WorldWideScience

Sample records for methane flames incineration

  1. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a

  2. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  3. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  4. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  5. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary

  6. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad; Hourani, Nadim; Chahine, May; Selim, Hatem; Sarathy, Mani; Farooq, Aamir

    2014-01-01

    Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry

  7. Incineration of oxygenated volatile organic compounds. Experimental study and kinetic modeling of the oxidation of methyl ethyl ketone, ethyl acetate and butan-2-ol in methane flames; Incineration de composes organiques volatils oxygenes. Etude experimentale et modelisation cinetique de l'oxydation de la methyl ethyl cetone, de l'acetate d'ethyle et du butan-2-ol dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, V

    2000-12-01

    This work deals with the low pressure (0.05 atm) degradation of three volatile organic compounds (VOCs): methyl-ethyl-ketone, ethyl acetate and butan-2-ol, in premixed stoichiometric laminar methane flames seeded with 1 to 3% of each VOC. Molar fraction profiles of species have been obtained using microprobe sampling coupled with a gas chromatography and a mass spectroscopy analysis. Temperature profiles have been obtained using the covered thermocouple technique in the presence of the microprobe. The addition of a VOC in the initial reagents mixture leads to an increase of the quantity of intermediate hydrocarbon compounds and in particular of some soot precursor species. The degradation of VOCs leads to the formation of oxygenated intermediates like methanol, dimethyl-ether, acetaldehyde, propanal, acetone and vinyl acetate, the type of VOC having an effect on the quantities produced. The degradation of a VOC can lead to the formation of more toxic or polluting compounds (methyl vinyl ketone, acetic acid and acrolein) than the VOC itself. In the conditions of the study, the intermediate compounds are totally destructed inside the reactional area of the flame front and are no more present in the burnt gases. Sub-mechanisms of VOC oxidation have been developed using experimental observations and the most recent recommendations of the literature. These sub-mechanisms comprise 49 species involved in 241 elementary reactions. Their validation has been performed by comparing the experiment with the kinetic modeling on the molar fraction profiles of the detected species. Experimental data are well reproduced by the model for most species. The addition of a VOC inside the initial reagents mixture creates an important reactivity increase, in particular in the case of butan-2-ol seeded flames. The analysis of reactional ways has permitted to draw out the main reactions responsible for the degradation of the 3 VOCs and the ways of formation and consumption of the

  8. TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME

    Science.gov (United States)

    The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...

  9. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  10. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  11. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

  12. Laminar flame properties and flame acceleration prediction of hydrogen-methane mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Coudoro, K. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Chaumeix, N. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Bentaib, A. [Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Paillard, C-E. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France)

    2011-07-01

    The combustion of a binary mixture of methane and hydrogen has been studied using 2 different experimental setups: the spherical bomb to investigate the fundamental flame properties of this mixture with air, initially at 100 kPa, at different initial temperatures (300 - 363 K) and for a wide range of equivalence ratios (0.8 - 1.4); ENACCEF to investigate the flame acceleration phenomena in smooth tube for mixtures initially at ambient conditions and for equivalence ratios ranging between 0.57 and 0.84. A detailed kinetic mechanism has been used to derive the activation energies needed for the flame acceleration analysis. (author)

  13. Incineration of oxygenated volatile organic compounds. Experimental study and kinetic modeling of the oxidation of methyl ethyl ketone, ethyl acetate and butan-2-ol in methane flames; Incineration de composes organiques volatils oxygenes. Etude experimentale et modelisation cinetique de l'oxydation de la methyl ethyl cetone, de l'acetate d'ethyle et du butan-2-ol dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, V.

    2000-12-01

    This work deals with the low pressure (0.05 atm) degradation of three volatile organic compounds (VOCs): methyl-ethyl-ketone, ethyl acetate and butan-2-ol, in premixed stoichiometric laminar methane flames seeded with 1 to 3% of each VOC. Molar fraction profiles of species have been obtained using microprobe sampling coupled with a gas chromatography and a mass spectroscopy analysis. Temperature profiles have been obtained using the covered thermocouple technique in the presence of the microprobe. The addition of a VOC in the initial reagents mixture leads to an increase of the quantity of intermediate hydrocarbon compounds and in particular of some soot precursor species. The degradation of VOCs leads to the formation of oxygenated intermediates like methanol, dimethyl-ether, acetaldehyde, propanal, acetone and vinyl acetate, the type of VOC having an effect on the quantities produced. The degradation of a VOC can lead to the formation of more toxic or polluting compounds (methyl vinyl ketone, acetic acid and acrolein) than the VOC itself. In the conditions of the study, the intermediate compounds are totally destructed inside the reactional area of the flame front and are no more present in the burnt gases. Sub-mechanisms of VOC oxidation have been developed using experimental observations and the most recent recommendations of the literature. These sub-mechanisms comprise 49 species involved in 241 elementary reactions. Their validation has been performed by comparing the experiment with the kinetic modeling on the molar fraction profiles of the detected species. Experimental data are well reproduced by the model for most species. The addition of a VOC inside the initial reagents mixture creates an important reactivity increase, in particular in the case of butan-2-ol seeded flames. The analysis of reactional ways has permitted to draw out the main reactions responsible for the degradation of the 3 VOCs and the ways of formation and consumption of the

  14. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    , and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  15. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen

  16. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    Science.gov (United States)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  17. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)

    International Nuclear Information System (INIS)

    Pitsch, H.; Steiner, H.

    2000-01-01

    The Lagrangian Flamelet Model is formulated as a combustion model for large-eddy simulations of turbulent jet diffusion flames. The model is applied in a large-eddy simulation of a piloted partially premixed methane/air diffusion flame (Sandia flame D). The results of the simulation are compared to experimental data of the mean and RMS of the axial velocity and the mixture fraction and the unconditional and conditional averages of temperature and various species mass fractions, including CO and NO. All quantities are in good agreement with the experiments. The results indicate in accordance with experimental findings that regions of high strain appear in layer like structures, which are directed inwards and tend to align with the reaction zone, where the turbulence is fully developed. The analysis of the conditional temperature and mass fractions reveals a strong influence of the partial premixing of the fuel. (c) 2000 American Institute of Physics

  18. Urinary metabolites of phosphate flame retardants in workers occupied with e-waste recycling and incineration.

    Science.gov (United States)

    Yan, Xiao; Zheng, Xiaobo; Wang, Meihuan; Zheng, Jing; Xu, Rongfa; Zhuang, Xi; Lin, Ying; Ren, Mingzhong

    2018-06-01

    Urinary metabolites of phosphate flame retardants (PFRs) were determined in workers from an electronic waste (e-waste) recycling site and an incineration plant, in order to assess the PFR exposure risks of workers occupied with e-waste recycling and incineration. Bis(2-chloroethyl) phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and diphenyl phosphate (DPHP) were the most frequently detected chemicals (82-93%). The median concentrations of BCEP, BDCIPP, and DPHP were 1.77, 0.23, and 0.70 ng/mL, and 1.44, 0.22, and 0.11 ng/mL in samples from the e-waste site and the incineration plant, respectively. Dibutyl phosphate (DBP) was detected in all samples from the incineration plant, with a median level of 0.30 ng/mL. The concentrations of BDCIPP (r = -0.31, p waste site. Negative and significant correlations were also observed between the concentrations of BCEP (r = -0.42, p incineration plant. No gender differences were observed in levels of PFR metabolites in urine samples (p > 0.05). Concentrations of BDCIPP in female were significantly correlated with occupational exposure time (r = -0.507, p  0.05). Overall, the workers with occupational exposure to PFRs had different profiles of urinary PFR metabolites. The age, occupational exposure time, and gender seemed not to be main factors mediating the exposure to PFRs for workers occupied with e-waste recycling and incineration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Experimental study of adiabatic cellular premixed flames of methane (ethane, propane) + oxygen + carbon dioxide mixtures

    NARCIS (Netherlands)

    Konnov, A.A.; Dyakov, I.V.

    2007-01-01

    Experimental studies of adiabatic cellular flames of CH4 + O2 + CO2, C2H6 + O2 + CO2, and C3H8 + O2 + CO2 are presented. Visual and photographic observations of the flames were performed to quantify their cellular structure. Non-stretched flames of methane and propane were stabilized at atmospheric

  20. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame

    Science.gov (United States)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN

    2018-02-01

    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.

  1. An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon

    Science.gov (United States)

    Tran, L.S.; Glaude, P.A.; Battin-Leclerc, F.

    2013-01-01

    The structures of three laminar premixed stoichiometric flames at low pressure (6.7 kPa): a pure methane flame, a pure ethanol flame and a methane flame doped by 30% of ethanol, have been investigated and compared. The results consist of concentration profiles of methane, ethanol, O2, Ar, CO, CO2, H2O, H2, C2H6, C2H4, C2H2, C3H8, C3H6, p-C3H4, a-C3H4, CH2O, CH3HCO, measured as a function of the height above the burner by probe sampling followed by on-line gas chromatography analyses. Flame temperature profiles have been also obtained using a PtRh (6%)-PtRh (30%) type B thermocouple. The similarities and differences between the three flames were analyzed. The results show that, in these three flames, the concentration of the C2 intermediates is much larger than that of the C3 species. In general, mole fraction of all intermediate species in the pure ethanol flame is the largest, followed by the doped flame, and finally the pure methane flame. PMID:24092946

  2. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  3. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed; Choi, Sang Kyu; Chung, Suk-Ho

    2016-01-01

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively

  4. Investigating the effects of critical phenomena in premixed methane-oxygen flames at cryogenic conditions

    Science.gov (United States)

    Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan

    2017-11-01

    Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.

  5. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    Science.gov (United States)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  6. An experimental study on turbulent lifted flames of methane in coflow jets at elevated temperatures

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2013-01-01

    An experimental study was conducted on the effects of initial temperature variation on the stabilization characteristics of turbulent nonpremixed flames in coflow jets of methane fuel diluted by nitrogen. The typical behavior seen in the study

  7. Effect of pressure on the transfer functions of premixed methane and propane swirl flames

    KAUST Repository

    Di Sabatino, Francesco

    2018-04-24

    This paper reports on the effect of pressure on the response of methane–air and propane–air swirl flames to acoustic excitation of the flow. These effects are analyzed on the basis of the flame transfer function (FTF) formalism, experimentally determined from velocity and global OH* chemiluminescence measurements at pressures up to 5 bar. In parallel, phase-locked images of OH* chemiluminescence are collected and analyzed in order to determine the associated flame dynamics. Flame transfer functions and visual flame dynamics at atmospheric pressure are found to be similar to previous studies with comparable experimental conditions. Regardless of pressure, propane flames exhibit a much larger FTF gain than methane flames. For both fuels, the effect of pressure primarily is to modify the gain response at the local maximum of the FTF, at a Strouhal number around 0.5 (176 Hz). For methane flames, this gain maximum increases monotonically with pressure, while for propane flames it increases from 1 to 3 bar and decreases from 3 to 5 bar. At this frequency and regardless of pressure, the flame motion is driven by flame vortex roll-up, suggesting that pressure affects the FTF by modifying the interaction of the flame with the vortex detached from the injector rim during a forcing period. The complex heat transfer, fluid dynamics, and combustion coupling in this configuration does not allow keeping the vortex properties constant when pressure is increased. However, the different trends of the FTF gain observed for methane and propane fuels with increasing pressure imply that intrinsic flame properties and fuel chemistry, and their variation with pressure, play an important role in controlling the response of these flames to acoustic forcing.

  8. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  9. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul

    2012-04-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  10. Experimental investigations and numerical simulations of methane cup-burner flame

    Directory of Open Access Journals (Sweden)

    Kubát P.

    2013-04-01

    Full Text Available Pulsation frequency of the cup-burner flame was determined by means of experimental investigations and numerical simulations. Simplified chemical kinetics was successfully implemented into a laminar fluid flow model applied to the complex burner geometry. Our methodical approach is based on the monitoring of flame emission, fast Fourier transformation and reproduction of measured spectral features by numerical simulations. Qualitative agreement between experimental and predicted oscillatory behaviour was obtained by employing a two-step methane oxidation scheme.

  11. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tahtouh, T.; Halter, F.; Mounaim-Rousselle, C. [Institut PRISME, Universite d' Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France); Samson, E. [PSA Peugeot Citroen (France)

    2009-10-15

    The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane-hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane-hydrogen-air-diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane-hydrogen-air-nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values. (author)

  12. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2017-01-01

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  13. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  14. Thermal Radiation Properties of Turbulent Lean Premixed Methane Air Flames

    National Research Council Canada - National Science Library

    Ji, Jun; Sivathanu, Y. R; Gore, J. P

    2000-01-01

    ... of turbulent premixed flames. Reduced cooling airflows in lean premixed combustors, miniaturization of combustors, and the possible use of radiation sensors in combustion control schemes are some of the practical reasons...

  15. Methane Bubble Flame Tower--A Spectacularly Engaging Way to Teach Density

    Science.gov (United States)

    Sandoval, Christopher

    2012-01-01

    This article presents a demonstration using methane bubble flame tower that offers a fun and relatively cheap way of demonstrating what happens when there is a density difference. Teachers can do this as a predict-observe-explain demonstration after the students have learned about density to extend their learning and get into some higher order…

  16. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.

    Science.gov (United States)

    Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-04-18

    To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C 2 H 5 OH+OH→Products+H 2 O is also discussed.

  17. A parametric study of microjet assisted methane/air turbulent flames

    International Nuclear Information System (INIS)

    Chouaieb, Sirine; Kriaa, Wassim; Mhiri, Hatem; Bournot, Philippe

    2017-01-01

    Highlights: • Microjet assisted methane/air turbulent flames are numerically investigated. • A parametric study concerning the microjet velocity and diameter is carried out. • Previous validation of temperature, mixture fraction and soot is enhanced. • Mixing and soot emission are controlled for higher velocities and lower diameters. • Soot production is reduced by 94% for a microjet velocity equal to 1 m/s. - Abstract: A parametric study of microjet assisted methane/air turbulent flames characteristics is numerically investigated. The Presumed Probability Density Function model and the Discrete Ordinates model are respectively considered for combustion and radiation modeling. The k-epsilon Standard model with Pope Correction is adopted as a turbulence closure model. The two step Tesner model is used to quantify the soot particle production in the flame configuration. Comparison with our previous work using the k-epsilon Realizable model shows that the k-epsilon Standard model with Pope Correction ensures better predictions. The microjet velocity and diameter effects on thermal field, mixing process and soot emission are then discussed. Numerical findings show that the microjet can be used as an efficient tool controlling methane/air turbulent flames. On the one hand, it is shown that the microjet creates an inner flame in the vicinity of the central nozzle exit but does not globally alter the methane/air flame shape. On the other hand, mixing process can be enhanced for high microjet Reynolds number either by increasing the microjet velocity or by decreasing its nozzle diameter for a constant microjet mass flow rate. Soot production can be consequently reduced for low microjet diameter and high velocity values.

  18. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland.

    Science.gov (United States)

    Harris, Eliza; Zeyer, Kerstin; Kegel, Rainer; Müller, Beat; Emmenegger, Lukas; Mohn, Joachim

    2015-01-01

    Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010-August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3 ± 4.0g N2O tonne(-1) waste (wet) (hereafter abbreviated as t(-1)) (0.4 ± 0.4 g N2O GJ(-1)), ten times lower than from plants with selective non-catalytic reduction (51.5 ± 10.6g N2O t(-1); 4.5 ± 0.9g N2O GJ(-1)). These emission factors, which are much lower than the value of 120g N2O t(-1) (10.4g N2O GJ(-1)) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of (14)N(15)NO relative to (15)N(14)NO - was found to be 17.6 ± 0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17-19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5 ± 5.6g CH4 t(-1) (0.2 ± 0.5g CH4 GJ(-1)), which is expected due to high incinerator temperatures and efficient combustion. Copyright © 2014 Elsevier Ltd

  19. Experimental Study of Hydrogen Addition Effects on a Swirl-Stabilized Methane-Air Flame

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-11-01

    Full Text Available The effects of H2 addition on a premixed methane-air flame was studied experimentally with a swirl-stabilized gas turbine model combustor. Experiments with 0%, 25%, and 50% H2 molar fraction in the fuel mixture were conducted under atmospheric pressure. The primary objectives are to study the impacts of H2 addition on flame lean blowout (LBO limits, flame shapes and anchored locations, flow field characteristics, precessing vortex core (PVC instability, as well as the CO emission performance. The flame LBO limits were identified by gradually reducing the equivalence ratio until the condition where the flame physically disappeared. The time-averaged CH chemiluminescence was used to reveal the characteristics of flame stabilization, e.g., flame structure and stabilized locations. In addition, the inverse Abel transform was applied to the time-averaged CH results so that the distribution of CH signal on the symmetric plane of the flame was obtained. The particle image velocimetry (PIV was used to detect the characteristics of the flow field with a frequency of 2 kHz. The snapshot method of POD (proper orthogonal decomposition and fast Fourier transform (FFT were adopted to capture the most prominent coherent structures in the turbulent flow field. CO emission was monitored with an exhaust probe that was installed close to the combustor exit. The experimental results indicated that the H2 addition extended the flame LBO limits and the operation range of low CO emission. The influence of H2 addition on the flame shape, location, and flow field was observed. With the assistance of POD and FFT, the combustion suppression impacts on PVC was found.

  20. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Eliza, E-mail: eliza.harris@empa.ch [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Zeyer, Kerstin [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Kegel, Rainer; Müller, Beat [FOEN, Federal Office for the Environment, Air Pollution Control and Chemicals, CH-3003 Berne (Switzerland); Emmenegger, Lukas; Mohn, Joachim [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2015-01-15

    plants with SNCR, which had considerable N{sub 2}O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N{sub 2}O – the enrichment of {sup 14}N{sup 15}NO relative to {sup 15}N{sup 14}NO – was found to be 17.6 ± 0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N{sub 2}O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5 ± 5.6 g CH{sub 4} t{sup −1} (0.2 ± 0.5 g CH{sub 4} GJ{sup −1}), which is expected due to high incinerator temperatures and efficient combustion.

  1. An experimental study on turbulent lifted flames of methane in coflow jets at elevated temperatures

    KAUST Repository

    Choi, Byungchul

    2013-01-01

    An experimental study was conducted on the effects of initial temperature variation on the stabilization characteristics of turbulent nonpremixed flames in coflow jets of methane fuel diluted by nitrogen. The typical behavior seen in the study showed that the liftoff height increased linearly with the jet velocity regardless of the initial temperature in the turbulent regime. Two models were investigated for predicting liftoff heights in the methane jets: the premixed flame model and the large-scale mixing model. For the premixed flame model, the liftoff heights in the methane jets were accurately predicted using the thermal diffusivity of the unburned gas temperature αst,0, instead of that of the burned gas temperature αst,b. For the large-scale mixing model, however, the prediction of liftoff heights differed slightly for the various fuel mole fractions. However, when considering the initial fuel mass fraction YF,0, the liftoff heights were successfully predicted. This result implies that the characteristics of the unburned fuel-air mixture play a crucial role for flame stabilization in coflow jets for a variety of initial conditions. In the turbulent regime, the blowout velocity and the liftoff height at blowout could be accurately predicted by the two models based on a consideration of the physical properties and the buoyancy effect of the initial temperature variation. © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition

    Energy Technology Data Exchange (ETDEWEB)

    Mardani, Amir; Tabejamaat, Sadegh [Department of Aerospace engineering, Amirkabir university of technology (Tehran polytechnic), Hafez Ave., PO. Box: 15875-4413, Tehran (Iran)

    2010-10-15

    Energy crises and the preservation of the global environment are placed man in a dilemma. To deal with these problems, finding new sources of fuel and developing efficient and environmentally friendly energy utilization technologies are essential. Hydrogen containing fuels and combustion under condition of the moderate or intense low-oxygen dilution (MILD) are good choices to replace the traditional ones. In this numerical study, the turbulent non-premixed CH{sub 4}+H{sub 2} jet flame issuing into a hot and diluted co-flow air is considered to emulate the combustion of hydrogen containing fuels under MILD conditions. This flame is related to the experimental condition of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154]. In general, the modelling is carried out using the EDC model, to describe turbulence-chemistry interaction, and the DRM-22 reduced mechanism and the GRI2.11 full mechanism to represent the chemical reactions of H{sub 2}/methane jet flame. The effect of hydrogen content of fuel on flame structure for two co-flow oxygen levels is studied by considering three fuel mixtures, 5%H{sub 2}+95%CH{sub 4}, 10%H{sub 2}+90%CH{sub 4} and 20% H{sub 2}+80%CH{sub 4}(by mass). In this study, distribution of species concentrations, mixture fraction, strain rate, flame entrainment, turbulent kinetic energy decay and temperature are investigated. Results show that the hydrogen addition to methane leads to improve mixing, increase in turbulent kinetic energy decay along the flame axis, increase in flame entrainment, higher reaction intensities and increase in mixture ignitability and rate of heat release. (author)

  3. Effects of Driving Frequency on Propagation Characteristics of Methane - Air Premixed Flame Influenced by Ultrasonic Standing Wave

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Seok; Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Seo, Hang Seok [Hanwha Corporation, DaeJeon (Korea, Republic of)

    2015-02-15

    An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

  4. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs

    International Nuclear Information System (INIS)

    Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka

    2014-01-01

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, < 0.01–0.048 μg m −3 and < 0.5–68 μg kg −1 . Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and

  5. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs

    Energy Technology Data Exchange (ETDEWEB)

    Matsukami, Hidenori, E-mail: matsukami.hidenori@nies.go.jp [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Watanabe, Mafumi [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Takigami, Hidetaka [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan)

    2014-09-15

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, < 0.01–0.048 μg m{sup −3} and < 0.5–68 μg kg{sup −1}. Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of

  6. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul

    2010-12-01

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800. K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. © 2010 The Combustion Institute.

  7. Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure

    Science.gov (United States)

    Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi

    We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.

  8. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs.

    Science.gov (United States)

    Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka

    2014-09-15

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and unintentional POPs. Incineration is regarded as a best available technology (BAT) for waste management systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Impact of Vitiation on a Swirl-Stabilized and Premixed Methane Flame

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-10-01

    Full Text Available Vitiation refers to the condition where the oxygen concentration in the air is reduced due to the mix of dilution gas. The vitiation effects on a premixed methane flame were investigated on a swirl-stabilized gas turbine model combustor under atmospheric pressure. The main purpose is to analyze the combustion stability and CO emission performance in vitiated air and compare the results with the flame without vitiation. The N2, CO2, and H2O (steam were used as the dilution gas. Measurements were conducted in a combustor inlet temperature of 384 K and 484 K. The equivalence ratio was varied from stoichiometric conditions to the LBO (Lean Blowout limits where the flame was physically blown out from the combustor. The chemical kinetics calculation was performed with Chemkin software to analyze the vitiation effects on the flame reaction zone. Based on the calculation results, the changes in the temperature gradient, CO concentration, and active radicals across the flame reaction zone were identified. The time-averaged CH chemiluminescence images were recorded and the results indicated the features of the flame shape and location. The CH signal intensity provided the information about the heat-release zone in the combustor. The combustion LBO limits were measured and the vitiation of CO2 and H2O were found to have a stronger impact to elevate the LBO limits than N2. Near the LBO limits, the instability of the flame reaction was revealed by the high-speed chemiluminescence imaging and the results were analyzed by FFT (Fast Fourier Transfer. CO emission was measured with a water-cooled probe which is located at the exit of the combustor. The combustion vitiation has been found to have the compression effect on the operation range for low CO emission. However, this compression effect could be compensated by improving the combustor inlet temperature.

  10. Flame stability and heat transfer analysis of methane-air mixtures in catalytic micro-combustors

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The mechanisms of heat and mass transfer for loss of stability were elucidated. • Stability diagrams were constructed and design recommendations were made. • Flame characteristics were examined to determine extinction and blowout limits. • Heat loss greatly affects extinction whereas wall materials greatly affect blowout. • Radiation causes the flame to shift downstream. - Abstract: The flame stability and heat transfer characteristics of methane-air mixtures in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of wall thermal conductivity, surface emissivity, fuel, flow velocity, and equivalence ratio were explored to provide guidelines for optimal design. Furthermore, the underlying mechanisms of heat and mass transfer for loss of flame stability were elucidated. Finally, stability diagrams were constructed and design recommendations were made. It was found that the heat loss strongly affects extinction, whereas the wall thermal conductivity greatly affects blowout. The presence of homogeneous chemistry extends blowout limits, especially for inlet velocities higher than 6 m/s. Increasing transverse heat transfer rate reduces stability, whereas increasing transverse mass transfer rate improves stability. Surface radiation behaves similarly to the heat conduction within the walls, but opposite trends are observed. High emissivity causes the flame to shift downstream. Methane exhibits much broader blowout limits. For a combustor with gap size of 0.8 mm, a residence time higher than 3 ms is required to prevent breakthrough, and inlet velocities lower than 0.8 m/s are the most desirable operation regime. Further increase of the wall thermal conductivity beyond 80 W/(m·K) could not yield an additional increase in stability.

  11. Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Kelley, A.P.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2010-05-15

    The ignition temperature of nitrogen-diluted mixtures of methane and ethylene counterflowing against heated air was measured up to five atmospheres. In addition, the stretch-corrected laminar flame speeds of mixtures of air, methane and ethylene were determined from outwardly-propagating spherical flames up to 10 atmospheres, for extensive range of the lean-to-rich equivalence ratio. These experimental data, relevant to low- to moderately-high-temperature ignition chemistry and high-temperature flame chemistry, respectively, were subsequently compared with calculations using two detailed kinetic mechanisms. A chemical explosive mode analysis (CEMA) was then conducted to identify the dominant ignition chemistry and the role of ethylene addition in facilitating nonpremixed ignition. Furthermore, the hierarchical structure of the associated oxidation kinetics was examined by comparing the sizes and constituents of the skeletal mechanisms of the pure fuels and their mixtures, derived using the method of directed relation graph (DRG). The skeletal mechanism was further reduced by time-scale analysis, leading to a 24-species reduced mechanism from the detailed mechanism of USC Mech II, validated within the parameter space of the conducted experiments. (author)

  12. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    International Nuclear Information System (INIS)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il

    2009-01-01

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame

  13. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il [Chungang University, Seoul (Korea, Republic of)

    2009-04-15

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame.

  14. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    Energy Technology Data Exchange (ETDEWEB)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  15. Effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames

    International Nuclear Information System (INIS)

    Guo, H.; Tayebi, B.; Galizzi, C.; Escudie, D.

    2009-01-01

    Hydrogen (H 2 ) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H 2 . H 2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.

  16. Flame Structure and Dynamics for an Array of Premixed Methane-Air Jets

    Science.gov (United States)

    Nigam, Siddharth P.; Lapointe, Caelan; Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Rieker, Gregory B.; Hamlington, Peter E.

    2017-11-01

    Premixed flames have been studied extensively, both experimentally and computationally, and their properties are reasonably well characterized for a range of conditions and configurations. However, the premixed combustion process is potentially much more difficult to predict when many such flames are arranged in a closely spaced array. These arrays must be better understood, in particular, for the design of industrial burners used in chemical and heat treatment processes. Here, the effects of geometric array parameters (e.g., angle and diameter of jet inlets, number of inlets and their respective orientation) and operating conditions (e.g., jet velocities, fuel-air ratio) on flame structure and dynamics are studied using large eddy simulations (LES). The simulations are performed in OpenFOAM using multi-step chemistry for a methane-air mixture, and temperature and chemical composition fields are characterized for a variety of configurations as functions of height above the array. Implications of these results for the design and operation of industrial burners are outlined.

  17. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames

    DEFF Research Database (Denmark)

    Cuoci, Alberto; Frassoldati, Alessio; Faravelli, Tiziano

    2013-01-01

    In the present paper, synchrotron VUV photoionization mass spectrometry is used to study the detailed chemistry of co-flow methane diffusion flames with different dilution ratios. The experimental results constitute a comprehensive characterization of species important for PAH and soot formation...

  18. An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames

    International Nuclear Information System (INIS)

    Abdul-Sater, Hassan; Krishnamoorthy, Gautham

    2013-01-01

    Twenty four, laboratory scale, laminar to transitional, diffusion oxy-methane flames were simulated employing different radiation modeling options and their predictions compared against experimental measurements of: temperature, flame length and radiant fraction. The models employed were: gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model, non-adiabatic extension of the equilibrium based mixture fraction model and investigations into the effects of: the thermal boundary conditions, soot and turbulence radiation interactions (TRI). Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. Flame lengths determined through the axial profiles of OH confirmed with the experimental trends by increasing with increase in fuel-inlet Reynolds numbers and decreasing with the increase in O 2 composition in oxidizer. The temperature and flame length predictions were not sensitive to the radiative property model employed. There were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The inclusion of soot model and TRI model did not affect our predictions as a result of low soot volume fractions and the radiation emission enhancement to the temperature fluctuations being localized to the flame sheet. -- Highlights: • Twenty four, lab scale, laminar to transitional, diffusion, oxy-methane flames were simulated. • Equilibrium model adequately predicted the temperature and flame lengths. • The experimental trends in radiant fractions were replicated. • Gray and non-gray model differences in radiant fractions were amplified at low Re. • Inclusion of soot and TRI models did not affect our predictions

  19. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  20. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: A computational and experimental study

    Science.gov (United States)

    Cao, Su; Ma, Bin; Giassi, Davide; Bennett, Beth Anne V.; Long, Marshall B.; Smooke, Mitchell D.

    2018-03-01

    In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane-air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P-1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.

  1. Simulation of Electron and Ion Transport in Methane-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Choi, Sangkyu; Bisetti, Fabrizio; Chung, Suk Ho

    2010-11-01

    The spatial distribution of charged species in a methane-air counterflow diffusion flame is simulated with a detailed ion chemistry. The electric field induced by the distribution of charged species is calculated and compared to that obtained invoking the ambipolar diffusion assumption. The two calculations showed identical profiles for charged species and electric field. The profiles of ion mole fractions show two peaks: one near the maximum temperature and a second peak on the oxidizer side. The major ions near the maximum temperature are electron, C2H3O+ and H3O+. CHO3- and H3O+ contribute to the second peak. These profiles are quite different from those adopting a simplified three-step mechanism based solely on E-, CHO+ and H3O+, which shows only a single peak. Reaction pathway analyses showed that near the flame region, the proton is transferred by the path of CHO+ -> H3O+ -> C2H3O+ -> CHO+ in a circulating manner. In the second peak, CHO3- is produced though the pathway of E- -> O- -> OH- -> CHO3-. The sensitivity of the charged species profiles to transport properties is investigated, and it is found that the variation of charged species profiles near peak temperature is relatively small, while on the oxidizer side, it is quite sensitive to transport properties.

  2. Experimental and numerical investigations on flame stability of methane/air mixtures in mesoscale combustors filled with fibrous porous media

    International Nuclear Information System (INIS)

    Liu, Yi; Ning, Daoguan; Fan, Aiwu; Yao, Hong

    2016-01-01

    Highlights: • Flame stability in mesoscale channels with fibrous porous media was investigated. • Standing combustion waves were observed in the channels of 6-mm and 5-mm diameter. • The standing combustion wave was not observed in the channel with a diameter of 4 mm. • Flame velocity was inversely proportional to equivalence ratio and channel diameter. • A sharp drop in the efficiency was seen for the 4-mm channel due to wall quenching. - Abstract: Flame stability of methane/air mixtures in mesoscale channels with different diameters (6 mm, 5 mm and 4 mm) filled with fibrous porous media was experimentally investigated. Standing combustion waves (namely, stationary flame) are observed under low inlet velocity and high equivalence ratio conditions. Moreover, the standing wave regime becomes narrower as the channel diameter is reduced from 6 mm to 5 mm and vanishes for the 4-mm channel. For a fixed equivalence ratio, the flame length becomes shorter at a smaller channel or a less inlet velocity. Regarding the downstream propagating wave, its propagation velocity increases with the decrease of channel diameter. Splitting flame appears at large inlet velocities. Besides, at low equivalence ratios, the downstream propagating flames grow into small flame balls and can survive until the channel exit. Numerical results demonstrate that for a smaller channel, although the total heat loss rate is reduced, its heat loss ratio is increased, which leads to a lower wall temperature level and the flame is quenched out near the wall. The combustion efficiency is decreased significantly for the 4-mm channel due to fuel leakage from the near-wall “dead space”.

  3. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.

    2017-07-04

    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  4. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.; Elbaz, Ayman M.; Gong, C.; Bai, X.S.; Zheng, H.T.; Roberts, William L.

    2017-01-01

    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  5. Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity

    International Nuclear Information System (INIS)

    Mu Haibao; Yu Lin; Li Ping; Zhang Guanjun; Tang Chenglong; Wang Jinhua

    2015-01-01

    Recently, plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios. In this paper, a dielectric barrier discharge (DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process, and several properties of combustion are considered. First, in the presence or absence of plasma discharge, physical appearance of the flame is examined and analyzed. Second, the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method. Finally, the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process. We also discuss the possible kinetic regime of plasma-assisted combustion. Experimental results imply that plasma discharge applied to the premixed CH4/O2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10, with the flame speed improved by 17% to 35%. It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer, especially at a low equivalence ratio. (paper)

  6. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna

    2017-05-24

    This paper reports on the quantification of the heating induced by nanosecond repetitively pulsed (NRP) glow discharges on a lean premixed methane-air flame. The flame, obtained at room temperature and atmospheric pressure, has an M-shape morphology. The equivalence ratio is 0.95 and the thermal power released by the flame is 113 W. The NRP glow discharges are produced by high voltage pulses of 10 ns duration, 7 kV amplitude, applied at a repetition frequency of 10 kHz. The average power of the plasma, determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma enhancement. The temperature evolution in the flame area shows that the thermal impact of NRP glow discharges is in the uncertainty range of the technique, i.e., +/- 40 K.

  7. A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames

    KAUST Repository

    Belhi, Memdouh

    2017-10-19

    Two-dimensional axisymmetric simulations for counterflow nonpremixed methane-air flames were undertaken as an attempt to reproduce the experimentally observed electro-hydrodynamic effect, also known as the ionic wind effect, on flames. Incompressible fluid dynamic solver was implemented with a skeletal chemical kinetic mechanism and transport property evaluations. The simulation successfully reproduced the key characteristics of the flames subjected to DC bias voltages at different intensity and polarity. Most notably, the simulation predicted the flame positions and showed good qualitative agreement with experimental data for the current-voltage curve. The flame response to the electric field with positive and negative polarity exhibited qualitatively different characteristics. In the negative polarity of the configuration considered, a non-monotonic variation of the current with the voltage was observed along with the existence of an unstable regime at an intermediate voltage level. With positive polarity, a typical monotonic current-voltage curve was obtained. This behavior was attributed to the asymmetry in the distribution of the positive and negative ions resulting from ionization processes. The present study demonstrated that the mathematical and computational models for the ion chemistry, transport, and fluid dynamics were able to describe the key processes responsible for the flame-electric field interaction.

  8. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  9. Clean burn: Incinerators get more efficient

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Combustion efficiency and accuracy of today's new breed of incinerators is discussed. The latest of these units are capable of delivering 99.99 per cent combustion efficiency with no visible flame, black smoke or detectable odour. Near-complete combustion is achieved with incineration because of the very high temperatures reached in the enclosed combustion chamber as a combination of temperature, time for burning, and a good mix of gases and oxygen. Controlling these inputs is the key to efficient incineration, as is high quality fibre refractory lining; control means control of the stack top temperature, which will affect what comes out of the top water and how well the combustion byproducts are dispersed. Until recently, incinerators have not been highly regarded by the oil industry. However, with the growing concerns about greenhouse gases, carcinogens and in response to increasing regulations aimed at reducing venting and flaring, incinerators are coming into their own. Today they are seen more and more frequently in well testing, coalbed methane testing, at battery sites and at gas plants

  10. Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wiswall, J.T.; Li, J.; Wooldridge, M.S.; Im, H.G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2011-01-15

    A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and computational methods were used to quantify the equivalence ratio at the lean extinction limit ({phi}{sub ext}) and the corresponding stagnation surface temperature (T{sub s}). A range of flow rates (57-90 cm/s) and corresponding strain rates were considered. The results indicate that the gas-phase methane/air flames are sufficiently strong relative to the heterogeneous chemistry for T{sub s} conditions less than 750 K that the platinum does not affect {phi}{sub ext}. The computational results are in good agreement with the experimentally observed trends and further indicate that higher reactant flow rates (>139 cm/s) and levels of dilution (>{proportional_to}10% N{sub 2}) are required to weaken the gas-phase flame sufficiently for surface reaction to play a positive role on extending the lean flammability limits. (author)

  11. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence

    Science.gov (United States)

    Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup

    2018-06-01

    In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.

  12. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, A.V.; Levinsky, H.B.

    1999-09-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.

  13. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    Science.gov (United States)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  14. Predicting Radiative Heat Transfer in Oxy-Methane Flame Simulations: An Examination of Its Sensitivities to Chemistry and Radiative Property Models

    Directory of Open Access Journals (Sweden)

    Hassan Abdul-Sater

    2015-01-01

    Full Text Available Measurements from confined, laminar oxy-methane flames at different O2/CO2 dilution ratios in the oxidizer are first reported with measurements from methane-air flames included for comparison. Simulations of these flames employing appropriate chemistry and radiative property modeling options were performed to garner insights into the experimental trends and assess prediction sensitivities to the choice of modeling options. The chemistry was modeled employing a mixture-fraction based approach, Eddy dissipation concept (EDC, and refined global finite rate (FR models. Radiative properties were estimated employing four weighted-sum-of-gray-gases (WSGG models formulated from different spectroscopic/model databases. The mixture fraction and EDC models correctly predicted the trends in flame length and OH concentration variations, and the O2, CO2, and temperature measurements outside the flames. The refined FR chemistry model predictions of CO2 and O2 deviated from their measured values in the flame with 50% O2 in the oxidizer. Flame radiant power estimates varied by less than 10% between the mixture fraction and EDC models but more than 60% between the different WSGG models. The largest variations were attributed to the postcombustion gases in the temperature range 500 K–800 K in the upper sections of the furnace which also contributed significantly to the overall radiative transfer.

  15. Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model

    Energy Technology Data Exchange (ETDEWEB)

    Ihme, Matthias; See, Yee Chee [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2010-10-15

    An unsteady flamelet/progress variable (UFPV) model has been developed for the prediction of autoignition in turbulent lifted flames. The model is a consistent extension to the steady flamelet/progress variable (SFPV) approach, and employs an unsteady flamelet formulation to describe the transient evolution of all thermochemical quantities during the flame ignition process. In this UFPV model, all thermochemical quantities are parameterized by mixture fraction, reaction progress parameter, and stoichiometric scalar dissipation rate, eliminating the explicit dependence on a flamelet time scale. An a priori study is performed to analyze critical modeling assumptions that are associated with the population of the flamelet state space. For application to LES, the UFPV model is combined with a presumed PDF closure to account for subgrid contributions of mixture fraction and reaction progress variable. The model was applied in LES of a lifted methane/air flame. Additional calculations were performed to quantify the interaction between turbulence and chemistry a posteriori. Simulation results obtained from these calculations are compared with experimental data. Compared to the SFPV results, the unsteady flamelet/progress variable model captures the autoignition process, and good agreement with measurements is obtained for mixture fraction, temperature, and species mass fractions. From the analysis of scatter data and mixture fraction-conditional results it is shown that the turbulence/chemistry interaction delays the ignition process towards lower values of scalar dissipation rate, and a significantly larger region in the flamelet state space is occupied during the ignition process. (author)

  16. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  17. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  18. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung

    2012-08-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  19. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung; Kuk Kim, Hyung; Chung, Suk-Ho

    2012-01-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  20. ESR studies of Bunsen-type methane-air flames. II. The effects of the addition of halogenated compounds to the secondary air on the hydrogen atoms in the flame

    Energy Technology Data Exchange (ETDEWEB)

    Noda, S; Fujimoto, S; Claesson, O; Yoshida, H

    1983-09-01

    Hydrogen atoms in a methane-air Bunsen-type flame were detected by the flame-in-cavity ESR method. The addition of a halogenated compound to the secondary air reduced the H-atom concentration linearly with an increase in additive concentration. These 8 halogenated compounds examined showed increased effectiveness in scavenging H atoms in this order: hydrochloric acid < dichlorodifluoromethane < chloroform < methyl chloride < methylene chloride < trichlorofluoromethane < carbon tetrachlorie < methyl bromide. The chemical effects of these additives on the combustion reactions agree well with the inhibitor indices for these compounds. 14 references, 3 figures.

  1. Investigation of flame structure and burning intensity of partially premixed methane enrichment of syngas using OH-PLIF and kinetic simulation

    Science.gov (United States)

    Pu, Ge; Huang, Beibei; Zhang, Xun; Du, Jiantai; Zhu, Tuanhui; Chen, Bei

    2018-05-01

    Various experiments were conducted to study the combustion characteristics of partially premixed methane enrichment of syngas by using the OH-PLIF technique. Experiments were conducted on a co-flow burner, and the methane concentration (XCH4 = CH4/(H2+CO+CH4)) was varied from 0 to 20%, the overall equivalence ratio was varied from 0.4 to 1.2 and the inner equivalence ratio was varied from 1.5 to 3.5. Kinetic simulation was conducted by using OPPDIF module of CHEMKIN-Pro software. Results show that an increase in XCH4 and ϕoverall weakens the OH signal intensity. Adding methane into the fuel greatly increases the height of the inner flame front, and the increase of methane concentration has a negative effect on flame propagation speed. Meanwhile, simulation results remain consistent with the experiments. The main OH radical production reaction changes from R46: H+HO2 = 2OH to R38: H+O2 = O+OH when methane concentration contained in the fuel mixture increases. Sensitivity analysis also indicates that reaction which plays a dominant effect on temperature changes with the increase of methane concentration.

  2. Modeling of the flame propagation in coal-dust- methane air mixture in an enclosed sphere volume

    International Nuclear Information System (INIS)

    Krainov, A Yu; Moiseeva, K M

    2016-01-01

    The results of the numerical simulation of the flame front propagation in coal-dust- methane-air mixture in an enclosed volume with the ignition source in the center of the volume are presented. The mathematical model is based on a dual-velocity two-phase model of the reacting gas-dispersion medium. The system of equations includes the mass-conversation equation, the impulse-conversation equation, the total energy-conversation equation of the gas and particles taking into account the thermal conductivity and chemical reactions in the gas and on the particle surface, mass-conversation equation of the mixture gas components considering the diffusion and the burn-out and the particle burn-out equation. The influence of the coal particle mass on the pressure in the volume after the mixture burn out and on the burn-out time has been investigated. It has been shown that the burning rate of the coal-dust methane air mixtures depends on the coal particle size. (paper)

  3. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2010-01-01

    regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted

  4. The Effect of Nitrogen and Argon Dilution on Methane Oxidation in Laminar Flames

    Czech Academy of Sciences Publication Activity Database

    Kozubková, M.; Kozubek, E.; Nevrlý, V.; Bitala, P.; Štěpánek, O.; Dlabka, J.; Vašinek, M.; Bojko, M.; Zelinger, Zdeněk; Kubát, Pavel; Grigorová, E.

    2012-01-01

    Roč. 42, č. 0 (2012), s. 1826-1839 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA MŠk LD12020 Institutional support: RVO:61388955 Keywords : dilution * methane oxidation * global chemistry Subject RIV: CF - Physical ; Theoretical Chemistry

  5. EFFECTS OF SIMPLIFIED CHEMICAL KINETIC MODEL ON THE MICRO-FLAME STRUCTURE AND TEMPERATURE OF THE LEAN PREMIXED METHANE-AIR MIXTURES

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2015-07-01

    Full Text Available The effect of simplified chemical kinetic model on the micro-flame structure, central axis and wall temperatures were investigated with different one-step global chemical kinetic mechanisms following Mantel, Duterque and Fernández-Tarrazo models. Numerical investigations of the premixed methane-air flame in the micro-channel and lean conditions were carried out to compare and analyze the effect of the comprehensive chemical kinetic mechanisms. The results indicate that one-step global chemical kinetic mechanism affects both the micro-flame shape and the combustion temperature. Among three simulation models, Mantel model allows a stable micro-flame with a bamboo shoot form, which anchor at the inlet. Duterque model gives a stable elongated micro-flame with a considerable ignition delay, and a dead zone with fluid accumulation is observed at the entrance, which may explain the very high combustion temperature and the fast reaction rate obtained, despite the micro-flame development presents a very hot spot and causes a broadening of the combustion zone. Fernández-Tarrazo model results in a rapid extinction and doesn't seem to take all the kinetic behavior into account for the appropriate micro-combustion simulations.

  6. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  7. Mensuration of the propagation speed of mixed flames of Methane-air and gas natural, Guajira - air using the method of the angle of the cone

    International Nuclear Information System (INIS)

    Benjumea Hernandez, Pedro Nel; Higuita Bedoya Carlos Mario; Cordoba Perez, Camilo Andres

    2004-01-01

    In this work, the burning velocity of premixed laminar flames of methane-air and Guajira natural gas-air mixtures was measured by the cone's angle method using a cylindrical Bunsen burner. In the development of the experiments, a fuel concentration in the fuel-air mixture ranging from 9% -11% was taken. The maximum value of the burning velocity was obtained for mixtures a little bit richer than the stoichiometric case. For methane, this flame velocity was 44.1 cm/s and for the Guajira natural gas was 43.1 cm/s. From the results, it was possible to see that the Guajira natural gas inert content led to a burning velocity value lesser than the methane's, in spite of the Guajira natural gas having a higher heavy hydrocarbon content. Methane burning velocity values following similar trends to those reported by the literature were obtained. The systematic error found in the results is mainly a consequence of inaccuracies in the method used to measure the fuel-gas mixture velocity at the burner exit

  8. Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Emma C. Lovell

    2015-03-01

    Full Text Available Silica particles were prepared by flame spray pyrolysis (FSP as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM was probed. Increasing the precursor feed rate: (i progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii altered the silanol groups on the silica surface; and (iii introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt % nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics.

  9. A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames

    KAUST Repository

    Belhi, Memdouh; Lee, Bok Jik; Bisetti, Fabrizio; Im, Hon G.

    2017-01-01

    and polarity. Most notably, the simulation predicted the flame positions and showed good qualitative agreement with experimental data for the current-voltage curve. The flame response to the electric field with positive and negative polarity exhibited

  10. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu [Department of Mechanical Engineering, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata-700 107, West Bengal (India); Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  11. Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions

    KAUST Repository

    Elbaz, Ayman M.

    2015-12-19

    Detailed measurements are presented of the turbulent flow field, gas species concentrations and temperature field in a non-premixed methane swirl flame. Attention is given to the effect of the quarl geometry on the flame structure and emission characteristics due to its importance in gas turbine and industrial burner applications. Two different quarls were fitted to the burner exit, one a straight quarl and the other a diverging quarl of 15° half cone angle. Stereoscopic Particle Image Velocimetry (SPIV) was applied to obtain the three components of the instantaneous velocity on a vertical plane immediately downstream of the quarl exit. Temperature and gaseous species measurements were made both inside and downstream of the quarls, using a fine wire thermocouple and sampling probe, respectively. This work provides experimental verification by complementary techniques. The results showed that although the main flame structures were governed by the swirl motion imparted to the air stream, the quarl geometry, fuel loading and air loading also had a significant effect on the flow pattern, turbulence intensity, mixture formation, temperature distribution, emissions and flame stabilization. Particularly, in the case of the straight quarl flame, the flow pattern leads to strong, rapid mixing and reduces the residence time for NO formation within the internal recirculation zone (IRZ). However, for the diverging quarl flames, the recirculation zone is shifted radially outward, and the turbulent interaction between the central fuel jet and the internal recirculation zone IRZ induces another small vortex between these two flow features. Less mixing near the diverging quarl exit is observed, with a higher concentration of NO and CO in the post-combustion zone. The instantaneous flow field for both flames showed the existence of small scale vortical structure near the shear layers which were not apparent in the time averaged flow field. These structures, along with high levels

  12. Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body

    International Nuclear Information System (INIS)

    Baigmohammadi, Mohammadreza; Tabejamaat, Sadegh; Zarvandi, Jalal

    2015-01-01

    In this work, combustion characteristics of premixed methane-hydrogen/air in a micro reactor equipped with a catalytic bluff body is investigated numerically. In this regard, the detailed chemistry schemes for gas phase (homogeneous) and the catalyst surface (heterogeneous) are used. The applied catalytic bluff body is coated with a thin layer of platinum (Pt) on its surface. Also, the lean reactive mixture is entered to the reactor with equivalence ratio 0.9. The results of this study showed that the use of catalytic bluff body in the center of a micro reactor can significantly increase the flame stability, especially at high velocities. Moreover, it is found that a catalytic bluff body with several cavities on its surface and also high thermal conductivity improves the flame stability more than a catalytic bluff body without cavities and low thermal conductivity. Finally, it is maintained that the most advantage of using the catalytic bluff body is its easy manufacturing process as compared to the catalytic wall. This matter seems to be more prevalent when we want to create several cavities with various sizes on the bluff-body. - Highlights: • Presence of a bluff body in a micro reactor can move the flame towards the upstream. • Catalytic bluff body can significantly increase flame stability at high velocities. • Creating non-catalytic cavities on the bluff body promotes homogeneous reactions. • Segmented catalytic bluff body improves the flame stability more than a simple one. • Creating the segments on a bluff body is easier compared to a wall

  13. Incineration of toluene and chlorobenzene in a laboratory incinerator

    International Nuclear Information System (INIS)

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators

  14. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna; Lee, Byeong Jun; Satija, Aman; Krishna, S.; Steinmetz, Scott; Al Khesho, Issam; Hazzaa, Omar; Lucht, Robert P.; Cha, Min; Roberts, William L.

    2017-01-01

    , determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma

  15. Deformation Study of Lean Methane-Air Premixed Spherically Expanding Flames under a Negative Direct Current Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-09-01

    Full Text Available This paper compares numerical simulations with experiments to study the deformation of lean premixed spherically expanding flames under a negative direct current (DC electric field. The experiments, including the flame deformation and the ionic distribution on the flame surface were investigated in a mesh to mesh electric field. Besides, a numerical model of adding an electric body force to the positive ions on the flame surface was also established to perform a relevant simulation. Results show that the spherical flame will acquire an elliptical shape with a marked flame stretch in the horizontal direction and a slight inhibition in the vertical direction under a negative DC electric field. Meanwhile, a non-uniform ionic distribution on the flame surface was also detected by the Langmuir probe. The simulation results from the numerical model show good agreement with experimental data. According to the velocity field analysis in simulation, it was found the particular motion of positive ions and neutral molecules on the flame surface should be responsible for the special flame deformation. When a negative DC electric field was applied, the majority of positive ions and colliding neutral molecules will form an ionic flow along the flame surface by a superposition of the electric field force and the aerodynamic drag. The ionic flow was not uniform and mainly formed on the upper and lower sides, so it will lead to a non-uniform ionic distribution along the flame surface. What’s more, this ionic flow will also induce two vortexes both inside and outside of the flame surface due to viscosity effects. The external vortexes could produce an entraining effect on the premixed gas and take away the heat from the flame surface by forced convection, and then suppress the flame propagation in the vertical direction, while, the inner vortexes would scroll the burned zones and induce an inward flow at the horizontal center, which could be the reason for the

  16. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES

    Science.gov (United States)

    Cicoria, David; Chan, C. K.

    2017-07-01

    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  17. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2012-01-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons

  18. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC-12 INCINERATION

    Science.gov (United States)

    The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame ...

  19. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  20. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  1. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Science.gov (United States)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  2. Incineration: efficient, economical and environmental

    International Nuclear Information System (INIS)

    Mascarenhas, A.

    2003-01-01

    Significant improvements in incinerator design and technology resulting in optimal performance, increased reliability and reduced capital and operating costs are discussed. The objective of the discussion is to draw attention to incineration as a cost effective and environmentally responsible means of disposing of the waste products generated by the oil and gas industry, while improving air quality and reduce greenhouse gas emissions at the same time. The main point put forward is that because the global warming potential of methane is 21 times greater than that of carbon dioxide, the complete combustion potential of incineration, combined with the fact that incineration requires significantly less fuel gas to combust low heat content streams, offers significantly reduced greenhouse gas emissions and improved air quality

  3. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  4. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  5. Incineration of ion exchange resins using concentric burners

    International Nuclear Information System (INIS)

    Fukasawa, T.; Chino, K.; Kawamura, F.; Kuriyama, O.; Yusa, H.

    1985-01-01

    A new incineration method, using concentric burners, is studied to reduce the volume of spent ion exchange resins generated from nuclear power plants. Resins are ejected into the center of a propane-oxygen flame and burned within it. The flame length is theoretically evaluated by the diffusion-dominant model. By reforming the burner shape, flame length can be reduced by one-half. The decomposition ratio decreases with larger resin diameters due to the loss of unburned resin from the flame. A flame guide tube is adapted to increase resin holding time in the flame, which improves the decomposition ratio to over 98 wt%

  6. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.; Altay, H.M.; Ghoniem, A.F.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange

  7. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.

    Science.gov (United States)

    Hsu, Paul S; Gragston, Mark; Wu, Yue; Zhang, Zhili; Patnaik, Anil K; Kiefer, Johannes; Roy, Sukesh; Gord, James R

    2016-10-01

    Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested.

  8. Experimental study and kinetic modeling of the thermal degradation of aromatic volatile organic compounds (benzene, toluene and xylene-para) in methane flames; Etude experimentale et modelisation cinetique de la degradation thermique des composes organiques volatils aromatiques benzenes, toluene et para-xylene dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, L.

    2001-02-01

    This study treats of the thermal degradation of a family of aromatic volatile organic compounds (VOCs) in laminar premixed methane flames at low pressure. The experimental influence of benzene, toluene and xylene-para on the structure of a reference methane flame has been studied. The molar fraction profiles of the stable and reactive, aliphatic, aromatic and cyclic species have been established by the coupling of the molecular beam sampling/mass spectroscopy technique with the gas chromatography/mass spectroscopy technique. Temperature profiles have been measured using a covered thermocouple. A detailed kinetic mechanism of oxidation of these compounds in flame conditions has been developed. Different available sub-mechanisms have been used as references: the GDF-Kin 1.0 model for the oxidation of methane and the models of Tan and Franck (1996) and of Lindstedt and Maurice (1996) in the case of benzene and toluene. In the case of para-xylene, a model has been developed because no mechanisms was available in the literature. These different mechanisms have been refined, completed or adjusted by comparing the experimental results with those obtained by kinetic modeling. The complete kinetic mechanism, comprising 156 chemical species involved in 1072 reactions allows to reproduce all the experimental observations in a satisfactory manner. The kinetic analysis of reactions velocity has permitted to determine oxidation kinetic schemes for benzene, toluene, xylene-para and for the cyclopentadienyl radical, main species at the origin of the rupture of the aromatic cycle. Reactions of recombination with the methyl radicals formed during methane oxidation, of the different aromatic or aliphatic radicals created during the oxidation of aromatics, play an important role and lead to the formation of several aromatic pollutants (ethyl-benzene for instance) or aliphatic pollutants (butadiene or penta-diene for instance) in flames. (J.S.)

  9. Influence of heat transfer modes on the scale-up of solvent pool burning in controlled-air incinerators

    International Nuclear Information System (INIS)

    Gandhi, P.D.; Orloff, D.I.

    1982-01-01

    An analytical modes of pool burning in a controlled-air incinerator was developed. Incinerator performance predicted by the model compared favorably with laboratory-scale incineration experiments. The model was extended to a full-scale incinerator, using results from an intermediate pilot-scale incinerator. The full-scale results showed the influence of various modes of heat transfer, and the importance of flame emissivity and incinerator wall temperature in controlling the burning rate. The influence of pan geometry on consumption rate was also evaluated for the full-scale incinerator

  10. Role of soot in the transport of chlorine in hydrocarbon-air diffusion flames

    International Nuclear Information System (INIS)

    Venkatesh, S.; Saito, K.; Stencel, J.M.; Majidi, V.; Owens, M.

    1991-01-01

    Soot is an inevitable product of incomplete combustion in many practical combustion systems such as automobiles, incinerators and furnaces. Recent studies on chlorinated hydrocarbon combustion have shown that soot and other praticulates (eg. fly ash) play an important role in secondary reactions leading to the formation of chlorine substituted polyaromatic hydrocarbons (PAHs). In order to attain very high destruction efficiencies the fundamental chemical and physical processes that are associated with combustion, and post-combustion cleanup must be well understood. In order to understand the effect of chlorine on the soot formed in a combustion system, fundamental studies using a coflow laminar hydrocarbon-air diffusion flame have been carried out. Phenomenological studies have revealed the effect of chlorine on the visible structure of the flame. Soot inception activation energies were estimated for methane, ethane and ethylene diffusion flames for the case of with and without chlorine addition. No significant difference in the activation energy was estimated for either case. The effect of chlorine on the soot escape rate of an acetylene diffusion flame was estimated. The soot formed in these diffusion flames was analyzed for chlorine using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and by laser induced plasma spectroscopy (LIPS). REsults from these techniques indicate the presence of chlorine in the soot formed. In this paper a chemical scheme to explain the chlorine found in the soot is proposed based on known theories of soot formation

  11. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  12. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  13. Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2015-01-01

    thermocouple and sampling probe, respectively. This work provides experimental verification by complementary techniques. The results showed that although the main flame structures were governed by the swirl motion imparted to the air stream, the quarl geometry

  14. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  15. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  16. Distribution of electric potential in hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shcherbakov, N.D.; Plitsyn, V.T.

    1978-01-01

    A study was made of the distribution of electrical potential and temperatures in laminar methane and propane--butane flames when the excess air coefficient in the mixture is changed from 0 to 1.2. 7 references, 3 figures.

  17. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  18. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    Science.gov (United States)

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  19. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  20. Assessment of relative POHC destruction at EPA's incineration research facility

    International Nuclear Information System (INIS)

    Carroll, G.J.; Lee, J.W.

    1992-01-01

    As part of their permitting process, hazardous waste incinerators must undergo demonstration tests, or trial burns, during which their ability to meet EPA performance standards is evaluated. Among the performance standards is a minimum destruction and removal efficiency (DRE) for principal organic hazardous constituents (POHCs) in the incinerator waste feed. In accordance with the regulations promulgated under the Resource Conservation and Recovery Act (RCRA), selection POHCs for incinerator trial burns is to be based on the degree of difficulty of incineration of the organic constituents in the waste and on their concentration or mass in the waste feed. In order to predict the relative difficulty of incineration specific compounds, several incinerability ranking approaches have been proposed, including a system based on POHC heats of combustion and a system based on thermal stability under pyrolytic condition. The latter ranking system was developed by the University of Dayton Research Institute (UDRI) under contract to the US EPA Risk Reduction Engineering Laboratory (RREL). The system is supported largely by non-flame, laboratory-scale data and is based on kinetic calculations indicating that contributor to emissions of undestroyed organic compounds. The subject tests were conducted to develop data on POHC behavior in a larger-scale, conventional incineration environment. 5 refs., 3 tabs

  1. Numerical simulation of premixed turbulent methane combustion

    International Nuclear Information System (INIS)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.

    2001-01-01

    In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame

  2. Loading device for incinerator

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1983-01-01

    An incinerator for radioactive waste is described. Heat radiation from the incinerator into the loading device is reduced by the design of the slider with a ceramic plate and the conical widening of the pot, and also by fixing a metal plate between the pot and the floor. (PW) [de

  3. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  4. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  5. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  6. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  7. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  8. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  9. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  10. Effect of Stoichiometry and Strain Rate on Transient Flame Response

    National Research Council Canada - National Science Library

    Knio, Omar M; Najm, Habib N

    2000-01-01

    The interaction of a premixed methane/air flame with a counter-rotating vortex pair is analyzed using a parallel low-Mach-number computational model that is based on a detailed C1C2 chemical mechanism...

  11. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  12. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  13. Incineration conference 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of the 1990 incineration conference. The proceedings are organized under the following headings: Regulations- international comparison, Current trends in facility design, Oxygen enhancement, Metals, Off-gas treatment, Operating experience: transportable, Materials, Operating experience: R/A and mixed, Incineration of specific wastes, Medical waste management, Ash qualification, Ash solidification/ immobilization, Innovative technologies, Operating experience : medical waste, Instrumentation and monitoring, process control and modeling, Risk assessment/management, Operating considerations

  14. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  15. The use of oxygen in hazardous waste incineration

    International Nuclear Information System (INIS)

    Ho, M.D.; Ding, M.G.

    1989-01-01

    The use of advanced oxygen combustion technologies in hazardous waste (such as PCBs and hydrocarbons) incineration has emerged in the last two years as one of the most significant breakthroughs among all the competing treatment technologies. For many years, industrial furnaces have used oxygen enrichment of the combustion air and oxygen-fuel burners, but with conventional technologies a high oxygen level generally poses problems. The flame temperature is high, leading to high NOx formation and local overeating. Different technical approaches to overcome these problems and their respective effectiveness will be reviewed. Previously, commercial oxygen enrichment in incinerators was limited to a rather modest level applications of much higher oxygen enrichment levels in hazardous waste incinerators

  16. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  17. 30 CFR 75.1106-1 - Test for methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for methane. 75.1106-1 Section 75.1106-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-1 Test for methane. Until December 31, 1970, a permissible flame safety lamp may be used to make tests for methane required by the...

  18. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  19. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi

    1985-01-01

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  20. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  1. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  2. Seventy years of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Dumbleton, Brian

    1995-06-08

    A third waste incineration plant, which will conform to new United Kingdom emission standards is currently under construction at Tyseley in Birmingham. The plant will generate 25MW of electricity for 25,000 households by burning 350,000 t of municipal wastes per year. The site has been used for such energy from waste schemes since 1926. The new plant includes the latest air pollution abatement equipment designed to absorb mercury vapour and dioxins together with fabric filters. Other improvements at the Tyseley site include a new purpose built public waste disposal facility, clinical waste and animal carcass incineration and the recovery of 16,000t of ferrous metals per year for recycling. Because these waste products are incinerated it also therefore reduce`s Birmingham`s need for landfill sites. (UK)

  3. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  4. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    mainly between the fuel nozzle and the lifted flame edge. On the other hand, they were formed just prior to the flame edge for the non-autoignited lifted flames. The effect of fuel pyrolysis and partial oxidation were found to be important in explaining autoignited liftoff heights, especially in the Mild combustion regime. Flame structures of autoignited flames were investigated numerically for syngas (CO/H2) and methane fuels. The simulations of syngas fuel accounting for the differential diffusion have been performed by adopting several kinetic mechanisms to test the models ability in predicting the flame behaviors observed previously. The results agreed well with the observed nozzle-attached flame characteristics in case of non-autoignited flames. For autoignited lifted flames in high temperature regime, a unique autoignition behavior can be predicted having HO2 and H2O2 radicals in a broad region between the nozzle and stabilized lifted flame edge. Autoignition characteristics of laminar nonpremixed methane jet flames in high- temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  5. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING THE INCINERATION OF RECOVERED CFC-11

    Science.gov (United States)

    The report gives results of an investigation of the formation of products of incomplete combustion (PICS) during "recovered" trichlorofluoromethane (CFC-11) incineration. Tests involved burning the recovered CFC-11 in a propane gas flame. combustion gas samples were taken and an...

  6. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.; Elbaz, Ayman M.; Roberts, William L.; Senosy, Mohamed S.; Zayed, Mohamed F.; Juddoo, Mrinal; Masri, Assaad R.

    2016-01-01

    of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some

  7. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    Science.gov (United States)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  8. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  9. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  10. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  11. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  12. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  13. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom

    2017-01-05

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  14. Mechanism of the flame ionization detector. II. Isotope effects and heteroatom effects

    DEFF Research Database (Denmark)

    Holm, Torkil

    1997-01-01

    reactions in the hydrogen flame of compounds added to the hydrogen gas in low concentrations were followed. Alcohols, ethers, ketones, and esters all produced methane and carbon monoxide, while amines produced methane and hydrogen cyanide, halogen compounds methane and hydrogen halide, etc. The FID response...

  15. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  16. Comparison of Combustion properties of simulated biogas and methane

    International Nuclear Information System (INIS)

    Diaz Gonzalez, Carlos; Arrieta, Andres Amell; Suarez, Jose Luis

    2009-01-01

    The utilization of new renewable energy sources has been of special interest during the past years, seeking to decrease our dependence on fossil fuels and the corresponding environmental impact derived from their use. The combustion properties of a simulated gas composed of 60% methane and 40% carbon dioxide in volume are determined in this paper by means of calculation algorithms developed by the GASURE team, comparing them to pure methane properties. Furthermore, the effect of these properties on premixed flame characteristic phenomena is demonstrated. These properties were determined by theoretical estimations. The characteristic phenomena (laminar deflagration velocity, flame structure, radiation pattern) are determined experimentally. Results show a high effect of carbon dioxide in the combustion properties and characteristic parameters of a biogas premixed flame such as laminar deflagration velocity, flame structure and gas-methane exchangeability problems. The difference regarding flame structure and combustion properties lead to a difference in radiation pattern of the gases studied.

  17. Comparison of combustion properties of simulated biogas and methane

    International Nuclear Information System (INIS)

    Diaz G, Carlos; Amell, Andres; Suarez, Jose

    2010-01-01

    The utilization of new renewable energy sources has been of special interest during the past years, seeking to decrease our dependence on fossil fuels and the corresponding environmental impact derived from their use. The combustion properties of a simulated gas composed of 60% methane and 40% carbon dioxide in volume are determined in this paper by means of calculation algorithms developed by the GASURE team, comparing them to pure methane properties. Furthermore, the effect of these properties on premixed flame characteristic phenomena is demonstrated. These properties were determined by theoretical estimations. The characteristic phenomena (laminar deflagration velocity, flame structure, radiation pattern) are determined experimentally. Results show a high effect of carbon dioxide in the combustion properties and characteristic parameters of a biogas premixed flame such as laminar deflagration velocity, flame structure and gas-methane exchangeability problems. The difference regarding flame structure and combustion properties lead to a difference in radiation pattern of the gases studied.

  18. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case

    International Nuclear Information System (INIS)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-01-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N 2 O emission factors from MSW incineration plants, and calculate the N 2 O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N 2 O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N 2 O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N 2 O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N 2 O emissions from MSW incineration comprised 19% of the total N 2 O emissions.

  19. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.

    Science.gov (United States)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N(2)O emission factors from MSW incineration plants, and calculate the N(2)O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N(2)O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N(2)O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153g-N(2)O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N(2)O emissions from MSW incineration comprised 19% of the total N(2)O emissions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  1. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1993-03-01

    Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  2. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  3. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  4. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  5. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Caramelle, D.; Florestan, J.; Waldura, C.

    1990-01-01

    This paper reports that one of the methods used to reduce the volume of radioactive wastes is incineration. Incineration also allows combustible organic wastes to be transformed into inert matter that is stable from the physico-chemical viewpoint and ready to be conditioned for long-term stockage. The quality of the ashes obtained (low carbon content) depends on the efficiency of combustion. A good level of efficiency requires a combustion yield higher than 99% at the furnace door. Removal efficiency is defined as the relation between the CO 2 /CO + CO 2 concentrations multiplied by 100. This implies a CO concentration of the order of a few vpm. However, the gases produced by an incineration facility can represent a danger for the environment especially if toxic or corrosive gases (HCL,NO x ,SO 2 , hydrocarbons...) are given off. The gaseous effluents must therefore be checked after purification before they are released into the atmosphere. The CO and CO 2 measurement gives us the removal efficiency value. This value can also be measured in situ at the door of the combustion chamber. Infrared spectrometry is used for the various measurements: Fourier transform infrared spectrometry for the off-gases, and diode laser spectrometry for combustion

  6. Decontamination factors of ceramic filter in radioactive waste incineration system

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Yoshiki, Shinya; Kouyama, Hiroaki; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    A suspension-firing type radioactive waste incineration system is developed and cold demonstration testing of ceramic filters for the system are carried out. The incineration system, which is useful for a wide variety of waste materials, can serve to simplify the facilities and to reduce the costs for waste disposal. The incineration system can be used for drying-processing of concentrated waste liquids and disposal of flame resistant materials including ion exchange resins and rubber, as well as for ordinary combustible solid materials. An on-line backwash system is adopted to allow the ceramic filters to operate stably for a long period of time. For one-step filtering using the ceramic filter, the decontamination factor is greater than 10 5 for the processing of various wastes. In a practical situation, there exist vapor produced by the spray drier and the cladding in used ion exchange resin, which act to increase the decontamination performance of the ceramic filters to ensure safe operation. For the waste incineration system equipped with a waste gas processing apparatus consisting of a ceramic filter and HEPA filter, the overall decontamination factor is expected to be greater than 10 6 at portions down to the outlet of the ceramic filter and greater than 10 8 at portions down to the outlet of the HEPA filter. (Nogami, K.)

  7. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2017-01-01

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  8. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  9. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  10. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  11. Augmenting the Structures in a Swirling Flame via Diffusive Injection

    Directory of Open Access Journals (Sweden)

    Jonathan Lewis

    2014-01-01

    Full Text Available Small scale experimentation using particle image velocimetry investigated the effect of the diffusive injection of methane, air, and carbon dioxide on the coherent structures in a swirling flame. The interaction between the high momentum flow region (HMFR and central recirculation zone (CRZ of the flame is a potential cause of combustion induced vortex breakdown (CIVB and occurs when the HMFR squeezes the CRZ, resulting in upstream propagation. The diffusive introduction of methane or carbon dioxide through a central injector increased the size and velocity of the CRZ relative to the HMFR whilst maintaining flame stability, reducing the likelihood of CIVB occurring. The diffusive injection of air had an opposing effect, reducing the size and velocity of the CRZ prior to eradicating it completely. This would also prevent combustion induced vortex breakdown CIVB occurring as a CRZ is fundamental to the process; however, without recirculation it would create an inherently unstable flame.

  12. Measurements and Experimental Database Review for Laminar Flame Speed Premixed Ch4/Air Flames

    Science.gov (United States)

    Zubrilin, I. A.; Matveev, S. S.; Matveev, S. G.; Idrisov, D. V.

    2018-01-01

    Laminar flame speed (SL ) of CH4 was determined at atmospheric pressure and initial gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to simulate SL . The measurements were compared with available literature results. The data determined with the heat flux method agree with some previous burner measurements and disagree with the data from some vessel closed method and counterflow method. The GRI 3.0 mechanism was able to reproduce the present experiments. Laminar flame speed was determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based on experimental data and calculations was obtained SL dependence on pressure and temperature. The resulting of dependence recommended use during the numerical simulation of methane combustion.

  13. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  14. Investigation of Scalar Filtered Density Function in Turbulent Partially Premixed Flames

    National Research Council Canada - National Science Library

    Tong, Chenning

    2006-01-01

    ... using measurement data obtained in turbulent partially premixed methane/air (Sandia) flames. For SGS scalar variance small compared to its mean, the FMDF is not far from Gaussian and the SGS scalar is well mixed...

  15. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk; Chung, Suk-Ho; Kim, Hwanho

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity

  16. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  17. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.; Chen, Bingjie; Han, Jie; Selim, Hatem; Belhi, Memdouh; Karakaya, Yasin; Kasper, Tina; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2016-01-01

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  18. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.

    2016-06-15

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  19. Experimental studies of flame stability limits of biogas flame

    International Nuclear Information System (INIS)

    Dai Wanneng; Qin Chaokui; Chen Zhiguang; Tong Chao; Liu Pengjun

    2012-01-01

    Highlights: ► Premixed biogas flame stability for RTBs was studied on different conditions. ► An unusual “float off” phenomenon was observed. ► Decrease of port diameter or gas temperature or methane content motivates lifting. ► Increase of methane content or gas temperature or port diameter motivates yellow tipping. ► Lifting curves become straight lines when semi-logarithmic graph paper is applied. - Abstract: Flame stability of premixed biogas flame for Reference Test Burner (RTB) was investigated. In this study, six kinds of test gases were used to simulate biogas in which CO 2 volume fraction varied from 30% to 45%. A series of experiments were conducted on two RTBs with different port diameters and at different outlet unburned mixture temperatures. It was found that the lifting and yellow tipping limits show similar trends regardless of the biogas components, port diameters and mixture temperatures. A “float off” phenomenon could be observed at low gas flow rate and low primary air ratio. Low mixture temperature, small ports and high CO 2 concentration in biogas can lead to the unstable condition of “float off”. The lifting limits are enhanced with an increase of port diameter or mixture temperature and with a decrease of CO 2 concentration. The yellow tipping limits are extended with an increase of CO 2 concentration and with a decrease of mixture temperature or port diameter. In addition, the lifting limit curve becomes a straight line when semi-logarithmic graph paper is applied. The intercept increases with a decrease of the CO 2 concentration in biogas and with an increase of port diameter or gas temperature.

  20. 40 CFR 761.70 - Incineration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Incineration. 761.70 Section 761.70... and Disposal § 761.70 Incineration. This section applies to facilities used to incinerate PCBs... regular intervals of no longer than 15 minutes. (4) The temperatures of the incineration process shall be...

  1. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  2. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  3. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    Science.gov (United States)

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai

    2016-01-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938

  4. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  5. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  6. NR4.00002: Response of a laminar M-shaped premixed flame to plasma forcing

    KAUST Repository

    Lacoste, Deanna A.; Moeck, Jonas P.; Cha, Min; Chung, Suk-Ho

    2015-01-01

    We report on the response of a lean methane-air flame to non-thermal plasma forcing. The set-up consists of an axisymmetric burner, with a nozzle made of a quartz tube of 7-mm inlet diameter. The equivalence ratio is 0.9 and the flame is stabilized

  7. A numerical study of a premixed flame on a slit burner

    NARCIS (Netherlands)

    Somers, L.M.T.; Goey, de L.P.H.

    1995-01-01

    A numerical study of a premixed methane/air flame on a 4 mm slit burner is presented. A local grid refinement technique is used to deal with large gradients and curvature of all variables encountered in the flame, keeping the number of grid points within reasonable bounds. The method used here leads

  8. Incinerator for radioactive wastes

    International Nuclear Information System (INIS)

    Warren, J.H.; Hootman, H.E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburn chamber for off-gases. The latter is formed by vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary a magazine feeds waste to a horizontal tube forming the primary combustion chamber. (author)

  9. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  10. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  11. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  12. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.

    Science.gov (United States)

    Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua

    2017-04-05

    Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6

  13. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  14. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  15. Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique

    International Nuclear Information System (INIS)

    Nasserzadeh, V.; Swithenbank, J.; Jones, B.

    1995-01-01

    The problem of measuring gas-residence time in large incinerators was studied by the pseudo-random binary sequence (PRBS) stimulus tracer response technique at the Sheffield municipal solid-waste incinerator (35 MW plant). The steady-state system was disturbed by the superimposition of small fluctuations in the form of a pseudo-random binary sequence of methane pulses, and the response of the incinerator was determined from the CO 2 concentration in flue gases at the boiler exit, measured with a specially developed optical gas analyser with a high-frequency response. For data acquisition, an on-line PC computer was used together with the LAB Windows software system; the output response was then cross-correlated with the perturbation signal to give the impulse response of the incinerator. There was very good agreement between the gas-residence time for the Sheffield MSW incinerator as calculated by computational fluid dynamics (FLUENT Model) and gas-residence time at the plant as measured by the PRBS tracer technique. The results obtained from this research programme clearly demonstrate that the PRBS stimulus tracer response technique can be successfully and economically used to measure gas-residence times in large incinerator plants. It also suggests that the common commercial practice of characterising the incinerator operation by a single-residence-time parameter may lead to a misrepresentation of the complexities involved in describing the operation of the incineration system. (author)

  16. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  17. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  18. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  19. Mechanism of the flame ionization detector. II. Isotope effects and heteroatom effects

    DEFF Research Database (Denmark)

    Holm, Torkil

    1997-01-01

    The relative molar flame ionization detecton (FID) response (RMR) for a hydrocarbon does not change when deuterium is substituted for hydrogen. The exception is methane for which an inverse deuterium effect of 3..5% is observed for tetradeuteriomethane. [13C]Methane shows an inverse isotope effect...... of 2%. The reason for the small or non-existent isotope effects is that H/2H exchange takes place in the pre-combustion hydrogenolysis in the flame. This was shown by taking samples from the lower part of the flame by means of a fused silica capillary probe. By the same technique the hydrogenolytic...

  20. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  1. Waste incinerating plant

    Energy Technology Data Exchange (ETDEWEB)

    1972-12-01

    This plant is provided with a NKK-Ferunst type reciprocating stage fire lattice which has a good ventilating effect and a proper stirring and loosening effect, achieving a high combustion rate, and has also a gas flow system by which gas can flow in the reverse direction to adjust its flow for seasonal variations in the quality of waste. Also, a room in which the exhaust gas is mixed is provided in this plant as a help for the complete neutralization and combustion of acid gas such as hydrogen chloride and imperfect combustion gas from plastic waste contained in wastes. In this system, waste can accept a sufficient radiant heat from the combustion gas, the furnace wall, and the ceiling; even on the post combustion fire lattice the ashes are given heat enough to complete the post combustion, so that it can be completely reduced to ashes. For these reasons, this type of incinerator is suitable for the combustion of low-calorie wastes such as city wastes. The harmful gases resulting from the combustion of wastes are treated completely by desulfurization equipment which can remove the oxides of sulfur. This type of plant also can dispose of a wide variety of wastes, and is available in several capacities from 30 tons per 8 hr to 1,200 tons per 24 hr.

  2. Growth of fractal structures in flames with silicon admixture

    NARCIS (Netherlands)

    Smirnov, B. M.; Dutka, M.; van Essen, V. M.; Gersen, S.; Visser, P.; Vainchtein, D.; De Hosson, J. Th. M.; Levinsky, H. B.; Mokhov, A. V.

    Transmission electron microscopy (TEM) measurements and theoretical analysis are combined to construct the physical picture of formation of SiO2 fractal aggregates in a methane/hexamethyldisiloxane/air atmospheric pressure flame. The formation of SiO2 fractal aggregates is described as a multistage

  3. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  4. Soot emissions from turbulent diffusion flames burning simple alkane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Canteenwalla, P.M.; Johnson, M.R. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Thomson, K.A.; Smallwood, G.J. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology

    2007-07-01

    A classic problem in combustion involves measurement and prediction of soot emissions from turbulent diffusion flames. Very high-sensitivity measurements of particulate matter (PM) from very low-sooting diffusion flames burning methane and other simple alkane fuels have been enabled from recent advances in laser-induced incandescence (LII). In order to quantify soot emissions from a lab-scale turbulent diffusion flame burner, this paper presented a study that used LII to develop a sampling protocol. The purpose of the study was to develop an experimentally based model to predict PM emissions from flares used in industry using soot emissions from lab-scale flares. Quantitative results of mass of soot emitted per mass of fuel burned were presented across a range of flow conditions and fuels. The experiment used digital imaging to measure flame lengths and estimate flame residence times. Comparisons were also made between current measurements and results of previous researchers for soot in the overfire region. The study also considered the validity applicability of buoyancy based models for predicting and scaling soot emissions. The paper described the experimental setup including sampling system and flame length imaging. Background information on soot yield and a comparison of flame residence time definitions were provided. The results and discussion of results were also presented. It was concluded that the results highlighted the subjective nature of flame length measurements. 10 refs., 4 figs.

  5. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  6. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  7. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Zayed, M.F.; Samy, M.; Roberts, William L.; Mansour, Mohy S.

    2015-01-01

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work

  8. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  9. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  10. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  11. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  12. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  13. Experimental study of flame stability in biogas premix system

    International Nuclear Information System (INIS)

    Diaz G, Carlos A; Amell A Andres; Cardona Luis F

    2008-01-01

    Utilization of new renewable energy sources have had a special interest in last years looking for decrease the dependence of fossil fuels and the environmental impact generated for them. This work studies experimentally the flame stability of a simulated biogas with a volumetric composition of 60% methane and 40% carbon dioxide. The objective of this study is to obtain information about design and interchangeability of gases in premixed combustion systems that operate with different fuel gases. The critical velocity gradient was the stability criteria used. Utilization of this criteria and the experimental method followed, using a partial premixed burner, stability flame diagram of biogas studied had been obtained. Presence of carbon dioxide has a negative effect in flame stability, decreasing significantly the laminar flame speed and consequently, the stability range of biogas burners because of apparition of blow off.

  14. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2012-03-01

    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly adiabatic conditions. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. Results show a bell-shaped flame stabilizing above the burner plate hole, with a U-shaped section anchored between neighboring holes. The base of the positively curved U-shaped section of the flame is positioned near the stagnation point, at a location where the flame displacement speed is equal to the flow speed. This location is determined by the combined effect of heat loss and flame stretch on the flame displacement speed. As the mass flow rate of the reactants is increased, the flame displacement speed at this location varies non-monotonically. As the inlet velocity is increased, the recirculation zone grows slowly, the flame moves downstream, and the heat loss to the burner decreases, strengthening the flame and increasing its displacement speed. As the inlet velocity is raised, the stagnation point moves downstream, and the flame length grows to accommodate the reactants mass flow. Concomitantly, the radius of curvature of the flame base decreases until it reaches an almost constant value, comparable to the flame thickness. While the heat loss decreases, the higher flame curvature dominates thereby reducing the displacement speed of the flame base. For a stable flame, the gradient of the flame base displacement speed normal to the flame is higher than the gradient of the flow speed along the same direction, leading to dynamic stability. As inlet velocity is raised further, the former decreases while the latter increases until the stability condition is violated, leading to blowoff. The flame speed during blow off is determined by the feedback between the

  15. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    Science.gov (United States)

    Driscoll, James F.

    2001-01-01

    pocket, which burns inwardly. Shadowgraphs at 1000 frames/sec quantify the Markstein number and flame speed. A Low-Laser Power PIV System was developed and is being added to the drop package. Numerical computations were required to explain why the Markstein numbers measured for the inwardly-propagating flames differ from those of outward propagating flames; this is an important research issue in the assessment of the Theory of Flame Stretch. The RUN-1DL code (developed by Prof. B. Rogg) was run for IPF and OPFs with complex methane and propane chemistry. Results confirmed that Ma for the IPFs are larger than for OPFs as was observed experimentally. Physical reasons for these new findings about the Theory of Flame Stretch are being determined from the experiments and the computations. Several journal papers have been published; the drop package is described in the AIAA Journal, while the one-g results appear in three other journal papers.

  16. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  17. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  18. Lifted Turbulent Jet Flames

    Science.gov (United States)

    1993-04-14

    flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion

  19. Development of incineration and incineration-melting system for radioactive incombustible wastes

    International Nuclear Information System (INIS)

    Karita, Y.; Kanagawa, Y.; Teshima, T.

    2000-01-01

    Radioactive combustible solid wastes produced by nuclear power plants are generally incinerated for the purpose of volume reduction and stabilization. However incombustible wastes, such as PVC and rubber wastes are not incinerated and are still being stored since the off-gas treatment problems of a large amount of soot and harmful HCl and SO x gas need to be resolved. The authors have developed a new types of incineration system which consists of a water-cooling jacket type incinerator, ceramic filter, HEPA and wet scrubber. And as an application of its incinerator, the hybrid incineration-melting furnace, which is a unification of the incinerator and induction melting furnace, is being tested. Furthermore, the new type of dry absorber for removing HCl and SO x is also being tested. This report mainly describes an outline and the test results of the above incineration system, and secondly, the possibility of the incineration-melting system and dry absorber. (author)

  20. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    Science.gov (United States)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  1. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    Science.gov (United States)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  2. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat

    2010-03-17

    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  3. Liftoff characteristics of partially premixed flames under normal and microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lock, Andrew J.; Briones, Alejandro M.; Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Qin, Xiao [Department of Mechanical & amp; Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Puri, Ishwar K. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Hegde, Uday [National Center for Microgravity Research, Cleveland, OH 44135 (United States)

    2005-11-01

    An experimental and computational investigation on the liftoff characteristics of laminar partially premixed flames (PPFs) under normal (1-g) and microgravity ({mu}-g) conditions is presented. Lifted methane-air PPFs were established in axisymmetric coflowing jets using nitrogen dilution and various levels of partial premixing. The {mu}-g experiments were conducted in the 2.2-s drop tower at the NASA Glenn Research Center. A time-accurate, implicit algorithm that uses a detailed description of the chemistry and includes radiation effects is used for the simulations. The predictions are validated through a comparison of the flame reaction zone topologies, liftoff heights, lengths, and oscillation frequencies. The effects of equivalence ratio, gravity, jet velocity, and radiation on flame topology, liftoff height, flame length, base structure, and oscillation frequency are characterized. Both the simulations and measurements indicate that under identical conditions, a lifted {mu}-g PPF is stabilized closer to the burner compared with the 1-g flame, and that the liftoff heights of both 1-g and {mu}-g flames decrease with increasing equivalence ratio and approach their respective nonpremixed flame limits. The liftoff height also increases as the jet velocity is increased. In addition, the flame base structure transitions from a triple- to a double-flame structure as the flame liftoff height decreases. A modified flame index is developed to distinguish between the rich premixed, lean premixed, and nonpremixed reaction zones near the flame base. The 1-g lifted flames exhibit well-organized oscillations due to buoyancy-induced instability, while the corresponding {mu}-g flames exhibit steady-state behavior. The effect of thermal radiation is to slightly decrease the liftoff heights of both 1-g and {mu}-g flames under coflow conditions.

  4. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna

    2017-01-05

    Flame quenching by heat loss to a surface continues to be an active area of combustion research. Close wall temperature measurements in an isothermal wall-stabilized flame are reported in this work. Conventional N-vibrational Coherent Anti-Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K). Methane/air and ethylene/air stoichiometric flames for various global strain rates based on exit bulk velocities are plotted and compared. CH* chemiluminescence is employed to determine the flame location relative to the wall. Flame locations are shown to move closer to the wall with increasing strain rates in addition to higher near-wall temperatures. Peak temperatures for ethylene are considerably higher (~250-300K) than peak temperatures for methane. Preheat zone profiles are similar for different strain rates across fuels. This work demonstrates close wall precise temperature measurments using CARS.

  5. Demonstration test of 'multi-purpose incinerating melter system'

    International Nuclear Information System (INIS)

    Miyazaki, Hitoshi; Tanimoto, Kenichi; Wakui, Hitoshi; Oasada, Kaoru; Ishikawa, Fuyuhiko.

    1994-01-01

    A Multi-Purpose Incinerating Melter System (MIMS) has been developed as a volume reduction technique for a wide variety of radwastes including flame retardants such as spent resin, and non-combustible materials such as concrete, glass and steel. In the MIMS, these wastes are incinerated and/or melted at temperatures between 1,000 and 1,500degC generated by fossil fueled burner to produce obsidian-like ingots with high integrity. A demonstration test program was carried out from 1989 until 1991 using an engineering-scale demonstration unit. In the test program, various simulated wastes with traces of 60 Co, 54 Mn, 59 Fe, 137 Cs, 22 Na and 106 Ru were treated to obtain decontamination factor (DF) data and leach-resistance data of the products. The summarized results drawn from the 13 runs of demonstrative operations are the following: (1) Most involatile radionuclides are transferred into solidified products. (2) Global DF of the system excluding a HEPA filter ranged 1x10 4 thru 1x10 5 for 60 Co, 2x10 2 thru 2x10 3 for 137 Cs and 2x10 2 thru 1x10 4 for 106 Ru. (3) Leaching resistance of the solidified product is a match for that of a typical borosilicate glass waste form. (author)

  6. Demonstration test of 'multi-purpose incinerating melter system'

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Hitoshi; Tanimoto, Kenichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Wakui, Hitoshi; Oasada, Kaoru; Ishikawa, Fuyuhiko

    1994-03-01

    A Multi-Purpose Incinerating Melter System (MIMS) has been developed as a volume reduction technique for a wide variety of radwastes including flame retardants such as spent resin, and non-combustible materials such as concrete, glass and steel. In the MIMS, these wastes are incinerated and/or melted at temperatures between 1,000 and 1,500degC generated by fossil fueled burner to produce obsidian-like ingots with high integrity. A demonstration test program was carried out from 1989 until 1991 using an engineering-scale demonstration unit. In the test program, various simulated wastes with traces of [sup 60]Co, [sup 54]Mn, [sup 59]Fe, [sup 137]Cs, [sup 22]Na and [sup 106]Ru were treated to obtain decontamination factor (DF) data and leach-resistance data of the products. The summarized results drawn from the 13 runs of demonstrative operations are the following: (1) Most involatile radionuclides are transferred into solidified products. (2) Global DF of the system excluding a HEPA filter ranged 1x10[sup 4] thru 1x10[sup 5] for [sup 60]Co, 2x10[sup 2] thru 2x10[sup 3] for [sup 137]Cs and 2x10[sup 2] thru 1x10[sup 4] for [sup 106]Ru. (3) Leaching resistance of the solidified product is a match for that of a typical borosilicate glass waste form. (author).

  7. New alloys for high temperature applications in incineration plants

    International Nuclear Information System (INIS)

    Martinz, H.P.; Koeck, W.

    1993-01-01

    The hot components of incineration plants exposed to temperatures between 800 and 1,200 C like boilers, grates, thermocouple sheaths and nozzles suffer from severe joint slag and hot gas attack. Considering corrosion resistance only, ceramic materials show excellent performance under these conditions. But because of the ceramics' brittleness metallic materials exhibit an overall advantage although being corroded faster. Within the class of suitable metals PM-ODS (oxide dispersion strengthened)-superalloys based on iron or nickel and PM-Cr-base-alloys are among the most promising ones. This can be derived from various laboratory and field tests which were performed up to now. Laboratory oxidation tests indicate that these new alloys can be used at temperatures up to 1,300 C in hot air. High temperature erosion tests with quartz particles show that PM 2,000 (Fe 19,5Cr5,5Al0,5Ti0,5Y 2 O 3 ) and Ducropur (99.7% Cr) have almost the same resistance against particle impact as alumina or zirconia at 900 C. The corresponding laboratory and field tests under typical joint slag and hot gas conditions at temperatures up to 1,200 C show good results for PM 2,000 and already lead to the actual application of boiler components. Extensive testing has been performed in the field of municipal waste incineration. Depending on temperature, slag and hot gas composition selected grades of the PM-ODS and Cr-base-alloy-group give satisfactory results in the field tests. In the pulp industry black liquor, an alkaline solution with high concentrations of organic waste, is incinerated for the recovery of caustic soda. Flame sprayed coatings of Ducrolloy Cr50Ni give a sixfold increase of the lifetime of the burner nozzles compared to unprotected stainless steel

  8. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  9. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  10. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  11. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  12. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  13. Incineration of low level waste

    International Nuclear Information System (INIS)

    Gussmann, H.; Klemann, D.; Mallek, H.

    1986-01-01

    At present, various incinerators for radioactive waste are operated with more or less good results worldwide. Both, plant manufacturers and plant owners have repeatedly brought about plant modifications and improvements over the last 10 years, and this is true for the combustion process and also for the waste gas treatment systems. This paper attempts to summarize requirements, in general, by owner/operators for the plants which are designed and erected today

  14. The early days of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  15. Landfill Methane

    Science.gov (United States)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  16. The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications

    Directory of Open Access Journals (Sweden)

    Rongkun Pan

    2017-10-01

    Full Text Available To safely mine coal, engineers must prevent gas combustion and explosions, as well as seek feasible and reasonable techniques to control for these types of incidents. This paper analyzes the causes and characteristics of methane combustion and explosions. Water mist is proposed to prevent and control methane combustion in an underground confined space. We constructed an experiment platform to investigate the suppression of methane combustion using water mist for different conditions. The experimental results showed that water mist is highly effective for methane flame inhibition. The flame was extinguished with water mist endothermic cooling. However, the annular regions of water vapor around the fire played a vital role in flame extinction. Water from the evaporating mist replaces the oxygen available to the fuel. Additionally, the time required for fuel ignition is prolonged. For these reasons, the water particle action to flame surface is reinforced and the fuel’s reaction with air is delayed. As a result, flame stretching and disturbances occur, which serve to extinguish the flame. Engineering application tests were carried out in the goaf, drill hole and upper-corner to investigate the prevention and control of methane gas combustion, with the results showing a good application effect.

  17. Quantitative determination of flame color and its determining factor in hydrocarbon/air laminar diffusion flames; Soryu kakusan kaen ni okeru kaenshoku no teiryoka to sono kettei yoin

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, S. [Asahikawa National College of Technology, Hokkaido (Japan); Fujita, O.; Ito, K. [Hokkaido University, Sapporo (Japan)

    1998-08-25

    The color of laminar diffusion flames burning propane, methane and ethylene was determined by chromaticity coordinates (x, y) defined by the CIE 1931 standard colorimetric system. The differences in flame color attributed to burning condition and fuel types were examined with a colorimeter. Spectroscopic measurement and numerical analysis using a simplified radiation model were also carried out to discuss the determining factors of the flame color. The relation between x and y measured on the central axis of the flames was expressed in the experimental equations. The (x, y) in the luminous region plotted on a chromaticity diagram changed along Planckian locus with the burning conditions. The contribution of the thermal radiation of soot particles and the chemiluminescence to the flame color was successfully evaluated by introducing the concept of additive mixture of color stimuli. The (x, y) profiles from the numerical analysis agreed well with the experimental results. 17 refs., 14 figs., 1 tab.

  18. Dioxin formation from waste incineration.

    Science.gov (United States)

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste

  19. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  20. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  1. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  2. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  3. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  4. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  5. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  6. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  7. Establishment of analysis method for methane detection by gas chromatography

    Science.gov (United States)

    Liu, Xinyuan; Yang, Jie; Ye, Tianyi; Han, Zeyu

    2018-02-01

    The study focused on the establishment of analysis method for methane determination by gas chromatography. Methane was detected by hydrogen flame ionization detector, and the quantitative relationship was determined by working curve of y=2041.2x+2187 with correlation coefficient of 0.9979. The relative standard deviation of 2.60-6.33% and the recovery rate of 96.36%∼105.89% were obtained during the parallel determination of standard gas. This method was not quite suitable for biogas content analysis because methane content in biogas would be over the measurement range in this method.

  8. Numerical study of flame structure in the mild combustion regime

    Directory of Open Access Journals (Sweden)

    Mardani Amir

    2015-01-01

    Full Text Available In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.

  9. Asymptotic analysis of methane-hydrogen-air mixtures

    NARCIS (Netherlands)

    Hermanns, R.T.E.; Bastiaans, R.J.M.; Goey, de L.P.H.

    2005-01-01

    In this paper an asymptotic analysis of de Goey et al.concerning premixed stoichiometric methane-hydrogen-air flames is analyzed in depth. The analysis is performed with up to 50 mole percent of hydrogen in the fuel, at gas inlet temperatures ranging from 300 K to 650 K and pressures from 1 to 15

  10. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  11. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.; Heitz, Sylvain A.; Moeck, Jonas P.

    2015-01-01

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  12. Global Consumption of Flame Retardants and Related Environmental Concerns: A Study on Possible Mechanical Recycling of Flame Retardant Textiles

    Directory of Open Access Journals (Sweden)

    Sohail Yasin

    2016-05-01

    Full Text Available Flame retardants (FRs have been around us for decades to increase the chances of survival against fire or flame by limiting its propagation. The FR textiles, irrespective of their atmospheric presence are used in baby clothing, pushchairs, car seats, etc. The overall FR market in Asia, Europe, and the United States in 2007 was around 1.8 million metric tonnes. It is estimated that the worldwide consumption of FRs will reach 2.8 million tonnes in 2018. Unfortunately, a sustainable approach for textile waste, especially in the case of FR textiles, is absent. Incineration and landfill of FR textiles are hindered by various toxic outcomes. To address the need for sustainable methods of discarding FR textiles, the mechanical recycling of cotton curtains was evaluated.

  13. Flames in fractal grid generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)

    2013-12-15

    Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)

  14. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.; Ghoniem, Ahmed F.

    2011-01-01

    simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re

  15. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  16. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  17. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2015-04-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  18. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  19. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  20. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  1. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  2. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  3. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  4. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  5. Analysis of the current–voltage curves and saturation currents in burner-stabilised premixed flames with detailed ion chemistry and transport models

    KAUST Repository

    Belhi, Memdouh; Han, Jie; Casey, Tiernan A.; Chen, Jyh-Yuan; Im, Hong G.; Sarathy, S.  Mani; Bisetti, Fabrizio

    2018-01-01

    Current-voltage, or i–V, curves are used in combustion to characterise the ionic structure of flames. The objective of this paper is to develop a detailed modelling framework for the quantitative prediction of the i–V curves in methane/air flames

  6. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  7. Characterization of physical, thermal and chemical contributions of sodium bicarbonate particles in extinguishing counterflow nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Chelliah, H.K.; Krauss, R.H.; Zhou, H.; Lentati, A.M.

    1999-07-01

    Based on laminar, nonpremixed methane-air flames established in a counterflow field, the flame extinction effectiveness of sodium bicarbonate particles is investigated here, both experimentally and numerically. In experiments, particles are separated into varying sizes (with the range of each size group approximately 10 {micro}m), and are introduced with the air stream. Flame extinction strain rates estimated using the measured nozzle exit velocities and separation distance are reported, as well as limited comparisons with LDV data (latter are mainly for calibration of the system). Numerical flame extinction results are also reported using a hybrid Eulerian-Lagrangian model previously developed for characterization of the flame extinction mechanism of fine-water droplets in a counterflow field. Comparison of the experimental and numerical results indicates a similar trend with particular size variation, but uncertainties in the particle decomposition model employed precludes any absolute comparisons at this time.

  8. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  9. Experimental analysis of an oblique turbulent flame front propagating in a stratified flow

    Energy Technology Data Exchange (ETDEWEB)

    Galizzi, C.; Escudie, D. [Universite de Lyon, CNRS, CETHIL, INSA-Lyon, UMR5008, F-69621 Cedex (France)

    2010-12-15

    This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometry and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)

  10. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  11. Methane release

    International Nuclear Information System (INIS)

    Seifert, M.

    1999-01-01

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  12. An overview of a nuclear waste incinerator's erection and commissioning

    International Nuclear Information System (INIS)

    Li Xiaohai; Zhou Lianquan; Wang Peiyi; Yang Liguo; Zhang Xiaobin; Wang Xujin; Li Chuanlian; Dong Jingling; Zheng Bowen; Qiu Mingcai

    2004-01-01

    An incinerator for combustible nuclear waste, with spent oil and graphite included, was established. The processes are briefly described, which combines pyrolysis-incineration of solid, spray-incineration of oils and fixed bed incineration of graphite, followed by off-gas treatment employing both dry and wet means. The results from non-active and active trial run are also reported

  13. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    Science.gov (United States)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  14. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  15. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  16. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  17. Performance history of the WERF incinerator

    International Nuclear Information System (INIS)

    Dalton, J.D.; Bohrer, H.A.; Smolik, G.R.

    1988-01-01

    As society's environmental conscience grows, diverse political economical, and social contentions cloud the issue of proper waste management. However, experience at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) demonstrates clearly that incineration is an effective component in responsible, long-term waste management. Using a simple but safe design, the WERF incinerator has successfully reduced the volume of low-level beta/gamma waste. This paper discusses some of the achievements and problems experienced during operation of the WERF incinerator

  18. Dioxins in processes of incineration of wastes

    International Nuclear Information System (INIS)

    Perez John; Espinel Jorge; Ocampo Alonso; Londono Carlos

    2001-01-01

    This paper is a door to come into the subject of dioxins, which is a little bit known in Colombia. In this way, in order to clarify and to get a wider knowledge about dioxins and waste incineration process, it has been divided in three main sections. The first one gives a basic information about origin, effects on the human health and a chemical definition of dioxins; in the second one the main kind of incinerator processes are given to know, also a deeper knowledge of reaction formation. The last part emphasizes options to control dioxins emissions in incineration systems

  19. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  20. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  1. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  2. Development and testing of a mobile incinerator

    International Nuclear Information System (INIS)

    Eggett, D.R.

    1986-01-01

    The development and testing of a mobile incinerator for processing of combustible dry active waste (DAW) and contaminated oil generated at Nuclear Power Plants is presented. Topics of discussion include initial thoughts on incineration as applied to nuclear waste; DOE's Aerojet's, and CECo's role in the Project; design engineering concepts; site engineering support; licensability; generation of test data; required reports of the NRC and Illinois and California EPA's; present project schedule for incinerating DAW at Dresden and other CECo Stations; and lessons learned from the project

  3. Molten salt oxidation as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Cooper, J.F.; Farmer, J.C.; Upadhye, R.S.

    1992-03-01

    Molten Salt Oxidation was originally developed by Rockwell International as part of their coal gasification, and nuclear-and hazardous-waste treatment programs. Single-stage oxidation units employing molten carbonate salt mixtures were found to process up to one ton/day of common solid and liquid wastes (such as paper, rags, plastics, and solvents), and (in larger units) up to one ton/hour of coal. After the oxidation of coal with excess oxygen, coal ash residuals (alumina-silicates) were found adhering to the vessel walls above the liquid level. The phenomenon was not observed with coal gasification-i.e., under oxygen-deficient conditions. Lawrence Livermore National Laboratory (LLNL) is developing a two-stage/two-vessel approach as a possible means of extending the utility of the process to wastes which contain high concentrations of alumina-silicates in the form of soils or clays, or high concentrations of nitrates including low-level and transuranic wastes. The first stage operates under oxygen-deficient (''pyrolysis'') conditions; the second stage completes oxidation of the evolved gases. The process allows complete oxidation of the organic materials without an open flame. In addition, all acidic gases that would be generated in incinerators are directly metathesized via the molten Na 2 CO 3 to form stable salts (NaCl, Na 2 SO 4 etc.). Molten salt oxidation therefore avoids the corrosion problems associated with free HCl in incineration. The process is being developed to use pure O 2 feeds in lieu of air, in order to reduce offgas volume and retain the option of closed system operation. In addition, ash is wetted and retained in the melt of the first vessel which must be replaced (continuously or batch-wise). The LLNL Molten Salt unit is described together with the initial operating data

  4. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  5. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  6. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  7. Suicide by self-incineration

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Hardt-Madsen, Michael

    1997-01-01

    was 43 years, with a broad age range (20-87). Many incidents of self-incineration as a form of political protest were reported in the press especially during the 1960s and 1970s, and the press reports often inspired others to commit suicide in the same way. None of the cases in our investigation were...... victims were of Danish origin, and a religious motive played no significant role. Most of the victims were suffering from mental illness, and a majority had tried to commit suicide before. None of the victims left a suicide note. The scene was most often at home and indoors--only a minority committed...... suicide in remote areas of the countryside. Most were found dead at the scene, and the cause of death was usually heat exposure. Only a minority had a lethal carboxy-hemoglobin (CO-Hb) concentration. It is concluded that close cooperation between police, fire experts, and the forensic pathologist...

  8. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna; Moeck, Jonas P.; Roberts, William L.; Chung, Suk-Ho; Cha, Min

    2016-01-01

    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization

  9. 30 CFR 57.22104 - Open flames (I-C mines).

    Science.gov (United States)

    2010-07-01

    ....22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C...

  10. Humphrey Davy and the Safety Lamp: The Use of Metal Gauze as a Flame Barrier

    Science.gov (United States)

    Mills, Allan

    2015-01-01

    The "safety lamp" invented by Humphrey Davy in 1815 utilised the cooling effect of metal gauze to prevent the flame of a candle or oil lamp (essential for illumination in mines) from passing through such a screen. It is therefore rendered unable to ignite any potentially explosive mixture of air and methane in the atmosphere surrounding…

  11. Fluidized bed incineration of transuranic contaminated waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1978-01-01

    A 9 kg/hr pilot scale fluidized bed incinerator is now being used for burning various types of radioactive waste at Rocky Flats Plant. General solid combustible waste containing halogenated materials is burned in a fluidized bed of sodium carbonate for in situ neutralization of thermally generated acidic gases. A variety of other production related materials has been burned in the incinerator, including ion exchange resin, tributyl phosphate solutions, and air filters. Successful operation of the pilot plant incinerator has led to the design and construction of a production site unit to burn 82 kg/hr of plant generated waste. Residues from incinerator operations will be processed into glass buttons utilizing a vitrification plant now under development

  12. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  13. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    material used amounting to 19,000–26,000tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000MWh. In terms of the environmental burden...... that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted.......Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...

  14. Giving waste a hot time [incineration technology

    International Nuclear Information System (INIS)

    Cruickshank, Andrew.

    1986-01-01

    High temperature incineration technology, as an effective way of managing both solid wastes and sludges, is described. The process, developed by the Belgian Nuclear Research Centre, is detailed. (U.K.)

  15. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  16. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  17. Some notes about radioactive wastes incineration

    International Nuclear Information System (INIS)

    Martin Martin, L.

    1984-01-01

    A general review about the most significant techniques in order to incinerate radioactive wastes by controlled air, acid digestion, fluidized bed, etc., is presented. These features are briefly exposed in the article through feed preparation, combustion effectiveness, etc. (author)

  18. Highly Efficient Fecal Waste Incinerator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  19. Waterbury, Conn., Incinerator to Control Mercury Emissions

    Science.gov (United States)

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  20. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  1. A LES-CMC formulation for premixed flames including differential diffusion

    Science.gov (United States)

    Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2018-05-01

    A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.

  2. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2015-01-01

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  3. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.

    2015-10-29

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  4. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  5. Direct Flame Impingement

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  6. Analysis of energy efficiency of methane and hydrogen-methane blends in a PFI/DI SI research engine

    International Nuclear Information System (INIS)

    Catapano, F.; Di Iorio, S.; Sementa, P.; Vaglieco, B.M.

    2016-01-01

    In the last years, even more attention was paid to the alternative fuels that allow both reducing the fossil fuel consumption and the pollutant emissions. Gaseous fuels like methane and hydrogen are the most interesting in terms of engine application. This paper reports a comparison between methane and different methane/hydrogen mixtures in a single-cylinder Port Fuel/Direct Injection spark ignition (PFI/DI SI) engine operating under steady state conditions. It is representative of the gasoline engine for automotive application. Engine performance and exhaust emissions were evaluated. Moreover, 2D-digital cycle resolved imaging was performed with high spatial and temporal resolution in the combustion chamber. In particular, it allows characterizing the combustion by means of the flame propagation in terms of mean radius and velocity. Moreover, the interaction of turbulence with the local flame was evaluated. For both the engine configurations, it was observed that the addition of hydrogen results in a more efficient combustion, even though the engine configuration plays an important role. In PFI mode, the lower density of hydrogen causes a lower energy input. In DI mode, instead, the larger hydrogen diffusivity counteracts the charge stratification especially for larger hydrogen content. - Highlights: • The effect of hydrogen on methane combustion was investigated in an optical PFI/DI SI engine. • The effect of hydrogen addition for PFI and DI configurations was evaluated on the same engine. • The flame front propagation was characterized by means of 2-D digital imaging.

  7. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  8. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  9. Air curtain incinerator equipment performance evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    About 50 tonnes of oil-contaminated debris and related wood products were successfully incinerated in a 10-h performance evaluation of a mobile air curtain incinerator. The test was conducted to evaluate the incinerator's ability to combust oil-contaminated trash and debris obtained from oil spill sites. The operating principle of the apparatus involves a diesel engine driving an air blower to deliver ca 20,000 scfm of air into a 5-m long manifold angled at a 30{degree} slope into an incineration tank. A bottomhole aerator is lowered to the bottom of the tank and compressed air is injected into the aerator to control burn efficiency. The blower is engaged once the debris in the tank is burning sufficiently after starting a fire in the debris. The air curtain effect created by the air deflecting off the opposite wall from the blower manifold and bouncing off the bottom and up the side of the incineration tank results in repeated combustion of the gases, thereby significantly reducing the degree of visible smoke emission. The unit is capable of incinerating ca 5 tonnes/h and of generating ca 16 m{sup 3}/h of hot water which can be used for flushing spill sites and cleaning shorelines. 12 figs.

  10. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA - Fossil Power Plants, Arnhem (Netherlands)

    1993-01-01

    The shapes and temperature of flames in power stations, fired with powder coal and gas, have been measured optically. Spectral information in the visible and near infrared is used. Coal flames are visualized in the blue part of the spectrum, natural gas flames are viewed in the light of CH-emission. Temperatures of flames are derived from the best fit of the Planck-curve to the thermal radiation spectrum of coal and char, or to that of soot in the case of gas flames. A measuring method for the velocity distribution inside a gas flame is presented, employing pulsed alkali salt injection. It has been tested on a 100 kW natural gas flame. 3 refs., 9 figs.

  11. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  12. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame

    OpenAIRE

    Gueniche, Hadj-Ali; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2007-01-01

    The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified species included carbon monoxide and dioxide, methane, oxyg...

  13. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  14. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  15. Quantifying capital goods for waste incineration

    International Nuclear Information System (INIS)

    Brogaard, L.K.; Riber, C.; Christensen, T.H.

    2013-01-01

    Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO 2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO 2 per tonne of waste combusted

  16. Regenerative-filter-incinerator device

    Energy Technology Data Exchange (ETDEWEB)

    Rosebrock, T.L.

    1977-10-18

    A regenerative-filter-incinerator device, for use in the exhaust system of a diesel engine, includes a drum-like regenerative-heat exchanger-filter assembly rotatably mounted within a housing that is adapted to be installed directly in the exhaust gas stream discharged from a diesel engine as close to the engine as possible. The regenerative-heat exchanger-filter assembly provides an inner chamber which serves as a reaction chamber for the secondary combustion of exhaust gases including particulates discharged from the engine. The regenerative-heat exchanger-filter assembly includes separately rotatable heat exchange-filter elements pervious to radial flow of fluid therethrough and adapted to filter out particulates from the exhaust gases and to carry them into the reaction chamber. During engine operation, the reaction chamber is provided with a quantity of heat, as necessary, to effect secondary combustion of the exhaust gases and particulates by means of an auxiliary heat source and the heat generated within the reaction chamber is stored in the individual heat exchange-filter elements during the discharge of exhaust gases therethrough from the reaction chamber and this heat is then transferred to the inflowing volume of the exhaust gases so that, in effect, exhaust gas is discharged from the device at substantially the same temperature as it was during its inlet into the device from the engine.

  17. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  18. Indication of the incineration situation using image analysis of the grate boilers fireplace; Indikation av foerbraenningssituationen genom bildanalys av rostens eldstad

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Anna; Helgesson, Johan [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2004-12-01

    Vattenfall Utveckling AB has earlier performed tests where the incineration situation in a black liquor recovery boiler (BLRB) has been investigated using a simple water-cooled camera. It was also shown possible to repress emission lines for e.g., sodium. These results led to wishes of performing the same tests in a grate boiler. Initially in the project, an investigation about what effect optical filters has on the image from a camera that captures the incineration situation in a grate boiler. The goal was to improve the conditions for flame front detection using image analysis, i.e., to increase the contrast between flames (the flame front) and no flames (bed, ashes, walls etc.). The result was that the image improvement optical filters were predicted to give, did not happen. The conclusion of the investigation is therefore that the best result is achieved when no information-reducing filters are used in front of the camera. However, for cameras using automatic shutter, intensity-reducing filters are recommended. After that, an image analysis algorithm to automatically detect the location of the flame front on the bed was implemented. The evaluation of the algorithm was successfully performed on movies from three grate boilers. This method should be possible to implement for all types of grate boilers, regardless of size and fuel type. However, the material (e.g., wide angle objective) and the placement of the camera have to be individually adjusted. In a future project, the goal is to be able to reconnect this information about the instant incineration situation to the control system to control e.g., the air supply or the fuel feed. This could lead to lower emissions, higher efficiency and an operation less sensitive against changes in fuel quality.

  19. Global Methane Biogeochemistry

    Science.gov (United States)

    Reeburgh, W. S.

    2003-12-01

    Methane (CH4) has been studied as an atmospheric constituent for over 200 years. A 1776 letter from Alessandro Volta to Father Campi described the first experiments on flammable "air" released by shallow sediments in Lake Maggiore (Wolfe, 1996; King, 1992). The first quantitative measurements of CH4, both involving combustion and gravimetric determination of trapped oxidation products, were reported in French by Boussingault and Boussingault, 1864 and Gautier (1901), who reported CH4 concentrations of 10 ppmv and 0.28 ppmv (seashore) and 95 ppmv (Paris), respectively. The first modern measurements of atmospheric CH4 were the infrared absorption measurements of Migeotte (1948), who estimated an atmospheric concentration of 2.0 ppmv. Development of gas chromatography and the flame ionization detector in the 1950s led to observations of vertical CH4 distributions in the troposphere and stratosphere, and to establishment of time-series sampling programs in the late 1970s. Results from these sampling programs led to suggestions that the concentration of CH4, as that of CO2, was increasing in the atmosphere. The possible role of CH4 as a greenhouse gas stimulated further research on CH4 sources and sinks. Methane has also been of interest to microbiologists, but findings from microbiology have entered the larger context of the global CH4 budget only recently.Methane is the most abundant hydrocarbon in the atmosphere. It plays important roles in atmospheric chemistry and the radiative balance of the Earth. Stratospheric oxidation of CH4 provides a means of introducing water vapor above the tropopause. Methane reacts with atomic chlorine in the stratosphere, forming HCl, a reservoir species for chlorine. Some 90% of the CH4 entering the atmosphere is oxidized through reactions initiated by the OH radical. These reactions are discussed in more detail by Wofsy (1976) and Cicerone and Oremland (1988), and are important in controlling the oxidation state of the atmosphere

  20. [The reconstruction of two-dimensional distributions of gas concentration in the flat flame based on tunable laser absorption spectroscopy].

    Science.gov (United States)

    Jiang, Zhi-Shen; Wang, Fei; Xing, Da-Wei; Xu, Ting; Yan, Jian-Hua; Cen, Ke-Fa

    2012-11-01

    The experimental method by using the tunable diode laser absorption spectroscopy combined with the model and algo- rithm was studied to reconstruct the two-dimensional distribution of gas concentration The feasibility of the reconstruction program was verified by numerical simulation A diagnostic system consisting of 24 lasers was built for the measurement of H2O in the methane/air premixed flame. The two-dimensional distribution of H2O concentration in the flame was reconstructed, showing that the reconstruction results reflect the real two-dimensional distribution of H2O concentration in the flame. This diagnostic scheme provides a promising solution for combustion control.

  1. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  2. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.; Chung, Suk-Ho

    2015-01-01

    Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  3. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  4. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. On flame kernel formation and propagation in premixed gases

    Energy Technology Data Exchange (ETDEWEB)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  6. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    Science.gov (United States)

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  7. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  8. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  9. Global Methane Initiative

    Science.gov (United States)

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  10. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  11. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  12. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities

    Institute of Scientific and Technical Information of China (English)

    Nicolas A.O.Morin; Patrik L.Andersson; Sarah E.Hale; Hans Peter H.Arp

    2017-01-01

    Flame retardants in commercial products eventually make their way into the waste stream.Herein the presence of flame retardants in Norwegian landfills,incineration facilities and recycling sorting/defragmenting facilities is investigated.These facilities handled waste electrical and electronic equipment (WEEE),vehicles,digestate,glass,combustibles,bottom ash and fly ash.The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus,polybrominated biphenyls,hexabromobenzene,pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7).Plastic,WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10:45,000-210,000 μg/kg;∑FR-7:300-13,000 μg/kg).It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest.This was supported for total air phase concenttations (∑BDE-10:9000-195,000 pg/m3 WEEE/vehicle facilities,80-900 pg/m3 in incineration/sorting and landfill sites),but not for water leachate concentrations (e.g.,ΣBDE-10:15-3500 ng/L in WEEE/Vehicle facilities and 1-250 ng/L in landfill sites).Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate.To better account for concentrations in leachates at the different facilities,waste-water partitioning coefficients,Kwaste were measured (for the first time to our knowledge for flame retardants).WEEE and plastic waste had elevated Kwaste compared to other wastes,likely because flame retardants are directly added to these materials.The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices.

  13. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities.

    Science.gov (United States)

    Morin, Nicolas A O; Andersson, Patrik L; Hale, Sarah E; Arp, Hans Peter H

    2017-12-01

    Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000μg/kg; ∑FR-7: 300-13,000μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m 3 WEEE/vehicle facilities, 80-900pg/m 3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, K waste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated K waste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices. Copyright © 2017. Published by Elsevier B.V.

  14. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  15. Numerical study of the direct pressure effect of acoustic waves in planar premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. [BTU Cottbus, Siemens-Halske-Ring 14, D-03046 Cottbus (Germany); Jimenez, C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Avenida Complutense, 22, 28040 Madrid (Spain)

    2010-08-15

    Recently the unsteady response of 1-D premixed flames to acoustic pressure waves for the range of frequencies below and above the inverse of the flame transit time was investigated experimentally using OH chemiluminescence Wangher (2008). They compared the frequency dependence of the measured response to the prediction of an analytical model proposed by Clavin et al. (1990), derived from the standard flame model (one-step Arrhenius kinetics) and to a similar model proposed by McIntosh (1991). Discrepancies between the experimental results and the model led to the conclusion that the standard model does not provide an adequate description of the unsteady response of real flames and that it is necessary to investigate more realistic chemical models. Here we follow exactly this suggestion and perform numerical studies of the response of lean methane flames using different reaction mechanisms. We find that the global flame response obtained with both detailed chemistry (GRI3.0) and a reduced multi-step model by Peters (1996) lies slightly above the predictions of the analytical model, but is close to experimental results. We additionally used an irreversible one-step Arrhenius reaction model and show the effect of the pressure dependence of the global reaction rate in the flame response. Our results suggest first that the current models have to be extended to capture the amplitude and phase results of the detailed mechanisms, and second that the correlation between the heat release and the measured OH* chemiluminescence should be studied deeper. (author)

  16. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed

    2017-01-01

    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  17. Incineration of Sludge in a Fluidized-Bed Combustor

    OpenAIRE

    Chien-Song Chyang; Yu-Chi Wang

    2017-01-01

    For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in ...

  18. WILCI: a LCA tool dedicated to MSW incineration in France

    OpenAIRE

    Beylot , Antoine; Muller , Stéphanie; Descat , Marie; Ménard , Yannick; Michel , Pascale; Villeneuve , Jacques

    2017-01-01

    International audience; Life Cycle Assessment (LCA) has been increasingly used in the last decades to evaluate the global environmental performance of waste treatment options. This is in particular the case considering incineration that is the major treatment route for Municipal Solid Waste (MSW) in France (28% of French MSW are incinerated, in 126 MSW incineration plants; ADEME, 2015). In this context, this article describes a new Excel-tool, WILCI (for Waste Incineration Life Cycle Inventor...

  19. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  20. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Science.gov (United States)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  1. A new incinerator for burning radioactive waste

    International Nuclear Information System (INIS)

    Mallek, H.; Laser, M.

    1978-01-01

    A new two stage incinerator for burning radioactive waste consisting of a pyrolysis chamber and an oxidation chamber is described. The fly ash is retained in the oxidation chamber by high temperature filter mats. The capacity of the installed equipment is about 100 kg/h. Waste with different composition and different calorific value were successfully burnt. The operation of the incinerator can easily be controlled by addition of a primary air stream to the pyrolysis chamber and a secondary air stream to the oxidation chamber. During continuous operation the CO and C (organic) content is below 100 ppm and 50 ppm, respectively. The burn-out of the ash is very good. After minor changes the incinerator may be suitable for burning of α-bearing waste

  2. Requirements for permitting a mixed waste incinerator

    International Nuclear Information System (INIS)

    Trichon, M.; Feldman, J.; Serne, J.C.

    1990-01-01

    The consideration, design, selection and operation of any incinerator depends primarily on characteristic quality (ultimate and proximate analyses) and quantity to the waste to be incinerated. In the case of burning any combination of mixed hazardous, biomedical and radioactive low level waste, specific federal and generic state environmental regulatory requirements are outlined. Combustion chamber temperature and waste residence time requirements will provide the rest of the envelope for consideration. Performance requirements must be balanced between the effects of time and temperature on destruction of the organic waste and the vaporization and possible emission of the inorganic waste components (e.g., toxic metals, radioactive inorganics) as operating conditions and emission levels will be set in state and federal regulatory permits. To this end the complete characterization of the subject waste stream must be determined if an accurate assessment of incineration effectiveness and impact are to be performed

  3. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  4. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Alpha waste incinerator at the Cea Valduc

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The Cea/Valduc has brought into operation an incinerator for alpha waste. The incineration is in two steps. The first one is a pyrolysis under reduction atmosphere in a furnace at 550 celsius degrees and the second one is a calcination under oxidizing atmosphere of the pyrolysis residue in a furnace at 900 celsius degrees. The ashes have less than 1% of carbon. The gas coming from incineration become oxidized at 1100 Celsius degrees, then are cooled, filtered to eliminate any track of radioactivity. Then, they are cleaned with a neutralisation process. The facility reduces the volume of waste in a factor 20. The capacity of treatment is 7 kg/h. The annual capacity is 30 m 3 . The investment represents 70 millions of francs and the cost of functioning is 2 M F by year. (N.C.)

  6. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  7. On the theory of turbulent flame velocity

    OpenAIRE

    Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady

    2012-01-01

    The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...

  8. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    International Nuclear Information System (INIS)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R.; Mazaheri, K.

    2013-01-01

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  9. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R. [University of Kashan, Kashan (Iran, Islamic Republic of); Mazaheri, K. [University of Tarbiat Moddares, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  10. Conceptual process description of M division incinerator project

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.K.

    1989-04-13

    This interoffice memorandum describes an incineration system to be used for incinerating wood. The system is comprised of a shredder and an incinerator. The entire process is described in detail. A brief study of particulates, carbon monoxide, carbon dioxide, and nitrogen oxides emission is presented.

  11. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  12. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  13. 10 CFR 20.2004 - Treatment or disposal by incineration.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Treatment or disposal by incineration. 20.2004 Section 20... § 20.2004 Treatment or disposal by incineration. (a) A licensee may treat or dispose of licensed material by incineration only: (1) As authorized by paragraph (b) of this section; or (2) If the material...

  14. Recommendations for continuous emissions monitoring of mixed waste incinerators

    International Nuclear Information System (INIS)

    Quigley, G.P.

    1992-01-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator

  15. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  16. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  17. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  18. Direct Numerical Simulations of NOx formation in spatially developing turbulent premixed Bunsen flames with mixture inhomogeneity

    KAUST Repository

    Luca, Stefano

    2017-01-05

    Direct Numerical Simulation of three-dimensional spatially developing turbulent methane/air flames are performed. Four flames are simulated; they differ for the level of premixing of the fuel inlet: one has a fully premixed inlet, the other three have a partially premixed inlet that mimic a common injection strategy in stationary gas turbines. The jet consist of a methane/air mixture with global equivalence ratio ɸ = 0.7 and temperature of 800 K. The simulations are performed at 4 atm. The inlet velocity field and the fuel/air fields were extracted from a fully developed turbulent channel simulation. Chemistry is treated with a new skeletal chemical mechanism consisting of 33 species developed specifically for the DNS. The data are analyzed to study possible influences of partial premixing on the flame structure and the combustion efficiency. The results show that increasing the level of partial premixing, the fluctuations of heat release rate increase, due to the richer and leaner pockets of mixture in the flame, while the conditional mean decreases. Increasing the level of partial premixing, the peak of NO and the range of NO values for a given temperature increase. An analysis of NO production is performed categorizing the different initiation steps in the Ndecomposition through four pathways: thermal, prompt, NNH and NO. Different behaviour with respect to laminar flames is found for the NNH pathway suggesting that turbulence influences this pathway of formation of NO.

  19. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  20. The modelling of direct chemical kinetic effects in turbulent flames

    Energy Technology Data Exchange (ETDEWEB)

    Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    2000-06-01

    Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential

  1. Incineration plant for thermal destruction of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Bartoli, B.; Lisbonne, P.

    1988-01-01

    Incineration was selected to destroy organic liquids contaminated by radioelements. This treatment offers the advantage of reducing the volume of wastes considerably. Therefore an incineration plant has been built within the nuclear research center of Cadarache. After an experimental work with inactive organic liquids from June 1980 to March 1981, the incineration plant was approved by safety authorities for the incineration of contaminated organic liquids. The capacity ranges from 20l/hr to 50l/hr. On the basis of 6 years of operation and a volume of 200 m3 the incineration plant has shown reliable operating conditions in the destruction of various contaminated organic liquids

  2. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  3. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  4. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  5. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  6. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  7. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  8. CLOSURE OF A DIOXIN INCINERATION FACILITY

    Science.gov (United States)

    The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...

  9. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  10. 40 CFR 65.148 - Incinerators.

    Science.gov (United States)

    2010-07-01

    ... temperature monitoring device shall be installed in the fire box or in the ductwork immediately downstream of the fire box in a position before any substantial heat exchange occurs. (ii) Where a catalytic incinerator is used, temperature monitoring devices shall be installed in the gas stream immediately before...

  11. Nitrous Oxide Emissions from Waste Incineration

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Baxter, D.; Martinec, J.

    2006-01-01

    Roč. 60, č. 1 (2006), s. 78-90 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * waste * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.360, year: 2006

  12. Analysis of fouling in refuse waste incinerators

    NARCIS (Netherlands)

    Beek, van M.C.; Rindt, C.C.M.; Wijers, J.G.; Steenhoven, van A.A.

    2001-01-01

    Gas-side fouling of waste-heat-recovery boilers, caused mainly by the deposition of particulate matter, reduces the heat transfer in the boiler. The fouling as observed on the tube bundles in the boiler of a Dutch refuse waste incinerator varied from thin and powdery for the economizer to thick and

  13. EIA for a waste incinerator in Denmark

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2017-01-01

    A planned new waste incinerator will be located in an area which is at risk of flooding – a risk that will increase under climate change. During public hear- ings as part of the project’s EIA, inclusion of climate risks was requested. This led to mitigation measures which will decrease the risk...

  14. Use plan for demonstration radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1982-04-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans for optimum use in burning four principal waste forms, controlled air incineration technology, and standard health physics safety practices; a use plan, including waste categorization and segregation, processing, and ash disposition; safety procedures, including personnel and area monitoring; and methods to evaluate the incinerator's effectiveness by estimating its volume reduction factors, mass and activity balances, and by determining the cost effectiveness of incineration versus commercial shallow land burial

  15. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  16. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  17. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  18. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  19. Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air

    Science.gov (United States)

    Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.

    2009-01-01

    A unique idealized study of the subject fuel vs. air systems was conducted using an Oscillatory-input Opposed Jet Burner (OOJB) system and a newly refined analysis. Extensive dynamic-extinction measurements were obtained on unanchored (free-floating) laminar Counter Flow Diffusion Flames (CFDFs) at 1-atm, stabilized by steady input velocities (e.g., U(sub air)) and perturbed by superimposed in-phase sinusoidal velocity inputs at fuel and air nozzle exits. Ethylene (C2H4) and methane (CH4), and intermediate 64/36 and 15/85 molar percent mixtures were studied. The latter gaseous surrogates were chosen earlier to mimic ignition and respective steady Flame Strengths (FS = U(sub air)) of vaporized and cracked, and un-cracked, JP-7 "like" kerosene for a Hypersonic International Flight Research Experimentation (HIFiRE) scramjet. For steady idealized flameholding, the 100% C2H4 flame is respectively approx. 1.3 and approx.2.7 times stronger than a 64/36 mix and CH4; but is still 12.0 times weaker than a 100% H2-air flame. Limited Hot-Wire (HW) measurements of velocity oscillations at convergent-nozzle exits, and more extensive Probe Microphone (PM) measurements of acoustic pressures, were used to normalize Dynamic FSs, which decayed linearly with pk/pk U(sub air) (velocity magnitude, HW), and also pk/pk P (pressure magnitude, PM). Thus Dynamic Flame Weakening (DFW) is defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = -100 d(U(sub air)/U(sub air),0Hz)/d(pkpk P). Key findings are: (1) Ethylene flames are uniquely strong and resilient to extinction by oscillating inflows below 150 Hz; (2) Methane flames are uniquely weak; (3) Ethylene / methane surrogate flames are disproportionately strong with respect to ethylene content; and (4) Flame weakening is consistent with limited published results on forced unsteady CFDFs. Thus from 0 to approx. 10 Hz and slightly higher, lagging diffusive responses of key species led to progressive phase lags (relative

  20. The evolution of the flame surface in turbulent premixed jet flames at high Reynolds number

    Science.gov (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2017-11-01

    A set of direct numerical simulations of turbulent premixed flames in a spatially developing turbulent slot burner at four Reynolds number is presented. This configuration is of interest since it displays turbulent production by mean shear as in real combustion devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit, with finite-rate chemistry consisting of 16 species and 73 reactions. For the highest jet Reynolds number of 22 ×103, 22 Billion grid points are employed. The jet consists of a lean methane/air mixture at 4 atm and preheated to 800 K. The analysis of stretch statistics shows that the mean total stretch is close to zero. Mean stretch decreases moving downstream from positive to negative values, suggesting a formation of surface area in the near field and destruction at the tip of the flame; the mean contribution of the tangential strain term is positive, while the mean contribution of the propagative term is always negative. Positive values of stretch are due to the tangential strain rate term, while large negative values are associated with the propagative term. Increasing Reynolds number is found to decrease the correlation between stretch and the single contributions.

  1. Combustion instabilities in sudden expansion oxy-fuel flames

    Energy Technology Data Exchange (ETDEWEB)

    Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  2. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  3. Destruction behavior of hexabromocyclododecanes during incineration of solid waste containing expanded and extruded polystyrene insulation foams.

    Science.gov (United States)

    Takigami, Hidetaka; Watanabe, Mafumi; Kajiwara, Natsuko

    2014-12-01

    Hexabromocyclododecanes (HBCDs) have been used for flame retardation mainly in expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation foams. Controlled incineration experiments with solid wastes containing each of EPS and XPS were conducted using a pilot-scale incinerator to investigate the destruction behavior of HBCDs and their influence on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs). EPS and XPS materials were respectively blended with refuse derived fuel (RDF) as input wastes for incineration. Concentrations of HBCDs contained in the EPS- and XPS-added RDFs, were 140 and 1100 mg kg(-1), respectively. In which γ-HBCD was dominant (68% of the total HBCD content) in EPS-added RDF and α-HBCD accounted for 73% of the total HBCDs in XPS-added RDF. During the incineration experiments with EPS and XPS, primary and secondary combustion zones were maintained at temperatures of 840 °C and 900 °C. The residence times of waste in the primary combustion zone and flue gas in the secondary combustion zone was 30 min and three seconds, respectively. HBCDs were steadily degraded in the combustion chambers and α-, β-, and γ-HBCD behaved similarly. Concentration levels of the total HBCDs in the bag filter exit gas for the two experiments with EPS and XPS were 0.7 and 0.6ngmN(-3), respectively. HBCDs were also not detected (incineration process with destruction efficiencies of more than 99.9999 for both of EPS and XPS cases. For PBDD/DFs, the levels detected in the bottom and fly ash samples were very low (0.028 ng g(-1) at maximum). In the case of XPS-added experiment, 2,3,7,8-TeBDD and 2,3,7,8-TeBDF were determined in the flue gas at levels (0.05-0.07 ng mN(-3)) slightly over the detection limits in the environmental emission gas samples, suggesting HBCDs in XPS are possibly a precursor of detected PBDD/DFs. Operational care should be taken when the ratio of HBCD-containing polystyrene is increased in the input wastes just

  4. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  5. Working group report: methane emissions from fuel combustion and industrial processes

    International Nuclear Information System (INIS)

    Berdowski, J.J.M.; Beck, L.; Piccot, S.; Olivier, J.G.J.; Veldt, C.

    1993-01-01

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  6. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  7. Experimental quantification of transient stretch effects from vortices interacting with premixed flames

    Science.gov (United States)

    Danby, Sean James

    The understanding of complex premixed combustion reactions is paramount to the development of new concepts and devices used to increase the overall usefulness and capabilities of current technology. The complex interactions which occur within any modern practical combustion device were studied by isolating a single turbulent scale of the turbulence-chemistry interaction. Methane-air flame equivalence ratios (φ = 0.64, 0.90, and 1.13) were chosen to observe the mild affects of thermo-diffusive stability on the methane-air flame. Nitrogen was used as a diluent to retard the flame speeds of the φ = 0.90, and 1.13 mixtures so that the undisturbed outwardly propagating spherical flame kernel propagation rates, drf/dt, were approximately equal. Five primary propane equivalence ratios were utilized for investigation: φ = 0.69, 0.87, 1.08, 1.32, and 1.49. The choice of equivalence ratio was strategically made so that the φ = 0.69/1.49 and φ = 0.87/1.32 mixtures have the same undiluted flame propagation rate, drf/dt. Therefore, in the undiluted case, there are three flame speeds (in laboratory coordinates, not to be confused with burning velocity) represented by these mixtures. Three vortices were selected to be used in this investigation. The vortex rotational velocities were measured to be 77 cm/s, 266 cm/s and 398 cm/s for the "weak", "medium" and "strong" vortices, respectively. Ignition of the flame occurred in two ways: (1) spark-ignition or (2) laser ignition using an Nd:YAG laser at its second harmonic (lambda = 532 nm) in order to quantify the effect of electrode interference. Accompanying high-speed chemiluminescence imaging measurements, instantaneous pressure measurements were obtained to give a more detailed understanding of the effect of vortex strength on the overall flame speed and heat release rate over an extended time scale and to explore the use of a simple measurement to describe turbulent mixing. Further local flame-vortex interface analysis was

  8. The utilization of a pressurized-graphite/water/oxygen mixture for irradiated graphite incineration

    International Nuclear Information System (INIS)

    Antonini, G.; Perotin, J.P.; Charlot, P.

    1992-01-01

    The authors demonstrate the interest of the utilization of a pressurized-graphite/water/oxygen mixture in the incineration of irradiated graphite. The aqueous phase comes in the form of a three-dimensional system that traps pressurized oxygen, the pulverulent solid being dispersed at the liquid/gas interfaces. These three-phasic formulations give the following advantages: reduction of the apparent viscosity of the mixture in comparison with a solid/liquid mixture at the same solid concentration; reduction of the solid/liquid interactions; self-pulverizability. thus promoting reduction of the flame length utilization of conventional burners; reduction of the flue gas flow rate; complete thermal destruction of graphite. (author)

  9. High methane natural gas/air explosion characteristics in confined vessel.

    Science.gov (United States)

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Doses from radioactive methane

    International Nuclear Information System (INIS)

    Phipps, A.W.; Kendall, G.M.; Fell, T.P.; Harrison, J.D.

    1990-01-01

    A possible radiation hazard arises from exposure to methane labelled with either a 3 H or a 14 C nuclide. This radioactive methane could be released from a variety of sources, e.g. land burial sites containing radioactive waste. Standard assumptions adopted for vapours would not apply to an inert alkane like methane. This paper discusses mechanisms by which radioactive methane would irradiate tissues and provides estimates of doses. Data on skin thickness and metabolism of methane are discussed with reference to these mechanisms. It is found that doses are dominated by dose from the small fraction of methane which is inhaled and metabolised. This component of dose has been calculated under rather conservative assumptions. (author)

  11. Methane flux to the atmosphere from the Deepwater Horizon oil disaster

    Science.gov (United States)

    Yvon-Lewis, Shari A.; Hu, Lei; Kessler, John

    2011-01-01

    The sea-to-air flux of methane from the blowout at the Deepwater Horizon was measured with substantial spatial and temporal resolution over the course of seven days in June 2010. Air and water concentrations were analyzed continuously from a flowing air line and a continuously flowing seawater equilibrator using cavity ring-down spectrometers (CRDS) and a gas chromatograph with a flame ionization detector (GC-FID). The results indicate a low flux of methane to the atmosphere (0.024 μmol m-2 d-1) with atmospheric and seawater equilibrium mixing ratios averaging 1.86 ppm and 2.85 ppm, respectively within the survey area. The oil leak, which was estimated to contain 30.2% methane by weight, was not a significant source of methane to the atmosphere during this study. Most of the methane emitted from the wellhead was dissolved in the deep ocean.

  12. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  13. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    Science.gov (United States)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  14. Interaction of Plasma Discharges with a Flame: Experimental and Numerical Study

    International Nuclear Information System (INIS)

    Vincent-Randonnier, Axel; Teixeira, David

    2010-01-01

    This paper presents experimental results and numerical simulations of methane/air non-premixed flame under plasma assistance. Without plasma assistance, the flame blows off at a 28-30 m·s -1 bulk velocity (power around 3 kW). When the discharge is on, the flame can be maintained up to a bulk velocity of 53 m·s -1 (power around 6 kW), corresponding to +90% gain in power with only a few watt of plasma power. The plasma discharges present short duration current pulses (between 100 ns and 200 ns) and occur non-monotonically (delay between two pulses from 6x10 -5 s to 0.1 s). The probability density function of this occurrence is significantly influenced by the mass flow rate or the absence of flame, revealing the strong coupling of the plasma with hydrodynamic and combustion. For the numerical section of this work, we simulated the flame using a Computational Fluid Dynamics code based on Direct Numerical Simulation (direct solving of Navier-Stokes equations), and investigated the thermal and/or chemical effects of discharges on the flame stability.

  15. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna A.

    2016-07-16

    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization of the flame in a V-shape or an M-shape geometry, over a central stainless steel rod. The plasma is produced by short pulses of 10-ns duration, 8-kV maximum voltage amplitude, applied at 10 kHz. The central rod is used as a cathode, while the anode is a stainless steel ring, fixed on the outer surface of the quartz tube. Plasma forcing is produced by positive or negative steps of plasma. The step response of the flame is investigated through heat release rate (HRR) fluctuations, to facilitate comparisons with flame response to acoustic perturbations. The chemiluminescence of CH* between two consecutive pulses was recorded using an intensified camera equipped with an optical filter to estimate the HRR fluctuations. First, the results show that the flame does not respond to each single plasma pulse, but is affected only by the average plasma power, confirming the step nature of the forcing. The temporal evolutions of HRR are analyzed and the flame transfer functions are determined. A forcing mechanism, as a local increase in the reactivity of the fluid close to the rod, is proposed and compared with numerical simulations. Experiments and numerical simulations are in good qualitative agreement. © 2016.

  16. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  17. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  18. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  19. 40 CFR 60.2886 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... incineration unit? (a) A new incineration unit is an incineration unit subject to this subpart that meets...

  20. 40 CFR 60.2015 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... is a new incineration unit? (a) A new incineration unit is an incineration unit that meets either of...

  1. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  2. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average flame radius. Assuming... flame length ratio obtained directly from the experiments, without any assumption. As explained earlier (Eq. 2.8) the length ratio, (LR=dl(G0)/dl0) is...spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to

  3. Neurotoxicity of brominated flame retardants

    Science.gov (United States)

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  4. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  5. Ohio incinerator given the go-ahead

    International Nuclear Information System (INIS)

    Kemezis, P.

    1992-01-01

    A federal judge has denied a request for an injunction against the startup of the long-stalled Waste Technologies Industries (WTI) commercial hazardous waste incinerator in East Liverpool, OH. The $140-million plant, owned by a US subsidiary of Swiss engineering group Von Roll Ltd. (Zuerich), will go through a startup stage and a seven-day trial burn during the next two months, according to WTI. In testimony in federal court in Huntington, WV, WTI had said it was losing $115,000/day in fixed costs because of the plant's startup delay. The company also said that long-term contracts with Chemical Waste Management (CWM; Oak Brook, IL), Du Pont (Wilmington, DE), and BASF Corp. (Parsippany, NJ) to use plant services could be jeopardized by the delay. WTI is believed to have 10-year service contracts with the three companies and also will use CWM to dispose of the ash from the incinerator

  6. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  7. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  8. An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames

    Science.gov (United States)

    Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.

  9. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  10. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  11. Fluidized bed incineration of radioactive waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1976-01-01

    A fluidized-bed incineration facility is being designed for installation at the Rocky Flats Plant to demonstrate a process for the combustion of transuranic waste. The unit capacity will be about 82 kg/hr of combustible waste. The combustion process will utilize in situ neutralization of acid gases generated in the process. The equipment design is based on data generated on a pilot unit and represents a scale-up of nine. Title I engineering is at least 70 percent complete

  12. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  13. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  14. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna

    2008-01-01

     In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerat...

  15. Conceptual design report for alpha waste incinerator

    International Nuclear Information System (INIS)

    1979-04-01

    The Alpha Waste Incinerator, a new facility in the SRP H-Area, will process transuranic or alpha-contaminated combustible solid wastes. It will seal the radioactive ash and scrubbing salt residues in cans for interim storage in drums on site burial ground pads. This report includes objectives, project estimate, schedule, standards and criteria, excluded costs, safety evaluation, energy consumption, environmental assessment, and key drawings

  16. The Savannah River Plant Consolidated Incineration Facility

    International Nuclear Information System (INIS)

    Weber, D.A.

    1987-01-01

    A full scale incinerator is proposed for construction at the Savannah River Plant (SRP) beginning in August 1989 for detoxifiction and volume reduction of liquid and solid low-level radioactive, mixed and RCRA hazardous waste. Wastes to be burned include drummed liquids, sludges and solids, liquid process wastes, and low-level boxed job control waste. The facility will consist of a rotary kiln primary combustion chamber followed by a tangentially fired cylindrical secondary combustion chamber (SCC) and be designed to process up to 12 tons per day of solid and liquid waste. Solid waste packaged in combustible containers will be fed to the rotary kiln incinerator using a ram feed system and liquid wastes will be introduced to the rotary kiln through a burner nozzle. Liquid waste will also be fed through a high intensity vortex burner in the SCC. Combustion gases will exit the SCC and be cooled to saturation in a spray quench. Particulate and acid gas are removed in a free jet scrubber. The off-gas will then pass through a cyclone separator, mist eliminator, reheater high efficiency particulate air (HEPA) filtration and induced draft blowers before release to the atmosphere. Incinerator ash and scrubber blowdown will be immobilized in a cement matrix and disposed of in an onsite RCRA permitted facility. The Consolidated Incineration Facility (CIF) will provide detoxification and volume reduction for up to 560,000 CUFT/yr of solid waste and up to 35,700 CUFT/yr of liquid waste. Up to 50,500 CUFT/yr of cement stabilized ash and blowdown will beproduced for an average overall volume reduction fator of 22:1. 3 figs., 2 tabs

  17. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  18. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  19. Consolidated Incineration Facility metals partitioning test

    International Nuclear Information System (INIS)

    Burns, D.B.

    1993-01-01

    Test burns were conducted at Energy and Environmental Research Corporation's rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below

  20. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  1. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  2. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie; Sun, Miao; Caps, Valerie; Pelletier, Jeremie; Abou-Hamad, Edy

    2013-01-01

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin

  3. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of

  4. Incineration of alpha-active solid waste by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Bhargava, V K; Kamath, H S; Purushotham, D S.C. [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1996-12-31

    The conventional techniques for treatment of alpha-active compressible solid waste involve incineration using electrically heated incinerators and subsequent recovery of special nuclear materials (SNM) from the ash by acid leaching. A microwave incineration followed by microwave digestion and SNM recovery from ash has specific advantages from maintenance and productivity consideration. The paper describes a preliminary work carried out with simulated uranium containing compressible solid waste using microwave heating technique. (author). 3 refs., 1 tab.

  5. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  6. DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation

    Science.gov (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2016-11-01

    A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.

  7. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  8. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  9. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  10. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  12. Evaluation of pressure response in the Los Alamos controlled air incinerator during three incident scenarios

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Elsberry, K.; Thompson, T.K.; Pendergrass, J.A.

    1996-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is a system designed to accept radioactive mixed waste containing alpha-emitting radionuclides. A mathematical model was developed to predict the pressure response throughout the offgas treatment system of the CAI during three hypothetical incident scenarios. The scenarios examined included: (1) loss of burner flame and failure of the flame safeguard system with subsequent reignition of fuel gas in the primary chamber, (2) pyrolytic gas buildup from a waste package due to loss of induced draft and subsequent restoration of induced draft, and (3) accidental charging of propellant spray cans in a solid waste package to the primary chamber during a normal feed cycle. For each of the three scenarios, the finite element computer model was able to determine the transient pressure surge and decay response throughout the system. Of particular interest were the maximum absolute pressures attainable at critical points in the system as well as maximum differential pressures across the high efficiency particulate air (HEPA) filters. Modeling results indicated that all three of the scenarios resulted in maximum HEPA filter differential pressures well below the maximum allowable levels

  13. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerator residue utilisation, particularly bottom ash from municipal solid waste incineration (MSWI). A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for i) road construction with or without MSWI bottom ash, ii) three management scenarios for MSWI bottom ash and iii) three management scenarios for wood ash. Different types of potential environmental impact predominated in the activities of the system and the scenarios differed in use of resources and energy. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. There is a potential for trace element leaching regardless of how the ash is managed. Trace element leaching, particularly of copper (Cu), was identified as being relatively important for environmental assessment of MSWI bottom ash utilisation. CuO is suggested as the most important type of Cu-containing mineral in weathered MSWI bottom ash, whereas in the leachate Cu is mainly present in complexes with dissolved organic matter (DOM). The hydrophilic components of the DOM were more important for Cu

  14. Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion

    KAUST Repository

    Shanbhogue, S.J.

    2016-01-01

    © 2015 The Combustion Institute. In this paper, we report results from an experimental investigation on transitions in the average flame shape (or microstructure) under acoustically coupled and uncoupled conditions in a 50 kW swirl stabilized combustor. The combustor burns CH4/H2 mixtures at atmospheric pressure and temperature for a fixed Reynolds number of 20,000 and fixed swirl angle. For both cases, essentially four different flame shapes are observed, with the transition between flame shapes occurring at the same equivalence ratio (for the same fuel mixture) irrespective of whether the combustor is acoustically coupled or uncoupled. The transition equivalence ratio depends on the fuel mixture. For the baseline case of pure methane, the combustor is stable close to the blowoff limit and the average flame in this case is stabilized inside the inner recirculation zone. As the equivalence ratio is raised, the combustor transitions to periodic oscillations at a critical equivalence ratio of φ=0.65. If hydrogen is added to the mixture, the same transition occurs at lower equivalence ratios. For all cases that we investigated, flame shapes captured using chemiluminescence imaging show that the transition to harmonic oscillations in the acoustically coupled cases is preceded by the appearance of the flame in the outer recirculation zone. We examine the mechanism associated with the transition of the flame between different shapes and, ultimately, the propagation of the flame into the outer recirculation zone as the equivalence ratio is raised. Using the extinction strain rates for each mixture at different equivalence ratios, we show that these transitions in the flame shape and in the instability (in the coupled case) for different fuel mixtures collapse as a function of a normalized strain rate : κextDU∞. We show that the results as consistent with a mechanism in which the flame must overcome higher strains prevailing in the outer recirculation zone, in order

  15. Numerical simulation of growth of flames formed in two-dimensional mixing layer. 2nd Report. Effect of dilution of fuel; Nijigen kongo sonai ni keiseisareta kaen no seicho ni kansuru suchi simulation. 2. Nenryo no kishaku ni yoru eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Noda, S [Toyohashi University of Technology, Aichi (Japan); Hashimoto, K [Sumitomo Metal Industries, Ltd., Osaka (Japan); Nakajima, T [Kobe University, Kobe (Japan). Faculty of Engineering

    1994-07-25

    The effect of fuel dilution on growth of flames formed in 2-D mixing layers was studied by numerical simulation. The methane mass fraction of fuel was adjusted to 1.0, 0.3 and 0.2 through dilution by nitrogen, while the oxygen mass fraction of an oxidizer was fixed at 0.27. Flame structure was complicated due to the flows separated by flame at the leading edge of flames, and three peaks of the second Damkohler number were observed. Fuel dilution by nitrogen caused blow-off of flames, and the mixing ratio of the fuel and oxidizer at the leading edge of flames was essential to blow-off of diffused flames. In the case where vortices were observed in a flow field, the first Damkohler number was important which was determined by the hydrodynamic characteristic time of coherent vortices and the chemical characteristic time of flame propagation based on the mixing ratio of the fuel and oxidizer at the leading edge of flames. The diffused flames were elongated by shearing force, and an exothermic reaction was suppressed and a flame stabilization decreased with a decrease in second Damkohler number. 10 refs., 9 figs., 1 tab.

  16. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  17. Quantitative characterization of hazardous waste incinerator performance - Part I: Model components viewed in the context of exchange among equilibrium reactions zones

    International Nuclear Information System (INIS)

    Atimtay, A.; Weaver, R.E.C.; Murray, J.G.

    1985-01-01

    This first paper of a series treats the algorithmic details of an efficient approach to equilibrium definition through free energy minimization and examines the region near the flame of a selected incinerator configuration, explicitly treating candidate heat and mass transfer processes occurring among the zones in local chemical equilibrium. The prospect for achieving maximum permitted flexibility of operations out of RCRA Part B Test Burn studies (in addition to achieving design improvements) will be enhanced by having a tractable yet versatile incinerator simulation capability. This approach seeks to integrate as much independent evidence on constituents processes as may be available in a quantitative aggregate from which a comparison can be drawn with what is measured in actual operations

  18. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Significance of waste incineration in Germany; Stellenwert der Abfallverbrennung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The report on the relevance of waste incineration in Germany is covering the following issues: change of the issue waste incineration in the last century, the controversy on waste incineration in the 80ies; environmental relevance of waste incineration; utilization of incineration residues; contribution to environmental protection; possible hazards for human health due are waste incinerator plants; the central challenges of waste incineration today; potential restraints to energy utilization in thermal waste processing; optimization of the energetic utilization of municipal wastes; future of the waste management and the relevance of waste incineration.

  20. Incineration experiences at the Tsuruga P.S. and outline of the advanced type incineration system at the Tokai No. 2 P.S

    International Nuclear Information System (INIS)

    Yui, K.; Kurihara, Y.; Inoue, S.; Takamori, H.; Karita, Y.

    1987-01-01

    In 1978, the first radwaste incineration plant among Japanese nuclear power stations started its operation at Tsuruga P.S., and the first advanced radwaste incineration plant has been constructed and accomplished the test operation in September 1986. This paper describes the outline of Tsuruga incineration plant and its operation achievements, and the outline of advanced incineration technology, Tokai No. 2 incineration plant and its test operation results

  1. Research on flame retardation of wool fibers

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Ametani, Kazuo; Sawai, Takeshi

    1990-01-01

    Flame retardant, vinyl phosphonate oligomer, was uniformly impregnated in wool fibers, and by irradiating low energy electron beam or cobalt-60 gamma ray, the flame retardation of fabrics was attempted, as the results, the following knowledges were obtained. At the rate of sticking of flame retardant lower than that in cotton fabrics, sufficient flame retarding property can be given. The flame retarding property withstands 30 times of washing. The lowering of strength due to the processing hardly arose. For the flame retardation, gamma-ray was more effective than electron beam. Since the accidents of burning clothes have occurred frequently, their flame retardation has been demanded. So far the flame retardation of cotton fabrics has been advanced, but this time the research on the flame retardation of wool fabrics was carried out by the same method. The experimental method is explained. As for the performance of the processed fabrics, the rate of sticking of the flame retardant, the efficiency of utilization, the flame retarding property, the endurance in washing and the tensile and tearing strength were examined. As the oxygen index was higher, the flame retarding property was higher, and in the case of the index being more than 27, the flame retarding property is sufficient, that is, the rate of sticking of 6% in serge and 5% in muslin. (K.I.)

  2. Mechanics of coalbed methane production

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J C; Rollins, J B [Crawley, Gillespie and Associates, Inc. (United Kingdom)

    1994-12-31

    Understanding the behaviour of coalbed methane reservoirs and the mechanics of production is crucial to successful management of coalbed methane resources and projects. This paper discusses the effects of coal properties and coalbed methane reservoir characteristics on gas production rates and recoveries with a review of completion techniques for coalbed methane wells. 4 refs., 17 figs.

  3. Quantitative Measurements of Electronically Excited CH Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend

  4. Quantitative Measurements of CH* Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the CH* spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on CH* concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Results show that, in microgravity, the maximum flame CH* concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and

  5. Correspondence Between Uncoupled Flame Macrostructures and Thermoacoustic Instability in Premixed Swirl-Stabilized Combustion

    KAUST Repository

    Taamallah, Soufien

    2014-06-16

    In this paper, we conduct an experimental investigation of a confined premixed swirl-stabilized dump combustor similar to those found in modern gas turbines. We operate the combustor with premixed methane-air in the lean range of equivalence ratio ϕ ∈ [0.5–0.75]. First, we observe different dynamic modes in the lean operating range, as the equivalence ratio is raised, confirming observations made previously in a similar combustor geometry but with a different fuel [1]. Next we examine the correspondence between dynamic mode transitions and changes in the mean flame configuration or macrostructure. We show that each dynamic mode is associated with a specific flame macrostructure. By modifying the combustor length without changing the underlying flow, the resonant frequencies of the geometry are altered allowing for decoupling the heat release fluctuations and the acoustic field, in a certain range of equivalence ratio. Mean flame configurations in the modified (short) combustor and for the same range of equivalence ratio are examined. It is found that not only the same sequence of flame configurations is observed in both combustors (long and short) but also that the set of equivalence ratio where transitions in the flame configuration occur is closely related to the onset of thermo-acoustic instabilities. For both combustor lengths, the flame structure changes at similar equivalence ratio whether thermo-acoustic coupling is allowed or not, suggesting that the flame configuration holds the key to understanding the onset of self-excited thermo-acoustic instability in this range. Finally, we focus on the flame configuration transition that was correlated with the onset of the first dynamically unstable mode ϕ ∈ [0.61–0.64]. Our analysis of this transition in the short, uncoupled combustor shows that it is associated with an intermittent appearance of a flame in the outer recirculation zone (ORZ). The spectral analysis of this “ORZ flame flickering”

  6. Correspondence Between Uncoupled Flame Macrostructures and Thermoacoustic Instability in Premixed Swirl-Stabilized Combustion

    KAUST Repository

    Taamallah, Soufien; LaBry, Zachary A.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2014-01-01

    In this paper, we conduct an experimental investigation of a confined premixed swirl-stabilized dump combustor similar to those found in modern gas turbines. We operate the combustor with premixed methane-air in the lean range of equivalence ratio ϕ ∈ [0.5–0.75]. First, we observe different dynamic modes in the lean operating range, as the equivalence ratio is raised, confirming observations made previously in a similar combustor geometry but with a different fuel [1]. Next we examine the correspondence between dynamic mode transitions and changes in the mean flame configuration or macrostructure. We show that each dynamic mode is associated with a specific flame macrostructure. By modifying the combustor length without changing the underlying flow, the resonant frequencies of the geometry are altered allowing for decoupling the heat release fluctuations and the acoustic field, in a certain range of equivalence ratio. Mean flame configurations in the modified (short) combustor and for the same range of equivalence ratio are examined. It is found that not only the same sequence of flame configurations is observed in both combustors (long and short) but also that the set of equivalence ratio where transitions in the flame configuration occur is closely related to the onset of thermo-acoustic instabilities. For both combustor lengths, the flame structure changes at similar equivalence ratio whether thermo-acoustic coupling is allowed or not, suggesting that the flame configuration holds the key to understanding the onset of self-excited thermo-acoustic instability in this range. Finally, we focus on the flame configuration transition that was correlated with the onset of the first dynamically unstable mode ϕ ∈ [0.61–0.64]. Our analysis of this transition in the short, uncoupled combustor shows that it is associated with an intermittent appearance of a flame in the outer recirculation zone (ORZ). The spectral analysis of this “ORZ flame flickering”

  7. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA Fossil Generation, Arnhem (Netherlands)

    1994-01-01

    The study on the title subject is aimed at the determination of the form of the flame and the radiation temperature of the flames of the burners in electric power plants. The adjustment of the burners in a boiler is assessed on the basis of the total performance, in which the NO[sub x]- and CO-concentrations in the flue gases are normative. By comparing the burners mutually, deviating adjustments can be observed, applying optical monitoring techniques. Measurements have been carried out of the coal flames in the unit Gelderland13 of the Dutch energy production company EPON and of the gas flames at the Claus plant A and B of the Dutch energy company EPZ. The final aim of the title study is to draft guidelines, based on the measured flame data, by means of which for every individual burner the adjustment of the fuel supply, the relation with the air supply and the swirl of the combustion air can be optimized

  8. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  9. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  10. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  11. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  12. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-01-01

    temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  13. CFD modeling using PDF approach for investigating the flame length in rotary kilns

    Science.gov (United States)

    Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.

    2016-12-01

    Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.

  14. Application of a primitive variable Newton's method for the calculation of an axisymmetric laminar diffusion flame

    International Nuclear Information System (INIS)

    Xu, Yuenong; Smooke, M.D.

    1993-01-01

    In this paper we present a primitive variable Newton-based solution method with a block-line linear equation solver for the calculation of reacting flows. The present approach is compared with the stream function-vorticity Newton's method and the SIMPLER algorithm on the calculation of a system of fully elliptic equations governing an axisymmetric methane-air laminar diffusion flame. The chemical reaction is modeled by the flame sheet approximation. The numerical solution agrees well with experimental data in the major chemical species. The comparison of three sets of numerical results indicates that the stream function-vorticity solution using the approximate boundary conditions reported in the previous calculations predicts a longer flame length and a broader flame shape. With a new set of modified vorticity boundary conditions, we obtain agreement between the primitive variable and stream function-vorticity solutions. The primitive variable Newton's method converges much faster than the other two methods. Because of much less computer memory required for the block-line tridiagonal solver compared to a direct solver, the present approach makes it possible to calculate multidimensional flames with detailed reaction mechanisms. The SIMPLER algorithm shows a slow convergence rate compared to the other two methods in the present calculation

  15. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  16. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano

    2017-08-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up to 4 atm, thereby addressing realistic gas turbine conditions. The skeletal mechanism is obtained by applying the directed relation graph method and performing sensitivity analysis on the detailed mechanism. The mechanism has been validated for flame speed and flame structure in a wide range of conditions and configurations. A good agreement between the skeletal mechanism and GRI-3.0 was obtained. The configurations considered include one-dimension laminar premixed flames, laminar non-premixed counterflow burners, and two- and three-dimensional unsteady configurations with variations of temperature, pressure, and composition. The skeletal mechanism allows for the inclusion of accurate finite rate chemistry in large-scale direct numerical simulations of lean turbulent premixed flames. In a large-scale direct numerical simulation, the use of the skeletal mechanism reduces the memory requirements by more than a factor of 3 and accelerates the simulation by a factor of 7 compared with the detailed mechanism. The skeletal mechanism is suitable for unsteady three-dimensional simulations of methane turbulent premixed, non-premixed, and globally lean partially premixed flames and is available as supplementary material.

  17. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  18. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING CFC INCINERATION

    Science.gov (United States)

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) th...

  19. Radioactivity partitioning in incinerators for miscellaneous low-level wastes

    International Nuclear Information System (INIS)

    Kyle, S.; Bellinger, E.

    1988-03-01

    Her Majesty's Inspectorate of Pollution (HMIP) authorises the use of hospital, university and Local Authority incinerators for the disposal of solid radioactive wastes. At present these authorisations are calculated on ''worst case'' assumptions, this report aims to review the experimental data on radioactivity partitioning in these incinerators, in order to improve the accuracy of HMIP predictions. The types of radionuclides used in medicine were presented and it is noted there is no literature on the composition of university waste. The different types of incinerators are detailed, with diagrams. Major differences in design are apparent, particularly the offgas cleaning equipment in nuclear incinerators which hinders comparisons with institutional incinerators. A comprehensive literature review revealed 17 references on institutional radioactive waste incineration, 11 of these contained data sets. The partitioning experiments were described and show a wide range of methodology from incinerating guinea pigs to filter papers. In general, only ash composition data were presented, with no details of emissions or plating out in the incinerator. Thus the data sets were incomplete, often with a poor degree of accuracy. The data sets contained information on 40 elements; those were compared and general trends were apparent such as the absence of H-3, C-14 and I-125 in the ash in contrast to the high retention of Sc-46. Large differences between data sets were noted for P-32, Sr-85 and Sn-113 and within one experiment for S-35. (author)

  20. EXPERIENCE IN INCINERATION APPLICABLE TO SUPERFUND SITE REMEDIATION

    Science.gov (United States)

    This document can be used as a reference tool for hazardous waste site remediation where incineration is used as a treatment alternative. It provides the user with information garnered from the experiences of others who use incineration. The document presents useful lessons in ev...

  1. Desulfurization of waste gases of the incinerator after petroleum refining

    International Nuclear Information System (INIS)

    Samesova, D.; Ladomersky, J.

    2001-01-01

    Desulfurization of waste gases of the incinerator after petroleum refining was developed. Mixing of wastes with lime (10% of additive of total volume of waste) was proved before introduction into incinerator. Concentrations of CO, CO 2 , O 2 , NO 2 , SO 2 and temperature of combustion products were measured by automatic analyser

  2. Chloride leaching from municipal solid waste incineration (MSWI) bottom ash

    NARCIS (Netherlands)

    Alam, Q.; Schollbach, K.; Florea, M.V.A.; Brouwers, H.J.H.; Vlastimil, Bilek; Kersner, Zbynek; Simonova, Hana

    2017-01-01

    The presence of chlorides in the Municipal Solid Waste Incineration bottom ashes (BA) hinders their potential for recycling in building materials. The contaminant content in the incineration residues is strictly regulated by the Dutch legislation Soil Quality Decree (2013). The fine fraction

  3. Incinerator for power reactor low-level radioactive waste

    International Nuclear Information System (INIS)

    Drolet, T.S.; Sovka, J.A.

    1976-01-01

    The technique chosen for volume reduction of combustible waste is incineration by a propane-fired unit. Noncombustible material will be compacted into 200 liter drums. A program of segregation of wastes at the producing nuclear stations was instituted. The design and operation of the incinerator, dose limits to the public, and derived release limits for airborne effluents are discussed

  4. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  5. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  6. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  7. AL(0) in municipal waste incinerator ash

    Science.gov (United States)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  8. Environmental assessment of incinerator residue utilisation.

    Science.gov (United States)

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  9. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  10. The hot demonstration operation of the incinerator

    International Nuclear Information System (INIS)

    Yan Kezhi; Zhang Zhetao; Fan Xianhua; Li Zhenliang

    1991-01-01

    The hot demonstration operation results of the incinerator designed and developed by CIAE described. During the operation, machine oil containing 3 H with the specific activity of 3.7 x 10 4 Bq/L to 3.7 x 10 7 6 Bq/L was burned. The concentration of 3 H in the off-gas after cleaning was about 286 Bq/m 3 . The process parameters, decontamination factors of radionuclides and the results of environmental monitoring and evaluation are also given in this report

  11. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  12. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  13. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  14. Criticality management organization in the alpha incinerator

    International Nuclear Information System (INIS)

    Devillard, D.; Thiebaut, C.; Poinso, J.Y.; Huin, M.

    2004-01-01

    The Valduc Research Center, which reports to the CEA's Military applications Division, generates solid wastes contaminated with alpha emitters in the operation of its installations. An incineration plant has been built to treat these contaminated wastes. Criticality risk prevention is based on limiting the mass of active material undergoing treatment in the facility. A balance is compiled continuously by calculating the difference between the mass of active material entering the facility and the mass leaving it. Due to measurement uncertainties, the balance must be zeroed periodically by cleaning and drainage of all the equipment and the absence of holdup in the components must be checked. (authors)

  15. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  16. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  17. Methane prediction in collieries

    CSIR Research Space (South Africa)

    Creedy, DP

    1999-06-01

    Full Text Available The primary aim of the project was to assess the current status of research on methane emission prediction for collieries in South Africa in comparison with methods used and advances achieved elsewhere in the world....

  18. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame.

    OpenAIRE

    Gueniche , Hadj-Ali; Glaude , Pierre-Alexandre; Fournet , René; Battin-Leclerc , Frédérique

    2006-01-01

    traduit de Fizika Goreniya I Vzryva, 2006, 42, 89-95.; The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified spec...

  19. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  20. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  1. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  2. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  3. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  4. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    Every year around 50 millions Mg solid waste are incinerated in Europe. Large differences exist in different regions, mainly regarding energy recovery, flue gas treatment and management of solid residues. This paper aims to identify and quantify those differences, providing a Life Cycle Assessment...... of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...... energy recovery and to local conditions, e.g. substitution of electricity and heat in the area. Focusing on the incineration process, Milan incinerator performs better than Aarhus, since its upstream impacts (related to the production of chemicals used in flue gas cleaning) are more than compensated...

  5. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  6. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  7. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  8. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures

    International Nuclear Information System (INIS)

    Schoor, F. van den; Hermanns, R.T.E.; Oijen, J.A. van; Verplaetsen, F.; Goey, L.P.H. de

    2008-01-01

    Different methods, both experimental and numerical, to determine the flammability limits are compared and evaluated, exemplified by a determination of the flammability limits of methane/hydrogen/air mixtures for hydrogen fuel molar fractions of 0, 0.2, 0.4 and 0.6, at atmospheric pressure and ambient temperature. Two different experimental methods are used. The first method uses a glass tube with visual observation of the flame, whereas the second method uses a closed spherical vessel with a pressure rise criterion to determine whether flame propagation has occurred. In addition to these experiments, the flammability limits are determined numerically. Unsteady planar and spherically expanding flames are calculated with a one-dimensional flame code with the inclusion of radiation heat loss in the optically thin limit. Comparison of the experimental results with the results of the planar flame calculations shows large differences, especially for lean mixtures. These differences increase with increasing hydrogen content in the fuel. Better agreement with the experimental results is found for the spherically expanding flame calculations. A limiting burning velocity of 5 cm/s is found to predict the upper flammability limit determined with the tube method very well, whereas the limiting flame temperature approach was found to give poorer agreement. Further analysis indicates that the neglect of flame front instabilities is the probable cause of the large differences between experimental and numerical results at the lower flammability limit

  9. Shredder and incinerator technology for treatment of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters

  10. Operation of controlled-air incinerators and design considerations for controlled-air incinerators treating hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    McRee, R.E.

    1986-01-01

    This paper reviews the basic theory and design philosophies of the so-called controlled-air incinerator and examines the features of this equipment that make it ideally suited to the application of low-level radioactive waste disposal. Special equipment design considerations for controlled air incinerators treating hazardous and radioactive wastes are presented. 9 figures

  11. Air conditioning with methane: Efficiency and economics optimization parameters

    International Nuclear Information System (INIS)

    Mastrullo, R.; Sasso, M.; Sibilio, S.; Vanoli, R.

    1992-01-01

    This paper presents an efficiency and economics evaluation method for methane fired cooling systems. Focus is on direct flame two staged absorption systems and alternative engine driven compressor sets. Comparisons are made with conventional vapour compression plants powered by electricity supplied by the national grid. A first and second law based thermodynamics analysis is made in which fuel use coefficients and exergy yields are determined. The economics analysis establishes annual energy savings, unit cooling energy production costs, payback periods and economics/efficiency optimization curves useful for preliminary feasibility studies

  12. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.

    Science.gov (United States)

    Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E

    2016-12-01

    A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are

  13. The IRIS Incinerator at Cea-Valduc assessment after more than one ton and a half of active waste incineration

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteau, P.; Longuet, T.; Lemort, F.; Lannaud, J.; Lorich, M.; Medzadourian, M.

    2000-01-01

    During the operation of its facilities, the Valduc Research Center produces alpha-contaminated solid waste. An incineration facility has been built to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process, which was developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run during more than 2,500 hours in 1997-1998. Active commissioning of the facility was performed in March 1999. Since then five campaigns with active waste and a complete plutonium cleaning session have been carried out, the results of which are given in the paper. The Valduc incinerator is the first industrial active application of the IRIS process. (authors)

  14. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)

  15. Thermal inertializing of solid incinerator residues

    International Nuclear Information System (INIS)

    Proelss, J.

    2003-01-01

    Inertialization of residues is a key task of incinerators. Residues of conventional incineration processes may contain high levels of inorganic or organic pollutants and must be treated prior to recycling. the most effective process is thermal treatment above the melting point. This will destroy organic pollutants like dioxins/furans and pathogenic compounds, while the heavy metals will be partly volatilized. The glassy slag obtained as end product is low in heavy metals and more or less resistant to leaching. The The author describes a method for calculating activity coefficients of volatile components of diluted, liquid multicomponent systems. With these data, the data base for thermodynamic description of fluid mixtures was updated, and a set of characteristic data was established for describing transport in an inflatable module. Once the activity coefficients of interesting constituents of the slag are known along with the transport conditions in the volatilization process, it is possible to optimize the thermal treatment of critical ashes and dusts with a view to energy consumption and process control. In two different exemplary process concepts, the energy consumption for residue treatment is estimated. The processes proposed are compared with published process proposals, and their energy consumption is assessed in a comoparative study [de

  16. Incineration of a Single Component Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.

    1999-01-01

    An Advanced controlled air incinerator has been investigated, developed and put into successful operation for a single component and other combustible solid wastes. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increases by the increase of glowing bed temperature, while H 2 O, H 2 and CO decreases. It was proved that, a burn- out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98%, respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products . Process chemistry and kinetics of the gasification were studied. The rate of reaction of the gasification process was obtained at different operating conditions by solving a set of algebraic equations provided by applying the extent of reaction concept. The comparison showed a satisfactory agreement between the calculated and experimental values. Unsteady state mass balance equations are developed for the gas reactor. The derived equations are Laplace transformed and solved to generate the dynamic behavior of the system . Open loop calculations are conducted to study the effect of some disturbances on the performance of the gas reactor. Model output was compared with actual experimental data as only slight corrections have to be made

  17. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  18. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  19. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon [HaJI Co., Ltd., Radiation Eng. Center, Siheung (Korea, Republic of); Kim, Yunbok; Kwon, Youngbock [KORAD, Daejeon (Korea, Republic of)

    2014-05-15

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  20. 40 CFR 60.2885 - Does this subpart apply to my incineration unit?

    Science.gov (United States)

    2010-07-01

    ... incineration unit? 60.2885 Section 60.2885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Other Solid Waste Incineration Units for Which Construction is Commenced After December 9, 2004....2885 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets all the...