuclear Information System (INIS)

    Malone, P.G.; May, J.H.; Brown, K.W.; Thomas, J.C.

    1986-01-01

    X-ray radiography has been widely used in soil investigation to study the distribution of layers in soil cores and the effects of changing conditions (loading or impact) on soil structure. X-ray radiographic techniques also can be useful in studying clays or clay soils used in liners. Laboratory investigations were undertaken to demonstrate that X-ray radiographic techniques could be used to detect density and soil structure changes that usually accompany variations in hydraulic conductivity of clay liners. An example of a real-time test of a simulated bentonite and sand, liner attacked with acid lead nitrate and examples of radiographic examination of clay soil (non-calcareous smectite) samples that have been permeated by lead acetate or lead nitrate are presented. The changes in density and structure can be related to changes observed in hydraulic conductivity during permeation. X-ray radiography easily can be applied to field samples of soil or clay liner materials to detect density and structural changes that occur as the liner and permeating fluid interact. X-ray techniques have applications in both understanding failure mechanisms and forecasting liner performance

  9. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture.

    Science.gov (United States)

    Padrela, Luis; de Azevedo, Edmundo Gomes; Velaga, Sitaram P

    2012-08-01

    The solid state purity of cocrystals critically affects their performance. Thus, it is important to accurately quantify the purity of cocrystals in the final crystallization product. The aim of this study was to develop a powder X-ray diffraction (PXRD) quantification method for investigating the purity of cocrystals. The method developed was employed to study the formation of indomethacin-saccharin (IND-SAC) cocrystals by mechanochemical methods. Pure IND-SAC cocrystals were geometrically mixed with 1:1 w/w mixture of indomethacin/saccharin in various proportions. An accurately measured amount (550 mg) of the mixture was used for the PXRD measurements. The most intense, non-overlapping, characteristic diffraction peak of IND-SAC was used to construct the calibration curve in the range 0-100% (w/w). This calibration model was validated and used to monitor the formation of IND-SAC cocrystals by liquid-assisted grinding (LAG). The IND-SAC cocrystal calibration curve showed excellent linearity (R(2) = 0.9996) over the entire concentration range, displaying limit of detection (LOD) and limit of quantification (LOQ) values of 1.23% (w/w) and 3.74% (w/w), respectively. Validation results showed excellent correlations between actual and predicted concentrations of IND-SAC cocrystals (R(2) = 0.9981). The accuracy and reliability of the PXRD quantification method depend on the methods of sample preparation and handling. The crystallinity of the IND-SAC cocrystals was higher when larger amounts of methanol were used in the LAG method. The PXRD quantification method is suitable and reliable for verifying the purity of cocrystals in the final crystallization product.

  10. Manufacturing method for hard x-ray focusing mirrors with ellipsoidal surface

    International Nuclear Information System (INIS)

    Yumoto, Hirokatsu; Koyama, Takahisa; Ohashi, Haruhiko; Matsuyama, Satoshi; Yamauchi, Kazuto

    2014-01-01

    The aim of this study is to establishing the manufacturing method for hard x-ray nano-focusing mirrors with ellipsoidal surface. Ellipsoidal mirror optics, which can produce point focus with a mirror, has a noticeable feature of a high focusing efficiency, although an ultra-precise surface figure with an accuracy of a few nanometers is required for nano-focusing mirrors. Here, we examined the effectiveness of the manufacturing process for ellipsoidal mirrors, which is consisted of a precision grinding process, a removal process of surface roughness, and a computer-controlled shape correction. The precision processing machine for both a removal of surface roughness and a shape correction was developed. This validated the utility of removing surface roughness with a spatial wavelength of 40 μm, which is the tool mark of the grinding process. The developed process achieved the improvement of surface roughness from 1.6 nm to 0.1 nm (RMS), and the figure correction with a high accuracy of < 10 nm and a spatial resolution of < 2 mm. (author)

  11. About a method for compressing x-ray computed microtomography data

    Science.gov (United States)

    Mancini, Lucia; Kourousias, George; Billè, Fulvio; De Carlo, Francesco; Fidler, Aleš

    2018-04-01

    The management of scientific data is of high importance especially for experimental techniques that produce big data volumes. Such a technique is x-ray computed tomography (CT) and its community has introduced advanced data formats which allow for better management of experimental data. Rather than the organization of the data and the associated meta-data, the main topic on this work is data compression and its applicability to experimental data collected from a synchrotron-based CT beamline at the Elettra-Sincrotrone Trieste facility (Italy) and studies images acquired from various types of samples. This study covers parallel beam geometry, but it could be easily extended to a cone-beam one. The reconstruction workflow used is the one currently in operation at the beamline. Contrary to standard image compression studies, this manuscript proposes a systematic framework and workflow for the critical examination of different compression techniques and does so by applying it to experimental data. Beyond the methodology framework, this study presents and examines the use of JPEG-XR in combination with HDF5 and TIFF formats providing insights and strategies on data compression and image quality issues that can be used and implemented at other synchrotron facilities and laboratory systems. In conclusion, projection data compression using JPEG-XR appears as a promising, efficient method to reduce data file size and thus to facilitate data handling and image reconstruction.

  12. Structural refinement of artificial superlattices by the X-ray diffraction method

    CERN Document Server

    Ishibashi, Y; Tsurumi, T

    1999-01-01

    This paper reports a structural refinement of BaTiO sub 3 (BTO)/SrTiO sub 3 (STO) artificially superstructured thin films. The refinement was achieved by taking into account the effect of interdiffusion between BTO and STO. The samples were prepared by a molecular-beam epitaxy method on SrTiO sub 3 (001) substrate at 600 .deg. C. The phonon model was employed to simulate the X-ray diffraction (XRD) profiles. A discrepancy was observed in the intensities of the satellite peaks when the effect of the interdiffusion between BTO and STO was not incorporated in the simulation. In successive simulations, the concentration profile due to the interdiffusion was first calculated according to Fick's second law, and then the coefficients of the Fourier series describing the lattice distortion and the modulation of the structure factor were determined. The XRD profiles thus simulated almost completely agreed with those observed. This indicates that XRD analysis with the calculation process proposed in this study will ena...

  13. Replicon sizes in mammalian cells as estimated by an x-ray plus bromodeoxyuridine photolysis method

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1978-01-01

    A new method is described for estimating replicon sizes in mammalian cells. Cultures were pulse labeled with [ 3 H]thymidine ([ 3 H]TdR) and bromodeoxyuridine (BrDUrd) for up to 1 h. The lengths of the resulting labeled regions of DNA, L/sub obs/, were estimated by a technique wherein the change in molecular weight of nascent DNA strands, induced by 313 nm light, is measured by velocity sedimentation in alkaline sucrose gradients. If cells are exposed to 1,000 rads of x rays immediately before pulse labeling, initiation of replicon operation is blocked, although chain elongation proceeds almost normally. Under these conditions L/sub obs/ continues to increase only until operating replicons have completed their replication. This value for L/sub obs/ then remains constant as long as the block to initiation remains and represents an estimate for the average size of replicons operating in the cells before x irradiation. For human diploid fibroblasts and human HeLa cells this estimated average size is approximately 17 μM, whereas for Chinese hamster ovary cells, the average replicon size is about 42 μM

  14. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    International Nuclear Information System (INIS)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza

    2013-01-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  15. Application of the rigorous method to x-ray and neutron beam scattering on rough surfaces

    International Nuclear Information System (INIS)

    Goray, Leonid I.

    2010-01-01

    The paper presents a comprehensive numerical analysis of x-ray and neutron scattering from finite-conducting rough surfaces which is performed in the frame of the boundary integral equation method in a rigorous formulation for high ratios of characteristic dimension to wavelength. The single integral equation obtained involves boundary integrals of the single and double layer potentials. A more general treatment of the energy conservation law applicable to absorption gratings and rough mirrors is considered. In order to compute the scattering intensity of rough surfaces using the forward electromagnetic solver, Monte Carlo simulation is employed to average the deterministic diffraction grating efficiency due to individual surfaces over an ensemble of realizations. Some rules appropriate for numerical implementation of the theory at small wavelength-to-period ratios are presented. The difference between the rigorous approach and approximations can be clearly seen in specular reflectances of Au mirrors with different roughness parameters at wavelengths where grazing incidence occurs at close to or larger than the critical angle. This difference may give rise to wrong estimates of rms roughness and correlation length if they are obtained by comparing experimental data with calculations. Besides, the rigorous approach permits taking into account any known roughness statistics and allows exact computation of diffuse scattering.

  16. An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.

    Science.gov (United States)

    Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua

    2015-01-01

    Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.

  17. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza, E-mail: amanda@igc.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: amanda@igc.ufmg.br, E-mail: lurdesfernandes@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horionte, MG (Brazil)

    2013-07-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  18. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); Moricz, Agnes M. [L. Eoetvoes University, Department of Chemical Technology and Environmental Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Kroepfl, Krisztina [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Szikora, Szilvia [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Parra, Lue Meru Marco [Universidad Centro-occidental Lisandro Alvarado, Decanato de Agronomia, Departamento de Quimica y Suelos Unidad de Analisis Instrumental, Apartado Postal 4076, Cabudare 3023 (Venezuela); Zaray, Gyula [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary) and Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary) and L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary)]. E-mail: zaray@ludens.elte.hu

    2006-11-15

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods.

  19. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    International Nuclear Information System (INIS)

    Mihucz, Victor G.; Moricz, Agnes M.; Kroepfl, Krisztina; Szikora, Szilvia; Tatar, Eniko; Parra, Lue Meru Marco; Zaray, Gyula

    2006-01-01

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods

  20. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  1. The Viking X ray fluorescence experiment - Analytical methods and early results

    Science.gov (United States)

    Clark, B. C., III; Castro, A. J.; Rowe, C. D.; Baird, A. K.; Rose, H. J., Jr.; Toulmin, P., III; Christian, R. P.; Kelliher, W. C.; Keil, K.; Huss, G. R.

    1977-01-01

    Ten samples of the Martian regolith have been analyzed by the Viking lander X ray fluorescence spectrometers. Because of high-stability electronics, inclusion of calibration targets, and special data encoding within the instruments the quality of the analyses performed on Mars is closely equivalent to that attainable with the same instruments operated in the laboratory. Determination of absolute elemental concentrations requires gain drift adjustments, subtraction of background components, and use of a mathematical response model with adjustable parameters set by prelaunch measurements on selected rock standards. Bulk fines at both Viking landing sites are quite similar in composition, implying that a chemically and mineralogically homogeneous regolith covers much of the surface of the planet. Important differences between samples include a higher sulfur content in what appear to be duricrust fragments than in fines and a lower iron content in fines taken from beneath large rocks than those taken from unprotected surface material. Further extensive reduction of these data will allow more precise and more accurate analytical numbers to be determined and thus a more comprehensive understanding of elemental trends between samples.

  2. Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2011-01-01

    Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these

  3. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    International Nuclear Information System (INIS)

    Warburton, W.K.; Hubbard, B.

    1999-01-01

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs

  4. Dosage of silicon in a soluble silicate using an x-ray-fluorescence radioisotopic method

    International Nuclear Information System (INIS)

    Wasilewska, M.; Robert, A.

    1969-01-01

    A description is given of a spectrometer for X ray fluorescence analysis having a radio active excitation source. It has been applied to the analysis of the silicon contained in an industrial soluble silicate. A theoretical study has been made for this analysis of the operational conditions such as: the effect of the particle size, the dilution of the sample, the sensitivity as a function of the X ray excitation energy. It is possible to obtain a relative accuracy of 0,87 per cent for the silicon determination, for one standard deviation. A comparison is made of the sensitivity obtained using this apparatus for the Si determination with that which can be obtained using a conventional apparatus fitted with an X ray tube. (author) [fr

  5. Novel x-ray imaging methods at the Nova Laser Facility

    International Nuclear Information System (INIS)

    Ress, D.; DaSilva, L.B.; London, R.A.; Trebes, J.E.; Lerche, R.A.; Bradley, D.K.

    1994-01-01

    We are pursuing several novel x-ray imaging schemes to measure plasma parameters in inertial-confinement fusion experiments. This paper will review two quite successful approaches, the soft x-ray moire deflectometer, and the annular (ring) coded-aperture microscope. The deflectometer is the newer diagnostic, and this paper will concentrate on this topic. We will describe the operating principles of moire deflectometry, give the motivations for soft x-ray probing, describe the physical apparatus in detail, and present some sample images and results. The ring coded-aperture microscope has been described previously, so here we will only briefly review the principle of the instrument. We will concentrate on the signal-to-noise ratio calculations that motivate the use of annular coded apertures, and describe recent work to predict and measure the resolution of the instrument

  6. Single x-ray absorptiometry method for the quantitative mammographic measure of fibroglandular tissue volume

    International Nuclear Information System (INIS)

    Malkov, Serghei; Wang, Jeff; Kerlikowske, Karla; Cummings, Steven R.; Shepherd, John A.

    2009-01-01

    Purpose: This study describes the design and characteristics of a highly accurate, precise, and automated single-energy method to quantify percent fibroglandular tissue volume (%FGV) and fibroglandular tissue volume (FGV) using digital screening mammography. Methods: The method uses a breast tissue-equivalent phantom in the unused portion of the mammogram as a reference to estimate breast composition. The phantom is used to calculate breast thickness and composition for each image regardless of x-ray technique or the presence of paddle tilt. The phantom adheres to the top of the mammographic compression paddle and stays in place for both craniocaudal and mediolateral oblique screening views. We describe the automated method to identify the phantom and paddle orientation with a three-dimensional reconstruction least-squares technique. A series of test phantoms, with a breast thickness range of 0.5-8 cm and a %FGV of 0%-100%, were made to test the accuracy and precision of the technique. Results: Using test phantoms, the estimated repeatability standard deviation equaled 2%, with a ±2% accuracy for the entire thickness and density ranges. Without correction, paddle tilt was found to create large errors in the measured density values of up to 7%/mm difference from actual breast thickness. This new density measurement is stable over time, with no significant drifts in calibration noted during a four-month period. Comparisons of %FGV to mammographic percent density and left to right breast %FGV were highly correlated (r=0.83 and 0.94, respectively). Conclusions: An automated method for quantifying fibroglandular tissue volume has been developed. It exhibited good accuracy and precision for a broad range of breast thicknesses, paddle tilt angles, and %FGV values. Clinical testing showed high correlation to mammographic density and between left and right breasts.

  7. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    International Nuclear Information System (INIS)

    Tanaka, M; Katsuya, Y; Matsushita, Y

    2013-01-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe 2 O 4 and Fe 3 O 4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe 2+ /Fe 3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  8. A simple, semi-quantitative method for measuring pulsed soft x-rays

    International Nuclear Information System (INIS)

    Takahama, Y.; Du, J.; Yanagidaira, T.; Hirano, K.

    1993-01-01

    A simple semi-quantitative measurement and image processing system for pulsed soft X-rays with a time and spatial resolution is proposed. Performance of the system is examined using a cylindrical soft X-ray source generated with a plasma device. The system consists of commercial facilities which are easily obtained such as a microchannel plate-phosphor screen combination, a CCD camera, an image memory board and a personal computer. To make a quantitative measurement possible, the image processing and observation of the phosphor screen current are used in conjunction. (author)

  9. Improving accuracy and capabilities of X-ray fluorescence method using intensity ratios

    Energy Technology Data Exchange (ETDEWEB)

    Garmay, Andrey V., E-mail: andrew-garmay@yandex.ru; Oskolok, Kirill V.

    2017-04-15

    An X-ray fluorescence analysis algorithm is proposed which is based on a use of ratios of X-ray fluorescence lines intensities. Such an analytical signal is more stable and leads to improved accuracy. Novel calibration equations are proposed which are suitable for analysis in a broad range of matrix compositions. To apply the algorithm to analysis of samples containing significant amount of undetectable elements a use of a dependence of a Rayleigh-to-Compton intensity ratio on a total content of these elements is suggested. The technique's validity is shown by analysis of standard steel samples, model metal oxides mixture and iron ore samples.

  10. Methods for studying the focal spot size and resolution of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Fairbanks, R.; Doust, C.

    1979-01-01

    Attention is given to techniques appropriate for use in the clinical situation. The focal spot size is critical to geometric unsharpness and hence the quality of the finished radiograph, but pinhole imaging of the focal spot is extremely difficult in clinical practice. The resolution of an X-ray tube, although a function of focal spot size, is of more importance in radiography. A comparison is made of various resolution grids suitable for quality control use in X-ray departments. (U.K.)

  11. Quantitative analysis of concrete using portable x-ray fluorescence: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Washington, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Narrows, William [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Msgwood, Leroy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-27

    During Decommissioning and Demolition (D&D) activities at SRS, it is important that the building be screened for radionuclides and heavy metals to ensure that the proper safety and disposal metrics are in place. A major source of contamination at DOE facilities is the accumulation of mercury contamination, from nuclear material processing and Liquid Waste System (LWS). This buildup of mercury could possibly cause harm to any demolition crew or the environment should this material be released. The current standard method is to take core samples in various places in the facility and use X-ray fluorescence (XRF) to detect the contamination. This standard method comes with a high financial value due to the security levels of these sample facilities with unknown contamination levels. Here in we propose the use of portable XRF units to detect for this contamination on-site. To validate this method, the instrument has to be calibrated to detect the heavy metal contamination, be both precise with the known elemental concentrations and consistent with its actual results of a sample concrete and pristine contaminant, and be able to detect changes in the sample concrete’s composition. After receiving the various concrete samples with their compositions found by a XRF wave-dispersive method, the calibration factor’s linear regressions were adjusted to give the baseline concentration of the concrete with no contamination. Samples of both concrete and concrete/flyash were evaluated; their standard deviations revealed that the measurements were consistent with the known composition. Finally, the samples were contaminated with different concentrations of sodium tungsten dihydrate, allowed to air dry, and measured. When the contaminated samples were analyzed, the heavy metal contamination was seen within the spectrum of the instrument, but there was not a trend of quantification based on the concentration of the solution.

  12. Ultra-short wavelength x-ray system

    Science.gov (United States)

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  13. Visual CRO display of pulse height distribution including discriminator setting for a single channel X-ray analyser

    International Nuclear Information System (INIS)

    Shaw, S.E.

    1979-01-01

    An outline for a simple pulse spectroscope which attaches to a standard laboratory CRO is presented. The peak amplitude voltage of each pulse from the linear amplifier of a single channel X-ray analyser is stored for the duration of one oscilloscope trace. For each amplifier pulse, input from the discriminator is tested and if these is coincidence of pulses the oscilloscope beam is blanked for approximately the first 2 cm of its traverse across the screen. Repetition of pulses forms a pulse height distribution with a rectangular dark area marking the position of the discriminator window. (author)

  14. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV.

    Science.gov (United States)

    Boone, J M; Seibert, J A

    1997-11-01

    A tungsten anode spectral model using interpolating polynomials (TASMIP) was used to compute x-ray spectra at 1 keV intervals over the range from 30 kV to 140 kV. The TASMIP is not semi-empirical and uses no physical assumptions regarding x-ray production, but rather interpolates measured constant potential x-ray spectra published by Fewell et al. [Handbook of Computed Tomography X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1981)]. X-ray output measurements (mR/mAs measured at 1 m) were made on a calibrated constant potential generator in our laboratory from 50 kV to 124 kV, and with 0-5 mm added aluminum filtration. The Fewell spectra were slightly modified (numerically hardened) and normalized based on the attenuation and output characteristics of a constant potential generator and metal-insert x-ray tube in our laboratory. Then, using the modified Fewell spectra of different kVs, the photon fluence phi at each 1 keV energy bin (E) over energies from 10 keV to 140 keV was characterized using polynomial functions of the form phi (E) = a0[E] + a1[E] kV + a2[E] kV2 + ... + a(n)[E] kVn. A total of 131 polynomial functions were used to calculate accurate x-ray spectra, each function requiring between two and four terms. The resulting TASMIP algorithm produced x-ray spectra that match both the quality and quantity characteristics of the x-ray system in our laboratory. For photon fluences above 10% of the peak fluence in the spectrum, the average percent difference (and standard deviation) between the modified Fewell spectra and the TASMIP photon fluence was -1.43% (3.8%) for the 50 kV spectrum, -0.89% (1.37%) for the 70 kV spectrum, and for the 80, 90, 100, 110, 120, 130 and 140 kV spectra, the mean differences between spectra were all less than 0.20% and the standard deviations were less than approximately 1.1%. The model was also extended to include the effects of generator-induced kV ripple. Finally, the x-ray photon fluence in the units of

  15. Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting

    Science.gov (United States)

    Fuller, Clifton David; Thomas, Charles R., Jr.; Schwartz, Scott; Golden, Nanalei; Ting, Joe; Wong, Adrian; Erdogmus, Deniz; Scarbrough, Todd J.

    2006-10-01

    Several measurement techniques have been developed to address the capability for target volume reduction via target localization in image-guided radiotherapy; among these have been ultrasound (US) and fiducial marker (FM) software-assisted localization. In order to assess interchangeability between methods, US and FM localization were compared using established techniques for determination of agreement between measurement methods when a 'gold-standard' comparator does not exist, after performing both techniques daily on a sequential series of patients. At least 3 days prior to CT simulation, four gold seeds were placed within the prostate. FM software-assisted localization utilized the ExacTrac X-Ray 6D (BrainLab AG, Germany) kVp x-ray image acquisition system to determine prostate position; US prostate targeting was performed on each patient using the SonArray (Varian, Palo Alto, CA). Patients were aligned daily using laser alignment of skin marks. Directional shifts were then calculated by each respective system in the X, Y and Z dimensions before each daily treatment fraction, previous to any treatment or couch adjustment, as well as a composite vector of displacement. Directional shift agreement in each axis was compared using Altman-Bland limits of agreement, Lin's concordance coefficient with Partik's grading schema, and Deming orthogonal bias-weighted correlation methodology. 1019 software-assisted shifts were suggested by US and FM in 39 patients. The 95% limits of agreement in X, Y and Z axes were ±9.4 mm, ±11.3 mm and ±13.4, respectively. Three-dimensionally, measurements agreed within 13.4 mm in 95% of all paired measures. In all axes, concordance was graded as 'poor' or 'unacceptable'. Deming regression detected proportional bias in both directional axes and three-dimensional vectors. Our data suggest substantial differences between US and FM image-guided measures and subsequent suggested directional shifts. Analysis reveals that the vast majority of

  16. In-Situ Synchrotron X-ray Study of the Phase and Texture Evolution of Ceria and Superconductor Films Deposited by Chemical Solution Method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; He, Dong

    2012-01-01

    In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry/differential ther......In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry...

  17. Computer simulation tools for X-ray analysis scattering and diffraction methods

    CERN Document Server

    Morelhão, Sérgio Luiz

    2016-01-01

    The main goal of this book is to break down the huge barrier of difficulties faced by beginners from many fields (Engineering, Physics, Chemistry, Biology, Medicine, Material Science, etc.) in using X-rays as an analytical tool in their research. Besides fundamental concepts, MatLab routines are provided, showing how to test and implement the concepts. The major difficult in analyzing materials by X-ray techniques is that it strongly depends on simulation software. This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. It provides to a young student the knowledge that would take more than 20 years to acquire by working on X-rays and relying on the available textbooks. In this book, fundamental concepts in applied X-ray physics are demonstrated through available computer simulation tools. Using MatLab, more than eighty routines are developed for solving the proposed exercises, most of which can be directly used in experimental...

  18. X-ray examination of the stomach - a highly informative noninvasive examination method

    Energy Technology Data Exchange (ETDEWEB)

    Grehn, S.

    1987-10-01

    The X-ray examination of the stomach still holds its own in this age of sophisticated endoscopic examination techniques. Nevertheless, it needs to be based on a meticulous examination technique performed by the physian in person on the patient and resulting in convincing imaging. (orig.)

  19. Evaluation of high packing density powder X-ray screens by Monte Carlo methods

    International Nuclear Information System (INIS)

    Liaparinos, P.; Kandarakis, I.; Cavouras, D.; Kalivas, N.; Delis, H.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are employed in intensifying screens of both digital and conventional X-ray imaging detectors. High packing density powder screens have been developed (e.g. screens in ceramic form) exhibiting high-resolution and light emission properties, and thus contributing to improved image transfer characteristics and higher radiation to light conversion efficiency. For the present study, a custom Monte Carlo simulation program was used in order to examine the performance of ceramic powder screens, under various radiographic conditions. The model was developed using Mie scattering theory for the description of light interactions, based on the physical characteristics (e.g. complex refractive index, light wavelength) of the phosphor material. Monte Carlo simulations were carried out assuming: (a) X-ray photon energy ranging from 18 up to 49 keV, (b) Gd 2 O 2 S:Tb phosphor material with packing density of 70% and grain size of 7 μm and (c) phosphor thickness ranging between 30 and 70 mg/cm 2 . The variation of the Modulation Transfer Function (MTF) and the Luminescence Efficiency (LE) with respect to the X-ray energy and the phosphor thickness was evaluated. Both aforementioned imaging characteristics were shown to take high values at 49 keV X-ray energy and 70 mg/cm 2 phosphor thickness. It was found that high packing density screens may be appropriate for use in medical radiographic systems

  20. Contribution to the element analysis method by proton-induced X-ray spectroscopy

    International Nuclear Information System (INIS)

    Montenegro, E.C.

    1977-02-01

    A critical analysis of the process for the mass determination using proton induced X-ray is presented. Problems such as univocity, reproducibility, precision, accuracy and sensibility, as well as possible effects of absorption in the sample are considered. (author) [pt

  1. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  2. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  3. A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotou, Maria, E-mail: maria.panayiotou@kcl.ac.uk; King, Andrew P.; Housden, R. James; Ma, YingLiang; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guy' s and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2014-07-15

    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of√(5)0, √(1)0, √(8), √(6), √(5), √(2), and √(1) to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √(2), representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed

  4. Study on the influence of X-ray tube spectral distribution on the analysis of bulk samples and thin films: Fundamental parameters method and theoretical coefficient algorithms

    International Nuclear Information System (INIS)

    Sitko, Rafal

    2008-01-01

    Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272)

  5. The application of X-ray fluorescence (XRF) method for the determination chemical composition of glass bath raw materials

    International Nuclear Information System (INIS)

    Werfel, Z.

    1974-01-01

    The estimation of determination accuracy of glass sand, limestone and dolomite compositions by the means of X-ray fluorescence method has been made. The most important advantage of XRF method application is short time of analysis. The preparation time of sample is not longer than 20 minutes, the analysis of single sample is about 1,5 minutes. The comparison of results of determinations by the means of XRF and complexometric methods have been given. (author)

  6. Study on methods of quantitative analysis of the biological thin samples in EM X-ray microanalysis

    International Nuclear Information System (INIS)

    Zhang Detian; Zhang Xuemin; He Kun; Yang Yi; Zhang Sa; Wang Baozhen

    2000-01-01

    Objective: To study the methods of quantitative analysis of the biological thin samples. Methods: Hall theory was used to study the qualitative analysis, background subtraction, peel off overlap peaks; external radiation and aberrance of spectra. Results: The results of reliable qualitative analysis and precise quantitative analysis were achieved. Conclusion: The methods for analysis of the biological thin samples in EM X-ray microanalysis can be used in biomedical research

  7. Pepsi-SAXS : an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles

    OpenAIRE

    Grudinin , Sergei; Garkavenko , Maria; Kazennov , Andrei

    2017-01-01

    International audience; A new method called Pepsi-SAXS is presented that calculates small-angle X-ray scattering profiles from atomistic models. The method is based on the multipole expansion scheme and is significantly faster compared with other tested methods. In particular, using the Nyquist–Shannon–Kotelnikov sampling theorem, the multipole expansion order is adapted to the size of the model and the resolution of the experimental data. It is argued that by using the adaptive expansion ord...

  8. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes

    International Nuclear Information System (INIS)

    Salamon, M.; Hanke, R.; Krueger, P.; Sukowski, F.; Uhlmann, N.; Voland, V.

    2008-01-01

    The EN 12543-5 describes a method for determining the focal spot size of microfocus X-ray tubes up to a minimum spot size of 5 μm. The wide application of X-ray tubes with even smaller focal spot sizes in computed tomography and radioscopy applications requires the evaluation of existing methods for focal spot sizes below 5 μm. In addition, new methods and conditions for determining submicron focal spot sizes have to be developed. For the evaluation and extension of the present methods to smaller focal spot sizes, different procedures in comparison with the existing EN 12543-5 were analyzed and applied, and the results are presented

  9. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    International Nuclear Information System (INIS)

    FEHL, DAVID LEE; BIGGS, F.; CHANDLER, GORDON A.; STYGAR, WILLIAM A.

    2000-01-01

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ((le)2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model

  10. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  11. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    Science.gov (United States)

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  12. Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition

    Science.gov (United States)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-02-01

    We describe a new attenuation correction method for fluorescent X-ray computed tomography (FXCT) applied to image nonradioactive contrast materials in vivo. The principle of the FXCT imaging is that of computed tomography of the first generation. Using monochromatized synchrotron radiation from the BLNE-5A bending-magnet beam line of Tristan Accumulation Ring in KEK, Japan, we studied phantoms with the FXCT method, and we succeeded in delineating a 4-mm-diameter channel filled with a 500 /spl mu/g I/ml iodine solution in a 20-mm-diameter acrylic cylindrical phantom. However, to detect smaller iodine concentrations, attenuation correction is needed. We present a correction method based on the equation representing the measurement process. The discretized equation system is solved by the least-squares method using the singular value decomposition. The attenuation correction method is applied to the projections by the Monte Carlo simulation and the experiment to confirm its effectiveness.

  13. Determination of solid surface composition by the X-ray fluorescence method under total external reflection with angular scanning

    International Nuclear Information System (INIS)

    Krasnolutskij, V.P.

    2000-01-01

    Possibilities of determination of composition of surface layers by X-ray fluorescence analysis under total reflection of incident radiation with angular scanning of a target are investigated. For the case of the GaAs target it is shown that the sensibility of this method is sufficient for a control of element composition in layer of thickness 1 nm. A simple method for solution of inverse task of analysis of a two component medium is considered [ru

  14. Shielding chalculations in x-rays installations for medical diagnosis. description of the method and computational solution

    International Nuclear Information System (INIS)

    Borroto Valdes, M.; Saez, D.G.

    1992-01-01

    Shielding requirements for x-rays diagnostic installations are investigated. The description of an entirely analytical method for calculation of thickness, based in the papers of Simpkin and NCRP49, is presented. Considerations described in specialized method to solving this problem. A program for microcomputer IBM and compatibles ones is available for estimation of minimum shielding requirements in lead, concrete and steel. Similar results were obtained from comparing with others authors

  15. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    Science.gov (United States)

    Kazantsev, Daniil; Jørgensen, Jakob S.; Andersen, Martin S.; Lionheart, William R. B.; Lee, Peter D.; Withers, Philip J.

    2018-06-01

    Rapid developments in photon-counting and energy-discriminating detectors have the potential to provide an additional spectral dimension to conventional x-ray grayscale imaging. Reconstructed spectroscopic tomographic data can be used to distinguish individual materials by characteristic absorption peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually correlated it can be advantageous to exploit this additional knowledge. In this paper, we propose a novel method which jointly reconstructs all energy channels while imposing a strong structural correlation. The core of the proposed algorithm is to employ a variational framework of parallel level sets to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction techniques including channel-wise total variation and correlative total nuclear variation regularization. Realistic simulation experiments demonstrate the performance improvements achievable by using correlative regularization methods.

  16. A method for visual inspection of welding by means of image processing of x-ray photograph

    International Nuclear Information System (INIS)

    Koshimizu, Hiroyasu; Yoshida, Tohru.

    1983-01-01

    Computer image processing is becoming a helpful tool even in industrial inspections. A computerized method for welding visual inspection is proposed in this paper. This method is based on computer image processing of X-ray photograph of welding, in which the appearance information of weldments such as shape of weld bead really exists. Structural patterns are extracted at first and seven computer measures for inspection are calculated using those patterns. Software system for visual inspection is constructed based on these seven measures. It was experimentally made clear that this system can provide a performance of more than 0.85 correlation to human visual inspection. As a result, the visual inspection by computer using X-ray photograph became a promising tool to realize objectivity and quantitativity of welding inspection. Additionally, the consistency of the system, the possibility to reduce computing costs, and so on are discussed to improve the proposed method. (author)

  17. The relative-intensity method of X-ray fluorescence analysis and its application to soils and rocks

    International Nuclear Information System (INIS)

    Childs, C.W.; Furkert, R.J.

    1974-01-01

    The relative-intensity X-ray fluorescence method of analysis of rock and soil samples has been investigated and compared with the net-intensity method. Strong, coherently scattered radiation originating from the X-ray tube is shown to be preferable to background radiation as an internal standard, and scattered radiation measured at one wavelength can usefully be applied in the determination of several elements. When the concentrations of an element in two soil samples of different composition (for example concretions and the soil adjacent to them) are compared, the ratio of the relative intensities may be different from the ratio of net intensities by a factor of about two. The concentrations of manganese in thirteen standard rock samples determined by the relative-intensity method are within or very close to the ranges of values reported previously

  18. Evaluation of physical property of light-weight soil with air foam using X-ray CT method

    International Nuclear Information System (INIS)

    Otani, Jun; Mukunoki, Toshifumi; Kikuchi, Yoshiaki

    2000-01-01

    The objective of this paper is to investigate the physical property of light-weight soil made of dredged slurry mixed with air foam and cement using X-ray CT method. In this study, not only the specimen made in laboratory but also the one sampled at the in-situ construction site were used and the property in the soil was visualized and the distributions of the density an air porosity were evaluated quantitatively using the results of CT scanning. Here, the method of image processing analysis was also used for this evaluation study. Based on the results obtained in this study, it is concluded that the X-ray CT method is a powerful tool even for geotechnical engineering and this makes not only the visualization but also the quantitative ion discussion possible for the light-weight soil with air foam. (author)

  19. The development of a postal method to assess X-ray beam parameters and image quality in dental radiology

    International Nuclear Information System (INIS)

    Fenton, D.M.

    1994-10-01

    Intraoral radiographs are an extremely valuable diagnostic tool in dentistry. Radiography permits the early detection and diagnosis of dental disease and consequently is used extensively. However, public concern about radiation exposure has increased in recent times. This concern is reflected in national and international law, to the extent that, the basic principles of radiological protection, that is, justification, optimisation and dose limitation are written into law. Furthermore, in Ireland, the regulations, as outlined in the Code of Practice for Radiological Protection in Dentistry, require intraoral dental X-ray machines to perform to certain standards. A report of a direct survey of 164 intraoral dental X-ray machines is given in this study. The survey covered mechanical, electrical as well as radiation safety. Inadequacies with respect to focus to skin distance and timer accuracy were found in 45% and 42% of the machines surveyed. Ninety eight machines were assessed for electrical safety in which 48% were found to be unsafe. The results indicate that a complete assessment of the performance of dental X-ray units in Ireland is required. However, as there are in excess of 800 dental X-ray machines located throughout the country, such an assessment would be very costly for the regulatory authority. The development of a postal method for the assessment of the performance of dental X-ray machines is described in this study. This postal method provides information on the kV, total filtration, beam width and timer linearity and is undertaken by means of a penetrameter and film envelopes for exposure to the X-ray set under examination, together with a questionnaire that requests information on environment in which the machine is located. Using this method an accuracy of +-5% of the actual value was achieved in the measurement of kVp. The penetrameter was also used to assess whether or not the filtration of a particular machine complies with the regulations. This

  20. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gabbasov, Raul, E-mail: gabbasov-raul@yandex.ru [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Polikarpov, Michael; Cherepanov, Valery [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chuev, Michael; Mischenko, Iliya; Lomov, Andrey [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Wang, Andrew [Ocean NanoTech. Springdale, AR (United States); Panchenko, Vladislav [National Research Center “Kurchatov Institute”, Moscow (Russian Federation)

    2015-04-15

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5–25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results. - Highlights: • KV parameter, obtained from Mössbauer spectra can be used for nanoparticle size characterization. • Mössbauer spectra of 10–25 nm nanoparticles can be effectively described by ferromagnetic model. • Surface impurities can cause incorrect nanoparticle size determination.

  1. Method and apparatus for digitally based high speed x-ray spectrometer

    International Nuclear Information System (INIS)

    Warburton, W.K.; Hubbard, B.

    1997-01-01

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ''hardwired'' processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs

  2. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  3. Criteria to stablish an absolute semiquantitative analytic method by x-ray fluorescence

    International Nuclear Information System (INIS)

    Echeverria, Fernando.

    1990-01-01

    This work had been developed by fluorescence x-ray laboratory of Nuclear Studies Centre form Ecuador, it pretent to stablish an appropiate discernement of a FRX spectrum to know the concentration range form sample elements, minerals principaly, submit to a FRX. The study tries to stablish the best way to calibration the instruments like the adecuate samples preparation to do the analysis by FRX

  4. Study of distribution of electron density in heteropolymolybdates by method of X-ray electron spectroscopy

    International Nuclear Information System (INIS)

    Molchanov, V.N.; Kazanskij, L.P.; Torchenkova, E.A.; Spitsyn, V.I.

    1978-01-01

    X-ray electron spectra of some iso- and heteropolymolybdates relating to different structure types are investigated to study electron structure of complex polyoxyion-heteropolyanions. Binding energies of Modsub(5/2) and 01s-electrons in iso- and heteropolycompounds line are measured and their interdependence is detected. The effective charge of oxygen and molybdenum atoms in heteropolymolybdates increases with decreasing a number of external sphere cations per an oxygen atom and a number of Mo=0 multiple bonds

  5. New methods of X-ray study of the rectum and colon in patients with constipation

    International Nuclear Information System (INIS)

    Zarodnyuk, I.V.; Tikhonov, A.A.; Sinyaeva, L.M.

    1998-01-01

    Rectal and colonic X-ray findings of 100 patients with constipation are presented. Modified irrigoscopic procedure using barium enema was used. This made it possible not only to determine the shape, dimensions, and position of the rectum and colon, but to reveal a number of anatomic and functional changes in the rectum and pelvic floor, which was helpful in choosing a treatment policy for patients with colonic evacuator dysfunction

  6. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  7. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  9. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    Science.gov (United States)

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  10. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    International Nuclear Information System (INIS)

    Grodzins, Lee; Niland, John

    2002-01-01

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60

  11. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Grodzins, Lee; Niland, John

    2002-05-23

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60.

  12. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    International Nuclear Information System (INIS)

    Keefe, L.J.; Lattman, E.E.; Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J.

    1992-01-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal α helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.)

  13. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, L.J.; Lattman, E.E. (Dept. of Biophysics and Biophysical Chemistry, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J. (Middle Atlantic Mass Spectrometry Lab., Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1992-04-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal {alpha} helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.).

  14. Device for monitoring X-ray radiation and method of using same

    International Nuclear Information System (INIS)

    Schaffer, D. L.

    1985-01-01

    Each of a plurality of thermoluminescent detectors (TLD's) is secured to one of a plurality of slides, which are removably mounted in a like plurality of pockets formed in a generally wallet-sized carrier to open on one edge thereof. One additional TLD is secured in a recess in one corner of the carrier to be exposed to all X-ray radiation which falls upon the carrier. Each slide is releasably secured in its associated pocket by means which prevents accidental removal of the side from the pocket. Whenever the owner of the carrier is subjected to an X-ray examination, he or she removes from the carrier one of the slides having thereon an unused TLD, and by a means of adhesive on the back of the slide adheres the associated TLD directly in the path of the X-ray radiation to which the patient is subjected during the examination. After the examination the slide is returned to its pocket in the carrier. Periodically the used TLD elements, as well as the non-removable TLD element, can be processed in a conventional manner to determine the total amount of radiation recorded by the respective elements. In one embodiment the removable slides are housed in lead-lined pockets and beneath a lead-lined, hinged cover member

  15. Monte Carlo method for dose calculation due to oral X-rays

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    1998-06-01

    The increasing utilization of oral X-rays, especially in youngsters and children, calls for the assessment of equivalent doses in their organs and tissues. With this purpose, a Monte Carlo code was adapted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM.FOR developed at the GSF-Germany) and the adapted program (MCDRO.PAS). Good agreement between results obtained with both codes was observed. Irradiations of the incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone narrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the larger the field area, the higher the dose in assessed organs and tissues. The variation of the source-skin distance does not change the conversion coefficients. On the other hand, the increase in the voltage applied to the X-ray tube causes an increase in the calculated conversion coefficients. (author)

  16. A method to test the performance of an energy-dispersive X-ray spectrometer (EDS).

    Science.gov (United States)

    Hodoroaba, Vasile-Dan; Procop, Mathias

    2014-10-01

    A test material for routine performance evaluation of energy-dispersive X-ray spectrometers (EDS) is presented. It consists of a synthetic, thick coating of C, Al, Mn, Cu, and Zr, in an elemental composition that provides interference-free characteristic X-ray lines of similar intensities at 10 kV scanning electron microscope voltage. The EDS energy resolution at the C-K, Mn-Lα, Cu-Lα, Al-K, Zr-Lα, and Mn-Kα lines, the calibration state of the energy scale, and the Mn-Lα/Mn-Kα intensity ratio as a measure for the low-energy detection efficiency are calculated by a dedicated software package from the 10 kV spectrum. Measurements at various input count rates and processor shaping times enable an estimation of the operation conditions for which the X-ray spectrum is not yet corrupted by pile-up events. Representative examples of EDS systems characterized with the test material and the related software are presented and discussed.

  17. A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies

    Science.gov (United States)

    Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael

    2012-01-01

    Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.

  18. Study of imperfect natural diamonds with the application of the X-ray synchrotron radiation (the 'Laue-SR' method)

    International Nuclear Information System (INIS)

    Rylov, G.M.; Yefimova, E.S.; Sobolev, N.V.; Kulipanov, G.N.; Kondratyev, V.I.; Tolochko, B.P.; Sharafutdinov, M.R.

    2001-01-01

    The 'Laue-SR' method has been realised for fast gathering experimental data in the study of imperfect natural and synthesised diamonds which are hard to investigate with the conventional X-ray methods. Time to obtain a diffraction pattern with the use of the polychromatic SR is shorter by several orders; the resolution of the image of substructure defects of a crystal lattice (as compared to the conventional Laue method) is improved by an order and does not vanish even at large disorientation or other non-coherent disturbances of the crystal lattice. The 'Laue-SR' method is especially appropriate for the study of intact, sufficiently large diamond crystals (up to 5 mm), since the diamond has a small coefficient of the X-ray absorption and is practically transparent in the operational range of the SR waves, λ=0.5-1.5 A. This method was shown to be applied successfully for an accelerated study of a large bulk of imperfect natural diamond crystals without any preliminary preparation and without their destruction, which enlarges the information output in the study and, besides that, increases significantly the efficiency of the work. X-ray 'Laue-SR' topograms of imperfect diamonds with different types of distortions of the crystal lattice by natural processes during the formation of the diamonds and by epigenetic impacts are shown

  19. The cosmological analysis of X-ray cluster surveys - I. A new method for interpreting number counts

    Science.gov (United States)

    Clerc, N.; Pierre, M.; Pacaud, F.; Sadibekova, T.

    2012-07-01

    We present a new method aimed at simplifying the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count rate). The basic principle is that even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modelling. We illustrate the methodology for the case of a 100-deg2XMM survey having a sensitivity of ˜10-14 erg s-1 cm-2 and fit at the same time, the survey selection function, the cluster evolutionary scaling relations and the cosmology; our sole assumption - driven by the limited size of the sample considered in the case study - is that the local cluster scaling relations are known. We devote special attention to the realistic modelling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate and hardness ratio (CR-HR) method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similar to the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but constrains better parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.

  20. On stream radioisotope X-ray fluorescence analyser and a method for the determination of copper in slurry

    International Nuclear Information System (INIS)

    Holynska, B.; Lankosz, M.; Lacki, E.; Ostachowicz, J.; Baran, W.; Owsiak, T.

    1975-01-01

    The paper presents an ''on stream'' analyser and a radioisotope X-ray fluorescence method for the continuous determination of copper content in feed 0.5-2.5% Cu, concentrates 15-25% Cu and tailings 0.01-0.03% Cu. The analyser consists essentially of a radioisotope X-ray fluorescence measuring head, γ-density gauge, electronic unit, analog processor and recorders. The method is based on the measurement of the characteristic radiation of Cu series, selected by nickel-cobalt filters. The total relative error (1s) of the determination of copper in feed is 6-8%, in concentrates 5-7% and in tailings about 18%. The ''on stream'' analyser has been succesfully operated in a pilot plant. (author)

  1. Operation method of the X-ray equipment for the investigation of the ballooning of LWR-fuel rod simulators

    International Nuclear Information System (INIS)

    Mueller, S.; Thun, G.

    1977-06-01

    An X-Ray-equipment is described which has been selected and assembled for the recording of fuel rod simulator-deformations during a loss of coolant accident using a movie technique. With this method it is possible to observe and record the ballooning of the simulator under conditions similar to those in a reactor. Some typical pictures are shown which show that the quality is high enough to allow a quantitative evaluation of the ballooning as a function of time. (orig.) [de

  2. Determination of the Modulation Transfer Function of Screen-Film Combinations in X-ray photography by the grating method

    International Nuclear Information System (INIS)

    Hoeschen, D.

    1987-01-01

    An intercomparison experiment concerning the determination of the Modulation Transfer Function (MTF) of Screen-Film Combinations in x-ray photography by the grating method was made. Six laboratories located in four countries participated. Each laboratory has used its own, individually developed measurement procedure. The results have shown a surprisingly good agreement, the standard deviation (1 σ value) of MTF values reported by the different laboratories was about ± 0.02

  3. Computational Methods for Nanoscale X-ray Computed Tomography Image Analysis of Fuel Cell and Battery Materials

    Science.gov (United States)

    Kumar, Arjun S.

    Over the last fifteen years, there has been a rapid growth in the use of high resolution X-ray computed tomography (HRXCT) imaging in material science applications. We use it at nanoscale resolutions up to 50 nm (nano-CT) for key research problems in large scale operation of polymer electrolyte membrane fuel cells (PEMFC) and lithium-ion (Li-ion) batteries in automotive applications. PEMFC are clean energy sources that electrochemically react with hydrogen gas to produce water and electricity. To reduce their costs, capturing their electrode nanostructure has become significant in modeling and optimizing their performance. For Li-ion batteries, a key challenge in increasing their scope for the automotive industry is Li metal dendrite growth. Li dendrites are structures of lithium with 100 nm features of interest that can grow chaotically within a battery and eventually lead to a short-circuit. HRXCT imaging is an effective diagnostics tool for such applications as it is a non-destructive method of capturing the 3D internal X-ray absorption coefficient of materials from a large series of 2D X-ray projections. Despite a recent push to use HRXCT for quantitative information on material samples, there is a relative dearth of computational tools in nano-CT image processing and analysis. Hence, we focus on developing computational methods for nano-CT image analysis of fuel cell and battery materials as required by the limitations in material samples and the imaging environment. The first problem we address is the segmentation of nano-CT Zernike phase contrast images. Nano-CT instruments are equipped with Zernike phase contrast optics to distinguish materials with a low difference in X-ray absorption coefficient by phase shifting the X-ray wave that is not diffracted by the sample. However, it creates image artifacts that hinder the use of traditional image segmentation techniques. To restore such images, we setup an inverse problem by modeling the X-ray phase contrast

  4. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  5. Medical x-ray

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Gui Ah Auu; Husaini Salleh; Idris Besar; Mohd Ashhar Khalid; Muhammad Jamal Md Isa; Shaharuddin Mohd; Siti Najila Mohd Janib; Mohamed Ali Abdul Khader; Mahalatchimi Dave; Mohd Fazly Abdul Rahim; Ng Chee Moon; Ram Piari; Teoh Hoon Heng; Lee Peter

    2004-01-01

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  6. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of Bone X-ray (Radiography)? ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  9. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method

    International Nuclear Information System (INIS)

    Grimbergen, T.W.M.; Dijk, E. van; Vries, W. de

    1998-01-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range. (author)

  10. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nimwegen, Frederika A. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Cutter, David J. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford (United Kingdom); Schaapveld, Michael [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Rutten, Annemarieke [Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kooijman, Karen [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Krol, Augustinus D.G. [Department of Radiation Oncology, Leiden University Medical Center, Leiden (Netherlands); Janus, Cécile P.M. [Department of Radiation Oncology, Erasmus MC Cancer Center, Rotterdam (Netherlands); Darby, Sarah C. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Leeuwen, Flora E. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Aleman, Berthe M.P., E-mail: b.aleman@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-05-01

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  11. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method

    International Nuclear Information System (INIS)

    Grau Carles, A.; Garcia Gomez-Tejedor, G.

    2001-01-01

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs

  12. X-ray absorption spectroscopy of ultramarine pigments: A new analytical method for the polysulfide radical anion S3- chromophore

    International Nuclear Information System (INIS)

    Fleet, Michael E.; Liu, Xi

    2010-01-01

    Blue and mauve ultramarine artists' pigments and their heat-treated products have been investigated by sulfur K-edge X-ray absorption. X-ray absorption near-edge structure spectra are dominated by features of reduced sulfur and sulfate species. There is also a pre-peak at about 2468.0 eV which reflects the presence of the unpaired electron on the polysulfide radical anion (S 3 - ). Pre-peak intensity is directly proportional to the depth of blue coloration, and provides a new, independent method for estimating the proportion of ultramarine cage sites occupied by the blue chromophore. The occupancy of the polysulfide radical anion S 3 - is estimated to be 33% in an intense ultramarine blue pigment, 22% in a dark blue ultramarine pigment, and 1% in deep royal blue lazurite from Afghanistan. The more efficient development of color in lazurite is attributed to extensive annealing of the mineral structure in the natural environment.

  13. Study of the analytical method based on charged particle excitation of elements and detection on the characteristic X-rays

    International Nuclear Information System (INIS)

    Poncet, Maryse; Engelmann, Charles

    1975-01-01

    Preliminary results obtained by bombarding thick or thin targets with protons of energies below 1.5 MeV are presented. In the former case, curves representing X-ray emission versus proton energy (between 0.4 and 1.4MeV) were determined for 12 elements (Al, Ti, V, Fe, Ni, Cu, Nb, Ag, Sn, W, Au, Pb). From these curves the variation in detection sensitivity with atomic number for a given energy was derived. For some elements (Cu, Ag, Sn, Pb), deposited in thin layers on a aluminium substrate, the X-ray emission was studied as a function of thickness at constant energy. The results show that the method may be used to determine elements of atomic number near 30, in thin layers at least 200μg.cm -2 thick, with a detection limit which could reach a few 10 -3 μg.cm -2 [fr

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  15. X-ray Tomography and Impregnation Methods to Analyze Pore Space Hetrerogeneities at the Hydrated State

    International Nuclear Information System (INIS)

    Pret, D.; Ferrage, E.; Tertre, E.; Robinet, J.C.; Faurel, M.; Hubert, F.; Pelletier, M.; Bihannic, I.

    2013-01-01

    decimetre sample in constrained volume conditions and with a resin fixing the clay as in i ts hydrated state. Such preparation allows a down-scaling characterization of the pore space heterogeneities when using laboratory and synchrotron X-Ray μtomography (μCT) by facilitating sub-sampling. In order to reveal the interest/limitations of this 3D non-destructive imaging technique, a few comparisons will be done with other 2D techniques for the same samples. Finally, as X-Ray beams are well adapted to wet samples, we report a characterization of the pore space/water distribution upon hydration for pure swelling clay media at different scales

  16. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    Science.gov (United States)

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a

  17. Flux decay during thermonuclear X-ray bursts analysed with the dynamic power-law index method

    Science.gov (United States)

    Kuuttila, J.; Kajava, J. J. E.; Nättilä, J.; Motta, S. E.; Sánchez-Fernández, C.; Kuulkers, E.; Cumming, A.; Poutanen, J.

    2017-08-01

    The cooling of type-I X-ray bursts can be used to probe the nuclear burning conditions in neutron star envelopes. The flux decay of the bursts has been traditionally modelled with an exponential, even if theoretical considerations predict power-law-like decays. We have analysed a total of 540 type-I X-ray bursts from five low-mass X-ray binaries observed with the Rossi X-ray Timing Explorer. We grouped the bursts according to the source spectral state during which they were observed (hard or soft), flagging those bursts that showed signs of photospheric radius expansion (PRE). The decay phase of all the bursts were then fitted with a dynamic power-law index method. This method provides a new way of probing the chemical composition of the accreted material. Our results show that in the hydrogen-rich sources the power-law decay index is variable during the burst tails and that simple cooling models qualitatively describe the cooling of presumably helium-rich sources 4U 1728-34 and 3A 1820-303. The cooling in the hydrogen-rich sources 4U 1608-52, 4U 1636-536, and GS 1826-24, instead, is clearly different and depends on the spectral states and whether PRE occurred or not. Especially the hard state bursts behave differently than the models predict, exhibiting a peculiar rise in the cooling index at low burst fluxes, which suggests that the cooling in the tail is much faster than expected. Our results indicate that the drivers of the bursting behaviour are not only the accretion rate and chemical composition of the accreted material, but also the cooling that is somehow linked to the spectral states. The latter suggests that the properties of the burning layers deep in the neutron star envelope might be impacted differently depending on the spectral state.

  18. X-ray diagnostic in gas discharge

    International Nuclear Information System (INIS)

    Chen Suhe; Wang Dalun; Cui Gaoxian; Wang Mei; Fu Yibei; Zhang Xinwei; Zhang Wushou

    1995-01-01

    X rays were observed when the anomalous phenomenon in the metal loaded with deuterium studied by the gas-discharge method. Therefore the X-ray energy spectra were measured by the absorption method, the specific X-ray approach and the NaI scintillation counter, while X-ray intensity was estimated by using 7 Li thermoluminescent foils. The X-ray average energy measured by the absorption method is 27.6 +- 2.1 keV, which is fitted within the error extent to 26.0 +-2.4 keV monoenergetic X rays measured by the NaI scintillation counter

  19. Methods of X-ray CT image reconstruction from few projections

    International Nuclear Information System (INIS)

    Wang, H.

    2011-01-01

    To improve the safety (low dose) and the productivity (fast acquisition) of a X-ray CT system, we want to reconstruct a high quality image from a small number of projections. The classical reconstruction algorithms generally fail since the reconstruction procedure is unstable and suffers from artifacts. A new approach based on the recently developed 'Compressed Sensing' (CS) theory assumes that the unknown image is in some sense 'sparse' or 'compressible', and the reconstruction is formulated through a non linear optimization problem (TV/l1 minimization) by enhancing the sparsity. Using the pixel (or voxel in 3D) as basis, to apply the CS framework in CT one usually needs a 'sparsifying' transform, and combines it with the 'X-ray projector' which applies on the pixel image. In this thesis, we have adapted a 'CT-friendly' radial basis of Gaussian family called 'blob' to the CS-CT framework. The blob has better space-frequency localization properties than the pixel, and many operations, such as the X-ray transform, can be evaluated analytically and are highly parallelizable (on GPU platform). Compared to the classical Kaisser-Bessel blob, the new basis has a multi-scale structure: an image is the sum of dilated and translated radial Mexican hat functions. The typical medical objects are compressible under this basis, so the sparse representation system used in the ordinary CS algorithms is no more needed. 2D simulations show that the existing TV and l1 algorithms are more efficient and the reconstructions have better visual quality than the equivalent approach based on the pixel or wavelet basis. The new approach has also been validated on 2D experimental data, where we have observed that in general the number of projections can be reduced to about 50%, without compromising the image quality. (author) [fr

  20. Heavy metals analysis in blood by the X-ray fluorescence method

    International Nuclear Information System (INIS)

    Perez Novara, Ana Ma.

    1988-05-01

    The analytical procedure for determination of heavy metals in blood is described. Blood was taken from active smelter workers, samples were stored in special flasks at 2 grades C. After freeze drying, dried samples was analyzed using X-ray fluorescence, sources excited: Pu-238 and Cd-109 was used. Br in Pb interferences were corrected. The agreement of the results with values in similar workers is satisfactory Median Pb level was 42.6 micro grams/100 ml (total blood), Cu was less 2.5 micro grams/g (dry blood) and Zn was 11 micro grams/g (dry blood). (author)

  1. Separation of substandard tin ores by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Kotler, N.I.; Konovalov, V.M.; Kamenskij, Yu.V.; Neverov, A.D.; Ogorodnikov, Yu.V.

    1987-01-01

    Analysis of pure tin ores on X-ray fluorescence separation (XFS) is carried out. The volumes of lump sampling are substantiated; several variants of technical and economical efficiency of XFS application have been calculated. It is shown that at XFS of -400+25 mm classes conditional as to tin content intermediate product with high efficiency factor may be prepared. Separation of -25+10 mm class is unsuitable, as it doesn't allow to increase tin content to conditional, and the process efficiency is low

  2. An X-ray fluorescence method for the determination of small quantities of elements collected on filters

    International Nuclear Information System (INIS)

    Bayon, A.; Diaz-Guerra, J.P.

    1981-01-01

    An X-ray fluorescence method for the determination of As, Ba, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, U, V and Zn collected on P.V.C. filters in concentration ranges from 0,6 to 1000 μg, depending on the element, is described. A sequential automatic spectrometer with a chromium tube is used for the Ba determination, while As, Hg, Pb, Se and U are better determined with a molybdenum one. For the rest of the elements a tungsten target is prefered. The interferences between AsKαsub(1,2) - PbLαsub(1,2) and CrKαsub(1,2) - Vkβsub(1,3) lines are corrected by applyng specific coefficients. The radial variation of the primary X-ray beam intensity on the irradiated surface has been specially studied with chromium, gold, molybdenum and tungsten tubes. For that purpose different X-ray wavelengths in the range 9,89 A to 0,56 A have been selected. The curves obtained show a rather high heterogeneity for the excitation source. This conclusion implies the need for an homogeneous distribution of elements on the filter. (author)

  3. An X-ray fluorescence method for the determination of small quantities el elements collected on filters

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.

    1981-01-01

    An X-ray fluorescence method for the determination of As, Ba, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, U, V and Zn collected on P.V.C. filters in concentration ranges from 0,6 to 1000μg, depending on the element, is described. A sequential automatic spectrometer with a chromium tube is used for tho Ba determination, while As, Hg, Pb, Se and U are bottler determined with a molybdenum one. For the rest of the elements a tungsten target is preferred. The interferences between AsK α 1 ,2- PbL α 1 ,2 and CrK α 1 ,2-Vkβ 1 ,3 lines are corrected by applying specific coefficients. The radial variation of the primary X-ray beam intensity on the irradiated surface has been specially studied with chromium, gold, molybdenum and tungsten tubes. For that purpose different x-ray wavelengths in the range 9,89 A to 0,56 A have been selected. The curves obtained show a rather high heterogeneity for the excitation source. This conclusion implies the need for an homogeneous distribution of elements on the filter. (Author) 7 refs

  4. Background estimation in short-wave region during determination of total sample composition by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Simakov, V.A.; Kordyukov, S.V.; Petrov, E.N.

    1988-01-01

    Method of background estimation in short-wave spectral region during determination of total sample composition by X-ray fluorescence method is described. 13 types of different rocks with considerable variations of base composition and Zr, Nb, Th, U content below 7x10 -3 % are investigated. The suggested method of background accounting provides for a less statistical error of the background estimation than direct isolated measurement and reliability of its determination in a short-wave region independent on the sample base. Possibilities of suggested method for artificial mixtures conforming by the content of main component to technological concemtrates - niobium, zirconium, tantalum are estimated

  5. X-ray spectrum analysis of multi-component samples by a method of fundamental parameters using empirical ratios

    International Nuclear Information System (INIS)

    Karmanov, V.I.

    1986-01-01

    A type of the fundamental parameter method based on empirical relation of corrections for absorption and additional-excitation with absorbing characteristics of samples is suggested. The method is used for X-ray fluorescence analysis of multi-component samples of charges of welded electrodes. It is shown that application of the method is justified only for determination of titanium, calcium and silicon content in charges taking into account only corrections for absorption. Irn and manganese content can be calculated by the simple method of the external standard

  6. Structure analysis of InN film using extended X-ray absorption fine structure method

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, T.; Kobayashi, T.; Hirata, S. [Core Technology Development Center, Core Technology and Network Company, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan); Kudo, Y.; Liu, K.L. [Technology Solutions Center, Sony Corporation, 4-16-1 Okata, Atsugi, Kanagawa 243-0021 (Japan); Uruga, T.; Honma, T. [Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Hyogo 679-5198 (Japan); Saito, Y.; Hori, M.; Nanishi, Y. [Department of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan)

    2002-12-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d{sub In-N}=0.215 nm and d{sub In-In}=0.353 nm, respectively. The In-N bond length of d{sub In-In}=0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  7. Structure analysis of InN film using extended X-ray absorption fine structure method

    International Nuclear Information System (INIS)

    Miyajima, T.; Kobayashi, T.; Hirata, S.; Kudo, Y.; Liu, K.L.; Uruga, T.; Honma, T.; Saito, Y.; Hori, M.; Nanishi, Y.

    2002-01-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d In-N =0.215 nm and d In-In =0.353 nm, respectively. The In-N bond length of d In-In =0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  9. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  10. Evaluation of X-ray shielding performance of protective aprons

    International Nuclear Information System (INIS)

    Kumagai, Michitomo; Shintani, Mitsuo; Kuranishi, Makoto

    1999-01-01

    Lead equivalent, which offers protection against x-rays, is rated with a 100 kV tube voltage in Japanese Industrial Standard (JIS) Z 4501-1988, Testing method of lead equivalent for x-ray protective devices.'' However, the actual tube voltage in general diagnostic examinations (normal to special radiography; including computed tomography, CT) is 50 to 150 kV. Therefore, we measured whether the performance of current lead aprons (three products) and protective aprons using composite materials (two products) changes at 60 to 141 kV of tube voltage. Furthermore, we evaluated x-ray shielding performance by measuring the transmission ratio of scattered x-rays. The lead equivalent of two currently used lead aprons was almost the same at all voltages. However, in one currently used lead apron and both protective aprons made of composite materials, lead equivalent decreased rapidly when tube voltage exceeded 100 kV. The transmission ratio of scattered x-rays increased with increasing tube voltage in all of the protective aprons examined. Further, in all aprons examined, the transmission ratio of scattered x-rays declined with widening of the scatter angle. As mentioned above, the x-ray shielding performance of some x-ray protective aprons suddenly decreased at tube voltages over 100 kV. Thus the performance of x-ray protective aprons should be published, and JIS Z 4501 needs to be revised. (author)

  11. Evaluation of X-ray shielding performance of protective aprons

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Michitomo; Shintani, Mitsuo; Kuranishi, Makoto [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    1999-04-01

    Lead equivalent, which offers protection against x-rays, is rated with a 100 kV tube voltage in Japanese Industrial Standard (JIS) Z 4501-1988, Testing method of lead equivalent for x-ray protective devices.`` However, the actual tube voltage in general diagnostic examinations (normal to special radiography; including computed tomography, CT) is 50 to 150 kV. Therefore, we measured whether the performance of current lead aprons (three products) and protective aprons using composite materials (two products) changes at 60 to 141 kV of tube voltage. Furthermore, we evaluated x-ray shielding performance by measuring the transmission ratio of scattered x-rays. The lead equivalent of two currently used lead aprons was almost the same at all voltages. However, in one currently used lead apron and both protective aprons made of composite materials, lead equivalent decreased rapidly when tube voltage exceeded 100 kV. The transmission ratio of scattered x-rays increased with increasing tube voltage in all of the protective aprons examined. Further, in all aprons examined, the transmission ratio of scattered x-rays declined with widening of the scatter angle. As mentioned above, the x-ray shielding performance of some x-ray protective aprons suddenly decreased at tube voltages over 100 kV. Thus the performance of x-ray protective aprons should be published, and JIS Z 4501 needs to be revised. (author)

  12. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  13. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  14. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  15. Provenance studies of archaeological ceramics from Mar-Takla (Ain-Minin, Syria) using radioisotope X-ray fluorescence method

    International Nuclear Information System (INIS)

    Bakraji, E.H.; Othman, I.; Karajou, J.

    2001-01-01

    The radioisotope X-ray fluorescence method was applied to studies of the provenance of the ceramics fragments originated from the Mar-Takla site in Syria. The samples were irradiated 1000s by a 109 Cd radioisotope source and 13 elements (Ca, Ti, Mn, Fe, Zn, Ga, As, Rb, Sr, Y, Zr and Pb) were determined in 35 samples. The data were subjected to two multivariate statistical methods, cluster and principal components analysis (PCA). It was shown from the combination of the statistical techniques and the determination of elemental composition of the samples that 94% of the ceramic samples analyzed can be considered to be manufactured using two sources of raw materials

  16. Provenance studies of archaeological ceramics from Mar-Takla (Ain-Minin, Syria) using radioisotope x-ray fluorescence method

    International Nuclear Information System (INIS)

    Bakraji, E. H.; Karajou, J.; Othman, I.

    2002-01-01

    The radioisotope x-ray fluorescence method was applied to provenance studies of ceramics fragments originated from the Mar-Takla site in Syria. 35 samples were analyzed, where each sample was irradiated 1000 s by sup 1 sup 0 sup 9 Cd radioisotope source and the elements (As, Ca, fe, Ga, Nb, Mn, Pb, Rb, Sr, Ti, Y, Zn, and Zr) were determined. The data were subjected to two multivariate statistical methods, cluster and principal component analysis (PCA). The study show that 94% of the samples can be considered to be manufactured using two sources of raw materials. (Authors)

  17. An X-ray fluorescence method for the determination of Ba, Sr, Mo and Bi in thorium oxide

    International Nuclear Information System (INIS)

    Dixit, R.M.; Deshpande, S.S.

    1988-01-01

    A simple and rapid X-ray fluorescence method for the determination of Ba, Sr, Mo and Bi in thoria is described. Thorium oxide samples are dry-mixed thoroughly with pure boric acid in the ratio of 9:1. One gram of mixture is pressed as a double layer over a primary boric acid pellet. The precision and accuracy of the method have been determined. The power limits of detection are found to be around 20 ppm for most analytes. (author). 5 tables

  18. Analysis of x-ray reflectivity data from low-contrast polymer bilayer systems using a Fourier method

    International Nuclear Information System (INIS)

    Seeck, O. H.; Kaendler, I. D.; Tolan, M.; Shin, K.; Rafailovich, M. H.; Sokolov, J.; Kolb, R.

    2000-01-01

    X-ray reflectivity data of polymer bilayer systems have been analyzed using a Fourier method which takes into account different limits of integration in q-space. It is demonstrated that the interfacial parameters can be determined with high accuracy although the difference in the electron density (the contrast) of the two polymers is extremely small. This method is not restricted to soft-matter thin films. It can be applied to any reflectivity data from low-contrast layer systems. (c) 2000 American Institute of Physics

  19. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    Science.gov (United States)

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  20. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  1. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  2. Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kerber, Pranita; Porter, Lisa M.; McCullough, Lynne A.; Kowalewski, Tomasz; Engelhard, Mark; Baer, Donald [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Chemistry Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2012-11-15

    Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of diblock copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, 177 (2009)]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of diblock copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) at two different temperatures were carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % nitrogen was present in the films pyrolyzed at 600 Degree-Sign C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration decreased significantly for films pyrolyzed at 900 Degree-Sign C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen subpeaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic clusters, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 Degree-Sign C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.

  3. Method for obtaining silver nanoparticle concentrations within a porous medium via synchrotron X-ray computed microtomography.

    Science.gov (United States)

    Molnar, Ian L; Willson, Clinton S; O'Carroll, Denis M; Rivers, Mark L; Gerhard, Jason I

    2014-01-21

    Attempts at understanding nanoparticle fate and transport in the subsurface environment are currently hindered by an inability to quantify nanoparticle behavior at the pore scale (within and between pores) within realistic pore networks. This paper is the first to present a method for high resolution quantification of silver nanoparticle (nAg) concentrations within porous media under controlled experimental conditions. This method makes it possible to extract silver nanoparticle concentrations within individual pores in static and quasi-dynamic (i.e., transport) systems. Quantification is achieved by employing absorption-edge synchrotron X-ray computed microtomography (SXCMT) and an extension of the Beer-Lambert law. Three-dimensional maps of X-ray mass linear attenuation are converted to SXCMT-determined nAg concentration and are found to closely match the concentrations determined by ICP analysis. In addition, factors affecting the quality of the SXCMT-determined results are investigated: 1) The acquisition of an additional above-edge data set reduced the standard deviation of SXCMT-determined concentrations; 2) X-ray refraction at the grain/water interface artificially depresses the SXCMT-determined concentrations within 18.1 μm of a grain surface; 3) By treating the approximately 20 × 10(6) voxels within each data set statistically (i.e., averaging), a high level of confidence in the SXCMT-determined mean concentrations can be obtained. This novel method provides the means to examine a wide range of properties related to nanoparticle transport in controlled laboratory porous medium experiments.

  4. A computer programme for use in the development of multi-element x-ray-fluorescence methods of analysis

    International Nuclear Information System (INIS)

    Wall, G.J.

    1985-01-01

    A computer programme (written in BASIC) is described for the evaluation of spectral-line intensities in X-ray-fluorescence spectrometry. The programme is designed to assist the analyst while he is developing new analytical methods, because it facilitates the selection of the following evaluation parameters: calculation models, spectral-line correction factors, calibration curves, calibration ranges, and point deletions. In addition, the programme enables the analyst to undertake routine calculations of data from multi-element analyses in which variable data-reduction parameters are used for each element

  5. A new method of explosive detection based on dual-energy X-ray technology and forward-scattering

    International Nuclear Information System (INIS)

    Zhao Kun; Li Jianmin

    2004-01-01

    Based on dual-energy X-ray technology combined with forward-scattering, a brand new explosive detection method is presented. Dual-energy technology can give the information on the effective atomic number (Z eff ) of an irradiated component, while the intensity of the forward scattered photons can reveal the density information according to our research. Therefore, the existence of the explosive can be effectively identified by combining these two characteristic quantities. Compared with the earlier inspection approaches, the new one has a series of particular advantages, such as high detection rate, low false alarm rate, automatic alarm and so forth. The project is ongoing. (authors)

  6. Study of an X-ray fluorescence thin film method for the determination of uranium in low activity solutions

    International Nuclear Information System (INIS)

    Diaz-Guerra, J. P.

    1980-01-01

    The application of the X-ray fluorescence thin film technique to the uranium determination in nitric solutions for a concentration range from 1 g/l to 100 g/l and activity levels under 5 mCi/ml is studied. The most suited excitation and measurement conditions are also studied and the uranium matrix effect correction, which is performed through the double dilution, α U U interaction coefficient calculation and internal standard methods, is discussed. The specimen preparation is satisfactorily accomplished by using P.V.C. filters fixed on aluminium supports. (Author) 18 refs

  7. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.

    Science.gov (United States)

    Sitko, Rafal; Zawisza, Beata; Kowalewska, Zofia; Kocot, Karina; Polowniak, Marzena

    2011-09-30

    The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of

  8. Phase-based x-ray scattering—A possible method to detect cancer cells in a very early stage

    Energy Technology Data Exchange (ETDEWEB)

    Feye-Treimer, U., E-mail: feye-treimer@helmholtz-berlin.de; Treimer, W. [Department of Mathematics, Physics and Chemistry, University of Applied Sciences, D-13353 Berlin, Germany and Joint Department G-GTOMO, Helmholtz Zentrum fuer Materialien und Energie Berlin, D-14109 Berlin (Germany)

    2014-05-15

    Purpose: This theoretical work contains a detailed investigation of the potential and sensitivity of phase-based x-ray scattering for cancer detection in biopsies if cancer is in a very early stage of development. Methods: Cancer cells in their early stage of development differ from healthy ones mainly due to their faster growing cell nuclei and the enlargement of their densities. This growth is accompanied by an altered nucleus–plasma relation for the benefit of the cell nuclei, that changes the physical properties especially the index of refraction of the cell and the one of the cell nuclei. Interaction of radiation with matter is known to be highly sensitive to small changes of the index of refraction of matter; therefore a detection of such changes of volume and density of cell nuclei by means of high angular resolved phase-based scattering of x rays might provide a technique to distinguish malignant cells from healthy ones ifthe cell–cell nucleus system is considered as a coherent phase shifting object. Then one can observe from a thin biopsy which represents a monolayer of cells (no multiple scattering) that phase-based x-ray scattering curves from healthy cells differ from those of cancer cells in their early stage of development. Results: Detailed calculations of x-ray scattering patterns from healthy and cancer cell nuclei yield graphs and numbers with which one can distinguish healthy cells from cancer ones, taking into account that both kinds of cells occur in a tissue within a range of size and density. One important result is the role and the influence of the (lateral) coherence width of the radiation on the scattering curves and the sensitivity of phase-based scattering for cancer detection. A major result is that a larger coherence width yields a larger sensitivity for cancer detection. Further import results are calculated limits for critical sizes and densities of cell nuclei in order to attribute the investigated tissue to be healthy or

  9. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Burion, Steve; Funk, Tobias; Speidel, Michael A.

    2013-01-01

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm 2 , calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 ± 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without compromising

  10. Study of Fe-Ni-Si-B alloy and films on its base by X-ray photospectroscopy method

    International Nuclear Information System (INIS)

    Kozlenko, V.G.; Parfenenok, M.A.; Pukhov, I.K.; Shaposhnikov, A.N.; Shirkov, A.V.

    1983-01-01

    By the method of X ray photoelectron spectroscopy the chemical composition of Fe-Ni-Si-B alloy and films on its base prepared by ion-plasma sputtering is investigated. The identity of chemical bonds in film samples and initial target is revealed, realized are in them mostly Fe-B, Ni-C, Si-Si interatomic bonds. It is shown that lono. films contact with atmosphere is the cause of difference of film composition in the near-surface region (up to 100 nm) from its main volume composition

  11. Study on radiation-induced defects in germanium monocrystals by the X-ray diffusive scattering method

    International Nuclear Information System (INIS)

    Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.

    1979-01-01

    The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed

  12. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Bennun, L.; Greaves, E.D.; Barros, H.; Diaz-Valdes, J.

    2009-01-01

    A method for thickness determination of thin amalgamable metallic films by total-reflection X-ray fluorescence (TXRF) is presented. The peak's intensity in TXRF spectra are directly related to the surface density of the sample, i.e. to its thickness in a homogeneous film. Performing a traditional TXRF analysis on a thin film of an amalgamated metal, and determining the relative peak intensity of a specific metal line, the layer thickness can be precisely obtained. In the case of gold thickness determination, mercury and gold peaks overlap, hence we have developed a general data processing scheme to achieve the most precise results.

  13. Evaluation of a X-ray imaging method in micro-fluidics: the case of T-shaped micro-channels filling up

    International Nuclear Information System (INIS)

    Vabre, A.; Legoupil, S.; Manach, E.; Gal, O.; Colin, St.; Geoffroy, S.; Gue, A.M.

    2006-01-01

    X-rays methods assessment in micro-fluidics: case of 'T' shaped microchannels filling. Fluid flows within 'T' or 'Y' shaped microchannels are deeply studied in order to develop adapted modeling approaches and experimental techniques. Our technological choice lies on the attenuation measurement of X-ray in matter. The main advantage of this non-intrusive technique is to be implemented on media opaque to visible light. Moreover, X-rays methods may achieve better spatial resolutions as compared to optical methods because of their much lower wavelength. In order to validate this X-ray method, measurements obtained by this technique are compared with direct measurements carried out on similar microchannels. Finally, experimental results are compared with a theoretical model. (author)

  14. Study of imperfect natural diamonds with the application of the X-ray synchrotron radiation (the 'Laue-SR' method)

    CERN Document Server

    Rylov, G M; Sobolev, N V; Kulipanov, G N; Kondratyev, V I; Tolochko, B P; Sharafutdinov, M R

    2001-01-01

    The 'Laue-SR' method has been realised for fast gathering experimental data in the study of imperfect natural and synthesised diamonds which are hard to investigate with the conventional X-ray methods. Time to obtain a diffraction pattern with the use of the polychromatic SR is shorter by several orders; the resolution of the image of substructure defects of a crystal lattice (as compared to the conventional Laue method) is improved by an order and does not vanish even at large disorientation or other non-coherent disturbances of the crystal lattice. The 'Laue-SR' method is especially appropriate for the study of intact, sufficiently large diamond crystals (up to 5 mm), since the diamond has a small coefficient of the X-ray absorption and is practically transparent in the operational range of the SR waves, lambda=0.5-1.5 A. This method was shown to be applied successfully for an accelerated study of a large bulk of imperfect natural diamond crystals without any preliminary preparation and without their destru...

  15. Determination of iron and titanium in kaolins by the method of non-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Bialy, N.; Kierzek, J.; Parus, J.

    1976-01-01

    The possibility of application of the radioactive source excited X-ray fluorescence analysis for titanium and iron determination in kaolins to the routine test of the refinement process has been studied. The iron content can be determined with a simple counting system using a single-channel pulse height analyser, argon filled proportional counter and 109 Cd source of 3 mCi for the excitation of K Fe rays. The samples were analyzed both as pellets and powders. The iron content ranged from 0.2-2.5% and titanium from 0.1-0.64%. The best values of precision and determination limit have been achieved for iron with 238 Pu and for titanium with 55 Fe. The precision and accuracy of the X-ray fluorescence method of iron and titanium determination in kaolins are comparable to those of the chemical method. For the simultaneous iron and titanium determination in the discussed region of concentration it is the most advantageous to use the plutonium source with the activity of several tens of mCi and Si(Li) detector with a moderate resolution (250-300 eV for 5.9 keV). The time of the analysis carried out by the described method is several times shorter than the chemical method. The apparatus used in this method is relatively simple, the sample preparation does not require any chemical treatment and the cost of labour of the sample preparation is minimal. (T.G.)

  16. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  17. X-ray radiotherapy

    International Nuclear Information System (INIS)

    Tronc, D.

    1995-01-01

    Full text: The most common form of radio therapy is X-ray therapy, where a beam of photons or their parent electrons break down hydrogen bonds within the body's cells and remove certain DNA information necessary for cell multiplication. This process can eradicate malignant cells leading to complete recovery, to the remission of some cancers, or at least to a degree of pain relief. The radiotherapy instrument is usually an electron linac, and the electrons are used either directly in 'electrotherapy' for some 10% of patients, or the electrons bombard a conversion target creating a broad beam of high energy photons or 'penetration X-rays'. The simplest machine consists of several accelerating sections at around 3 GHz, accelerating electrons to 6 MeV; a cooled tungsten target is used to produce a 4 Gray/min X-ray field which can be collimated into a rectangular shape at the patient position. This tiny linac is mounted inside a rotating isocentric gantry above the patient who must remain perfectly still. Several convergent beams can also be used to increase the delivered dose. More sophisticated accelerators operate at up to 18 MeV to increase penetration depths and decrease skin exposure. Alternatively, electrotherapy can be used with different energies for lower and variable penetration depths - approximately 0.5 cm per MeV. In this way surface tissue may be treated without affecting deeper and more critical anatomical regions. This type of linac, 1 to 2 metres long, is mounted parallel to the patient with a bending magnet to direct the beam to the radiotherapy system, which includes the target, thick movable collimator jaws, a beam field equalizer, dose rate and optical field simulation and energy controls. There are over 2000 acceleratorbased X-ray treatment units worldwide. Western countries have up to two units per million population, whereas in developing countries such as Bangladesh, the density is only one per 100 million. Several

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does ...

  19. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... Image Gallery Radiological technologist preparing to take an arm x-ray on a ... Images related ...

  2. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  3. A novel scatter separation method for multi-energy x-ray imaging

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  4. Standard test method for verifying the alignment of X-Ray diffraction instrumentation for residual stress measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the preparation and use of a flat stress-free test specimen for the purpose of checking the systematic error caused by instrument misalignment or sample positioning in X-ray diffraction residual stress measurement, or both. 1.2 This test method is applicable to apparatus intended for X-ray diffraction macroscopic residual stress measurement in polycrystalline samples employing measurement of a diffraction peak position in the high-back reflection region, and in which the θ, 2θ, and ψ rotation axes can be made to coincide (see Fig. 1). 1.3 This test method describes the use of iron powder which has been investigated in round-robin studies for the purpose of verifying the alignment of instrumentation intended for stress measurement in ferritic or martensitic steels. To verify instrument alignment prior to stress measurement in other metallic alloys and ceramics, powder having the same or lower diffraction angle as the material to be measured should be prepared in similar fashion...

  5. Measurements of the residual stresses in the welded steel columns based on the x-ray diffraction method, 2

    International Nuclear Information System (INIS)

    Kaneta, Kiyoshi; Nishizawa, Hidekazu; Arashiyama, Masaki.

    1982-01-01

    In order to evaluate the applicability of two kinds of techniques of the X-ray stress analysis, namely, the standard sin 2 psi method and the newly developed phi-sin 2 psi method, bending tests have been performed. The test results have proved that the values of the stresses measured by means of the mechanical devices and of those measured by the two kinds of the X-ray techniques coincide each other. Then, these two methods have been applied to measure the surface residual stresses of the box-typed, welded steel columns and the following conclusions have been drawn. 1. The principal stress of the surface residural stresses is, in most cases, oriented to the rolled directions at the center of the steel plates, and it tends to rotate in the neighborhood of the heat affected zones. 2. Tensile residual stresses of a large magnitude have been observed in the direction parallel to the beads of the weld, and the moderate compressive residual stresses can be detected in the direction normal to the beads. (author)

  6. Application of x-ray method for measuring internal stress in the gear teeth surface layer

    International Nuclear Information System (INIS)

    Zaborowski, T.

    1996-01-01

    This paper presents the methodics of the internal stress measurements concerning cylindrical gear teeth of involute profile. There are the method selected, relation between stress and strain presented and conditions of investigation discussed in the study, including preparation of samples for investigation and conditions of the strain measurement. Exemplifying results of stress measurements for teeth of gears made of 4OH steel are shown. Suitability of the developed investigation method is indicated

  7. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  8. Studies of the dose distribution for patients undergoing various examinations in x-ray diagnosis and methods optimization

    International Nuclear Information System (INIS)

    Schandorf, Cyril

    2002-01-01

    The analysis of the status of x-ray diagnosis in Ghana revealed that Ghana is in the health care Category III, since there are about 4,2000 people to each physicians-ray departments have no quality management and quality control system in place for monitoring the quality of diagnostic images. Education and training in radiation protection and cost-effective use of x-rays are needed as part of the educational programme for radiologists, radiographers, x-ray technical officers and darkroom attendants. The dose and dose distribution for adult patients undergoing chest PA, lumber spine AP, pelvis/abdomen AP, and Skull AP examinations were determined using thermoluminescence dosemeters and compared with Commission of the European Communities guideline values. Analysis of the data show that 86%, 58% and 50% of the radiographic room delivered doses to patients compared the CEC value for Chest PA, lumber spine AP, pelvis/Abdomen AP and Skull AP respectively. Radiographic departments therefore should review their radiographic procedures to bring their does to optimum levels. Three methods were investigated for use as dose reduction optimization options. With the establishment of administrative procedures for the control of indiscriminate requests and referral criteria for x-ray examinations, patient dose can be averted. It is estimated about 10man.Sv can be averted annually. Authorized exposures can be minimized by standardizing the parameters which have significant influence on patient dose, taking into account screen-film system and film processing. By optimization the techniques factors, entrance surface dose and effective dose can be reduced. For chest PA examination the reduction factors are 4 and 3 respectively. Corresponding values for lumber spine AP, pelvis/abdomen AP and skull AP are 2 and 1.8, 1.4 and 1.4, 2.0 and 1.8 respectively. Three local materials, Ghanaian Anum Serpentine (SGA), Ghanaian Peki-Dzake Serpentine (SGP) and Ghanaian Golokwati Serpentine (SGG

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  11. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  12. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  13. Direct observation of radial distribution change during tensile deformation of metallic glass by high energy X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Toshio, E-mail: nasu@kekexafs.kj.yamagata-u.ac.j [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Sasaki, Motokatsu [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Usuki, Takeshi; Sekine, Mai [Faculty of Science, Yamagata University, Yamagata 990-8560 (Japan); Takigawa, Yorinobu; Higashi, Kenji [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Harima Science Garden City, Sayo town, Hyogo 679-5198 (Japan); Sakurai, Masaki; Wei Zhang; Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-08-26

    The purpose of this research is to investigate the micro-mechanism of deformation behavior of metallic glasses. We report the results of direct observations of short-range and medium-range structural change during tensile deformation of metallic glasses by high energy X-ray diffraction method. Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass samples in the ribbon shape (1.5 mm width and 25 mum) were made by using rapid quenching method. Tensile deformation added to the sample was made by using special equipment adopted for measuring the high energy X-ray diffraction. The peaks in pair distribution function g(r) for Cu{sub 50}Zr{sub 50} and N{sub 30}iZr{sub 70} metallic glasses move zigzag into front and into rear during tensile deformation. These results of direct observation on atomic distribution change for Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass ribbons during tensile deformation suggest that the micro-relaxations occur.

  14. Crystal structure analysis of LaMnO_3 with x-ray diffraction technique using the Rietveld method

    International Nuclear Information System (INIS)

    Engkir Sukirman; Wisnu Ari Adi; Yustinus Purwamargapratala

    2010-01-01

    Crystal structure analysis of LaMnO_3 using the Rietveld method has been carried out. The LaMnO_3 sample was synthesized with high energy mechanical milling from the raw materials of La_2O_3 and MnO_2 with the appropriate mol ratio. Milling were performed for 10 hours, pelletized and hereinafter sintered at 1350 °C for 6 hours. The sample characterizations covered the crystal structure and electric-magnetic properties of the materials by X-ray diffraction technique using the Rietveld method and the four point probe, respectively. The Rietveld refinement results based on the X-rays diffraction data indicate that the sample of LaMnO_3 is single phase with the crystal system: orthorhombic, the space group: Pnma No. 62 and the lattice parameters: a = 55.4405(9) Å; b = 7.717(1) Å dan c = 5.537(1) Å. The material owns Magnetic Resonance (MR) respond of 7 %, the mean value of crystallite size, D = 17 nm and lattice strain, e = - 0.5 %. So, the material go through a compressive strain, and according to the Nanda's strain model, it becomes a type G antiferromagnetic insulator. Because the insulator properties of the material does not change although being hit by the external magnetic field, hence the MR respond is only caused by the order of electron spin. Therefore at room temperature, LaMnO_3_._0 just exhibits a small MR respond. (author)

  15. Analysis of liquid structure without construction of any structure models by the X-ray scattering method

    International Nuclear Information System (INIS)

    Katayama, Misaki; Ashiki, Shingo; Ozutsumi, Kazuhiko

    2007-01-01

    A simple approach for determining a liquid structure using X-ray scattering data, in which a liquid structure is uniquely evaluated without construction of any plausible structure models, has been applied to liquid acetonitrile, acetone and cyclohexane. For a pair of molecules, a given point within a molecule is located at the origin with a given molecular orientation. The site of the given point of another molecule is defined by the polar coordinates and the molecular orientation is treated by three Eulerian angles. These parameters are optimized by a non-linear least-squares calculation applied to X-ray scattering data. The reliability of the method was examined by determining the liquid structure of polar acetonitrile and the obtained intermolecular interatomic distances are in good agreement with the previously reported values. The method was then successfully applied to the determination of the liquid structure of acetone cyclohexane. Especially for nonpolar cyclohexane, the construction of a variety of plausible structural models is very difficult. It was revealed that acetone has an ordered liquid arrangement similar to that found in its crystal, although the intermolecular distances in liquid acetone are different from those in the crystal. On the other hand, the liquid structure of cyclohexane is disordered. (author)

  16. A new measurement method of actual focal spot position of an x-ray tube using a high-precision carbon-interspaced grid

    Science.gov (United States)

    Lee, H. W.; Lim, H. W.; Jeon, D. H.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Woo, T. H.; Oh, J. E.

    2018-06-01

    This study investigated the effectiveness of a new method for measuring the actual focal spot position of a diagnostic x-ray tube using a high-precision antiscatter grid and a digital x-ray detector in which grid magnification, which is directly related to the focal spot position, was determined from the Fourier spectrum of the acquired x-ray grid’s image. A systematic experiment was performed to demonstrate the viability of the proposed measurement method. The hardware system used in the experiment consisted of an x-ray tube run at 50 kVp and 1 mA, a flat-panel detector with a pixel size of 49.5 µm, and a high-precision carbon-interspaced grid with a strip density of 200 lines/inch. The results indicated that the focal spot of the x-ray tube (Jupiter 5000, Oxford Instruments) used in the experiment was located approximately 31.10 mm inside from the exit flange, well agreed with the nominal value of 31.05 mm, which demonstrates the viability of the proposed measurement method. Thus, the proposed method can be utilized for system’s performance optimization in many x-ray imaging applications.

  17. Quantitative X-ray methods of amorphous content and crystallinity determination of SiO2, in Quartz and Opal mixture

    International Nuclear Information System (INIS)

    Ketabdari, M.R.; Ahmadi, K.; Esmaeilnia Shirvani, A.; Tofigh, A.

    2001-01-01

    X-ray diffraction technique is commonly used for qualitative analysis of minerals, and has also been successfully used for quantitative measurements. In this research, the matrix flushing and a new X-ray diffraction method have been used for the determination of crystallinity and amorphous content of Opal and Quartz mixture. The PCAPD is used to determine the quantitative analysis of these two minerals

  18. Duodenal X-ray diagnostics

    International Nuclear Information System (INIS)

    Scheppach, W.

    1982-01-01

    The publication provides an overview of duodenal X-ray diagnostics with the aid of barium meals in 1362 patients. The introducing paragraphs deal with the topographic anatomy of the region and the methodics of X-ray investigation. The chapter entitled ''processes at the duodenum itself'' describes mainly ulcers, diverticula, congenital anomalies, tumors and inflammations. The neighbourhood processes comprise in the first place diseases having their origin at the pancreas and bile ducts. As a conclusion, endoscopic rectograde cholangio-pancreaticography and percutaneous transhepatic cholangiography are pointed out as advanced X-ray investigation methods. In the annex of X-ray images some of the described phenomena are shown in exemplary manner. (orig./MG) [de

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  1. Magnetic x-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Paul G [Computer-Aided Engineering Center, University of Wisconsin, Madison, WI 53706 (United States); Isaacs, Eric D [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-08-07

    Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space resolution with a rich magnetic cross section allows new microscopy techniques to be developed and applied to magnetism at the scale of single domains. Potential applications include a wide range of magnetic problems in nanomagnetism, the interaction of strain, polarization and magnetization in complex oxides and spatially resolved studies of magnetic phase transitions. We present the physical basis for x-ray microdiffraction and magnetic scattering processes, review microdiffraction domain imaging techniques in antiferromagnetic and ferromagnetic materials and discuss potential directions for studies. (topical review)

  2. Rotating anode X-ray source

    International Nuclear Information System (INIS)

    Wittry, D.B.

    1979-01-01

    A rotating anode x-ray source is described which consists of a rotary anode disc including a target ring and a chamber within the anode disc. Liquid is evaporated into the chamber from the target ring to cool the target and a method is provided of removing the latent heat of the vapor. (U.K.)

  3. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  4. X-ray data processing

    OpenAIRE

    Powell, Harold R.

    2017-01-01

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most c...

  5. Studies of trace elements in biological systems by energy dispersive x-ray fluorescence (EDXRF) and proton induced x-ray emission (PIXE) methods

    International Nuclear Information System (INIS)

    Lal, Madan; Choudhury, R.K.

    1991-01-01

    Applicability of EDXRF and PIXE techniques for trace elemental analysis in biology and medicine is demonstrated. Due to increasing importance of the need to determine the role of essential and toxic trace elements in human health and disease, the method of PIXE analysis has assumed great importance in recent years. This method has been found to be particularly useful for biological samples. EDXRF also offers a complimentary method particularly in the range of elements of Z=45 to 60 where the sensitivity of PIXE analysis is not quite adequate. EDXRF can also be usefully employed for other elements of the periodic chart with relatively lesser sensitivity. The work being presented here includes trace element analysis of normal and cancer bearing tissues of Swiss mice, trace element profiles in cancerous human oesophageal tissues, investigations on the effect of toxic metals such as Hg from Ayurvedic drugs on Wister rats, and investigations of blood lead levels of children admitted to Sion Hospital from Dharavi slums of Bombay. The results of these investigations are presented and discussed. (author). 21 refs., 8 figs., 3 tabs

  6. Application of X-ray emission techniques for monitoring environmental pollution

    International Nuclear Information System (INIS)

    Bernasconi, G.; Danesi, P.R.; Dargie, M.; Haselberger, N.; Markowicz, A.; Tajani, A.

    1997-01-01

    X-ray emission techniques are versatile and powerful methods used for multielement non-destructive analysis. They include X-ray fluorescence (XRF), particle induced X-ray emission (PIXE), scanning electron microscopy combined with X-ray spectrometry and electron probe microanalysis (EPMA). Since many years the IAEA has utilised and promoted these techniques for the analysis of environmental, biological and geological samples. In this paper recent progress at our laboratory in selected aspects related to the application of X-ray emission techniques is briefly overviewed. (authors)

  7. Radioactivation and X-ray fluorescence methods of determination of some elements in atmospheric air and waters

    International Nuclear Information System (INIS)

    Kulmatov, R.A.; Kist, A.A.; Karimov, I.I.; Pulatov, D.D.; Kamil'dzhanov, A.Kh.

    1981-01-01

    Possibilities of instrumental radioactivation and X-ray fluorescence method of determining certain elements in aerosols and waters in the region of metallurgic production location and around it are considered. For conducting instrumental radioactivation analysis the samples have been irradiated on filter during 20h in the thermal neutron flux f=10 13 neutr/cm 2 xs of nuclear reactor-WWR-SM INP ASUzSSR. Measurement of induced activity has been conducted after 7 and 15-day cooling by means of Ge(Li) detectors. Averaged results of instrumental radioactivation and X-ray fluorescence analysis of element (Cu, Zn, Fe, Pb) composifion of some samples are presented. Content of such elements as copper, zinc, lead in the industrial region several times exceeds usual background content that is caused by industrial releases. Toxic effect, rate of aerosol release from atmosphere and radius of harmful effect of industrial enterprises on environment much depends on dispersion. A set of filter materials differing from one another by pore diameter have been used for conducting dispersion analysis of aerosals [ru

  8. In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Kosugi, Nobuhiro; Yuzawa, Hayato; Horigome, Toshio

    2014-01-01

    In order to investigate local structures of electrolytes in electrochemical reactions under the same scan rate as a typical value 100 mV/s in cyclic voltammetry (CV), we have developed an in operando observation system for electrochemical reactions by soft X-ray absorption spectroscopy (XAS) with a potential modulation method. XAS spectra of electrolytes are measured by using a transmission-type liquid flow cell with built-in electrodes. The electrode potential is swept with a scan rate of 100 mV/s at a fixed photon energy, and soft X-ray absorption coefficients at different potentials are measured at the same time. By repeating the potential modulation at each fixed photon energy, it is possible to measure XAS of electrochemical reaction at the same scan rate as in CV. We have demonstrated successful measurement of the Fe L-edge XAS spectra of aqueous iron sulfate solutions and of the change in valence of Fe ions at different potentials in the Fe redox reaction. The mechanism of these Fe redox processes is discussed by correlating the XAS results with those at different scan rates

  9. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  10. Homogeneity characterisation of (U,Gd)O2 sintered pellets by X-ray diffraction powder analysis applying Rietveld method

    International Nuclear Information System (INIS)

    Leyva, Ana G.; Vega, Daniel R.; Trimarco, Veronica G.; Marchi, Daniel E.

    1999-01-01

    The (U,Gd)O 2 sintered pellets are fabricated by different methods. The homogeneity characterisation of Gd content seems to be necessary as a production control to qualify the process and the final product. The micrographic technique is the most common method used to analyse the homogeneity of these samples, this method requires time and expertise to obtain good results. In this paper, we propose an analysis of the X-ray diffraction powder patterns through the Rietveld method, in which the differences between the experimental data and the calculated from a crystalline structure model proposed are evaluated. This result allows to determine the cell parameters, that can be correlated with the Gd concentration, and the existence of other phases with different Gd ratio. (author)

  11. The development and operation of a method for the remote determination of X-ray beam parameters used in dental radiography

    International Nuclear Information System (INIS)

    Hewitt, J.M.

    1984-07-01

    The method described is a part of the Dental Monitoring Service operated by the Board in the UK for the assessment of radiation protection in dental practice. This postal service, which provides a comprehensive survey of dental X-ray sets and radiographic procedures, is undertaken by means of a questionnaire, film cassettes for exposure to the X-ray set and a personal monitoring component to check operator doses. The film cassettes and the methods by which the X-ray beam parameters are obtained are described in detail. The cassettes use radiation monitoring film to realise, by means of measurements of relative transmission through selected copper filters, the extended dynamic range of exposure necessary for accurate indication of the operating kilovoltage and total beam filtration. The standard of the X-ray unit with regard to the relevant regulations and code of practice can then be assessed, and, from the values of radiation dose determined for chosen exposure times, exposure settings for optimum quality radiographs can be recommended where appropriate. Although designed primarily for dental X-ray units, use of the film cassette package may be extended, with suitable calibration, to general diagnostic X-ray survey measurements. (author)

  12. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  13. X-ray film

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.; Wonacott, A.J.

    1977-01-01

    The performance of film as an X-ray detector is discussed and its behaviour is compared with that of a perfect Poissonian detector. The efficiency of microdensitometry as a method of extracting the information recorded on the film is discussed. More emphasis is placed in the precision of microdensitometric measurements than on the more obvious characteristic of film speed. The effects of chemical fog and background on the precision of the measurements is considered and it is concluded that the final limit to precision is set by the chemical fog. (B.D.)

  14. The X-Ray Pebble Recirculation Experiment (X-PREX): Facility Description, Preliminary Discrete Element Method Simulation Validation Studies, and Future Test Program

    International Nuclear Information System (INIS)

    Laufer, Michael R.; Bickel, Jeffrey E.; Buster, Grant C.; Krumwiede, David L.; Peterson, Per F.

    2014-01-01

    This paper presents a facility description, preliminary results, and future test program of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Preliminary experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. Finally, this paper discusses additional studies in progress relevant to the design and analysis of pebble bed reactor cores including pebble recirculation in cylindrical core geometries and evaluation of forces on shut down blades inserted directly into a packed pebble bed. (author)

  15. Determination of mercury in seawater by total reflection x-ray fluorescence spectrometry after an electrochemical preconcentration method

    International Nuclear Information System (INIS)

    Ritschel, A.; Chinea Cano, E.; Wobrauschek, P.; Kuntner, C.; Durakbasa, M.N.

    2000-01-01

    A new combined method of electrodeposition of trace elements on metallic plates with subsequent total-reflection x-ray fluorescence spectrometry (TXRF) is proposed for the determination of trace metals in natural waters. The elements of interest are electroplated on highly polished niobium discs which are used as sample carriers for the TXRF measurement. The electrochemical preconcentration is performed in a flow cell under a controlled working electrode potential. The preconcentration step involves only very little manipulation which minimizes the risk of contamination of the sample. The method was investigated by analyzing inorganic mercury in sea water. A detection limit of 7 ngl -1 could be achieved for mercury in a 40 ml sea water sample. (author)

  16. A simple fracture energy prediction method for fiber network based on its morphological features extracted by X-ray tomography

    International Nuclear Information System (INIS)

    Huang, Xiang; Wang, Qinghui; Zhou, Wei; Li, Jingrong

    2013-01-01

    The fracture behavior of a novel porous metal fiber sintered sheet (PMFSS) was predicted using a semi-empirical method combining the knowledge of its morphological characteristics and micro-mechanical responses. The morphological characteristics were systematically summarized based on the analysis of the topologically identical skeleton representation extracted from the X-ray tomography images. The analytical model firstly proposed by Tan et al. [1] was further modified according to the experimental observations from both tensile tests of single fibers and sintered fiber sheets, which built the coupling of single fiber segment and fiber network in terms of fracture energy using a simple prediction method. The efficacy of the prediction model was verified by comparing the predicted results to the experimental measurements. The prediction error that arose at high porosity was analyzed through fiber orientation distribution. Moreover, the tensile fracture process evolving from single fiber segments at micro-scale to the global mechanical performance was investigated

  17. Introduction to crystal structure determination methods using x-ray diffraction: application to some rare earth complexes

    International Nuclear Information System (INIS)

    Oliveira, M.A. de.

    1986-01-01

    This work is composed by a theoretical introduction studying crystal concept, interaction between X-ray and crystal medium, and methods for determining small molecular structures applied in solution of crystal structures of praseodymium, neodymium and europium complexes with perrhenate and trans - 1,4 - dithiane - 1,4 - dioxide, (TDTD), which general formula is [ Ln (H sub(2) O) sub(4) (η-TDTD) (η'Re O sub(4)) (μ-η sup(2)-TDTD)] sub(n) (Re O sub(4)) sub(2n). nTDTD, where, Ln = Eu, Pr, Nd and methyl-2,6-anhydrous-3-azido-4-0-benzoyl-3-deoxy-α-D-iodo pyranoside. The structure of C sub(14) H sub(15) N sub(3) O sub(5) organic complex was determined using direct methods. (M.C.K.)

  18. X-ray radiometric method of ore quality monitoring during mining

    International Nuclear Information System (INIS)

    Ivanyukovich, G.A.

    1979-01-01

    The method is basically applied for sampling ore deposits, mainly of nonferrous and rare metals. It can be used for determining one, two or three elements in the deposit. In the USSR, the method has so far been used in Far East tin deposits and in the North Caucasus tungsten-molybdenum deposit. It is used for the analysis of boreholes, shaft walls, mined ore and ore material intended for enriching. The instruments used include single-channel gamma spectrometers using scintillation or proportional counters as detectors. Logging instruments include dual-channel spectrometers featuring automatic gain control and data processing devices. The instruments are designed for separating elements with atomic numbers 19 to 88 from mine wall materials and with atomic numbers 26 to 88 in boreholes at concentrations exceeding 0.1% and 0.01% for tin and silver, respectively. The economic benefit is shown of the introduction of the method using the Sadon lead-zinc plant and Khrustalnensk ore treatment plant as examples. (H.S.)

  19. The Evaluation of Conventional X-ray Exposure Parameters Including Tube Voltage and Exposure Time in Private and Governmental Hospitals of Lorestan Province, Iran

    Directory of Open Access Journals (Sweden)

    Mehrdad Gholami

    2015-07-01

    Full Text Available Introduction In radiography, dose and image quality are dependent on radiographic parameters. The problem is caused from incorrect use of radiography equipment and from the radiation exposure to patients much more than required. Therefore, the aim of this study was to implement a quality-control program to detect changes in exposure parameters, which may affect diagnosis or patient radiation dose. Materials and Methods This cross-sectional study was performed on seven stationary X-ray units in sixhospitals of Lorestan province. The measurements were performed, using a factory-calibrated Barracuda dosimeter (model: SE-43137. Results According to the results, the highest output was obtained in A Hospital (M1 device, ranging from 107×10-3 to 147×10-3 mGy/mAs. The evaluation of tube voltage accuracy showed a deviation from the standard value, which ranged between 0.81% (M1 device and 17.94% (M2 device at A Hospital. The deviation ranges at other hospitals were as follows: 0.30-27.52% in B Hospital (the highest in this study, 8.11-20.34% in C Hospital, 1.68-2.58% in D Hospital, 0.90-2.42% in E Hospital and 0.10-1.63% in F Hospital. The evaluation of exposure time accuracy showed that E, C, D and A (M2 device hospitals complied with the requirements (allowing a deviation of ±5%, whereas A (M1 device, F and B hospitals exceeded the permitted limit. Conclusion The results of this study showed that old X-ray equipments with poor or no maintenance are probably the main sources of reducing radiographic image quality and increasing patient radiation dose.

  20. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  1. Crystallographic orientation study of silicon steels using X-ray diffraction, electrons diffraction and the Etch Pit method

    International Nuclear Information System (INIS)

    Santos, Hamilta de Oliveira

    1999-01-01

    The aim of the present study is the microstructural and crystallographic orientation of Fe-3%Si steel. The silicon steel shows good electrical properties and it is used in the nuclear and electrical power fields. The studied steel was supplied by Cia. Acos Especiais Itabira S/A - ACESITA. The material was received in the hot compressed condition, in one or two passes. The hot compressing temperatures used were 900, 1000 and 1100 deg C with soaking times ranging from 32 to 470 s. The material preferential crystallographic orientation was evaluated in every grain of the samples. The characterization techniques used were: scanning electron microscopy (SEM) using the etch pit method; X ray diffraction using the Laue back-reflection method; orientation imaging microscopy (OIM). Microstructural characterization in terms of grain size measurement and mean number of grains in the sample were also undertaken. The Laue method was found an easy technique to access crystallographic orientation of this work polycrystalline samples 2.5 mm average grain size. This was due to the inability to focus the X-rays on a single grain of the material. The scanning electron microscopy showed microcavities left by the etch pit method, which allowed the observation of the crystallographic orientation of each grain from the samples. No conclusive grain crystallographic orientation was possible to obtain by the OIM technique due to the non-existing rolling direction. A more extensive work with the OIM technique must be undertaken on the Fe-3%Si with oriented grains and non oriented grains. (author)

  2. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    International Nuclear Information System (INIS)

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-01-01

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs

  3. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  4. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  5. Standard test method for uranium analysis in natural and waste water by X-ray fluorescence

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method applies for the determination of trace uranium content in waste water. It covers concentrations of U between 0.05 mg/L and 2 mg/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  7. Exploring the X-Ray Universe

    Science.gov (United States)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale. This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  8. Method for determination of Fe, Co, Ni, Cu, Zn and Pb in sea water using X-ray fluorescence analysis, after concentration step of these elements by coprecipitation with APDC

    International Nuclear Information System (INIS)

    Lam, P.; Estevez Alvarez, J.R.; Pupo Gonzalez, I.; Ramirez, M.; Rivera, N.

    1998-01-01

    In this work an analytical procedure has been applied to the to the determination of Fe, Co, Ni, Cu, Zn y Pb in seawater, that includes a coprecipitation step applied of these metals with APDC. The final analysis is carried out by X-Ray Fluorescence Analysis thin layer absolute method

  9. The Determination of Composite Elements in Zircaloy-2 by X-Ray Fluorescence and Emission Spectrometry Method

    International Nuclear Information System (INIS)

    Dian Anggraini; Rosika Kriswarini; Yusuf N

    2007-01-01

    Analysis of composing elements in zircaloy-2 has been done by Emission Spectrometry method and X-Ray Fluorescence (XRF). The aim of the analysis is to verify conformity between composing elements in zircaloy-2 and the material certificate. Spectrometry Emission method has higher sensitivity in element determination of a material than that of XRF method, so can be estimated that emission spectrometry method has higher accuracy than that of XRF method. The result of qualitative analysis by Emission Spectrometry indicate that the composing elements in zircaloy-2 were Sn, Cr and Ni. However, the qualitative analysis result by XRF method indicated that the composing elements in zircaloy 2 were Sn, Cr, Ni and Fe. Fe element can not be analysed by Emission Spectrometry method because Emission Spectrometer did not equipped with Fe detector. The quantitative analysis result of the composing elements in the material with both methods showed that Sn, Cr and Ni concentration of zircaloy 2 existed in concentration ranges of the material certificate. Result of statistical test (F and t-test) of analysis result of both methods can be used for analyzing composing elements in zircaloy 2. Emission Spectrometry method was more sensitive and accurate for determining Cr and Ni element in zircaloy 2 than that of emission Spectrometry method but both methods had same accuracy. The precision of measurement of Sn, Cr and Ni element using XRF method was better than that of Emission spectrometry method. (author)

  10. Investigation into macroscopic and microscopic behaviors of wet granular soils using discrete element method and X-ray computed tomography

    Science.gov (United States)

    Than, Vinh-Du; Tang, Anh-Minh; Roux, Jean-Noël; Pereira, Jean-Michel; Aimedieu, Patrick; Bornert, Michel

    2017-06-01

    We present an investigation into macroscopic and microscopic behaviors of wet granular soils using the discrete element method (DEM) and the X-ray Computed Tomography (XRCT) observations. The specimens are first prepared in very loose states, with frictional spherical grains in the presence of a small amount of an interstitial liquid. Experimental oedometric tests are carried out with small glass beads, while DEM simulations implement a model of spherical grains joined by menisci. Both in experiments and in simulations, loose configurations with solid fraction as low as 0.30 are prepared under low stress, and undergo a gradual collapse in compression, until the solid fraction of cohesionless bead packs (0.58 to 0.6) is obtained. In the XRCT tests, four 3D tomography images corresponding to different typical stages of the compression curve are used to characterize the microstructure.

  11. New method to analyse internal disruptions with five-camera soft x-ray tomography on RTP

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Blank, H.J. de [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    The five-camera soft x-ray diagnostic on the Rijnhuizen Tokamak Project (RTP) offers a wealth of information on sawteeth. Using four or five cameras, tomographic images with 7 poloidal harmonics have been obtained throughout sawtooth crashes and precursor oscillations. The purpose of this paper is to determine whether the precursors are ideal MHD modes or can be attributed to the resistive growth of a magnetic island. In practice, the detection of the topology of magnetic surfaces from the reconstructed tomographic images is complicated by the fact that (except during the final phase of the collapse) the time dependence is dominated by rotation of the m = 1 displacement. A novel method allows to define quantities, e.g. the plasma volume where the emissivity is within a certain range, whose change is only determined by cross-field transport or reconnection, and is not affected by m = 1 convection and by rotation. (author) 6 refs., 2 figs.

  12. New method to analyse internal disruptions with five-camera soft x-ray tomography on RTP

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Blank, H.J. de

    1994-01-01

    The five-camera soft x-ray diagnostic on the Rijnhuizen Tokamak Project (RTP) offers a wealth of information on sawteeth. Using four or five cameras, tomographic images with 7 poloidal harmonics have been obtained throughout sawtooth crashes and precursor oscillations. The purpose of this paper is to determine whether the precursors are ideal MHD modes or can be attributed to the resistive growth of a magnetic island. In practice, the detection of the topology of magnetic surfaces from the reconstructed tomographic images is complicated by the fact that (except during the final phase of the collapse) the time dependence is dominated by rotation of the m = 1 displacement. A novel method allows to define quantities, e.g. the plasma volume where the emissivity is within a certain range, whose change is only determined by cross-field transport or reconnection, and is not affected by m = 1 convection and by rotation. (author) 6 refs., 2 figs

  13. Neutron activation analysis. Criterion method for evaluation of dual-energy x-ray absorptiometry measurements in infants

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.; Schoknecht, P.; Pond, W.G.

    1995-01-01

    Total body neutron activation analysis (NAA) was used to examine the elemental composition of 22 piglets in the weight range 0.7 kg to 3.4 kg. The accuracy of the NAA technique, compared to direct chemical carcass analysis, established it as an equivalent chemical criterion (reference) method. The body composition of 14 human infant cadavers was also examined by NAA and by dual-energy x-ray absorptiometry (DXA). The DXA-derived lean, fat, and bone compartments were compared with an NAA chemical model of composition. Each of the three compartments was significantly correlated (r=0.85-0.95.p<0.001) for the two independent assay, although there were substantial differences for the estimated size of the compartments for individual infants. (author). 11 refs., 2 figs., 2 tabs

  14. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Science.gov (United States)

    Nečemer, Marijan; Kump, Peter; Rajčevič, Marija; Jačimović, Radojko; Budič, Bojan; Ponikvar, Maja

    2003-07-01

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  15. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Necemer, Marijan; Kump, Peter; Rajcevic, Marija; Jacimovic, Radojko; Budic, Bojan; Ponikvar, Maja

    2003-07-18

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  16. Electronic structure simulation of chromium aluminum oxynitride by discrete variational-X{alpha} method and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngmin; Chang, Hyunju; Lee, Jae Do [Korea Research Inst. of Chemical Technology, Taejon (Korea); Kim, Eunah; No, Kwangsoo [Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2002-09-01

    We use a first-principles discrete variational (DV)-X{alpha} method to investigate the electronic structure of chromium aluminum oxynitride. When nitrogen is substituted for oxygen in the Cr-Al-O system, the N2p level appears in the energy range between O2p and Cr3d levels. Consequently, the valence band of chromium aluminum oxynitride becomes broader and the band gap becomes smaller than that of chromium aluminum oxide, which is consistent with the photoelectron spectra for the valence band using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). We expect that this valence band structure of chromium aluminum oxynitride will modify the transmittance slope which is a requirement for photomask application. (author)

  17. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for X-ray computed tomography (CT) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of X-ray computed tomography (CT) imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitio...

  18. Electronic structure simulation of chromium aluminum oxynitride by discrete variational-Xα method and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Choi, Youngmin; Chang, Hyunju; Lee, Jae Do; Kim, Eunah; No, Kwangsoo

    2002-01-01

    We use a first-principles discrete variational (DV)-Xα method to investigate the electronic structure of chromium aluminum oxynitride. When nitrogen is substituted for oxygen in the Cr-Al-O system, the N2p level appears in the energy range between O2p and Cr3d levels. Consequently, the valence band of chromium aluminum oxynitride becomes broader and the band gap becomes smaller than that of chromium aluminum oxide, which is consistent with the photoelectron spectra for the valence band using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). We expect that this valence band structure of chromium aluminum oxynitride will modify the transmittance slope which is a requirement for photomask application. (author)

  19. A theoretical approach to dynamical diffraction of X-rays in the Bragg case with the Green's function method

    International Nuclear Information System (INIS)

    Ishida, Hidenobu

    2015-01-01

    The dynamical diffraction theory of X-rays for a distorted crystal with the Green's function method is applied to the Bragg case. The transmitted and diffracted crystal waves are represented as the solutions of the integral equations using the Green's function. For a perfect crystal, the most exact form of the solution of the equations is given by the Green's function and its derivatives, and the waves are analytically expressed by using them. The results can be applied in a general case where the amplitude modulation of the incident wave is not negligibly small compared with the wave vector. If the amplitude modulation is small, those results are reduced essentially to the same as those given by Takagi's theory. (author)

  20. Multiple wavelength X-ray monochromators

    International Nuclear Information System (INIS)

    Steinmeyer, P.A.

    1992-01-01

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs

  1. Assessment of adiposity in psoriatic patients by dual energy X-ray absorptiometry compared to conventional methods*

    Science.gov (United States)

    Diniz, Michelle dos Santos; Bavoso, Nádia Couto; Kakehasi, Adriana Maria; Lauria, Márcio Weissheimer; Soares, Maria Marta Sarquis; Machado-Pinto, Jackson

    2016-01-01

    BACKGROUND Obesity is considered a chronic low-grade inflammatory disease that shares mediators of inflammation with psoriasis, such as TNF-α and IL-6. The relationship between these two conditions involves factors such as predisposition and response to therapy, in addition to an association with cardiovascular disease. OBJECTIVES The aim of the present study was to investigate the prevalence of adiposity as determined by body mass index (BMI), waist circumference (WC), and dual energy X-ray absorptiometry (DXA) evaluation in patients with psoriasis. METHODS BMI, WC and body composition by DXA were measured in 42 psoriatic patients without joint complaints and in 41 control patients using standard procedures. In the comparison between cases and controls, we used Pearson’s Χ2 test or Fisher’s exact test, and the nonparametric Mann-Whitney test. The difference between the diverse classification methods for obesity was evaluated using McNemar’s test. To test the level of agreement between those variables, we used the weighted kappa coefficient. RESULTS There was no difference in the prevalence of obesity among cases and controls. Both BMI and WC had low agreement with measures of body fat evaluated by DXA. With the use of DXA scanning, prevalence of overweight and obesity in patients with psoriasis was 83.3%, which constitutes a strong evidence of the need for intervention on this metabolic parameter. CONCLUSION Dual energy X-ray absorptiometry was more capable of identifying obesity compared with BMI and WC both in psoriatic and control patients. PMID:27192512

  2. A track length estimator method for dose calculations in low-energy X-ray irradiations. Implementation, properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, F.; Delaire, F.; Letang, J.M.; Sarrut, D.; Smekens, F.; Freud, N. [Lyon-1 Univ. - CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Centre Leon Berard (France); Mittone, A.; Coan, P. [LMU Munich (Germany). Dept. of Physics; LMU Munich (Germany). Faculty of Medicine; Bravin, A.; Ferrero, C. [European Synchrotron Radiation Facility, Grenoble (France); Gasilov, S. [LMU Munich (Germany). Dept. of Physics

    2015-05-01

    The track length estimator (TLE) method, an 'on-the-fly' fluence tally in Monte Carlo (MC) simulations, recently implemented in GATE 6.2, is known as a powerful tool to accelerate dose calculations in the domain of low-energy X-ray irradiations using the kerma approximation. Overall efficiency gains of the TLE with respect to analogous MC were reported in the literature for regions of interest in various applications (photon beam radiation therapy, X-ray imaging). The behaviour of the TLE method in terms of statistical properties, dose deposition patterns, and computational efficiency compared to analogous MC simulations was investigated. The statistical properties of the dose deposition were first assessed. Derivations of the variance reduction factor of TLE versus analogous MC were carried out, starting from the expression of the dose estimate variance in the TLE and analogous MC schemes. Two test cases were chosen to benchmark the TLE performance in comparison with analogous MC: (i) a small animal irradiation under stereotactic synchrotron radiation therapy conditions and (ii) the irradiation of a human pelvis during a cone beam computed tomography acquisition. Dose distribution patterns and efficiency gain maps were analysed. The efficiency gain exhibits strong variations within a given irradiation case, depending on the geometrical (voxel size, ballistics) and physical (material and beam properties) parameters on the voxel scale. Typical values lie between 10 and 103, with lower levels in dense regions (bone) outside the irradiated channels (scattered dose only), and higher levels in soft tissues directly exposed to the beams.

  3. An experimental implementation of the 90 .deg. compton scattering inspection method for identifying explosive materials using dual energy x-ray

    International Nuclear Information System (INIS)

    Park, Ji Sung

    2012-02-01

    In order to obtain the physical properties of an inspection object using an X-ray source, the energy-resolving X-ray method, reflecting the characteristic of continuous energy, is a very useful tool. In this study, the effective atomic number (Z eff ) and normal density (ρ) obtained by the source weighting method on a dual energy X-ray inspection system are presented and demonstrated by experimental implementation. Two X-ray beams of the suggested method were designed using the XCOMP5r code. The filter design of a high energy X-ray source was fixed as 3.5 mm Sn at 150 kVp tube voltage, and the new high energy X-ray beam was named as IN150. The filter design of a low energy X-ray source was also fixed as 0.5 mm Sn at 90 kVp tube voltage, and the new beam was named as IN90. Benchmark calculations by MCNP simulation experiments were performed using four different materials, i.e., Polyethylene, Acetal, Urethane, and TNT. The results of the benchmark calculation showed that the new method can estimate the effective atomic number and the normal density of a scattered object accurately, even when the object was arbitrarily located in samples. Finally to verify the proposed new method, scattering experiments using various polymerized compounds were carried out. The effective attenuation coefficients (μ 1 , μ 2 ) of the experiment objects at the source energies E 1 and E 2 , were calculated using scattered spectra. The effective atomic number and the normal density were then calculated by using the ratio of μ 1 to μ 2 . As a result in case of all sample geometries, the relative differences between the calculation value and the reference value for the effective atomic numbers of each material were within 14 %, and the relative differences for the normal densities were within 12 %. This observation led us to the conclusion that the new 90 .deg. Compton scattering method for identifying explosive materials using a dual-energy X-ray is valid for calculating effective

  4. Thin film soft X-ray absorption filters

    International Nuclear Information System (INIS)

    Stattin, H.

    1992-11-01

    This report discusses the composition, reparation and performance of soft x-ray transmission filters for a water window soft x-ray microscope. Unbacked thin films of aluminum, silver and vanadium/aluminum were made by evaporation on a substrate from which they were released. Measured transmittances agree reasonably well with calculations. The report also includes some related theory and discussions about film preparation methods, film contamination and evaluation methods. 33 refs

  5. Medical X-ray techniques in diagnostic radiography. 4. ed.

    International Nuclear Information System (INIS)

    Plaats, G.J. van der; Vijlbrief, P.

    1980-01-01

    A step by step account is given of every aspect of the technical factors involved in the production of X-ray images. Chapter titles include, methods of image formation and laws of projection, sharpness and unsharpness, contrast, perceptibility of detail in the radiographic image-image quality, properties of fluoroscopic screens, radiographic films, intensifying screens and cassettes, image intensification and X-ray television, processing technique, fluoroscopy and radiographic technique in general, special radiographic techniques, radiographic examinations using contrast media, exposure and exposure tables and automatic density control, diagnostic X-ray apparatus, and diagnostic stands and accessories. (C.F.)

  6. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.

    2006-01-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT benchtop, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling

  7. Study of the superconducting compound Hg,Re-1223 by X-Ray diffraction with application of Rietveld method

    International Nuclear Information System (INIS)

    Putvinskis, Rodrigo

    2008-01-01

    The objective of this work was to study the crystal structure of the superconductor compound of nominal composition Hg 0,82 Re 0,18 Ba 2 Ca 2 Cu 3 O 8+δ and general formula Hg,Re- 1223 and different oxygen contents, by the X-ray diffraction technique, by using the Rietveld method. The studied samples present different oxygen stoichiometry because during the synthesis process, had been heat treated under different oxygen/argon gas mixtures in the ratios: 5:95, 10:90 and 15:85. The results of structural refinement for the samples show that different oxygen contents imply in different cell parameters, atomic positions and distances for the main phase of each sample. The segregation of two superconducting phases with the same crystal structure, but slightly different cell parameters was confirmed for the studied samples both by Rietveld analysis and anomalous X-ray diffraction experiments. It was also confirmed that one of the segregated phases does not incorporate Re cations its composition. The main phase, who incorporates the Re cations, is here called Hg,Re-1223 and the Re-free secondary phase is called Hg- 1223. It was found that the superconducting phases present different crystallite sizes and the sample treated under gas flow composed of 10% oxygen and 90% argon presents the highest fraction of superconducting phases. From these results it was possible to conclude that the sample produced from the precursor compound treated under flow of O 2 /Ar gas at the ratio 10/90 presents the better results for the synthesis of this superconducting compound. (author)

  8. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  9. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  10. X-ray pulse wavefront metrology using speckle tracking

    International Nuclear Information System (INIS)

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-01-01

    The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology

  11. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra

    International Nuclear Information System (INIS)

    Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-01-01

    The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra. - Highlights: • We propose a precise material identification method to be used as a photon counting system. • Beam hardening correction is important, even when the analysis is applied to the short energy regions in the X-ray spectrum. • Experiments using a single probe-type CdTe detector were performed, and Monte Carlo simulation was also carried out. • We described the applicability of our method for clinical diagnostic X-ray imaging in the near future.

  12. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  13. Methods for assisting recovery of damaged brain and spinal cord and treating various diseases using arrays of x-ray microplanar beams

    Energy Technology Data Exchange (ETDEWEB)

    Dilmanian, F Avraham [Yaphank, NY; Anchel, David J [Rocky Point, NY; Gaudette, Glenn [Holden, MA; Romanelli, Pantaleo [Monteroduni, IT; Hainfeld, James [Shoreham, NY

    2010-06-29

    A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.

  14. Determination of bromine in selected polymer materials by a wavelength-dispersive X-ray fluorescence spectrometric method - Critical thickness problem and solutions

    Science.gov (United States)

    Gorewoda, Tadeusz; Mzyk, Zofia; Anyszkiewicz, Jacek; Charasińska, Jadwiga

    2015-04-01

    The purpose of this study was to develop an accurate method for the determination of bromine in polymer materials using X-ray fluorescence spectrometry when the thickness of the sample is less than the bromine critical thickness (tc) value. This is particularly important for analyzing compliance with the Restriction of Hazardous Substances Directive. Mathematically and experimentally estimated tc values in polyethylene and cellulose matrixes were up to several millimeters. Four methods were developed to obtain an accurate result. These methods include the addition of an element with a high mass absorption coefficient, the measurement of the total bromine contained in a defined volume of the sample, the exploitation of tube-Rayleigh line intensities and using the Br-Lβ line.

  15. An overview of quantification methods in energy-dispersive X-ray ...

    Indian Academy of Sciences (India)

    methods for thin samples, samples with intermediate thickness and thick ... algorithms and quantification methods based on scattered primary radiation. ... technique for in situ characterization of materials such as contaminated soil, archaeo-.

  16. A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup

    International Nuclear Information System (INIS)

    Rinkel, J; Gerfault, L; Esteve, F; Dinten, J-M

    2007-01-01

    Cone-beam computed tomography (CBCT) enables three-dimensional imaging with isotropic resolution and a shorter acquisition time compared to a helical CT scanner. Because a larger object volume is exposed for each projection, scatter levels are much higher than in collimated fan-beam systems, resulting in cupping artifacts, streaks and quantification inaccuracies. In this paper, a general method to correct for scatter in CBCT, without supplementary on-line acquisition, is presented. This method is based on scatter calibration through off-line acquisition combined with on-line analytical transformation based on physical equations, to adapt calibration to the object observed. The method was tested on a PMMA phantom and on an anthropomorphic thorax phantom. The results were validated by comparison to simulation for the PMMA phantom and by comparison to scans obtained on a commercial multi-slice CT scanner for the thorax phantom. Finally, the improvements achieved with the new method were compared to those obtained using a standard beam-stop method. The new method provided results that closely agreed with the simulation and with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification. Compared to the beam-stop method, lower x-ray doses and shorter acquisition times were needed, both divided by a factor of 9 for the same scatter estimation accuracy

  17. Study of the separate exposure method for bootstrap sensitometry on X-ray cine film

    International Nuclear Information System (INIS)

    Matsuda, Eiji; Sanada, Taizo; Hitomi, Go; Kakuba, Koki; Kangai, Yoshiharu; Ishii, Koushi

    1997-01-01

    We developed a new method for bootstrap sensitometry that obtained the characteristic curve from a wide range, with a smaller number of aluminum steps than the conventional bootstrap method. In this method, the density-density curve was obtained from standard and multiplied exposures to the aluminum step wedge and used for bootstrap manipulation. The curve was acquired from two regions separated and added together, e.g., lower and higher photographic density regions. In this study, we evaluated the usefulness of a new cinefluorography method in comparison with N.D. filter sensitometry. The shape of the characteristic curve and the gradient curve obtained with the new method were highly similar to that obtained with N.D. filter sensitometry. Also, the average gradient obtained with the new bootstrap sensitometry method was not significantly different from that obtained by the N.D. filter method. The study revealed that the reliability of the characteristic curve was improved by increasing the measured value used to calculate the density-density curve. This new method was useful for obtaining a characteristic curve with a sufficient density range, and the results suggested that this new method could be applied to specific systems to which the conventional bootstrap method is not applicable. (author)

  18. An X-ray fluorescence method for the determination of metals thicknesses

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Riveros, J.A.

    1987-01-01

    An absolute method for the determination of the thickness of a metal film deposited on a metallic substrate is described. The method is based on the measurement of fluorescent intensity ratios for two lines from the substrate element. Additionally, the proposed method can be employed to determine the density of the deposited material or the incident angle of primary radiation and take off angle, if the metal film thickness is known. (Author) [es

  19. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    Science.gov (United States)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  20. Experimental Test of Data Analysis Methods from Staggered Pair X-ray Beam Position Monitors at Bending Magnet Beamlines

    Science.gov (United States)

    Buth, G.; Huttel, E.; Mangold, S.; Steininger, R.; Batchelor, D.; Doyle, S.; Simon, R.

    2013-03-01

    Different methods have been proposed to calculate the vertical position of the photon beam centroid from the four blade currents of staggered pair X-ray beam position monitors (XBPMs) at bending magnet beamlines since they emerged about 15 years ago. The original difference-over-sum method introduced by Peatman and Holldack is still widely used, even though it has been proven to be rather inaccurate at large beam displacements. By systematically generating bumps in the electron orbit of the ANKA storage ring and comparing synchronized data from electron BPMs and XBPM blade currents, we have been able to show that the log-ratio method by S. F. Lin, B.G. Sun et al. is superior (meaning the characteristic being closer to linear) to the ratio method, which in turn is superior to the difference over sum method. These findings are supported by simulations of the XBPM response to changes of the beam centroid. The heuristic basis for each of the methods is investigated. The implications on using XBPM readings for orbit correction are discussed

  1. A total content X-ray fluorescence method for copper prospecting

    International Nuclear Information System (INIS)

    Zhou Sichun; Xie Tingzhou; Ge Liangquan

    1992-01-01

    A new method is proposed to prospect copper deposits with portable XRF analyzer. The method is based on the close relation between Cu and the chalcophile elements or some other elements in the geochemical anomalies of a Cu deposit. Applications of the technique in Northeast China are presented

  2. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  3. Contribution to time resolved X-ray fluence and differential spectra measurement method improvement in 5-200 KeV range. Application to pulsed emission sources

    International Nuclear Information System (INIS)

    Vie, M.

    1983-09-01

    Two types of sensors have been developed to measure locally the time-resolved fluence and differential energetic spectrum of pulsed X-ray in the energy range 5 to 200 keV. Rise time of these sensors is very short (10 ns) in order to permit time-resolved measurements. Fluence sensors have been developed by putting filters in front of detector in order to make sensor response independent of X-ray energy and proportional to X-ray fluence. The energetic differential spectrum was calculated by way of a method similar to the ROSS method but using filters separated within a pair defining adjacent spectral width. A detailed analysis of uncertainties affecting calculated fluence and spectrum has been done [fr

  4. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    Science.gov (United States)

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  5. Observation of soft x-ray radiation from Heliotron E plasmas by the absorption method for the measurement of electron temperatures

    International Nuclear Information System (INIS)

    Kaneko, H.; Tohda, T.; Iiyoshi, A.

    1989-01-01

    An absorption method of soft x ray is applied to Heliotron E plasmas for measurement of the electron temperature. Nitrogen gas is used as an absorber for convenience, owing to its accurate, uniform, and easily controllable density. The general feature of the absorption method for measurement of the electron temperature is discussed using a model with two parameters: the generalized thickness of the absorber and the electron temperature. The energy resolution of this method is not sufficient as a general method for spectral analysis. Hence, it is necessary to assume in advance such a model spectrum as consists of bremsstrahlung, recombination radiation, and impurity line radiation. Since the spectrum is always assumed before the analysis, we should try to find the origins of deformation of the energy spectrum and to correct the contribution. The effect of line emission from impurity ions to the estimated electron temperature is evaluated as a function of the electron temperature and the energy of the line relative to the generalized absorber thickness used in the measurement. An actual spectrum is measured by a pulse-height analysis (PHA) of the soft x ray. The one clear line, from chlorine, is not significant in the present determination of the electron temperature by the absorption method. Another possible line from iron at energy less than 1 keV is included in the analysis. Using a convenient method for determination of local emissivity from a chord-integrated emissivity, the electron temperature is determined from the local emissivity. The observed broad electron-temperature profile might be an artifact due to recombination radiation of the highly ionized ion diffused out of the hot core of the plasma. It is confirmed that the absorption method gives absolute measurement of the electron temperature at the plasma center, when additional information on impurity lines are given by PHA

  6. A software-based x-ray scatter correction method for breast tomosynthesis

    OpenAIRE

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients.

  7. Contribution to the study of a new X-ray detection method for medical imaging

    International Nuclear Information System (INIS)

    Bouteiller, Patrick.

    1977-01-01

    The present work is part of a joint effort to develop a quick and efficient tomographic technique. Our research is devoted to the feasibility of a new detection method applicable to such apparatus with a view to the short- or medium-term industrial development of these techniques. Following an outline of the basic principles of this image reconstruction method the fundamental parameters governing the choice of detection system are defined. Part two gives results relating to the first solutions examined and to their limits and disadvantages from the viewpoint of a possible industrial application. Part three reports and justifies, both theoretically and experimentally, a choice of detection method using a high-pressure gas ionisation chamber. Part four describes our participation in the building of an industrial prototype and the additional problems encountered. The final part deals with possibilities of improving the system either by perfecting the above methods or after studies on new structures developed in the laboratory [fr

  8. Trajectory method in the theory of Laue diffraction of X rays in crystals: II. Effect of total reflection at bending deformation

    International Nuclear Information System (INIS)

    Kohn, V. G.

    2008-01-01

    The effect of total reflection (switching) of a spherical X-ray wave in the case of Laue diffraction in a crystal with bending deformation is analyzed by the trajectory method. Qualitative analytical description and computation of the spatial structure of the reflected beam for large and small distances between the spherical-wave source and the crystal are performed. The mechanism of much more efficient reflection of an X-ray beam by a deformed crystal in comparison with a perfect crystal is clearly demonstrated. It is also shown that the trajectory method is very convenient for description of the total reflection phenomenon.

  9. Trajectory method in the theory of Laue diffraction of X rays in crystals: II. Effect of total reflection at bending deformation

    International Nuclear Information System (INIS)

    Kohn, V. G.

    2008-01-01

    The effect of total reflection (switching) of a spherical X-ray wave in the case of Laue diffraction in a crystal with bending deformation is analyzed by the trajectory method. Qualitative analytical description and computation of the spatial structure of the reflected beam for large and small distances between the spherical-wave source and the crystal are performed. The mechanism of much more efficient reflection of an X-ray beam by a deformed crystal in comparison with a perfect crystal is clearly demonstrated. It is also shown that the trajectory method is very convenient for description of the total reflection phenomenon

  10. Estimation of the effective energy for the diagnostic X-ray

    International Nuclear Information System (INIS)

    Ogama, Noboru; Fujimoto, Nobuhisa; Nishitani, Motohiro; Yamada, Katsuhiko

    2001-01-01

    Because X-ray exposure doses to patients during X-ray diagnoses have been increasing with recent advances in medical technology, it is important that optimum control of the radiation dose be maintained during diagnoses. For an evaluation of an exposure dose, the effective energy of the X-ray must be determined, but this is difficult to accomplish during the diagnosis. Here we propose a new method to estimate the effective energy of an X-ray. The magnitude of energy released from an X-ray generator (2 peaks, 12 peaks, inverter, and constant potential) depends on various parameters, including tube voltage, tube current, tube voltage waveform, and total filtration of the X-ray tube. Therefore the measurement of an X-ray's effective energy was conducted by the half-value layer measurement method, which changes the values of these parameters. The data obtained by this method were analyzed to clarify the relationships between X-ray effective energy and the respective parameters. It was thus demonstrated that these relationships could be expressed by a simple linear approximation formula. For the calculation of X-ray effective energy by use of this approximation formula, errors were found to be within a range of -2.11% to 10.4%. Therefore, this method is considered usable for an accurate estimation of an X-ray's effective energy without the need for its direct determination during diagnosis. (author)

  11. Modern methods of experimental construction of texture complete direct pole figures by using X-ray data

    Science.gov (United States)

    Isaenkova, M.; Perlovich, Yu; Fesenko, V.

    2016-04-01

    Currently used methods for constructing texture complete direct pole figure (CDPF) based on the results of X-ray diffractometric measurements were considered with respect to the products of Zr-based alloys and, in particular, used in a nuclear reactor cladding tubes, for which the accuracy of determination of integral texture parameters is of the especial importance. The main attention was devoted to technical issues which are solved by means of computer processing of large arrays of obtained experimental data. Among considered questions there are amendments of the defocusing, techniques for constructing of complete direct pole figures and determination of integral textural parameters. The methods of reconstruction of complete direct pole figures by partial direct pole figures recorded up to tilt angles of sample ψ=70-80°: the method of extrapolation of data to an uninvestigated region of the stereographic projection, and the method of "sewing" of partial pole figures measured for three mutually perpendicular plane sections of the product. The limits of applicability of these methods, depending on the shape of the test product and the degree of inhomogeneity of the layer-by-layer texture, were revealed. On the basis of a large number of experimental data, the accuracy of the integral parameters used for calculation of the physical and mechanical properties of metals with a hexagonal crystal structure was found to be equal to 0.02, when taking into account the texture heterogeneity of regular products from Zr-based alloys.

  12. Nondestructive method to coat thickness measurements through X-ray fluorescence

    International Nuclear Information System (INIS)

    Sanchez, F.

    1986-01-01

    It's described a system that permits thickness measurement and composition of Sn-Pb alloys to simultaneous measurement of Au over Ni over any base, beyond convestionals measurements, including flash coats or touch. (C.M.) [pt

  13. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko

    2013-07-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  14. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko; Szalda, David J.; Grills, David C.; Hanson, Jonathan C.; Huang, Kuo-Wei; Muckerman, James T.; Fujita, Etsuko

    2013-01-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  15. X-ray interferometers

    International Nuclear Information System (INIS)

    Franks, A.

    1980-01-01

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  16. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  17. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  19. A comparison of gantry-mounted x-ray-based real-time target tracking methods.

    Science.gov (United States)

    Montanaro, Tim; Nguyen, Doan Trang; Keall, Paul J; Booth, Jeremy; Caillet, Vincent; Eade, Thomas; Haddad, Carol; Shieh, Chun-Chien

    2018-03-01

    Most modern radiotherapy machines are built with a 2D kV imaging system. Combining this imaging system with a 2D-3D inference method would allow for a ready-made option for real-time 3D tumor tracking. This work investigates and compares the accuracy of four existing 2D-3D inference methods using both motion traces inferred from external surrogates and measured internally from implanted beacons. Tumor motion data from 160 fractions (46 thoracic/abdominal patients) of Synchrony traces (inferred traces), and 28 fractions (7 lung patients) of Calypso traces (internal traces) from the LIGHT SABR trial (NCT02514512) were used in this study. The motion traces were used as the ground truth. The ground truth trajectories were used in silico to generate 2D positions projected on the kV detector. These 2D traces were then passed to the 2D-3D inference methods: interdimensional correlation, Gaussian probability density function (PDF), arbitrary-shape PDF, and the Kalman filter. The inferred 3D positions were compared with the ground truth to determine tracking errors. The relationships between tracking error and motion magnitude, interdimensional correlation, and breathing periodicity index (BPI) were also investigated. Larger tracking errors were observed from the Calypso traces, with RMS and 95th percentile 3D errors of 0.84-1.25 mm and 1.72-2.64 mm, compared to 0.45-0.68 mm and 0.74-1.13 mm from the Synchrony traces. The Gaussian PDF method was found to be the most accurate, followed by the Kalman filter, the interdimensional correlation method, and the arbitrary-shape PDF method. Tracking error was found to strongly and positively correlate with motion magnitude for both the Synchrony and Calypso traces and for all four methods. Interdimensional correlation and BPI were found to negatively correlate with tracking error only for the Synchrony traces. The Synchrony traces exhibited higher interdimensional correlation than the Calypso traces especially in the anterior

  20. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    Science.gov (United States)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    galaxy or a companion galaxy hosting a second AGN, in order to understand the role molecular gas plays in feeding this unusual population of ultra-hard X-ray AGNs and to understand ultra-hard X-rays as a dual AGN selection method.