PREDICTION OF MEAT PRODUCT QUALITY BY THE MATHEMATICAL PROGRAMMING METHODS
Directory of Open Access Journals (Sweden)
A. B. Lisitsyn
2016-01-01
Full Text Available Abstract Use of the prediction technologies is one of the directions of the research work carried out both in Russia and abroad. Meat processing is accompanied by the complex physico-chemical, biochemical and mechanical processes. To predict the behavior of meat raw material during the technological processing, a complex of physico-technological and structural-mechanical indicators, which objectively reflects its quality, is used. Among these indicators are pH value, water binding and fat holding capacities, water activity, adhesiveness, viscosity, plasticity and so on. The paper demonstrates the influence of animal proteins (beef and pork on the physico-chemical and functional properties before and after thermal treatment of minced meat made from meat raw material with different content of the connective and fat tissues. On the basis of the experimental data, the model (stochastic dependence parameters linking the quantitative resultant and factor variables were obtained using the regression analysis, and the degree of the correlation with the experimental data was assessed. The maximum allowable levels of meat raw material replacement with animal proteins (beef and pork were established by the methods of mathematical programming. Use of the information technologies will significantly reduce the costs of the experimental search and substantiation of the optimal level of replacement of meat raw material with animal proteins (beef, pork, and will also allow establishing a relationship of product quality indicators with quantity and quality of minced meat ingredients.
Energy Technology Data Exchange (ETDEWEB)
Yi Luo; Jian-wei Cheng [West Virginia University, Morgantown, WV (United States). Department of Mining Engineering
2009-09-15
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorporated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model. 9 refs., 8 figs.
Prediction of Student Dropout in E-Learning Program Through the Use of Machine Learning Method
Directory of Open Access Journals (Sweden)
Mingjie Tan
2015-02-01
Full Text Available The high rate of dropout is a serious problem in E-learning program. Thus it has received extensive concern from the education administrators and researchers. Predicting the potential dropout students is a workable solution to prevent dropout. Based on the analysis of related literature, this study selected student’s personal characteristic and academic performance as input attributions. Prediction models were developed using Artificial Neural Network (ANN, Decision Tree (DT and Bayesian Networks (BNs. A large sample of 62375 students was utilized in the procedures of model training and testing. The results of each model were presented in confusion matrix, and analyzed by calculating the rates of accuracy, precision, recall, and F-measure. The results suggested all of the three machine learning methods were effective in student dropout prediction, and DT presented a better performance. Finally, some suggestions were made for considerable future research.
Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program
Yukselturk, Erman; Ozekes, Serhat; Turel, Yalin Kilic
2014-01-01
This study examined the prediction of dropouts through data mining approaches in an online program. The subject of the study was selected from a total of 189 students who registered to the online Information Technologies Certificate Program in 2007-2009. The data was collected through online questionnaires (Demographic Survey, Online Technologies…
Prediction of Student Dropout in E-Learning Program Through the Use of Machine Learning Method
Mingjie Tan; Peiji Shao
2015-01-01
The high rate of dropout is a serious problem in E-learning program. Thus it has received extensive concern from the education administrators and researchers. Predicting the potential dropout students is a workable solution to prevent dropout. Based on the analysis of related literature, this study selected student’s personal characteristic and academic performance as input attributions. Prediction models were developed using Artificial Neural Network (ANN), Decision Tree (DT) and Bayesian Ne...
Directory of Open Access Journals (Sweden)
David Lennartsson
2004-01-01
Full Text Available A novel approach to signal peptide identification is presented. We use an evolutionary algorithm for automatic evolution of classification programs, so-called programmatic motifs. The variant of evolutionary algorithm used is called genetic programming where a population of solution candidates in the form of full computer programs is evolved, based on training examples consisting of signal peptide sequences. The method is compared with a previous work using artificial neural network (ANN approaches. Some advantages compared to ANNs are noted. The programmatic motif can perform computational tasks beyond that of feed-forward neural networks and has also other advantages such as readability. The best motif evolved was analyzed and shown to detect the h-region of the signal peptide. A powerful parallel computer cluster was used for the experiment.
EPRI MOV performance prediction program
International Nuclear Information System (INIS)
Hosler, J.F.; Damerell, P.S.; Eidson, M.G.; Estep, N.E.
1994-01-01
An overview of the EPRI Motor-Operated Valve (MOV) Performance Prediction Program is presented. The objectives of this Program are to better understand the factors affecting the performance of MOVs and to develop and validate methodologies to predict MOV performance. The Program involves valve analytical modeling, separate-effects testing to refine the models, and flow-loop and in-plant MOV testing to provide a basis for model validation. The ultimate product of the Program is an MOV Performance Prediction Methodology applicable to common gate, globe, and butterfly valves. The methodology predicts thrust and torque requirements at design-basis flow and differential pressure conditions, assesses the potential for gate valve internal damage, and provides test methods to quantify potential for gate valve internal damage, and provides test methods to quantify potential variations in actuator output thrust with loading condition. Key findings and their potential impact on MOV design and engineering application are summarized
Indian Academy of Sciences (India)
Chemistry for their pioneering contri butions to the development of computational methods in quantum chemistry and density functional theory .... program of Pop Ie for ab-initio electronic structure calculation of molecules. This ab-initio MO ...
Directory of Open Access Journals (Sweden)
Serban Corina
2010-12-01
Full Text Available Drug use is one of the major challenges that todays society faces; its effects are felt at the level of various social, professional and age categories. Over 50 non-profit organizations are involved in the development of anti-drug social programs in Romania. Their role is to improve the degree of awareness of the target population concerning the risks associated with drug use, but also to steer consumers towards healthy areas, beneficial to their future. This paper aims to detail the issue of drug use in Romania, by making predictions based on the evolution of this phenomenon during the next five years. The obtained results have revealed the necessity to increase the number of programs preventing drug use, aswell as the need to continue social programs that have proved effective in previous years.
DEFF Research Database (Denmark)
Karosiene, Edita
Analysis. The chapter provides detailed explanations on how to use different methods for T cell epitope discovery research, explaining how input should be given as well as how to interpret the output. In the last chapter, I present the results of a bioinformatics analysis of epitopes from the yellow fever...... peptide-MHC interactions. Furthermore, using yellow fever virus epitopes, we demonstrated the power of the %Rank score when compared with the binding affinity score of MHC prediction methods, suggesting that this score should be considered to be used for selecting potential T cell epitopes. In summary...... immune responses. Therefore, it is of great importance to be able to identify peptides that bind to MHC molecules, in order to understand the nature of immune responses and discover T cell epitopes useful for designing new vaccines and immunotherapies. MHC molecules in humans, referred to as human...
Motor degradation prediction methods
Energy Technology Data Exchange (ETDEWEB)
Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.
1996-12-01
Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.
Motor degradation prediction methods
International Nuclear Information System (INIS)
Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.
1996-01-01
Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures
Empirical Flutter Prediction Method.
1988-03-05
been used in this way to discover species or subspecies of animals, and to discover different types of voter or comsumer requiring different persuasions...respect to behavior or performance or response variables. Once this were done, corresponding clusters might be sought among descriptive or predictive or...jump in a response. The first sort of usage does not apply to the flutter prediction problem. Here the types of behavior are the different kinds of
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-12-31
This conference was held December 4--8, 1994 in Asilomar, California. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information concerning the prediction of protein structure. Attention if focused on the following: comparative modeling; sequence to fold assignment; and ab initio folding.
Earthquake prediction by Kina Method
International Nuclear Information System (INIS)
Kianoosh, H.; Keypour, H.; Naderzadeh, A.; Motlagh, H.F.
2005-01-01
Earthquake prediction has been one of the earliest desires of the man. Scientists have worked hard to predict earthquakes for a long time. The results of these efforts can generally be divided into two methods of prediction: 1) Statistical Method, and 2) Empirical Method. In the first method, earthquakes are predicted using statistics and probabilities, while the second method utilizes variety of precursors for earthquake prediction. The latter method is time consuming and more costly. However, the result of neither method has fully satisfied the man up to now. In this paper a new method entitled 'Kiana Method' is introduced for earthquake prediction. This method offers more accurate results yet lower cost comparing to other conventional methods. In Kiana method the electrical and magnetic precursors are measured in an area. Then, the time and the magnitude of an earthquake in the future is calculated using electrical, and in particular, electrical capacitors formulas. In this method, by daily measurement of electrical resistance in an area we make clear that the area is capable of earthquake occurrence in the future or not. If the result shows a positive sign, then the occurrence time and the magnitude can be estimated by the measured quantities. This paper explains the procedure and details of this prediction method. (authors)
The Use of Linear Programming for Prediction.
Schnittjer, Carl J.
The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)
Rainfall prediction with backpropagation method
Wahyuni, E. G.; Fauzan, L. M. F.; Abriyani, F.; Muchlis, N. F.; Ulfa, M.
2018-03-01
Rainfall is an important factor in many fields, such as aviation and agriculture. Although it has been assisted by technology but the accuracy can not reach 100% and there is still the possibility of error. Though current rainfall prediction information is needed in various fields, such as agriculture and aviation fields. In the field of agriculture, to obtain abundant and quality yields, farmers are very dependent on weather conditions, especially rainfall. Rainfall is one of the factors that affect the safety of aircraft. To overcome the problems above, then it’s required a system that can accurately predict rainfall. In predicting rainfall, artificial neural network modeling is applied in this research. The method used in modeling this artificial neural network is backpropagation method. Backpropagation methods can result in better performance in repetitive exercises. This means that the weight of the ANN interconnection can approach the weight it should be. Another advantage of this method is the ability in the learning process adaptively and multilayer owned on this method there is a process of weight changes so as to minimize error (fault tolerance). Therefore, this method can guarantee good system resilience and consistently work well. The network is designed using 4 input variables, namely air temperature, air humidity, wind speed, and sunshine duration and 3 output variables ie low rainfall, medium rainfall, and high rainfall. Based on the research that has been done, the network can be used properly, as evidenced by the results of the prediction of the system precipitation is the same as the results of manual calculations.
Ensemble method for dengue prediction.
Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan
2018-01-01
In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.
Ensemble method for dengue prediction.
Directory of Open Access Journals (Sweden)
Anna L Buczak
Full Text Available In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico during four dengue seasons: 1 peak height (i.e., maximum weekly number of cases during a transmission season; 2 peak week (i.e., week in which the maximum weekly number of cases occurred; and 3 total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date.Our approach used ensemble models created by combining three disparate types of component models: 1 two-dimensional Method of Analogues models incorporating both dengue and climate data; 2 additive seasonal Holt-Winters models with and without wavelet smoothing; and 3 simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations.Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week.The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.
Nonlinear programming analysis and methods
Avriel, Mordecai
2012-01-01
This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Methods for robustness programming
Olieman, N.J.
2008-01-01
Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition
MOV predictive maintenance program at Darlington NGS
International Nuclear Information System (INIS)
Morrison, J.F.
1992-01-01
This paper details the Motor Operated Valve (MOV) Predictive Maintenance program at Darlington Nuclear Generating Station. The program encompasses the use of diagnostics tooling in conjunction with more standard maintenance techniques, with the goal of improving performance of MOV's. Problems encountered and solutions developed during the first two phases of this program are presented, along with proposed actions for the final trending phase of the program. This paper also touches on the preventive and corrective maintenance aspects of an overall MOV maintenance program. 6 refs., 6 tabs., 6 figs
Inspection Methods in Programming.
1981-06-01
Counting is a a specialization of Iterative-generation in which the generating function is Oneplus ) Waters’ second category of plan building method...is Oneplus and the initial input is 1. 0 I 180 CHAPTER NINE -ta a acio f igr9-.IeaieGnrtoPln 7 -7 STEADY STATE PLANS 181 TemporalPlan counting...specializalion iterative-generation roles .action(afu nction) ,tail(counting) conslraints .action.op = oneplus A .action.input = 1 The lItcrative-application
Separable programming theory and methods
Stefanov, Stefan M
2001-01-01
In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered Convex separable programs subject to inequality equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well Audience Advanced undergraduate and graduate students, mathematical programming operations research specialists
Geometric Semantic Genetic Programming Algorithm and Slump Prediction
Xu, Juncai; Shen, Zhenzhong; Ren, Qingwen; Xie, Xin; Yang, Zhengyu
2017-01-01
Research on the performance of recycled concrete as building material in the current world is an important subject. Given the complex composition of recycled concrete, conventional methods for forecasting slump scarcely obtain satisfactory results. Based on theory of nonlinear prediction method, we propose a recycled concrete slump prediction model based on geometric semantic genetic programming (GSGP) and combined it with recycled concrete features. Tests show that the model can accurately p...
NEURAL METHODS FOR THE FINANCIAL PREDICTION
Jerzy Balicki; Piotr Dryja; Waldemar Korłub; Piotr Przybyłek; Maciej Tyszka; Marcin Zadroga; Marcin Zakidalski
2016-01-01
Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.
NEURAL METHODS FOR THE FINANCIAL PREDICTION
Directory of Open Access Journals (Sweden)
Jerzy Balicki
2016-06-01
Full Text Available Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.
Prediction methods and databases within chemoinformatics
DEFF Research Database (Denmark)
Jónsdóttir, Svava Osk; Jørgensen, Flemming Steen; Brunak, Søren
2005-01-01
MOTIVATION: To gather information about available databases and chemoinformatics methods for prediction of properties relevant to the drug discovery and optimization process. RESULTS: We present an overview of the most important databases with 2-dimensional and 3-dimensional structural information...... about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability...
Speedup predictions on large scientific parallel programs
International Nuclear Information System (INIS)
Williams, E.; Bobrowicz, F.
1985-01-01
How much speedup can we expect for large scientific parallel programs running on supercomputers. For insight into this problem we extend the parallel processing environment currently existing on the Cray X-MP (a shared memory multiprocessor with at most four processors) to a simulated N-processor environment, where N greater than or equal to 1. Several large scientific parallel programs from Los Alamos National Laboratory were run in this simulated environment, and speedups were predicted. A speedup of 14.4 on 16 processors was measured for one of the three most used codes at the Laboratory
Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.
1995-01-01
This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.
Machine learning methods for metabolic pathway prediction
Directory of Open Access Journals (Sweden)
Karp Peter D
2010-01-01
Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
Machine learning methods for metabolic pathway prediction
2010-01-01
Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations. PMID:20064214
Modular programming method at JAERI
International Nuclear Information System (INIS)
Asai, Kiyoshi; Katsuragi, Satoru
1982-02-01
In this report the histories, concepts and a method for the construction and maintenance of nuclear code systems of Japan Atomic Energy Research Institute (JAERI) are presented. The method is mainly consisted of novel computer features. The development process of the features and experiences with them which required many man-months and efforts of scientists and engineers of JAERI and a computer manufacturer are also described. One of the features is a file handling program named datapool. The program is being used in code systems which are under development at JAERI. The others are computer features such as dynamic linking, reentrant coding of Fortran programs, interactive programming facility, document editor, quick system output viewer and editor, flexible man-machine interactive Fortran executor, and selective use of time-sharing or batch oriented computer in an interactive porgramming environment. In 1980 JAERI has replaced its two old computer systems by three FACOM M-200 computer systems and they have such features as mentioned above. Since 1981 most code systems, or even big single codes can be changed to modular code systems even if the developers or users of the systems will not recognize the fact that they are using modular code systems. The purpose of this report is to describe our methodology of modular programming from aspects of computer features and some of their applications to nuclear codes to get sympathetic understanding of it from persons of organizations who are concerned with the effective use of computers, especially, in nuclear research fields. (author)
Method for Predicting Thermal Buckling in Rails
2018-01-01
A method is proposed herein for predicting the onset of thermal buckling in rails in such a way as to provide a means of avoiding this type of potentially devastating failure. The method consists of the development of a thermomechanical model of rail...
Prediction Methods for Blood Glucose Concentration
DEFF Research Database (Denmark)
“Recent Results on Glucose–Insulin Predictions by Means of a State Observer for Time-Delay Systems” by Pasquale Palumbo et al. introduces a prediction model which in real time predicts the insulin concentration in blood which in turn is used in a control system. The method is tested in simulation...... EEG signals to predict upcoming hypoglycemic situations in real-time by employing artificial neural networks. The results of a 30-day long clinical study with the implanted device and the developed algorithm are presented. The chapter “Meta-Learning Based Blood Glucose Predictor for Diabetic......, but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two...
A method for predicting monthly rainfall patterns
International Nuclear Information System (INIS)
Njau, E.C.
1987-11-01
A brief survey is made of previous methods that have been used to predict rainfall trends or drought spells in different parts of the earth. The basic methodologies or theoretical strategies used in these methods are compared with contents of a recent theory of Sun-Weather/Climate links (Njau, 1985a; 1985b; 1986; 1987a; 1987b; 1987c) which point towards the possibility of practical climatic predictions. It is shown that not only is the theoretical basis of each of these methodologies or strategies fully incorporated into the above-named theory, but also this theory may be used to develop a technique by which future monthly rainfall patterns can be predicted in further and finer details. We describe the latter technique and then illustrate its workability by means of predictions made on monthly rainfall patterns in some East African meteorological stations. (author). 43 refs, 11 figs, 2 tabs
Combining gene prediction methods to improve metagenomic gene annotation
Directory of Open Access Journals (Sweden)
Rosen Gail L
2011-01-01
Full Text Available Abstract Background Traditional gene annotation methods rely on characteristics that may not be available in short reads generated from next generation technology, resulting in suboptimal performance for metagenomic (environmental samples. Therefore, in recent years, new programs have been developed that optimize performance on short reads. In this work, we benchmark three metagenomic gene prediction programs and combine their predictions to improve metagenomic read gene annotation. Results We not only analyze the programs' performance at different read-lengths like similar studies, but also separate different types of reads, including intra- and intergenic regions, for analysis. The main deficiencies are in the algorithms' ability to predict non-coding regions and gene edges, resulting in more false-positives and false-negatives than desired. In fact, the specificities of the algorithms are notably worse than the sensitivities. By combining the programs' predictions, we show significant improvement in specificity at minimal cost to sensitivity, resulting in 4% improvement in accuracy for 100 bp reads with ~1% improvement in accuracy for 200 bp reads and above. To correctly annotate the start and stop of the genes, we find that a consensus of all the predictors performs best for shorter read lengths while a unanimous agreement is better for longer read lengths, boosting annotation accuracy by 1-8%. We also demonstrate use of the classifier combinations on a real dataset. Conclusions To optimize the performance for both prediction and annotation accuracies, we conclude that the consensus of all methods (or a majority vote is the best for reads 400 bp and shorter, while using the intersection of GeneMark and Orphelia predictions is the best for reads 500 bp and longer. We demonstrate that most methods predict over 80% coding (including partially coding reads on a real human gut sample sequenced by Illumina technology.
Investigation into Methods for Predicting Connection Temperatures
Directory of Open Access Journals (Sweden)
K. Anderson
2009-01-01
Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results.
Soft Computing Methods for Disulfide Connectivity Prediction.
Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S
2015-01-01
The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.
New prediction methods for collaborative filtering
Directory of Open Access Journals (Sweden)
Hasan BULUT
2016-05-01
Full Text Available Companies, in particular e-commerce companies, aims to increase customer satisfaction, hence in turn increase their profits, using recommender systems. Recommender Systems are widely used nowadays and they provide strategic advantages to the companies that use them. These systems consist of different stages. In the first stage, the similarities between the active user and other users are computed using the user-product ratings matrix. Then, the neighbors of the active user are found from these similarities. In prediction calculation stage, the similarities computed at the first stage are used to generate the weight vector of the closer neighbors. Neighbors affect the prediction value by the corresponding value of the weight vector. In this study, we developed two new methods for the prediction calculation stage which is the last stage of collaborative filtering. The performance of these methods are measured with evaluation metrics used in the literature and compared with other studies in this field.
Novel hyperspectral prediction method and apparatus
Kemeny, Gabor J.; Crothers, Natalie A.; Groth, Gard A.; Speck, Kathy A.; Marbach, Ralf
2009-05-01
Both the power and the challenge of hyperspectral technologies is the very large amount of data produced by spectral cameras. While off-line methodologies allow the collection of gigabytes of data, extended data analysis sessions are required to convert the data into useful information. In contrast, real-time monitoring, such as on-line process control, requires that compression of spectral data and analysis occur at a sustained full camera data rate. Efficient, high-speed practical methods for calibration and prediction are therefore sought to optimize the value of hyperspectral imaging. A novel method of matched filtering known as science based multivariate calibration (SBC) was developed for hyperspectral calibration. Classical (MLR) and inverse (PLS, PCR) methods are combined by spectroscopically measuring the spectral "signal" and by statistically estimating the spectral "noise." The accuracy of the inverse model is thus combined with the easy interpretability of the classical model. The SBC method is optimized for hyperspectral data in the Hyper-CalTM software used for the present work. The prediction algorithms can then be downloaded into a dedicated FPGA based High-Speed Prediction EngineTM module. Spectral pretreatments and calibration coefficients are stored on interchangeable SD memory cards, and predicted compositions are produced on a USB interface at real-time camera output rates. Applications include minerals, pharmaceuticals, food processing and remote sensing.
Establishing a predictive maintenance program at the Hanford Site
International Nuclear Information System (INIS)
Winslow, R.W.
1994-05-01
This document contains information about a new Predictive Maintenance Program being developed and implemented at the Hanford Reservation. Details of the document include: background on persons developing the program, history of predictive maintenance, implementation of new program, engineering task analysis, network development and new software, issues to be resolved, benefits expected, and appendix gives information about the symposium from which this paper is based
Activity, exposure rate and spectrum prediction with Java programming
International Nuclear Information System (INIS)
Sahin, D.; Uenlue, K.
2009-01-01
In order to envision the radiation exposure during Neutron Activation Analysis (NAA) experiments, a software called Activity Predictor is developed using Java TM programming language. The Activity Predictor calculates activities, exposure rates and gamma spectra of activated samples for NAA experiments performed at Radiation Science and Engineering Center (RSEC), Penn State Breazeale Reactor (PSBR). The calculation procedure for predictions involves both analytical and Monte Carlo methods. The Activity Predictor software is validated with a series of activation experiments. It has been found that Activity Predictor software calculates the activities and exposure rates precisely. The software also predicts gamma spectrum for each measurement. The predicted spectra agreed partially with measured spectra. The error in net photo peak areas varied from 4.8 to 51.29%, which is considered to be due to simplistic modeling, statistical fluctuations and unknown contaminants in the samples. (author)
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Prediction methods environmental-effect reporting
International Nuclear Information System (INIS)
Jonker, R.J.; Koester, H.W.
1987-12-01
This report provides a survey of prediction methods which can be applied to the calculation of emissions in cuclear-reactor accidents, in the framework of environment-effect reports (dutch m.e.r.) or risk analyses. Also emissions during normal operation are important for m.e.r.. These can be derived from measured emissions of power plants being in operation. Data concerning the latter are reported. The report consists of an introduction into reactor technology, among which a description of some reactor types, the corresponding fuel cycle and dismantling scenarios - a discussion of risk-analyses for nuclear power plants and the physical processes which can play a role during accidents - a discussion of prediction methods to be employed and the expected developments in this area - some background information. (aughor). 145 refs.; 21 figs.; 20 tabs
A comparison of methods for cascade prediction
Guo, Ruocheng; Shakarian, Paulo
2016-01-01
Information cascades exist in a wide variety of platforms on Internet. A very important real-world problem is to identify which information cascades can go viral. A system addressing this problem can be used in a variety of applications including public health, marketing and counter-terrorism. As a cascade can be considered as compound of the social network and the time series. However, in related literature where methods for solving the cascade prediction problem were proposed, the experimen...
Hybrid methods for airframe noise numerical prediction
Energy Technology Data Exchange (ETDEWEB)
Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)
2005-07-01
This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)
Mechatronics technology in predictive maintenance method
Majid, Nurul Afiqah A.; Muthalif, Asan G. A.
2017-11-01
This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.
Predicting Metabolic Syndrome Using the Random Forest Method
Directory of Open Access Journals (Sweden)
Apilak Worachartcheewan
2015-01-01
Full Text Available Aims. This study proposes a computational method for determining the prevalence of metabolic syndrome (MS and to predict its occurrence using the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III criteria. The Random Forest (RF method is also applied to identify significant health parameters. Materials and Methods. We used data from 5,646 adults aged between 18–78 years residing in Bangkok who had received an annual health check-up in 2008. MS was identified using the NCEP ATP III criteria. The RF method was applied to predict the occurrence of MS and to identify important health parameters surrounding this disorder. Results. The overall prevalence of MS was 23.70% (34.32% for males and 17.74% for females. RF accuracy for predicting MS in an adult Thai population was 98.11%. Further, based on RF, triglyceride levels were the most important health parameter associated with MS. Conclusion. RF was shown to predict MS in an adult Thai population with an accuracy >98% and triglyceride levels were identified as the most informative variable associated with MS. Therefore, using RF to predict MS may be potentially beneficial in identifying MS status for preventing the development of diabetes mellitus and cardiovascular diseases.
Calculation methods in program CCRMN
Energy Technology Data Exchange (ETDEWEB)
Chonghai, Cai [Nankai Univ., Tianjin (China). Dept. of Physics; Qingbiao, Shen [Chinese Nuclear Data Center, Beijing, BJ (China)
1996-06-01
CCRMN is a program for calculating complex reactions of a medium-heavy nucleus with six light particles. In CCRMN, the incoming particles can be neutrons, protons, {sup 4}He, deuterons, tritons and {sup 3}He. the CCRMN code is constructed within the framework of the optical model, pre-equilibrium statistical theory based on the exciton model and the evaporation model. CCRMN is valid in 1{approx} MeV energy region, it can give correct results for optical model quantities and all kinds of reaction cross sections. This program has been applied in practical calculations and got reasonable results.
Prediction Methods for Blood Glucose Concentration
DEFF Research Database (Denmark)
-day workshop on the design, use and evaluation of prediction methods for blood glucose concentration was held at the Johannes Kepler University Linz, Austria. One intention of the workshop was to bring together experts working in various fields on the same topic, in order to shed light from different angles...... discussions which allowed to receive direct feedback from the point of view of different disciplines. This book is based on the contributions of that workshop and is intended to convey an overview of the different aspects involved in the prediction. The individual chapters are based on the presentations given...... in the process of writing this book: All authors for their individual contributions, all reviewers of the book chapters, Daniela Hummer for the entire organization of the workshop, Boris Tasevski for helping with the typesetting, Florian Reiterer for his help editing the book, as well as Oliver Jackson and Karin...
Computational predictive methods for fracture and fatigue
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Statistical and Machine Learning Models to Predict Programming Performance
Bergin, Susan
2006-01-01
This thesis details a longitudinal study on factors that influence introductory programming success and on the development of machine learning models to predict incoming student performance. Although numerous studies have developed models to predict programming success, the models struggled to achieve high accuracy in predicting the likely performance of incoming students. Our approach overcomes this by providing a machine learning technique, using a set of three significant...
Seminal quality prediction using data mining methods.
Sahoo, Anoop J; Kumar, Yugal
2014-01-01
Now-a-days, some new classes of diseases have come into existences which are known as lifestyle diseases. The main reasons behind these diseases are changes in the lifestyle of people such as alcohol drinking, smoking, food habits etc. After going through the various lifestyle diseases, it has been found that the fertility rates (sperm quantity) in men has considerably been decreasing in last two decades. Lifestyle factors as well as environmental factors are mainly responsible for the change in the semen quality. The objective of this paper is to identify the lifestyle and environmental features that affects the seminal quality and also fertility rate in man using data mining methods. The five artificial intelligence techniques such as Multilayer perceptron (MLP), Decision Tree (DT), Navie Bayes (Kernel), Support vector machine+Particle swarm optimization (SVM+PSO) and Support vector machine (SVM) have been applied on fertility dataset to evaluate the seminal quality and also to predict the person is either normal or having altered fertility rate. While the eight feature selection techniques such as support vector machine (SVM), neural network (NN), evolutionary logistic regression (LR), support vector machine plus particle swarm optimization (SVM+PSO), principle component analysis (PCA), chi-square test, correlation and T-test methods have been used to identify more relevant features which affect the seminal quality. These techniques are applied on fertility dataset which contains 100 instances with nine attribute with two classes. The experimental result shows that SVM+PSO provides higher accuracy and area under curve (AUC) rate (94% & 0.932) among multi-layer perceptron (MLP) (92% & 0.728), Support Vector Machines (91% & 0.758), Navie Bayes (Kernel) (89% & 0.850) and Decision Tree (89% & 0.735) for some of the seminal parameters. This paper also focuses on the feature selection process i.e. how to select the features which are more important for prediction of
Programming Useful Life Prediction (PULP), Phase I
National Aeronautics and Space Administration — Accurately predicting Remaining Useful Life (RUL) provides significant benefitsit increases safety and reduces financial and labor resource requirements. Relying on...
A Rational Method for Ranking Engineering Programs.
Glower, Donald D.
1980-01-01
Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)
Neurolinguistics Programming: Method or Myth?
Gumm, W. B.; And Others
1982-01-01
The preferred modality by which 50 right-handed female college students encoded experience was assessed by recordings of conjugate eye movements, content analysis of the subject's verbal report, and the subject's self-report. Kappa analyses failed to reveal any agreement of the three assessment methods. (Author)
Schoenfelder, Erin N.; Sandler, Irwin N.; Millsap, Roger E.; Wolchik, Sharlene A.; Berkel, Cady; Ayers, Timothy S.
2013-01-01
The study developed a multi-dimensional measure to assess participant responsiveness to a preventive intervention, and applied this measure to study how participant baseline characteristics predict responsiveness and how responsiveness predicts program outcomes. The study was conducted with caregivers who participated in the parenting-focused component of the Family Bereavement Program (FBP), a prevention program for families that have experienced parental death. The sample consisted of 89 ca...
Large-scale linear programs in planning and prediction.
2017-06-01
Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...
Simple Calculation Programs for Biology Immunological Methods
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Immunological Methods. Computation of Ab/Ag Concentration from EISA data. Graphical Method; Raghava et al., 1992, J. Immuno. Methods 153: 263. Determination of affinity of Monoclonal Antibody. Using non-competitive ...
Program integration of predictive maintenance with reliability centered maintenance
International Nuclear Information System (INIS)
Strong, D.K. Jr; Wray, D.M.
1990-01-01
This paper addresses improving the safety and reliability of power plants in a cost-effective manner by integrating the recently developed reliability centered maintenance techniques with the traditional predictive maintenance techniques of nuclear power plants. The topics of the paper include a description of reliability centered maintenance (RCM), enhancing RCM with predictive maintenance, predictive maintenance programs, condition monitoring techniques, performance test techniques, the mid-Atlantic Reliability Centered Maintenance Users Group, test guides and the benefits of shared guide development
Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.
Hidalgo, J Ignacio; Colmenar, J Manuel; Kronberger, Gabriel; Winkler, Stephan M; Garnica, Oscar; Lanchares, Juan
2017-08-08
Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.
Method for programming a flash memory
Energy Technology Data Exchange (ETDEWEB)
Brosky, Alexander R.; Locke, William N.; Maher, Conrado M.
2016-08-23
A method of programming a flash memory is described. The method includes partitioning a flash memory into a first group having a first level of write-protection, a second group having a second level of write-protection, and a third group having a third level of write-protection. The write-protection of the second and third groups is disabled using an installation adapter. The third group is programmed using a Software Installation Device.
New methods for fall risk prediction.
Ejupi, Andreas; Lord, Stephen R; Delbaere, Kim
2014-09-01
Accidental falls are the leading cause of injury-related death and hospitalization in old age, with over one-third of the older adults experiencing at least one fall or more each year. Because of limited healthcare resources, regular objective fall risk assessments are not possible in the community on a large scale. New methods for fall prediction are necessary to identify and monitor those older people at high risk of falling who would benefit from participating in falls prevention programmes. Technological advances have enabled less expensive ways to quantify physical fall risk in clinical practice and in the homes of older people. Recently, several studies have demonstrated that sensor-based fall risk assessments of postural sway, functional mobility, stepping and walking can discriminate between fallers and nonfallers. Recent research has used low-cost, portable and objective measuring instruments to assess fall risk in older people. Future use of these technologies holds promise for assessing fall risk accurately in an unobtrusive manner in clinical and daily life settings.
Discount method for programming language evaluation
DEFF Research Database (Denmark)
Kurtev, Svetomir; Christensen, Tommy Aagaard; Thomsen, Bent
2016-01-01
This paper presents work in progress on developing a Discount Method for Programming Language Evaluation inspired by the Discount Usability Evaluation method (Benyon 2010) and the Instant Data Analysis method (Kjeldskov et al. 2004). The method is intended to bridge the gap between small scale...... internal language design evaluation methods and large scale surveys and quantitative evaluation methods. The method is designed to be applicable even before a compiler or IDE is developed for a new language. To test the method, a usability evaluation experiment was carried out on the Quorum programming...... language (Stefik et al. 2016) using programmers with experience in C and C#. When comparing our results with previous studies of Quorum, most of the data was comparable though not strictly in agreement. However, the discrepancies were mainly related to the programmers pre-existing expectations...
Methods for evaluation of industry training programs
International Nuclear Information System (INIS)
Morisseau, D.S.; Roe, M.L.; Persensky, J.J.
1987-01-01
The NRC Policy Statement on Training and Qualification endorses the INPO-managed Training Accreditation Program in that it encompasses the elements of effective performance-based training. Those elements are: analysis of the job, performance-based learning objectives, training design and implementation, trainee evaluation, and program evaluation. As part of the NRC independent evaluation of utilities implementation of training improvement programs, the staff developed training review criteria and procedures that address all five elements of effective performance-based training. The staff uses these criteria to perform reviews of utility training programs that have already received accreditation. Although no performance-based training program can be said to be complete unless all five elements are in place, the last two, trainee and program evaluation, are perhaps the most important because they determine how well the first three elements have been implemented and ensure the dynamic nature of training. This paper discusses the evaluation elements of the NRC training review criteria. The discussion will detail the elements of evaluation methods and techniques that the staff expects to find as integral parts of performance-based training programs at accredited utilities. Further, the review of the effectiveness of implementation of the evaluation methods is discussed. The paper also addresses some of the qualitative differences between what is minimally acceptable and what is most desirable with respect to trainee and program evaluation mechanisms and their implementation
Simple Calculation Programs for Biology Other Methods
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Other Methods. Hemolytic potency of drugs. Raghava et al., (1994) Biotechniques 17: 1148. FPMAP: methods for classification and identification of microorganisms 16SrRNA. graphical display of restriction and fragment map of ...
Flow discharge prediction in compound channels using linear genetic programming
Azamathulla, H. Md.; Zahiri, A.
2012-08-01
SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.
Sparsity Prevention Pivoting Method for Linear Programming
DEFF Research Database (Denmark)
Li, Peiqiang; Li, Qiyuan; Li, Canbing
2018-01-01
When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper....... The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...
Sparsity Prevention Pivoting Method for Linear Programming
DEFF Research Database (Denmark)
Li, Peiqiang; Li, Qiyuan; Li, Canbing
2018-01-01
. The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following......When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...
Decision tree methods: applications for classification and prediction.
Song, Yan-Yan; Lu, Ying
2015-04-25
Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.
Energy Technology Data Exchange (ETDEWEB)
Maxwell, H.
1996-12-01
This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.
International Nuclear Information System (INIS)
Maxwell, H.
1996-01-01
This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or open-quotes synergyclose quotes between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The open-quotes Vibrationclose quotes view of the combined program is then presented
CREME96 and Related Error Rate Prediction Methods
Adams, James H., Jr.
2012-01-01
Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and
Analytical methods for predicting contaminant transport
International Nuclear Information System (INIS)
Pigford, T.H.
1989-09-01
This paper summarizes some of the previous and recent work at the University of California on analytical solutions for predicting contaminate transport in porous and fractured geologic media. Emphasis is given here to the theories for predicting near-field transport, needed to derive the time-dependent source term for predicting far-field transport and overall repository performance. New theories summarized include solubility-limited release rate with flow backfill in rock, near-field transport of radioactive decay chains, interactive transport of colloid and solute, transport of carbon-14 as carbon dioxide in unsaturated rock, and flow of gases out of and a waste container through cracks and penetrations. 28 refs., 4 figs
Experience in the application of erosion-corrosion prediction programs
International Nuclear Information System (INIS)
Castiella Villacampa, E.; Cacho Cordero, L.; Pascual Velazquez, A.; Casar Asuar, M.
1994-01-01
Recently the results of the Nuclear Regulatory Commission's follow-on programme relating to the application of erosion-corrosion supervision and control programs were published. The main problems encountered in their practical application are highlighted, namely those associated with prediction, calculation of minimum thickness acceptable by code, results analyses of the thicknesses measured using ultrasound technology, cases of incorrect substitution, etc. A number of power plants in Spain are currently using a computerised prediction and monitoring program for the erosion-corrosion phenomenon. The experience gained in the application of this program has been such that it has led to a number or benefits: an improvement in the application of the program, proof of its suitability to real situation, the establishment of a series of criteria relative to the inclusion or exclusion of consideration during data input, the monitoring of the phenomenon, selection of elements for inspection, etc. The report describes these areas, using typical examples as illustrations. (Author)
Machine Learning Methods to Predict Diabetes Complications.
Dagliati, Arianna; Marini, Simone; Sacchi, Lucia; Cogni, Giulia; Teliti, Marsida; Tibollo, Valentina; De Cata, Pasquale; Chiovato, Luca; Bellazzi, Riccardo
2018-03-01
One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.
Different Methods of Predicting Permeability in Shale
DEFF Research Database (Denmark)
Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette
by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...
Connecting clinical and actuarial prediction with rule-based methods
Fokkema, M.; Smits, N.; Kelderman, H.; Penninx, B.W.J.H.
2015-01-01
Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction
Method for Predicting Hypergolic Mixture Flammability Limits
2017-02-01
of all these phases. 15. SUBJECT TERMS EOARD, rocket propulsion, combustion chemistry , energetic ionic liquids, flammability limits, fuel/oxidizer...Chemical Engineering Lab(UCP) This report is in support of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Demonstration Program, which...formation at 298.15 K have been proposed by Osmont and co-workers [Osmont, 2007 and Osmont et al., 2007] by using quantum chemistry computations at
Assessment method to predict the rate of unresolved false alarms
International Nuclear Information System (INIS)
Reardon, P.T.; Eggers, R.F.; Heaberlin, S.W.
1982-06-01
A method has been developed to predict the rate of unresolved false alarms of material loss in a nuclear facility. The computer program DETRES-1 was developed. The program first assigns the true values of control unit components receipts, shipments, beginning and ending inventories. A normal random number generator is used to generate measured values of each component. A loss estimator is calculated from the control unit's measured values. If the loss estimator triggers a detection alarm, a response is simulated. The response simulation is divided into two phases. The first phase is to simulate remeasurement of the components of the detection loss estimator using the same or better measurement methods or inferences from surrounding control units. If this phase of response continues to indicate a material loss, phase of response simulating a production shutdown and comprehensive cleanout is initiated. A new loss estimator is found, and tested against the alarm thresholds. If the estimator value is below the threshold, the original detection alarm is considered resolved; if above the threshold, an unresolved alarm has occurred. A tally is kept of valid alarms, unresolved false alarms, and failure to alarm upon a true loss
Can Morphing Methods Predict Intermediate Structures?
Weiss, Dahlia R.; Levitt, Michael
2009-01-01
Movement is crucial to the biological function of many proteins, yet crystallographic structures of proteins can give us only a static snapshot. The protein dynamics that are important to biological function often happen on a timescale that is unattainable through detailed simulation methods such as molecular dynamics as they often involve crossing high-energy barriers. To address this coarse-grained motion, several methods have been implemented as web servers in which a set of coordinates is usually linearly interpolated from an initial crystallographic structure to a final crystallographic structure. We present a new morphing method that does not extrapolate linearly and can therefore go around high-energy barriers and which can produce different trajectories between the same two starting points. In this work, we evaluate our method and other established coarse-grained methods according to an objective measure: how close a coarse-grained dynamics method comes to a crystallographically determined intermediate structure when calculating a trajectory between the initial and final crystal protein structure. We test this with a set of five proteins with at least three crystallographically determined on-pathway high-resolution intermediate structures from the Protein Data Bank. For simple hinging motions involving a small conformational change, segmentation of the protein into two rigid sections outperforms other more computationally involved methods. However, large-scale conformational change is best addressed using a nonlinear approach and we suggest that there is merit in further developing such methods. PMID:18996395
Directory of Open Access Journals (Sweden)
Lester L. Yuan
2007-06-01
Full Text Available This paper provides a brief introduction to the R package bio.infer, a set of scripts that facilitates the use of maximum likelihood (ML methods for predicting environmental conditions from assemblage composition. Environmental conditions can often be inferred from only biological data, and these inferences are useful when other sources of data are unavailable. ML prediction methods are statistically rigorous and applicable to a broader set of problems than more commonly used weighted averaging techniques. However, ML methods require a substantially greater investment of time to program algorithms and to perform computations. This package is designed to reduce the effort required to apply ML prediction methods.
Prediction Methods in Science and Technology
DEFF Research Database (Denmark)
Høskuldsson, Agnar
Presents the H-principle, the Heisenberg modelling principle. General properties of the Heisenberg modelling procedure is developed. The theory is applied to principal component analysis and linear regression analysis. It is shown that the H-principle leads to PLS regression in case the task...... is linear regression analysis. The book contains different methods to find the dimensions of linear models, to carry out sensitivity analysis in latent structure models, variable selection methods and presentation of results from analysis....
Genomic prediction in a breeding program of perennial ryegrass
DEFF Research Database (Denmark)
Fé, Dario; Ashraf, Bilal; Greve-Pedersen, Morten
2015-01-01
We present a genomic selection study performed on 1918 rye grass families (Lolium perenne L.), which were derived from a commercial breeding program at DLF-Trifolium, Denmark. Phenotypes were recorded on standard plots, across 13 years and in 6 different countries. Variants were identified...... this set. Estimated Breeding Value and prediction accuracies were calculated trough two different cross-validation schemes: (i) k-fold (k=10); (ii) leaving out one parent combination at the time, in order to test for accuracy of predicting new families. Accuracies ranged between 0.56 and 0.97 for scheme (i....... A larger set of 1791 F2s were used as training set to predict EBVs of 127 synthetic families (originated from poly-crosses between 5-11 single plants) for heading date and crown rust resistance. Prediction accuracies were 0.93 and 0.57 respectively. Results clearly demonstrate considerable potential...
Generic methods for aero-engine exhaust emission prediction
Shakariyants, S.A.
2008-01-01
In the thesis, generic methods have been developed for aero-engine combustor performance, combustion chemistry, as well as airplane aerodynamics, airplane and engine performance. These methods specifically aim to support diverse emission prediction studies coupled with airplane and engine
Force prediction in cold rolling mills by polynomial methods
Directory of Open Access Journals (Sweden)
Nicu ROMAN
2007-12-01
Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.
An Approximate Method for Pitch-Damping Prediction
National Research Council Canada - National Science Library
Danberg, James
2003-01-01
...) method for predicting the pitch-damping coefficients has been employed. The CFD method provides important details necessary to derive the correlation functions that are unavailable from the current experimental database...
Constraint Logic Programming approach to protein structure prediction
Directory of Open Access Journals (Sweden)
Fogolari Federico
2004-11-01
Full Text Available Abstract Background The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Results Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. Conclusions The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.
Constraint Logic Programming approach to protein structure prediction.
Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico
2004-11-30
The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.
A Versatile Nonlinear Method for Predictive Modeling
Liou, Meng-Sing; Yao, Weigang
2015-01-01
As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.
PBF/LOFT Lead Rod Test Program experiment predictions document
International Nuclear Information System (INIS)
Varacalle, D.J.; Cox, W.R.; Niebruegge, D.A.; Seiber, S.J.; Brake, T.E.; Driskell, W.E.; Nigg, D.W.; Tolman, E.L.
1978-12-01
The PBF/LOFT Lead Rod (LLR) Test Program is being conducted to provide experimental information on the behavior of nuclear fuel under normal and accident conditions in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. The PBF/LLR tests are designed to simulate the test conditions for the LOFT Power Ascension Tests L2-3 through L2-5. The test program has been designed to provide a parametric evaluation of the LOFT fuel (center and peripheral modules) over a wide range of power. This report presents the experiment predictions for the three four-rod LOCA tests
DASPfind: new efficient method to predict drug–target interactions
Ba Alawi, Wail
2016-03-16
Background Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions. Results Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually. Conclusions DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind
Predicting introductory programming performance: A multi-institutional multivariate study
Bergin, Susan; Reilly, Ronan
2006-12-01
A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a logistic regression model using 10-fold stratified cross validation was developed. The model used three attributes: Leaving Certificate Mathematics result (final mathematics examination at second level), number of hours playing computer games while taking the module and programming self-esteem. Prediction success was significant with 80% of students correctly classified. The model also works well on a per-institution level. A discussion on the implications of the model is provided and future work is outlined.
Genetic Programming for Sea Level Predictions in an Island Environment
Directory of Open Access Journals (Sweden)
M.A. Ghorbani
2010-03-01
Full Text Available Accurate predictions of sea-level are important for geodetic applications, navigation, coastal, industrial and tourist activities. In the current work, the Genetic Programming (GP and artificial neural networks (ANNs were applied to forecast half-daily and daily sea-level variations from 12 hours to 5 days ahead. The measurements at the Cocos (Keeling Islands in the Indian Ocean were used for training and testing of the employed artificial intelligence techniques. A comparison was performed of the predictions from the GP model and the ANN simulations. Based on the comparison outcomes, it was found that the Genetic Programming approach can be successfully employed in forecasting of sea level variations.
Method of predicting Splice Sites based on signal interactions
Directory of Open Access Journals (Sweden)
Deogun Jitender S
2006-04-01
Full Text Available Abstract Background Predicting and proper ranking of canonical splice sites (SSs is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE and Intronic (ISE Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand.
Programming by Numbers -- A Programming Method for Complete Novices
Glaser, Hugh; Hartel, Pieter H.
2000-01-01
Students often have difficulty with the minutiae of program construction. We introduce the idea of `Programming by Numbers', which breaks some of the programming process down into smaller steps, giving such students a way into the process of Programming in the Small. Programming by Numbers does not
Deep learning methods for protein torsion angle prediction.
Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin
2017-09-18
Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.
Modular Engine Noise Component Prediction System (MCP) Program Users' Guide
Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.
2004-01-01
This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).
Computational methods in sequence and structure prediction
Lang, Caiyi
This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed
A METHOD OF PREDICTING BREAST CANCER USING QUESTIONNAIRES
Directory of Open Access Journals (Sweden)
V. N. Malashenko
2017-01-01
Full Text Available Purpose. Simplify and increase the accuracy of the questionnaire method of predicting breast cancer (BC for subsequent computer processing and Automated dispensary at risk without the doctor.Materials and methods. The work was based on statistical data obtained by surveying 305 women. The questionnaire included 63 items: 17 open-ended questions, 46 — with a choice of response. It was established multifactor model, the development of which, in addition to the survey data were used materials from the medical histories of patients and respondents data immuno-histochemical studies. Data analysis was performed using Statistica 10.0 and MedCalc 12.7.0 programs.Results. The ROC analysis was performas and the questionnaire data revealed 8 significant predictors of breast cancer. On their basis we created the formula for calculating the prognostic factor of risk of development of breast cancer with a sensitivity 83,12% and a specificity of 91,43%.Conclusions. The completed developments allow to create a computer program for automated processing of profiles on the formation of groups at risk of breast cancer and clinical supervision. The introduction of a screening questionnaire over the Internet with subsequent computer processing of the results, without the direct involvement of doctors, will increase the coverage of the female population of the Russian Federation activities related to the prevention of breast cancer. It can free up time for physicians to receive primary patients, as well as improve oncological vigilance of the female population of the Russian Federation.
A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress
Directory of Open Access Journals (Sweden)
Ching-Hsue Cheng
2018-01-01
Full Text Available The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i the proposed model is different from the previous models lacking the concept of time series; (ii the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies.
A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress
2018-01-01
The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies. PMID:29765399
A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress.
Cheng, Ching-Hsue; Chan, Chia-Pang; Yang, Jun-He
2018-01-01
The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies.
The simplex method of linear programming
Ficken, Frederick A
1961-01-01
This concise but detailed and thorough treatment discusses the rudiments of the well-known simplex method for solving optimization problems in linear programming. Geared toward undergraduate students, the approach offers sufficient material for readers without a strong background in linear algebra. Many different kinds of problems further enrich the presentation. The text begins with examinations of the allocation problem, matrix notation for dual problems, feasibility, and theorems on duality and existence. Subsequent chapters address convex sets and boundedness, the prepared problem and boun
Life prediction methods for the combined creep-fatigue endurance
International Nuclear Information System (INIS)
Wareing, J.; Lloyd, G.J.
1980-09-01
The basis and current status of development of the various approaches to the prediction of the combined creep-fatigue endurance are reviewed. It is concluded that an inadequate materials data base makes it difficult to draw sensible conclusions about the prediction capabilities of each of the available methods. Correlation with data for stainless steel 304 and 316 is presented. (U.K.)
What Predicts Use of Learning-Centered, Interactive Engagement Methods?
Madson, Laura; Trafimow, David; Gray, Tara; Gutowitz, Michael
2014-01-01
What makes some faculty members more likely to use interactive engagement methods than others? We use the theory of reasoned action to predict faculty members' use of interactive engagement methods. Results indicate that faculty members' beliefs about the personal positive consequences of using these methods (e.g., "Using interactive…
Method for Predicting Solubilities of Solids in Mixed Solvents
DEFF Research Database (Denmark)
Ellegaard, Martin Dela; Abildskov, Jens; O'Connell, J. P.
2009-01-01
A method is presented for predicting solubilities of solid solutes in mixed solvents, based on excess Henry's law constants. The basis is statistical mechanical fluctuation solution theory for composition derivatives of solute/solvent infinite dilution activity coefficients. Suitable approximatio...
Fast Prediction Method for Steady-State Heat Convection
Wá ng, Yì
2012-01-01
, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering
Development of motion image prediction method using principal component analysis
International Nuclear Information System (INIS)
Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Kamiaka, Kazuma
2012-01-01
Respiratory motion can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to minimize the impact of healthy tissue irradiation due to the lung tumor motion. The purpose of this research is to develop an algorithm for the improvement of image guided radiation therapy by the prediction of motion images. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. The images/movies were successfully predicted and verified using the developed algorithm. With the proposed prediction method it is possible to forecast the tumor images over the next breathing period. The implementation of this method in real time is believed to be significant for higher level of tumor tracking including the detection of sudden abdominal changes during radiation therapy. (author)
Ensemble approach combining multiple methods improves human transcription start site prediction
LENUS (Irish Health Repository)
Dineen, David G
2010-11-30
Abstract Background The computational prediction of transcription start sites is an important unsolved problem. Some recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still difficult to locate using current methods. These methods use different features and training sets, along with a variety of machine learning techniques and result in different prediction sets. Results We demonstrate the heterogeneity of current prediction sets, and take advantage of this heterogeneity to construct a two-level classifier (\\'Profisi Ensemble\\') using predictions from 7 programs, along with 2 other data sources. Support vector machines using \\'full\\' and \\'reduced\\' data sets are combined in an either\\/or approach. We achieve a 14% increase in performance over the current state-of-the-art, as benchmarked by a third-party tool. Conclusions Supervised learning methods are a useful way to combine predictions from diverse sources.
An assessment on epitope prediction methods for protozoa genomes
Directory of Open Access Journals (Sweden)
Resende Daniela M
2012-11-01
Full Text Available Abstract Background Epitope prediction using computational methods represents one of the most promising approaches to vaccine development. Reduction of time, cost, and the availability of completely sequenced genomes are key points and highly motivating regarding the use of reverse vaccinology. Parasites of genus Leishmania are widely spread and they are the etiologic agents of leishmaniasis. Currently, there is no efficient vaccine against this pathogen and the drug treatment is highly toxic. The lack of sufficiently large datasets of experimentally validated parasites epitopes represents a serious limitation, especially for trypanomatids genomes. In this work we highlight the predictive performances of several algorithms that were evaluated through the development of a MySQL database built with the purpose of: a evaluating individual algorithms prediction performances and their combination for CD8+ T cell epitopes, B-cell epitopes and subcellular localization by means of AUC (Area Under Curve performance and a threshold dependent method that employs a confusion matrix; b integrating data from experimentally validated and in silico predicted epitopes; and c integrating the subcellular localization predictions and experimental data. NetCTL, NetMHC, BepiPred, BCPred12, and AAP12 algorithms were used for in silico epitope prediction and WoLF PSORT, Sigcleave and TargetP for in silico subcellular localization prediction against trypanosomatid genomes. Results A database-driven epitope prediction method was developed with built-in functions that were capable of: a removing experimental data redundancy; b parsing algorithms predictions and storage experimental validated and predict data; and c evaluating algorithm performances. Results show that a better performance is achieved when the combined prediction is considered. This is particularly true for B cell epitope predictors, where the combined prediction of AAP12 and BCPred12 reached an AUC value
Assessment of a method for the prediction of mandibular rotation.
Lee, R S; Daniel, F J; Swartz, M; Baumrind, S; Korn, E L
1987-05-01
A new method to predict mandibular rotation developed by Skieller and co-workers on a sample of 21 implant subjects with extreme growth patterns has been tested against an alternative sample of 25 implant patients with generally similar mean values, but with less extreme facial patterns. The method, which had been highly successful in retrospectively predicting changes in the sample of extreme subjects, was much less successful in predicting individual patterns of mandibular rotation in the new, less extreme sample. The observation of a large difference in the strength of the predictions for these two samples, even though their mean values were quite similar, should serve to increase our awareness of the complexity of the problem of predicting growth patterns in individual cases.
RFI Math Model programs for predicting intermodulation interference
Stafford, J. M.
1974-01-01
Receivers operating on a space vehicle or an aircraft having many on-board transmitters are subject to intermodulation interference from mixing in the transmitting antenna systems, the external environment, or the receiver front-ends. This paper presents the techniques utilized in RFI Math Model computer programs that were developed to aid in the prevention of interference by predicting problem areas prior to occurrence. Frequencies and amplitudes of possible intermodulation products generated in the external environment are calculated and compared to receiver sensitivities. Intermodulation products generated in receivers are evaluated to determine the adequacy of preselector ejection.
Performance prediction method for a multi-stage Knudsen pump
Kugimoto, K.; Hirota, Y.; Kizaki, Y.; Yamaguchi, H.; Niimi, T.
2017-12-01
In this study, the novel method to predict the performance of a multi-stage Knudsen pump is proposed. The performance prediction method is carried out in two steps numerically with the assistance of a simple experimental result. In the first step, the performance of a single-stage Knudsen pump was measured experimentally under various pressure conditions, and the relationship of the mass flow rate was obtained with respect to the average pressure between the inlet and outlet of the pump and the pressure difference between them. In the second step, the performance of a multi-stage pump was analyzed by a one-dimensional model derived from the mass conservation law. The performances predicted by the 1D-model of 1-stage, 2-stage, 3-stage, and 4-stage pumps were validated by the experimental results for the corresponding number of stages. It was concluded that the proposed prediction method works properly.
The Accident Sequence Precursor program: Methods improvements and current results
International Nuclear Information System (INIS)
Minarick, J.W.; Manning, F.M.; Harris, J.D.
1987-01-01
Changes in the US NRC Accident Sequence Precursor program methods since the initial program evaluations of 1969-81 operational events are described, along with insights from the review of 1984-85 events. For 1984-85, the number of significant precursors was consistent with the number observed in 1980-81, dominant sequences associated with significant events were reasonably consistent with PRA estimates for BWRs, but lacked the contribution due to small-break LOCAs previously observed and predicted in PWRs, and the frequency of initiating events and non-recoverable system failures exhibited some reduction compared to 1980-81. Operational events which provide information concerning additional PRA modeling needs are also described
Space program management methods and tools
Spagnulo, Marcello; Balduccini, Mauro; Nasini, Federico
2013-01-01
Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.
Connecting clinical and actuarial prediction with rule-based methods.
Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H
2015-06-01
Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).
Sidwell, Kenneth W.; Baruah, Pranab K.; Bussoletti, John E.; Medan, Richard T.; Conner, R. S.; Purdon, David J.
1990-01-01
A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines.
Experiment in Application of Methods of Programmed Instruction.
Fradkin, S. L.
In a document translated from the Russian, an analysis is made of various forms and methods of programed learning. The primary developments in the introduction of programed learning methods are: creation of programed teaching aids; use of existing textbooks for programed lectures with feedback; and use of both teaching machines and machineless…
The trajectory prediction of spacecraft by grey method
International Nuclear Information System (INIS)
Wang, Qiyue; Wang, Zhongyu; Zhang, Zili; Wang, Yanqing; Zhou, Weihu
2016-01-01
The real-time and high-precision trajectory prediction of a moving object is a core technology in the field of aerospace engineering. The real-time monitoring and tracking technology are also significant guarantees of aerospace equipment. A dynamic trajectory prediction method called grey dynamic filter (GDF) which combines the dynamic measurement theory and grey system theory is proposed. GDF can use coordinates of the current period to extrapolate coordinates of the following period. At meantime, GDF can also keep the instantaneity of measured coordinates by the metabolism model. In this paper the optimal model length of GDF is firstly selected to improve the prediction accuracy. Then the simulation for uniformly accelerated motion and variably accelerated motion is conducted. The simulation results indicate that the mean composite position error of GDF prediction is one-fifth to that of Kalman filter (KF). By using a spacecraft landing experiment, the prediction accuracy of GDF is compared with the KF method and the primitive grey method (GM). The results show that the motion trajectory of spacecraft predicted by GDF is much closer to actual trajectory than the other two methods. The mean composite position error calculated by GDF is one-eighth to KF and one-fifth to GM respectively. (paper)
Predicting chaos in memristive oscillator via harmonic balance method.
Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai
2012-12-01
This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.
Evaluation and comparison of mammalian subcellular localization prediction methods
Directory of Open Access Journals (Sweden)
Fink J Lynn
2006-12-01
Full Text Available Abstract Background Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER, peroxisome, and lysosome. The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE
Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method
Energy Technology Data Exchange (ETDEWEB)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit
2016-05-02
This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.
Gstat: a program for geostatistical modelling, prediction and simulation
Pebesma, Edzer J.; Wesseling, Cees G.
1998-01-01
Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.
Available Prediction Methods for Corrosion under Insulation (CUI): A Review
Burhani Nurul Rawaida Ain; Muhammad Masdi; Ismail Mokhtar Che
2014-01-01
Corrosion under insulation (CUI) is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external su...
Methods, apparatus and system for notification of predictable memory failure
Energy Technology Data Exchange (ETDEWEB)
Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.
2017-01-03
A method for providing notification of a predictable memory failure includes the steps of: obtaining information regarding at least one condition associated with a memory; calculating a memory failure probability as a function of the obtained information; calculating a failure probability threshold; and generating a signal when the memory failure probability exceeds the failure probability threshold, the signal being indicative of a predicted future memory failure.
Three-dimensional protein structure prediction: Methods and computational strategies.
Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C
2014-10-12
A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methods and techniques for prediction of environmental impact
International Nuclear Information System (INIS)
1992-04-01
Environmental impact assessment (EIA) is the procedure that helps decision makers understand the environmental implications of their decisions. The prediction of environmental effects or impact is an extremely important part of the EIA procedure and improvements in existing capabilities are needed. Considerable attention is paid within environmental impact assessment and in handbooks on EIA to methods for identifying and evaluating environmental impacts. However, little attention is given to the issue distribution of information on impact prediction methods. The quantitative or qualitative methods for the prediction of environmental impacts appear to be the two basic approaches for incorporating environmental concerns into the decision-making process. Depending on the nature of the proposed activity and the environment likely to be affected, a combination of both quantitative and qualitative methods is used. Within environmental impact assessment, the accuracy of methods for the prediction of environmental impacts is of major importance while it provides for sound and well-balanced decision making. Pertinent and effective action to deal with the problems of environmental protection and the rational use of natural resources and sustainable development is only possible given objective methods and techniques for the prediction of environmental impact. Therefore, the Senior Advisers to ECE Governments on Environmental and Water Problems, decided to set up a task force, with the USSR as lead country, on methods and techniques for the prediction of environmental impacts in order to undertake a study to review and analyse existing methodological approaches and to elaborate recommendations to ECE Governments. The work of the task force was completed in 1990 and the resulting report, with all relevant background material, was approved by the Senior Advisers to ECE Governments on Environmental and Water Problems in 1991. The present report reflects the situation, state of
Modified-Fibonacci-Dual-Lucas method for earthquake prediction
Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.
2015-06-01
The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using
Methods for early prediction of lactation flow in Holstein heifers
Directory of Open Access Journals (Sweden)
Vesna Gantner
2010-12-01
Full Text Available The aim of this research was to define methods for early prediction (based on I. milk control record of lactation flow in Holstein heifers as well as to choose optimal one in terms of prediction fit and application simplicity. Total of 304,569 daily yield records automatically recorded on a 1,136 first lactation Holstein cows, from March 2003 till August 2008., were included in analysis. According to the test date, calving date, the age at first calving, lactation stage when I. milk control occurred and to the average milk yield in first 25th, T1 (and 25th-45th, T2 lactation days, measuring monthcalving month-age-production-time-period subgroups were formed. The parameters of analysed nonlinear and linear methods were estimated for each defined subgroup. As models evaluation measures,adjusted coefficient of determination, and average and standard deviation of error were used. Considering obtained results, in terms of total variance explanation (R2 adj, the nonlinear Wood’s method showed superiority above the linear ones (Wilmink’s, Ali-Schaeffer’s and Guo-Swalve’s method in both time-period subgroups (T1 - 97.5 % of explained variability; T2 - 98.1 % of explained variability. Regarding the evaluation measures based on prediction error amount (eavg±eSD, the lowest average error of daily milk yield prediction (less than 0.005 kg/day, as well as of lactation milk yield prediction (less than 50 kg/lactation (T1 time-period subgroup and less than 30 kg/lactation (T2 time-period subgroup; were determined when Wood’s nonlinear prediction method were applied. Obtained results indicate that estimated Wood’s regression parameters could be used in routine work for early prediction of Holstein heifer’s lactation flow.
Development of a regional ensemble prediction method for probabilistic weather prediction
International Nuclear Information System (INIS)
Nohara, Daisuke; Tamura, Hidetoshi; Hirakuchi, Hiromaru
2015-01-01
A regional ensemble prediction method has been developed to provide probabilistic weather prediction using a numerical weather prediction model. To obtain consistent perturbations with the synoptic weather pattern, both of initial and lateral boundary perturbations were given by differences between control and ensemble member of the Japan Meteorological Agency (JMA)'s operational one-week ensemble forecast. The method provides a multiple ensemble member with a horizontal resolution of 15 km for 48-hour based on a downscaling of the JMA's operational global forecast accompanied with the perturbations. The ensemble prediction was examined in the case of heavy snow fall event in Kanto area on January 14, 2013. The results showed that the predictions represent different features of high-resolution spatiotemporal distribution of precipitation affected by intensity and location of extra-tropical cyclone in each ensemble member. Although the ensemble prediction has model bias of mean values and variances in some variables such as wind speed and solar radiation, the ensemble prediction has a potential to append a probabilistic information to a deterministic prediction. (author)
International Nuclear Information System (INIS)
Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Watson, D.G.
1976-11-01
This report evaluates quantitatively the nonradiological environmental monitoring programs at Monticello Nuclear Generating Plant. The general objective of the study is to assess the effectiveness of monitoring programs in the measurement of environmental impacts. Specific objectives include the following: (1) Assess the validity of environmental impact predictions made in the Environmental Statement by analysis of nonradiological monitoring data; (2) evaluate the general adequacy of environmental monitoring programs for detecting impacts and their responsiveness to Technical Specifications objectives; (3) assess the adequacy of preoperational monitoring programs in providing a sufficient data base for evaluating operational impacts; (4) identify possible impacts that were not predicted in the environmental statement and identify monitoring activities that need to be added, modified or deleted; and (5) assist in identifying environmental impacts, monitoring methods, and measurement problems that need additional research before quantitative predictions can be attempted. Preoperational as well as operational monitoring data were examined to test the usefulness of baseline information in evaluating impacts. This included an examination of the analytical methods used to measure ecological and physical parameters, and an assessment of sampling periodicity and sensitivity where appropriate data were available
Towards a unified fatigue life prediction method for marine structures
Cui, Weicheng; Wang, Fang
2014-01-01
In order to apply the damage tolerance design philosophy to design marine structures, accurate prediction of fatigue crack growth under service conditions is required. Now, more and more people have realized that only a fatigue life prediction method based on fatigue crack propagation (FCP) theory has the potential to explain various fatigue phenomena observed. In this book, the issues leading towards the development of a unified fatigue life prediction (UFLP) method based on FCP theory are addressed. Based on the philosophy of the UFLP method, the current inconsistency between fatigue design and inspection of marine structures could be resolved. This book presents the state-of-the-art and recent advances, including those by the authors, in fatigue studies. It is designed to lead the future directions and to provide a useful tool in many practical applications. It is intended to address to engineers, naval architects, research staff, professionals and graduates engaged in fatigue prevention design and survey ...
DASPfind: new efficient method to predict drug–target interactions
Ba Alawi, Wail; Soufan, Othman; Essack, Magbubah; Kalnis, Panos; Bajic, Vladimir B.
2016-01-01
DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind can be accessed online at: http://www.cbrc.kaust.edu.sa/daspfind.
Prediction of Protein–Protein Interactions by Evidence Combining Methods
Directory of Open Access Journals (Sweden)
Ji-Wei Chang
2016-11-01
Full Text Available Most cellular functions involve proteins’ features based on their physical interactions with other partner proteins. Sketching a map of protein–protein interactions (PPIs is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy.
Prediction of polymer flooding performance using an analytical method
International Nuclear Information System (INIS)
Tan Czek Hoong; Mariyamni Awang; Foo Kok Wai
2001-01-01
The study investigated the applicability of an analytical method developed by El-Khatib in polymer flooding. Results from a simulator UTCHEM and experiments were compared with the El-Khatib prediction method. In general, by assuming a constant viscosity polymer injection, the method gave much higher recovery values than the simulation runs and the experiments. A modification of the method gave better correlation, albeit only oil production. Investigation is continuing on modifying the method so that a better overall fit can be obtained for polymer flooding. (Author)
Preface to the Focus Issue: Chaos Detection Methods and Predictability
International Nuclear Information System (INIS)
Gottwald, Georg A.; Skokos, Charalampos
2014-01-01
This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17–21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue
Preface to the Focus Issue: chaos detection methods and predictability.
Gottwald, Georg A; Skokos, Charalampos
2014-06-01
This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17-21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.
Input-constrained model predictive control via the alternating direction method of multipliers
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.
2014-01-01
This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP......) with input and input-rate limits. The algorithm alternates between solving an extended LQCP and a highly structured quadratic program. These quadratic programs are solved using a Riccati iteration procedure, and a structure-exploiting interior-point method, respectively. The computational cost per iteration...... is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation...
The energetic cost of walking: a comparison of predictive methods.
Directory of Open Access Journals (Sweden)
Patricia Ann Kramer
Full Text Available BACKGROUND: The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is "best", but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1 to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2 to investigate to what degree the prediction methods explain the variation in energy expenditure. METHODOLOGY/PRINCIPAL FINDINGS: We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. CONCLUSION: Our results indicate that the choice of predictive method is dependent on the question(s of interest and the data available for use as inputs. Although we
The energetic cost of walking: a comparison of predictive methods.
Kramer, Patricia Ann; Sylvester, Adam D
2011-01-01
The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is "best", but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1) to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2) to investigate to what degree the prediction methods explain the variation in energy expenditure. We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. Our results indicate that the choice of predictive method is dependent on the question(s) of interest and the data available for use as inputs. Although we used modern humans as our model organism, these results can be extended
Orthology prediction methods: a quality assessment using curated protein families.
Trachana, Kalliopi; Larsson, Tomas A; Powell, Sean; Chen, Wei-Hua; Doerks, Tobias; Muller, Jean; Bork, Peer
2011-10-01
The increasing number of sequenced genomes has prompted the development of several automated orthology prediction methods. Tests to evaluate the accuracy of predictions and to explore biases caused by biological and technical factors are therefore required. We used 70 manually curated families to analyze the performance of five public methods in Metazoa. We analyzed the strengths and weaknesses of the methods and quantified the impact of biological and technical challenges. From the latter part of the analysis, genome annotation emerged as the largest single influencer, affecting up to 30% of the performance. Generally, most methods did well in assigning orthologous group but they failed to assign the exact number of genes for half of the groups. The publicly available benchmark set (http://eggnog.embl.de/orthobench/) should facilitate the improvement of current orthology assignment protocols, which is of utmost importance for many fields of biology and should be tackled by a broad scientific community. Copyright © 2011 WILEY Periodicals, Inc.
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Available Prediction Methods for Corrosion under Insulation (CUI: A Review
Directory of Open Access Journals (Sweden)
Burhani Nurul Rawaida Ain
2014-07-01
Full Text Available Corrosion under insulation (CUI is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external surface piping and its insulation was carried out. The results, prediction models and methods available were presented for future research references. However, most of the prediction methods available are based on each local industrial data only which might be different based on the plant location, environment, temperature and many other factors which may contribute to the difference and reliability of the model developed. Thus, it is more reliable if those models or method supported by laboratory testing or simulation which includes the factors promoting CUI such as environment temperature, insulation types, operating temperatures, and other factors.
Predicting proteasomal cleavage sites: a comparison of available methods
DEFF Research Database (Denmark)
Saxova, P.; Buus, S.; Brunak, Søren
2003-01-01
-terminal, in particular, of CTL epitopes is cleaved precisely by the proteasome, whereas the N-terminal is produced with an extension, and later trimmed by peptidases in the cytoplasm and in the endoplasmic reticulum. Recently, three publicly available methods have been developed for prediction of the specificity...
Benchmarking of gene prediction programs for metagenomic data.
Yok, Non; Rosen, Gail
2010-01-01
This manuscript presents the most rigorous benchmarking of gene annotation algorithms for metagenomic datasets to date. We compare three different programs: GeneMark, MetaGeneAnnotator (MGA) and Orphelia. The comparisons are based on their performances over simulated fragments from one hundred species of diverse lineages. We defined four different types of fragments; two types come from the inter- and intra-coding regions and the other types are from the gene edges. Hoff et al. used only 12 species in their comparison; therefore, their sample is too small to represent an environmental sample. Also, no predecessors has separately examined fragments that contain gene edges as opposed to intra-coding regions. General observations in our results are that performances of all these programs improve as we increase the length of the fragment. On the other hand, intra-coding fragments of our data show low annotation error in all of the programs if compared to the gene edge fragments. Overall, we found an upper-bound performance by combining all the methods.
Customer churn prediction using a hybrid method and censored data
Directory of Open Access Journals (Sweden)
Reza Tavakkoli-Moghaddam
2013-05-01
Full Text Available Customers are believed to be the main part of any organization’s assets and customer retention as well as customer churn management are important responsibilities of organizations. In today’s competitive environment, organization must do their best to retain their existing customers since attracting new customers cost significantly more than taking care of existing ones. In this paper, we present a hybrid method based on neural network and Cox regression analysis where neural network is used for outlier data and Cox regression method is implemented for prediction of future events. The proposed model of this paper has been implemented on some data and the results are compared based on five criteria including prediction accuracy, errors’ type I and II, root mean square error and mean absolute deviation. The preliminary results indicate that the proposed model of this paper performs better than alternative methods.
Method of predicting surface deformation in the form of sinkholes
Energy Technology Data Exchange (ETDEWEB)
Chudek, M.; Arkuszewski, J.
1980-06-01
Proposes a method for predicting probability of sinkhole shaped subsidence, number of funnel-shaped subsidences and size of individual funnels. The following factors which influence the sudden subsidence of the surface in the form of funnels are analyzed: geologic structure of the strata between mining workings and the surface, mining depth, time factor, and geologic disolocations. Sudden surface subsidence is observed only in the case of workings situated up to a few dozen meters from the surface. Using the proposed method is explained with some examples. It is suggested that the method produces correct results which can be used in coal mining and in ore mining. (1 ref.) (In Polish)
Polyadenylation site prediction using PolyA-iEP method.
Kavakiotis, Ioannis; Tzanis, George; Vlahavas, Ioannis
2014-01-01
This chapter presents a method called PolyA-iEP that has been developed for the prediction of polyadenylation sites. More precisely, PolyA-iEP is a method that recognizes mRNA 3'ends which contain polyadenylation sites. It is a modular system which consists of two main components. The first exploits the advantages of emerging patterns and the second is a distance-based scoring method. The outputs of the two components are finally combined by a classifier. The final results reach very high scores of sensitivity and specificity.
Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.
Legendre, Audrey; Angel, Eric; Tahi, Fariza
2018-01-15
RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .
Lattice gas methods for predicting intrinsic permeability of porous media
Energy Technology Data Exchange (ETDEWEB)
Santos, L.O.E.; Philippi, P.C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Propriedades Termofisicas e Meios Porosos)]. E-mail: emerich@lmpt.ufsc.br; philippi@lmpt.ufsc.br; Damiani, M.C. [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil). Parque Tecnologico]. E-mail: damiani@lmpt.ufsc.br
2000-07-01
This paper presents a method for predicting intrinsic permeability of porous media based on Lattice Gas Cellular Automata methods. Two methods are presented. The first is based on a Boolean model (LGA). The second is Boltzmann method (LB) based on Boltzmann relaxation equation. LGA is a relatively recent method developed to perform hydrodynamic calculations. The method, in its simplest form, consists of a regular lattice populated with particles that hop from site to site in discrete time steps in a process, called propagation. After propagation, the particles in each site interact with each other in a process called collision, in which the number of particles and momentum are conserved. An exclusion principle is imposed in order to achieve better computational efficiency. In despite of its simplicity, this model evolves in agreement with Navier-Stokes equation for low Mach numbers. LB methods were recently developed for the numerical integration of the Navier-Stokes equation based on discrete Boltzmann transport equation. Derived from LGA, LB is a powerful alternative to the standard methods in computational fluid dynamics. In recent years, it has received much attention and has been used in several applications like simulations of flows through porous media, turbulent flows and multiphase flows. It is important to emphasize some aspects that make Lattice Gas Cellular Automata methods very attractive for simulating flows through porous media. In fact, boundary conditions in flows through complex geometry structures are very easy to describe in simulations using these methods. In LGA methods simulations are performed with integers needing less resident memory capability and boolean arithmetic reduces running time. The two methods are used to simulate flows through several Brazilian reservoir petroleum rocks leading to intrinsic permeability prediction. Simulation is compared with experimental results. (author)
Interior-Point Methods for Linear Programming: A Review
Singh, J. N.; Singh, D.
2002-01-01
The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with…
A method for predicting the impact velocity of a projectile fired from a compressed air gun facility
International Nuclear Information System (INIS)
Attwood, G.J.
1988-03-01
This report describes the development and use of a method for calculating the velocity at impact of a projectile fired from a compressed air gun. The method is based on a simple but effective approach which has been incorporated into a computer program. The method was developed principally for use with the Horizontal Impact Facility at AEE Winfrith but has been adapted so that it can be applied to any compressed air gun of a similar design. The method has been verified by comparison of predicted velocities with test data and the program is currently being used in a predictive manner to specify test conditions for the Horizontal Impact Facility at Winfrith. (author)
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong
2011-01-21
Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.
The Dissolved Oxygen Prediction Method Based on Neural Network
Directory of Open Access Journals (Sweden)
Zhong Xiao
2017-01-01
Full Text Available The dissolved oxygen (DO is oxygen dissolved in water, which is an important factor for the aquaculture. Using BP neural network method with the combination of purelin, logsig, and tansig activation functions is proposed for the prediction of aquaculture’s dissolved oxygen. The input layer, hidden layer, and output layer are introduced in detail including the weight adjustment process. The breeding data of three ponds in actual 10 consecutive days were used for experiments; these ponds were located in Beihai, Guangxi, a traditional aquaculture base in southern China. The data of the first 7 days are used for training, and the data of the latter 3 days are used for the test. Compared with the common prediction models, curve fitting (CF, autoregression (AR, grey model (GM, and support vector machines (SVM, the experimental results show that the prediction accuracy of the neural network is the highest, and all the predicted values are less than 5% of the error limit, which can meet the needs of practical applications, followed by AR, GM, SVM, and CF. The prediction model can help to improve the water quality monitoring level of aquaculture which will prevent the deterioration of water quality and the outbreak of disease.
Non-linear programming method in optimization of fast reactors
International Nuclear Information System (INIS)
Pavelesku, M.; Dumitresku, Kh.; Adam, S.
1975-01-01
Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)
Probabilistic methods for maintenance program optimization
International Nuclear Information System (INIS)
Liming, J.K.; Smith, M.J.; Gekler, W.C.
1989-01-01
In today's regulatory and economic environments, it is more important than ever that managers, engineers, and plant staff join together in developing and implementing effective management plans for safety and economic risk. This need applied to both power generating stations and other process facilities. One of the most critical parts of these management plans is the development and continuous enhancement of a maintenance program that optimizes plant or facility safety and profitability. The ultimate objective is to maximize the potential for station or facility success, usually measured in terms of projected financial profitability, while meeting or exceeding meaningful and reasonable safety goals, usually measured in terms of projected damage or consequence frequencies. This paper describes the use of the latest concepts in developing and evaluating maintenance programs to achieve maintenance program optimization (MPO). These concepts are based on significant field experience gained through the integration and application of fundamentals developed for industry and Electric Power Research Institute (EPRI)-sponsored projects on preventive maintenance (PM) program development and reliability-centered maintenance (RCM)
A method of predicting the reliability of CDM coil insulation
International Nuclear Information System (INIS)
Kytasty, A.; Ogle, C.; Arrendale, H.
1992-01-01
This paper presents a method of predicting the reliability of the Collider Dipole Magnet (CDM) coil insulation design. The method proposes a probabilistic treatment of electrical test data, stress analysis, material properties variability and loading uncertainties to give the reliability estimate. The approach taken to predict reliability of design related failure modes of the CDM is to form analytical models of the various possible failure modes and their related mechanisms or causes, and then statistically assess the contributions of the various contributing variables. The probability of the failure mode occurring is interpreted as the number of times one would expect certain extreme situations to combine and randomly occur. One of the more complex failure modes of the CDM will be used to illustrate this methodology
Drug-Target Interactions: Prediction Methods and Applications.
Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael
2018-01-01
Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Risk prediction, safety analysis and quantitative probability methods - a caveat
International Nuclear Information System (INIS)
Critchley, O.H.
1976-01-01
Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)
Water hammer prediction and control: the Green's function method
Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi
2012-04-01
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.
Sun, Jimeng; McNaughton, Candace D; Zhang, Ping; Perer, Adam; Gkoulalas-Divanis, Aris; Denny, Joshua C; Kirby, Jacqueline; Lasko, Thomas; Saip, Alexander; Malin, Bradley A
2014-01-01
Objective Common chronic diseases such as hypertension are costly and difficult to manage. Our ultimate goal is to use data from electronic health records to predict the risk and timing of deterioration in hypertension control. Towards this goal, this work predicts the transition points at which hypertension is brought into, as well as pushed out of, control. Method In a cohort of 1294 patients with hypertension enrolled in a chronic disease management program at the Vanderbilt University Medical Center, patients are modeled as an array of features derived from the clinical domain over time, which are distilled into a core set using an information gain criteria regarding their predictive performance. A model for transition point prediction was then computed using a random forest classifier. Results The most predictive features for transitions in hypertension control status included hypertension assessment patterns, comorbid diagnoses, procedures and medication history. The final random forest model achieved a c-statistic of 0.836 (95% CI 0.830 to 0.842) and an accuracy of 0.773 (95% CI 0.766 to 0.780). Conclusions This study achieved accurate prediction of transition points of hypertension control status, an important first step in the long-term goal of developing personalized hypertension management plans. PMID:24045907
River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method
Directory of Open Access Journals (Sweden)
H. Sanikhani
2016-02-01
Full Text Available Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1 methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE methodology for an application to runoff prediction, (2 methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3 methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system. Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models
RSARF: Prediction of residue solvent accessibility from protein sequence using random forest method
Ganesan, Pugalenthi; Kandaswamy, Krishna Kumar Umar; Chou -, Kuochen; Vivekanandan, Saravanan; Kolatkar, Prasanna R.
2012-01-01
Prediction of protein structure from its amino acid sequence is still a challenging problem. The complete physicochemical understanding of protein folding is essential for the accurate structure prediction. Knowledge of residue solvent accessibility gives useful insights into protein structure prediction and function prediction. In this work, we propose a random forest method, RSARF, to predict residue accessible surface area from protein sequence information. The training and testing was performed using 120 proteins containing 22006 residues. For each residue, buried and exposed state was computed using five thresholds (0%, 5%, 10%, 25%, and 50%). The prediction accuracy for 0%, 5%, 10%, 25%, and 50% thresholds are 72.9%, 78.25%, 78.12%, 77.57% and 72.07% respectively. Further, comparison of RSARF with other methods using a benchmark dataset containing 20 proteins shows that our approach is useful for prediction of residue solvent accessibility from protein sequence without using structural information. The RSARF program, datasets and supplementary data are available at http://caps.ncbs.res.in/download/pugal/RSARF/. - See more at: http://www.eurekaselect.com/89216/article#sthash.pwVGFUjq.dpuf
Improving protein function prediction methods with integrated literature data
Directory of Open Access Journals (Sweden)
Gabow Aaron P
2008-04-01
Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder
Predictive Methods for Dense Polymer Networks: Combating Bias with Bio-Based Structures
2016-03-16
Combating bias with bio - based structures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J. Guenthner...unlimited. PA Clearance 16152 Integrity Service Excellence Predictive methods for dense polymer networks: Combating bias with bio -based...Architectural Bias • Comparison of Petroleum-Based and Bio -Based Chemical Architectures • Continuing Research on Structure-Property Relationships using
Comparison of RF spectrum prediction methods for dynamic spectrum access
Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.
2017-05-01
Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.
Radon Measurement Proficiency (RMP) Program methods and devices
International Nuclear Information System (INIS)
Harrison, J.; Hoornbeek, J.; Jalbert, P.; Sensintaffar, E.; Hopper, R.
1991-01-01
The US EPA developed the voluntary Radon Measurement Proficiency Program in 1986 in response to a Federal and State need for measurement services firms to demonstrate their proficiency with radon measurement methods and devices. Since that time, the program has set basic standards for the radon measurement industry. The program has grown dramatically since its inception. In 1986, fewer than 50 companies participated in the program. By 1989, more than 5,000 companies were participating. Participants represent firms with an analytical capability as well as firms that rely upon another firm for analysis service. Since the beginning of the RMP Program, the Agency has learned a great deal about radon measurement methods and devices. This paper reviews the measurement devices used in the program and what the EPA has learned about them since the program's inception. Performance data from the RMP Program are used to highlight relevant findings
FREC-4A: a computer program to predict fuel rod performance under normal reactor operation
International Nuclear Information System (INIS)
Harayama, Yasuo; Izumi, Fumio
1981-10-01
The program FREC-4A (Fuel Reliability Evaluation Code-version 4A) is used for predicting fuel rod performance in normal reactor operation. The performance is calculated in accordance with the irradiation history of fuel rods. Emphasis is placed on the prediction of the axial elongation of claddings induced by pellet-cladding mechanical interaction, including the influence of initially preloaded springs inserted in fuel rod lower plenums. In the FREC-4A, an fuel rod is divided into axial segments. In each segment, it is assumed that the temperature, stress and strain are axi-symmetrical, and the axial strain in constant in fuel pellets and in a cladding, though the values in the pellets and in the cladding are different. The calculation of the contact load and the clearance along the length of a fuel rod and the stress and strain in each segment is explained. The method adopted in the FREC-4A is simple, and suitable to predict the deformation of fuel rods over their full length. This report is described on the outline of the program, the method of solving the stiffness equations, the calculation models, the input data such as irradiation history, output distribution, material properties and pores, the printing-out of input data and calculated results. (Kako, I.)
PatchSurfers: Two methods for local molecular property-based binding ligand prediction.
Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke
2016-01-15
Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.
Methods for predicting isochronous stress-strain curves
International Nuclear Information System (INIS)
Kiyoshige, Masanori; Shimizu, Shigeki; Satoh, Keisuke.
1976-01-01
Isochronous stress-strain curves show the relation between stress and total strain at a certain temperature with time as a parameter, and they are drawn up from the creep test results at various stress levels at a definite temperature. The concept regarding the isochronous stress-strain curves was proposed by McVetty in 1930s, and has been used for the design of aero-engines. Recently the high temperature characteristics of materials are shown as the isochronous stress-strain curves in the design guide for the nuclear energy equipments and structures used in high temperature creep region. It is prescribed that these curves are used as the criteria for determining design stress intensity or the data for analyzing the superposed effects of creep and fatigue. In case of the isochronous stress-strain curves used for the design of nuclear energy equipments with very long service life, it is impractical to determine the curves directly from the results of long time creep test, accordingly the method of predicting long time stress-strain curves from short time creep test results must be established. The method proposed by the authors, for which the creep constitution equations taking the first and second creep stages into account are used, and the method using Larson-Miller parameter were studied, and it was found that both methods were reliable for the prediction. (Kako, I.)
A Lifetime Prediction Method for LEDs Considering Real Mission Profiles
DEFF Research Database (Denmark)
Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing
2017-01-01
operations due to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and also the statistical......The Light-Emitting Diode (LED) has become a very promising alternative lighting source with the advantages of longer lifetime and higher efficiency than traditional ones. The lifetime prediction of LEDs is important to guide the LED system designers to fulfill the design specifications...... properties of the life data available from accelerated degradation testing. The electrical and thermal characteristics of LEDs are measured by a T3Ster system, used for the electro-thermal modeling. It also identifies key variables (e.g., heat sink parameters) that can be designed to achieve a specified...
Long-Term Prediction of Satellite Orbit Using Analytical Method
Directory of Open Access Journals (Sweden)
Jae-Cheol Yoon
1997-12-01
Full Text Available A long-term prediction algorithm of geostationary orbit was developed using the analytical method. The perturbation force models include geopotential upto fifth order and degree and luni-solar gravitation, and solar radiation pressure. All of the perturbation effects were analyzed by secular variations, short-period variations, and long-period variations for equinoctial elements such as the semi-major axis, eccentricity vector, inclination vector, and mean longitude of the satellite. Result of the analytical orbit propagator was compared with that of the cowell orbit propagator for the KOREASAT. The comparison indicated that the analytical solution could predict the semi-major axis with an accuarcy of better than ~35meters over a period of 3 month.
Predicting Attrition in a Military Special Program Training Command
2016-05-20
made by assessing additional psychological factors. Specifically, motivation (s) to enter the training program (e.g., intrinsic versus extrinsic ...this and other training programs. Motivations to enter the training program could be assessed using a measure such as the Work Extrinsic and...MEDICINE GRADUATE PROGRAMS Graduate Education Office (A 1045), 4301 Jones Bridge Road, Bethesda, MD 20814 APPROVAL OF THE DOCTORAL DISSERTATION IN THE
Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods
Directory of Open Access Journals (Sweden)
Ling Yao
2016-01-01
Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.
Predicting daily physical activity in a lifestyle intervention program
Long, Xi; Pauws, S.C.; Pijl, M.; Lacroix, J.; Goris, A.H.C.; Aarts, R.M.; Gottfried, B.; Aghajan, H.
2011-01-01
The growing number of people adopting a sedentary lifestyle these days creates a serious need for effective physical activity promotion programs. Often, these programs monitor activity, provide feedback about activity and offer coaching to increase activity. Some programs rely on a human coach who
Fingerprint image reconstruction for swipe sensor using Predictive Overlap Method
Directory of Open Access Journals (Sweden)
Mardiansyah Ahmad Zafrullah
2018-01-01
Full Text Available Swipe sensor is one of many biometric authentication sensor types that widely applied to embedded devices. The sensor produces an overlap on every pixel block of the image, so the picture requires a reconstruction process before heading to the feature extraction process. Conventional reconstruction methods require extensive computation, causing difficult to apply to embedded devices that have limited computing process. In this paper, image reconstruction is proposed using predictive overlap method, which determines the image block shift from the previous set of change data. The experiments were performed using 36 images generated by a swipe sensor with 128 x 8 pixels size of the area, where each image has an overlap in each block. The results reveal computation can increase up to 86.44% compared with conventional methods, with accuracy decreasing to 0.008% in average.
Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold
2015-03-01
A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2015-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2017-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Alternative Testing Methods for Predicting Health Risk from Environmental Exposures
Directory of Open Access Journals (Sweden)
Annamaria Colacci
2014-08-01
Full Text Available Alternative methods to animal testing are considered as promising tools to support the prediction of toxicological risks from environmental exposure. Among the alternative testing methods, the cell transformation assay (CTA appears to be one of the most appropriate approaches to predict the carcinogenic properties of single chemicals, complex mixtures and environmental pollutants. The BALB/c 3T3 CTA shows a good degree of concordance with the in vivo rodent carcinogenesis tests. Whole-genome transcriptomic profiling is performed to identify genes that are transcriptionally regulated by different kinds of exposures. Its use in cell models representative of target organs may help in understanding the mode of action and predicting the risk for human health. Aiming at associating the environmental exposure to health-adverse outcomes, we used an integrated approach including the 3T3 CTA and transcriptomics on target cells, in order to evaluate the effects of airborne particulate matter (PM on toxicological complex endpoints. Organic extracts obtained from PM2.5 and PM1 samples were evaluated in the 3T3 CTA in order to identify effects possibly associated with different aerodynamic diameters or airborne chemical components. The effects of the PM2.5 extracts on human health were assessed by using whole-genome 44 K oligo-microarray slides. Statistical analysis by GeneSpring GX identified genes whose expression was modulated in response to the cell treatment. Then, modulated genes were associated with pathways, biological processes and diseases through an extensive biological analysis. Data derived from in vitro methods and omics techniques could be valuable for monitoring the exposure to toxicants, understanding the modes of action via exposure-associated gene expression patterns and to highlight the role of genes in key events related to adversity.
Method for predicting peptide detection in mass spectrometry
Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA
2010-07-13
A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.
A lifetime prediction method for LEDs considering mission profiles
DEFF Research Database (Denmark)
Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing
2016-01-01
and to benchmark the cost-competitiveness of different lighting technologies. The existing lifetime data released by LED manufacturers or standard organizations are usually applicable only for specific temperature and current levels. Significant lifetime discrepancies may be observed in field operations due...... to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and the statistical properties of the life data...
Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding
de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.
2013-01-01
Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228
Prediction strategies in a TV recommender system - Method and experiments
van Setten, M.J.; Veenstra, M.; van Dijk, Elisabeth M.A.G.; Nijholt, Antinus; Isaísas, P.; Karmakar, N.
2003-01-01
Predicting the interests of a user in information is an important process in personalized information systems. In this paper, we present a way to create prediction engines that allow prediction techniques to be easily combined into prediction strategies. Prediction strategies choose one or a
Bayerstadler, Andreas; Benstetter, Franz; Heumann, Christian; Winter, Fabian
2014-09-01
Predictive Modeling (PM) techniques are gaining importance in the worldwide health insurance business. Modern PM methods are used for customer relationship management, risk evaluation or medical management. This article illustrates a PM approach that enables the economic potential of (cost-) effective disease management programs (DMPs) to be fully exploited by optimized candidate selection as an example of successful data-driven business management. The approach is based on a Generalized Linear Model (GLM) that is easy to apply for health insurance companies. By means of a small portfolio from an emerging country, we show that our GLM approach is stable compared to more sophisticated regression techniques in spite of the difficult data environment. Additionally, we demonstrate for this example of a setting that our model can compete with the expensive solutions offered by professional PM vendors and outperforms non-predictive standard approaches for DMP selection commonly used in the market.
Use of simplified methods for predicting natural resource damages
International Nuclear Information System (INIS)
Loreti, C.P.; Boehm, P.D.; Gundlach, E.R.; Healy, E.A.; Rosenstein, A.B.; Tsomides, H.J.; Turton, D.J.; Webber, H.M.
1995-01-01
To reduce transaction costs and save time, the US Department of the Interior (DOI) and the National Oceanic and Atmospheric Administration (NOAA) have developed simplified methods for assessing natural resource damages from oil and chemical spills. DOI has proposed the use of two computer models, the Natural Resource Damage Assessment Model for Great Lakes Environments (NRDAM/GLE) and a revised Natural Resource Damage Assessment Model for Coastal and Marine Environments (NRDAM/CME) for predicting monetary damages for spills of oils and chemicals into the Great Lakes and coastal and marine environments. NOAA has used versions of these models to create Compensation Formulas, which it has proposed for calculating natural resource damages for oil spills of up to 50,000 gallons anywhere in the US. Based on a review of the documentation supporting the methods, the results of hundreds of sample runs of DOI's models, and the outputs of the thousands of model runs used to create NOAA's Compensation Formulas, this presentation discusses the ability of these simplified assessment procedures to make realistic damage estimates. The limitations of these procedures are described, and the need for validating the assumptions used in predicting natural resource injuries is discussed
VAN method of short-term earthquake prediction shows promise
Uyeda, Seiya
Although optimism prevailed in the 1970s, the present consensus on earthquake prediction appears to be quite pessimistic. However, short-term prediction based on geoelectric potential monitoring has stood the test of time in Greece for more than a decade [VarotsosandKulhanek, 1993] Lighthill, 1996]. The method used is called the VAN method.The geoelectric potential changes constantly due to causes such as magnetotelluric effects, lightning, rainfall, leakage from manmade sources, and electrochemical instabilities of electrodes. All of this noise must be eliminated before preseismic signals are identified, if they exist at all. The VAN group apparently accomplished this task for the first time. They installed multiple short (100-200m) dipoles with different lengths in both north-south and east-west directions and long (1-10 km) dipoles in appropriate orientations at their stations (one of their mega-stations, Ioannina, for example, now has 137 dipoles in operation) and found that practically all of the noise could be eliminated by applying a set of criteria to the data.
Predictive ability of machine learning methods for massive crop yield prediction
Directory of Open Access Journals (Sweden)
Alberto Gonzalez-Sanchez
2014-04-01
Full Text Available An important issue for agricultural planning purposes is the accurate yield estimation for the numerous crops involved in the planning. Machine learning (ML is an essential approach for achieving practical and effective solutions for this problem. Many comparisons of ML methods for yield prediction have been made, seeking for the most accurate technique. Generally, the number of evaluated crops and techniques is too low and does not provide enough information for agricultural planning purposes. This paper compares the predictive accuracy of ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support vector regression and k-nearest neighbor methods were ranked. Four accuracy metrics were used to validate the models: the root mean square error (RMS, root relative square error (RRSE, normalized mean absolute error (MAE, and correlation factor (R. Real data of an irrigation zone of Mexico were used for building the models. Models were tested with samples of two consecutive years. The results show that M5-Prime and k-nearest neighbor techniques obtain the lowest average RMSE errors (5.14 and 4.91, the lowest RRSE errors (79.46% and 79.78%, the lowest average MAE errors (18.12% and 19.42%, and the highest average correlation factors (0.41 and 0.42. Since M5-Prime achieves the largest number of crop yield models with the lowest errors, it is a very suitable tool for massive crop yield prediction in agricultural planning.
Pair Programming as a Modern Method of Teaching Computer Science
Directory of Open Access Journals (Sweden)
Irena Nančovska Šerbec
2008-10-01
Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.
Method to predict fatigue lifetimes of GRP wind turbine blades and comparison with experiments
Energy Technology Data Exchange (ETDEWEB)
Echtermeyer, A.T. [Det Norske Veritas Research AS, Hoevik (Norway); Kensche, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R); Bach, P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Poppen, M. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Lilholt, H.; Andersen, S.I.; Broendsted, P. [Risoe National Lab., Roskilde (Denmark)
1996-12-01
This paper describes a method to predict fatigue lifetimes of fiber reinforced plastics in wind turbine blades. It is based on extensive testing within the EU-Joule program. The method takes the measured fatigue properties of a material into account so that credit can be given to materials with improved fatigue properties. The large number of test results should also give confidence in the fatigue calculation method for fiber reinforced plastics. The method uses the Palmgren-Miner sum to predict lifetimes and is verified by tests using well defined load sequences. Even though this approach is generally well known in fatigue analysis, many details in the interpretation and extrapolation of the measurements need to be clearly defined, since they can influence the results considerably. The following subjects will be described: Method to measure SN curves and to obtain tolerance bounds, development of a constant lifetime diagram, evaluation of the load sequence, use of Palmgren-Miner sum, requirements for load sequence testing. The fatigue lifetime calculation method has been compared against measured data for simple loading sequences and the more complex WISPERX loading sequence for blade roots. The comparison is based on predicted mean lifetimes, using the same materials to obtain the basic SN curves and to measure laminates under complicated loading sequences. 24 refs, 7 figs, 5 tabs
Method to render second order beam optics programs symplectic
International Nuclear Information System (INIS)
Douglas, D.; Servranckx, R.V.
1984-10-01
We present evidence that second order matrix-based beam optics programs violate the symplectic condition. A simple method to avoid this difficulty, based on a generating function approach to evaluating transfer maps, is described. A simple example illustrating the non-symplectricity of second order matrix methods, and the effectiveness of our solution to the problem, is provided. We conclude that it is in fact possible to bring second order matrix optics methods to a canonical form. The procedure for doing so has been implemented in the program DIMAT, and could be implemented in programs such as TRANSPORT and TURTLE, making them useful in multiturn applications. 15 refs
Population Estimation with Mark and Recapture Method Program
International Nuclear Information System (INIS)
Limohpasmanee, W.; Kaewchoung, W.
1998-01-01
Population estimation is the important information which required for the insect control planning especially the controlling with SIT. Moreover, It can be used to evaluate the efficiency of controlling method. Due to the complexity of calculation, the population estimation with mark and recapture methods were not used widely. So that, this program is developed with Qbasic on the purpose to make it accuracy and easier. The program evaluation consists with 6 methods; follow Seber's, Jolly-seber's, Jackson's Ito's, Hamada's and Yamamura's methods. The results are compared with the original methods, found that they are accuracy and more easier to applied
International Nuclear Information System (INIS)
Liu, Guangming; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Hua, Jianfeng
2015-01-01
Highlights: • An energy prediction (EP) method is introduced for battery E RDE determination. • EP determines E RDE through coupled prediction of future states, parameters, and output. • The PAEP combines parameter adaptation and prediction to update model parameters. • The PAEP provides improved E RDE accuracy compared with DC and other EP methods. - Abstract: In order to estimate the remaining driving range (RDR) in electric vehicles, the remaining discharge energy (E RDE ) of the applied battery system needs to be precisely predicted. Strongly affected by the load profiles, the available E RDE varies largely in real-world applications and requires specific determination. However, the commonly-used direct calculation (DC) method might result in certain energy prediction errors by relating the E RDE directly to the current state of charge (SOC). To enhance the E RDE accuracy, this paper presents a battery energy prediction (EP) method based on the predictive control theory, in which a coupled prediction of future battery state variation, battery model parameter change, and voltage response, is implemented on the E RDE prediction horizon, and the E RDE is subsequently accumulated and real-timely optimized. Three EP approaches with different model parameter updating routes are introduced, and the predictive-adaptive energy prediction (PAEP) method combining the real-time parameter identification and the future parameter prediction offers the best potential. Based on a large-format lithium-ion battery, the performance of different E RDE calculation methods is compared under various dynamic profiles. Results imply that the EP methods provide much better accuracy than the traditional DC method, and the PAEP could reduce the E RDE error by more than 90% and guarantee the relative energy prediction error under 2%, proving as a proper choice in online E RDE prediction. The correlation of SOC estimation and E RDE calculation is then discussed to illustrate the
DomPep--a general method for predicting modular domain-mediated protein-protein interactions.
Directory of Open Access Journals (Sweden)
Lei Li
Full Text Available Protein-protein interactions (PPIs are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.
Prediction Markets as a Way to Manage Acquisition Programs
2011-06-01
volume helps management set production levels, but if management increases advertising it will undermine the market . This becomes critical for the DoD...34 Corporate Strategy Board. Gaspoz, C. (2008). "Prediction markets as an innovative way to manage R&D portfolios." CAiSE Doctoral Consortium. Montpellier...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Prediction Markets as a Way to Manage Acquisition
Predicting human height by Victorian and genomic methods.
Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M
2009-08-01
In the Victorian era, Sir Francis Galton showed that 'when dealing with the transmission of stature from parents to children, the average height of the two parents, ... is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified.
Methods and approaches to prediction in the meat industry
Directory of Open Access Journals (Sweden)
A. B. Lisitsyn
2016-01-01
Full Text Available The modern stage of the agro-industrial complex is characterized by an increasing complexity, intensification of technological processes of complex processing of materials of animal origin also the need for a systematic analysis of the variety of determining factors and relationships between them, complexity of the objective function of product quality and severe restrictions on technological regimes. One of the main tasks that face the employees of the enterprises of the agro-industrial complex, which are engaged in processing biotechnological raw materials, is the further organizational improvement of work at all stages of the food chain, besides an increase in the production volume. The meat industry as a part of the agro-industrial complex has to use the biological raw materials with maximum efficiency, while reducing and even eliminating losses at all stages of processing; rationally use raw material when selecting a type of processing products; steadily increase quality, biological and food value of products; broaden the assortment of manufactured products in order to satisfy increasing consumer requirements and extend the market for their realization in the conditions of uncertainty of external environment, due to the uneven receipt of raw materials, variations in its properties and parameters, limited time sales and fluctuations in demand for products. The challenges facing the meat industry cannot be solved without changes to the strategy for scientific and technological development of the industry. To achieve these tasks, it is necessary to use the prediction as a method of constant improvement of all technological processes and their performance under the rational and optimal regimes, while constantly controlling quality of raw material, semi-prepared products and finished products at all stages of the technological processing by the physico-chemical, physico-mechanical (rheological, microbiological and organoleptic methods. The paper
An overview of solution methods for multi-objective mixed integer linear programming programs
DEFF Research Database (Denmark)
Andersen, Kim Allan; Stidsen, Thomas Riis
Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...
FREEZING AND THAWING TIME PREDICTION METHODS OF FOODS II: NUMARICAL METHODS
Directory of Open Access Journals (Sweden)
Yahya TÜLEK
1999-03-01
Full Text Available Freezing is one of the excellent methods for the preservation of foods. If freezing and thawing processes and frozen storage method are carried out correctly, the original characteristics of the foods can remain almost unchanged over an extended periods of time. It is very important to determine the freezing and thawing time period of the foods, as they strongly influence the both quality of food material and process productivity and the economy. For developing a simple and effectively usable mathematical model, less amount of process parameters and physical properties should be enrolled in calculations. But it is a difficult to have all of these in one prediction method. For this reason, various freezing and thawing time prediction methods were proposed in literature and research studies have been going on.
Systems and methods for interpolation-based dynamic programming
Rockwood, Alyn
2013-01-03
Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.
Systems and methods for interpolation-based dynamic programming
Rockwood, Alyn
2013-01-01
Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.
An Electrochemical Method to Predict Corrosion Rates in Soils
Energy Technology Data Exchange (ETDEWEB)
Dafter, M. R. [Hunter Water Australia Pty Ltd, Newcastle (Australia)
2016-10-15
Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provide a useful predictive tool in determining the current and future conditions of an asset{sup 1)}. A number of LPR tests have been developed on soil by various researchers over the years{sup 1)}, but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.
Simple Calculation Programs for Biology Methods in Molecular ...
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Methods in Molecular Biology. GMAP: A program for mapping potential restriction sites. RE sites in ambiguous and non-ambiguous DNA sequence; Minimum number of silent mutations required for introducing a RE sites; Set ...
Application of the simplex method of linear programming model to ...
African Journals Online (AJOL)
This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...
International Nuclear Information System (INIS)
Wu, K.K.; Siddiqui, S.H.; Heinz, D.J.; Ladd, S.L.
1978-01-01
Two mathematical methods - the reversed logarithmic method and the regression method - were used to compare the predicted and the observed optimum gamma radiation dose (OD 50 ) in vegetative propagules of sugarcane. The reversed logarithmic method, usually used in sexually propagated crops, showed the largest difference between the predicted and observed optimum dose. The regression method resulted in a better prediction of the observed values and is suggested as a better method for the prediction of optimum dose for vegetatively propagated crops. (author)
A comparison of different methods for predicting coal devolatilisation kinetics
Energy Technology Data Exchange (ETDEWEB)
Arenillas, A.; Rubiera, F.; Pevida, C.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)
2001-04-01
Knowledge of the coal devolatilisation rate is of great importance because it exerts a marked effect on the overall combustion behaviour. Different approaches can be used to obtain the kinetics of the complex devolatilisation process. The simplest are empirical and employ global kinetics, where the Arrhenius expression is used to correlate rates of mass loss with temperature. In this study a high volatile bituminous coal was devolatilised at four different heating rates in a thermogravimetric analyser (TG) linked to a mass spectrometer (MS). As a first approach, the Arrhenius kinetic parameters (k and A) were calculated from the experimental results, assuming a single step process. Another approach is the distributed-activation energy model, which is more complex due to the assumption that devolatilisation occurs through several first-order reactions, which occur simultaneously. Recent advances in the understanding of coal structure have led to more fundamental approaches for modelling devolatilisation behaviour, such as network models. These are based on a physico-chemical description of coal structure. In the present study the FG-DVC (Functional Group-Depolymerisation, Vaporisation and Crosslinking) computer code was used as the network model and the FG-DVC predicted evolution of volatile compounds was compared with the experimental results. In addition, the predicted rate of mass loss from the FG-DVC model was used to obtain a third devolatilisation kinetic approach. The three methods were compared and discussed, with the experimental results as a reference.
Predicting lattice thermal conductivity with help from ab initio methods
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Development of nondestructive method for prediction of crack instability
International Nuclear Information System (INIS)
Schroeder, J.L.; Eylon, D.; Shell, E.B.; Matikas, T.E.
2000-01-01
A method to characterize the deformation zone at a crack tip and predict upcoming fracture under load using white light interference microscopy was developed and studied. Cracks were initiated in notched Ti-6Al-4V specimens through fatigue loading. Following crack initiation, specimens were subjected to static loading during in-situ observation of the deformation area ahead of the crack. Nondestructive in-situ observations were performed using white light interference microscopy. Profilometer measurements quantified the area, volume, and shape of the deformation ahead of the crack front. Results showed an exponential relationship between the area and volume of deformation and the stress intensity factor of the cracked alloy. These findings also indicate that it is possible to determine a critical rate of change in deformation versus the stress intensity factor that can predict oncoming catastrophic failure. In addition, crack front deformation zones were measured as a function of time under sustained load, and crack tip deformation zone enlargement over time was observed
Directory of Open Access Journals (Sweden)
Stephen Gang Wu
2016-04-01
Full Text Available 13C metabolic flux analysis (13C-MFA has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM, k-Nearest Neighbors (k-NN, and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.
International Nuclear Information System (INIS)
Xu Ruirui; Chen Tianlun; Gao Chengfeng
2006-01-01
Nonlinear time series prediction is studied by using an improved least squares support vector machine (LS-SVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.
Extremely Randomized Machine Learning Methods for Compound Activity Prediction
Directory of Open Access Journals (Sweden)
Wojciech M. Czarnecki
2015-11-01
Full Text Available Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called ‘extremely randomized methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.
International Nuclear Information System (INIS)
Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Mahaffey, J.A.; Waton, D.G.
1976-12-01
A study was undertaken by the U.S. Nuclear Regulatory Commission (NRC) to evaluate the nonradiological environmental data obtained from three nuclear power plants operating for a period of one year or longer. The document presented reports the second of three nuclear power plants to be evaluated in detail by Battelle, Pacific Northwest Laboratories. Haddam Neck (Connecticut Yankee) Nuclear Power Plant nonradiological monitoring data were assessed to determine their effectiveness in the measurement of environmental impacts. Efforts were made to determine if: (1) monitoring programs, as designed, can detect environmental impacts, (2) appropriate statistical analyses were performed and if they were sensitive enough to detect impacts, (3) predicted impacts could be verified by monitoring programs, and (4) monitoring programs satisfied the requirements of the Environmental Technical Specifications. Both preoperational and operational monitoring data were examined to test the usefulness of baseline information in evaluating impacts. This included an examination of the methods used to measure ecological, chemical, and physical parameters, and an assessment of sampling periodicity and sensitivity where appropriate data sets were available. From this type of analysis, deficiencies in both preoperational and operational monitoring programs may be identified and provide a basis for suggested improvement
Method and simulation program informed decisions in the early stages of building design
DEFF Research Database (Denmark)
Petersen, Steffen; Svendsen, Svend
2010-01-01
variations. The program then presents the output in a way that enables designers to make informed decisions. The method and the program reduce the need for design iterations, reducing time consumption and construction costs, to obtain the intended energy performance and indoor environment....... for making informed decisions in the early stages of building design to fulfil performance requirements with regard to energy consumption and indoor environment. The method is operationalised in a program that utilises a simple simulation program to make performance predictions of user-defined parameter......The early stages of building design include a number of decisions which have a strong influence on the performance of the building throughout the rest of the process. It is therefore important that designers are aware of the consequences of these design decisions. This paper presents a method...
Putnam, L. E.; Hodges, J.
1983-01-01
The Langley Research Center of the National Aeronautics and Space Administration and the Royal Aircraft Establishment have undertaken a cooperative program to conduct an assessment of their patched viscous-inviscid interaction methods for predicting the transonic flow over nozzle afterbodies. The assessment was made by comparing the predictions of the two methods with experimental pressure distributions and boattail pressure drag for several convergent circular-arc nozzle configurations. Comparisons of the predictions of the two methods with the experimental data showed that both methods provided good predictions of the flow characteristics of nozzles with attached boundary layer flow. The RAE method also provided reasonable predictions of the pressure distributions and drag for the nozzles investigated that had separated boundary layers. The NASA method provided good predictions of the pressure distribution on separated flow nozzles that had relatively thin boundary layers. However, the NASA method was in poor agreement with experiment for separated nozzles with thick boundary layers due primarily to deficiencies in the method used to predict the separation location.
Matlab and C programming for Trefftz finite element methods
Qin, Qing-Hua
2008-01-01
Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th
A mathematical method for boiling water reactor control rod programming
International Nuclear Information System (INIS)
Tokumasu, S.; Hiranuma, H.; Ozawa, M.; Yokomi, M.
1985-01-01
A new mathematical programming method has been developed and utilized in OPROD, an existing computer code for automatic generation of control rod programs as an alternative inner-loop routine for the method of approximate programming. The new routine is constructed of a dual feasible direction algorithm, and consists essentially of two stages of iterative optimization procedures Optimization Procedures I and II. Both follow almost the same algorithm; Optimization Procedure I searches for feasible solutions and Optimization Procedure II optimizes the objective function. Optimization theory and computer simulations have demonstrated that the new routine could find optimum solutions, even if deteriorated initial control rod patterns were given
Step by step parallel programming method for molecular dynamics code
International Nuclear Information System (INIS)
Orii, Shigeo; Ohta, Toshio
1996-07-01
Parallel programming for a numerical simulation program of molecular dynamics is carried out with a step-by-step programming technique using the two phase method. As a result, within the range of a certain computing parameters, it is found to obtain parallel performance by using the level of parallel programming which decomposes the calculation according to indices of do-loops into each processor on the vector parallel computer VPP500 and the scalar parallel computer Paragon. It is also found that VPP500 shows parallel performance in wider range computing parameters. The reason is that the time cost of the program parts, which can not be reduced by the do-loop level of the parallel programming, can be reduced to the negligible level by the vectorization. After that, the time consuming parts of the program are concentrated on less parts that can be accelerated by the do-loop level of the parallel programming. This report shows the step-by-step parallel programming method and the parallel performance of the molecular dynamics code on VPP500 and Paragon. (author)
The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean
International Nuclear Information System (INIS)
Eden, H.F.; Mooers, C.N.K.
1990-06-01
The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions
A novel time series link prediction method: Learning automata approach
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2017-09-01
Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.
Predicting Success: How Predictive Analytics Are Transforming Student Support and Success Programs
Boerner, Heather
2015-01-01
Every year, Lone Star College in Texas hosts a "Men of Honor" program to provide assistance and programming to male students, but particularly those who are Hispanic and black, in hopes their academic performance will improve. Lone Star might have kept directing its limited resources toward these students--and totally missed the subset…
Genomic prediction based on data from three layer lines: a comparison between linear methods
Calus, M.P.L.; Huang, H.; Vereijken, J.; Visscher, J.; Napel, ten J.; Windig, J.J.
2014-01-01
Background The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction. Methods Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we
International Nuclear Information System (INIS)
Takahashi, Yusuke
2016-01-01
An analysis model of plasma flow and electromagnetic waves around a reentry vehicle for radio frequency blackout prediction during aerodynamic heating was developed in this study. The model was validated based on experimental results from the radio attenuation measurement program. The plasma flow properties, such as electron number density, in the shock layer and wake region were obtained using a newly developed unstructured grid solver that incorporated real gas effect models and could treat thermochemically non-equilibrium flow. To predict the electromagnetic waves in plasma, a frequency-dependent finite-difference time-domain method was used. Moreover, the complicated behaviour of electromagnetic waves in the plasma layer during atmospheric reentry was clarified at several altitudes. The prediction performance of the combined model was evaluated with profiles and peak values of the electron number density in the plasma layer. In addition, to validate the models, the signal losses measured during communication with the reentry vehicle were directly compared with the predicted results. Based on the study, it was suggested that the present analysis model accurately predicts the radio frequency blackout and plasma attenuation of electromagnetic waves in plasma in communication. (paper)
Prediction of residual stress using explicit finite element method
Directory of Open Access Journals (Sweden)
W.A. Siswanto
2015-12-01
Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.
Sawyer, W. C.; Allen, J. M.; Hernandez, G.; Dillenius, M. F. E.; Hemsch, M. J.
1982-01-01
This paper presents a survey of engineering computational methods and experimental programs used for estimating the aerodynamic characteristics of missile configurations. Emphasis is placed on those methods which are suitable for preliminary design of conventional and advanced concepts. An analysis of the technical approaches of the various methods is made in order to assess their suitability to estimate longitudinal and/or lateral-directional characteristics for different classes of missile configurations. Some comparisons between the predicted characteristics and experimental data are presented. These comparisons are made for a large variation in flow conditions and model attitude parameters. The paper also presents known experimental research programs developed for the specific purpose of validating analytical methods and extending the capability of data-base programs.
Interior Point Methods for Large-Scale Nonlinear Programming
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2005-01-01
Roč. 20, č. 4-5 (2005), s. 569-582 ISSN 1055-6788 R&D Projects: GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10300504 Keywords : nonlinear programming * interior point methods * KKT systems * indefinite preconditioners * filter methods * algorithms Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2005
Pyrochemical and Dry Processing Methods Program. A selected bibliography
International Nuclear Information System (INIS)
McDuffie, H.F.; Smith, D.H.; Owen, P.T.
1979-03-01
This selected bibliography with abstracts was compiled to provide information support to the Pyrochemical and Dry Processing Methods (PDPM) Program sponsored by DOE and administered by the Argonne National Laboratory. Objectives of the PDPM Program are to evaluate nonaqueous methods of reprocessing spent fuel as a route to the development of proliferation-resistant and diversion-resistant methods for widespread use in the nuclear industry. Emphasis was placed on the literature indexed in the ERDA--DOE Energy Data Base (EDB). The bibliography includes indexes to authors, subject descriptors, EDB subject categories, and titles
Pyrochemical and Dry Processing Methods Program. A selected bibliography
Energy Technology Data Exchange (ETDEWEB)
McDuffie, H.F.; Smith, D.H.; Owen, P.T.
1979-03-01
This selected bibliography with abstracts was compiled to provide information support to the Pyrochemical and Dry Processing Methods (PDPM) Program sponsored by DOE and administered by the Argonne National Laboratory. Objectives of the PDPM Program are to evaluate nonaqueous methods of reprocessing spent fuel as a route to the development of proliferation-resistant and diversion-resistant methods for widespread use in the nuclear industry. Emphasis was placed on the literature indexed in the ERDA--DOE Energy Data Base (EDB). The bibliography includes indexes to authors, subject descriptors, EDB subject categories, and titles.
Program for searching for semiempirical parameters by the MNDO method
International Nuclear Information System (INIS)
Bliznyuk, A.A.; Voityuk, A.A.
1987-01-01
The authors describe an program for optimizing atomic models constructed using the MNDO method which varies not only the parameters but also the scope for simple changes in the calculation scheme. The target function determines properties such as formation enthalpies, dipole moments, ionization potentials, and geometrical parameters. Software used to minimize the target function is based on the simplex method on the Nelder-Mead algorithm and on the Fletcher variable-metric method. The program is written in FORTRAN IV and implemented on the ES computer
Numerical methods of mathematical optimization with Algol and Fortran programs
Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner
1971-01-01
Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Frison, Gianluca; Edlund, Kristian
2013-01-01
In this paper, we develop an efficient interior-point method (IPM) for the linear programs arising in economic model predictive control of linear systems. The novelty of our algorithm is that it combines a homogeneous and self-dual model, and a specialized Riccati iteration procedure. We test...
Surveying the elements of successful infrared predictive maintenance programs
Snell, John R., Jr.; Spring, Robert W.
1991-03-01
This paper summarizes the results of a survey of over three hundred maintenance personnel who use imaging equipment within their company or organization. All had previously participated in one or more of our training programs. The companies took in a broad range of industry, including, among other, power generation, pulp and paper, metals, mining, petrochemical, automotive and general manufacturing. The organizations were mainly quite large, either commercial or public, and included governmental agencies, military, colleges and universities, municipalities, and utilities. Although we had a very tight time line for the survey, we were pleased to have a 15% response rate. The results show that some of the causes of success and failure in infrared programs are not unlike those associated with any type of program in an organizational structure, i.e. the need for accurate and timely communications; justification requirements; etc. Another set of problems was shared more closely with other startup maintenance technologies (for example, vibration monitoring), such as the need for trending data; providing appropriate technical training; achieving reproducible results; etc. Finally, some of the driving mechanisms are more specific to this technology, such as re-designing equipment so that it can be thermally inspected; establishing effective documentation strategies; etc.
International Nuclear Information System (INIS)
Esquivel E, J.; Ramirez S, J. R.; Palacios H, J. C.
2011-11-01
The present work shows predicted prices of the uranium, using a neural network. The importance of predicting financial indexes of an energy resource, in this case, allows establishing budgetary measures, as well as the costs of the resource to medium period. The uranium is part of the main energy generating fuels and as such, its price rebounds in the financial analyses, due to this is appealed to predictive methods to obtain an outline referent to the financial behaviour that will have in a certain time. In this study, two methodologies are used for the prediction of the uranium price: the Monte Carlo method and the neural networks. These methods allow predicting the indexes of monthly costs, for a two years period, starting from the second bimonthly of 2011. For the prediction the uranium costs are used, registered from the year 2005. (Author)
2012-08-14
... Office 37 CFR Part 42 Transitional Program for Covered Business Method Patents--Definitions of Covered... Business Method Patents-- Definitions of Covered Business Method Patent and Technological Invention AGENCY... forth in detail the definitions of the terms ``covered business method patent'' and ``technological...
Experimental method to predict avalanches based on neural networks
Directory of Open Access Journals (Sweden)
V. V. Zhdanov
2016-01-01
Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.
Stream Flow Prediction by Remote Sensing and Genetic Programming
Chang, Ni-Bin
2009-01-01
A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.
International Nuclear Information System (INIS)
Corum, J.M.; Clinard, J.A.; Sartory, W.K.
1976-01-01
The use of computer programs that employ relatively complex constitutive theories and analysis procedures to perform inelastic design calculations on fast reactor system components introduces questions of validation and acceptance of the analysis results. We may ask ourselves, ''How valid are the answers.'' These questions, in turn, involve the concepts of verification of computer programs as well as qualification of the computer programs and of the underlying constitutive theories and analysis procedures. This paper addresses the latter - the qualification of the analysis methods for inelastic design calculations. Some of the work underway in the United States to provide the necessary information to evaluate inelastic analysis methods and computer programs is described, and typical comparisons of analysis predictions with inelastic structural test results are presented. It is emphasized throughout that rather than asking ourselves how valid, or correct, are the analytical predictions, we might more properly question whether or not the combination of the predictions and the associated high-temperature design criteria leads to an acceptable level of structural integrity. It is believed that in this context the analysis predictions are generally valid, even though exact correlations between predictions and actual behavior are not obtained and cannot be expected. Final judgment, however, must be reserved for the design analyst in each specific case. (author)
Experimental validation of the twins prediction program for rolling noise. Pt.2: results
Thompson, D.J.; Fodiman, P.; Mahé, H.
1996-01-01
Two extensive measurement campaigns have been carried out to validate the TWINS prediction program for rolling noise, as described in part 1 of this paper. This second part presents the experimental results of vibration and noise during train pass-bys and compares them with predictions from the
International Nuclear Information System (INIS)
Liu, Y B; Su, Y M; Ju, L; Huang, S L
2012-01-01
A new numerical method was developed for predicting the steady hydrodynamic performance of propeller-rudder-bulb system. In the calculation, the rudder and bulb was taken into account as a whole, the potential based surface panel method was applied both to propeller and rudder-bulb system. The interaction between propeller and rudder-bulb was taken into account by velocity potential iteration in which the influence of propeller rotation was considered by the average influence coefficient. In the influence coefficient computation, the singular value should be found and deleted. Numerical results showed that the method presented is effective for predicting the steady hydrodynamic performance of propeller-rudder system and propeller-rudder-bulb system. Comparing with the induced velocity iterative method, the method presented can save programming and calculation time. Changing dimensions, the principal parameter—bulb size that affect energy-saving effect was studied, the results show that the bulb on rudder have a optimal size at the design advance coefficient.
ROTAX: a nonlinear optimization program by axes rotation method
International Nuclear Information System (INIS)
Suzuki, Tadakazu
1977-09-01
A nonlinear optimization program employing the axes rotation method has been developed for solving nonlinear problems subject to nonlinear inequality constraints and its stability and convergence efficiency were examined. The axes rotation method is a direct search of the optimum point by rotating the orthogonal coordinate system in a direction giving the minimum objective. The searching direction is rotated freely in multi-dimensional space, so the method is effective for the problems represented with the contours having deep curved valleys. In application of the axes rotation method to the optimization problems subject to nonlinear inequality constraints, an improved version of R.R. Allran and S.E.J. Johnsen's method is used, which deals with a new objective function composed of the original objective and a penalty term to consider the inequality constraints. The program is incorporated in optimization code system SCOOP. (auth.)
Piotrowski, J.
2014-01-01
The capacity model is designed to predict young children's learning from educational television. It posits that select program features and individual child characteristics can support this learning either by increasing total working memory allocated to the program or altering the allocation of
Directory of Open Access Journals (Sweden)
César Hernández-Hernández
2017-06-01
Full Text Available Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation.
Evaluating a physician leadership development program - a mixed methods approach.
Throgmorton, Cheryl; Mitchell, Trey; Morley, Tom; Snyder, Marijo
2016-05-16
Purpose - With the extent of change in healthcare today, organizations need strong physician leaders. To compensate for the lack of physician leadership education, many organizations are sending physicians to external leadership programs or developing in-house leadership programs targeted specifically to physicians. The purpose of this paper is to outline the evaluation strategy and outcomes of the inaugural year of a Physician Leadership Academy (PLA) developed and implemented at a Michigan-based regional healthcare system. Design/methodology/approach - The authors applied the theoretical framework of Kirkpatrick's four levels of evaluation and used surveys, observations, activity tracking, and interviews to evaluate the program outcomes. The authors applied grounded theory techniques to the interview data. Findings - The program met targeted outcomes across all four levels of evaluation. Interview themes focused on the significance of increasing self-awareness, building relationships, applying new skills, and building confidence. Research limitations/implications - While only one example, this study illustrates the importance of developing the evaluation strategy as part of the program design. Qualitative research methods, often lacking from learning evaluation design, uncover rich themes of impact. The study supports how a PLA program can enhance physician learning, engagement, and relationship building throughout and after the program. Physician leaders' partnership with organization development and learning professionals yield results with impact to individuals, groups, and the organization. Originality/value - Few studies provide an in-depth review of evaluation methods and outcomes of physician leadership development programs. Healthcare organizations seeking to develop similar in-house programs may benefit applying the evaluation strategy outlined in this study.
Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S
2015-11-13
The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science
Ji, Zhiwei; Wang, Bing; Yan, Ke; Dong, Ligang; Meng, Guanmin; Shi, Lei
2017-12-21
In recent years, the integration of 'omics' technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc. In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds' treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound's efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound's treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds. In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets.
Skill forecasting from different wind power ensemble prediction methods
International Nuclear Information System (INIS)
Pinson, Pierre; Nielsen, Henrik A; Madsen, Henrik; Kariniotakis, George
2007-01-01
This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the dispersion of ensemble members for a single prediction horizon, or over a set of successive look-ahead times. It is shown on the test case of a Danish offshore wind farm how prediction risk indices may be related to several levels of forecast uncertainty (and energy imbalances). Wind power ensemble predictions are derived from the transformation of ECMWF and NCEP ensembles of meteorological variables to power, as well as by a lagged average approach alternative. The ability of risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed
Forssen, B.; Wang, Y. S.; Crocker, M. J.
1981-12-01
Several aspects were studied. The SEA theory was used to develop a theoretical model to predict the transmission loss through an aircraft window. This work mainly consisted of the writing of two computer programs. One program predicts the sound transmission through a plexiglass window (the case of a single partition). The other program applies to the case of a plexiglass window window with a window shade added (the case of a double partition with an air gap). The sound transmission through a structure was measured in experimental studies using several different methods in order that the accuracy and complexity of all the methods could be compared. Also, the measurements were conducted on the simple model of a fuselage (a cylindrical shell), on a real aircraft fuselage, and on stiffened panels.
Development of Wind Farm AEP Prediction Program Considering Directional Wake Effect
Energy Technology Data Exchange (ETDEWEB)
Yang, Kyoungboo; Cho, Kyungho; Huh, Jongchul [Jeju Nat’l Univ., Jeju (Korea, Republic of)
2017-07-15
For accurate AEP prediction in a wind farm, it is necessary to effectively calculate the wind speed reduction and the power loss due to the wake effect in each wind direction. In this study, a computer program for AEP prediction considering directional wake effect was developed. The results of the developed program were compared with the actual AEP of the wind farm and the calculation result of existing commercial software to confirm the accuracy of prediction. The applied equations are identical with those of commercial software based on existing theories, but there is a difference in the calculation process of the detection of the wake effect area in each wind direction. As a result, the developed program predicted to be less than 1% of difference to the actual capacity factor and showed more than 2% of better results compared with the existing commercial software.
Method and computer program product for maintenance and modernization backlogging
Mattimore, Bernard G; Reynolds, Paul E; Farrell, Jill M
2013-02-19
According to one embodiment, a computer program product for determining future facility conditions includes a computer readable medium having computer readable program code stored therein. The computer readable program code includes computer readable program code for calculating a time period specific maintenance cost, for calculating a time period specific modernization factor, and for calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. In another embodiment, a computer-implemented method for calculating future facility conditions includes calculating a time period specific maintenance cost, calculating a time period specific modernization factor, and calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. Other embodiments are also presented.
Mathematical programming methods for large-scale topology optimization problems
DEFF Research Database (Denmark)
Rojas Labanda, Susana
for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...
A Predictive Method of Teacher's Structure in China's University (1985--2000)
Chen Ling; Pen Guozhong
1987-01-01
In this paper, a predictive model is designed to provide the Educational Department of China with the information necessary to draw up the program (1985--2000) for education development. This model contains two submodels, that is, the predictive model to the annual teacher's number of each title and the fuzzy predictive model to the annual teacher's number of each age. The first submodel is a Markov Chain model and the second submodel is a fuzzy predictive model. Before establishing the secon...
POLYAR, a new computer program for prediction of poly(A sites in human sequences
Directory of Open Access Journals (Sweden)
Qamar Raheel
2010-11-01
Full Text Available Abstract Background mRNA polyadenylation is an essential step of pre-mRNA processing in eukaryotes. Accurate prediction of the pre-mRNA 3'-end cleavage/polyadenylation sites is important for defining the gene boundaries and understanding gene expression mechanisms. Results 28761 human mapped poly(A sites have been classified into three classes containing different known forms of polyadenylation signal (PAS or none of them (PAS-strong, PAS-weak and PAS-less, respectively and a new computer program POLYAR for the prediction of poly(A sites of each class was developed. In comparison with polya_svm (till date the most accurate computer program for prediction of poly(A sites while searching for PAS-strong poly(A sites in human sequences, POLYAR had a significantly higher prediction sensitivity (80.8% versus 65.7% and specificity (66.4% versus 51.7% However, when a similar sort of search was conducted for PAS-weak and PAS-less poly(A sites, both programs had a very low prediction accuracy, which indicates that our knowledge about factors involved in the determination of the poly(A sites is not sufficient to identify such polyadenylation regions. Conclusions We present a new classification of polyadenylation sites into three classes and a novel computer program POLYAR for prediction of poly(A sites/regions of each of the class. In tests, POLYAR shows high accuracy of prediction of the PAS-strong poly(A sites, though this program's efficiency in searching for PAS-weak and PAS-less poly(A sites is not very high but is comparable to other available programs. These findings suggest that additional characteristics of such poly(A sites remain to be elucidated. POLYAR program with a stand-alone version for downloading is available at http://cub.comsats.edu.pk/polyapredict.htm.
Relaxation and decomposition methods for mixed integer nonlinear programming
Nowak, Ivo; Bank, RE
2005-01-01
This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.
A prediction method based on wavelet transform and multiple models fusion for chaotic time series
International Nuclear Information System (INIS)
Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha
2017-01-01
In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.
PROXIMAL: a method for Prediction of Xenobiotic Metabolism.
Yousofshahi, Mona; Manteiga, Sara; Wu, Charmian; Lee, Kyongbum; Hassoun, Soha
2015-12-22
Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.
Study program for constant current capacitor charging method
Energy Technology Data Exchange (ETDEWEB)
Pugh, C.
1978-10-04
The objective of the study program was to determine the best method of charging 20,000 to 132,000 microfarads of capacitance to 22 kVdc in 14 to 15 sec. Component costs, sizes, weights, line current graphs, copies of calculations and manufacturer's data are included.
Dynamic Frames Based Verification Method for Concurrent Java Programs
Mostowski, Wojciech
2016-01-01
In this paper we discuss a verification method for concurrent Java programs based on the concept of dynamic frames. We build on our earlier work that proposes a new, symbolic permission system for concurrent reasoning and we provide the following new contributions. First, we describe our approach
Heuristic Methods of Integer Programming and Its Applications in Economics
Directory of Open Access Journals (Sweden)
Dominika Crnjac Milić
2010-12-01
Full Text Available A short overview of the results related to integer programming is described in the introductory part of this paper. Furthermore, there is a list of literature related to this field. The main part of the paper analyses the Heuristic method which yields a very fast result without the use of significant mathematical tools.
Path Following in the Exact Penalty Method of Convex Programming.
Zhou, Hua; Lange, Kenneth
2015-07-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.
Hudson, Douglas J.; Torres, Manuel; Dougherty, Catherine; Rajendran, Natesan; Thompson, Rhoe A.
2003-09-01
The Air Force Research Laboratory (AFRL) Aerothermal Targets Analysis Program (ATAP) is a user-friendly, engineering-level computational tool that features integrated aerodynamics, six-degree-of-freedom (6-DoF) trajectory/motion, convective and radiative heat transfer, and thermal/material response to provide an optimal blend of accuracy and speed for design and analysis applications. ATAP is sponsored by the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility at Eglin AFB, where it is used with the CHAMP (Composite Hardbody and Missile Plume) technique for rapid infrared (IR) signature and imagery predictions. ATAP capabilities include an integrated 1-D conduction model for up to 5 in-depth material layers (with options for gaps/voids with radiative heat transfer), fin modeling, several surface ablation modeling options, a materials library with over 250 materials, options for user-defined materials, selectable/definable atmosphere and earth models, multiple trajectory options, and an array of aerodynamic prediction methods. All major code modeling features have been validated with ground-test data from wind tunnels, shock tubes, and ballistics ranges, and flight-test data for both U.S. and foreign strategic and theater systems. Numerous applications include the design and analysis of interceptors, booster and shroud configurations, window environments, tactical missiles, and reentry vehicles.
Different protein-protein interface patterns predicted by different machine learning methods.
Wang, Wei; Yang, Yongxiao; Yin, Jianxin; Gong, Xinqi
2017-11-22
Different types of protein-protein interactions make different protein-protein interface patterns. Different machine learning methods are suitable to deal with different types of data. Then, is it the same situation that different interface patterns are preferred for prediction by different machine learning methods? Here, four different machine learning methods were employed to predict protein-protein interface residue pairs on different interface patterns. The performances of the methods for different types of proteins are different, which suggest that different machine learning methods tend to predict different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our result. Our proposed methods taking advantages of different single methods also got a good prediction result compared to single methods. In addition to the prediction of protein-protein interactions, this idea can be extended to other research areas such as protein structure prediction and design.
Predicting Solar Activity Using Machine-Learning Methods
Bobra, M.
2017-12-01
Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.
Nuclear methods - an integral part of the NBS certification program
International Nuclear Information System (INIS)
Gills, T.E.
1984-01-01
Within the past twenty years, new techniques and methods have emerged in response to new technologies that are based upon the performance of high-purity and well-characterized materials. The National Bureau of Standards, through its Standard Reference Materials (SRM's) Program, provides standards in the form of many of these materials to ensure accuracy and the compatibility of measurements throughout the US and the world. These standards, defined by the National Bureau of Standards as Standard Reference Materials (SRMs), are developed by using state-of-the-art methods and procedures for both preparation and analysis. Nuclear methods-activation analysis constitute an integral part of that analysis process
New Jersey's residential radon remediation program - methods and experience
International Nuclear Information System (INIS)
Pluta, T.A.; Cosolita, F.J.; Rothfuss, E.
1986-01-01
As part of a remedial action program to decontaminate over 200 residential properties, 12 typical properties were selected and a demonstration program was initiated in the spring of 1985. The residences selected represented a range of contamination levels and configurations and differing architectural styles representative of the age of construction. The physical limitations of the sites and the overall nature of a decontamination project in active residential communities imposed a number of severe restrictions on work methods and equipment. Regulations governing transportation and disposal set virtually zero defect standards for the condition of containers. The intrusive nature of the work in residential neighborhoods required continual interaction with local residents, public officials and citizen task forces. Media coverage was very high. Numerous briefings were held to allay fears and promote public understanding. Numerous issues ranging in content from public health and safety to engineering and construction methods arose during the remedial action program. These issues were resolved by a multi-disciplined management team which was knowledgeable in public administration, radiation physics, and engineering design and construction. This paper discusses the nature of the problem, the methods applied to resolve the problem and the experience gained as a result of a remedial action program
International Nuclear Information System (INIS)
Hu Erbang; Gao Zhanrong; Zhang Heyuan; Wei Weiqiang
1996-12-01
A dynamic food-chain model and program, DYFOM-95, for predicting the radiological consequences of nuclear accident has been developed, which is not only suitable to the West food-chain but also to Chinese food chain. The following processes, caused by accident release which will make an impact on radionuclide concentration in the edible parts of vegetable are considered: dry and wet deposition interception and initial retention, translocation, percolation, root uptake and tillage. Activity intake rate of animals, effects of processing and activity intake of human through ingestion pathway are also considered in calculations. The effects of leaf area index LAI of vegetable are considered in dry deposition model. A method for calculating the contribution of rain with different period and different intensity to total wet deposition is established. The program contains 1 main code and 5 sub-codes to calculate dry and wet deposition on surface of vegetable and soil, translocation of nuclides in vegetable, nuclide concentration in the edible parts of vegetable and in animal products and activity intake of human and so on. (24 refs., 9 figs., 11 tabs.)
Polyhedral and semidefinite programming methods in combinatorial optimization
Tunçel, Levent
2010-01-01
Since the early 1960s, polyhedral methods have played a central role in both the theory and practice of combinatorial optimization. Since the early 1990s, a new technique, semidefinite programming, has been increasingly applied to some combinatorial optimization problems. The semidefinite programming problem is the problem of optimizing a linear function of matrix variables, subject to finitely many linear inequalities and the positive semidefiniteness condition on some of the matrix variables. On certain problems, such as maximum cut, maximum satisfiability, maximum stable set and geometric r
Response Matrix Method Development Program at Savannah River Laboratory
International Nuclear Information System (INIS)
Sicilian, J.M.
1976-01-01
The Response Matrix Method Development Program at Savannah River Laboratory (SRL) has concentrated on the development of an effective system of computer codes for the analysis of Savannah River Plant (SRP) reactors. The most significant contribution of this program to date has been the verification of the accuracy of diffusion theory codes as used for routine analysis of SRP reactor operation. This paper documents the two steps carried out in achieving this verification: confirmation of the accuracy of the response matrix technique through comparison with experiment and Monte Carlo calculations; and establishment of agreement between diffusion theory and response matrix codes in situations which realistically approximate actual operating conditions
Predicting Plasma Glucose From Interstitial Glucose Observations Using Bayesian Methods
DEFF Research Database (Denmark)
Hansen, Alexander Hildenbrand; Duun-Henriksen, Anne Katrine; Juhl, Rune
2014-01-01
One way of constructing a control algorithm for an artificial pancreas is to identify a model capable of predicting plasma glucose (PG) from interstitial glucose (IG) observations. Stochastic differential equations (SDEs) make it possible to account both for the unknown influence of the continuous...... glucose monitor (CGM) and for unknown physiological influences. Combined with prior knowledge about the measurement devices, this approach can be used to obtain a robust predictive model. A stochastic-differential-equation-based gray box (SDE-GB) model is formulated on the basis of an identifiable...
A comparison of methods of predicting maximum oxygen uptake.
Grant, S; Corbett, K; Amjad, A M; Wilson, J; Aitchison, T
1995-01-01
The aim of this study was to compare the results from a Cooper walk run test, a multistage shuttle run test, and a submaximal cycle test with the direct measurement of maximum oxygen uptake on a treadmill. Three predictive tests of maximum oxygen uptake--linear extrapolation of heart rate of VO2 collected from a submaximal cycle ergometer test (predicted L/E), the Cooper 12 min walk, run test, and a multi-stage progressive shuttle run test (MST)--were performed by 22 young healthy males (mean...
Kouramas, K.I.
2011-08-01
This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.
What Predicts Method Effects in Child Behavior Ratings
Low, Justin A.; Keith, Timothy Z.; Jensen, Megan
2015-01-01
The purpose of this research was to determine whether child, parent, and teacher characteristics such as sex, socioeconomic status (SES), parental depressive symptoms, the number of years of teaching experience, number of children in the classroom, and teachers' disciplinary self-efficacy predict deviations from maternal ratings in a…
A method for predicting the probability of business network profitability
Johnson, P.; Iacob, Maria Eugenia; Välja, M.; van Sinderen, Marten J.; Magnusson, C; Ladhe, T.
2014-01-01
In the design phase of business collaboration, it is desirable to be able to predict the profitability of the business-to-be. Therefore, techniques to assess qualities such as costs, revenues, risks, and profitability have been previously proposed. However, they do not allow the modeler to properly
Statistical tests for equal predictive ability across multiple forecasting methods
DEFF Research Database (Denmark)
Borup, Daniel; Thyrsgaard, Martin
We develop a multivariate generalization of the Giacomini-White tests for equal conditional predictive ability. The tests are applicable to a mixture of nested and non-nested models, incorporate estimation uncertainty explicitly, and allow for misspecification of the forecasting model as well as ...
Genomic breeding value prediction:methods and procedures
Calus, M.P.L.
2010-01-01
Animal breeding faces one of the most significant changes of the past decades – the implementation of genomic selection. Genomic selection uses dense marker maps to predict the breeding value of animals with reported accuracies that are up to 0.31 higher than those of pedigree indexes, without the
Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics
Directory of Open Access Journals (Sweden)
Fei Gao
2015-01-01
Full Text Available Currently, we are experiencing a rapid growth of the number of social-based online systems. The availability of the vast amounts of data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics is the prediction of social connections between users. Although a lot of effort has been made to develop new prediction approaches, the existing methods are not comprehensively analysed. In this paper we investigate the correlation between network metrics and accuracy of different prediction methods. We selected six time-stamped real-world social networks and ten most widely used link prediction methods. The results of the experiments show that the performance of some methods has a strong correlation with certain network metrics. We managed to distinguish “prediction friendly” networks, for which most of the prediction methods give good performance, as well as “prediction unfriendly” networks, for which most of the methods result in high prediction error. Correlation analysis between network metrics and prediction accuracy of prediction methods may form the basis of a metalearning system where based on network characteristics it will be able to recommend the right prediction method for a given network.
Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A.; van t Veld, Aart A.
2012-01-01
PURPOSE: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator
A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases
Directory of Open Access Journals (Sweden)
Karp Peter D
2004-06-01
Full Text Available Abstract Background The PathoLogic program constructs Pathway/Genome databases by using a genome's annotation to predict the set of metabolic pathways present in an organism. PathoLogic determines the set of reactions composing those pathways from the enzymes annotated in the organism's genome. Most annotation efforts fail to assign function to 40–60% of sequences. In addition, large numbers of sequences may have non-specific annotations (e.g., thiolase family protein. Pathway holes occur when a genome appears to lack the enzymes needed to catalyze reactions in a pathway. If a protein has not been assigned a specific function during the annotation process, any reaction catalyzed by that protein will appear as a missing enzyme or pathway hole in a Pathway/Genome database. Results We have developed a method that efficiently combines homology and pathway-based evidence to identify candidates for filling pathway holes in Pathway/Genome databases. Our program not only identifies potential candidate sequences for pathway holes, but combines data from multiple, heterogeneous sources to assess the likelihood that a candidate has the required function. Our algorithm emulates the manual sequence annotation process, considering not only evidence from homology searches, but also considering evidence from genomic context (i.e., is the gene part of an operon? and functional context (e.g., are there functionally-related genes nearby in the genome? to determine the posterior belief that a candidate has the required function. The method can be applied across an entire metabolic pathway network and is generally applicable to any pathway database. The program uses a set of sequences encoding the required activity in other genomes to identify candidate proteins in the genome of interest, and then evaluates each candidate by using a simple Bayes classifier to determine the probability that the candidate has the desired function. We achieved 71% precision at a
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods.
Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu
2018-01-01
In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program "e-Bitter" is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods
Directory of Open Access Journals (Sweden)
Suqing Zheng
2018-03-01
Full Text Available In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc. combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-learning Methods
Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu
2018-03-01
In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.
Prediction of springback in V-die air bending process by using finite element method
Directory of Open Access Journals (Sweden)
Trzepiecinski Tomasz
2017-01-01
Full Text Available Springback phenomenon affects the dimensional and geometrical accuracy of the bent parts. The prediction of springback is a key problem in sheet metal forming. The aim of this paper is the numerical analysis of the possibility to predict the springback of anisotropic steel sheets. The experiments are conducted on 40 x 100 mm steel sheets. The mechanical properties of the sheet metals have been determined through uniaxial tensile tests of samples cut along three directions with respect to the rolling direction. The numerical model of air V-bending is built in finite element method (FEM based ABAQUS/Standard 2016.HF2 (Dassault Systemes Simulia Corp., USA program. The FEM results were verified by experimental investigations. The simulation model has taken into consideration material anisotropy and strain hardening phenomenon. The results of FEM simulations confirmed the ability of numerical prediction of springback amount. It was also found that the directional microstructure of the sheet metal resulted from rolling process affects the elastic-plastic deformation of the sheets through the sample width.
CaFE: a tool for binding affinity prediction using end-point free energy methods.
Liu, Hui; Hou, Tingjun
2016-07-15
Accurate prediction of binding free energy is of particular importance to computational biology and structure-based drug design. Among those methods for binding affinity predictions, the end-point approaches, such as MM/PBSA and LIE, have been widely used because they can achieve a good balance between prediction accuracy and computational cost. Here we present an easy-to-use pipeline tool named Calculation of Free Energy (CaFE) to conduct MM/PBSA and LIE calculations. Powered by the VMD and NAMD programs, CaFE is able to handle numerous static coordinate and molecular dynamics trajectory file formats generated by different molecular simulation packages and supports various force field parameters. CaFE source code and documentation are freely available under the GNU General Public License via GitHub at https://github.com/huiliucode/cafe_plugin It is a VMD plugin written in Tcl and the usage is platform-independent. tingjunhou@zju.edu.cn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hybrid Prediction Method for Aircraft Interior Noise, Phase II
National Aeronautics and Space Administration — The goal of the project is research and development of methods for application of the Hybrid FE-SEA method to aircraft vibro-acoustic problems. This proposal...
DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?
Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...
Prediction of Solvent Physical Properties using the Hierarchical Clustering Method
Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...
Directory of Open Access Journals (Sweden)
Elena Vital'evna Bykova
2011-09-01
Full Text Available This paper describes the concept of energy security and a system of indicators for its monitoring. The indicator system includes more than 40 parameters that reflect the structure and state of fuel and energy complex sectors (fuel, electricity and heat & power, as well as takes into account economic, environmental and social aspects. A brief description of the structure of the computer system to monitor and analyze energy security is given. The complex contains informational, analytical and calculation modules, provides applications for forecasting and modeling energy scenarios, modeling threats and determining levels of energy security. Its application to predict the values of the indicators and methods developed for it are described. This paper presents a method developed by conventional nonlinear mathematical programming needed to address several problems of energy and, in particular, the prediction problem of the security. An example of its use and implementation of this method in the application, "Prognosis", is also given.
Integrated Data Collection Analysis (IDCA) Program - SSST Testing Methods
Energy Technology Data Exchange (ETDEWEB)
Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phillips, Jason J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shelley, Timothy J. [Bureau of Alcohol, Tobacco and Firearms (ATF), Huntsville, AL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-03-25
The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the methods used for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis during the IDCA program. These methods changed throughout the Proficiency Test and the reasons for these changes are documented in this report. The most significant modifications in standard testing methods are: 1) including one specified sandpaper in impact testing among all the participants, 2) diversifying liquid test methods for selected participants, and 3) including sealed sample holders for thermal testing by at least one participant. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study will suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent.
Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat
2015-01-01
Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha
2018-01-01
Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.
A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions
International Nuclear Information System (INIS)
Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan
2007-01-01
In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported
Theoretical prediction method of subcooled flow boiling CHF
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)
Machine learning methods in predicting the student academic motivation
Directory of Open Access Journals (Sweden)
Ivana Đurđević Babić
2017-01-01
Full Text Available Academic motivation is closely related to academic performance. For educators, it is equally important to detect early students with a lack of academic motivation as it is to detect those with a high level of academic motivation. In endeavouring to develop a classification model for predicting student academic motivation based on their behaviour in learning management system (LMS courses, this paper intends to establish links between the predicted student academic motivation and their behaviour in the LMS course. Students from all years at the Faculty of Education in Osijek participated in this research. Three machine learning classifiers (neural networks, decision trees, and support vector machines were used. To establish whether a significant difference in the performance of models exists, a t-test of the difference in proportions was used. Although, all classifiers were successful, the neural network model was shown to be the most successful in detecting the student academic motivation based on their behaviour in LMS course.
Theoretical prediction method of subcooled flow boiling CHF
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)
Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech
劉, 麗清
2015-01-01
Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...
Next Generation Nuclear Plant Methods Technical Program Plan
Energy Technology Data Exchange (ETDEWEB)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus
2010-12-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.
Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498
Energy Technology Data Exchange (ETDEWEB)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus
2010-09-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.
Directory of Open Access Journals (Sweden)
J. Cho
2016-10-01
Full Text Available The APEC Climate Center (APCC produces climate prediction information utilizing a multi-climate model ensemble (MME technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1 the Simple Bias Correction (SBC method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2 the Moving Window Regression (MWR method, which indirectly utilizes dynamic prediction data; (3 the Climate Index Regression (CIR method, which predominantly uses observation-based climate indices; and (4 the Integrated Time Regression (ITR method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.
Relaxation Methods for Strictly Convex Regularizations of Piecewise Linear Programs
International Nuclear Information System (INIS)
Kiwiel, K. C.
1998-01-01
We give an algorithm for minimizing the sum of a strictly convex function and a convex piecewise linear function. It extends several dual coordinate ascent methods for large-scale linearly constrained problems that occur in entropy maximization, quadratic programming, and network flows. In particular, it may solve exact penalty versions of such (possibly inconsistent) problems, and subproblems of bundle methods for nondifferentiable optimization. It is simple, can exploit sparsity, and in certain cases is highly parallelizable. Its global convergence is established in the recent framework of B -functions (generalized Bregman functions)
Non-animal methods to predict skin sensitization (II): an assessment of defined approaches *.
Kleinstreuer, Nicole C; Hoffmann, Sebastian; Alépée, Nathalie; Allen, David; Ashikaga, Takao; Casey, Warren; Clouet, Elodie; Cluzel, Magalie; Desprez, Bertrand; Gellatly, Nichola; Göbel, Carsten; Kern, Petra S; Klaric, Martina; Kühnl, Jochen; Martinozzi-Teissier, Silvia; Mewes, Karsten; Miyazawa, Masaaki; Strickland, Judy; van Vliet, Erwin; Zang, Qingda; Petersohn, Dirk
2018-05-01
Skin sensitization is a toxicity endpoint of widespread concern, for which the mechanistic understanding and concurrent necessity for non-animal testing approaches have evolved to a critical juncture, with many available options for predicting sensitization without using animals. Cosmetics Europe and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods collaborated to analyze the performance of multiple non-animal data integration approaches for the skin sensitization safety assessment of cosmetics ingredients. The Cosmetics Europe Skin Tolerance Task Force (STTF) collected and generated data on 128 substances in multiple in vitro and in chemico skin sensitization assays selected based on a systematic assessment by the STTF. These assays, together with certain in silico predictions, are key components of various non-animal testing strategies that have been submitted to the Organization for Economic Cooperation and Development as case studies for skin sensitization. Curated murine local lymph node assay (LLNA) and human skin sensitization data were used to evaluate the performance of six defined approaches, comprising eight non-animal testing strategies, for both hazard and potency characterization. Defined approaches examined included consensus methods, artificial neural networks, support vector machine models, Bayesian networks, and decision trees, most of which were reproduced using open source software tools. Multiple non-animal testing strategies incorporating in vitro, in chemico, and in silico inputs demonstrated equivalent or superior performance to the LLNA when compared to both animal and human data for skin sensitization.
Data mining for dengue hemorrhagic fever (DHF) prediction with naive Bayes method
Arafiyah, Ria; Hermin, Fariani
2018-01-01
Handling of infectious diseases is determined by the accuracy and speed of diagnosis. Government through the Regulation of the Minister of Health of the Republic of Indonesia No. 82 of 2014 on the Control of Communicable Diseases establishes Dengue Hemorrhagic Fever (DHF) has made DHF prevention a national priority. Various attempts were made to overcome this misdiagnosis. The treatment and diagnosis of DHF using ANFIS has result an application program that can decide whether a patient has dengue fever or not [1]. An expert system of dengue prevention by using ANFIS has predict the weather and the number of sufferers [2]. The large number of data on DHF often cannot affect a person in making decisions. The use of data mining method, able to build data base support in decision makers diagnose DHF disease [3]. This study predicts DHF with the method of Naive Bayes. Parameter of The input variable is the patient’s medical data (temperature, spotting, bleeding, and tornuine test) and the output variable suffers from DBD or not while the system output is diagnosis of the patient suffering from DHF or not. Result of model test by using tools of Orange 3.4.5 obtained level of precision model is 77,3%.
Predicting sulphur and nitrogen deposition using a simple statistical method
Czech Academy of Sciences Publication Activity Database
Oulehle, F.; Kopáček, Jiří; Chuman, T.; Černohous, V.; Hůnová, I.; Hruška, Jakub; Krám, Pavel; Lachmaová, Z.; Navrátil, Tomáš; Štěpánek, Petr; Tesař, Miroslav; Christopher, Evans D.
2016-01-01
Roč. 140, sep (2016), s. 456-468 ISSN 1352-2310 Grant - others:EHP(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 ; RVO:60077344 ; RVO:67985831 ; RVO:67985874 Keywords : precipitation * sulphur * nitrogen * deposition * monitoring * upscaling Subject RIV: EH - Ecology, Behaviour; DD - Geochemistry (GLU-S); DI - Air Pollution ; Quality (BC-A); BK - Fluid Dynamics (UH-J) Impact factor: 3.629, year: 2016
Methods and computer programs for PWR's fuel management: Programs Sothis and Ciclon
International Nuclear Information System (INIS)
Aragones, J.M.; Corella, M.R.; Martinez-Val, J.M.
1976-01-01
Methos and computer programs developed at JEN for fuel management in PWR are discussed, including scope of model, procedures for sistematic selection of alternatives to be evaluated, basis of model for neutronic calculation, methods for fuel costs calculation, procedures for equilibrium and trans[tion cycles calculation with Soth[s and Ciclon codes and validation of methods by comparison of results with others of reference (author) ' [es
International Nuclear Information System (INIS)
Ellingwood, B.R.; Mori, Yasuhiro
1993-01-01
A probability-based methodology is being developed in support of the NRC Structural Aging Program to assist in evaluating the reliability of existing concrete structures in nuclear power plants under potential future operating loads and extreme evironmental and accidental events. The methodology includes models to predict structural deterioration due to environmental stressors, a database to support the use of these models, and methods for analyzing time-dependent reliability of concrete structural components subjected to stochastic loads. The methodology can be used to support a plant license extension application by providing evidence that safety-related concrete structures in their current (service) condition are able to withstand future extreme events with a level of reliability sufficient for public health and safety. (orig.)
Pipe break prediction based on evolutionary data-driven methods with brief recorded data
International Nuclear Information System (INIS)
Xu Qiang; Chen Qiuwen; Li Weifeng; Ma Jinfeng
2011-01-01
Pipe breaks often occur in water distribution networks, imposing great pressure on utility managers to secure stable water supply. However, pipe breaks are hard to detect by the conventional method. It is therefore necessary to develop reliable and robust pipe break models to assess the pipe's probability to fail and then to optimize the pipe break detection scheme. In the absence of deterministic physical models for pipe break, data-driven techniques provide a promising approach to investigate the principles underlying pipe break. In this paper, two data-driven techniques, namely Genetic Programming (GP) and Evolutionary Polynomial Regression (EPR) are applied to develop pipe break models for the water distribution system of Beijing City. The comparison with the recorded pipe break data from 1987 to 2005 showed that the models have great capability to obtain reliable predictions. The models can be used to prioritize pipes for break inspection and then improve detection efficiency.
Simple methods for predicting gas leakage flows through cracks
International Nuclear Information System (INIS)
Ewing, D.J.F.
1989-01-01
This report presents closed-form approximate analytical formulae with which the flow rate out of a through-wall crack can be estimated. The crack is idealised as a rough, tapering, wedgeshaped channel and the fluid is idealised as an isothermal or polytropically-expanding perfect gas. In practice, uncertainties about the wall friction factor dominate over uncertainties caused by the fluid-dynamics simplifications. The formulae take account of crack taper and for outwardly-diverging cracks they predict flows within 12% of mathematically more accurate one-dimensional numerical models. Upper and lower estimates of wall friction are discussed. (author)
Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.
Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L
2016-01-01
The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.
Specification and prediction of nickel mobilization using artificial intelligence methods
Gholami, Raoof; Ziaii, Mansour; Ardejani, Faramarz Doulati; Maleki, Shahoo
2011-12-01
Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.
Verifying a computational method for predicting extreme ground motion
Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, Brad T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.
2011-01-01
In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.
FATAL, General Experiment Fitting Program by Nonlinear Regression Method
International Nuclear Information System (INIS)
Salmon, L.; Budd, T.; Marshall, M.
1982-01-01
1 - Description of problem or function: A generalized fitting program with a free-format keyword interface to the user. It permits experimental data to be fitted by non-linear regression methods to any function describable by the user. The user requires the minimum of computer experience but needs to provide a subroutine to define his function. Some statistical output is included as well as 'best' estimates of the function's parameters. 2 - Method of solution: The regression method used is based on a minimization technique devised by Powell (Harwell Subroutine Library VA05A, 1972) which does not require the use of analytical derivatives. The method employs a quasi-Newton procedure balanced with a steepest descent correction. Experience shows this to be efficient for a very wide range of application. 3 - Restrictions on the complexity of the problem: The current version of the program permits functions to be defined with up to 20 parameters. The function may be fitted to a maximum of 400 points, preferably with estimated values of weight given
International Nuclear Information System (INIS)
Gomez-Eyles, Jose L.; Collins, Chris D.; Hodson, Mark E.
2011-01-01
Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: → Isotope ratios can be used to evaluate chemical methods to predict bioavailability. → Chemical methods predicted bioavailability better than exhaustive extractions. → Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.
Energy Technology Data Exchange (ETDEWEB)
Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)
2011-04-15
Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.
Method to predict process signals to learn for SVM
International Nuclear Information System (INIS)
Minowa, Hirotsugu; Gofuku, Akio
2013-01-01
Study of diagnostic system using machine learning to reduce the incidents of the plant is in advance because an accident causes large damage about human, economic and social loss. There is a problem that 2 performances between a classification performance and generalization performance on the machine diagnostic machine is exclusive. However, multi agent diagnostic system makes it possible to use a diagnostic machine specialized either performance by multi diagnostic machines can be used. We propose method to select optimized variables to improve classification performance. The method can also be used for other supervised learning machine but Support Vector Machine. This paper reports that our method and result of evaluation experiment applied our method to output 40% of Monju. (author)
Kinetic mesh-free method for flutter prediction in turbomachines
Indian Academy of Sciences (India)
-based mesh-free method for unsteady flows. ... Council for Scientific and Industrial Research, National Aerospace Laboratories, Computational and Theoretical Fluid Dynamics Division, Bangalore 560 017, India; Engineering Mechanics Unit, ...
Program-target methods of management small business
Directory of Open Access Journals (Sweden)
Gurova Ekaterina
2017-01-01
Full Text Available Experience of small businesses in Russia are just beginning their path to development. difficulties arise with the involvement of small businesses in the implementation of government development programmes. Small business in modern conditions to secure a visible prospect of development without the implementation of state support programmes. Ways and methods of regulation of development of the market economy are diverse. The total mass of the huge role is played by the program-target methods of regulation. The article describes the basic principles on the use of program-target approach to the development of a specific sector of the economy, as small businesses, designed to play an important role in getting the national economy out of crisis. The material in this publication is built from the need to maintain the connection between the theory of government regulation, practice of formation of development programs at the regional level and the needs of small businesses. Essential for the formation of entrepreneurship development programmes is to preserve the flexibility of small businesses in making management decisions related to the selection and change of activities.
Jibson, Randall W.; Jibson, Matthew W.
2003-01-01
Landslides typically cause a large proportion of earthquake damage, and the ability to predict slope performance during earthquakes is important for many types of seismic-hazard analysis and for the design of engineered slopes. Newmark's method for modeling a landslide as a rigid-plastic block sliding on an inclined plane provides a useful method for predicting approximate landslide displacements. Newmark's method estimates the displacement of a potential landslide block as it is subjected to earthquake shaking from a specific strong-motion record (earthquake acceleration-time history). A modification of Newmark's method, decoupled analysis, allows modeling landslides that are not assumed to be rigid blocks. This open-file report is available on CD-ROM and contains Java programs intended to facilitate performing both rigorous and simplified Newmark sliding-block analysis and a simplified model of decoupled analysis. For rigorous analysis, 2160 strong-motion records from 29 earthquakes are included along with a search interface for selecting records based on a wide variety of record properties. Utilities are available that allow users to add their own records to the program and use them for conducting Newmark analyses. Also included is a document containing detailed information about how to use Newmark's method to model dynamic slope performance. This program will run on any platform that supports the Java Runtime Environment (JRE) version 1.3, including Windows, Mac OSX, Linux, Solaris, etc. A minimum of 64 MB of available RAM is needed, and the fully installed program requires 400 MB of disk space.
Prediction Modeling for Academic Success in Professional Master's Athletic Training Programs
Bruce, Scott L.; Crawford, Elizabeth; Wilkerson, Gary B.; Rausch, David; Dale, R. Barry; Harris, Martina
2016-01-01
Context: A common goal of professional education programs is to recruit the students best suited for the professional career. Selection of students can be a difficult process, especially if the number of qualified candidates exceeds the number of available positions. The ability to predict academic success in any profession has been a challenging…
Genomic selection accuracy using multi-family prediction models in a wheat breeding program
Genomic selection (GS) uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotyp...
Martin, Jeffrey J.; Byrd, Brigid; Garn, Alex; McCaughtry, Nate; Kulik, Noel; Centeio, Erin
2016-01-01
The purpose of this cross sectional study was to predict feelings of belonging and social responsibility based on the motivational climate perceptions and contingent self-worth of children participating in urban after-school physical activity programs. Three-hundred and four elementary school students from a major Midwestern city participated.…
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.
Predicting Improvement After a Bystander Program for the Prevention of Sexual and Dating Violence.
Hines, Denise A; Palm Reed, Kathleen M
2015-07-01
Although evidence suggests that bystander prevention programs are promising interventions for decreasing sexual violence and dating violence on college campuses, there have been no studies to date evaluating moderators of bystander program effectiveness. The current study evaluates whether different demographic characteristics, attitudes, knowledge, and behaviors at pretest predict change over a 6-month follow-up for students who participated in a bystander prevention program. Participants in the three assessments (pretest, posttest, 6-month follow-up) included 296 college students who were mandated to attend a bystander program during their first year orientation. Analyses showed that with few exceptions, the bystander program worked best for students who were most at risk given their pretest demographics and levels of attitudes condoning dating violence and sexual violence, bystander efficacy, and bystander behaviors. Results are discussed in terms of suggestions for future research. © 2014 Society for Public Health Education.
Purpose and methods of a Pollution Prevention Awareness Program
Energy Technology Data Exchange (ETDEWEB)
Flowers, P.A.; Irwin, E.F.; Poligone, S.E.
1994-08-15
The purpose of the Pollution Prevention Awareness Program (PPAP), which is required by DOE Order 5400.1, is to foster the philosophy that prevention is superior to remediation. The goal of the program is to incorporate pollution prevention into the decision-making process at every level throughout the organization. The objectives are to instill awareness, disseminate information, provide training and rewards for identifying the true source or cause of wastes, and encourage employee participation in solving environmental issues and preventing pollution. PPAP at the Oak Ridge Y-12 Plant was created several years ago and continues to grow. We believe that we have implemented several unique methods of communicating environmental awareness to promote a more active work force in identifying ways of reducing pollution.
Computer prediction of subsurface radionuclide transport: an adaptive numerical method
International Nuclear Information System (INIS)
Neuman, S.P.
1983-01-01
Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1
Comparison of four statistical and machine learning methods for crash severity prediction.
Iranitalab, Amirfarrokh; Khattak, Aemal
2017-11-01
Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance prediction of electrohydrodynamic thrusters by the perturbation method
International Nuclear Information System (INIS)
Shibata, H.; Watanabe, Y.; Suzuki, K.
2016-01-01
In this paper, we present a novel method for analyzing electrohydrodynamic (EHD) thrusters. The method is based on a perturbation technique applied to a set of drift-diffusion equations, similar to the one introduced in our previous study on estimating breakdown voltage. The thrust-to-current ratio is generalized to represent the performance of EHD thrusters. We have compared the thrust-to-current ratio obtained theoretically with that obtained from the proposed method under atmospheric air conditions, and we have obtained good quantitative agreement. Also, we have conducted a numerical simulation in more complex thruster geometries, such as the dual-stage thruster developed by Masuyama and Barrett [Proc. R. Soc. A 469, 20120623 (2013)]. We quantitatively clarify the fact that if the magnitude of a third electrode voltage is low, the effective gap distance shortens, whereas if the magnitude of the third electrode voltage is sufficiently high, the effective gap distance lengthens.
Reddy, Bhargava K; Delen, Dursun; Agrawal, Rupesh K
2018-01-01
Crohn's disease is among the chronic inflammatory bowel diseases that impact the gastrointestinal tract. Understanding and predicting the severity of inflammation in real-time settings is critical to disease management. Extant literature has primarily focused on studies that are conducted in clinical trial settings to investigate the impact of a drug treatment on the remission status of the disease. This research proposes an analytics methodology where three different types of prediction models are developed to predict and to explain the severity of inflammation in patients diagnosed with Crohn's disease. The results show that machine-learning-based analytic methods such as gradient boosting machines can predict the inflammation severity with a very high accuracy (area under the curve = 92.82%), followed by regularized regression and logistic regression. According to the findings, a combination of baseline laboratory parameters, patient demographic characteristics, and disease location are among the strongest predictors of inflammation severity in Crohn's disease patients.
International Nuclear Information System (INIS)
Liu, P.; Bose, N.; Colbourne, B.
2002-01-01
A simple numerical procedure is established and implemented into a time domain panel method to predict hydrodynamic performance of marine propellers with sheet cavitation. This paper describes the numerical formulations and procedures to construct this integration. Predicted hydrodynamic loads were compared with both a previous numerical model and experimental measurements for a propeller in steady flow. The current method gives a substantial improvement in thrust and torque coefficient prediction over a previous numerical method at low cavitation numbers of less than 2.0, where severe cavitation occurs. Predicted pressure coefficient distributions are also presented. (author)
Accuracy assessment of the ERP prediction method based on analysis of 100-year ERP series
Malkin, Z.; Tissen, V. M.
2012-12-01
A new method has been developed at the Siberian Research Institute of Metrology (SNIIM) for highly accurate prediction of UT1 and Pole motion (PM). In this study, a detailed comparison was made of real-time UT1 predictions made in 2006-2011 and PMpredictions made in 2009-2011making use of the SNIIM method with simultaneous predictions computed at the International Earth Rotation and Reference Systems Service (IERS), USNO. Obtained results have shown that proposed method provides better accuracy at different prediction lengths.
Methods to compute reliabilities for genomic predictions of feed intake
For new traits without historical reference data, cross-validation is often the preferred method to validate reliability (REL). Time truncation is less useful because few animals gain substantial REL after the truncation point. Accurate cross-validation requires separating genomic gain from pedigree...
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2011-09-28
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature
Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods
Ziari, H.; Sobhani, J.; Ayoubinejad, J.; Hartmann, Timo
2015-01-01
Prediction of pavement condition is one of the most important issues in pavement management systems. In this paper, capabilities of artificial neural networks (ANNs) and group method of data handling (GMDH) methods in predicting flexible pavement conditions were analysed in three levels: in 1 year,
Ensemble approach combining multiple methods improves human transcription start site prediction.
LENUS (Irish Health Repository)
Dineen, David G
2010-01-01
The computational prediction of transcription start sites is an important unsolved problem. Some recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still difficult to locate using current methods. These methods use different features and training sets, along with a variety of machine learning techniques and result in different prediction sets.
Modification of an Existing In vitro Method to Predict Relative Bioavailable Arsenic in Soils
The soil matrix can sequester arsenic (As) and reduces its exposure by soil ingestion. In vivo dosing studies and in vitro gastrointestinal (IVG) methods have been used to predict relative bioavailable (RBA) As. Originally, the Ohio State University (OSU-IVG) method predicted R...
Program generator for the Incomplete Cholesky Conjugate Gradient (ICCG) method
International Nuclear Information System (INIS)
Kuo-Petravic, G.; Petravic, M.
1978-04-01
The Incomplete Cholesky Conjugate Gradient (ICCG) method has been found very effective for the solution of sparse systems of linear equations. Its implementation on a computer, however, requires a considerable amount of careful coding to achieve good machine efficiency. Furthermore, the resulting code is necessarily inflexible and cannot be easily adapted to different problems. We present in this paper a code generator GENIC which, given a small amount of information concerning the sparsity pattern and size of the system of equations, generates a solver package. This package, called SOLIC, is tailor made for a particular problem and can be easily incorporated into any user program
Signal predictions for a proposed fast neutron interrogation method
International Nuclear Information System (INIS)
Sale, K.E.
1992-12-01
We have applied the Monte Carlo radiation transport code COG) to assess the utility of a proposed explosives detection scheme based on neutron emission. In this scheme a pulsed neutron beam is generated by an approximately seven MeV deuteron beam incident on a thick Be target. A scintillation detector operating in the current mode measures the neutrons transmitted through the object as a function of time. The flight time of unscattered neutrons from the source to the detector is simply related to the neutron energy. This information along with neutron cross section excitation functions is used to infer the densities of H, C, N and O in the volume sampled. The code we have chosen to use enables us to create very detailed and realistic models of the geometrical configuration of the system, the neutron source and of the detector response. By calculating the signals that will be observed for several configurations and compositions of interrogated object we can investigate and begin to understand how a system that could actually be fielded will perform. Using this modeling capability many early on with substantial savings in time and cost and with improvements in performance. We will present our signal predictions for simple single element test cases and for explosive compositions. From these studies it is dear that the interpretation of the signals from such an explosives identification system will pose a substantial challenge
International Nuclear Information System (INIS)
Park, Jin Beak
1995-02-01
Low-level radioactive waste management require the knowledge of the natures and quantities of radionuclides in the immobilized or packaged waste. U. S. NRC rules require programs that measure the concentrations of all relevant nuclides either directly or indirectly by relating difficult-to-measure radionuclides to other easy-to-measure radionuclides with application of scaling factors. Scaling factors previously developed through statistical approach can give only generic ones and have many difficult problem about sampling procedures. Generic scaling factors can not take into account for plant operation history. In this study, a method to predict plant-specific and operational history dependent scaling factors is developed. Realistic and detailed approach are taken to find scaling factors at reactor coolant. This approach begin with fission product release mechanisms and fundamental release properties of fuel-source nuclide such as fission product and transuranic nuclide. Scaling factors at various waste streams are derived from the predicted reactor coolant scaling factors with the aid of radionuclide retention and build up model. This model make use of radioactive material balance within the radioactive waste processing systems. Scaling factors at reactor coolant and waste streams which can include the effects of plant operation history have been developed according to input parameters of plant operation history
Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method.
Li, Ao; Xue, Yu; Jin, Changjiang; Wang, Minghui; Yao, Xuebiao
2006-12-01
Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability of reagents such as acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies of PAIL are 85.13%, 87.97%, and 89.21% at low, medium, and high thresholds, respectively. Both Jack-Knife validation and n-fold cross-validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail.
Prediction of Nε-acetylation on internal lysines implemented in Bayesian Discriminant Method
Li, Ao; Xue, Yu; Jin, Changjiang; Wang, Minghui; Yao, Xuebiao
2007-01-01
Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability reagents such as acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies of PAIL are 85.13%, 87.97% and 89.21% at low, medium and high thresholds, respectively. Both Jack-Knife validation and n-fold cross validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail. PMID:17045240
International Nuclear Information System (INIS)
Gupta, N
2008-01-01
3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO 2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures
An SEU rate prediction method for microprocessors of space applications
International Nuclear Information System (INIS)
Gao Jie; Li Qiang
2012-01-01
In this article,the relationship between static SEU (Single Event Upset) rate and dynamic SEU rate in microprocessors for satellites is studied by using process duty cycle concept and fault injection technique. The results are compared to in-orbit flight monitoring data. The results show that dynamic SEU rate by using process duty cycle can estimate in-orbit SEU rate of microprocessor reasonable; and the fault injection technique is a workable method to estimate SEU rate. (authors)
Experimentally aided development of a turbine heat transfer prediction method
International Nuclear Information System (INIS)
Forest, A.E.; White, A.J.; Lai, C.C.; Guo, S.M.; Oldfield, M.L.G.; Lock, G.D.
2004-01-01
In the design of cooled turbomachinery blading a central role is played by the computer methods used to optimise the aerodynamic and thermal performance of the turbine aerofoils. Estimates of the heat load on the turbine blading should be as accurate as possible, in order that adequate life may be obtained with the minimum cooling air requirement. Computer methods are required which are able to model transonic flows, which are a mixture of high temperature combustion gases and relatively cool air injected through holes in the aerofoil surface. These holes may be of complex geometry, devised after empirical studies of the optimum shape and the most cost effective manufacturing technology. The method used here is a further development of the heat transfer design code (HTDC), originally written by Rolls-Royce plc under subcontract to Rolls-Royce Inc for the United States Air Force. The physical principles of the modelling employed in the code are explained without extensive mathematical details. The paper describes the calibration of the code in conjunction with a series of experimental measurements on a scale model of a high-pressure nozzle guide vane at non-dimensionally correct engine conditions. The results are encouraging, although indicating that some further work is required in modelling highly accelerated pressure surface flow
Ghanbarzadeh, Mitra; Aminghafari, Mina
2015-05-01
This article studies the prediction of periodically correlated process using wavelet transform and multivariate methods with applications to climatological data. Periodically correlated processes can be reformulated as multivariate stationary processes. Considering this fact, two new prediction methods are proposed. In the first method, we use stepwise regression between the principal components of the multivariate stationary process and past wavelet coefficients of the process to get a prediction. In the second method, we propose its multivariate version without principal component analysis a priori. Also, we study a generalization of the prediction methods dealing with a deterministic trend using exponential smoothing. Finally, we illustrate the performance of the proposed methods on simulated and real climatological data (ozone amounts, flows of a river, solar radiation, and sea levels) compared with the multivariate autoregressive model. The proposed methods give good results as we expected.
ARSTEC, Nonlinear Optimization Program Using Random Search Method
International Nuclear Information System (INIS)
Rasmuson, D. M.; Marshall, N. H.
1979-01-01
1 - Description of problem or function: The ARSTEC program was written to solve nonlinear, mixed integer, optimization problems. An example of such a problem in the nuclear industry is the allocation of redundant parts in the design of a nuclear power plant to minimize plant unavailability. 2 - Method of solution: The technique used in ARSTEC is the adaptive random search method. The search is started from an arbitrary point in the search region and every time a point that improves the objective function is found, the search region is centered at that new point. 3 - Restrictions on the complexity of the problem: Presently, the maximum number of independent variables allowed is 10. This can be changed by increasing the dimension of the arrays
Development of ray tracing visualization program by Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro
1997-09-01
Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)
Bayesian methods for hackers probabilistic programming and Bayesian inference
Davidson-Pilon, Cameron
2016-01-01
Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...
Geeraerts, I; Sienaert, P
2013-01-01
When lithium is administered, the clinician needs to know when the lithium in the patient’s blood has reached a therapeutic level. At the initiation of treatment the level is usually achieved gradually through the application of the titration method. In order to increase the efficacy of this procedure several methods for dosing lithium and for predicting lithium levels have been developed. To conduct a systematic review of the publications relating to the various methods for dosing lithium or predicting lithium levels at the initiation of therapy. We searched Medline systematically for articles published in English, French or Dutch between 1966 and April 2012 which described or studied a method for dosing lithium or for predicting the lithium level reached following a specific dosage. We screened the reference lists of relevant articles in order to locate additional papers. We found 38 lithium prediction methods, in addition to the clinical titration method. These methods can be divided into two categories: the ‘a priori’ methods and the ‘test-dose’ methods, the latter requiring the administration of a test dose of lithium. The lithium prediction methods generally achieve a therapeutic blood level faster than the clinical titration method, but none of the methods achieves convincing results. On the basis of our review, we propose that the titration method should be used as the standard method in clinical practice.
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts
Energy Technology Data Exchange (ETDEWEB)
Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov
2009-08-15
NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.
Ensemble Methods in Data Mining Improving Accuracy Through Combining Predictions
Seni, Giovanni
2010-01-01
This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authors are industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although e
A Novel Method to Predict Circulation Control Noise
2016-03-17
and incompressibility of the flow are automatically satisfied (Sirovich, 1987). The difference be- tween these two methods stems from the...From top left to bottom right 1 kHz, 2 kHz, 4 kHz, 8 kHz, 12 kHz , and 16 kHz. blowing and lowest blowing (CJ.l = 0 and Cll = 0.004 , respectively...also shown that at low frequencies for the lower blowing conditions (Gil = 0, Gil = 0.004, and Cll = 0.017) the levels are quite similar. By using
Shelf life prediction of apple brownies using accelerated method
Pulungan, M. H.; Sukmana, A. D.; Dewi, I. A.
2018-03-01
The aim of this research was to determine shelf life of apple brownies. Shelf life was determined with Accelerated Shelf Life Testing method and Arrhenius equation. Experiment was conducted at 25, 35, and 45°C for 30 days. Every five days, the sample was analysed for free fatty acid (FFA), water activity (Aw), and organoleptic acceptance (flavour, aroma, and texture). The shelf life of the apple brownies based on FFA were 110, 54, and 28 days at temperature of 25, 35, and 45°C, respectively.
Short-term prediction method of wind speed series based on fractal interpolation
International Nuclear Information System (INIS)
Xiu, Chunbo; Wang, Tiantian; Tian, Meng; Li, Yanqing; Cheng, Yi
2014-01-01
Highlights: • An improved fractal interpolation prediction method is proposed. • The chaos optimization algorithm is used to obtain the iterated function system. • The fractal extrapolate interpolation prediction of wind speed series is performed. - Abstract: In order to improve the prediction performance of the wind speed series, the rescaled range analysis is used to analyze the fractal characteristics of the wind speed series. An improved fractal interpolation prediction method is proposed to predict the wind speed series whose Hurst exponents are close to 1. An optimization function which is composed of the interpolation error and the constraint items of the vertical scaling factors in the fractal interpolation iterated function system is designed. The chaos optimization algorithm is used to optimize the function to resolve the optimal vertical scaling factors. According to the self-similarity characteristic and the scale invariance, the fractal extrapolate interpolation prediction can be performed by extending the fractal characteristic from internal interval to external interval. Simulation results show that the fractal interpolation prediction method can get better prediction result than others for the wind speed series with the fractal characteristic, and the prediction performance of the proposed method can be improved further because the fractal characteristic of its iterated function system is similar to that of the predicted wind speed series
A Method for Driving Route Predictions Based on Hidden Markov Model
Directory of Open Access Journals (Sweden)
Ning Ye
2015-01-01
Full Text Available We present a driving route prediction method that is based on Hidden Markov Model (HMM. This method can accurately predict a vehicle’s entire route as early in a trip’s lifetime as possible without inputting origins and destinations beforehand. Firstly, we propose the route recommendation system architecture, where route predictions play important role in the system. Secondly, we define a road network model, normalize each of driving routes in the rectangular coordinate system, and build the HMM to make preparation for route predictions using a method of training set extension based on K-means++ and the add-one (Laplace smoothing technique. Thirdly, we present the route prediction algorithm. Finally, the experimental results of the effectiveness of the route predictions that is based on HMM are shown.
Machine Learning Methods for Prediction of CDK-Inhibitors
Ramana, Jayashree; Gupta, Dinesh
2010-01-01
Progression through the cell cycle involves the coordinated activities of a suite of cyclin/cyclin-dependent kinase (CDK) complexes. The activities of the complexes are regulated by CDK inhibitors (CDKIs). Apart from its role as cell cycle regulators, CDKIs are involved in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. As the complexes perform crucial and diverse functions, these are important drug targets for tumour and stem cell therapeutic interventions. However, CDKIs are represented by proteins with considerable sequence heterogeneity and may fail to be identified by simple similarity search methods. In this work we have evaluated and developed machine learning methods for identification of CDKIs. We used different compositional features and evolutionary information in the form of PSSMs, from CDKIs and non-CDKIs for generating SVM and ANN classifiers. In the first stage, both the ANN and SVM models were evaluated using Leave-One-Out Cross-Validation and in the second stage these were tested on independent data sets. The PSSM-based SVM model emerged as the best classifier in both the stages and is publicly available through a user-friendly web interface at http://bioinfo.icgeb.res.in/cdkipred. PMID:20967128
Prediction of skin sensitizers using alternative methods to animal experimentation.
Johansson, Henrik; Lindstedt, Malin
2014-07-01
Regulatory frameworks within the European Union demand that chemical substances are investigated for their ability to induce sensitization, an adverse health effect caused by the human immune system in response to chemical exposure. A recent ban on the use of animal tests within the cosmetics industry has led to an urgent need for alternative animal-free test methods that can be used for assessment of chemical sensitizers. To date, no such alternative assay has yet completed formal validation. However, a number of assays are in development and the understanding of the biological mechanisms of chemical sensitization has greatly increased during the last decade. In this MiniReview, we aim to summarize and give our view on the recent progress of method development for alternative assessment of chemical sensitizers. We propose that integrated testing strategies should comprise complementary assays, providing measurements of a wide range of mechanistic events, to perform well-educated risk assessments based on weight of evidence. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
A simple method for improving predictions of nuclear masses
International Nuclear Information System (INIS)
Yamada, Masami; Tsuchiya, Susumu; Tachibana, Takahiro
1991-01-01
The formula for atomic masses which exactly conforms to all nuclides does not exist in reality and cannot be anticipated for the time being hereafter. At present the masses of many nuclides are known experimentally with good accuracy, but the values of whichever mass formulas are more or less different from those experimental values except small number of accidental coincidence. Under such situation, for forecasting the mass of an unknown nuclide, how is it cleverly done ? Generally speaking, to take the value itself of a mass formula seems not the best means. It may be better to take the difference of the values of a mass formula and experiment for the nuclide close to that to be forecast in consideration and to correct the forecast value of the mass formula. In this report, the simple method for this correction is proposed. The formula which connects between two extreme cases, the difference between a true mass and the value of a mass formula is the sum of proton part and neutron part, and the difference distributes randomly around zero, was proposed. The procedure for its concrete application is explained. This method can be applied to other physical quantities than mass, for example the half life of beta decay. (K.I.)
The HACMS program: using formal methods to eliminate exploitable bugs.
Fisher, Kathleen; Launchbury, John; Richards, Raymond
2017-10-13
For decades, formal methods have offered the promise of verified software that does not have exploitable bugs. Until recently, however, it has not been possible to verify software of sufficient complexity to be useful. Recently, that situation has changed. SeL4 is an open-source operating system microkernel efficient enough to be used in a wide range of practical applications. Its designers proved it to be fully functionally correct, ensuring the absence of buffer overflows, null pointer exceptions, use-after-free errors, etc., and guaranteeing integrity and confidentiality. The CompCert Verifying C Compiler maps source C programs to provably equivalent assembly language, ensuring the absence of exploitable bugs in the compiler. A number of factors have enabled this revolution, including faster processors, increased automation, more extensive infrastructure, specialized logics and the decision to co-develop code and correctness proofs rather than verify existing artefacts. In this paper, we explore the promise and limitations of current formal-methods techniques. We discuss these issues in the context of DARPA's HACMS program, which had as its goal the creation of high-assurance software for vehicles, including quadcopters, helicopters and automobiles.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Authors.
The HACMS program: using formal methods to eliminate exploitable bugs
Launchbury, John; Richards, Raymond
2017-01-01
For decades, formal methods have offered the promise of verified software that does not have exploitable bugs. Until recently, however, it has not been possible to verify software of sufficient complexity to be useful. Recently, that situation has changed. SeL4 is an open-source operating system microkernel efficient enough to be used in a wide range of practical applications. Its designers proved it to be fully functionally correct, ensuring the absence of buffer overflows, null pointer exceptions, use-after-free errors, etc., and guaranteeing integrity and confidentiality. The CompCert Verifying C Compiler maps source C programs to provably equivalent assembly language, ensuring the absence of exploitable bugs in the compiler. A number of factors have enabled this revolution, including faster processors, increased automation, more extensive infrastructure, specialized logics and the decision to co-develop code and correctness proofs rather than verify existing artefacts. In this paper, we explore the promise and limitations of current formal-methods techniques. We discuss these issues in the context of DARPA’s HACMS program, which had as its goal the creation of high-assurance software for vehicles, including quadcopters, helicopters and automobiles. This article is part of the themed issue ‘Verified trustworthy software systems’. PMID:28871050
Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs.
Lado, Bettina; Battenfield, Sarah; Guzmán, Carlos; Quincke, Martín; Singh, Ravi P; Dreisigacker, Susanne; Peña, R Javier; Fritz, Allan; Silva, Paula; Poland, Jesse; Gutiérrez, Lucía
2017-07-01
The single most important decision in plant breeding programs is the selection of appropriate crosses. The ideal cross would provide superior predicted progeny performance and enough diversity to maintain genetic gain. The aim of this study was to compare the best crosses predicted using combinations of mid-parent value and variance prediction accounting for linkage disequilibrium (V) or assuming linkage equilibrium (V). After predicting the mean and the variance of each cross, we selected crosses based on mid-parent value, the top 10% of the progeny, and weighted mean and variance within progenies for grain yield, grain protein content, mixing time, and loaf volume in two applied wheat ( L.) breeding programs: Instituto Nacional de Investigación Agropecuaria (INIA) Uruguay and CIMMYT Mexico. Although the variance of the progeny is important to increase the chances of finding superior individuals from transgressive segregation, we observed that the mid-parent values of the crosses drove the genetic gain but the variance of the progeny had a small impact on genetic gain for grain yield. However, the relative importance of the variance of the progeny was larger for quality traits. Overall, the genomic resources and the statistical models are now available to plant breeders to predict both the performance of breeding lines per se as well as the value of progeny from any potential crosses. Copyright © 2017 Crop Science Society of America.
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Frison, Gianluca; Skajaa, Anders
2015-01-01
We develop an efficient homogeneous and self-dual interior-point method (IPM) for the linear programs arising in economic model predictive control of constrained linear systems with linear objective functions. The algorithm is based on a Riccati iteration procedure, which is adapted to the linear...... system of equations solved in homogeneous and self-dual IPMs. Fast convergence is further achieved using a warm-start strategy. We implement the algorithm in MATLAB and C. Its performance is tested using a conceptual power management case study. Closed loop simulations show that 1) the proposed algorithm...
Analytical method for predicting plastic flow in notched fiber composite materials
International Nuclear Information System (INIS)
Flynn, P.L.; Ebert, L.J.
1977-01-01
An analytical system was developed for prediction of the onset and progress of plastic flow of oriented fiber composite materials in which both externally applied complex stress states and stress raisers were present. The predictive system was a unique combination of two numerical systems, the ''SAAS II'' finite element analysis system and a micromechanics finite element program. The SAAS II system was used to generate the three-dimensional stress distributions, which were used as the input into the finite element micromechanics program. Appropriate yielding criteria were then applied to this latter program. The accuracy of the analytical system was demonstrated by the agreement between the analytically predicted and the experimentally measured flow values of externally notched tungsten wire reinforced copper oriented fiber composites, in which the fiber fraction was 50 vol pct
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2010-01-01
FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....
A prediction method of natural gas hydrate formation in deepwater gas well and its application
Directory of Open Access Journals (Sweden)
Yanli Guo
2016-09-01
Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.
Directory of Open Access Journals (Sweden)
Wisoedhanie Widi Anugrahanti
2017-06-01
Full Text Available Classification and Regression Tree (CART was a method of Machine Learning where data exploration was done by decision tree technique. CART was a classification technique with binary recursive reconciliation algorithms where the sorting was performed on a group of data collected in a space called a node / node into two child nodes (Lewis, 2000. The aim of this study was to predict family participation in Elderly Family Development program based on family behavior in providing physical, mental, social care for the elderly. Family involvement accuracy using Bagging CART method was calculated based on 1-APER value, sensitivity, specificity, and G-Means. Based on CART method, classification accuracy was obtained 97,41% with Apparent Error Rate value 2,59%. The most important determinant of family behavior as a sorter was society participation (100,00000, medical examination (98,95988, providing nutritious food (68.60476, establishing communication (67,19877 and worship (57,36587. To improved the stability and accuracy of CART prediction, used CART Bootstrap Aggregating (Bagging with 100% accuracy result. Bagging CART classifies a total of 590 families (84.77% were appropriately classified into implement elderly Family Development program class.
A noninvasive method for the prediction of fetal hemolytic disease
Directory of Open Access Journals (Sweden)
E. N. Kravchenko
2017-01-01
Full Text Available Objective: to improve the diagnosis of fetal hemolytic disease.Subjects and methods. A study group consisted of 42 pregnant women whose newborn infants had varying degrees of hemolytic disease. The women were divided into 3 subgroups according to the severity of neonatal hemolytic disease: 1 pregnant women whose neonates were born with severe hemolytic disease (n = 14; 2 those who gave birth to babies with moderate hemolytic disease (n = 11; 3 those who delivered infants with mild hemolytic disease (n = 17. A comparison group included 42 pregnant women whose babies were born without signs of hemolytic disease. Curvesfor blood flow velocity in the middle cerebral artery were analyzed in a fetus of 25 to 39 weeks’ gestation.Results. The peak systolic blood flow velocity was observed in Subgroup 1; however, the indicator did not exceed 1.5 MoM even in severe fetal anemic syndrome. The fetal middle artery blood flow velocity rating scale was divided into 2 zones: 1 the boundary values of peak systolic blood flow velocity from the median to the obtained midscore; 2 the boundary values of peak systolic blood flow velocity of the obtained values of as high as 1.5 MoM.Conclusion. The value of peak systolic blood flow velocity being in Zone 2, or its dynamic changes by transiting to this zone can serve as a prognostic factor in the development of severe fetal hemolytic disease.
Building Customer Churn Prediction Models in Fitness Industry with Machine Learning Methods
Shan, Min
2017-01-01
With the rapid growth of digital systems, churn management has become a major focus within customer relationship management in many industries. Ample research has been conducted for churn prediction in different industries with various machine learning methods. This thesis aims to combine feature selection and supervised machine learning methods for defining models of churn prediction and apply them on fitness industry. Forward selection is chosen as feature selection methods. Support Vector ...
A method of quantitative prediction for sandstone type uranium deposit in Russia and its application
International Nuclear Information System (INIS)
Chang Shushuai; Jiang Minzhong; Li Xiaolu
2008-01-01
The paper presents the foundational principle of quantitative predication for sandstone type uranium deposits in Russia. Some key methods such as physical-mathematical model construction and deposits prediction are described. The method has been applied to deposits prediction in Dahongshan region of Chaoshui basin. It is concluded that the technique can fortify the method of quantitative predication for sandstone type uranium deposits, and it could be used as a new technique in China. (authors)
Validity of a Manual Soft Tissue Profile Prediction Method Following Mandibular Setback Osteotomy
Kolokitha, Olga-Elpis
2007-01-01
Objectives The aim of this study was to determine the validity of a manual cephalometric method used for predicting the post-operative soft tissue profiles of patients who underwent mandibular setback surgery and compare it to a computerized cephalometric prediction method (Dentofacial Planner). Lateral cephalograms of 18 adults with mandibular prognathism taken at the end of pre-surgical orthodontics and approximately one year after surgery were used. Methods To test the validity of the manu...
Energy Technology Data Exchange (ETDEWEB)
Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van' t [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)
2012-03-15
Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.
International Nuclear Information System (INIS)
Xu Chengjian; Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van’t
2012-01-01
Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.
Real-time prediction of respiratory motion based on local regression methods
International Nuclear Information System (INIS)
Ruan, D; Fessler, J A; Balter, J M
2007-01-01
Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths
Improvement of gas entrainment prediction method. Introduction of surface tension effect
International Nuclear Information System (INIS)
Ito, Kei; Sakai, Takaaki; Ohshima, Hiroyuki; Uchibori, Akihiro; Eguchi, Yuzuru; Monji, Hideaki; Xu, Yongze
2010-01-01
A gas entrainment (GE) prediction method has been developed to establish design criteria for the large-scale sodium-cooled fast reactor (JSFR) systems. The prototype of the GE prediction method was already confirmed to give reasonable gas core lengths by simple calculation procedures. However, for simplification, the surface tension effects were neglected. In this paper, the evaluation accuracy of gas core lengths is improved by introducing the surface tension effects into the prototype GE prediction method. First, the mechanical balance between gravitational, centrifugal, and surface tension forces is considered. Then, the shape of a gas core tip is approximated by a quadratic function. Finally, using the approximated gas core shape, the authors determine the gas core length satisfying the mechanical balance. This improved GE prediction method is validated by analyzing the gas core lengths observed in simple experiments. Results show that the analytical gas core lengths calculated by the improved GE prediction method become shorter in comparison to the prototype GE prediction method, and are in good agreement with the experimental data. In addition, the experimental data under different temperature and surfactant concentration conditions are reproduced by the improved GE prediction method. (author)
Predicting compliance with an information-based residential outdoor water conservation program
Landon, Adam C.; Kyle, Gerard T.; Kaiser, Ronald A.
2016-05-01
Residential water conservation initiatives often involve some form of education or persuasion intended to change the attitudes and behaviors of residential consumers. However, the ability of these instruments to change attitudes toward conservation and their efficacy in affecting water use remains poorly understood. In this investigation the authors examine consumer attitudes toward complying with a persuasive water conservation program, the extent to which those attitudes predict compliance, and the influence of environmental contextual factors on outdoor water use. Results indicate that the persuasive program was successful in developing positive attitudes toward compliance, and that those attitudes predict water use. However, attitudinal variables explain a relatively small proportion of the variance in objectively measured water use behavior. Recommendations for policy are made stressing the importance of understanding both the effects of attitudes and environmental contextual factors in behavior change initiatives in the municipal water sector.
Machine learning methods to predict child posttraumatic stress: a proof of concept study.
Saxe, Glenn N; Ma, Sisi; Ren, Jiwen; Aliferis, Constantin
2017-07-10
The care of traumatized children would benefit significantly from accurate predictive models for Posttraumatic Stress Disorder (PTSD), using information available around the time of trauma. Machine Learning (ML) computational methods have yielded strong results in recent applications across many diseases and data types, yet they have not been previously applied to childhood PTSD. Since these methods have not been applied to this complex and debilitating disorder, there is a great deal that remains to be learned about their application. The first step is to prove the concept: Can ML methods - as applied in other fields - produce predictive classification models for childhood PTSD? Additionally, we seek to determine if specific variables can be identified - from the aforementioned predictive classification models - with putative causal relations to PTSD. ML predictive classification methods - with causal discovery feature selection - were applied to a data set of 163 children hospitalized with an injury and PTSD was determined three months after hospital discharge. At the time of hospitalization, 105 risk factor variables were collected spanning a range of biopsychosocial domains. Seven percent of subjects had a high level of PTSD symptoms. A predictive classification model was discovered with significant predictive accuracy. A predictive model constructed based on subsets of potentially causally relevant features achieves similar predictivity compared to the best predictive model constructed with all variables. Causal Discovery feature selection methods identified 58 variables of which 10 were identified as most stable. In this first proof-of-concept application of ML methods to predict childhood Posttraumatic Stress we were able to determine both predictive classification models for childhood PTSD and identify several causal variables. This set of techniques has great potential for enhancing the methodological toolkit in the field and future studies should seek to
Lampa, Samuel; Alvarsson, Jonathan; Spjuth, Ola
2016-01-01
Predictive modelling in drug discovery is challenging to automate as it often contains multiple analysis steps and might involve cross-validation and parameter tuning that create complex dependencies between tasks. With large-scale data or when using computationally demanding modelling methods, e-infrastructures such as high-performance or cloud computing are required, adding to the existing challenges of fault-tolerant automation. Workflow management systems can aid in many of these challenges, but the currently available systems are lacking in the functionality needed to enable agile and flexible predictive modelling. We here present an approach inspired by elements of the flow-based programming paradigm, implemented as an extension of the Luigi system which we name SciLuigi. We also discuss the experiences from using the approach when modelling a large set of biochemical interactions using a shared computer cluster.Graphical abstract.
Helmhout, P.; Staal, B.; Dijk, J. van; Harts, C.; Bertina, F.; Bie, R. de
2010-01-01
AIM: The aim of this exploratory study was to investigate the predictive value of a fatigue test of the lumbar extensor muscles for training progression in a group of 28 healthy but predominantly sedentary male students, in an 8-week resistance exercise program. METHODS: A three-phased fatigue test
Validity of a manual soft tissue profile prediction method following mandibular setback osteotomy.
Kolokitha, Olga-Elpis
2007-10-01
The aim of this study was to determine the validity of a manual cephalometric method used for predicting the post-operative soft tissue profiles of patients who underwent mandibular setback surgery and compare it to a computerized cephalometric prediction method (Dentofacial Planner). Lateral cephalograms of 18 adults with mandibular prognathism taken at the end of pre-surgical orthodontics and approximately one year after surgery were used. To test the validity of the manual method the prediction tracings were compared to the actual post-operative tracings. The Dentofacial Planner software was used to develop the computerized post-surgical prediction tracings. Both manual and computerized prediction printouts were analyzed by using the cephalometric system PORDIOS. Statistical analysis was performed by means of t-test. Comparison between manual prediction tracings and the actual post-operative profile showed that the manual method results in more convex soft tissue profiles; the upper lip was found in a more prominent position, upper lip thickness was increased and, the mandible and lower lip were found in a less posterior position than that of the actual profiles. Comparison between computerized and manual prediction methods showed that in the manual method upper lip thickness was increased, the upper lip was found in a more anterior position and the lower anterior facial height was increased as compared to the computerized prediction method. Cephalometric simulation of post-operative soft tissue profile following orthodontic-surgical management of mandibular prognathism imposes certain limitations related to the methods implied. However, both manual and computerized prediction methods remain a useful tool for patient communication.
Bayesian Methods for Predicting the Shape of Chinese Yam in Terms of Key Diameters
Directory of Open Access Journals (Sweden)
Mitsunori Kayano
2017-01-01
Full Text Available This paper proposes Bayesian methods for the shape estimation of Chinese yam (Dioscorea opposita using a few key diameters of yam. Shape prediction of yam is applicable to determining optimal cutoff positions of a yam for producing seed yams. Our Bayesian method, which is a combination of Bayesian estimation model and predictive model, enables automatic, rapid, and low-cost processing of yam. After the construction of the proposed models using a sample data set in Japan, the models provide whole shape prediction of yam based on only a few key diameters. The Bayesian method performed well on the shape prediction in terms of minimizing the mean squared error between measured shape and the prediction. In particular, a multiple regression method with key diameters at two fixed positions attained the highest performance for shape prediction. We have developed automatic, rapid, and low-cost yam-processing machines based on the Bayesian estimation model and predictive model. Development of such shape prediction approaches, including our Bayesian method, can be a valuable aid in reducing the cost and time in food processing.
Sun, Jimeng; McNaughton, Candace D; Zhang, Ping; Perer, Adam; Gkoulalas-Divanis, Aris; Denny, Joshua C; Kirby, Jacqueline; Lasko, Thomas; Saip, Alexander; Malin, Bradley A
2014-01-01
Common chronic diseases such as hypertension are costly and difficult to manage. Our ultimate goal is to use data from electronic health records to predict the risk and timing of deterioration in hypertension control. Towards this goal, this work predicts the transition points at which hypertension is brought into, as well as pushed out of, control. In a cohort of 1294 patients with hypertension enrolled in a chronic disease management program at the Vanderbilt University Medical Center, patients are modeled as an array of features derived from the clinical domain over time, which are distilled into a core set using an information gain criteria regarding their predictive performance. A model for transition point prediction was then computed using a random forest classifier. The most predictive features for transitions in hypertension control status included hypertension assessment patterns, comorbid diagnoses, procedures and medication history. The final random forest model achieved a c-statistic of 0.836 (95% CI 0.830 to 0.842) and an accuracy of 0.773 (95% CI 0.766 to 0.780). This study achieved accurate prediction of transition points of hypertension control status, an important first step in the long-term goal of developing personalized hypertension management plans.
Using an admissions exam to predict student success in an ADN program.
Gallagher, P A; Bomba, C; Crane, L R
2001-01-01
Nursing faculty strive to admit students who are likely to successfully complete the nursing curriculum and pass NCLEX-RN. The high cost of academic preparation and the nursing shortage make this selection process even more critical. The authors discuss how one community college nursing program examined academic achievement measures to determine how well they predicted student success. Results provided faculty with useful data to improve the success and retention of nursing.
Directory of Open Access Journals (Sweden)
Fatemeh Rivakani
2015-12-01
Full Text Available Introduction Amblyopia is a leading cause of visual impairment in both childhood and adult populations. Our aim in this study was to assess the epidemiological characteristics of the amblyopia screening program in Iran. Materials and Methods A cross-sectional study was done on a randomly selected sample of 4,636 Iranian children who were referred to screening program in 2013 were participated in validity study, too. From each provinces the major city were selected. Screening and diagnostic tests were done by instructors in first stage and optometrists in second stage, respectively. Finally data were analyzed by Stata version 13. Results The sensitivity was ranged from 74% to 100% among the various provinces such that Fars and Ardabil province had maximum and minimum values, respectively. The pattern of specificity was differ and ranged 44% to 84% among the provinces; Hormozgan and Fars had maximum and minimum values, respectively. The positive predictive value was also ranged from 35% to %81 which was assigned to Khuzestan and Ardabil provinces, respectively. The range of Negative Predictive value was 61% to 100% which was belonged to Ardabil and Fars provinces. Conclusion The total sensitivity (89% and negative predictive values (93% of screening test among children aged 3-6 years is acceptable, but only 51% of children refereed to second stage are true positive and this imposes considerable cost to health system.
A Novel Grey Wave Method for Predicting Total Chinese Trade Volume
Directory of Open Access Journals (Sweden)
Kedong Yin
2017-12-01
Full Text Available The total trade volume of a country is an important way of appraising its international trade situation. A prediction based on trade volume will help enterprises arrange production efficiently and promote the sustainability of the international trade. Because the total Chinese trade volume fluctuates over time, this paper proposes a Grey wave forecasting model with a Hodrick–Prescott filter (HP filter to forecast it. This novel model first parses time series into long-term trend and short-term cycle. Second, the model uses a general GM (1,1 to predict the trend term and the Grey wave forecasting model to predict the cycle term. Empirical analysis shows that the improved Grey wave prediction method provides a much more accurate forecast than the basic Grey wave prediction method, achieving better prediction results than autoregressive moving average model (ARMA.
Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A
2012-03-15
To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright Â© 2012 Elsevier Inc. All rights reserved.
1981-05-14
8217 AO-Ail 777 GRUMMAN AEROSPACE CORP BETHPAGE NY F/G 20/4 AN INFLUENCE FUNCTION METHOD FOR PREDICTING STORE AERODYNAMIC C--ETCCU) MAY 8 1 R MEYER, A...CENKO, S YARDS UNCLASSIFIED N ’.**~~N**n I EHEEKI j~j .25 Q~4 111110 111_L 5. AN INFLUENCE FUNCTION METHOD FOR PREDICTING STORE AERODYNAMIC...extended to their logical conclusion one is led quite naturally to consideration of an " Influence Function Method" for I predicting store aerodynamic
Energy Technology Data Exchange (ETDEWEB)
Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.
2012-04-02
A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.
International Nuclear Information System (INIS)
Cho, M. S.; Song, Y. C.; Bang, K. S.; Lee, J. S.; Kim, D. K.
1999-01-01
Service life prediction of nuclear power plants depends on the application of history of structures, field inspection and test, the development of laboratory acceleration tests, their analysis method and predictive model. In this study, laboratory acceleration test method for service life prediction of concrete structures and application of experimental test results are introduced. This study is concerned with environmental condition of concrete structures and is to develop the acceleration test method for durability factors of concrete structures e.g. carbonation, sulfate attack, freeze-thaw cycles and shrinkage-expansion etc
A Method for Developing Standard Patient Education Program.
Lura, Carolina Bryne; Hauch, Sophie Misser Pallesgaard; Gøeg, Kirstine Rosenbeck; Pape-Haugaard, Louise
2018-01-01
In Denmark, patients being treated on Haematology Outpatients Departments get instructed to self-manage their blood sample collection from Central Venous Catheter (CVC). However, this is a complex and risky procedure, which can jeopardize patient safety. The aim of the study was to suggest a method for developing standard digital patient education programs for patients in self-administration of blood samples drawn from CVC. The Design Science Research Paradigm was used to develop a digital patient education program, called PAVIOSY, to increase patient safety during execution of the blood sample collection procedure by using videos for teaching as well as procedural support. A step-by-step guide was developed and used as basis for making the videos. Quality assurance through evaluation with a nurse was conducted on both the step-by-step guide and the videos. The quality assurance evaluation of the videos showed; 1) Errors due to the order of the procedure can be determined by reviewing the videos despite that the guide was followed. 2) Videos can be used to identify errors - important for patient safety - in the procedure, which are not identifiable in a written script. To ensure correct clinical content of the educational patient system, health professionals must be engaged early in the development of content and design phase.
A New Method for Solving Multiobjective Bilevel Programs
Directory of Open Access Journals (Sweden)
Ying Ji
2017-01-01
Full Text Available We study a class of multiobjective bilevel programs with the weights of objectives being uncertain and assumed to belong to convex and compact set. To the best of our knowledge, there is no study about this class of problems. We use a worst-case weighted approach to solve this class of problems. Our “worst-case weighted multiobjective bilevel programs” model supposes that each player (leader or follower has a set of weights to their objectives and wishes to minimize their maximum weighted sum objective where the maximization is with respect to the set of weights. This new model gives rise to a new Pareto optimum concept, which we call “robust-weighted Pareto optimum”; for the worst-case weighted multiobjective optimization with the weight set of each player given as a polytope, we show that a robust-weighted Pareto optimum can be obtained by solving mathematical programing with equilibrium constraints (MPEC. For an application, we illustrate the usefulness of the worst-case weighted multiobjective optimization to a supply chain risk management under demand uncertainty. By the comparison with the existing weighted approach, we show that our method is more robust and can be more efficiently applied to real-world problems.
Energy Technology Data Exchange (ETDEWEB)
1990-05-15
The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.
The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean
International Nuclear Information System (INIS)
1990-01-01
The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation
International Nuclear Information System (INIS)
Wang, Hang; Peng, Min-jun; Wu, Peng; Cheng, Shou-yu
2016-01-01
Highlights: • Different methods for online monitoring and diagnosis are summarized. • Numerical simulation modeling of condensate and feed water system in nuclear power plant are done by FORTRAN programming. • Integrated online monitoring and prediction methods have been developed and tested. • Online monitoring module, fault diagnosis module and trends prediction module can be verified with each other. - Abstract: Faults or accidents may occur in a nuclear power plant (NPP), but it is hard for operators to recognize the situation and take effective measures quickly. So, online monitoring, diagnosis and prediction (OMDP) is used to provide enough information to operators and improve the safety of NPPs. In this paper, distributed conservation equation (DCE) and artificial immunity system (AIS) are proposed for online monitoring and diagnosis. On this basis, quantitative simulation models and interactive database are combined to predict the trends and severity of faults. The effectiveness of OMDP in improving the monitoring and prediction of condensate and feed water system (CFWS) was verified through simulation tests.
Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.
Notaro, Marco; Schubach, Max; Robinson, Peter N; Valentini, Giorgio
2017-10-12
The prediction of human gene-abnormal phenotype associations is a fundamental step toward the discovery of novel genes associated with human disorders, especially when no genes are known to be associated with a specific disease. In this context the Human Phenotype Ontology (HPO) provides a standard categorization of the abnormalities associated with human diseases. While the problem of the prediction of gene-disease associations has been widely investigated, the related problem of gene-phenotypic feature (i.e., HPO term) associations has been largely overlooked, even if for most human genes no HPO term associations are known and despite the increasing application of the HPO to relevant medical problems. Moreover most of the methods proposed in literature are not able to capture the hierarchical relationships between HPO terms, thus resulting in inconsistent and relatively inaccurate predictions. We present two hierarchical ensemble methods that we formally prove to provide biologically consistent predictions according to the hierarchical structure of the HPO. The modular structure of the proposed methods, that consists in a "flat" learning first step and a hierarchical combination of the predictions in the second step, allows the predictions of virtually any flat learning method to be enhanced. The experimental results show that hierarchical ensemble methods are able to predict novel associations between genes and abnormal phenotypes with results that are competitive with state-of-the-art algorithms and with a significant reduction of the computational complexity. Hierarchical ensembles are efficient computational methods that guarantee biologically meaningful predictions that obey the true path rule, and can be used as a tool to improve and make consistent the HPO terms predictions starting from virtually any flat learning method. The implementation of the proposed methods is available as an R package from the CRAN repository.
Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database.
Hoffmann, Sebastian; Kleinstreuer, Nicole; Alépée, Nathalie; Allen, David; Api, Anne Marie; Ashikaga, Takao; Clouet, Elodie; Cluzel, Magalie; Desprez, Bertrand; Gellatly, Nichola; Goebel, Carsten; Kern, Petra S; Klaric, Martina; Kühnl, Jochen; Lalko, Jon F; Martinozzi-Teissier, Silvia; Mewes, Karsten; Miyazawa, Masaaki; Parakhia, Rahul; van Vliet, Erwin; Zang, Qingda; Petersohn, Dirk
2018-05-01
Cosmetics Europe, the European Trade Association for the cosmetics and personal care industry, is conducting a multi-phase program to develop regulatory accepted, animal-free testing strategies enabling the cosmetics industry to conduct safety assessments. Based on a systematic evaluation of test methods for skin sensitization, five non-animal test methods (DPRA (Direct Peptide Reactivity Assay), KeratinoSens TM , h-CLAT (human cell line activation test), U-SENS TM , SENS-IS) were selected for inclusion in a comprehensive database of 128 substances. Existing data were compiled and completed with newly generated data, the latter amounting to one-third of all data. The database was complemented with human and local lymph node assay (LLNA) reference data, physicochemical properties and use categories, and thoroughly curated. Focused on the availability of human data, the substance selection resulted nevertheless resulted in a high diversity of chemistries in terms of physico-chemical property ranges and use categories. Predictivities of skin sensitization potential and potency, where applicable, were calculated for the LLNA as compared to human data and for the individual test methods compared to both human and LLNA reference data. In addition, various aspects of applicability of the test methods were analyzed. Due to its high level of curation, comprehensiveness, and completeness, we propose our database as a point of reference for the evaluation and development of testing strategies, as done for example in the associated work of Kleinstreuer et al. We encourage the community to use it to meet the challenge of conducting skin sensitization safety assessment without generating new animal data.
International Nuclear Information System (INIS)
Ernst, Floris; Schweikard, Achim
2008-01-01
Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)
Predictive probability methods for interim monitoring in clinical trials with longitudinal outcomes.
Zhou, Ming; Tang, Qi; Lang, Lixin; Xing, Jun; Tatsuoka, Kay
2018-04-17
In clinical research and development, interim monitoring is critical for better decision-making and minimizing the risk of exposing patients to possible ineffective therapies. For interim futility or efficacy monitoring, predictive probability methods are widely adopted in practice. Those methods have been well studied for univariate variables. However, for longitudinal studies, predictive probability methods using univariate information from only completers may not be most efficient, and data from on-going subjects can be utilized to improve efficiency. On the other hand, leveraging information from on-going subjects could allow an interim analysis to be potentially conducted once a sufficient number of subjects reach an earlier time point. For longitudinal outcomes, we derive closed-form formulas for predictive probabilities, including Bayesian predictive probability, predictive power, and conditional power and also give closed-form solutions for predictive probability of success in a future trial and the predictive probability of success of the best dose. When predictive probabilities are used for interim monitoring, we study their distributions and discuss their analytical cutoff values or stopping boundaries that have desired operating characteristics. We show that predictive probabilities utilizing all longitudinal information are more efficient for interim monitoring than that using information from completers only. To illustrate their practical application for longitudinal data, we analyze 2 real data examples from clinical trials. Copyright © 2018 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Ernst, Floris; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)
2008-06-15
Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)
Analysis of deep learning methods for blind protein contact prediction in CASP12.
Wang, Sheng; Sun, Siqi; Xu, Jinbo
2018-03-01
Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.
NetMHCpan, a method for MHC class I binding prediction beyond humans
DEFF Research Database (Denmark)
Hoof, Ilka; Peters, B; Sidney, J
2009-01-01
molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide...
Quality of life predicts outcome in a heart failure disease management program.
LENUS (Irish Health Repository)
O'Loughlin, Christina
2012-02-01
BACKGROUND: Chronic heart failure (HF) is associated with a poor Health Related Quality of Life (HRQoL). HRQoL has been shown to be a predictor of HF outcomes however, variability in the study designs make it difficult to apply these findings to a clinical setting. The aim of this study was to establish if HRQoL is a predictor of long-term mortality and morbidity in HF patients followed-up in a disease management program (DMP) and if a HRQoL instrument could be applied to aid in identifying high-risk patients within a clinical context. METHODS: This is a retrospective analysis of HF patients attending a DMP with 18+\\/-9 months follow-up. Clinical and biochemical parameters were recorded on discharge from index HF admission and HRQoL measures were recorded at 2 weeks post index admission. RESULTS: 225 patients were enrolled into the study (mean age=69+\\/-12 years, male=61%, and 78%=systolic HF). In multivariable analysis, all dimensions of HRQoL (measured by the Minnesota Living with HF Questionnaire) were independent predictors of both mortality and readmissions particularly in patients <80 years. A significant interaction between HRQoL and age (Total((HRQoL))age: p<0.001) indicated that the association of HRQoL with outcomes diminished as age increased. CONCLUSIONS: These data demonstrate that HRQoL is a predictor of outcome in HF patients managed in a DMP. Younger patients (<65 years) with a Total HRQoL score of > or =50 are at high risk of an adverse outcome. In older patients > or =80 years HRQoL is not useful in predicting outcome.
Olayan, Rawan S.
2017-12-01
Computational drug repurposing aims at finding new medical uses for existing drugs. The identification of novel drug-target interactions (DTIs) can be a useful part of such a task. Computational determination of DTIs is a convenient strategy for systematic screening of a large number of drugs in the attempt to identify new DTIs at low cost and with reasonable accuracy. This necessitates development of accurate computational methods that can help focus on the follow-up experimental validation on a smaller number of highly likely targets for a drug. Although many methods have been proposed for computational DTI prediction, they suffer the high false positive prediction rate or they do not predict the effect that drugs exert on targets in DTIs. In this report, first, we present a comprehensive review of the recent progress in the field of DTI prediction from data-centric and algorithm-centric perspectives. The aim is to provide a comprehensive review of computational methods for identifying DTIs, which could help in constructing more reliable methods. Then, we present DDR, an efficient method to predict the existence of DTIs. DDR achieves significantly more accurate results compared to the other state-of-theart methods. As supported by independent evidences, we verified as correct 22 out of the top 25 DDR DTIs predictions. This validation proves the practical utility of DDR, suggesting that DDR can be used as an efficient method to identify 5 correct DTIs. Finally, we present DDR-FE method that predicts the effect types of a drug on its target. On different representative datasets, under various test setups, and using different performance measures, we show that DDR-FE achieves extremely good performance. Using blind test data, we verified as correct 2,300 out of 3,076 DTIs effects predicted by DDR-FE. This suggests that DDR-FE can be used as an efficient method to identify correct effects of a drug on its target.
Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume I
International Nuclear Information System (INIS)
Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.
1987-07-01
A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for the tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperatures and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtl number for saturated liquid, saturated vapour, subcooled liquid for superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its
International Nuclear Information System (INIS)
Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.
1987-07-01
A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperature and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters are required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtle number for saturated liquid, saturated vapour, subcooled liquid of superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its structure
Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan
2018-02-01
Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.
Obrzut, Bogdan; Kusy, Maciej; Semczuk, Andrzej; Obrzut, Marzanna; Kluska, Jacek
2017-12-12
Computational intelligence methods, including non-linear classification algorithms, can be used in medical research and practice as a decision making tool. This study aimed to evaluate the usefulness of artificial intelligence models for 5-year overall survival prediction in patients with cervical cancer treated by radical hysterectomy. The data set was collected from 102 patients with cervical cancer FIGO stage IA2-IIB, that underwent primary surgical treatment. Twenty-three demographic, tumor-related parameters and selected perioperative data of each patient were collected. The simulations involved six computational intelligence methods: the probabilistic neural network (PNN), multilayer perceptron network, gene expression programming classifier, support vector machines algorithm, radial basis function neural network and k-Means algorithm. The prediction ability of the models was determined based on the accuracy, sensitivity, specificity, as well as the area under the receiver operating characteristic curve. The results of the computational intelligence methods were compared with the results of linear regression analysis as a reference model. The best results were obtained by the PNN model. This neural network provided very high prediction ability with an accuracy of 0.892 and sensitivity of 0.975. The area under the receiver operating characteristics curve of PNN was also high, 0.818. The outcomes obtained by other classifiers were markedly worse. The PNN model is an effective tool for predicting 5-year overall survival in cervical cancer patients treated with radical hysterectomy.
A method for uncertainty quantification in the life prediction of gas turbine components
Energy Technology Data Exchange (ETDEWEB)
Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)
1998-12-31
A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.
Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components
National Research Council Canada - National Science Library
Stubbs, Jack
2000-01-01
Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...
Prediction methods and databases within chemoinformatics: emphasis on drugs and drug candidates
DEFF Research Database (Denmark)
Jonsdottir, Svava Osk; Jorgensen, FS; Brunak, Søren
2005-01-01
about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability......MOTIVATION: To gather information about available databases and chemoinformatics methods for prediction of properties relevant to the drug discovery and optimization process. RESULTS: We present an overview of the most important databases with 2-dimensional and 3-dimensional structural information...... of chemical compounds as potential drugs, as well as for predicting their physico-chemical and ADMET properties have been proposed in recent years. These methods are discussed, and some possible future directions in this rapidly developing field are described....
Semi-definite Programming: methods and algorithms for energy management
International Nuclear Information System (INIS)
Gorge, Agnes
2013-01-01
The present thesis aims at exploring the potentialities of a powerful optimization technique, namely Semi-definite Programming, for addressing some difficult problems of energy management. We pursue two main objectives. The first one consists of using SDP to provide tight relaxations of combinatorial and quadratic problems. A first relaxation, called 'standard' can be derived in a generic way but it is generally desirable to reinforce them, by means of tailor-made tools or in a systematic fashion. These two approaches are implemented on different models of the Nuclear Outages Scheduling Problem, a famous combinatorial problem. We conclude this topic by experimenting the Lasserre's hierarchy on this problem, leading to a sequence of semi-definite relaxations whose optimal values tends to the optimal value of the initial problem. The second objective deals with the use of SDP for the treatment of uncertainty. We investigate an original approach called 'distributionally robust optimization', that can be seen as a compromise between stochastic and robust optimization and admits approximations under the form of a SDP. We compare the benefits of this method w.r.t classical approaches on a demand/supply equilibrium problem. Finally, we propose a scheme for deriving SDP relaxations of MISOCP and we report promising computational results indicating that the semi-definite relaxation improves significantly the continuous relaxation, while requiring a reasonable computational effort. SDP therefore proves to be a promising optimization method that offers great opportunities for innovation in energy management. (author)
Linear genetic programming application for successive-station monthly streamflow prediction
Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit
2014-09-01
In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.
Kuniya, Toshikazu; Sano, Hideki
2016-05-10
In mathematical epidemiology, age-structured epidemic models have usually been formulated as the boundary-value problems of the partial differential equations. On the other hand, in engineering, the backstepping method has recently been developed and widely studied by many authors. Using the backstepping method, we obtained a boundary feedback control which plays the role of the threshold criteria for the prediction of increase or decrease of newly infected population. Under an assumption that the period of infectiousness is same for all infected individuals (that is, the recovery rate is given by the Dirac delta function multiplied by a sufficiently large positive constant), the prediction method is simplified to the comparison of the numbers of reported cases at the current and previous time steps. Our prediction method was applied to the reported cases per sentinel of influenza in Japan from 2006 to 2015 and its accuracy was 0.81 (404 correct predictions to the total 500 predictions). It was higher than that of the ARIMA models with different orders of the autoregressive part, differencing and moving-average process. In addition, a proposed method for the estimation of the number of reported cases, which is consistent with our prediction method, was better than that of the best-fitted ARIMA model ARIMA(1,1,0) in the sense of mean square error. Our prediction method based on the backstepping method can be simplified to the comparison of the numbers of reported cases of the current and previous time steps. In spite of its simplicity, it can provide a good prediction for the spread of influenza in Japan.
Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method
DEFF Research Database (Denmark)
Børsting, H.; Knudsen, Morten; Rasmussen, Henrik
1993-01-01
Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....
NetMHCcons: a consensus method for the major histocompatibility complex class I predictions
DEFF Research Database (Denmark)
Karosiene, Edita; Lundegaard, Claus; Lund, Ole
2012-01-01
A key role in cell-mediated immunity is dedicated to the major histocompatibility complex (MHC) molecules that bind peptides for presentation on the cell surface. Several in silico methods capable of predicting peptide binding to MHC class I have been developed. The accuracy of these methods depe...... at www.cbs.dtu.dk/services/NetMHCcons, and allows the user in an automatic manner to obtain the most accurate predictions for any given MHC molecule....
International Nuclear Information System (INIS)
Ravindra, M.K.; Banon, H.
1992-07-01
In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as a three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC's PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described
A method of numerically controlled machine part programming
1970-01-01
Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.
A generic method for assignment of reliability scores applied to solvent accessibility predictions
Directory of Open Access Journals (Sweden)
Nielsen Morten
2009-07-01
Full Text Available Abstract Background Estimation of the reliability of specific real value predictions is nontrivial and the efficacy of this is often questionable. It is important to know if you can trust a given prediction and therefore the best methods associate a prediction with a reliability score or index. For discrete qualitative predictions, the reliability is conventionally estimated as the difference between output scores of selected classes. Such an approach is not feasible for methods that predict a biological feature as a single real value rather than a classification. As a solution to this challenge, we have implemented a method that predicts the relative surface accessibility of an amino acid and simultaneously predicts the reliability for each prediction, in the form of a Z-score. Results An ensemble of artificial neural networks has been trained on a set of experimentally solved protein structures to predict the relative exposure of the amino acids. The method assigns a reliability score to each surface accessibility prediction as an inherent part of the training process. This is in contrast to the most commonly used procedures where reliabilities are obtained by post-processing the output. Conclusion The performance of the neural networks was evaluated on a commonly used set of sequences known as the CB513 set. An overall Pearson's correlation coefficient of 0.72 was obtained, which is comparable to the performance of the currently best public available method, Real-SPINE. Both methods associate a reliability score with the individual predictions. However, our implementation of reliability scores in the form of a Z-score is shown to be the more informative measure for discriminating good predictions from bad ones in the entire range from completely buried to fully exposed amino acids. This is evident when comparing the Pearson's correlation coefficient for the upper 20% of predictions sorted according to reliability. For this subset, values of 0
Directory of Open Access Journals (Sweden)
Malinowski Paweł
2014-12-01
Full Text Available The IVF ET method is a scientifically recognized infertility treat- ment method. The problem, however, is this method’s unsatisfactory efficiency. This calls for a more thorough analysis of the information available in the treat- ment process, in order to detect the factors that have an effect on the results, as well as to effectively predict result of treatment. Classical statistical methods have proven to be inadequate in this issue. Only the use of modern methods of data mining gives hope for a more effective analysis of the collected data. This work provides an overview of the new methods used for the analysis of data on infertility treatment, and formulates a proposal for further directions for research into increasing the efficiency of the predicted result of the treatment process.
Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L
2004-04-01
The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.
Tunjo Perić; Željko Mandić
2017-01-01
This paper presents the production plan optimization in the metal industry considered as a multi-criteria programming problem. We first provided the definition of the multi-criteria programming problem and classification of the multicriteria programming methods. Then we applied two multi-criteria programming methods (the STEM method and the PROMETHEE method) in solving a problem of multi-criteria optimization production plan in a company from the metal industry. The obtained resul...
An auxiliary optimization method for complex public transit route network based on link prediction
Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian
2018-02-01
Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.
International Nuclear Information System (INIS)
Pelczarska, Aleksandra; Ramjugernath, Deresh; Rarey, Jurgen; Domańska, Urszula
2013-01-01
Highlights: ► The prediction of solubility of pharmaceuticals in water and alcohols was presented. ► Improved group contribution method UNIFAC was proposed for 42 binary mixtures. ► Infinite activity coefficients were used in a model. ► A semi-predictive model with one experimental point was proposed. ► This model qualitatively describes the temperature dependency of Pharms. -- Abstract: An improved group contribution approach using activity coefficients at infinite dilution, which has been proposed by our group, was used for the prediction of the solubility of selected pharmaceuticals in water and alcohols [B. Moller, Activity of complex multifunctional organic compounds in common solvents, PhD Thesis, Chemical Engineering, University of KwaZulu-Natal, 2009]. The solubility of 16 different pharmaceuticals in water, ethanol and octan-1-ol was predicted over a fairly wide range of temperature with this group contribution model. The predicted values, along with values computed with the Schroeder-van Laar equation, are compared to experimental results published by us previously for 42 binary mixtures. The predicted solubility values were lower than those from the experiments for most of the mixtures. In order to improve the prediction method, a semi-predictive calculation using one experimental solubility value was implemented. This one point prediction has given acceptable results when comparison is made to experimental values
Gosalia, Nehal; Economides, Aris N; Dewey, Frederick E; Balasubramanian, Suganthi
2017-10-13
Nonsynonymous single nucleotide variants (nsSNVs) constitute about 50% of known disease-causing mutations and understanding their functional impact is an area of active research. Existing algorithms predict pathogenicity of nsSNVs; however, they are unable to differentiate heterozygous, dominant disease-causing variants from heterozygous carrier variants that lead to disease only in the homozygous state. Here, we present MAPPIN (Method for Annotating, Predicting Pathogenicity, and mode of Inheritance for Nonsynonymous variants), a prediction method which utilizes a random forest algorithm to distinguish between nsSNVs with dominant, recessive, and benign effects. We apply MAPPIN to a set of Mendelian disease-causing mutations and accurately predict pathogenicity for all mutations. Furthermore, MAPPIN predicts mode of inheritance correctly for 70.3% of nsSNVs. MAPPIN also correctly predicts pathogenicity for 87.3% of mutations from the Deciphering Developmental Disorders Study with a 78.5% accuracy for mode of inheritance. When tested on a larger collection of mutations from the Human Gene Mutation Database, MAPPIN is able to significantly discriminate between mutations in known dominant and recessive genes. Finally, we demonstrate that MAPPIN outperforms CADD and Eigen in predicting disease inheritance modes for all validation datasets. To our knowledge, MAPPIN is the first nsSNV pathogenicity prediction algorithm that provides mode of inheritance predictions, adding another layer of information for variant prioritization. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Predictive Distribution of the Dirichlet Mixture Model by the Local Variational Inference Method
DEFF Research Database (Denmark)
Ma, Zhanyu; Leijon, Arne; Tan, Zheng-Hua
2014-01-01
the predictive likelihood of the new upcoming data, especially when the amount of training data is small. The Bayesian estimation of a Dirichlet mixture model (DMM) is, in general, not analytically tractable. In our previous work, we have proposed a global variational inference-based method for approximately...... calculating the posterior distributions of the parameters in the DMM analytically. In this paper, we extend our previous study for the DMM and propose an algorithm to calculate the predictive distribution of the DMM with the local variational inference (LVI) method. The true predictive distribution of the DMM...... is analytically intractable. By considering the concave property of the multivariate inverse beta function, we introduce an upper-bound to the true predictive distribution. As the global minimum of this upper-bound exists, the problem is reduced to seek an approximation to the true predictive distribution...
Supplementary Material for: DASPfind: new efficient method to predict drug–target interactions
Ba Alawi, Wail
2016-01-01
Abstract Background Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions. Results Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually. Conclusions DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery
Prediction of intestinal absorption and blood-brain barrier penetration by computational methods.
Clark, D E
2001-09-01
This review surveys the computational methods that have been developed with the aim of identifying drug candidates likely to fail later on the road to market. The specifications for such computational methods are outlined, including factors such as speed, interpretability, robustness and accuracy. Then, computational filters aimed at predicting "drug-likeness" in a general sense are discussed before methods for the prediction of more specific properties--intestinal absorption and blood-brain barrier penetration--are reviewed. Directions for future research are discussed and, in concluding, the impact of these methods on the drug discovery process, both now and in the future, is briefly considered.
A prediction method based on grey system theory in equipment condition based maintenance
International Nuclear Information System (INIS)
Yan, Shengyuan; Yan, Shengyuan; Zhang, Hongguo; Zhang, Zhijian; Peng, Minjun; Yang, Ming
2007-01-01
Grey prediction is a modeling method based on historical or present, known or indefinite information, which can be used for forecasting the development of the eigenvalues of the targeted equipment system and setting up the model by using less information. In this paper, the postulate of grey system theory, which includes the grey generating, the sorts of grey generating and the grey forecasting model, is introduced first. The concrete application process, which includes the grey prediction modeling, grey prediction, error calculation, equal dimension and new information approach, is introduced secondly. Application of a so-called 'Equal Dimension and New Information' (EDNI) technology in grey system theory is adopted in an application case, aiming at improving the accuracy of prediction without increasing the amount of calculation by replacing old data with new ones. The proposed method can provide a new way for solving the problem of eigenvalue data exploding in equal distance effectively, short time interval and real time prediction. The proposed method, which was based on historical or present, known or indefinite information, was verified by the vibration prediction of induced draft fan of a boiler of the Yantai Power Station in China, and the results show that the proposed method based on grey system theory is simple and provides a high accuracy in prediction. So, it is very useful and significant to the controlling and controllable management in safety production. (authors)
DEFF Research Database (Denmark)
Petersen, Steffen; Svendsen, Svend
2011-01-01
A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
A Prediction Method of Airport Noise Based on Hybrid Ensemble Learning
Directory of Open Access Journals (Sweden)
Tao XU
2014-05-01
Full Text Available Using monitoring history data to build and to train a prediction model for airport noise is a normal method in recent years. However, the single model built in different ways has various performances in the storage, efficiency and accuracy. In order to predict the noise accurately in some complex environment around airport, this paper presents a prediction method based on hybrid ensemble learning. The proposed method ensembles three algorithms: artificial neural network as an active learner, nearest neighbor as a passive leaner and nonlinear regression as a synthesized learner. The experimental results show that the three learners can meet forecast demands respectively in on- line, near-line and off-line. And the accuracy of prediction is improved by integrating these three learners’ results.
A study on the fatigue life prediction of tire belt-layers using probabilistic method
International Nuclear Information System (INIS)
Lee, Dong Woo; Park, Jong Sang; Lee, Tae Won; Kim, Seong Rae; Sung, Ki Deug; Huh, Sun Chul
2013-01-01
Tire belt separation failure is occurred by internal cracks generated in *1 and *2 belt layers and by its growth. And belt failure seriously affects tire endurance. Therefore, to improve the tire endurance, it is necessary to analyze tire crack growth behavior and predict fatigue life. Generally, the prediction of tire endurance is performed by the experimental method using tire test machine. But it takes much cost and time to perform experiment. In this paper, to predict tire fatigue life, we applied deterministic fracture mechanics approach, based on finite element analysis. Also, probabilistic analysis method based on statistics using Monte Carlo simulation is presented. Above mentioned two methods include a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and calculate the J-integral for tire life prediction.
A summary of methods of predicting reliability life of nuclear equipment with small samples
International Nuclear Information System (INIS)
Liao Weixian
2000-03-01
Some of nuclear equipment are manufactured in small batch, e.g., 1-3 sets. Their service life may be very difficult to determine experimentally in view of economy and technology. The method combining theoretical analysis with material tests to predict the life of equipment is put forward, based on that equipment consists of parts or elements which are made of different materials. The whole life of an equipment part consists of the crack forming life (i.e., the fatigue life or the damage accumulation life) and the crack extension life. Methods of predicting machine life has systematically summarized with the emphasis on those which use theoretical analysis to substitute large scale prototype experiments. Meanwhile, methods and steps of predicting reliability life have been described by taking into consideration of randomness of various variables and parameters in engineering. Finally, the latest advance and trends of machine life prediction are discussed
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.
A comparison of radiosity with current methods of sound level prediction in commercial spaces
Beamer, C. Walter, IV; Muehleisen, Ralph T.
2002-11-01
The ray tracing and image methods (and variations thereof) are widely used for the computation of sound fields in architectural spaces. The ray tracing and image methods are best suited for spaces with mostly specular reflecting surfaces. The radiosity method, a method based on solving a system of energy balance equations, is best applied to spaces with mainly diffusely reflective surfaces. Because very few spaces are either purely specular or purely diffuse, all methods must deal with both types of reflecting surfaces. A comparison of the radiosity method to other methods for the prediction of sound levels in commercial environments is presented. [Work supported by NSF.
An ensemble method for predicting subnuclear localizations from primary protein structures.
Directory of Open Access Journals (Sweden)
Guo Sheng Han
Full Text Available BACKGROUND: Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods. METHODOLOGY/PRINCIPAL FINDINGS: A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis. CONCLUSIONS: It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method
Farmer, William H.; Archfield, Stacey A.; Over, Thomas M.; Hay, Lauren E.; LaFontaine, Jacob H.; Kiang, Julie E.
2015-01-01
Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water. Streamgages cannot be installed at every location where streamflow information is needed. As part of its National Water Census, the U.S. Geological Survey is planning to provide streamflow predictions for ungaged locations. In order to predict streamflow at a useful spatial and temporal resolution throughout the Nation, efficient methods need to be selected. This report examines several methods used for streamflow prediction in ungaged basins to determine the best methods for regional and national implementation. A pilot area in the southeastern United States was selected to apply 19 different streamflow prediction methods and evaluate each method by a wide set of performance metrics. Through these comparisons, two methods emerged as the most generally accurate streamflow prediction methods: the nearest-neighbor implementations of nonlinear spatial interpolation using flow duration curves (NN-QPPQ) and standardizing logarithms of streamflow by monthly means and standard deviations (NN-SMS12L). It was nearly impossible to distinguish between these two methods in terms of performance. Furthermore, neither of these methods requires significantly more parameterization in order to be applied: NN-SMS12L requires 24 regional regressions—12 for monthly means and 12 for monthly standard deviations. NN-QPPQ, in the application described in this study, required 27 regressions of particular quantiles along the flow duration curve. Despite this finding, the results suggest that an optimal streamflow prediction method depends on the intended application. Some methods are stronger overall, while some methods may be better at predicting particular statistics. The methods of analysis presented here reflect a possible framework for continued analysis and comprehensive multiple comparisons of methods of prediction in ungaged basins (PUB
An ensemble method to predict target genes and pathways in uveal melanoma
Directory of Open Access Journals (Sweden)
Wei Chao
2018-04-01
Full Text Available This work proposes to predict target genes and pathways for uveal melanoma (UM based on an ensemble method and pathway analyses. Methods: The ensemble method integrated a correlation method (Pearson correlation coefficient, PCC, a causal inference method (IDA and a regression method (Lasso utilizing the Borda count election method. Subsequently, to validate the performance of PIL method, comparisons between confirmed database and predicted miRNA targets were performed. Ultimately, pathway enrichment analysis was conducted on target genes in top 1000 miRNA-mRNA interactions to identify target pathways for UM patients. Results: Thirty eight of the predicted interactions were matched with the confirmed interactions, indicating that the ensemble method was a suitable and feasible approach to predict miRNA targets. We obtained 50 seed miRNA-mRNA interactions of UM patients and extracted target genes from these interactions, such as ASPG, BSDC1 and C4BP. The 601 target genes in top 1,000 miRNA-mRNA interactions were enriched in 12 target pathways, of which Phototransduction was the most significant one. Conclusion: The target genes and pathways might provide a new way to reveal the molecular mechanism of UM and give hand for target treatments and preventions of this malignant tumor.
Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan
2017-01-01
Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.
Meeting the need to belong: Predicting effects of a friendship enrichment program for older women
Stevens, N.L.; Martina, C.M.S.; Westerhof, G.J.
2006-01-01
Purpose: This study explores the effects of participation in a program designed to enrich friendship and reduce loneliness among women in later life. Several hypotheses based on the need to belong, socioemotional selectivity theory, and the social compensation model were tested. Design and Methods:
Meeting the Need to Belong: Predicting Effects of a Friendship Enrichment Program for Older Women
Stevens, Nan L.; Martina, Camille M. S.; Westerhof, Gerben J.
2006-01-01
Purpose: This study explores the effects of participation in a program designed to enrich friendship and reduce loneliness among women in later life. Several hypotheses based on the need to belong, socioemotional selectivity theory, and the social compensation model were tested. Design and Methods: Study 1 involved two measurement points, one at…
Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program
Directory of Open Access Journals (Sweden)
Elliot L. Heffner
2011-03-01
Full Text Available Genomic selection (GS uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotypes of lines from each cross before conducting GS. This will prolong the selection cycle and may result in lower gains per year than approaches that estimate marker-effects with multiple families from previous selection cycles. In this study, phenotypic selection (PS, conventional marker-assisted selection (MAS, and GS prediction accuracy were compared for 13 agronomic traits in a population of 374 winter wheat ( L. advanced-cycle breeding lines. A cross-validation approach that trained and validated prediction accuracy across years was used to evaluate effects of model selection, training population size, and marker density in the presence of genotype × environment interactions (G×E. The average prediction accuracies using GS were 28% greater than with MAS and were 95% as accurate as PS. For net merit, the average accuracy across six selection indices for GS was 14% greater than for PS. These results provide empirical evidence that multifamily GS could increase genetic gain per unit time and cost in plant breeding.
The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network
Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.
2017-05-01
The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.
A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction
Danandeh Mehr, Ali; Kahya, Ercan
2017-06-01
Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.
PREDICTION OF DROUGHT IMPACT ON RICE PADDIES IN WEST JAVA USING ANALOGUE DOWNSCALING METHOD
Directory of Open Access Journals (Sweden)
Elza Surmaini
2015-09-01
Full Text Available Indonesia consistently experiences dry climatic conditions and droughts during El Niño, with significant consequences for rice production. To mitigate the impacts of such droughts, robust, simple and timely rainfall forecast is critically important for predicting drought prior to planting time over rice growing areas in Indonesia. The main objective of this study was to predict drought in rice growing areas using ensemble seasonal prediction. The skill of National Oceanic and Atmospheric Administration’s (NOAA’s seasonal prediction model Climate Forecast System version 2 (CFSv2 for predicting rice drought in West Java was investigated in a series of hindcast experiments in 1989-2010. The Constructed Analogue (CA method was employed to produce downscaled local rainfall prediction with stream function (y and velocity potential (c at 850 hPa as predictors and observed rainfall as predictant. We used forty two rain gauges in northern part of West Java in Indramayu, Cirebon, Sumedang and Majalengka Districts. To be able to quantify the uncertainties, a multi-window scheme for predictors was applied to obtain ensemble rainfall prediction. Drought events in dry season planting were predicted by rainfall thresholds. The skill of downscaled rainfall prediction was assessed using Relative Operating Characteristics (ROC method. Results of the study showed that the skills of the probabilistic seasonal prediction for early detection of rice area drought were found to range from 62% to 82% with an improved lead time of 2-4 months. The lead time of 2-4 months provided sufficient time for practical policy makers, extension workers and farmers to cope with drought by preparing suitable farming practices and equipments.
Zhang, Wen; Zhu, Xiaopeng; Fu, Yu; Tsuji, Junko; Weng, Zhiping
2017-12-01
Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints. Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method. In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.
International Nuclear Information System (INIS)
Albahri, Tareq A.; Aljasmi, Abdulla F.
2013-01-01
Highlights: • ΔH° f is predicted from the molecular structure of the compounds alone. • ANN-SGC model predicts ΔH° f with a correlation coefficient of 0.99. • ANN-MNLR model predicts ΔH° f with a correlation coefficient of 0.90. • Better definition of the atom-type molecular groups is presented. • The method is better than others in terms of combined simplicity, accuracy and generality. - Abstract: A theoretical method for predicting the standard enthalpy of formation of pure compounds from various chemical families is presented. Back propagation artificial neural networks were used to investigate several structural group contribution (SGC) methods available in literature. The networks were used to probe the structural groups that have significant contribution to the overall enthalpy of formation property of pure compounds and arrive at the set of groups that can best represent the enthalpy of formation for about 584 substances. The 51 atom-type structural groups listed provide better definitions of group contributions than others in the literature. The proposed method can predict the standard enthalpy of formation of pure compounds with an AAD of 11.38 kJ/mol and a correlation coefficient of 0.9934 from only their molecular structure. The results are further compared with those of the traditional SGC method based on MNLR as well as other methods in the literature
Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.
2013-01-01
We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231
Puton, Tomasz; Kozlowski, Lukasz P; Rother, Kristian M; Bujnicki, Janusz M
2013-04-01
We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks.
Gene expression programming for prediction of scour depth downstream of sills
Azamathulla, H. Md.
2012-08-01
SummaryLocal scour is crucial in the degradation of river bed and the stability of grade control structures, stilling basins, aprons, ski-jump bucket spillways, bed sills, weirs, check dams, etc. This short communication presents gene-expression programming (GEP), which is an extension to genetic programming (GP), as an alternative approach to predict scour depth downstream of sills. Published data were compiled from the literature for the scour depth downstream of sills. The proposed GEP approach gives satisfactory results (R2 = 0.967 and RMSE = 0.088) compared to the existing predictors (Chinnarasri and Kositgittiwong, 2008) with R2 = 0.87 and RMSE = 2.452 for relative scour depth.
Kassa, Semu Mitiku; Tsegay, Teklay Hailay
2017-08-01
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.
Comparison of selected methods of prediction of wine exports and imports
Directory of Open Access Journals (Sweden)
Radka Šperková
2008-01-01
Full Text Available For prediction of future events, there exist a number of methods usable in managerial practice. Decision on which of them should be used in a particular situation depends not only on the amount and quality of input information, but also on a subjective managerial judgement. Paper performs a practical application and consequent comparison of results of two selected methods, which are statistical method and deductive method. Both methods were used for predicting wine exports and imports in (from the Czech Republic. Prediction was done in 2003 and it related to the economic years 2003/2004, 2004/2005, 2005/2006, and 2006/2007, within which it was compared with the real values of the given indicators.Within the deductive methods there were characterized the most important factors of external environment including the most important influence according to authors’ opinion, which was the integration of the Czech Republic into the EU from 1st May, 2004. On the contrary, the statistical method of time-series analysis did not regard the integration, which is comes out of its principle. Statistics only calculates based on data from the past, and cannot incorporate the influence of irregular future conditions, just as the EU integration. Because of this the prediction based on deductive method was more optimistic and more precise in terms of its difference from real development in the given field.
Fudalej, P.S.; Bollen, A.M.
2010-01-01
INTRODUCTION: Our aim was to assess effectiveness of the cervical vertebral maturation (CVM) method to predict circumpubertal craniofacial growth in the postpeak period. METHODS: The CVM stage was determined in 176 subjects (51 adolescent boys and 125 adolescent girls) on cephalograms taken at the
Statistical Analysis of a Method to Predict Drug-Polymer Miscibility
DEFF Research Database (Denmark)
Knopp, Matthias Manne; Olesen, Niels Erik; Huang, Yanbin
2016-01-01
In this study, a method proposed to predict drug-polymer miscibility from differential scanning calorimetry measurements was subjected to statistical analysis. The method is relatively fast and inexpensive and has gained popularity as a result of the increasing interest in the formulation of drug...... as provided in this study. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci....
Deep learning versus traditional machine learning methods for aggregated energy demand prediction
Paterakis, N.G.; Mocanu, E.; Gibescu, M.; Stappers, B.; van Alst, W.
2018-01-01
In this paper the more advanced, in comparison with traditional machine learning approaches, deep learning methods are explored with the purpose of accurately predicting the aggregated energy consumption. Despite the fact that a wide range of machine learning methods have been applied to
Some new results on correlation-preserving factor scores prediction methods
Ten Berge, J.M.F.; Krijnen, W.P.; Wansbeek, T.J.; Shapiro, A.
1999-01-01
Anderson and Rubin and McDonald have proposed a correlation-preserving method of factor scores prediction which minimizes the trace of a residual covariance matrix for variables. Green has proposed a correlation-preserving method which minimizes the trace of a residual covariance matrix for factors.
A Simple Microsoft Excel Method to Predict Antibiotic Outbreaks and Underutilization.
Miglis, Cristina; Rhodes, Nathaniel J; Avedissian, Sean N; Zembower, Teresa R; Postelnick, Michael; Wunderink, Richard G; Sutton, Sarah H; Scheetz, Marc H
2017-07-01
Benchmarking strategies are needed to promote the appropriate use of antibiotics. We have adapted a simple regressive method in Microsoft Excel that is easily implementable and creates predictive indices. This method trends consumption over time and can identify periods of over- and underuse at the hospital level. Infect Control Hosp Epidemiol 2017;38:860-862.
Reliable B cell epitope predictions: impacts of method development and improved benchmarking
DEFF Research Database (Denmark)
Kringelum, Jens Vindahl; Lundegaard, Claus; Lund, Ole
2012-01-01
biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping...... evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given proper benchmark definitions, B-cell epitope prediction methods achieve highly significant predictive performances suggesting these tools to be a powerful asset in rational epitope discovery. The updated version...
A computational method to predict fluid-structure interaction of pressure relief valves
Energy Technology Data Exchange (ETDEWEB)
Kang, S. K.; Lee, D. H.; Park, S. K.; Hong, S. R. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
2004-07-01
An effective CFD (Computational fluid dynamics) method to predict important performance parameters, such as blowdown and chattering, for pressure relief valves in NPPs is provided in the present study. To calculate the valve motion, 6DOF (six degree of freedom) model is used. A chimera overset grid method is utilized to this study for the elimination of grid remeshing problem, when the disk moves. Further, CFD-Fastran which is developed by CFD-RC for compressible flow analysis is applied to an 1' safety valve. The prediction results ensure the applicability of the presented method in this study.
Improved time series prediction with a new method for selection of model parameters
International Nuclear Information System (INIS)
Jade, A M; Jayaraman, V K; Kulkarni, B D
2006-01-01
A new method for model selection in prediction of time series is proposed. Apart from the conventional criterion of minimizing RMS error, the method also minimizes the error on the distribution of singularities, evaluated through the local Hoelder estimates and its probability density spectrum. Predictions of two simulated and one real time series have been done using kernel principal component regression (KPCR) and model parameters of KPCR have been selected employing the proposed as well as the conventional method. Results obtained demonstrate that the proposed method takes into account the sharp changes in a time series and improves the generalization capability of the KPCR model for better prediction of the unseen test data. (letter to the editor)
Improving Allergen Prediction in Main Crops Using a Weighted Integrative Method.
Li, Jing; Wang, Jing; Li, Jing
2017-12-01
As a public health problem, food allergy is frequently caused by food allergy proteins, which trigger a type-I hypersensitivity reaction in the immune system of atopic individuals. The food allergens in our daily lives are mainly from crops including rice, wheat, soybean and maize. However, allergens in these main crops are far from fully uncovered. Although some bioinformatics tools or methods predicting the potential allergenicity of proteins have been proposed, each method has their limitation. In this paper, we built a novel algorithm PREAL W , which integrated PREAL, FAO/WHO criteria and motif-based method by a weighted average score, to benefit the advantages of different methods. Our results illustrated PREAL W has better performance significantly in the crops' allergen prediction. This integrative allergen prediction algorithm could be useful for critical food safety matters. The PREAL W could be accessed at http://lilab.life.sjtu.edu.cn:8080/prealw .
MHA admission criteria and program performance: do they predict career performance?
Porter, J; Galfano, V J
1987-01-01
The purpose of this study was to determine to what extent admission criteria predict graduate school and career performance. The study also analyzed which objective and subjective criteria served as the best predictors. MHA graduates of the University of Minnesota from 1974 to 1977 were surveyed to assess career performance. Student files served as the data base on admission criteria and program performance. Career performance was measured by four variables: total compensation, satisfaction, fiscal responsibility, and level of authority. High levels of MHA program performance were associated with women who had high undergraduate GPAs from highly selective undergraduate colleges, were undergraduate business majors, and participated in extracurricular activities. High levels of compensation were associated with relatively low undergraduate GPAs, high levels of participation in undergraduate extracurricular activities, and being single at admission to graduate school. Admission to MHA programs should be based upon both objective and subjective criteria. Emphasis should be placed upon the selection process for MHA students since admission criteria are shown to explain 30 percent of the variability in graduate program performance, and as much as 65 percent of the variance in level of position authority.
Wills, John M.; Mattsson, Ann E.
2012-02-01
Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Root Causes of Component Failures Program: Methods and applications
International Nuclear Information System (INIS)
Satterwhite, D.G.; Cadwallader, L.C.; Vesely, W.E.; Meale, B.M.
1986-12-01
This report contains information pertaining to definitions, methodologies, and applications of root cause analysis. Of specific interest, and highlighted throughout the discussion, are applications pertaining to current and future Nuclear Regulatory Commission (NRC) light water reactor safety programs. These applications are discussed in view of addressing specific program issues under NRC consideration and reflect current root cause analysis capabilities
Prediction of protein post-translational modifications: main trends and methods
Sobolev, B. N.; Veselovsky, A. V.; Poroikov, V. V.
2014-02-01
The review summarizes main trends in the development of methods for the prediction of protein post-translational modifications (PTMs) by considering the three most common types of PTMs — phosphorylation, acetylation and glycosylation. Considerable attention is given to general characteristics of regulatory interactions associated with PTMs. Different approaches to the prediction of PTMs are analyzed. Most of the methods are based only on the analysis of the neighbouring environment of modification sites. The related software is characterized by relatively low accuracy of PTM predictions, which may be due both to the incompleteness of training data and the features of PTM regulation. Advantages and limitations of the phylogenetic approach are considered. The prediction of PTMs using data on regulatory interactions, including the modular organization of interacting proteins, is a promising field, provided that a more carefully selected training data will be used. The bibliography includes 145 references.
In silico toxicology: computational methods for the prediction of chemical toxicity
Raies, Arwa B.; Bajic, Vladimir B.
2016-01-01
Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.
In silico toxicology: computational methods for the prediction of chemical toxicity
Raies, Arwa B.
2016-01-06
Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.
Wu, Zhenkai; Ding, Jing; Zhao, Dahang; Zhao, Li; Li, Hai; Liu, Jianlin
2017-07-10
The multiplier method was introduced by Paley to calculate the timing for temporary hemiepiphysiodesis. However, this method has not been verified in terms of clinical outcome measure. We aimed to (1) predict the rate of angular correction per year (ACPY) at the various corresponding ages by means of multiplier method and verify the reliability based on the data from the published studies and (2) screen out risk factors for deviation of prediction. A comprehensive search was performed in the following electronic databases: Cochrane, PubMed, and EMBASE™. A total of 22 studies met the inclusion criteria. If the actual value of ACPY from the collected date was located out of the range of the predicted value based on the multiplier method, it was considered as the deviation of prediction (DOP). The associations of patient characteristics with DOP were assessed with the use of univariate logistic regression. Only one article was evaluated as moderate evidence; the remaining articles were evaluated as poor quality. The rate of DOP was 31.82%. In the detailed individual data of included studies, the rate of DOP was 55.44%. The multiplier method is not reliable in predicting the timing for temporary hemiepiphysiodesis, even though it is prone to be more reliable for the younger patients with idiopathic genu coronal deformity.
A GPS Satellite Clock Offset Prediction Method Based on Fitting Clock Offset Rates Data
Directory of Open Access Journals (Sweden)
WANG Fuhong
2016-12-01
Full Text Available It is proposed that a satellite atomic clock offset prediction method based on fitting and modeling clock offset rates data. This method builds quadratic model or linear model combined with periodic terms to fit the time series of clock offset rates, and computes the model coefficients of trend with the best estimation. The clock offset precisely estimated at the initial prediction epoch is directly adopted to calculate the model coefficient of constant. The clock offsets in the rapid ephemeris (IGR provided by IGS are used as modeling data sets to perform certain experiments for different types of GPS satellite clocks. The results show that the clock prediction accuracies of the proposed method for 3, 6, 12 and 24 h achieve 0.43, 0.58, 0.90 and 1.47 ns respectively, which outperform the traditional prediction method based on fitting original clock offsets by 69.3%, 61.8%, 50.5% and 37.2%. Compared with the IGU real-time clock products provided by IGS, the prediction accuracies of the new method have improved about 15.7%, 23.7%, 27.4% and 34.4% respectively.
Feng, Shou; Fu, Ping; Zheng, Wenbin
2018-03-01
Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.
Genomic Selection for Predicting Fusarium Head Blight Resistance in a Wheat Breeding Program
Directory of Open Access Journals (Sweden)
Marcio P. Arruda
2015-11-01
Full Text Available Genomic selection (GS is a breeding method that uses marker–trait models to predict unobserved phenotypes. This study developed GS models for predicting traits associated with resistance to head blight (FHB in wheat ( L.. We used genotyping-by-sequencing (GBS to identify 5054 single-nucleotide polymorphisms (SNPs, which were then treated as predictor variables in GS analysis. We compared how the prediction accuracy of the genomic-estimated breeding values (GEBVs was affected by (i five genotypic imputation methods (random forest imputation [RFI], expectation maximization imputation [EMI], -nearest neighbor imputation [kNNI], singular value decomposition imputation [SVDI], and the mean imputation [MNI]; (ii three statistical models (ridge-regression best linear unbiased predictor [RR-BLUP], least absolute shrinkage and operator selector [LASSO], and elastic net; (iii marker density ( = 500, 1500, 3000, and 4500 SNPs; (iv training population (TP size ( = 96, 144, 192, and 218; (v marker-based and pedigree-based relationship matrices; and (vi control for relatedness in TPs and validation populations (VPs. No discernable differences in prediction accuracy were observed among imputation methods. The RR-BLUP outperformed other models in nearly all scenarios. Accuracies decreased substantially when marker number decreased to 3000 or 1500 SNPs, depending on the trait; when sample size of the training set was less than 192; when using pedigree-based instead of marker-based matrix; or when no control for relatedness was implemented. Overall, moderate to high prediction accuracies were observed in this study, suggesting that GS is a very promising breeding strategy for FHB resistance in wheat.
Nuclear power reactor analysis, methods, algorithms and computer programs
International Nuclear Information System (INIS)
Matausek, M.V
1981-01-01
Full text: For a developing country buying its first nuclear power plants from a foreign supplier, disregarding the type and scope of the contract, there is a certain number of activities which have to be performed by local stuff and domestic organizations. This particularly applies to the choice of the nuclear fuel cycle strategy and the choice of the type and size of the reactors, to bid parameters specification, bid evaluation and final safety analysis report evaluation, as well as to in-core fuel management activities. In the Nuclear Engineering Department of the Boris Kidric Institute of Nuclear Sciences (NET IBK) the continual work is going on, related to the following topics: cross section and resonance integral calculations, spectrum calculations, generation of group constants, lattice and cell problems, criticality and global power distribution search, fuel burnup analysis, in-core fuel management procedures, cost analysis and power plant economics, safety and accident analysis, shielding problems and environmental impact studies, etc. The present paper gives the details of the methods developed and the results achieved, with the particular emphasis on the NET IBK computer program package for the needs of planning, construction and operation of nuclear power plants. The main problems encountered so far were related to small working team, lack of large and powerful computers, absence of reliable basic nuclear data and shortage of experimental and empirical results for testing theoretical models. Some of these difficulties have been overcome thanks to bilateral and multilateral cooperation with developed countries, mostly through IAEA. It is the authors opinion, however, that mutual cooperation of developing countries, having similar problems and similar goals, could lead to significant results. Some activities of this kind are suggested and discussed. (author)
Prediction of critical heat flux in fuel assemblies using a CHF table method
Energy Technology Data Exchange (ETDEWEB)
Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)
Prediction of critical heat flux in fuel assemblies using a CHF table method
Energy Technology Data Exchange (ETDEWEB)
Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)
Creep-fatigue life prediction method using Diercks equation for Cr-Mo steel
International Nuclear Information System (INIS)
Sonoya, Keiji; Nonaka, Isamu; Kitagawa, Masaki
1990-01-01
For dealing with the situation that creep-fatigue life properties of materials do not exist, a development of the simple method to predict creep-fatigue life properties is necessary. A method to predict the creep-fatigue life properties of Cr-Mo steels is proposed on the basis of D. Diercks equation which correlates the creep-fatigue lifes of SUS 304 steels under various temperatures, strain ranges, strain rates and hold times. The accuracy of the proposed method was compared with that of the existing methods. The following results were obtained. (1) Fatigue strength and creep rupture strength of Cr-Mo steel are different from those of SUS 304 steel. Therefore in order to apply Diercks equation to creep-fatigue prediction for Cr-Mo steel, the difference of fatigue strength was found to be corrected by fatigue life ratio of both steels and the difference of creep rupture strength was found to be corrected by the equivalent temperature corresponding to equal strength of both steels. (2) Creep-fatigue life can be predicted by the modified Diercks equation within a factor of 2 which is nearly as precise as the accuracy of strain range partitioning method. Required test and analysis procedure of this method are not so complicated as strain range partitioning method. (author)
A deep learning-based multi-model ensemble method for cancer prediction.
Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong
2018-01-01
Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.
Bayuk, Milla; Bayuk, Barry S.
A program currently in use by the military that gives instruction in the so-called "sensitive" languages is based on the "Army Method" which was initiated in military language programs during World War II. Attention to the sensitive language program initiated a review of the programs, especially those conducted by the military intelligence schools…
Frontiers in economic research on petroleum allocation using mathematical programming methods
International Nuclear Information System (INIS)
Rowse, J.
1991-01-01
This paper presents a state of the art of operations research techniques applied in petroleum allocation, namely mathematical programming methods, with principal attention directed toward linear programming and nonlinear programming (including quadratic programming). Contributions to the economics of petroleum allocation are discussed for international trade, industrial organization, regional/macro economics, public finance and natural resource/environmental economics
Basic study on dynamic reactive-power control method with PV output prediction for solar inverter
Directory of Open Access Journals (Sweden)
Ryunosuke Miyoshi
2016-01-01
Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.
Directory of Open Access Journals (Sweden)
Pengyu Gao
2016-03-01
Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.
An improved method for predicting the effects of flight on jet mixing noise
Stone, J. R.
1979-01-01
A method for predicting the effects of flight on jet mixing noise has been developed on the basis of the jet noise theory of Ffowcs-Williams (1963) and data derived from model-jet/free-jet simulated flight tests. Predicted and experimental values are compared for the J85 turbojet engine on the Bertin Aerotrain, the low-bypass refanned JT8D engine on a DC-9, and the high-bypass JT9D engine on a DC-10. Over the jet velocity range from 280 to 680 m/sec, the predictions show a standard deviation of 1.5 dB.
International Nuclear Information System (INIS)
Wada, Hiroshi; Igari, Toshihide; Kitade, Shoji.
1989-01-01
A prediction method was proposed for plastic ratcheting of a cylinder, which was subjected to axially moving temperature distribution without primary stress. First, a mechanism of this ratcheting was proposed, which considered the movement of temperature distribution as a driving force of this phenomenon. Predictive equations of the ratcheting strain for two representative temperature distributions were proposed based on this mechanism by assuming the elastic-perfectly-plastic material behavior. Secondly, an elastic-plastic analysis was made on a cylinder subjected to the representative two temperature distributions. Analytical results coincided well with the predicted results, and the applicability of the proposed equations was confirmed. (author)
MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants
DEFF Research Database (Denmark)
Zhang, Ning; Rao, R Shyama Prasad; Salvato, Fernanda
2018-01-01
-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently......, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino...
DEFF Research Database (Denmark)
Lundegaard, Claus; Lund, Ole; Nielsen, Morten
2008-01-01
Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate...
A dynamic particle filter-support vector regression method for reliability prediction
International Nuclear Information System (INIS)
Wei, Zhao; Tao, Tao; ZhuoShu, Ding; Zio, Enrico
2013-01-01
Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions. -- Highlights: •A dynamic PF–SVR method is proposed to predict the system reliability. •The method can adjust the SVR parameters according to the change of data. •The method is robust to the size of training data and initial parameter values. •Some cases based on both artificial and real data are studied. •PF–SVR shows superior prediction performance over standard SVR
Directory of Open Access Journals (Sweden)
Jennifer D. Atkins
2015-08-01
Full Text Available The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.
International Nuclear Information System (INIS)
Nedic, Vladimir; Despotovic, Danijela; Cvetanovic, Slobodan; Despotovic, Milan; Babic, Sasa
2014-01-01
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L eq . Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model
Suresh, V; Parthasarathy, S
2014-01-01
We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.
Climate Prediction for Brazil's Nordeste: Performance of Empirical and Numerical Modeling Methods.
Moura, Antonio Divino; Hastenrath, Stefan
2004-07-01
Comparisons of performance of climate forecast methods require consistency in the predictand and a long common reference period. For Brazil's Nordeste, empirical methods developed at the University of Wisconsin use preseason (October January) rainfall and January indices of the fields of meridional wind component and sea surface temperature (SST) in the tropical Atlantic and the equatorial Pacific as input to stepwise multiple regression and neural networking. These are used to predict the March June rainfall at a network of 27 stations. An experiment at the International Research Institute for Climate Prediction, Columbia University, with a numerical model (ECHAM4.5) used global SST information through February to predict the March June rainfall at three grid points in the Nordeste. The predictands for the empirical and numerical model forecasts are correlated at +0.96, and the period common to the independent portion of record of the empirical prediction and the numerical modeling is 1968 99. Over this period, predicted versus observed rainfall are evaluated in terms of correlation, root-mean-square error, absolute error, and bias. Performance is high for both approaches. Numerical modeling produces a correlation of +0.68, moderate errors, and strong negative bias. For the empirical methods, errors and bias are small, and correlations of +0.73 and +0.82 are reached between predicted and observed rainfall.
A novel method for improved accuracy of transcription factor binding site prediction
Khamis, Abdullah M.; Motwalli, Olaa Amin; Oliva, Romina; Jankovic, Boris R.; Medvedeva, Yulia; Ashoor, Haitham; Essack, Magbubah; Gao, Xin; Bajic, Vladimir B.
2018-01-01
Identifying transcription factor (TF) binding sites (TFBSs) is important in the computational inference of gene regulation. Widely used computational methods of TFBS prediction based on position weight matrices (PWMs) usually have high false positive rates. Moreover, computational studies of transcription regulation in eukaryotes frequently require numerous PWM models of TFBSs due to a large number of TFs involved. To overcome these problems we developed DRAF, a novel method for TFBS prediction that requires only 14 prediction models for 232 human TFs, while at the same time significantly improves prediction accuracy. DRAF models use more features than PWM models, as they combine information from TFBS sequences and physicochemical properties of TF DNA-binding domains into machine learning models. Evaluation of DRAF on 98 human ChIP-seq datasets shows on average 1.54-, 1.96- and 5.19-fold reduction of false positives at the same sensitivities compared to models from HOCOMOCO, TRANSFAC and DeepBind, respectively. This observation suggests that one can efficiently replace the PWM models for TFBS prediction by a small number of DRAF models that significantly improve prediction accuracy. The DRAF method is implemented in a web tool and in a stand-alone software freely available at http://cbrc.kaust.edu.sa/DRAF.
Energy Technology Data Exchange (ETDEWEB)
Nedic, Vladimir, E-mail: vnedic@kg.ac.rs [Faculty of Philology and Arts, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac (Serbia); Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs [Faculty of Economics, University of Kragujevac, Djure Pucara Starog 3, 34000 Kragujevac (Serbia); Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs [Faculty of Economics, University of Niš, Trg kralja Aleksandra Ujedinitelja, 18000 Niš (Serbia); Despotovic, Milan, E-mail: mdespotovic@kg.ac.rs [Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac (Serbia); Babic, Sasa, E-mail: babicsf@yahoo.com [College of Applied Mechanical Engineering, Trstenik (Serbia)
2014-11-15
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.
A novel method for improved accuracy of transcription factor binding site prediction
Khamis, Abdullah M.
2018-03-20
Identifying transcription factor (TF) binding sites (TFBSs) is important in the computational inference of gene regulation. Widely used computational methods of TFBS prediction based on position weight matrices (PWMs) usually have high false positive rates. Moreover, computational studies of transcription regulation in eukaryotes frequently require numerous PWM models of TFBSs due to a large number of TFs involved. To overcome these problems we developed DRAF, a novel method for TFBS prediction that requires only 14 prediction models for 232 human TFs, while at the same time significantly improves prediction accuracy. DRAF models use more features than PWM models, as they combine information from TFBS sequences and physicochemical properties of TF DNA-binding domains into machine learning models. Evaluation of DRAF on 98 human ChIP-seq datasets shows on average 1.54-, 1.96- and 5.19-fold reduction of false positives at the same sensitivities compared to models from HOCOMOCO, TRANSFAC and DeepBind, respectively. This observation suggests that one can efficiently replace the PWM models for TFBS prediction by a small number of DRAF models that significantly improve prediction accuracy. The DRAF method is implemented in a web tool and in a stand-alone software freely available at http://cbrc.kaust.edu.sa/DRAF.
Predictive Models of Duration of Ground Delay Programs in New York Area Airports
Kulkarni, Deepak
2011-01-01
Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.
Machine learning-based methods for prediction of linear B-cell epitopes.
Wang, Hsin-Wei; Pai, Tun-Wen
2014-01-01
B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.
IFNA approved Chinese Anaesthesia Nurse Education Program: A Delphi method.
Hu, Jiale; Fallacaro, Michael D; Jiang, Lili; Wu, Junyan; Jiang, Hong; Shi, Zhen; Ruan, Hong
2017-09-01
Numerous nurses work in operating rooms and recovery rooms or participate in the performance of anaesthesia in China. However, the scope of practice and the education for Chinese Anaesthesia Nurses is not standardized, varying from one geographic location to another. Furthermore, most nurses are not trained sufficiently to provide anaesthesia care. This study aimed to develop the first Anaesthesia Nurse Education Program in Mainland China based on the Educational Standards of the International Federation of Nurse Anaesthetists. The Delphi technique was applied to develop the scope of practice, competencies for Chinese Anaesthesia Nurses and education program. In 2014 the Anaesthesia Nurse Education Program established by the hospital applied for recognition by the International Federation of Nurse Anaesthetists. The Program's curriculum was evaluated against the IFNA Standards and recognition was awarded in 2015. The four-category, 50-item practice scope, and the three-domain, 45-item competency list were identified for Chinese Anaesthesia Nurses. The education program, which was established based on the International Federation of Nurse Anaesthetists educational standards and Chinese context, included nine curriculum modules. In March 2015, 13 candidates received and passed the 21-month education program. The Anaesthesia Nurse Education Program became the first program approved by the International Federation of Nurse Anaesthetists in China. Policy makers and hospital leaders can be confident that anaesthesia nurses graduating from this Chinese program will be prepared to demonstrate high level patient care as reflected in the recognition by IFNA of their adoption of international nurse anaesthesia education standards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical calculation of elastohydrodynamic lubrication methods and programs
Huang, Ping
2015-01-01
The book not only offers scientists and engineers a clear inter-disciplinary introduction and orientation to all major EHL problems and their solutions but, most importantly, it also provides numerical programs on specific application in engineering. A one-stop reference providing equations and their solutions to all major elastohydrodynamic lubrication (EHL) problems, plus numerical programs on specific applications in engineering offers engineers and scientists a clear inter-disciplinary introduction and a concise program for practical engineering applications to most important EHL problems
Nafukho, Fredrick Muyia; Alfred, Mary; Chakraborty, Misha; Johnson, Michelle; Cherrstrom, Catherine A.
2017-01-01
Purpose: The primary purpose of this study was to predict transfer of learning to workplace among adult learners enrolled in a continuing professional education (CPE) training program, specifically training courses offered through face-to-face, blended and online instruction formats. The study examined the predictive capacity of trainee…
A novel method for predicting the power outputs of wave energy converters
Wang, Yingguang
2018-03-01
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
Benchmarking pKa prediction methods for Lys115 in acetoacetate decarboxylase.
Liu, Yuli; Patel, Anand H G; Burger, Steven K; Ayers, Paul W
2017-05-01
Three different pK a prediction methods were used to calculate the pK a of Lys115 in acetoacetate decarboxylase (AADase): the empirical method PROPKA, the multiconformation continuum electrostatics (MCCE) method, and the molecular dynamics/thermodynamic integration (MD/TI) method with implicit solvent. As expected, accurate pK a prediction of Lys115 depends on the protonation patterns of other ionizable groups, especially the nearby Glu76. However, since the prediction methods do not explicitly sample the protonation patterns of nearby residues, this must be done manually. When Glu76 is deprotonated, all three methods give an incorrect pK a value for Lys115. If protonated, Glu76 is used in an MD/TI calculation, the pK a of Lys115 is predicted to be 5.3, which agrees well with the experimental value of 5.9. This result agrees with previous site-directed mutagenesis studies, where the mutation of Glu76 (negative charge when deprotonated) to Gln (neutral) causes no change in K m , suggesting that Glu76 has no effect on the pK a shift of Lys115. Thus, we postulate that the pK a of Glu76 is also shifted so that Glu76 is protonated (neutral) in AADase. Graphical abstract Simulated abundances of protonated species as pH is varied.
Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.
Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin
2014-09-06
Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.