WorldWideScience

Sample records for metastable bcc phase

  1. Metastable bcc Fe-Mn alloys produced by rf sputtering

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Kadono, Masaru; Nakamura, Yoji

    1981-01-01

    Fe sub(1-x)Mn sub(x) alloy films obtained by rf sputtering technique have been investigated by X-ray diffraction, magnetization and Moessbauer effect measurements. The single bcc phase extends up to about x = 0.2, while a bcc-fcc mixed phase appears for x = 0.2 - 0.26. The lattice constants of the bcc phase are about 0.5% larger than those of the bulk specimens. The magnetization decreases monotonically with increasing x in the bcc phase, while it decreases sharply in the bcc-fcc mixed phase. These results are consistent with the Moessbauer spectra of these alloy films. The volume fraction of bcc and fcc phases has been estimated from Moessbauer analyses as well as magnetization measurements. (author)

  2. Magnetic properties of metastable bcc and fcc Fe-Cu alloys produced by vapor quenching

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Yoshitake, Tsutomu; Nakamura, Yoji

    1984-01-01

    High concentration Fesub(1-x)Cusub(x) alloys have been obtained by rf sputtering technique and investigated by X-ray diffraction and magnetization measurements. The bcc phase is extended over the region with x=0-0.4, while the fcc phase with x=0.6-1.0. For x=0.4-0.6, we have the mixed phase of bcc and fcc. The lattice constant of bcc phase increases slightly and that of fcc phase decreases with increasing x. In the bcc alloys, the average magnetic moment decreases with increasing x and deviates upwards from the simple dilution law. In the fcc alloys, the magnetic moment also decreases with increasing x but it deviates downwards from the simple dilution law. The Curie temperature, Tsub(c), of the Fesub(1-x)Cusub(x) alloys decreases abruptly with increasing x: Tsub(c) is higher than 750 K for the bcc alloys, while it is lower than 320 K for the fcc alloys and become 0 K at about x=0.92. (author)

  3. Co thin film with metastable bcc structure formed on GaAs(111 substrate

    Directory of Open Access Journals (Sweden)

    Minakawa Shigeyuki

    2014-07-01

    Full Text Available Co thin films are prepared on GaAs(111 substrates at temperatures ranging from room temperature to 600 ºC by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 ºC, Co crystals with metastable A2 (bcc structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc structure through atomic displacements parallel to the A2{110} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1{111} || A2{110}. When the substrate temperature is higher than 400 ºC, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.

  4. Energy barrier of bcc-fcc phase transition via the Bain path in Yukawa system

    Science.gov (United States)

    Kiyokawa, Shuji

    2018-05-01

    In the Yukawa system with the dimensionless screening parameter κ>1.5 , when bcc-fcc transition occurs via Bain path, we show that spontaneous transitions do not occur even if the system temperature reaches the transition point of bcc-fcc because it is necessary to increase once the free energy in the process of transition from bcc to fcc through Bain deformation. Here, we refer the temporary increment of the free energy during Bain deformation as Bain barrier. Since there are the Bain barriers at the transitions between bcc and fcc phases, these phases may coexist as metastable state in the wide region (not a coexistence line) of κ and the coupling constant Γ. We study the excess energy of the system and the free energy difference between bcc and fcc phases by the Monte Carlo method, where the simulation box is divided into a large number of elements with small volume and a particle in the box is restricted be placed in one of these elements. By this method, we can tabulate the values of the interparticle potential and can calculate the internal energy fast and precisely.

  5. A popular metastable omega phase in body-centered cubic steels

    Energy Technology Data Exchange (ETDEWEB)

    Ping, D.H., E-mail: ping.de-hai@nims.go.jp [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Geng, W.T., E-mail: geng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    Steel remains to be one of the most common structural materials in the world as human civilization advances from the Iron Age to the ongoing Silicon Age. Our knowledge of its microstructure evolution and structure–performance relationship is nevertheless still incomplete. We report the observation and characterization of a long ignored metastable phase formed in steels with body-centered cubic (bcc) structure using both transmission electron microscopy and density functional theory calculations. This ω phase has a hexagonal structure and coherent interface with the matrix: a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. It is 3.6% smaller in volume and 0.18 eV higher in energy than bcc-Fe, with atoms in alternating close- and loose-packed layers couple anti-ferromagnetically. Carbon plays a crucial role in promoting bcc to ω transformation. At a concentration higher than 4 at.% they tend to segregate from the bcc matrix to the ω-phase; at about 14 at.%, they can induce bcc to ω transformation; and finally at 25 at.%, they stabilize the ω phase as ω-Fe{sub 3}C. The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms, leading to improved resistance of martensitic steels to irradiation damage. - Highlights: ► A long-ignored metastable ω phase in body-centered cubic (bcc) steel. ► The ω phase has hexagonal structure with lattice parameters a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. ► Carbon enrichment is found to play a crucial role on the bcc-to-ω phase transformation. ► The ω phase is strongly related to the martensitic transformation and twinning structure. ► The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms.

  6. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011){sub B3} single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Higuchi, Jumpei; Yabuhara, Osamu [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011){sub B3} single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]{sub bcc} || GaAs(011)[011-bar]{sub B3}. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{l_brace}011{r_brace} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011){sub B3} substrates.

  7. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.

  8. Assessment of the structural relations between the bcc and omega phases of Ti, Zr, Hf and other transition metals

    International Nuclear Information System (INIS)

    Aurelio, G.; Guillermet, A.F.

    2000-01-01

    The name omega (Ω) phase refers to a high-pressure structural modification of the transition metals (TMs) Ti, Zr, and Hf. In alloys of Ti, Zr and Hf with other TMs, the Ω phase can be formed and retained metastably at room temperature by quenching the bcc structure, which is usually the stable high-temperature phase in these alloy systems. As a part of a systematic investigation of the structural and bonding properties of the bcc and Ω phases, and of the bcc → Ω phase transformation in TMs and alloys, we present in this paper a detailed analysis of the structural relations between these phases in Ti, Zr, Hf and in other TMs. The approach is as follows. First, we establish the most general geometrical relations connecting the lattice parameters and interatomic distances (IDs) of the bcc and Ω structures. Next, we focus on the ratio between the relevant IDs of these phases, which are assessed on the basis of an extensive database with experimental and theoretical information. Both stable and metastable structures are considered, and various remarkable regularities in ID ratios are discussed. Finally, in the light of the systematics of ID ratios established in the present work, a discussion is made of the probable lattice parameters for the Ω phase of Hf, which are not yet accurately known from direct measurements. (orig.)

  9. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  10. Electronic structure of metastable bcc Cu–Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liebscher, C.H.; Freysoldt, C. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany); Dennenwaldt, T. [Institute of Condensed Matter Physics and Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Harzer, T.P.; Dehm, G. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany)

    2017-07-15

    Metastable Cu–Cr alloy thin films with nominal thickness of 300 nm and composition of Cu{sub 67}Cr{sub 33} (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50 nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu{sub 85}Cr{sub 15} (at%) and Cu{sub 42}Cr{sub 58} (at%) and domain size of 1–5 nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu–Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu–Cr solid solutions with bcc crystal structure a single peak after the L{sub 3}-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu–Cr solid solutions with 10 at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu{sub 50}Cr{sub 50} (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu–Cr d-band that lies between the delocalized d-bands of Cu and Cr. - Highlights: • Compositional fluctuations on the order of 1–5 nm in Cu- and Cr-rich domains are observed. • EELS determines a single van Hove singularity for bcc Cu–Cr solid solutions. • The electronic structure is dominated by d

  11. Metastable Structural Phases of Metals in Columns IVB to Vib, and Rows 4 TO 6 OF the Periodic Table

    Science.gov (United States)

    Nnolim, Neme; Tyson, Trevor

    2002-03-01

    Total energy calculations as a function of strain along the direction have been carried out for the bcc metals V, Nb, Ta, Cr, Mo and W, and the hcp metals Ti, Zr and Hf, all in the block of the periodic table defined by columns IVB to VIB, and rows 4 to 6. Since strain along the direction corresponds to variation of the c lattice constant with respect to the a lattice constant, the total energy per unit cell has being calculated as a function of the c/a ratio. The highly accurate FP-LAPW (Full Potential Linearized Augmented Plane Wave) band structure method in the DFT (Density Functional Theory) formalism has been used for the calculations. In all cases except for the hcp column IVB elements, Zr, Hf and Ti, a metastable state was predicted from the calculations. Electronic properties are computed for all structures and are correlated with electrical and mechanical properties of metastable phases that have been observed experimentally. Properties of metastable phases, which were predicted in this work but which as of yet have not been observed experimentally, have also been predicted. Special attention is paid to the phases of tantalum and calculated transport properties are used to show that the observed high resistivity of the beta phase of tantalum relative to the alpha bcc phase cannot be explained solely by simple tetragonal distortions of the bcc phase.

  12. Modeling of metastable phase formation diagrams for sputtered thin films.

    Science.gov (United States)

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  13. Thermal stability and phase transformation of metastable phases in Zr-Nb

    International Nuclear Information System (INIS)

    Aurelio, G.; Fernandez Guillermet, Armando

    2003-01-01

    The lattice parameters of the bcc (β) and (Ω) phases occurring metastability in a series of Zr-rich Zr-Nb alloys have been determined at and above room temperature (TR) using neutron diffraction techniques. In the first place, the effect of temperature changes upon the lattice parameters of the β and Ω phases in alloys with 10 and 18 at. % Nb was monitored using neutron thermo-diffraction. A method of analysis is applied to the data, which involve a confrontation between the observed structural properties and an idealized -or 'reference'- behavior (RB) which admits a simple mathematical description. A generalized form of the law of Vegard is adopted as RB for the β phase, whereas a specific RB is proposed for the Ω structure. The experimental data are well accounted for by this interpretation scheme, leading to a picture of the isothermal reactions occurring at high temperature, which involves the transfer of Nb from the Ω to the β phase. Finally, the neutron diffraction data on the Ω phase is combined with an electron microscopy study for the alloy with 10 at. % Nb aged at 773 K, which provides information on the composition of this phase and its evolution towards thermodynamic equilibrium. (author)

  14. Emergence of the bcc Phase and Phase Transition in Be through Phonon Quasiparticle Calculations

    Science.gov (United States)

    Zhang, D. B., Sr.; Wentzcovitch, R. M.

    2016-12-01

    Beryllium (Be) is an important material with applications in a number of areas ranging from aerospace components to X-ray equipment. Yet a precise understanding of the phase diagram of Be remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticle properties. We find that the hcp to bcc transition occurs near the melting curve at 0

  15. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  16. Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Emami, Hoda; Staykov, Aleksandar; Smith, David J.; Akiba, Etsuo; Horita, Zenji

    2015-01-01

    No binary phases exist in the Mg–Ti binary equilibrium phase diagram and the two elements are totally immiscible even in liquid form. This study shows that four metastable phases (two with the bcc and fcc structures and two with the hcp structures) are formed in the Mg–Ti system by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT). Investigation of hydrogenation properties reveals that these metastable phases are decomposed to pure Mg and Ti during heating before they can absorb the hydrogen in the form of ternary Mg–Ti hydrides. First-principles calculations show that the hydrogenation reaction should occur thermodynamically, and ternary Mg–Ti hydrides with the cubic structure should form at low temperature. However, the slow kinetics for this reaction appears to be the limiting step. Calculations show that the binding energy of hydrogen increases and the thermodynamic stability of hydrides undesirably increases by addition of Ti to Mg

  17. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    Science.gov (United States)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems

  18. Solid-liquid interface free energies of pure bcc metals and B2 phases

    Science.gov (United States)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  19. Atomistic simulation of fcc—bcc phase transition in single crystal Al under uniform compression

    International Nuclear Information System (INIS)

    Li Li; Liang Jiu-Qing; Shao Jian-Li; Duan Su-Qing; Li Yan-Fang

    2012-01-01

    By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density functional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111-bar) plane and the (11-bar1) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure. (condensed matter: structural, mechanical, and thermal properties)

  20. The study on binary Mg-Co hydrogen storage alloys with BCC phase

    International Nuclear Information System (INIS)

    Zhang Yao; Tsushio, Yoshinori; Enoki, Hirotoshi; Akiba, Etsuo

    2005-01-01

    Novel Mg-Co binary alloys were successfully synthesized by mechanical alloying. These alloys were studied by X-ray diffraction (XRD), transmission electron micrograph (TEM), pressure-composition-isotherms measurements (P-C-T) and differential scanning calorimetry (DSC). Both XRD Rietveld analysis and TEM observation confirmed that these binary alloys contain BCC phase and that the BCC phase existed in the range from 37 to 80 at.% Co. The lattice parameter of the BCC phase increased with the increase of the Co content from 37 to 50 at.%. When the Co content reached 50 at.%, the lattice parameter reached a maximum value, and then turned to decrease gradually with further increase of the Co content. Most of Mg-Co BCC alloys absorbed hydrogen at 373 K under 6 MPa of hydrogen pressure. The Mg 60 Co 40 alloy showed the highest hydrogen absorption capacity, about 2.7 mass% hydrogen. However, all the Mg-Co alloys studied did not desorb hydrogen at 373 K. By means of DSC measurements and in situ XRD analysis, it was found that under 4 MPa hydrogen atmosphere, Mg 50 Co 50 alloy transformed from BCC solid solution to Mg 2 CoH 5 tetragonal hydride at 413 K

  1. Cooperative photoinduced metastable phase control in strained manganite films

    Science.gov (United States)

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  2. Structural Properties and Thermodynamic Stability of Metastable Phases in the Zr-Nb and Ti-V Systems

    International Nuclear Information System (INIS)

    Aurelio, Gabriela

    2003-01-01

    The structural properties and relative stability of metastable phases have been studied in the Zr-Nb and Ti-V systems.The first part of this Thesis is connected to a previous work performed in our Group (G. Grad, PhD Thesis, Instituto Balseiro, Argentina, 1999).It presents a phenomenological analysis of the systematics of interatomic distances in the omega (Ω ) and bcc (β) phases of the transition metals, which concerns a parameter entering into Pauling's resonating-valence- bond-theory and the structural and bonding properties of the Ω and β phases.Neutron diffraction experiments in Zr-Nb and Ti-V alloys are reported, aimed at studying possible atomic ordering in the Ω phase and the composition dependence of its interatomic distances.An extensive neutron diffraction study was performed on a series of Zr-Nb and Ti-V alloys quenched from high temperatures, where β is the stable phase.Upon quenching, three metastable structures are formed, viz., the hcp (∝ q ) phase, the Ω q phase, and the untransformed β q phase.The structural properties of these metastable phases were determined as a function of the Nb and V contents to generate a reliable experimental database.With such data, a series of issues are discussed related to the structure, relative stability, and phase relations in the alloys and its constitutive elements.The effect of composition upon the lattice parameters of the metastable β q and Ω q phases was combined in a consistent way with a critical analysis of structural and thermophysical data on the metastable phases of Ti and Zr.The relative stability of the metastable ∝ q , Ω q and β q phases in Zr-Nb alloys, and its evolution towards thermodynamic equilibrium, were studied combining neutron thermodiffraction and analytical electron microscopy techniques.During isothermal heat treatments performed at high temperature, the structural properties of the alloys were determined as a function of temperature, time and composition.A method of

  3. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr{sup 2+}) irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbing, E-mail: 12hy1@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Zhang, Ken; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Kirk, Mark A. [Material Science Division Argonne National Laboratory, Argonne, IL, 60439 (United States); Long, Fei; Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2016-02-15

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr{sup 2+}) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  4. Inherited textures in the bcc phase furnish information about the type of transformation from the fcc phase

    International Nuclear Information System (INIS)

    Jung, V.

    1982-07-01

    Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.) [de

  5. Planktic foraminifera form their shells via metastable carbonate phases.

    Science.gov (United States)

    Jacob, D E; Wirth, R; Agbaje, O B A; Branson, O; Eggins, S M

    2017-11-02

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO 2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.

  6. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    Science.gov (United States)

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  7. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    International Nuclear Information System (INIS)

    Gao, Lei; Ding, Xiangdong; Sun, Jun; Lookman, Turab; Salje, E. K. H.

    2016-01-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  8. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Salje, E. K. H., E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  9. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    Science.gov (United States)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  10. Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3

    OpenAIRE

    Sorkin, V.; Polturak, E.; Adler, Joan

    2006-01-01

    Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid He-3 in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm^3. From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.

  11. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  12. Ab initio calculation of the bcc Fe-Al phase diagram including magnetic interactions

    International Nuclear Information System (INIS)

    Gonzales-Ormeno, Pablo Guillermo; Petrilli, Helena Maria; Schoen, Claudio Geraldo

    2006-01-01

    The metastable phase diagram of the body-centered cubic-based ordering equilibria in the Fe-Al system has been calculated by the cluster expansion method, through the combination of the full potential-linear augmented plane wave and cluster variation methods. The results are discussed with reference to the effect of including the spin polarizations of Fe in the thermodynamic model

  13. Novel criterion for formation of metastable phase from undercooled melt

    International Nuclear Information System (INIS)

    Kuribayashi, Kazuhiko; Nagashio, Kosuke; Niwata, Kenji; Kumar, M.S. Vijaya; Hibiya, Taketoshi

    2007-01-01

    Undercooling a melt facilitates the preferential nucleation of a metastable phase. In the present study, the formation of metastable phases from undercooled melts was considered from the viewpoint of the competitive nucleation criterion. The classical nucleation theory shows us that the most critical factor for forming a critical nucleus is the interface free energy σ. Furthermore, Spaepen's negentropic model on σ generated the role of the scaling factor α that depends on the polyhedral order in the liquid and solid phases prominent in simple liquids such as the melt of monoatomic metals. In ionic materials such as oxides, however, in which oxygen polyhedrons including a cation at their center are the structural units both in the solid and liquid phases, the entropy of fusion, rather than α, can be expected to become dominant in the determination of σ. In accordance with this idea, using REFeO 3 as the model material (where RE denotes rare-earth elements) the entropy-undercooling regime criterion was proposed and verified

  14. Influence of the intermediate bcc phase on the evolution of superfluid inclusions in hcp matrix 3He-4He

    International Nuclear Information System (INIS)

    Birchenko, A.P.; Mikhin, N.P.; Neoneta, A.S.; Rudavskij, Eh.Ya.; Fisun, Ya.Yu.

    2016-01-01

    The evolution of liquid inclusions which are formed in the hcp matrix by rapid cooling of the 3 He- 4 He solution containing 1.05% 3 He was studied by pulse NMR. The diffusion coefficient of 3 He in the liquid was measured by two-pulses spin-echo method during evolution of the inclusions. Measurements were carried out at 1.67 K which corresponds to the bcc phase existence in the phase diagram, as well as at 1.38 K, where the bcc phase is absent. It is found that in the process of the evolution, in both cases the size of the liquid inclusions is less than diffusion length and so the diffusion is restricted. The measured restricted dif-fusion coefficient allowed to find the characteristic size of the inclusions. In the first case, during the evolution of liquid inclusions, dendrites of intermediate bcc phase is forming and the inclusions are separating into a lot of smaller droplets. Due to the rapid growth of the bcc dendrites, the droplet size decreases rapidly, and the process comes to disappearance of bcc phase and an amorphous state appearance. The results obtained by measuring the diffusion coefficient, correlated with the behavior of the spin-lattice relaxation time in such a system. In the second case at a lower temperature bcc phase is not formed, and the size of the liquid inclusions decreases very slow until the completion of their solidification.

  15. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  16. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    Science.gov (United States)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  17. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  18. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  19. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  20. Phase transition in metastable perovskite Pb(AlNb)0,5O3

    International Nuclear Information System (INIS)

    Zhabko, T.E.; Olekhnovich, N.M.; Shilin, A.D.

    1987-01-01

    Dielectric properties of metastable perovskite Pb(AlNb) 0.5 O 3 and X-ray temperature investigations of both perovskite and pyrochlore modifications of the given compound are studied. Samples with the perovskite structure are prepared from the pyrochlorephase at 4-5 GPa pressure and 1170-1270 K. Ferroelectric phase transition is shown to occur in the metastable perovskite phase Pb(AlNb) 0.5 O 3 at 170 K

  1. Decomposition of the metastable phase γU in U-7% and U-7% Mo-0.9% Pt

    International Nuclear Information System (INIS)

    Arico, Sergio F.; Gribaudo, Luis M.

    2004-01-01

    The 'Reduced Enrichment for Research and Test Reactors' is an international project for the development of a nuclear fuel with high density in uranium capable to get a great neutron flux with good capacity for being reprocessed. One of the candidates is a fuel containing U-Mo alloy powder, as bcc metastable phase γ, dispersed in Al powder. In order to know the influence of Pt as a stabilizing element two U-7 wt.% Mo alloys are studied, one of them with 0.9 wt.% Pt. They were fabricated in an arc furnace and both homogenized in composition during 2 h at 1000 C degrees. Then, isothermal treatments at 480, 430 and 350 C degrees were performed at times between 1 and 177 h. The decomposition of the γ phase was studied by metallography and X-ray diffraction analysis. Adding Pt, the start of the decomposition of the γ phase is delayed, but the initial grain size of the alloys is an important variable which has also to be considered. (author) [es

  2. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  3. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  4. Kinetics of disorder-to-fcc phase transition via an intermediate bcc state

    International Nuclear Information System (INIS)

    Liu Yongsheng; Nie Huifen; Bansil, Rama; Steinhart, Milos; Bang, Joona; Lodge, Timothy P.

    2006-01-01

    Time-resolved small-angle x-ray scattering measurements reveal that a long-lived intermediate bcc state forms when a poly(styrene-b-isoprene) diblock copolymer solution in an isoprene selective solvent is rapidly cooled from the disordered micellar fluid at high temperature to an equilibrium fcc state. The kinetics of the epitaxial growth of the [111] fcc peak from the [110] bcc peak was obtained by fitting the scattering data to a simple model of the transformation. The growth of the [111] fcc peak agrees with the Avrami model of nucleation and growth kinetics with an exponent n=1.4, as does the initial decay of the [110] bcc peak, with an exponent n=1.3. The data were also found to be in good agreement with the Cahn model of grain boundary nucleation and growth

  5. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    Science.gov (United States)

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.

  6. Nucleation and growth of a BCC Fe phase deposited on a single crystal (001) Cu film

    International Nuclear Information System (INIS)

    Koike, J.

    1991-01-01

    As a thin film overlayer grows on a substrate with a different structure, the overlayer initially adopts the substrate structure and subsequently transforms to an equilibrium bulk structure. such a growth characteristic has been extensively studied in Fe/Cu bicrystals. An Fe overlayer grown on a Cu substrate is known to have the fcc structure up to a thickness of 2 nm, whereas a thicker Fe overlayer consists of submicrometer grains of the bcc-Cu has been reported in a relatively thick Fe film and was found to consist of the Nishiyama (N), Kurdjumov-Sacks (KS), or Pitsch (P), depending on the orientation of the substrate surface. However, previous studies have not explained how the bcc structure nucleates or how the observed submicrometer polycrystalline grains form. The paper provides an understanding of these two points. Transmission electron microscopy (TEM) was used to study Fe/Cu bicrystals as the Fe thickness was varied systematically. Analysis of moire fringes, which are caused by superposition of different structures, enabled us to determine the orientation relationship between the very thin Fe layer and the Cu substrate. We show that a single variant of the P orientation relationship, which accompanies atomic rearrangement parallel to the interface, predominates at the nucleation stage of the bcc structure. Nucleation of other variants of P, N, and KS occurs with increasing Fe thickness and causes the formation of the submicrometer bcc grains

  7. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Shulenburger, Luke [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Motivated by the disagreement between recent diffusion Monte Carlo calculations of the phase transition pressure between the ambient and beta-Sn phases of silicon and experiments, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an opportunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation and after removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  8. Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Mylvaganam, K [Centre for Advanced Materials Technology, University of Sydney, NSW 2006 (Australia); Zhang, L C [School of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052 (Australia); Eyben, P; Vandervorst, W [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J, E-mail: k.mylvaganam@usyd.edu.a, E-mail: Liangchi.zhang@unsw.edu.a, E-mail: eyben@imec.b, E-mail: jamody@imec.b, E-mail: vdvorst@imec.b [KU Leuven, Electrical Engineering Department, INSYS, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2009-07-29

    This paper explores the evolution mechanisms of metastable phases during the nanoindentation on monocrystalline silicon. Both the molecular dynamics (MD) and the in situ scanning spreading resistance microscopy (SSRM) analyses were carried out on Si(100) orientation, and for the first time, experimental verification was achieved quantitatively at the same nanoscopic scale. It was found that under equivalent indentation loads, the MD prediction agrees extremely well with the result experimentally measured using SSRM, in terms of the depth of the residual indentation marks and the onset, evolution and dimension variation of the metastable phases, such as {beta}-Sn. A new six-coordinated silicon phase, Si-XIII, transformed directly from Si-I was discovered. The investigation showed that there is a critical size of contact between the indenter and silicon, beyond which a crystal particle of distorted diamond structure will emerge in between the indenter and the amorphous phase upon unloading.

  9. Melting in Two-Dimensional Lennard-Jones Systems: Observation of a Metastable Hexatic Phase

    International Nuclear Information System (INIS)

    Chen, K.; Kaplan, T.; Mostoller, M.

    1995-01-01

    Large scale molecular dynamics simulations of two-dimensional melting have been carried out using a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400 atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young

  10. A metastable Mg11Sm phase obtained by rapid solidification

    International Nuclear Information System (INIS)

    Budurov, S.

    1993-01-01

    Molten Mg-Sm alloys with a Sm concentration of 4.93, 6.86, and 8.35 at.% were rapidly soldified with the aid of a shock wave gun device. Investigations of the obtained splats were performed with the aid of DSC, X-ray analysis, and metallography. Rapid soldification of the eutectic MgSm 8.35 alloy forms a new Im3m-type phase. (orig.)

  11. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy

    KAUST Repository

    Liu, Jinxuan

    2012-12-04

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++) 2-carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  12. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy

    KAUST Repository

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Brä se, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Mü llen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wö ll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++) 2-carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  13. Dynamics of the HCP/BCC phase transition and of the diffusion in zirconium: a model based on a tight-binding potential

    International Nuclear Information System (INIS)

    Willaime, F.

    1991-09-01

    We have developed an N-body interatomic potential, based on the second moment approximation of the tight-binding scheme, by fitting its four adjustable parameters to the cohesive energy, atomic volume, and elastic constants of hcp-Zr. We then showed that various properties of this potential compare favorably with those of zirconium in both the low temperatures hcp phase and the high temperature bcc phase. Such is the case in particular for the elastic constants, the phonon dispersion curves, the thermal expansion, and the melting temperature. We reproduced by molecular dynamics (MD) simulations on this potential the hcp/bcc phase transformation in both ways. It indeed occurs following the mechanism predicted by Burgers. We find a vibrational entropy of transformation equal to 0.13 k B . Our calculations suggest that in real zirconium the electronic contribution to the transformation entropy is important. We show that some interatomic potential lead to a higher value of the vibrational entropy in the hcp phase than in the bcc phase. We specified the dynamics of the vacancy migration in the bcc phase. The atomic jumps are almost exclusively nearest neighbour ones. The walk of the vacancy becomes strongly correlated at high temperatures. The vacancy jump frequency is very large and has a perfectly arrhenian behaviour. There is no evicence of a dynamical lowering of the vacancy migration barrier: the static and dynamic values of the vacancy migration energy are almost equal, both being unusually small (0.3 eV). The self diffusion coefficent of our model for the vacancy mechanism reproduces an anomalous fast diffusion close to that measured experimentally in bcc-Zr. In our model at high temperatures the time interval between successive jumps is almost equal to the time of flight. The migration events will therefore influence the formation of the vacancies [fr

  14. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ → hcp ε → bcc α′ martensitic phase transformation

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Sun, Sheng; Zhang, Tong-Yi

    2015-01-01

    High Resolution Transmission Electron Microscopy (HRTEM) and Molecular Dynamics (MD) simulations were conducted here to study the plastic deformation induced γ (fcc) → ε (hcp) → α′ (bcc) martensitic transformation in 304 stainless steels for the α′ nucleation from single hcp-ε laths. Results elucidate that the underlying microscopic mechanism for the α′ nucleation from single hcp-ε laths obeys the Bogers–Burgers–Olson–Cohen “3T/8–T/3” model. In particular, the atomic-scale observations clearly show the Kurdyumov–Sachs (K–S) lattice orientation relation (OR) and Pitsch OR at the γ/α′ interfaces, the lattice rotation inside an α′ martensitic inclusion, the transition lattice and the reverse shear-shuffling induced continuous lattice elastic deformation at the diffuse ε/α′ interface, which caters the 3T/8 and T/3 shears and sheds atomic process insight into the mechanism of the martensitic transformation

  15. A model for metastable magnetism in the hidden-order phase of URu2Si2

    Science.gov (United States)

    Boyer, Lance; Yakovenko, Victor M.

    2018-01-01

    We propose an explanation for the experiment by Schemm et al. (2015) where the polar Kerr effect (PKE), indicating time-reversal symmetry (TRS) breaking, was observed in the hidden-order (HO) phase of URu2Si2. The PKE signal on warmup was seen only if a training magnetic field was present on cool-down. Using a Ginzburg-Landau model for a complex order parameter, we show that the system can have a metastable ferromagnetic state producing the PKE, even if the HO ground state respects TRS. We predict that a strong reversed magnetic field should reset the PKE to zero.

  16. Transportation properties of amorphous state InSb and its metastable middle phase

    International Nuclear Information System (INIS)

    Cao Xiaowen

    1990-09-01

    The variation of the substrate temperature induces the metal-semiconductor transition in the condensation InSb films at low temperatrue. The electron conduction is dominant in the metal-type amorphous InSb and the hole in semiconductor-type one. In the metal-type amorphous InSb the electron-electron is correlated under the field above 0.1T in the temperature region of liquid nitrogen. The structure relaxation leads to not only the increase of the short range order but also the change of electron structure in metal-type amorphous InSb. The first conductance jump originates mainly from the increase of Hall mobility of the carrier, i.e. the increase of the short range order, and the system relaxes from the liquid-like to the lattice-like amorphous state. The three types of the crystallization phase transition for the metal-type amorphous InSb present obviously different transportation behaviours. Both metal-type amorphous state and metastable middle phase of InSb all are one of superconducting system with the lowest carrier concentration (n 0 ∼10 18 cm -3 ). Superconducting T c of the metastable middle phase is related to the state density near Fermi surface, i.e. the higher T c corresponds to the higher state density. The quasi-two-dimensional structure is favourable to superconductivity

  17. Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy

    International Nuclear Information System (INIS)

    Xiao-Mei, Zhang; Wei-Li, Wang; Ying, Ruan; Bing-Bo, Wei

    2010-01-01

    Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe 47.5 Cu 47.5 Sn 5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51–329 K (0.19T L ). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling. (condensed matter: structure, mechanical and thermal properties)

  18. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-Based alloys with low body-centered cubic phase stability

    International Nuclear Information System (INIS)

    Tane, M.; Hagihara, K.; Ueda, M.; Nakano, T.; Okuda, Y.

    2016-01-01

    Changes in the elastic properties during room-temperature aging (RT aging) of metastable Ti–Nb-based alloy single crystals with low body-centered cubic (bcc)-phase stability were investigated. The elastic stiffness components of Ti–Nb–Ta–Zr alloys with different Nb concentrations were measured by resonant ultrasound spectroscopy during RT aging; the results revealed that shear moduli c ′ and c 44 were increased by RT aging. In the alloy with the lowest Nb concentration, i.e., with the lowest bcc phase stability, shear moduli c ′ and c 44 were enhanced by the largest amount. The increase rates were ∼5% for 1.1 × 10 7  s (127 days), whereas the bulk modulus was hardly changed by aging. In Ti–Nb–Ta–Zr–O alloys with different oxygen concentrations, shear moduli c ′ and c 44 of the alloy with the lowest oxygen concentration increased most significantly. Moreover, the electrical resistivity of Ti–Nb–Ta–Zr and Ti–Nb–Ta–Zr–O alloys was increased by RT aging. Importantly, the enhancements of shear moduli and electrical resistivity were suppressed by increases in the bcc-phase stability (i.e., increase in the Nb concentration) and oxygen concentration; these factors are known to suppress ω (hexagonal) phase formation. However, transmission electron microscopy (TEM) observations revealed that only a diffuse ω structure—an ω-like lattice distortion—was formed after RT aging. On the basis of alloying element effects, TEM observations, and analysis of the changes in elastic properties by using a micromechanics model, it was deduced that the enhancements of shear moduli and electrical resistivity were possibly caused by the formation of a diffuse ω structure.

  19. Local structure and phase transformation in Zr and Ti based bcc solutions

    International Nuclear Information System (INIS)

    Chang, A.L.J.

    1975-01-01

    High resolution direct lattice imaging and dark field electron microscopy were used to examine the omega phase transformation in Zr--Nb alloys. Direct lattice imaging demonstrates the existence of three subvariants within each omega variant. The kinematic intensity sum, which is evaluated based on the combination of certain atomic arrangements, was carried out to include both untransformed beta phase and the omega phase. An ordered sequence of subvariants was found to be responsible for the diffraction effects in high Nb content alloys. However, the existence of such an ordered sequence among omega subvariants could not be checked out because of the small size of the omega regions. Omega domains of different variant do not interweave. Isolated particles with diameters of 3 to 5 A also are present away from the domains. As the Nb content is increased the omega domains decrease in size while the isolated particles (3 to 5 A) are present over the entire range studied, from 8 to 30 wt percent Nb. It is suggested that fluctuations in structure occur between the beta and omega phases. The isolated particles, also changing with time, are believed to be images of single or small groups of displaced atoms. (Diss. Abstr. Int., B)

  20. Structural properties and stability of the bcc and omega phases in the Zr-Nb system. Pt. II. Composition dependence of the lattice parameters

    International Nuclear Information System (INIS)

    Grad, G.B.; Guillermet, A.F.; Pieres, J.J.; Cuello, G.J.; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires; Universidad Nacional del Comahue

    1996-01-01

    For pt.I see Guillermet, A.F., J. Nucl. Mater., vol.218, p.236-46, 1995. This paper deals with the composition dependence of the lattice parameters of the bcc and omega phases of the Zr-Nb system. The experimental part of the work comprises neutron scattering experiments on a Zr-10 at.% Nb alloy in the as-quenched state and after successive aging treatments at 773 K. This new information is combined with an extensive review of the available data, and a detailed analysis is performed of the effects of composition and heat-treatment upon the lattice parameters a Ω and c Ω of the omega phase and the lattice-parameter relations between bcc and omega. A striking behaviour is detected in the variation of a Ω with composition in low-Nb alloys. (orig.)

  1. Searching for high magnetization density in bulk Fe: the new metastable Fe-6 phase

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K; Himmetoglu, B; Wang, JP; Wentzcovitch, RM; Cococcioni, M

    2014-11-26

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe-6), and the highest magnetization density (M-s) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe-6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe-6 could become the basis material for high M-s rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high M-s of Fe16N2, which is currently attracting intense research activity.

  2. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  3. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  4. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  5. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  6. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  7. Energy barriers between metastable states in first-order quantum phase transitions

    Science.gov (United States)

    Wald, Sascha; Timpanaro, André M.; Cormick, Cecilia; Landi, Gabriel T.

    2018-02-01

    A system of neutral atoms trapped in an optical lattice and dispersively coupled to the field of an optical cavity can realize a variation of the Bose-Hubbard model with infinite-range interactions. This model exhibits a first-order quantum phase transition between a Mott insulator and a charge density wave, with spontaneous symmetry breaking between even and odd sites, as was recently observed experimentally [Landig et al., Nature (London) 532, 476 (2016), 10.1038/nature17409]. In the present paper, we approach the analysis of this transition using a variational model which allows us to establish the notion of an energy barrier separating the two phases. Using a discrete WKB method, we then show that the local tunneling of atoms between adjacent sites lowers this energy barrier and hence facilitates the transition. Within our simplified description, we are thus able to augment the phase diagram of the model with information concerning the height of the barrier separating the metastable minima from the global minimum in each phase, which is an essential aspect for the understanding of the reconfiguration dynamics induced by a quench across a quantum critical point.

  8. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    obtain the temperature range in which the HCP metastable phase will be stable. According to the XRD measurements, it is found that the metastable HCP phase exists below 120 C. (orig.)

  9. Growth kinetics of metastable (331) nanofacet on Au and Pt(110) surfaces

    International Nuclear Information System (INIS)

    Ndongmouo, U.T.; Houngninou, E.; Hontinfinde, F.

    2006-12-01

    A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (331) nanofacets on Au and Pt(110) surfaces. The results show that under experimental atomic fluxes, the (331) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(001) surface in the kinetic 6-vertex model. (author)

  10. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  11. Photoelectrochemical properties of orthorhombic and metastable phase SnS nanocrystals synthesized by a facile colloidal method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Po-Chia [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Wang, Sheng-Chang; Shaikh, Muhammad Omar [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan, ROC (China); Lin, Chia-Yu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-12-01

    SnS of orthorhombic (OR) and metastable (SnS) phases were synthesized by using a simple and facile colloidal method. The tin precursor was synthesized using tin oxide (SnO) and oleic acid (OA), while the sulfur precursor was prepared using sulfur powder (S) and oleyamine (OLA). The sulfur precursor was injected into the tin precursor and the prepared SnS nanocrystals were precipitated at a final reaction temperature of 180 °C. The results show that hexamethyldisilazane (HMDS) can be successfully used as a surfactant to synthesize monodisperse 20 nm metastable SnS nanoparticles, while OR phase SnS nanosheets were obtained without HMDS. The direct bandgap observed for the metastable SnS phase is higher (1.66 eV) as compared to the OR phase (1.46 eV). The large blueshift in the direct bandgap of metastable SnS is caused by the difference in crystal structure. The blueshift in the direct band gap value for OR-SnS could be explained by quantum confinement in two dimensions in the very thin nanosheets. SnS thin films used as a photo anode in a photoelectrochemical (PEC) cell were prepared by spin coating on the fluorine-doped tin oxide (FTO) substrates. The photocurrent density of the SnS (metastable SnS)/FTO and SnS (OR)/FTO are 191.8 μA/cm{sup 2} and 57.61 μA/cm{sup 2} at an applied voltage of − 1 V at 150 W, respectively. These narrow band gap and low cost nanocrystals can be used for applications in future optoelectronic devices. - Highlights: • A facile method to synthesize two different phases of SnS having different morphological and optical properties. • The phases and morphologies of SnS nanocrystal can be controlled by adding capping surfactant hexamethyldisilazane (HMDS). • As we know, this is the first metastable SnS photoanode for application in a photoelectrochemical cell.

  12. Multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: the pair approximation and the path probability method with pair distribution

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Erdinc, Ahmet

    2004-01-01

    As a continuation of the previously published work, the pair approximation of the cluster variation method is applied to study the temperature dependences of the order parameters of the Blume-Emery-Griffiths model with repulsive biquadratic coupling on a body centered cubic lattice. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. We study the dynamics of the model by the path probability method with pair distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagram in addition to the equilibrium phase diagram and also the first-order phase transition line for the unstable branches of the quadrupole order parameter is superimposed on the phase diagrams. It is found that the metastable phase diagram and the first-order phase boundary for the unstable quadrupole order parameter always exist at the low temperatures which are consistent with experimental and theoretical works

  13. Punishment in public goods games leads to meta-stable phase transitions and hysteresis

    Science.gov (United States)

    Hintze, Arend; Adami, Christoph

    2015-07-01

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can ‘nucleate’ such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.

  14. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    International Nuclear Information System (INIS)

    Herlach, Dieter

    2011-01-01

    Research highlights: → Homogenous nucleation. → Effects of convection on dendrite growth kinetics. → Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  15. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    Science.gov (United States)

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material.

  16. Formation of metastable and equilibrium phases in the decomposition of the β solid solution in Zr alloys

    International Nuclear Information System (INIS)

    Zakharova, M.I.; Kirov, S.A.; Khundzhua, A.G.

    1978-01-01

    The decomposition of the β solid solution is studied in Zr-Nb alloys with adding Mo, Al, V, Fe by the methods of electron microscopy and X-ray diffraction on single crystals. The intermetallic compounds forming during crystallization of the alloys do not influence the precipitation of the ω- and α-phases during ageing. In the local regions of foils prepared by electropolishing after ageing the formation of the metastable f.c.c. phase and in some cases the inverse transformation of two phase state to the parent phase is observed. (author)

  17. From phase transitions to the topological renaissance. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    Science.gov (United States)

    Somogyvári, Zoltán; Érdi, Péter

    2017-07-01

    The neural topodynamics theory of Tozzi et al. [13] has two main foci: metastable brain dynamics and the topological approach based on the Borsuk-Ulam theorem (BUT). Briefly, metastable brain dynamics theory hypothesizes that temporary stable synchronization and desynchronization of large number of individual dynamical systems, formed by local neural circuits, are responsible for coding of complex concepts in the brain and sudden changes of these synchronization patterns correspond to operational steps. But what dynamical network could form the substrate for this metastable dynamics, capable of entering into a combinatorially high number of metastable synchronization patterns and exhibit rapid transient changes between them? The general problem is related to the discrimination between ;Black Swans; and ;Dragon Kings;. While BSs are related to the theory of self-organized criticality, and suggests that high-impact extreme events are unpredictable, Dragon-kings are associated with the occurrence of a phase transition, whose emergent organization is based on intermittent criticality [9]. Widening the limits of predictability is one of the big open problems in the theory and practice of complex systems (Sect. 9.3 of Érdi [2]).

  18. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    International Nuclear Information System (INIS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-01-01

    The new metastable compound Cr 1+x Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni 2 In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr 1+x Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr 1+x Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr 1.6 Sb in Ni 2 In-type structure. • The new Cr-rich phase shows half-metallic behavior

  19. Synthesis, thermal properties and recrystallization of ball-milled high Tc superconductors. (Topological stabilization of metastable phases)

    International Nuclear Information System (INIS)

    Schulz, R.; Lanteigne, J.; Simoneau, M.; Tessier, P.; Neste, A. van; Strom Olsen, J.O.

    1995-01-01

    Amorphous and nanocrystalline phases have been formed by ball-milling Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O. The strong mechanical deformations induce disorder on the oxygen sublattice and on the cation sites. These order-disorder transformations often produce simple cubic perovskite structures. During recrystallization, the chemical order is restored. Small ordered regions nucleate, grow and produce particular metastable configurations which minimize the total elastic strain energy. The sequence of events giving rise to the various metastable phases has been followed by x-ray diffraction and differential scanning calorimetry and is explained in terms of free energy diagrams. The stress and strain fields associated with the Y-Ba disorder are calculated using the elastic properties of the Y-Ba-Cu-O superconductor. A simple model is proposed to explain the stability of the structures observed after thermal treatments. (orig.)

  20. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S. [Army Research Laboratory, 2800 Adelphi, Maryland 20783 (United States)

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  1. Two new Np--Ga phases: α-NpGa2 and metastable m-NpGa2

    International Nuclear Information System (INIS)

    Giessen, B.C.; Elliott, R.O.

    1976-01-01

    Following an earlier study of metastable Np-rich Np--Ga alloys, rapidly quenched Np--Ga alloys with 63 to 80 at. pct. Ga were prepared and studied. Two new NpGa 2 phases, both with an AlB 2 type structure, were found: α-NpGa 2 , with a = 4.246A, c = 4.060A, c/a = 0.956, and m-NpGa 2 , with a = 4.412A, c = 3.642A, c/a = 0.825. While m-NpGa 2 was observed only in very fast quenched (splat cooled) samples and appears to be metastable, α-NpGa 2 is probably an equilibrium phase. In a splat cooled alloy with 75 at. pct. Ga, another, unidentified, metastable phase was observed. Crystal chemical discussions of atomic volumes, interatomic distances and axial ratios are given; the volume difference between the two forms of NpGa 2 is correlated with a valence change of Np

  2. Metastable phases freezing from melts of reciprocal systems PbX + CdI2=CdX + PbI2 (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Odin, I.N.; Chukichev, M.V.

    2001-01-01

    The transformations in the mutual PbX + CdI 2 =CdX + PbI 2 (X=S, Se, Te) systems leading to the crystallization of metastable polytypical modifications of lead iodide in metastable ternary compounds are studied for the first time. Microstructural and X-ray diffraction analyses were conducted. Their phase diagrams were constructed. The luminescence properties of the stable and metastable modifications of the lead iodide and the metastable compound Pb 4 SeI 6 were investigated. The lines 504 and 512 nm are noted in the 2H-PbI 2 cathodoluminescence spectra. The close lines - 508 and 516 nm provide for the 6R-PbI 2 modification. The metastable compound Pb 4 SeI 6 is characterized by the 769 and 868 nm lines [ru

  3. Chemically exfoliated Mo S2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase

    Science.gov (United States)

    Pal, Banabir; Singh, Anjali; Sharada, G.; Mahale, Pratibha; Kumar, Abhinav; Thirupathaiah, S.; Sezen, H.; Amati, M.; Gregoratti, Luca; Waghmare, Umesh V.; Sarma, D. D.

    2017-11-01

    A metastable trigonal phase, existing only as small patches on a chemically exfoliated few-layered, thermodynamically stable 1 H phase of Mo S2 , is believed to critically influence the properties of Mo S2 -based devices. The electronic structure of this metastable phase is little understood in the absence of a direct experimental investigation of its electronic properties, complicated further by conflicting claims from theoretical investigations. We address this issue by investigating the electronic structure of this minority phase in chemically exfoliated Mo S2 few-layered systems by enhancing its contributions with the use of highly spatially resolved (≤120 nm resolution) photoemission spectroscopy and Raman spectroscopy in conjunction with state-of-the-art electronic structure calculations. Based on these results, we establish that the ground state of this phase, arrived at by the chemical exfoliation of Mo S2 using the usual Li intercalation technique, is a small gap (˜90 ±40 meV ) semiconductor in contrast to most claims in the literature; we also identify the specific trigonal structure it has among many suggested ones.

  4. On hyper BCC-algebras

    OpenAIRE

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

    2006-01-01

    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  5. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  6. Ti α - ω phase transformation and metastable structure, revealed by the solid-state nudged elastic band method

    Science.gov (United States)

    Zarkevich, Nikolai; Johnson, Duane D.

    Titanium is on of the four most utilized structural metals, and, hence, its structural changes and potential metastable phases under stress are of considerable importance. Using DFT+U combined with the generalized solid-state nudged elastic band (SS-NEB) method, we consider the pressure-driven transformation between Ti α and ω phases, and find an intermediate metastable body-centered orthorhombic (bco) structure of lower density. We verify its stability, assess the phonons and electronic structure, and compare computational results to experiment. Interestingly, standard density functional theory (DFT) yields the ω phase as the Ti ground state, in contradiction to the observed α phase at low pressure and temperature. We correct this by proper consideration of the strongly correlated d-electrons, and utilize DFT+U method in the SS-NEB to obtain the relevant transformation pathway and structures. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under Contract DE-AC02-07CH11358.

  7. Phase transformations in ion-mixed metastable (GaSb)1/sub 1 -x/(Ge2)/sub x/ semiconducting alloys

    International Nuclear Information System (INIS)

    Cadien, K.C.; Muddle, B.C.; Greene, J.E.

    1984-01-01

    Low energy (75--175 eV) Ar + ion bombardment during film deposition has been used to produce well-mixed amorphous GaSb/Ge mixtures which, when annealed, transform first to single phase polycrystalline metastable (GaSb)/sub 1-x/(Ge 2 )/sub x/ alloys before eventually transforming to the equilibrium two-phase state. At 500 0 C, for example, the annealing time t/sub a/ required for the amorphous to crystalline metastable (ACM) transformation was approx.10 min, while t/sub a/ for the crystalline metastable to equilibrium (CME) transformation was >6 h. The exothermic enthalpy of crystallization and the onset temperature of the ACM transition were determined as a function of alloy composition using differential thermal analysis. The thermodynamic data was then used to calculate the surface energy per unit area sigma of the amorphous/metastable-crystal interface. sigma was found to exhibit a minimum between x = 0.3 and 0.4. The driving energy for the transition from the crystalline metastable state to the equilibrium two-phase state was of the order of 0.12 kJ cm -3 while the activation barrier was approx.19 kJ cm -3 . Thus, the metastable alloys, which had average grain sizes of 100--200 nm and a lattice constant which varied linearly with x, exhibited good thermal and temporal stability

  8. Formation of stable and metastable phases in reciprocal systems PbSe + MI2 = MSe + PbI2 (M = Hg, Mn, Sn)

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.; Gapanovich, M.V.

    2004-01-01

    Using data of differential thermal, X-ray phase and microstructural analyses, phase diagrams of reciprocal systems PbSe + MI 2 = MSe + PbI 2 (M=Hg (1), Mn (2), Sn (3)) were constructed. It was ascertained that the HgSe-PbI 2 diagonal in system 1 is stable. Transformations leading to crystallization of metastable ternary compound formed in the system PbSe-PbI 2 and metastable polytypes of lead iodide in systems 1 and 2 in the range of temperatures from 620 to 685 K were studied. New intermediate metastable phases in systems 1, 2 and 3 were prepared by melt quenching. Crystal lattice parameters of the phases crystallizing in the CdCl 2 structural type were defined [ru

  9. Elastic energy and metastable phase equilibria for coherent mixtures in cubic systems

    International Nuclear Information System (INIS)

    Williams, R.O.

    1979-02-01

    Expressions were derived for the elastic energy due to coherency for cubic systems for an isotropic structure and for (100) or (111) habit planes for a lamellar structure. For the metastable equilibria the usual tangent compositions are replaced by compositions that are tangent to the elastic energy curve. For a loss of coherency there is an energy decrease due to the elastic effects and a further decrease associated with compositional changes. Information contained within this treatment permits calculation of the x-ray diffraction effects for such structures

  10. Structural and Moessbauer spectral study of the metastable phase Sm(Fe, Co, Ti)10

    International Nuclear Information System (INIS)

    Bessais, L.; Djega-Mariadassou, C.; Koch, E.

    2002-01-01

    We have performed a Moessbauer spectral analysis of nanocrystalline metastable P 6/mmm SmTi(Fe 1-x Co x ) 9 , correlated with structural transformation towards its equilibrium derivative I4/mmm SmTi(Fe 1-x Co x ) 11 . The Rietveld analysis shows that the 3g site is fully occupied, while the 6 l occupation is limited to hexagons surrounding the Fe-Fe dumb-bell pairs 2e. A specific programme for the Wigner-Seitz cell (WSC) calculation of the metastable disordered structure was used. The hyperfine parameter assignment based on the isomer shift correlation with the WSC volumes sequence leads to Co 3g preferential occupation, with Ti location in 6 l sites. The mean hyperfine field increases with Co content in connection with the enhancement of the negative core electron polarization term upon additional Co electron filling. The same trend is observed for each individual site leading to the sequence H HF {2e}≥H HF {6 l }≥H HF {3g}. (author)

  11. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    Science.gov (United States)

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. The development of BCC

    International Nuclear Information System (INIS)

    He Xiaoping; Yang Hailiang; Sun Jianfeng; Ren Shuqing; Zhang Jiasheng; Shi Lei; Peng Jianchang; Li Hongyu; Qiu Aici; Tang Junping; Xi'an Jiaotong Univ., Xi'an

    2004-01-01

    An analysis of principle of a BCC for measuring ion beam density and the main reasons related to the measuring accuracy were presented. An array of 13 biased charge collecrors was designed for the measurement of ion beam density of 'FLASH-II' high power ion beam source, and the data of experiments was analyzed. (authors)

  13. Smarandache hyper BCC-algebra

    OpenAIRE

    Ahadpanah, A.; Borumand Saeid, A.

    2011-01-01

    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  14. High temperature series expansions with a multiple-exchange Hamiltonian for the bcc and hcp phases of solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Suaudeau, E.; Bernier, M.E.R.

    1987-08-01

    High temperature series expansions with a multiple-exchange Hamiltonian are performed to fourth order in arbitrary magnetic field for both phases of solid 3 He. The susceptibility series are analysed with Pade approximants and compared with recent experimental results. For the hcp phase we estimate the ferromagnetic ordering temperature from susceptibility series and discuss the influence of four-particle exchange in lowering the transition

  15. Phonon dispersion curves of BCC Ba

    International Nuclear Information System (INIS)

    Mizuki, J.; Stassis, C.; Zarestky, J.

    1985-01-01

    Ba, as well as Sr and Ca, is a divalent alkaline earth metal. At room temperature and ambient pressure, the structure of Ba is bcc, whereas that of Sr and Ca is fcc. Under pressure, the bcc phase of Ba transforms to an hcp structure at 55 kbar. Also, at 37 kbar Ba becomes a superconductor with T/sub c/ = 0.06 K. These properties are highly dependent on the position of the d bands relative to the Fermi level. Experimental investigation of the elastic and lattice dynamical properties of these metals has been hindered by difficulties in growing single crystals. However, recently the authors were able to grow several single crystals of bcc Ba of sufficient volume for inelastic neutron scattering experiments. Some of the results are summarized here

  16. Phase-field modeling of Mn-Ni-Si precipitate behavior on the bcc-Fe matrix

    International Nuclear Information System (INIS)

    Chang, Kun Ok; Kwon, Jun Hyun

    2016-01-01

    The formation of Mn-Ni-Si precipitate (hereafter MNS precipitate) is widely accepted by one of the main reasons of late stage hardening and embrittlement of Reactor Pressure Vessel (RPV) during nuclear power plant (NPP) operation. Since MNS precipitate is not considered in current regulatory model, this late stage hardening can be a limiting factor for life extension of nuclear power plants up to 80 or more years. The stability of the MNS precipitate was investigated from the thermodynamic view point and they concluded that MNS precipitate is a stable phase even with very little Cu contents, and they assessed UW1 thermodynamic database which can predict the thermodynamic stability of MNS precipitate at operating temperature of NPP ( ∼ 290 .deg. C). Based on the non-classical nucleation theory, we performed the phase-field modeling of nucleation and growth of MNS precipitate. The microstructure evolution of Mn-Ni-Cu precipitate has been simulated using the phase-field method and their approaches are focused on a role of the Cu contents. Also, a role of the interstitial loop on the nucleation and growth kinetics of MNS precipitate was analyzed.

  17. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  18. Microstructure and heat resistance of Mg-Al-Zn alloys containing metastable phase

    International Nuclear Information System (INIS)

    Kim, Jeong-Min; Park, Bong-Koo; Jun, Joong-Hwan; Shin, Keesam; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    In this research microstructural studies have been made on cast specimens of AZ91 base alloys containing various amounts of Zn. As the amount of Zn addition increased up to 2%, any new Zn-containing phase did not appear while the Zn content in Mg 17 Al 12 phase continuously increased. A quasi-crystalline phase started to form at Mg 17 Al 12 phase when the added Zn content was about 3 wt.%. The tensile strength and elongation of the alloys at 175 deg. C were observed to increase significantly with increasing Zn content. The quasi-crystalline phase was found to be stable up to 300 deg. C, based on scanning electron microscopy examinations of the specimens heated at different temperatures for 24 h

  19. Suppression of metastable-phase inclusion in N-polar (0001¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Shojiki, Kanako; Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-01-01

    The metastable zincblende (ZB) phase in N-polar (0001 ¯ ) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated

  20. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  1. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  2. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  3. Effect of aluminium on formation of metastable phases in titanium-niobium alloys

    International Nuclear Information System (INIS)

    Trenogina, T.L.; Derevyanko, V.N.; Vozilkin, V.A.

    2001-01-01

    Specific features of phase transformations in the alloy of Ti-20Nb-29Al (at.%) are investigated in comparison with those in the aluminium-free Ti-21Nb alloy. It is states that in the alloy Ti-20Nb-29Al on quenching the ordering of β-solid solution takes place with B2-structure formation. The B2-matrix experiences decomposition with the formation of ordered Ω 0 -phase which field ranges up to 700 deg C. The investigation results show that the sequence of phase formation in Ti-Nb-Al and aluminium-free alloys is much the same. The only difference between them is the formation of ordered phases in the alloy Ti-20Nb-29Al [ru

  4. Induced phase transformations and nature of metastable states in ZTLL ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ishchuk, V M; Zavadskij, Eh A

    1987-12-01

    Phase transitions in ZTLL ceramics with zirconium content being 65%, titanium content - 35%, are considered. Peculiarities in the ZTLL behaviour are shown to be caused by the existence of an intermediate range between ferroelectric and antiferroelectric states. The state of samples in the range is determined by their prehistory. It is emphasized that phase transitions in ZTLL can be explained in the framework of the existing models.

  5. Synthesis, characterization and formation mechanism of metastable phase VO2(A) nanorods

    International Nuclear Information System (INIS)

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-01-01

    Graphical abstract: - Highlights: • Pure phases of VO 2 (B) and VO 2 (A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO 2 (B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO 2 (A) phase. • VO 2 (A) nanorods resulted from VO 2 (B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO 2 (A) nanorods were synthesized via the reduction of V 2 O 5 by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO 2 (A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO 2 (B) was firstly formed and then transformed into VO 2 (A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO 2 (A) from VO 2 (B). For VO 2 (A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO 2 (A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO 2 (A) nanorods. VO 2 nanostructures with controllable phases and properties should find their promising applications in a single VO 2 nanodevice

  6. Premelting hcp to bcc Transition in Beryllium

    Science.gov (United States)

    Lu, Y.; Sun, T.; Zhang, Ping; Zhang, P.; Zhang, D.-B.; Wentzcovitch, R. M.

    2017-04-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to x-ray equipment. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp → bcc transition occurs near the melting curve at 0 materials.

  7. Steady state creep during metastable phase transition in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Youssef, S.B.; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1998-08-16

    The early stages of decomposition of Guinier-Preston zones (G.P. zones) in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys were investigated through creep measurements and electron microscopy observations. It was found that the strengthening and softening of the alloys has been achieved during the formation of metastable phases (G.P. zones and {gamma}`-phase) in the ageing temperature range (428 to 498 K). TEM investigations confirmed that the addition of zirconium to the Al-Ag alloy accelerates the formation and coarsening of the metastable phases. The mean values of activation energy of both alloys were found to be equal to that quoted for precipitate-dislocation interactions. (orig.) 23 refs.

  8. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  9. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-01-15

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works.

  10. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2008-01-01

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works

  11. Synthesis and catalytic activity of the metastable phase of gold phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Deshani; Nigro, Toni A.E.; Dyer, I.D. [Department of Chemistry, 107 Physical Sciences I, Oklahoma State University, Stillwater, OK 74078 (United States); Alia, Shaun M.; Pivovar, Bryan S. [Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401 (United States); Vasquez, Yolanda, E-mail: yolanda.vasquez@okstate.edu [Department of Chemistry, 107 Physical Sciences I, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-10-15

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution

  12. Formation, structure and magnetism of the metastable defect fluorite phases AVO3.5+x (A=In, Sc)

    International Nuclear Information System (INIS)

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-01-01

    We report the preparation and stability of ScVO 3.5+x and the novel phase InVO 3.5+x . AVO 3.5+x (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO 3 bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO 3.5+x structures following this pathway are 0.00≤x≤0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO 3.54 and ScVO 3.70 crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A 3+ /V 4+ disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V 4+ and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO 3 bixbyite to AVO 3.5 defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O 6 fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O 7 cubic environment in the defect fluorite structure

  13. Allotropic transformation bcc in equilibrium hcp in zirconium

    International Nuclear Information System (INIS)

    Akhtar, A.

    1976-01-01

    The allotropic transformation hcp(α) in equilibrium bcc(β) was examined in crystal bar zirconium. The β → α transformation is massive type in melt grown crystals of β--Zr. Upon thermal cycling through α → β → α the bcc → hcp transformation occurs frequently through a shear process and less frequently through a massive transformation. The presence of α → β transformation substructure may favor the operation of the shear mode. The hcp → bcc phase change occurs through a massive transformation. A lack of transformation memory is associated with the process of thermal cycling. 11 fig., 3 tables

  14. Thermal decomposition of the b.c.c. β-solid solution of titanium alloy containing 6.7 at% Mo, 3 at% Zr, and 1.8 at% Sn. 1

    International Nuclear Information System (INIS)

    Zakharova, M.I.; Khundzhua, A.K.; Kertesz, L.; Szasz, A.

    1981-01-01

    Changes in the crystal structure of the titanium alloy, containing 6.7 at% Mo, 3 at% Zr, and 1.8 at% Sn, during thermal decomposition are followed by means of X-ray and electron diffraction methods. Parallel to these tests the alteration in the electron structure and chemical bonds of the alloy are investigated with the help of the soft-x-ray emission (SXES) method. Attention is focussed on the at room temperature not equilibrated b.c.c. β-solid solution, on the metastable transition phase ω, and on the equilibrium phase α. (author)

  15. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is covered in sections, entitled: introduction; occurrence and some systematics of omega phase (omega phase in Ti, Zr and Hf under high pressures; omega phase in Group IV transition metal alloys; omega in other systems; omega embryos at high temperatures); crystallography (omega structure; relationship of ω-structure to bcc (β) and hcp (α) structures); physical properties; kinetics of formation, synthesis and metastability of omega phase (kinetics of α-ω transformation under high pressures; kinetics of β-ω transformation; synthesis and metastability studies); electronic structure of omega phase (electronic structure models; band structure calculations; theoretical results and experimental studies); electronic basis for omega phase stability (unified phase diagram; stability of omega phase); omega phase formation under combined thermal and pressure treatment in alloys (Ti-V alloys under pressure - a prototype case study; P-X phase diagrams for alloys; transformation mechanisms and models for diffuse omega phase (is omega structure a charge density distortion of the bcc phase; nature of incommensurate ω-structure and models for diffuse scattering); conclusion. (U.K.)

  16. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  17. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg{sub 67}Co{sub 33}-based composites or alloys with BCC phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao; Zhuang, Xiangyang [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhu, Yunfeng [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Zhan, Leyu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Pu, Zhenggan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China); Li, Liquan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China)

    2015-02-15

    Highlights: • Additive Pd in Mg{sub 67}Co{sub 33} benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg{sub 67}Co{sub 33} lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg{sub 67}Co{sub 33} and Mg{sub 67}Co{sub 33}-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g{sup -1} of Mg{sub 67}Co{sub 33} to maximum 530 mAh g{sup -1}. Pd also drives the Mg{sub 67}Co{sub 33}-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg{sub 67}Co{sub 33}-Pd composites/alloys.

  18. Formation of metastable cubic phase in Ce{sub 100−x}Al{sub x} (x=45, 50) alloys and their thermal and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Idzikowski, Bogdan, E-mail: idzi@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Puźniak, Roman [Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa (Poland); Kaczorowski, Dariusz [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2017-01-01

    Ce{sub 100−x}Al{sub x} (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce{sub 55}Al{sub 45} and 3% in Ce{sub 50}Al{sub 50}. The alloy Ce{sub 55}Al{sub 45} shows better thermal stability than Ce{sub 50}Al{sub 50}, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce{sub 55}Al{sub 45} results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce{sub 50}Al{sub 50} and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time. - Highlights: • Synthesis of metastable cubic CeAl phase by rapid quenching. • The Ce ions in Ce{sub 55}Al{sub 45} and Ce{sub 50}Al{sub 50} are in stable trivalent state. • Magnetic transition near 10 K connected with the orthorhombic CeAl phase. • Phase transition at about 20 K originates from the cubic CeAl phase.

  19. Approaching the Type-II Dirac Point and Concomitant Superconductivity in Pt-doping Stabilized Metastable 1T-phase IrTe2

    OpenAIRE

    Fei, Fucong; Bo, Xiangyan; Wang, Pengdong; Ying, Jianghua; Chen, Bo; Liu, Qianqian; Zhang, Yong; Sun, Zhe; Qu, Fanming; Zhang, Yi; Li, Jian; Song, Fengqi; Wan, Xiangang; Wang, Baigeng; Wang, Guanghou

    2017-01-01

    Topological semimetal is a topic of general interest in material science. Recently, a new kind of topological semimetal called type-II Dirac semimetal with tilted Dirac cones is discovered in PtSe2 family. However, the further investigation is hindered due to the huge energy difference from Dirac points to Fermi level and the irrelevant conducting pockets at Fermi surface. Here we characterize the optimized type-II Dirac dispersions in a metastable 1T phase of IrTe2. Our strategy of Pt doping...

  20. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    Science.gov (United States)

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  1. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    Science.gov (United States)

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  2. On Weak-BCC-Algebras

    Science.gov (United States)

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  3. On a metastable vacuum burning phenomenon

    International Nuclear Information System (INIS)

    Berezin, V.A.; Tkachev, I.I.; Kuzmin, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1983-02-01

    Equations of motion of an interface between two phases with arbitrary equations of state are obtained. It is found that there may take place a process of metastable vacuum burning. It is shown that under some conditions the process of the new phase bubble expansion is described by the detonation wave equations. Possible cosmological consequences of the metastable phase burning effect are briefly discussed. (author)

  4. A Study on Thermal Properties and α( hcp) → β( bcc) Phase Transformation Energetics in Ti-5 mass% Ta-1.8 mass% Nb Alloy Using Inverse Drop Calorimetry

    Science.gov (United States)

    Behera, Madhusmita; Raju, S.; Jeyaganesh, B.; Mythili, R.; Saroja, S.

    2010-12-01

    Accurate measurements of enthalpy increment ( H T - H 298.15) values have been made on a Ti-5 mass% Ta-1.8 mass% Nb alloy using the inverse drop calorimetry technique in the temperature range from 463 K to 1457 K. The measured enthalpy increment values show a steady increase with temperature in both α- hcp and β- bcc solid solution regions. It is found that both the onset as well the completion of the α → β phase change are demonstrated by a marked deviation of the enthalpy increment behavior from the otherwise smooth variation encountered in the respective low-temperature α- and high-temperature β-phase domains. The transformation start ( T s) and finish ( T f) temperatures of the α → β phase change are found to be (1072±10) K and (1156±10) K, respectively. In the actual α → β phase transformation region, the variation of the enthalpy with the progress of transformation is found to follow a sigmoidal shape which is in line with the diffusive nature of the phase transformation. An estimation of the total enthalpy change associated with the α → β phase transformation (Δ° H tr) has been made by assuming a simple diffusion limited kinetic model for the phase change. The net enthalpy change for the α → β transformation is found to be 76 J · g-1. The measured temperature variation of the enthalpy increment in both α- and β-phase regimes are fitted to simple analytical functional forms to obtain temperature-dependent estimates of the specific heat, C P . The total specific heat change associated with the α → β phase transformation {Δ^{circ}{CP^{α}}^{→{β}}} is estimated to be 904 J · kg-1 · K-1.

  5. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions

    DEFF Research Database (Denmark)

    Qiu, Chen; Krüger, Yves; Wilke, Max

    2016-01-01

    water with a density of 0.921 kg/m3 remains in a homogeneous state during cooling down to the temperaure of −30.5 °C, where it is transformed into ice whose density corresponds to zero pressure. iii) ice melting. Ice melting temperatures of up to 6.8 °C were measured in absence of the vapour bubble, i......We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We...

  6. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    International Nuclear Information System (INIS)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu; Amghouz, Zakariae; Khainakov, Sergei A.; Alfonso, Belén F.; Blanco, Jesús A.; García, José R.; García-Granda, Santiago

    2015-01-01

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C 4 N 2 H 12 ) 1.5 (Co 0.6 Zn 0.4 ) 2 (HPO 4 ) 2 (PO 4 )·H 2 O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2 1 /c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C 4 N 2 H 12 )Co 0.3 Zn 0.7 (HPO 4 ) 2 ·H 2 O (1D), was also isolated and the crystal structure was determined (monoclinic P2 1 /c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C 4 N 2 H 12 ) 1.5 (Co 0.6 Zn 0.4 ) 2 (HPO 4 ) 2 (PO 4 )·H 2 O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C 4 N 2 H 12 )Co 0.3 Zn 0.7 (HPO 4 ) 2 ·H 2 O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal structure of 1D metastable phase was also determined. • Thermal behavior of 2D compound is strongly dependent on the selected heating rate. • Magnetic

  7. Topodynamics of metastable brains

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.

    2017-07-01

    The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

  8. Stable and metastable phases in reciprocal systems PbSe + Ag2I2 Ag2Se + PbI2 and PbSe + CdI2 = CdSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.

    2005-01-01

    Mutual system PbSe + Ag 2 I 2 = Ag 2 Se + PbI 2 is investigated. It is shown that diagonal Ag 2 Se-PbI 2 is stable. Liquidus surface and isothermal section at 633 K of phase diagram of PbSe-Ag 2 Se-PbI 2 system are built. Transformations directing to crystallization metastable ternary compound forming in PbSe-PbI 2 system and metastable polytype modifications of lead iodide in PbSe-Ag 2 Se-PbI 2 system at 620-685 K are studied. By hardening from molten state (1150-1220 K) new interstitial metastable phases crystallizing in CdCl 2 structural type are obtained in PbSe-Ag 2 Se-PbI 2 and PbSe + CdI 2 = CdSe + PbI 2 systems [ru

  9. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  10. Vacancy formation enthalpies in bcc and fcc FeCo by positron annihilation

    International Nuclear Information System (INIS)

    Jackman, J.A.; Kim, S.M.; Buyers, W.J.L.

    1982-01-01

    A long slit angular correlation apparatus was used to measure the peak coincidence count rate in stoichiometric FeCo from 290 K to 1510 K. The count rate did not change significantly at the order-disorder phase transition (1008 K), but decreased sharply by 3.2% at the bcc-fcc phase transition at 1258 K. The threshold temperatures for the trapping of positrons in vacancies are measured to be 1125 K for the bcc phase and 1260 K for the fcc phase. The vacancy formation enthalpies in the bcc and fcc phases are determined to be 1.45 +- 0.05 eV and 1.63 +- 0.05 eV. The activation energies for self-diffusion have been estimated from the threshold temperatures, and are found to be 2.45 eV and 2.74 eV for the bcc and fcc phases respectively. (Auth.)

  11. Complexity, Metastability and Nonextensivity

    Science.gov (United States)

    Beck, C.; Benedek, G.; Rapisarda, A.; Tsallis, C.

    Work and heat fluctuations in systems with deterministic and stochastic forces / E. G. D. Cohen and R. Van Zon -- Is the entropy S[symbol] extensive or nonextensive? / C. Tsallis -- Superstatistics: recent developments and applications / C. Beck -- Two stories outside Boltzmann-Gibbs statistics: Mori's Q-phase transitions and glassy dynamics at the onset of chaos / A. Robledo, F. Baldovin and E. Mayoral -- Time-averages and the heat theorem / A. Carati -- Fundamental formulae and numerical evidences for the central limit theorem in Tsallis statistics / H. Suyari -- Generalizing the Planck distribution / A. M. C. Soma and C. Tsallis -- The physical roots of complexity: renewal or modulation? / P. Grigolini -- Nonequivalent ensembles and metastability / H. Touchette and R. S. Ellis -- Statistical physics for cosmic structures / L. Pietronero and F. Sylos Labini -- Metastability and anomalous behavior in the HMF model: connections to nonextensive thermodynamics and glassy dynamics / A. Pluchino, A. Rapisarda and V. Latora -- Vlasov analysis of relaxation and meta-equilibrium / C. Anteneodo and R. O. Vallejos -- Weak chaos in large conservative systems - infinite-range coupled standard maps / L. G. Moyano, A. P. Majtey and C. Tsallis -- Deterministc aging / E. Barkai -- Edge of chaos of the classical kicked top map: sensitivity to initial conditions / S. M. Duarte Queirós and C. Tsallis -- What entropy at the edge of chaos? / M. Lissia, M. Coraddu and R. Tonelli -- Fractal growth of carbon schwarzites / G. Benedek ... [et al.] -- Clustering and interface propagation in interacting particle dynamics / A. Provata and V. K. Noussiou -- Resonant activation and noise enhanced stability in Josephson junctions / A. L. Pankratov and B. Spagnolo -- Symmetry breaking induced directed motions / C.-H. Chang and T. Y. Tsong -- General theory of Galilean-invariant entropic lattic Boltzmann models / B. M. Boghosian -- Unifying approach to the jamming transition in granular media and

  12. Pre-melting hcp to bcc Transition in Beryllium

    OpenAIRE

    Lu, Y.; Sun, T.; Zhang, Ping.; Zhang, P.; Zhang, D. -B.; Wentzcovitch, R. M.

    2017-01-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp to bcc transition occurs near the melting curve at 0

  13. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    Energy Technology Data Exchange (ETDEWEB)

    Torre-Fernández, Laura; Khainakova, Olena A. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Amghouz, Zakariae, E-mail: amghouz.uo@uniovi.es [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Khainakov, Sergei A. [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Alfonso, Belén F.; Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, 33007 Oviedo (Spain); García, José R.; García-Granda, Santiago [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal

  14. A new approach to establish both stable and metastable phase equilibria for fcc ordered/disordered phase transition: application to the Al–Ni and Ni–Si systems

    International Nuclear Information System (INIS)

    Yuan Xiaoming; Zhang Lijun; Du Yong; Xiong Wei; Tang Ying; Wang Aijun; Liu Shuhong

    2012-01-01

    Both two-sublattice (2SL) and four-sublattice (4SL) models in the framework of the compound energy formalism can be used to describe the fcc ordered/disordered transitions. When transferring the parameters of 2SL disregarding the metastable ordered states into those of 4SL, inconsistence in either stable or metastable phase diagrams could appear, as detected in both Al–Ni and Ni–Si systems. To avoid such a kind of drawback, this behavior was analyzed and investigated in the Ni–Si and Al–Ni systems with the aid of first–principle calculations. Furthermore, a new approach considering both the stable and metastable fcc ordered phase equilibria deduced from the first–principles calculations was proposed to perform a reliable thermodynamic modeling for the fcc ordered/disordered transition. The Ni–Si system was then thermodynamically assessed using the presently proposed approach. The good agreement between the calculation and experiments demonstrates the reliability of the proposed approach. It is expected that the approach is valid for other systems showing complex ordered/disordered transitions. - Highlights: ► We discuss the drawbacks of order/disorder modeling in the Ni–Si and Al–Ni systems. ► We perform ab initio calculation of thermodynamic properties in the Ni–Si system. ► A CALPHAD–type approach is proposed to model the fcc ordered/disordered transition. ► The Ni–Si system was thermodynamically assessed using the new approach.

  15. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  16. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...

  17. Optical properties of metastable shallow acceptors in Mg-doped GaN layers grown by metal-organic vapor phase epitaxy

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.; Monemar, Bo

    2010-01-01

    GaN layers doped by Mg show a metastable behavior of the near-band-gap luminescence caused by electron irradiation or UV excitation. At low temperatures < 30 K the changes in luminescence are permanent. Heating to room temperature recovers the initial low temperature spectrum shape completely. Two acceptors are involved in the recombination process as confirmed by transient PL. In as-grown samples a possible candidate for the metastable acceptor is C-N, while after annealing a second m...

  18. Determination of the magnetocaloric entropy change in the presence of phase separation and metastability: The case of Eu0.58Sr0.42MnO3

    International Nuclear Information System (INIS)

    Guillou, F.; Hardy, V.; Fruchart, D.; Zawilski, B.

    2014-01-01

    The magnetocaloric effect (MCE) in the manganite Eu 0.58 Sr 0.42 MnO 3 was derived by different methods, in a field range very sensitive to the phenomenon of phase separation. It turns out that a strong scatter in the MCE features was observed. When the applied field is less than the field required to complete the transition, it is found that the MCE can be strongly overestimated by “standard” indirect measurements. A way to properly estimate the MCE around a first order transition in the presence of phase separation and metastability is proposed. - Highlights: • The entropy change was investigated in an oxide with pronounced metastable effects. • A strong scatter is observed among results derived from several indirect methods. • It is found that even the calorimetric approach can be proned to artefacts. • A method is proposed to evaluate a “real” magnetocaloric entropy change

  19. Theoretical investigation of the long-lived metastable AlO{sup 2+} dication in gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Sghaier, Onsi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Abdallah, Hassan H. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Chemistry, College of Education, Salahaddin University, 44001 Erbil (Iraq); Abdullah, Hewa Y. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Physics, College of Education, Salahaddin University, 44001 Erbil (Iraq); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Al Mogren, Muneerah Mogren [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Hochlaf, Majdi, E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2016-09-30

    Highlights: • Theoretical investigation of gas-phase molecular species AlO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of AlO. - Abstract: We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO{sup 2+} using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO{sup 2+} is X{sup 2}Π. The internuclear equilibrium distance of AlO{sup 2+}(X{sup 2}Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  20. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  1. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  2. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  3. Stability of nanosized alloy thin films: Faulting and phase separation in metastable Ni/Cu/Ag-W films

    International Nuclear Information System (INIS)

    Csiszár, G.; Kurz, S.J.B.; Mittemeijer, E.J.

    2016-01-01

    A comparative study of Me(=Ni/Cu/Ag)-based, W-alloyed, nanocrystalline, heavily faulted thin films was carried out to identify parameters stabilizing the nanocrystalline nature upon thermal treatment. The three systems, initially of comparably, heavily twinned (twin boundaries at spacings of 1–5 nm) microstructures showed similarities but also strikingly different behaviours upon annealing, as observed by application of in particular X-ray diffraction (line-broadening) analysis and (high resolution) transmission electron microscopy. During annealing in the range of 30–600 °C, (i) segregation at the planar faults (for Me = Ni) and at grain boundaries (for Me = Ni,Cu,Ag), as well as nanoscale phase separation (for Me = Cu,Ag) take place, (ii) distinct grain growth does not occur and (iii) the twin boundaries either are largely preserved ((Ni(W) and Ag(W)) or disappear totally (Cu(W))), which was ascribed to an altered faulting energy, due to change of the amount of W segregated at the twin boundaries, and to the evolution of nano-precipitates. The nanosized films exhibit very large internal (macro)stresses parallel to the surface, which change during annealing in the range of 1 GPa (tensile) to −3 GPa (compressive) and thus are sensitive to the microstructural changes in the films (decomposition and relaxation) that happen on a nanoscale. The results are discussed in terms of thermodynamic and/or kinetic constraints controlling these processes and thus the thermal stability of the systems concerned.

  4. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83B17 During Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Quirinale, D.G.; Messina, D.; Rustan, G.E.; Kreyssig, A.; Prozorov, R.; Goldman, A.I. (Ames); (Iowa State)

    2017-11-01

    In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.

  5. Constitutive modeling of metastable austenitic stainless steel (CD-rom)

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Boisse, P.

    2008-01-01

    A stress-update algorithm is developed for austenitic metastable steels which undergo phase evolution during deformation. The material initially comprises only the soft and ductile austenite phase which due to the phenomenon of mechanically induced martensitic transformation, transforms completely

  6. The liquid metastable miscibility gap in Cu-based systems

    DEFF Research Database (Denmark)

    Curiotto, S.; Greco, R.; Pryds, Nini

    2007-01-01

    Some Cu-based alloys, like Cu–Co, Cu–Fe and Cu–Co–Fe, display a liquid metastable miscibility gap. When the melt is undercooled below a certain temperature depending on the alloy composition, they present a separation in two liquid phases, followed by coagulation before dendritic solidification....... In order to predict the phase equilibria and the mechanisms of microstructure formation, a determination of the metastable monotectics in the phase diagrams is essential. This paper focuses on the up-to-date findings on the Cu–Co, Cu–Fe and Cu–Co–Fe metastable miscibility gap in the liquid phase...

  7. Modelling the material behaviour of metastable stainless

    NARCIS (Netherlands)

    Datta, K.; Geijselaers, Hubertus J.M.; Post, J.; Beyer, J.; Huetink, Han; Cesar de Sa, Jose M.A.; Santos, Abel D.

    2007-01-01

    Metastable austenitic stainless steels are designed to be thermodynamically unstable such that deformation even at room temperatures can bring about a change in the phase of face centred cubic austenite to either hexagonal close packed martensite and/or to body centred cubic martensite. This solid

  8. Experimental and first-principles calculation study of the pressure-induced transitions to a metastable phase in GaP O4 and in the solid solution AlP O4-GaP O4

    Science.gov (United States)

    Angot, E.; Huang, B.; Levelut, C.; Le Parc, R.; Hermet, P.; Pereira, A. S.; Aquilanti, G.; Frapper, G.; Cambon, O.; Haines, J.

    2017-08-01

    α -Quartz-type gallium phosphate and representative compositions in the AlP O4-GaP O4 solid solution were studied by x-ray powder diffraction and absorption spectroscopy, Raman scattering, and by first-principles calculations up to pressures of close to 30 GPa. A phase transition to a metastable orthorhombic high-pressure phase along with some of the stable orthorhombic C m c m CrV O4 -type material is found to occur beginning at 9 GPa at 320 ∘C in GaP O4 . In the case of the AlP O4-GaP O4 solid solution at room temperature, only the metastable orthorhombic phase was obtained above 10 GPa. The possible crystal structures of the high-pressure forms of GaP O4 were predicted from first-principles calculations and the evolutionary algorithm USPEX. A predicted orthorhombic structure with a P m n 21 space group with the gallium in sixfold and phosphorus in fourfold coordination was found to be in the best agreement with the combined experimental data from x-ray diffraction and absorption and Raman spectroscopy. This method is found to very powerful to better understand competition between different phase transition pathways at high pressure.

  9. Formation and microstructure of Al{sub 2}O{sub 3}-YAG eutectic ceramics by phase transformation from metastable system to equilibrium system

    Energy Technology Data Exchange (ETDEWEB)

    Nagira, Tomoya; Yasuda, Hideyuki; Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: nagira@ams.eng.osaka-u.ac.jp

    2009-05-01

    Unidirectionally solidified Al{sub 2}O{sub 3}-YAG(Y{sub 3}Al{sub 5}O{sub 12}: yttrium-aluminum-garnet) eutectic ceramic composites have been recognized as encouraging heat-resistance materials because of the superior mechanical properties at high temperatures. In addition to the excellent mechanical properties at high temperatures, some interesting solidification phenomena have been reported in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The Al{sub 2}O{sub 3}-YAG equilibrium eutectic at 2099 K and the Al{sub 2}O{sub 3}-YAP metastable eutectic at 1975 K exist in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The heating the metastable eutectic up to temperatures above the metastable eutectic temperature produced the undercooled melt. Solidification in the equilibrium path accompanied the melting of the metastable eutectic. The solidification process using undercooled melt resulted in the fine and uniform eutectic structure. In this study, the effect of the initial Al{sub 2}O{sub 3}-YAP particles size on the undercooled melt formation was examined. The Al{sub 2}O{sub 3}-YAP particles with diameters more than several {mu}m resulted in the transformation through the undercooled melt. EBSD analysis showed that the domains of Al{sub 2}O{sub 3} grains with same crystallographic orientation were observed and that their domain size depended on the Al{sub 2}O{sub 3}-YAP particles size. On the other hand, for the Al{sub 2}O{sub 3}-YAP particles with a diameter of 500 nm, the each Al{sub 2}O{sub 3} grain with diameter of about 1 {mu}m had the different crystallographic orientations, which suggested that the transformation from metastable eutectic to equilibrium eutectic occurred in the solid state. The increase in the Al{sub 2}O{sub 3}-YAP free surface area suppressed the undercooled melt formation.

  10. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  11. Metastable dark energy

    Directory of Open Access Journals (Sweden)

    Ricardo G. Landim

    2017-01-01

    Full Text Available We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  12. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods

    International Nuclear Information System (INIS)

    Ghosh, G.; Walle, A. van de; Asta, M.

    2008-01-01

    The thermodynamic properties of solid solutions with body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in the Al-TM (TM = Ti, Zr and Hf) systems are calculated from first-principles using cluster expansion (CE), Monte-Carlo simulation and supercell methods. The 32-atom special quasirandom structure (SQS) supercells are employed to compute properties at 25, 50 and 75 at.% TM compositions, and 64-atom supercells have been employed to compute properties of alloys in the dilute concentration limit (one solute and 63 solvent atoms). In general, the energy of mixing (Δ m E) calculated by CE and dilute supercells agree very well. In the concentrated region, the Δ m E values calculated by CE and SQS methods also agree well in many cases; however, noteworthy discrepancies are found in some cases, which we argue originate from inherent elastic and dynamic instabilities of the relevant parent lattice structures. The importance of short-range order on the calculated values of Δ m E for hcp Al-Ti alloys is demonstrated. We also present calculated results for the composition dependence of the atomic volumes in random solid solutions with bcc, fcc and hcp structures. The properties of solid solutions reported here may be integrated within the CALPHAD formalism to develop reliable thermodynamic databases in order to facilitate: (i) calculations of stable and metastable phase diagrams of binary and multicomponent systems, (ii) alloy design, and (iii) processing of Al-TM-based alloys

  13. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    International Nuclear Information System (INIS)

    Lang, Peter; Wojcik, Tomasz; Povoden-Karadeniz, Erwin; Falahati, Ahmad; Kozeschnik, Ernst

    2014-01-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed

  14. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  15. Metastable and stable magnetic phases in as-cast and annealed Pr80Fe15(B1-xCx)5 alloys (0.0≤x≤1.0)

    International Nuclear Information System (INIS)

    Sanchez Llamazares, J.L.; Lopez, G.; Fidler, J.

    1998-01-01

    In as-cast Pr 80 Fe 15 (B 1-x C x ) 5 , samples metastable A 1 (T c =225 C) was the predominant magnetic phase in the whole composition range, with intrinsic properties that were not affected with increasing C content. Up to x=0.75 this phase coexists with an additional minor magnetic phase having T c =263 C which has been labelled by us to as A 3 . Upon annealing at 600 C A 1 dissolves and the following stable phases were observed: (a) Pr 2 Fe 14 B and A 3 for 0.0≤x≤0.75, and; (b) an unknown stable phase D 1 with coercivity around 2.1 kOe and Curie temperature of 230 C for x=1.0. D 1 is the predominant phase for annealing times less than 8 h while for 8 and 16 h annealing an additional phase with T c =17 C appears. The latter has been tentatively identified as Pr 2 Fe 17 . SEM and X-ray microanalysis studies were performed on Pr 80 Fe 15 C 5 samples in the as-cast state and after 16 h of annealing. The as-cast sample shows large Pr-rich grains immersed in a fine eutectic microstructure consisting of Pr and Fe. In annealed samples, both large square or polygonal grains and a needle-like phase are formed. The latter is believed to be D 1 . (orig.)

  16. Strain ordering in BCC metals and the associated anelasticity

    International Nuclear Information System (INIS)

    Dattagupta, S.; Ranganathan, R.; Balakrishnan, R.

    1982-01-01

    The BCC to BCT transformation is thought to occur as a consequence of strain ordering due to the interaction between impurity interstitials. A Hamiltonian is given, which involves the interaction energies between the strain fields of the interstitials belonging to three distinct sublattices. In the BCT phase, one of the sublattices is preferentially occupied. The free energy of the system is calculated in the mean field approximation. In this, the BCC to BCT transformation is found to be a first-order transition at a temperature Tsub(p) that is proportional to the concentration of the interstitials and certain basic interaction parameters. The anelastic behaviour of the interacting interstitials is then studied in the region T > Tsub(p). From the anelastic strain, which is proportional to the order parameter associated with the phase transition, the static compliance is obtained. The latter obeys a Curie-Weiss type of law. The creep function, which determines the response to a constant applied stress, is found to exhibit viscous behaviour near Tsub(p). From the creep function, the frequency-dependent compliance and the internal friction are evaluated. The results predict a shift and a broadening of the internal friction peak as Tsub(p) is approached from above. The features show qualitative resemblance with the recent data on Ta-O. (author)

  17. Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Fargas, G. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Mateo, A. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain)

    2014-03-01

    Advanced techniques were used to study the deformation mechanisms induced by fatigue tests in a metastable austenitic stainless steel AISI 301LN. Observations by Atomic Force Microscopy were carried out to study the evolution of a pre-existing martensite platelet at increasing number of cycles. The sub-superficial deformation mechanisms of the austenitic grains were studied considering the cross-section microstructure obtained by Focused Ion Beam and analysed by Scanning Electron Microscopy and Transmission Electron Microscopy. The results revealed no deformation surrounding the pre-existing martensitic platelet during fatigue tests, only the growth on height was observed. Martensite formation was associated with shear bands on austenite, mainly in the {111} plane, and with the activation of the other intersecting austenite {111}〈110〉 slip system. Furthermore, transmission electron microscopy results showed that the nucleation of ε-martensite follows a two stages phase transformation (γ{sub fcc}→ε{sub hcp}→α'{sub bcc})

  18. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  19. Metastability in Field Theory and Statistical Mechanics

    International Nuclear Information System (INIS)

    Carvalho, C.A. de.

    1984-01-01

    After a phase transition analysis which can occur in the framework of a scalar field theory, at finite temperature and in presence of a external field, possibles metastable situations are studied and also how is their relationship with the transitions. In both cases it is used a semiclassical approximation to the theory which, in Statistical Mechanics, corresponds to the droplet-bubble model. (L.C.) [pt

  20. Experimental observations elucidating the mechanisms of structural bcc-hcp transformations in ?-Ti alloys

    NARCIS (Netherlands)

    Van Bohemen, S.M.C.; Sietsma, J.; Van der Zwaag, S.

    2006-01-01

    The formation mechanisms of two hcp ? phase morphologies in Ti-4.5Fe-6.8Mo-1.5Al have been investigated by optical microscopy (OM), atomic force microscopy (AFM), electron probe microanalysis (EPMA) and dilatometry. At relatively high temperatures primary ? forms predominantly on prior bcc ? grain

  1. Desensitization of metastable intermolecular composites

    Science.gov (United States)

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  2. Stabilization of metastable tetragonal zirconia nanocrystallites by surface modification

    DEFF Research Database (Denmark)

    Nielsen, Mette Skovgaard; Almdal, Kristoffer; Lelieveld, A. van

    2011-01-01

    Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room temperature (RT). A stabilizing effect of different surfactants on the tetragonal phase was observed. Furthermore, the phase stability of silanized metastable tetragonal zirconia nanocrystallites was te...... exposure to humidity. Only silanes and phosphate esters of these were able to stabilize the tetragonal phase in water. Even as small amounts of silanes as 0.25 silane molecule per nm2 are able to stabilize the tetragonal phase in water at RT. Aminopropyl trimethoxy silane and γ...

  3. Photodetachment of metastable He-

    International Nuclear Information System (INIS)

    Thompson, J.S.; Dellwo, J.; Compton, R.N.

    1990-01-01

    A crossed-beams apparatus has been used to measure angular distributions and cross sections for photoelectron detachment from metastable He - . Energy- and angle-resolved electron spectroscopy was used to investigate the spectral dependences of the angular distribution of the photoelectrons. The angular distributions along with photoelectron yield measurements were used to determine the cross sections for photodetachment of He - (2 4 P) via the energy resolved He(2 3 P) and He(2 3 S) exit channels. The precision of the cross section measurements was enhanced by exploiting the kinematic effects associated with detachment from a fast beam source. Calculated cross sections for the photodetachment of H - were used to establish an absolute scale for the He - cross section measurements

  4. On Metastability in FPU

    CERN Document Server

    Bambusi, D

    2005-01-01

    We present an analytical study of the Fermi--Pasta--Ulam (FPU) $\\alpha$--model with periodic boundary conditions. We analyze the dynamics corresponding to initial data with some low frequency Fourier modes excited. We show that, correspondignly, a pair of KdV equations constitute the resonant normal form of the system. We also use such a normal form in order to prove the existence of a metastability phenomenon. More precisely, we show that the time average of the modal energy spectrum rapidly attains a well defined distribution corresponding to a packet of low frequencies modes. Subsequently, the distribution remains unchanged up to the time scales of validity of our approximation. The phenomenon is controlled by the specific energy.

  5. Anisotropy migration of self-point defects in dislocation stress fields in BCC Fe and FCC Cu

    International Nuclear Information System (INIS)

    Sivak, A.B.; Chernov, V.M.; Dubasova, N.A.; Romanov, V.A.

    2007-01-01

    Spatial dependence of the interaction energies of self-point defects (vacancies and self interstitial atoms in stable, metastable and saddle point configurations) with edge dislocations in slip systems {1 1 0} and {1 0 0} in BCC Fe and {1 1 1} in FCC Cu was calculated using the anisotropic theory of elasticity and molecular statics (hybrid method). The migration pathways of vacancies and SIA ( dumbbell in Fe and dumbbell in Cu) along which the migration of the defects with the lowest energy barriers were defined in the presence of the dislocation stress fields. These pathways are significantly different in the stress fields of dislocations

  6. Solar-Blind Photodetector with High Avalanche Gains and Bias-Tunable Detecting Functionality Based on Metastable Phase α-Ga2O3/ZnO Isotype Heterostructures.

    Science.gov (United States)

    Chen, Xuanhu; Xu, Yang; Zhou, Dong; Yang, Sen; Ren, Fang-Fang; Lu, Hai; Tang, Kun; Gu, Shulin; Zhang, Rong; Zheng, Youdou; Ye, Jiandong

    2017-10-25

    The metastable α-phase Ga 2 O 3 is an emerging material for developing solar-blind photodetectors and power electronic devices toward civil and military applications. Despite its superior physical properties, the high quality epitaxy of metastable phase α-Ga 2 O 3 remains challenging. To this end, single crystalline α-Ga 2 O 3 epilayers are achieved on nonpolar ZnO (112̅0) substrates for the first time and a high performance Au/α-Ga 2 O 3 /ZnO isotype heterostructure-based Schottky barrier avalanche diode is demonstrated. The device exhibits self-powered functions with a dark current lower than 1 pA, a UV/visible rejection ratio of 10 3 and a detectivity of 9.66 × 10 12 cm Hz 1/2 W -1 . Dual responsivity bands with cutoff wavelengths at 255 and 375 nm are observed with their peak responsivities of 0.50 and 0.071 A W -1 at -5 V, respectively. High photoconductive gain at low bias is governed by a barrier lowing effect at the Au/Ga 2 O 3 and Ga 2 O 3 /ZnO heterointerfaces. The device also allows avalanche multiplication processes initiated by pure electron and hole injections under different illumination conditions. High avalanche gains over 10 3 and a low ionization coefficient ratio of electrons and holes are yielded, leading to a total gain over 10 5 and a high responsivity of 1.10 × 10 4 A W -1 . Such avalanche heterostructures with ultrahigh gains and bias-tunable UV detecting functionality hold promise for developing high performance solar-blind photodetectors.

  7. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  8. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    Science.gov (United States)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  9. High Temperature Magneto-Elastic Instability of Dislocations in bcc Iron

    International Nuclear Information System (INIS)

    Dudarev, S.; Bullough, R.; Gilbert, M.; Derlet, P.

    2007-01-01

    Full text of publication follows: Density functional calculations show that the low temperature structure of self-interstitial defects in iron is fundamentally different from the structure of self-interstitial defects in all the other bcc metals. The origin of this anomaly is associated with the magnetic part of the cohesive energy of iron, where the Stoner exchange term stabilizes the body centred cubic phase, and where the magnetic part of energy is strongly affected by the large strain associated with the core region of an interstitial defect. At elevated temperatures magnetic excitations erode the stability of the bcc phase, giving rise to the gradual softening of the 110 transverse acoustic phonon modes and to the α-γ bcc-fcc martensitic phase transition occurring at 912 deg. C at normal pressure. Elastic moduli of bcc iron vary as a function of temperature with c' = (C 11 - c 12 )/2 vanishing at the α-γ transition point. This has significant effects on the magnitude of both the elastic interactions between dislocations and other defects in the material and on the intrinsic structural stability of the dislocations and other defects themselves. To evaluate structural stability of defects at elevated temperatures we investigate elastic self-energies of dislocations in the continuum anisotropic elasticity approximation. We also develop atomistic models of dislocations and point defects based on a generalised form of the magnetic potential. By varying the magnetic part of the potential we are able to reproduce the experimentally observed variation of elastic moduli as a function of temperature, and assess relative stability of various types of defect structures. Our analysis shows that, in complete contrast to other straight dislocations, the elastic self-energy of straight 100 edge dislocations actually sharply decreases as we approach the α-γ transition, indicating that this surprising fact is a probable explanation of the frequent observation of the 100

  10. A few proofs for nonexistence of the metastable states

    International Nuclear Information System (INIS)

    Blazjevski, Atanas

    2007-01-01

    This paper is the bigger part of one until now unpublished author's work, whose title is 'A few proofs for nonexistence of the metastable states'. Because of a big volume of the work, the problems of supersaturated (metastable) steam which appears at the following of slightly, superheated, saturated or wet steam in the convergent and Laval nozzles will be discussed in the main. This steam is mentioned in the literature as one between of the strongest proofs for existence of metastable states in the substances. In this work the steam is not one -phase gaseous metastable steam, as it was thought until now, but yat it is nonequilibrium wet steam in which during the expanding process in the nozzles extreme small particles condensate, consisted of two, three or only few agglomerated molecules are formed which stay in heat, mechanical and internal nonequilibrium with the rest of the expanding gaseous phase of the steam. It means, that this steam, which is called a supersaturated or metastable steam, in fact does not exist in reality because it is nothing else but only nonequilibrium wet steam consisted of tho phases: the expanding gaseous phase of the steam in the nozzle and the mentioned small and nonequilibrium particles condensate which are formed there...

  11. Is there an ordered tetragonal phase in the Ti3Al-Nb system?

    International Nuclear Information System (INIS)

    Banerjee, D.

    1994-01-01

    In a recent series of papers, describing aging transformations in plasma sprayed Ti-24Al-11Nb, Hsiung and co-workers proposed a new ordered tetragonal structure as the first metastable phase to form in a series of transformations from quenched-in B2 to the equilibrium phase. They describe this new phase as a ''DO 3 like tetragonal structure'' with a composition Ti 5 Al 2 Nb, and lattice parameters, a = 0.65 nm and c/a ≅ 1.02. Their unit cell is constituted by 8 bcc unit cells, and the atomic coordinates of their structure are given in Table 1 on this basis. The symmetry of this structure is P4/mm. Though it is not the smallest possible unit cell for the structure, comparison with other bcc binary derivative structures is easily possible on this basis. The atomic coordinates for the latter, for a ternary composition Ti 2 AlNb, are also given. They note that the site occupation for the Hsiung et al. structure is quite distinct from that for a ternary DO 3 phase or any of the other possible bcc derivative structures (neglecting 2 possibilities with 128 or 432 atoms per unit cell(8) and interstitial ordering)

  12. Metastability at the Yield-Stress Transition in Soft Glasses

    Science.gov (United States)

    Lulli, Matteo; Benzi, Roberto; Sbragaglia, Mauro

    2018-04-01

    We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable "fluidized" state, which relaxes back to a metastable "solid" state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity) developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.

  13. First-principles study of atomic ordering in bcc Cu-Al

    Science.gov (United States)

    Lanzini, F.; Gargano, P. H.; Alonso, P. R.; Rubiolo, G. H.

    2011-01-01

    The order-disorder transitions and phase stability in the body centered cubic structure of Cu-Al binary alloys are studied by means of theoretical methods. The total energy of different ordered compounds sharing a common bcc Bravais lattice was calculated within the framework of density functional theory. A set of effective cluster interactions was calculated through a cluster expansion (CE) of the total energies. The finite temperature phase diagram of bcc Cu-Al was obtained using the CE formalism coupled with the cluster variation method calculation of the configurational entropy. These results are confronted with a simpler semi-empirical approach based on effective pair interactions obtained from experiment. Both approaches predict a single first-order A2/DO3 transition for compositions close to Cu3Al, in agreement with the most recent experimental results.

  14. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  15. Collisional interaction between metastable neon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Drunen, Wouter Johannes van

    2008-07-07

    In this thesis, the study of cold gases of neon atoms in different metastable states is described. It contains measurements of the collisional parameters for both the 3s[3/2]{sub 2} and the 3s'[1/2]{sub 0} metastable state and the dependence of the inelastic loss on external fields. Furthermore, the investigation of frequency dependent laser-induced collisions, and the possibility to excite photoassociation resonances is presented. For the measurements described here, neon atoms have been confined in a magnetooptical trap, in a magnetostatic trap, or in an optical dipole trap, respectively. By laser cooling inside the magnetic trap, atomic samples with more than 95 percent occupation of the magnetic substate m{sub J} = +2 could be prepared. They have a typical temperature of 0.5 mK, central densities up to 10{sup 11} cm{sup -3}, and a central phase-space density of up to 2.2.10{sup -7}. After loading the optical dipole trap from the magnetic trap, 2.5.10{sup 6} atoms with typical temperatures of 0.1 mK, and central densities up to 5.10{sup 10} cm{sup -3} were trapped. By evaporative cooling of the atoms in the magnetic trap we could increase the phase-space density by a factor of 200 to 5.10{sup -5}. Investigating the frequency dependence of laser-induced collisions did not reveal an experimental signature for the excitation of photoassociation resonances. For the {sup 3}D{sub 3} line a frequency dependence of laser enhanced Penning ionization was observed. Measurement of the two-body loss coefficient as function of the magnetic field showed a field dependence of the inelastic loss. These losses increase towards both small and large offset fields. The implementation of an optical dipole trap allowed us to trap the {sup 3}P{sub 0} metastable state. From the trap loss measurements we determined the two-body loss coefficient of the {sup 3}P{sub 0} metastable state for both bosonic isotopes {sup 20}Ne and {sup 22}Ne. For {sup 20}Ne we obtained {beta}=6{sup +5}{sub

  16. Collisional interaction between metastable neon atoms

    International Nuclear Information System (INIS)

    Drunen, Wouter Johannes van

    2008-01-01

    In this thesis, the study of cold gases of neon atoms in different metastable states is described. It contains measurements of the collisional parameters for both the 3s[3/2] 2 and the 3s'[1/2] 0 metastable state and the dependence of the inelastic loss on external fields. Furthermore, the investigation of frequency dependent laser-induced collisions, and the possibility to excite photoassociation resonances is presented. For the measurements described here, neon atoms have been confined in a magnetooptical trap, in a magnetostatic trap, or in an optical dipole trap, respectively. By laser cooling inside the magnetic trap, atomic samples with more than 95 percent occupation of the magnetic substate m J = +2 could be prepared. They have a typical temperature of 0.5 mK, central densities up to 10 11 cm -3 , and a central phase-space density of up to 2.2.10 -7 . After loading the optical dipole trap from the magnetic trap, 2.5.10 6 atoms with typical temperatures of 0.1 mK, and central densities up to 5.10 10 cm -3 were trapped. By evaporative cooling of the atoms in the magnetic trap we could increase the phase-space density by a factor of 200 to 5.10 -5 . Investigating the frequency dependence of laser-induced collisions did not reveal an experimental signature for the excitation of photoassociation resonances. For the 3 D 3 line a frequency dependence of laser enhanced Penning ionization was observed. Measurement of the two-body loss coefficient as function of the magnetic field showed a field dependence of the inelastic loss. These losses increase towards both small and large offset fields. The implementation of an optical dipole trap allowed us to trap the 3 P 0 metastable state. From the trap loss measurements we determined the two-body loss coefficient of the 3 P 0 metastable state for both bosonic isotopes 20 Ne and 22 Ne. For 20 Ne we obtained β=6 +5 -4 .10 -10 cm 3 /s and for 22 Ne β = 11 +7 -6 .10 -10 cm 3 /s. (orig.)

  17. Enhanced moments in bcc Co{sub 1−x}Mn{sub x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Snow, R.J.; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); N' Diaye, A.T.; Arenholz, E. [Advanced Light Source, Lawrence Berkeley Nat. Labs, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: Idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59715 (United States)

    2016-12-01

    A 40% enhancement of the Co magnetic moment has been found for thin films of bcc Co{sub 1−x}Mn{sub x} grown by molecular beam epitaxy on a 2 nm bcc Fe buffer layer on MgO(001). Although the bcc phase cannot be stabilized in the bulk, we confirm that it is stable as an epitaxial film in the composition range x=0–0.7. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we show that the Co moment is a maximum of 2.38 μ{sub B} at x=0.24, while the net Mn moment remains roughly constant until x=0.24, then drops steadily. Mn is found to align parallel with Co for all ferromagnetic concentrations, up to x=0.7, where the total moment of the film abruptly collapses to zero, most likely due to the onset of the observed structural instability. - Highlights: • Stabilization of bcc Co{sub 1−x}Mn{sub x} films in the composition range of x=0 to 0.7. • Enhancement of Co moment by 40% from pure bcc Co. • Parallel alignment of Mn moment and Co moment. • Measured the elemental moment of Co and Mn as a function of composition.

  18. Metastable states of plasma particles close to a charged surface

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A. V., E-mail: shavlov@ikz.ru [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation); Tyumen State Oil and Gas University, 38, Volodarskogo St., 625000, Tyumen (Russian Federation); Dzhumandzhi, V. A. [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation)

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  19. Interaction of rare gas metastable atoms

    International Nuclear Information System (INIS)

    Wang, A.Z.F.

    1977-11-01

    The physical and chemical properties of metastable rare gas atoms are discussed and summarized. This is followed by a detailed examination of the various possible pathways whereby the metastable's excess electronic energy can be dissipated. The phenomenon of chemi-ionization is given special emphasis, and a theoretical treatment based on the use of complex (optical) potential is presented. This is followed by a discussion on the unique advantages offered by elastic differential cross section measurements in the apprehension of the fundamental forces governing the ionization process. The methodology generally adopted to extract information about the interaction potential for scattering data is also systematically outlined. Two widely studied chemi-ionization systems are then closely examined in the light of accurate differential cross section measurements obtained in this work. The first system is He(2 3 S) + Ar for which one can obtain an interaction potential which is in good harmony with the experimental results of other investigators. The validity of using the first-order semiclassical approximation for the phase shifts calculation in the presence of significant opacities is also discussed. The second reaction studied is He*+D 2 for which measurements were made on both spin states of the metastable helium. A self-consistent interaction potential is obtained for the triplet system, and reasons are given for not being able to do likewise for the singlet system. The anomalous hump proposed by a number of laboratories is analyzed. Total elastic and ionization cross sections as well as rate constants are calculated for the triplet case. Good agreement with experimental data is found. Finally, the construction and operation of a high power repetitively pulsed nitrogen laser pumped dye laser system is described in great details. Details for the construction and operation of a flashlamp pumped dye laser are likewise given

  20. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  1. Microstructures and mechanical properties of two-phase alloys based on NbCr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.C.; Kotula, P.G.; Cady, C.M.; Mauro, M.E.; Thoma, D.J.

    1999-07-01

    A two-phase, NbCrTi alloy (bcc + C15 Laves phase) has been developed using several alloy design methodologies. In efforts to understand processing-microstructure-property relationships, different processing routes were employed. The resulting microstructures and mechanical properties are discussed and compared. Plasma arc melted (PAM) samples served to establish baseline, as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  2. Metastable states in magnetic nanorings

    DEFF Research Database (Denmark)

    Castaño, F. J.; Ross, C. A.; Frandsen, Cathrine

    2003-01-01

    Magnetization states and hysteresis behavior of small ferromagnetic rings, of diameters 180-520 nm, have been investigated using magnetic force microscopy. In addition to the expected bi-domain ("onion") and flux-closed ("vortex") magnetization states, a metastable state has been found. This "twi......Magnetization states and hysteresis behavior of small ferromagnetic rings, of diameters 180-520 nm, have been investigated using magnetic force microscopy. In addition to the expected bi-domain ("onion") and flux-closed ("vortex") magnetization states, a metastable state has been found....... This "twisted" state contains a 360degrees domain wall which can exist over a wide range of applied fields. Four possible configurations of the twisted state are possible. Micromagnetic modeling shows that the twisted state is stabilised in small diameter, narrow rings. Additionally, more complex configurations...

  3. Instability of colliding metastable strings

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-04-15

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  4. Instability of colliding metastable strings

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kobayashi, Tatsuo; Ookouchi, Yutaka; Kyoto Univ.

    2013-04-01

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  5. The dehydration of SrTeO3(H2O)--a topotactic reaction for preparation of the new metastable strontium oxotellurate(IV) phase ε-SrTeO3.

    Science.gov (United States)

    Stöger, Berthold; Weil, Matthias; Baran, Enrique J; González-Baró, Ana C; Malo, Sylvie; Rueff, Jean Michel; Petit, Sebastien; Lepetit, Marie Bernadette; Raveau, Bernard; Barrier, Nicolas

    2011-05-28

    Microcrystalline single-phase strontium oxotellurate(IV) monohydrate, SrTeO(3)(H(2)O), was obtained by microwave-assisted hydrothermal synthesis under alkaline conditions at 180 °C for 30 min. A temperature of 220 °C and longer reaction times led to single crystal growth of this material. The crystal structure of SrTeO(3)(H(2)O) was determined from single crystal X-ray diffraction data: P2(1)/c, Z = 4, a = 7.7669(5), b = 7.1739(4), c = 8.3311(5) Å, β = 107.210(1)°, V = 443.42(5) Å(3), 1403 structure factors, 63 parameters, R[F(2)>2σ(F(2))] = 0.0208, wR(F(2) all) = 0.0516, S = 1.031. SrTeO(3)(H(2)O) is isotypic with the homologous BaTeO(3)(H(2)O) and is characterised by a layered assembly parallel to (100) of edge-sharing [SrO(6)(H(2)O)] polyhedra capped on each side of the layer by trigonal-prismatic [TeO(3)] units. The cohesion of the structure is accomplished by moderate O-H···O hydrogen bonding interactions between donor water molecules and acceptor O atoms of adjacent layers. In a topochemical reaction, SrTeO(3)(H(2)O) condensates above 150 °C to the metastable phase ε-SrTeO(3) and transforms upon further heating to δ-SrTeO(3). The crystal structure of ε-SrTeO(3), the fifth known polymorph of this composition, was determined from combined electron microscopy and laboratory X-ray powder diffraction studies: P2(1)/c, Z = 4, a = 6.7759(1), b = 7.2188(1), c = 8.6773(2) Å, β = 126.4980(7)°, V = 341.20(18) Å(3), R(Fobs) = 0.0166, R(Bobs) = 0.0318, Rwp = 0.0733, Goof = 1.38. The structure of ε-SrTeO(3) shows the same basic set-up as SrTeO(3)(H(2)O), but the layered arrangement of the hydrous phase transforms into a framework structure after elimination of water. The structural studies of SrTeO(3)(H(2)O) and ε-SrTeO(3) are complemented by thermal analysis and vibrational spectroscopic measurements.

  6. Sequential evolution of different phases in metastable Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) system: crucial role of reaction conditions.

    Science.gov (United States)

    Shukla, Rakesh; Sayed, Farheen N; Phapale, Suhas; Mishra, Ratikant; Tyagi, Avesh K

    2013-07-15

    The Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) series was synthesized by the gel combustion method. This system exhibited the presence of a fluorite-type phase, along with a narrow biphasic region, depending upon the Ce/Gd content in the sample. Thermal stability of these new compounds under oxidizing and reducing conditions has been investigated. The products obtained on decomposition of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 in oxidizing and reducing conditions were found to be entirely different. It was observed that in air the fluorite-type solid solutions of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 composition undergo phase separation into perovskite GdAlO3 and fluorite-type solid solutions of Gd-Ce-Zr-O or Ce-Zr-Al-O depending upon the extent of Ce and Al substitution. On the other hand, Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 samples on heating under reducing conditions show a phase separation to CeAlO3 perovskite and a defect-fluorite of Gd2Zr2O7. The extent of metastability for a typical composition of Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (nano), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O(6.6) (heated under reduced conditions), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (heated in air at 1200 °C) has been experimentally determined employing a high temperature Calvet calorimeter. On the basis of thermodynamic stability data, it could be inferred that the formation of a more stable compound in the presence of two competing cations (i.e., Gd(3+) and Ce(3+)) is guided by the crystallographic stability.

  7. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC.

    Science.gov (United States)

    Sekulic, Aleksandar; Migden, Michael R; Lewis, Karl; Hainsworth, John D; Solomon, James A; Yoo, Simon; Arron, Sarah T; Friedlander, Philip A; Marmur, Ellen; Rudin, Charles M; Chang, Anne Lynn S; Dirix, Luc; Hou, Jeannie; Yue, Huibin; Hauschild, Axel

    2015-06-01

    Primary analysis from the pivotal ERIVANCE BCC study resulted in approval of vismodegib, a Hedgehog pathway inhibitor indicated for treatment of adults with metastatic or locally advanced basal cell carcinoma (BCC) that has recurred after surgery or for patients who are not candidates for surgery or radiation. An efficacy and safety analysis was conducted 12 months after primary analysis. This was a multinational, multicenter, nonrandomized, 2-cohort study in patients with measurable and histologically confirmed locally advanced or metastatic BCC taking oral vismodegib (150 mg/d). Primary outcome measure was objective response rate (complete and partial responses) assessed by independent review facility. After 12 months of additional follow-up, median duration of exposure to vismodegib was 12.9 months. Objective response rate increased from 30.3% to 33.3% in patients with metastatic disease, and from 42.9% to 47.6% in patients with the locally advanced form. Median duration of response in patients with locally advanced BCC increased from 7.6 to 9.5 months. No new safety signals emerged with extended treatment duration. Limitations include low prevalence of advanced BCC and challenges of designing a study with heterogenous manifestations. The 12-month update of the study confirms the efficacy and safety of vismodegib in management of advanced BCC. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Steinhardt, Paul J., E-mail: steinh@princeton.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Department of Physics and Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544 (United States); Turok, Neil [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2013-10-07

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height (10{sup 10–12} GeV){sup 4}) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  9. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    Science.gov (United States)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-10-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height ( GeV)4) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  10. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    International Nuclear Information System (INIS)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-01-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height (10 10–12 GeV) 4 ) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation

  11. Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation

    Science.gov (United States)

    Shabashov, V. A.; Kozlov, K. A.; Sagaradze, V. V.; Nikolaev, A. L.; Lyashkov, K. A.; Semyonkin, V. A.; Voronin, V. I.

    2018-03-01

    The effect of severe plastic deformation, namely, high-pressure torsion (HPT) at different temperatures and ball milling (BM) at different time intervals, has been investigated by means of Mössbauer spectroscopy in Fe100-xMnx (x = 4.1, 6.8, 9) alloys. Deformation affects the short-range clustering (SRC) in BCC lattice. Two processes occur: destruction of SRC by moving dislocations and enhancement of the SRC by migration of non-equilibrium defects. Destruction of SRC prevails during HPT at 80-293 K; whereas enhancement of SRC dominates at 473-573 K. BM starts enhancing the SRC formation at as low as 293 K due to local heating at impacts. The efficiency of HPT in terms of enhancing SRC increases with increasing temperature. The authors suppose that at low temperatures, a significant fraction of vacancies are excluded from enhancing SRC because of formation of mobile bi- and tri-vacancies having low efficiency of enhancing SRC as compared to that of mono vacancies. Milling of BCC Fe100-xMnx alloys stabilises the BCC phase with respect to α → γ transition at subsequent isothermal annealing because of a high degree of work hardening and formation of composition inhomogeneity.

  12. Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Rubiolo, Gerardo H.

    2003-01-01

    There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm 3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm 3 . Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)

  13. From materials control to astrophysics: metastable superconductors

    International Nuclear Information System (INIS)

    Waysand, G.

    1984-01-01

    The basic properties of metastable superconducting materials are reviewed: superheated domain, size of the granules, reading of the change of state. In the case of superheating, the phase transition can occur following two paths: a) increase of temperature (thermal nucleation) which allows an analysis of the calorimetric behavior for particle detection; b) increase of the applied magnetic field which allows the evaluation of surface defects promoting the nucleation of the normal state, and, more generally, the study of the superheated material as a disordered system. The thermal nucleation is useful for X-ray detection in non-destructive control as well as for the solar neutrino detection in real time. The magnetic nucleation is the basis for a proposal of detection of magnetic monopoles by induction [fr

  14. Metastable cosmic strings in realistic models

    International Nuclear Information System (INIS)

    Holman, R.

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2) L x SU(2) R x U(1) B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed

  15. Metastability in spin polarised Fermi gases and quasiparticle decays

    DEFF Research Database (Denmark)

    Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos

    2011-01-01

    We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each...... the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose...... experiments to observe the threshold of the predicted region of metastability, the interaction strength at which the quasiparticle groundstate changes character, and the decay rate of polarons....

  16. Pre-melting hcp to bcc Transition in Beryllium: A Study by First-Principles Phonon Quasiparticle Approach

    Science.gov (United States)

    Zhang, D. B., Sr.

    2017-12-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp to bcc transition occurs near the melting curve at 0

  17. Nucleation of metastable aragonite CaCO3 in seawater.

    Science.gov (United States)

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A; Ceder, Gerbrand

    2015-03-17

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"--the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite--which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg:Ca [corrected] ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.

  18. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  19. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  20. Geometrically induced metastability and holography

    Energy Technology Data Exchange (ETDEWEB)

    Aganagic, Mina; Aganagic, Mina; Beem, Christopher; Seo, Jihye; Vafa, Cumrun

    2006-10-23

    We construct metastable configurations of branes and anti-branes wrapping 2-spheres inside local Calabi-Yau manifolds and study their large N duals. These duals are Calabi-Yau manifolds in which the wrapped 2-spheres have been replaced by 3-spheres with flux through them, and supersymmetry is spontaneously broken. The geometry of the non-supersymmetric vacuum is exactly calculable to all orders of the't Hooft parameter, and to the leading order in 1/N. The computation utilizes the same matrix model techniques that were used in the supersymmetric context. This provides a novel mechanism for breaking supersymmetry in the context of flux compactifications.

  1. Equation of state and thermodynamic properties of BCC metals

    Directory of Open Access Journals (Sweden)

    Vu Van Hung, N.T. Hoa

    2017-10-01

    Full Text Available The moment method in statistical dynamics is used to study the equation of state and thermodynamic properties of the bcc metals taking into account the anharmonicity effects of the lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant, thermal expansion  oefficient, and the specific heats of the bcc metals are derived within the fourth order moment approximation. The termodynamic quantities of W, Nb, Fe,and Ta metals are calculated as a function of the pressure, and they are in good agreement with the corresponding results obtained from the first principles calculations and experimental results. The effective pair potentials work well for the calculations of bcc metals.

  2. Metastable growth of pure wurtzite InGaAs microstructures.

    Science.gov (United States)

    Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J

    2014-08-13

    III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.

  3. Numerical transfer-matrix study of a model with competing metastable states

    DEFF Research Database (Denmark)

    Fiig, T.; Gorman, B.M.; Rikvold, P.A.

    1994-01-01

    transition. A recently developed transfer-matrix formalism is applied to the model to obtain complex-valued ''constrained'' free-energy densities f(alpha). For particular eigenvectors of the transfer matrix, the f(alpha) exhibit finite-rangescaling behavior in agreement with the analytically continued...... 'metastable free-energy density This transfer-matrix approach gives a free-energy cost of nucleation that supports the proportionality relation for the decay rate of the metastable phase T proportional to\\Imf alpha\\, even in cases where two metastable states compete. The picture that emerges from this study...

  4. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  5. Metastable Supersymmetry Breaking in a Cooling Universe

    International Nuclear Information System (INIS)

    Kaplunovsky, Vadim S.

    2007-01-01

    I put metastable supersymmetry breaking in a cosmological context. I argue that under reasonable assumptions, the cooling down early Universe favors metastable SUSY-breaking vacua over the stable supersymmetric vacua. To illustrate the general argument, I analyze the early-Universe history of the Intriligator-Seiberg-Shih model

  6. Desensitization and recovery of metastable intermolecular composites

    Science.gov (United States)

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  7. Shear instabilities in perfect bcc crystals during simulated tensile tests

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Šesták, P.; Pokluda, J.; Šob, Mojmír

    2013-01-01

    Roč. 87, č. 1 (2013), 014117/1-014117/4 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : instabilities * tensile test * bcc metals * ab initio calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  8. Investigation of the structural and hydrogenation properties of disordered Ti-V-Cr-Mo BCC solid solutions

    International Nuclear Information System (INIS)

    Raufast, C.; Planté, D.; Miraglia, S.

    2014-01-01

    Highlights: • Materials synthesis and structural analysis of selected compositions of TiVCr(Mo) bcc samples. • Extraction of the thermodynamics relevant parameters for hydride formation and dissociation state of Ti 0.3 V 1.7 Cr 0.7 Mo 0.3 sample. • Discussion of the hydrides practicability. - Abstract: Selected compositions in the Ti-Cr-V-Mo system (with the BCC structure-type) have been synthesized and characterized for structural (crystalline structure, solidification microstructure) and thermodynamic properties (equilibrium and reversible hydrogen storage capacity). We present as well the effect of co-melting with a so-called activating phase that results in a secondary phase development and a subsequent enhancement of the hydrogen sorption kinetics. Ageing properties and applicability of such materials for hybrid hydrogen storage systems are also discussed

  9. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  10. Metastability at the Yield-Stress Transition in Soft Glasses

    Directory of Open Access Journals (Sweden)

    Matteo Lulli

    2018-05-01

    Full Text Available We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable “fluidized” state, which relaxes back to a metastable “solid” state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.

  11. Fast production of Bose-Einstein condensates of metastable helium

    Science.gov (United States)

    Bouton, Q.; Chang, R.; Hoendervanger, A. L.; Nogrette, F.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2015-06-01

    We report on the Bose-Einstein condensation of metastable 4He atoms using a hybrid approach, consisting of a magnetic quadrupole and an optical dipole trap. In our setup we cross the phase transition with 2 ×106 atoms, and we obtain pure condensates of 5 ×105 atoms in the optical trap. This approach to cooling 4He provides enhanced cycle stability, large optical access to the atoms and results in the production of a condensate every 6 s—a factor 2 faster than the state of the art. This speed-up will significantly reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable helium atoms to be detected individually.

  12. Stress induced martensitic transformation from bcc to fcc in Ag-Zn

    International Nuclear Information System (INIS)

    Takezawa, K.; Akamatsu, R.; Marukawa, K.

    1995-01-01

    The martensitic transformation in Ag-Zn alloys of low-Zn content has been studied by optical and electron microscopic observations and by tensile tests. The β 1 phase of B2 structure transforms to the thermo-elastic martensite having 9R structure similar to Cu-based alloys upon cooling to temperature below Ms. When the β 1 phase is stretched at room temperature, the slip deformation occurs at first and then the stress-induced martensite(SIM) of wedge-like morphology forms. The SIM has the ordered fcc structure containing micro-twins. This direct transformation from bcc to fcc is a unique feature in Ag-Zn alloys. In Cu alloys, martensites of fcc structure appear only after the second transformation from the first transformation product of 9R structure. The critical stress for the martensitic transformation and a degree of order of SIM decrease as the deformation temperature rises. In Ag-Zn alloys, the martensite of disordered fcc is thermally produced also by up-quenching to a higher temperature. In the present study, the relation between martensites of ordered and disordered fcc is discussed through thermodynamical calculations. The condition for the direct transformation from bcc to fcc is also examined. (orig.)

  13. Electrically induced metastability in SI-GaAs studied by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Luo, Y.L.; Beling, C.D.; Fung, S.; Ling, C.C.; Lui, M.K.; Mui, W.K.

    2001-01-01

    Recently, a room temperature electrically induced metastability in semi-insulating (SI)-GaAs has been reported in which the normally high resistance state of SI-GaAs converts into a low resistance state when breakdown electric fields are applied to the metal/Si-GaAs/metal system. The low resistance state persists when the electric field is lowered below the breakdown bias and as such may thus be considered as metastable state of the material. To clarify whether the high field breakdown has its origins in some atomic configurational change induced through high energy electron collisions we have employed positron lifetime spectroscopy. Lifetime spectra that have been taken at the same bias in both the high current and low current phases show that the positron lifetime in the metastable state has no change within the experimental error from that of the normal state, thus suggesting that the metastability is most likely of purely electronic origin. (orig.)

  14. Localization of metastable atom beams with optical standing waves: nanolithography at the heisenberg limit

    Science.gov (United States)

    Johnson; Thywissen; Dekker; Berggren; Chu; Younkin; Prentiss

    1998-06-05

    The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.

  15. Decadal variability and metastability in the Southern Hemisphere

    Science.gov (United States)

    O'Kane, Terence; Risbey, James; Franzke, Christian; Horenko, Illia; Monselesan, Didier

    2014-05-01

    An examination of systematic changes in the metastability of the southern hemisphere 500hPa circulation is performed using both cluster analysis techniques and split flow blocking indices. The cluster methodology is a purely data-driven approach for parametrisation whereby a multi-scale approximation to non-stationary dynamical processes is achieved through optimal sequences of locally stationary fast Vector Auto-Regressive Factor (VARX) processes and some slow (or persistent) hidden process switching between them. Comparison is made with blocking indices commonly used in weather forecasting and climate analysis to identify dynamically relevant metastable regimes in the 500hPa circulation in both reanalysis and AMIP model data sets. Our analysis characterises the metastable regime in both reanalysis and model data sets prior to 1978 as positive and negative phases of a hemispheric mid-latitude blocking state with the Southern Annular Mode (SAM) associated with a transition state. Post 1978, SAM emerges as a true metastable state replacing the negative phase of the hemispheric blocking pattern. The hidden state frequency of occurrences exhibits strong trends. The blocking pattern dominates in the early 1980s then gradually decreases. There is a corresponding increase in the SAM frequency of occurrence. This trend is largely evident in the reanalysis summer and spring but was not evident in the AMIP data set. Non-stationary cluster analysis was then further used to identify the Southern Oceans response to the systematic changes in the mid-latitude atmospheric circulation and identify dynamical regimes associated with subsurface thermocline anomalies which were found to teleconnect the Pacific and Atlantic regions of the Antarctic Circumpolar Current (ACC).

  16. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    International Nuclear Information System (INIS)

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated

  17. Isothermal α″ formation in β metastable titanium alloys

    International Nuclear Information System (INIS)

    Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.

    2013-01-01

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″

  18. Isothermal α″ formation in β metastable titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aeby-Gautier, E., E-mail: Elisabeth.Gautier@mines.inpl-nancy.fr [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Settefrati, A. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Airbus Operations, Materials and Processes, Toulouse (France); Bruneseaux, F. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Appolaire, B. [Laboratoire d’Etudes des Microstructures ONERA – CNRS Chatillon (France); Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France)

    2013-11-15

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″.

  19. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    Science.gov (United States)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  20. Diffusion of titanium and niobium in b.c.c. Ti--Nb alloys

    International Nuclear Information System (INIS)

    Pontau, A.E.

    1978-01-01

    The diffusion coefficients for titanium and niobium radioactive tracers were simultaneously measured in Ti, Ti 94 6 Nb 5 4 , Ti 80 4 Nb 19 6 , and Ti 64 3 Nb 35 . 7 over the temperature range from 950 0 C to 1511 0 C using standard lathe sectioning techniques. The samples were initially heat treated by annealing above the α-β phase transition temperature and then either cooling slowly to room temperature or quenching. The room temperature crystal morphology was then examined using x-ray diffraction. Alloy concentrations were chosen both to suppress the β-α transition and to obtain the metastable ω-phase

  1. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  2. A systematic study on the interfacial energy of O-line interfaces in fcc/bcc systems

    International Nuclear Information System (INIS)

    Dai, Fuzhi; Zhang, Wenzheng

    2013-01-01

    Habit planes between face-centered cubic (fcc)/body-centered cubic (bcc) phases usually exhibit irrational orientations, which often agree with the O-line criterion. Previously, energy calculation was made to test whether the habit planes were energetically favorable, but the values of the energy were found very sensitive to the initial atomic configuration in an irrationally orientated interface. In this paper, under the O-line condition, simple selection criteria are proposed to define and remove interfacial interstitials and vacancies in the initial atomic configuration. The criteria are proved to be effective in obtaining robust energy results. Interfacial energies of two types of O-line interfaces in fcc/bcc systems are calculated following the criteria. The observed transformation crystallography of precipitates in Ni–Cr and Cu–Cr systems can be explained consistently as the irrational habit plane in each system is associated with the lowest energy O-line interface. (paper)

  3. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  4. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates.

    Science.gov (United States)

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, J Kevin; Jain, Manish; Zheng, Shijian; Mara, Nathan A; Beyerlein, Irene J

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

  5. Metastability and Rydberg states of triatomic hydrogen

    International Nuclear Information System (INIS)

    Helm, H.

    1991-01-01

    The np,nd and nf Rydberg series of H 3 have been studied by one- or two-photon excitation from the lowest metastable state of H 3 :B2p 2 A 2 ''. The lifetime of the metastable state has been measured and the influence of an external electric field on the Rydberg states has been studied under both aspects of dynamics (field-ionization and field-induced predissociation) and structure (Strak effect)

  6. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  7. Formation of metastable tetragonal zirconia nanoparticles: Competitive influence of the dopants and surface state

    Energy Technology Data Exchange (ETDEWEB)

    Gorban, Oksana, E-mail: matscidep@aim.com [Donetsk Institute for Physics and Engineering named after A.A. Galkin of the NAS of Ukraine, Nauki av. 46, Kyiv 03680 (Ukraine); Synyakina, Susanna; Volkova, Galina; Gorban, Sergey; Konstantiova, Tetyana [Donetsk Institute for Physics and Engineering named after A.A. Galkin of the NAS of Ukraine, Nauki av. 46, Kyiv 03680 (Ukraine); Lyubchik, Svetlana, E-mail: s_lyubchik@yahoo.com [REQUIMTE, Universida de Nova de Lisboa, 2829-516 Caparica (Portugal)

    2015-12-15

    The effect of the surface modification of the nanoparticles of amorphous and crystalline partially stabilized zirconia by fluoride ions on stability of the metastable tetragonal phase was investigated. Based on the DSC, titrimetry and FTIR spectroscopy data it was proven that surface modification of the xerogel resulted from an exchange of the fluoride ions with the basic OH groups. The effect of the powder pre-calcination temperature before modification on the formation of metastable tetragonal phase in partially stabilized zirconia was investigated. It was shown that the main factor of tetragonal zirconia stabilization is the state of nanoparticles surface at pre-crystallization temperatures.

  8. Metastable carbon in two chondritic porous interplanetary dust particles

    International Nuclear Information System (INIS)

    Rietmeijer, F.J.M.; Mackinnon, I.D.R.

    1987-01-01

    An analytical electron microscope study is presented on carbonaceous material in two chondritic porous aggregates, W7029* A and W7010* A2, from the Johnson Space Center Cosmic Dust Collection. The finding of well-ordered carbon-2H (lonsdaleite) in the two aggregates suggests that a record of hydrocarbon carbonization may be preserved in these materials. This carbon is a metastable phase resulting from hydrous pyrolysis below 300-350 0 C and may be a precursor to poorly graphitized carbons in primitive extra terrestrial materials. (UK)

  9. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  10. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  11. Entropy-driven metastable defects in silicon

    International Nuclear Information System (INIS)

    Hamilton, B.; Peaker, A.R.; Pantelides, S.T.

    1989-01-01

    The known metastable defects are usually describable by a configuration coordinate diagram in which two energy minima are separated by a barrier. This diagram does not change with temperature and each configuration is stable over some temperature range. Here we report the observation of a novel metastability: A configuration change occurs spontaneously and abruptly at a critical temperature, giving rise to a discontinuous DLTS (deep level transient spectroscopy) spectrum. We propose that this phenomenon is a manifestation of entropy variations in the configurational space. (author) 12 refs., 4 figs

  12. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  13. Quantum mechanical look at the radioactive-like decay of metastable dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Urbanowski, Krzysztof [University of Zielona Gora, Institute of Physics, Zielona Gora (Poland)

    2017-12-15

    We derive the Shafieloo, Hazra, Sahni and Starobinsky (SHSS) phenomenological formula for the radioactive-like decay of metastable dark energy directly from the principles of quantum mechanics. To this aim we use the Fock-Krylov theory of quantum unstable states. We obtain deeper insight on the decay process as having three basic phases: the phase of radioactive decay, the next phase of damping oscillations, and finally the phase of power-law decay. We consider the cosmological model with matter and dark energy in the form of decaying metastable dark energy and study its dynamics in the framework of non-conservative cosmology with an interacting term determined by the running cosmological parameter. We study the cosmological implications of metastable dark energy and estimate the characteristic time of ending of the radioactive-like decay epoch to be 2.2 x 10{sup 4} of the present age of the Universe. We also confront the model with astronomical data which show that the model is in good agreement with the observations. Our general conclusion is that we are living in the epoch of the radioactive-like decay of metastable dark energy which is a relict of the quantum age of the Universe. (orig.)

  14. Decay of Metastable State with Account of Agglomeration and Relaxation Processes

    Directory of Open Access Journals (Sweden)

    Victor Kurasov

    2016-01-01

    Full Text Available Theoretical description of the metastable phase decay kinetics in the presence of specific connections between the embryos of small sizes has been given. The theory of the decay kinetics in the presence of relaxation processes is constructed in analytical manner. The m-mers nucleation is investigated and the global kinetics of decay is also constructed in this case analytically.

  15. Inelastic collision rates of trapped metastable hydrogen

    NARCIS (Netherlands)

    Landhuis, D; Matos, L; Moss, SC; Steinberger, JK; Vant, K; Willmann, L; Greytak, TJ; Kleppner, D

    We report the first detailed decay studies of trapped metastable (2S) hydrogen. By two-photon excitation of ultracold H samples, we have produced clouds of at least 5x10(7) magnetically trapped 2S atoms at densities greater than 4x10(10) cm(-3) and temperatures below 100 muK. At these densities and

  16. Inflating metastable quark-gluon plasma universe

    International Nuclear Information System (INIS)

    Jenkovszky, L.L.; Kaempfer, B.; Sysoev, V.M.

    1990-01-01

    We show within the Friedmann model with the equation of state p(T)=aT 4 -AT that our universe has expanded exponentially when it was in a metastable quark-gluon plasma state. The scale factor during that epoch increased by many orders of magnitude. 13 refs.; 5 figs

  17. Metastable and bistable defects in silicon

    International Nuclear Information System (INIS)

    Mukashev, Bulat N; Abdullin, Kh A; Gorelkinskii, Yurii V

    2000-01-01

    Existing data on the properties and structure of metastable and bistable defects in silicon are analyzed. Primary radiation-induced defects (vacancies, self-interstitial atoms, and Frenkel pairs), complexes of oxygen, carbon, hydrogen, and other impurity atoms and defects with negative correlation energy are considered. (reviews of topical problems)

  18. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  19. Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua; Woo, C.H., E-mail: chungho@cityu.edu.hk

    2014-12-15

    Entropies and enthalpies of vacancy formation and diffusion in BCC iron are calculated for each temperature directly from free-energies using phase-space trajectories obtained from spin–lattice dynamics simulations. Magnon contributions are found to be particularly substantial in the temperature regime near the α−β (ferro/para-magnetic) transition. Strong temperature dependence and singular behavior can be seen in this temperature regime, reflecting magnon softening effects. Temperature dependence of the lattice component in this regime is also much more significant compared to previous estimations based on Arrhenius-type fitting. Similar effects on activation processes involving other irradiation-produced defects in magnetic materials are expected.

  20. The role of edge dislocations in the deformation of BCC metals

    International Nuclear Information System (INIS)

    Lung, C.W.

    1994-08-01

    It was widely accepted that the screw dislocation is responsible for the strong temperature dependence of the yield stresses observed in bcc metals. In this paper, we show the role of edge dislocations in the deformation of bcc metals and point out that in some cases, its main contribution to the yield stress cannot be ignored. (author). 15 refs, 2 figs, 1 tab

  1. Phase selection during pulsed laser annealing of Fe-V alloys

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Follstaedt, D.M.; Peercy, P.S.

    1987-01-01

    Pulsed laser melting of the low-temperature σ (tetragonal, D8/sub b/) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by -- 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (-- 10/sup 10/ K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the σ phase in the near-surface after melting σ with incident laser energies (1.0-1.41 J/cm/sup 2/) which are well above the melt threshold as determined by changes in reflectivity (-- 0.7 J/cm/sup 2/). The α phase nucleated from the undercooled liquid within -- 20 ns

  2. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  3. Capability of X-ray diffraction for the study of microstructure of metastable thin films

    Directory of Open Access Journals (Sweden)

    David Rafaja

    2014-11-01

    Full Text Available Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,AlN samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species.

  4. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    Science.gov (United States)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  5. An analytic n-body potential for bcc Iron

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, V. [Commissariat a l' Energie Atomique, DRECAM/LSI, CE de Saclay, Building 524, Room 40B, 91191 Gif-sur-Yvette Cedex (France)]. E-mail: Vassilis.Pontikis@cea.fr; Russier, V. [Centre d' Etudes de Chimie Metallurgique, CNRS UPR2801, 94407 Vitry-sur-Seine (France); Wallenius, J. [Royal Institute of Technology, Department of Nuclear and Reactor Physics, Stockholm (Sweden)

    2007-02-15

    We have developed an analytic n-body phenomenological potential for bcc iron made of two electron-density functionals representing repulsion via the Thomas-Fermi free-electron gas kinetic energy term and attraction via a square root functional similar to the second moment approximation of the tight-binding scheme. Electron-density is given by radial, hydrogen-like orbitals with effective charges taken as adjustable parameters fitted on experimental and ab-initio data. Although the set of adjustable parameters is small, prediction of static and dynamical properties of iron is in excellent agreement with the experiments. Advantages and shortcomings of this model are discussed with reference to published works.

  6. An analytic n-body potential for bcc Iron

    International Nuclear Information System (INIS)

    Pontikis, V.; Russier, V.; Wallenius, J.

    2007-01-01

    We have developed an analytic n-body phenomenological potential for bcc iron made of two electron-density functionals representing repulsion via the Thomas-Fermi free-electron gas kinetic energy term and attraction via a square root functional similar to the second moment approximation of the tight-binding scheme. Electron-density is given by radial, hydrogen-like orbitals with effective charges taken as adjustable parameters fitted on experimental and ab-initio data. Although the set of adjustable parameters is small, prediction of static and dynamical properties of iron is in excellent agreement with the experiments. Advantages and shortcomings of this model are discussed with reference to published works

  7. Neutron spectroscopy of fast hydrogen diffusion in BCC transition metals

    International Nuclear Information System (INIS)

    Richter, D.; Lottner, V.

    1979-01-01

    Quasielastic neutron scattering reveals microscopic details of both the time and space development of the H-diffusion process on an atomic scale. After outlining the method on the example of PdH/sub x/, new results on the jump geometry in bcc metals are surveyed. In particular, the anomalous diffusion behavior of H in Nb, Ta, and V at elevated temperature is emphasized, where correlated jump processes are important. The influence of impurities on the H-diffusion process is demonstrated by experiments performed on NbH/sub x/ doped with nitrogen impurities, which act as trapping centers for the diffusing hydrogen. The results are discussed in terms of a two-state random walk model which includes multiple trapping and detrapping processes. The concentration and temperature dependence of the capture and escape rates of traps are obtained

  8. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  9. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid–liquid transition

    International Nuclear Information System (INIS)

    Tanaka, Hajime

    2010-01-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander–McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid–liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid–liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding

  10. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  11. A Note on Scenarios of Metastable Water

    Czech Academy of Sciences Publication Activity Database

    Jirsák, Jan; Nezbeda, Ivo

    2010-01-01

    Roč. 75, č. 5 (2010), s. 593-605 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802; GA AV ČR IAA200760905; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : metastable water * spinodal * scenarios Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  12. Investigation of metastable ions by mass spectrometry

    International Nuclear Information System (INIS)

    Szilagyi, Z.

    1998-01-01

    Metastable decompositions of ions was studied by various methods. The results are summarized in three chapters in this thesis. The development of a method can be used for evaluation of experimental data is described in the first chapter; the second one presents an example for the application of the developed method; and the laser power dependence of MALDI-TOF PSD (matrix-assisted laser desorption/ionization time-of-flight post-source decay) spectra is discussed in chapter three. (author)

  13. Metastability of Queuing Networks with Mobile Servers

    Science.gov (United States)

    Baccelli, F.; Rybko, A.; Shlosman, S.; Vladimirov, A.

    2018-04-01

    We study symmetric queuing networks with moving servers and FIFO service discipline. The mean-field limit dynamics demonstrates unexpected behavior which we attribute to the metastability phenomenon. Large enough finite symmetric networks on regular graphs are proved to be transient for arbitrarily small inflow rates. However, the limiting non-linear Markov process possesses at least two stationary solutions. The proof of transience is based on martingale techniques.

  14. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  15. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  16. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997-2010.

    Science.gov (United States)

    Nguyen-Nielsen, Mary; Wang, Lisa; Pedersen, Lars; Olesen, Anne Braae; Hou, Jeannie; Mackey, Howard; McCusker, Margaret; Basset-Seguin, Nicole; Fryzek, Jon; Vyberg, Mogens

    2015-01-01

    Few data exist on the occurrence of metastatic basal cell carcinoma (mBCC). To identify all cases of mBCC in Denmark over a 14-year period. We searched the Danish National Patient Registry covering all Danish hospitals, the Danish Cancer Registry, the National Pathology Registry and the Causes of Death Registry during the period 1997 to 2010 for potential cases of mBCC registered according to the International classification of diseases ICD-10 and the International Systemized Nomenclature of Medicine (SNOMED). We identified 126,627 patients with a history of primary basal cell carcinoma (BCC) in the registries during the 14-year study period. Using case identifications from the four registries, a total of 170 potential mBCC cases were identified. However, after a pathology review, only five cases could be confirmed, of which three were basosquamous carcinomas. The 14-year cumulative incidence proportion of mBCC was 0.0039% (95% CI 0.0016-0.0083) among individuals with a history of previous BCC (n = 126,627) and 0.0001% (95% CI 0.0000-0.0002) in the general population. MBCC is a rare disease and only a small proportion of potential cases identified in automated clinical databases or registries can be confirmed by pathology and medical record review.

  17. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  18. Large strain cyclic behavior of metastable austenic stainless steel

    International Nuclear Information System (INIS)

    Geijselaers, H.J.M.; Hilkhuijsen, P.; Bor, T.C.; Boogaard, A.H. van den

    2015-01-01

    Metastable austenitic stainless steel will transform to martensite when subjected to mechanical working. In this research an austenitic stainless steel has been subjected to large amplitude strain paths containing a strain reversal. During the tests, apart from the stress and the strain also magnetic induction was measured. From the in situ magnetic induction measurements an estimate of the stress partitioning among the phases is determined. When the strain path reversal is applied at low strains, a classical Bauschinger effect is observed. When the strain reversal is applied at higher strains, a higher flow stress is measured after the reversal compared to the flow stress before reversal. Also a stagnation of the transformation is observed, meaning that a higher strain as well as a higher stress than before the strain path change is required to restart the transformation after reversal. The observed behavior can be explained by a model in which for the martensitic transformation a stress induced transformation model is used. The constitutive behavior of both the austenite phase and the martensite is described by a Chaboche model to account for the Bauschinger effect. Mean-field homogenization of the material behavior of the individual phases is employed to obtain a constitutive behavior of the two-phase composite. The overall applied stress, the stress in the martensite phase and the observed transformation behavior during cyclic shear are very well reproduced by the model simulations

  19. Large strain cyclic behavior of metastable austenic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Geijselaers, H.J.M., E-mail: h.j.m.geijselaers@utwente.nl; Hilkhuijsen, P.; Bor, T.C.; Boogaard, A.H. van den

    2015-04-17

    Metastable austenitic stainless steel will transform to martensite when subjected to mechanical working. In this research an austenitic stainless steel has been subjected to large amplitude strain paths containing a strain reversal. During the tests, apart from the stress and the strain also magnetic induction was measured. From the in situ magnetic induction measurements an estimate of the stress partitioning among the phases is determined. When the strain path reversal is applied at low strains, a classical Bauschinger effect is observed. When the strain reversal is applied at higher strains, a higher flow stress is measured after the reversal compared to the flow stress before reversal. Also a stagnation of the transformation is observed, meaning that a higher strain as well as a higher stress than before the strain path change is required to restart the transformation after reversal. The observed behavior can be explained by a model in which for the martensitic transformation a stress induced transformation model is used. The constitutive behavior of both the austenite phase and the martensite is described by a Chaboche model to account for the Bauschinger effect. Mean-field homogenization of the material behavior of the individual phases is employed to obtain a constitutive behavior of the two-phase composite. The overall applied stress, the stress in the martensite phase and the observed transformation behavior during cyclic shear are very well reproduced by the model simulations.

  20. Magnetic ordering of four particle exchange model in BCC 3He

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Okada, Isamu

    1978-01-01

    The low temperature magnetic ordering of BCC 3 He within the mean field approximation was studied. A model including four particle exchange interactions was considered. Two types of cyclic quadrupole exchange process, planar and folded, were taken into account. Assuming four sublattices, it was considered to minimize the spin energy with respect to the classical spin vector and to find out four ordered states at the absolute zero point. They are antiferromagnetic (AF), weak ferromagnetic (WF) and two kinds of simple cubic antiferromagnetic states (SCAF). The condition for the existence of each ordered state is given, and the free energies of the ordered states are calculated in the mean field approximation. The transition between AF or SCAF and the paramagnetic states is of the first order. The phase diagram is drawn in the parameter space. The phase diagram was obtained numerically at Hetherington and Willard's value and at its neighbouring values. The difference between the present result and HW's is that of magnetic field direction in the perpendicular simple cubic antiferromagnetic states. The second order transition disappears, and the WF state changes gradually into AF state. With respect to the first order transition, the transition temperature increases with magnetic field. In this case, a critical magnetic field exists. (Kato, T

  1. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  2. The physical and mechanical metallurgy of advanced O+BCC titanium alloys

    Science.gov (United States)

    Cowen, Christopher John

    deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.

  3. Hydrogen diffusion and trapping in bcc and fcc metals

    International Nuclear Information System (INIS)

    Richter, D.

    1979-01-01

    The fundamental aspects of the metal--hydrogen systems are described. The large number of anomalous properties are the reason for continuous scientific effort. The time scale of hydrogen motion is extremely short. The characteristic frequencies of the localized modes of hydrogen in Ta, Nb, or V are in the order of 10 -14 sec (energies between 0.1 to 0.2 eV); the jump frequencies for H-diffusion at elevated temperatures in those systems are between 10 +12 to 10 +13 sec -1 . They are comparable with the correlation times for diffusion in liquids and more than ten orders of magnitude larger than the jump times for nitrogen in Nb. Out of the large number of experimental data this paper will survey only some recent results on representative fcc and bcc metals for dilute H solutions. The nature of the elementary step in H-diffusion is described. Here the temperature and isotope dependence of the H-diffusion coefficient gives hints to the mechanism involved. The experimental results are discussed in terms of semiclassical and quantum mechanical diffusion theories

  4. Helium bubbles in bcc Fe and their interactions with irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Xiao, E-mail: X.Gai@lboro.ac.uk; Lazauskas, Tomas; Smith, Roger; Kenny, Steven D.

    2015-07-15

    The properties of helium bubbles in a body-centred cubic (bcc) Fe lattice have been examined. The atomic configurations and formation energies of different He–vacancy complexes were determined. The 0 K results show that the most energetically favourable He to Fe vacancy ratio increases from about 1:1 for approximately 5 vacancies up to about 4:1 for 36 vacancies. The formation mechanisms for small He clusters have also been considered. Isolated interstitials and small clusters can diffuse quickly through the lattice. MD simulations of randomly placed interstitial He atoms at 500 K showed clustering over the time scale of nanoseconds with He clusters containing up to 4 atoms being mobile over this time scale. He clusters containing 4 or 5 atoms were shown to eject an Fe dumbbell interstitial which could then detach from the He cluster and diffuse with the remaining He–vacancy complex being effectively immobile. Collision cascades initiated near larger bubbles showed that Fe vacancies produced by the cascades readily become part of the He–vacancy complexes. Energy barriers for He to join an existing bubble as a function of the He–vacancy ratio are also calculated. These can be larger than the diffusion barrier in the pristine lattice, but are lower when the bubbles contain excess vacancies, thus indicating that bubble growth may be kinetically constrained.

  5. Transient cognitive dynamics, metastability, and decision making.

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2008-05-01

    Full Text Available The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.

  6. Multilevel control of the metastable states in a manganite film

    Science.gov (United States)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Chen, Binbin; Xu, Haoran; Wang, Ze; Wang, Lingfei; Gao, Guanyin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-06-01

    For high density memory applications, the dynamic switching between multilevel resistance states per cell is highly desirable, and for oxide-based memory devices, the multistate operation has been actively explored. We have previously shown that for La2/3Ca1/3MnO3 films, the antiferromagnetic charge-ordered-insulator (COI) phase can be induced via the anisotropic epitaxial strain, and it competes with the doping-determined ferromagnetic-metal (FMM) ground state in a wide temperature range. Here, we show that for the phase competitions, in various magnetic fields and/or thermal cycling, the reappearance of the COI phase and thus the resistance and magnetization can be manipulated and quantified in a multilevel manner at lower temperatures. Furthermore, by using a high-field magnetic force microscope, we image the COI/FMM domain structures in accordance with the transport measurements, and find that the evolving domains or the phase fraction ratios do underline the metastability of the reappeared COI droplets, possibly protected by the energy barriers due to accommodation strain. These results may add new insights into the design and fabrication of future multilevel memory cells.

  7. Microstructural study on gamma phase stability in U-9 wt% Mo alloy system

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Hussain, M.M.; Singh, R.P.; Neogy, S.; Srivastava, D.; Dey, G.K.

    2009-01-01

    Uranium exists in three polymorphic forms viz., orthorhombic α phase - stable up to 667 deg C, tetragonal β phase - stable between 667 deg C and 771 deg C and bcc γ phase - stable above 771 deg C. When alloying of uranium is done, the alloying additions alter the temperature ranges over which the α, β and γ phases are stable. In addition, they frequently retard the rates at which phase transformations occur. As a result, a number of metastable phases can be obtained in uranium alloys. It has been well known among reactor designers that a pure uranium metal is not suitable for power reactor fuel mainly because of (i) phase changes occurring at lower temperatures and (ii) poor irradiation behavior of α phase. γ phase uranium alloys containing small amount of another metal to stabilize the γ-U solid solution provides good prospects in this respect. U-Mo alloy is one of the prospective materials for low enrichment uranium fuel with high U loading because a solid solution of Mo in the γ-U phase possesses acceptable irradiation and mechanical properties and is formed over a wide range of Mo concentration. In the present work vacuum induction melted and cast U-9 wt% Mo alloy was subjected to different thermo mechanical processing to investigate the stability of the γ phase. The as cast alloy was rolled at 550 deg C and then homogenized at 1000 deg C in the γ phase field for 24 hours followed by (i) water quenching and (ii) furnace cooling to generate two different starting conditions. Two of the water-quenched samples were aged at 500 deg C for 5 days and 14 days and one as-rolled sample was aged at 500 deg C for 5 days. The as-cast, as-rolled, homogenized and aged samples were subjected to optical microscopy and X-ray Diffraction (XRD) investigations. All the samples were also subjected to microhardness measurements. The as cast sample contained predominantly the gamma phase along with inclusions. After homogenizing the alloy at 1000 deg C and quenching in

  8. Metastable structure formation during high velocity grinding

    International Nuclear Information System (INIS)

    Samarin, A.N.; Klyuev, M.M.

    1984-01-01

    Metastable structures in surface layers of samples are; investigated during force high-velocity abrasive grinding. Samples of martensitic (40Kh13), austenitic (12Kh18N10T), ferritic (05Kh23Yu5) steels and some alloys, in particular KhN77TYuR (EhI437B), were grinded for one pass at treatment depth from 0.17 up to 2.6 mm. It is established that processes of homogenizing, recrystallization and coagulation are; developed during force high-velocity grinding along with polymorphic transformations in the zone of thermomechanical effect, that leads to changes of physical and mechanical properties of the surface

  9. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  10. Decrease Risk Behavior HIV Infected on Construction Laborers with Behavior Change Communication (BCC Approach

    Directory of Open Access Journals (Sweden)

    Purwaningsih Purwaningsih

    2016-09-01

    The purpose of this study was to determine the effectiveness of BCC approach to the reduction of contracting HIV risk behavior in the construction laborers. Method: This study used operational research design. In this study measures the effectiveness of behavior change of construction workers on the prevention of HIV transmission by comparing the behavior of the construction workers before and after the intervention. The subjects of this study were 150 people risk group of construction workers who work and are spread throughout the city of Surabaya. This research was carried out into three phases, namely, phase preintervention research, intervention research, and post-intervention phase of the study. Implemented in the first year and second year praintervensi stage implemented intervention and post-intervention phases. Result: The results of this study showed that 72% of construction workers is productive (18–35 years and visit his family more than once a month (38%. There is 20% of construction workers had sex with commercial sex workers and no one was using drugs. By 50% of construction workers never get information about HIV/AIDS and as many as 48% never use the services of HIV/AIDS. Discussion: External motivation construction workers associated with the utilization of behavioral HIV/AIDS services with sufficient correlation. Strong external motivation is influenced by risk behaviors of HIV/AIDS were conducted and the desire to get help. Weak external motivation is influenced by a lack of exposure to information related to HIV/AIDS services. The results of the FGD stakeholders have the perception is the same if a construction worker is a high risk group of contracting HIV. Most of the construction workers not have enough knowledge for the prevention of HIV transmission because they do not have access to HIV care and behavior are at risk of contracting HIV by construction workers. Keywords: construction workers, behavior change communication, behavior

  11. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  12. Deep Metastable Eutectic Nanometer-Scale Particles in the MgO-Al2O3-SiO2 System

    Science.gov (United States)

    Reitmeijer, Frans J. M.; Nash, J. A., III

    2011-01-01

    Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation.

  13. Ion irradiation effects on high purity bcc Fe and model FeCr alloys

    International Nuclear Information System (INIS)

    Bhattacharya, Arunodaya

    2014-01-01

    irradiated FeCr alloys, and the results were compared to bcc Fe. The analysis was performed at an intermediate depth 300 - 400 nm below the surface (to avoid injected interstitial effect and surface effects), corresponding to 128 dpa, 13 appm He/dpa. TEM study revealed that the addition of small quantities of Cr, as low as 3 wt.%, is highly efficient in strongly reducing void swelling. It was achieved by a drastic reduction of cavity sizes. For instance, average cavity size in Fe3%Cr was 0.9 nm as opposed to 6.8 nm in bcc Fe. Furthermore, the variation of void swelling as a function of Cr content is non-monotonic, with a local maxima around 9 -10 wt.% Cr. 3) Coupling of conventional TEM, STEM/EDS and APT analysis on low and intermediate dose irradiated FeCr alloys revealed the presence of Cr enriched zones on the habit plane of the dislocation loops. This is expected to be due to radiation induced segregation (RIS) of Cr close to the core of the loops. As the loop grows under irradiation, the segregated areas are probably prevented from re-dissolution by impurity elements such as C. When imaged by TEM using classical diffraction contrast imaging techniques, these enriched zones produce displacement fringe contrast on the loop plane. A quantitative estimate of this enrichment was deduced by STEM/EDS and APT. The Cr content in these areas was between 23 - 35 at.% measured by EDS and 22 ± 2 at.% obtained by APT, which is well below the Cr content of the Cr-rich α' phase. (author) [fr

  14. A study on metastable superconducting magnets

    International Nuclear Information System (INIS)

    Koyama, Kenichi

    1976-01-01

    It is important to construct superconducting magnets as cheap as possible. One of the methods to achieve such a purpose is to save the superconducting material and operate the magnets at a high current density. Therefore it is useful to investigate the requirements for the operation of metastable superconducting magnets which can work at a current higher than the recovery current. Using the theory of flux jump, we introduce a ''stable current'' below which no flux jump can occur. On a rough approximation, it is given by I sub(s) =√A P sub(i) H sub(e) T sub(o) f(x)/rho where A : cross-section of the composite conductor. P sub(i) : total perimeter of all the superconducting cores. h sub(e) : effective heat transfer coefficient to the liquid helium through the stabilizer. T sub(o) : a characteristic temperature of the superconducting cores. f(x) : a characteristic function for the relative core radius x. rho : effective resistivity of the composite. Then it is shown that superconducting magnets can operate without unexpected normal transitions in the region enclosed by the two curves of I sub(s) and I sub(c). Next, we discuss the characteristics of our saddle shaped superconducting magnet for an one-KW MHD generator. We found that, 1) the magnet does safely operate in the metastable state; 2) the characteristics of the magnet are consistent with our theoretical results. (auth.)

  15. Metastable beta limit in DIII-D

    International Nuclear Information System (INIS)

    La Haye, R.J.; Callen, J.D.; Gianakon, T.A.

    1997-06-01

    The long-pulse, slowly evolving single-null divertor (SND) discharges in DIII-D with H-mode, ELMs, and sawteeth are found to be limited significantly below (factor of 2) the predicted ideal limit β N = 4l i by the onset of tearing modes. The tearing modes are metastable in that they are explained by the neoclassical bootstrap current (high β θ ) destabilization of a seed island which occurs even if Δ' θ , there is a region of the modified Rutherford equation such that dw/dt > 0 for w larger than a threshold value; the plasma is metastable, awaiting the critical perturbation which is then amplified to the much larger saturated island. Experimental results from a large number of tokamaks indicate that the high beta operational envelope of the tokamak is well defined by ideal magnetohydrodynamic (MHD) theory. The highest beta values achieved have historically been obtained in fairly short pulse discharges, often <1-2 sawteeth periods and < 1-2 energy replacement times. The maximum operational beta in single-null divertor (SND), long-pulse discharges in DIII-D with a cross-sectional shape similar to the proposed ITER tokamak is found to be limited significantly below the threshold for ideal instabilities by the onset of resistive MHD instabilities

  16. Quantum decay of metastable current states in rf squids

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Khlus, V.A.; Tsoj, C.M.; Shnyrkov, V.I.

    1985-01-01

    Quantum decay of metastable current states in a rf SQUID superconducting ring of a hysteresis mode are considered. Point contacts are used as a Josephson weak link. The first derivative of rf IVC, dVsub(T)/dIsub(RF), is measured which gives the dependence of the density of decay probability on the amplitude of magnetic flux oscillations in the ring. The temperature dependence of probability distribution width between 4.2 and 0.5 K suggests that for most of high-ohmic contacts Nb-Nb, Nb-Ag-Nb the quantum mechanisms of decay become dominant beginning with the temperature of about 2 K. The experimental parameters of distribution of decay probability in the quantum limit are compared to those calculated by the theory of macroscopic quantum tunneling in the limit of high and low dissipation. The experimental values of probability density distribution width and characteristic quantum temperature are higher than the theoretical ones, the fact can be attributed to the deviation of current-phase relation of contact from a sinusoidal one. Besides, some contacts seem to correspond to the case of an intermediate value of dissipation. As the frequency of rf oscillations varies from 30 to 6 MHz, the distribution width remains unchanged in accordance with the theory of quantum tunneling decay of metastable current state in the ring in the limit of high damping. At low temperatures (T approximately 0.5 K), and rather small damping coefficient, the density of probability displays anomalous peaks when the amplitude of rf oscillations is lower considerably than the critical vaiue of magnetic flux in the ring

  17. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  18. Slip transmission in bcc FeCr polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, Luca, E-mail: luca.patriarca@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34, I-20156 Milano (Italy); Abuzaid, Wael; Sehitoglu, Huseyin [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206W. Green St., Urbana, IL 61801 (United States); Maier, Hans J. [Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen (Germany)

    2013-12-20

    Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation–grain boundary interaction (slip transmission) in modeling research.

  19. Metastability of the (φiφi)32 model at finite temperature and density

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.

    1996-11-01

    Using concurrently the dimensional and analytic regularization methods we applied the Gross-Neveu model at finite temperature and density (chemical potential) in a D-dimensional spacetime. The renormalized effective potential is presented at the one-loop approximation. In the case of non-zero chemical potential we show that the effective potential acquires an imaginary part, which means that the system becomes metastable, indicating the possibility of a first phase transition. (author)

  20. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  1. Modified thermogravimetric apparatus to measure magnetic susceptibility on-line during annealing of metastable ferromagnetic materials

    International Nuclear Information System (INIS)

    Luciani, G.; Constantini, A.; Branda, F.; Ausanio, G.; Hison, C.; Iannotti, V.; Luponio, C.; Lanotte, L.

    2004-01-01

    The insertion of proper coils to generate a magnetic field, with controlled gradient, in a standard thermogravimetric apparatus is shown to be a valid solution to measure on-line, upon heat treatment, the magnetic susceptibility in ribbon shaped samples of a metastable ferromagnetic material. The method is very useful to individuate the annealing conditions that optimise soft or hard magnetic properties without using separate apparatuses for heat treatment, control of the structural phase transition and characterization of magnetic susceptibility

  2. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    Luna, M.; Chavez, I.; Cajas, D.; Santos, R.

    2015-01-01

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  3. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  4. Self-organization in the localised failure regime: metastable attractors and their implications on force chain functionality

    Science.gov (United States)

    Pucilowski, Sebastian; Tordesillas, Antoinette; Froyland, Gary

    2017-06-01

    In transitive metastable chaotic dynamical systems, there are no invariant neighbourhoods in the phase space. The best that one can do is look for metastable or almost-invariant (AI) regions as a means to decompose the system into its basic self-organising building blocks. Here we study the metastable dynamics of a dense granular material embodying strain localization in 3D from the perspective of its conformational landscape: the state space of all observed conformations as defined by the local topology of individual grains relative to their first ring of contacting neighbors. We determine the metastable AI sets that divide this conformational landscape, such that grain rearrangements from one conformation to another conformation in the same AI set occurs with high probability: by contrast, grain rearrangements involving conformational transitions between AI sets are unlikely. The great majority of conformational transitions are identity transitions: grains rearrange and exchange contacts to preserve those topological properties with the greatest influence on cluster stability, namely, the number of contacts and 3-cycles. Force chains show a clear preference for that AI set with the most number of accessible and highly connected conformations. Here force chains continually explore the conformational landscape, wandering from one rarely inhabited conformation to another. As force chains become overloaded and buckle, the energy released enables member grains to overcome the high dynamical barriers that separate metastable regions and subsequently escape one region to enter another in the conformational landscape. Thus, compared to grains locked in stable force chains, those in buckling force chains, confined to the shear band, show a greater propensity for not only non-identity transitions within each metastable region but also inter-transitions between metastable regions.

  5. Self-organization in the localised failure regime: metastable attractors and their implications on force chain functionality

    Directory of Open Access Journals (Sweden)

    Pucilowski Sebastian

    2017-01-01

    Full Text Available In transitive metastable chaotic dynamical systems, there are no invariant neighbourhoods in the phase space. The best that one can do is look for metastable or almost-invariant (AI regions as a means to decompose the system into its basic self-organising building blocks. Here we study the metastable dynamics of a dense granular material embodying strain localization in 3D from the perspective of its conformational landscape: the state space of all observed conformations as defined by the local topology of individual grains relative to their first ring of contacting neighbors. We determine the metastable AI sets that divide this conformational landscape, such that grain rearrangements from one conformation to another conformation in the same AI set occurs with high probability: by contrast, grain rearrangements involving conformational transitions between AI sets are unlikely. The great majority of conformational transitions are identity transitions: grains rearrange and exchange contacts to preserve those topological properties with the greatest influence on cluster stability, namely, the number of contacts and 3-cycles. Force chains show a clear preference for that AI set with the most number of accessible and highly connected conformations. Here force chains continually explore the conformational landscape, wandering from one rarely inhabited conformation to another. As force chains become overloaded and buckle, the energy released enables member grains to overcome the high dynamical barriers that separate metastable regions and subsequently escape one region to enter another in the conformational landscape. Thus, compared to grains locked in stable force chains, those in buckling force chains, confined to the shear band, show a greater propensity for not only non-identity transitions within each metastable region but also inter-transitions between metastable regions.

  6. Stable and metastable equilibrium states of the Zr-O system

    International Nuclear Information System (INIS)

    Versaci, R.A.; Abriata, J.P.; Garces, J.; Comision Nacional de Energia Atomica, San Carlos de Bariloche

    1987-01-01

    The precise knowledge of the phase diagrams is of fundamental importance for the comprehension of processes like soldering and thermal treatment. The Zr-O diagram has been widely studied, mainly in the zone corresponding to ZrO 2 . A critical analysis of the existing information about this diagram is presented. Furthermore, a lot of information about the phase equilibrium, metastable phase, crystal structure, thermodynamic properties and a possible diagram for pressures higher than one atmosphere is presented. (M.E.L.) [es

  7. Accelerated Metastable Solid-liquid Interdiffusion Bonding with High Thermal Stability and Power Handling

    Science.gov (United States)

    Huang, Ting-Chia; Smet, Vanessa; Kawamoto, Satomi; Pulugurtha, Markondeya R.; Tummala, Rao R.

    2018-01-01

    Emerging high-performance systems are driving the need for advanced packaging solutions such as 3-D integrated circuits (ICs) and 2.5-D system integration with increasing performance and reliability requirements for off-chip interconnections. Solid-liquid interdiffusion (SLID) bonding resulting in all-intermetallic joints has been proposed to extend the applicability of solders, but faces fundamental and manufacturing challenges hindering its wide adoption. This paper introduces a Cu-Sn SLID interconnection technology, aiming at stabilization of the microstructure in the Cu6Sn5 metastable phase rather than the usual stable Cu3Sn phase. This enables formation of a void-free interface yielding higher mechanical strength than standard SLID bonding, as well as significantly reducing the transition time. The metastable SLID technology retains the benefits of standard SLID with superior I/O pitch scalability, thermal stability and current handling capability, while advancing assembly manufacturability. In the proposed concept, the interfacial reaction is controlled by introducing Ni(P) diffusion barrier layers, designed to effectively isolate the metastable Cu6Sn5 phase preventing any further transformation. Theoretical diffusion and kinetic models were applied to design the Ni-Cu-Sn interconnection stack to achieve the targeted joint composition. A daisy chain test vehicle was used to demonstrate this technology as a first proof of concept. Full transition to Cu6Sn5 was successfully achieved within a minute at 260°C as confirmed by scanning electron microscope (SEM) and x-ray energy dispersive spectroscopy (XEDS) analysis. The joint composition was stable through 10× reflow, with outstanding bond strength averaging 90 MPa. The metastable SLID interconnections also showed excellent electromigration performance, surviving 500 h of current stressing at 105 A/cm2 at 150°C.

  8. An alkali-metal ion extracted layered compound as a template for a metastable phase synthesis in a low-temperature solid-state reaction: preparation of brookite from K0.8Ti1.73Li0.27O4.

    Science.gov (United States)

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2010-03-15

    We have designed a new approach to synthesize brookite, i.e., to extract alkali-metal ions from K(0.8)Ti(1.73)Li(0.27)O(4) (KTLO) and to apply simultaneous heat treatment to the remaining lepidocrocite-type layers of TiO(6) octahedra. For the alkali-metal ion extraction and the simultaneous heat treatment, KTLO was heated at 400 degrees C with polytetrafluoroethylene (PTFE) in flowing Ar. PTFE has been found to be an effective agent to extract strongly electropositive alkali-metal ions from KTLO because of the strong electronegativity of F as its component. The product of this reaction consists of a mixture of brookite, K(2)CO(3), LiF, and PTFE derivatives, indicating the complete extraction of K(+) and Li(+) from KTLO and formation of brookite from the lepidocrocite-type layer of TiO(6) octahedra as a template. This brookite has a partial replacement of O(2-) with F(-) and/or slight oxygen deficiency; thus, its color is light-bluish gray. Fully oxidized brookite formation and complete decomposition of PTFE derivatives have been achieved by further heating in flowing air, and coproduced alkali-metal salts have been removed by washing in water. Powder X-ray diffraction, Raman spectroscopy, and chemical analysis results have confirmed that the final brookite product treated at 600 degrees C is single phase, and it is white. The method to extract alkali-metal ions from a crystalline material using PTFE is drastically different from the common methods such as soft-chemical and electrochemical reactions. It is likely that this new synthetic approach is applicable to other layered systems to prepare a diverse family of compounds, including novel metastable ones.

  9. Metastable electroweak vacuum. Implications for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg; Westphal, Alexander [DESY Theory Group, Hamburg (Germany)

    2012-10-15

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10{sup 8} in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  10. Transition Manifolds of Complex Metastable Systems

    Science.gov (United States)

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-04-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  11. Metastable electroweak vacuum. Implications for inflation

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Westphal, Alexander

    2012-10-01

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10 8 in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  12. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  13. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  14. Ab initio theory of noble gas atoms in bcc transition metals.

    Science.gov (United States)

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  15. Biological changes of APA-BCC analgesic microcapsule in cerebrospinal fluid of patients with carcinomatous pain

    International Nuclear Information System (INIS)

    Luo Yun; Li Yanling; Xue Yilong; Guo Shulong; Gao Yuhong; Cui Xin

    2005-01-01

    To explore the changes of alginate-polylysine-alginate microcapsulated bovine adrenal medullary chromaffin cells (APA-BCC microcapsules) in morphology, survival rate and leucine- enkephalin secretion after they were transplanted into CSF of cancerpain patients, the APA- BCC microcapsules were Implanted into cavitas subarachnoidealis of cancer-pain patients by conventional lumbar puncture. After 7 or 8 days, cerebrospinal fluid was collected and the morphology of the APA-BCC microcapsule, the survival rate of cells were observed and secretory volume of leucine-enkephalin was assayed by radioimmunity method. Seven days after trans- plantation, the mean VAS decreased from 8.8 to 2.4, the survival rate of cells averagely reduced from 91.2% to 89.1%, morphology of APA-BCC microcapsules did not change obviously and secretory volume of leucine-enkephalin went up 1.65 times compared with that at pretrans- plantation. In conclusion, APA-BCC can survive, secret leucine-enkephalin and produce analgesic effect after transplanted into CSF of cancer-patients. (authors)

  16. Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV.

    Science.gov (United States)

    Halliwell, Rebecca A; Bhardwaj, Rajni M; Brown, Cameron J; Briggs, Naomi E B; Dunn, Jaclyn; Robertson, John; Nordon, Alison; Florence, Alastair J

    2017-07-01

    Carbamazepine (CBZ) is an active pharmaceutical ingredient used in the treatment of epilepsy that can form at least 5 polymorphic forms. Metastable form IV was originally discovered from crystallization with polymer additives; however, it has not been observed from subsequent solvent-only crystallization efforts. This work reports the reproducible formation of phase pure crystalline form IV by spray drying of methanolic CBZ solution. Characterization of the material was carried out using diffraction, scanning electron microscopy, and differential scanning calorimetry. In situ Raman spectroscopy was used to monitor the spray-dried product during the spray drying process. This work demonstrates that spray drying provides a robust method for the production of form IV CBZ, and the combination of high supersaturation and rapid solid isolation from solution overcomes the apparent limitation of more traditional solution crystallization approaches to produce metastable crystalline forms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  18. Surface mediated assembly of small, metastable gold nanoclusters

    Science.gov (United States)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  19. Planktic foraminifera form their shells via metastable carbonate phases

    OpenAIRE

    Jacob, D. E.; Wirth, R.; Agbaje, O. B. A.; Branson, O.; Eggins, S. M.

    2017-01-01

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polym...

  20. Growth of metastable fcc Mn thin film on GaAs(001) and its electronic structure studied by photoemission with synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Yan; Dong Guosheng; Zhang Ming

    1995-01-01

    The epitaxial growth of metastable fcc Mn thin films on GaAs(001) surface has been achieved at a substrate temperature of 400 K. The development of the fcc Mn thin films as a function of coverage is studied by photoemission with synchrotron radiation. The electron density of states below the Fermi edge of the fcc Mn phase is measured. A significant difference of the electronic structures is observed between the metastable fcc Mn phase and the thermodynamically stable α-Mn phase. Possible mechanisms are proposed to interpret the experimental result

  1. Quantum mechanical metastability: When and why?

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Willey, R.; Holman, R.

    1992-01-01

    We study quantum mechanical metastability with an eye towards false vacuum decay. We point out some technical and conceptual problems with the familiar bounce treatment of this process. We illustrate with simple quantum mechanical examples that the bounce formalism fails to account for the correct boundary conditions. It is also shown, that the bounce approach overestimates the time scales for tunneling of localized packets in typical (slightly) biased double well potentials. We present a thorough WKB analysis with particular attention to semiclassical trajectories corresponding to complex saddle points. We point out that the boundary conditions determine the proper choice of saddle points and the bounce approach fails to account for semiclassical trajectories in many physically relevant cases. We recognize that these saddle points account for the matching conditions of the WKB wave functions beyond the barriers and restore unitarity and reality of eigenvalues for self-adjoint boundary conditions. We provide a novel approach to the semiclassical analysis of out of equilibrium decay in real time in quantum statistical mechanics. (orig.)

  2. Investigation of systematic errors of metastable "atomic pair" number

    CERN Document Server

    Yazkov, V

    2015-01-01

    Sources of systematic errors in analysis of data, collected in 2012, are analysed. Esti- mations of systematic errors in a number of “atomic pairs” fr om metastable π + π − atoms are presented.

  3. Stable, metastable and unstable solutions of a spin-1 Ising system based on the free energy surfaces

    Science.gov (United States)

    Keskİin, Mustafa; Özgan, Şükrü

    1990-04-01

    Stable, metastable and unstable solutions of a spin-1 Ising model with bilinear and biquadratic interactions are found by using the free energy surfaces. The free energy expression is obtained in the lowest approximation of the cluster variation method. All these solutions are shown in the two-dimensional phase space, especially the unstable solutions which in some cases are difficult to illustrate in the two-dimensional phase space, found by Keskin et al. recently.

  4. Extension of equilibrium formation criteria to metastable microalloys

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Vianden, R.; Chelikowsky, J.R.; Phillips, J.C.

    1977-01-01

    Metastable microalloys of 25 metallic elements with beryllium have been prepared by ion implantation. The injected atoms have been found to occupy one of three sites available in the solvent lattice. A modified Laudau-Ginsburg expansion using bulk alloy variables proposed by Miedema is completely successful in predicting the observed metastable-site preferences and indicates a broader applicability of these variables than was heretofore anticipated

  5. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  6. Metastable enhancement of C+ and O+ capture reactions

    International Nuclear Information System (INIS)

    Thomas, E.W.

    1992-01-01

    The project is devoted to the study of charge transfer neutralization of Carbon and oxygen ions in H and H 2 gases at energies from 10 to 500 eV. A major motivation was to provide cross section data to support analysis of edge plasmas in Tokamak Fusion devices. The first objective was to measure cross sections for metastable excited singly charged ions separately from the cross sections for ground state ions. Previously published values are confusing because the beams used included unknown fractions of metastables and these metastables have cross sections greatly different from the ground states. The program was fully accomplished, metastable cross sections were found to be over an order of magnitude greater than ones for the ground state and existing discrepancies in the literature were resolved. Considerable effort was devoted to the design and operation of ion source configurations were the metastable content of the ion beam was known. Subsequently study progressed to the neutralization of multiply charged C and 0 ions in the same targets. First there has been a need to develop ion sources which can produce useful beams of multiply charged species. This has now been accomplished. The intent is to use these sources for the measurement of cross sections with again an attempt to differentiate between the behavior of ground and metastably excited species

  7. Impacts of Interface Energies and Transformation Strain from BCC to FCC on Massive-like δ-γ Transformation in Steel

    International Nuclear Information System (INIS)

    Yoshiya, M; Sato, M; Watanabe, M; Nakajima, K; Yokoi, T; Ueshima, N; Nagira, T; Yasuda, H

    2015-01-01

    Interface energies of δ/γ, γ/γ, δ/δ, L/δ, and L/γ interfaces, at first, as a function of misorientation were evaluated with an aid of atomistic simulations with embedded atom method. Then, under geometric constraints where grains or interfaces compete each other to minimize overall free energy, effective interface energies for those interfaces were quantified. It is found that neither the minimum nor effective δ/γ interface energies, 0.41 or 0.56 J/m 2 , respectively, is significantly higher than those of other interfaces including liquid/solid interfaces, but the δ/γ interface energy is significantly high for the small entropy change upon δ-γ massive-like transformation, resulting in significantly higher undercooling required for γ nucleation in the δ phase matrix than in solidification. Detachment of δ-phase dendrite tips away from γ-phase dendrite trunks can be explained only from a viewpoint of interface energy if small misorientationis introduced at the δ/γ interface from the perfect lattice matching between BCC and FCC crystal structures. Examining the BCC-to-FCC transformation strain on the γ nucleation in the massive-like transformation, the γ nucleation is prohibited 170 K or more undercooling is achieved unless any relaxation mechanism for the transformation strain is taken into account. (paper)

  8. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  9. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  10. Determination of positions and curved transition pathways of screw dislocations in BCC crystals from atomic displacements

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vítek, V.

    2015-01-01

    Roč. 643, SEP (2015), s. 203-210 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Screw dislocation * BCC metal * Dislocation pathway Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  11. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor

    2014-06-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  12. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  13. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor; Csé bfalvi, Balá zs; Rautek, Peter; Grö ller, Eduard M.

    2014-01-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  14. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    Science.gov (United States)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  15. Hirsutane Sesquiterpenes from Cultures of the Basidiomycete Marasmiellus sp. BCC 22389

    Directory of Open Access Journals (Sweden)

    Masahiko Isaka

    2016-08-01

    Full Text Available Abstract Two new hirsutane sesquiterpenes, marasmiellins A (1 and B (2, were isolated from cultures of the basidiomycete Marasmiellus sp. BCC 22389. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. The absolute configuration of marasmiellin B was determined by application of the modified Mosher’s method. Graphical Abstract

  16. Investigation of irradiation strengthening of bcc metals and their alloys. Progress report, January 1977--October 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Progress is reported in the areas of (a) the effect of neutron damage on the dislocation kinetics in bcc metals and their alloys, and (b) the effect of 3 He on the deformation characteristics of body centered cubic metals and their alloys. Results obtained from these projects are discussed

  17. Solubility of hydrogen and deuterium in bcc-uranium-titanium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Kirkpatrick, J.R.

    1996-01-01

    For the bcc-U-Ti alloy system, H and D solubility measurements have been made on 12 alloy specimens ranging in composition from pure U to pure Ti and temperature range bounded by 900 K to 1,500 K. The results are described by a model within a standard error of 3%

  18. Chemi-ionization in the metastable neon--metastable argon system

    International Nuclear Information System (INIS)

    Neynaber, R.N.; Tang, S.Y.

    1980-01-01

    Studies were made by a merging-beams technique of the associative ionization (AI) reaction (1) Ne/sup asterisk/+Ar/sup asterisk/→NeAr + +e and the Penning ionization (PI) reactions (2) Ne/sup asterisk/+Ar/sup asterisk/→Ne+Ar + +e and (3) Ne/sup asterisk/+Ar/sup asterisk/→Ne + +Ar+e. The relative kinetic energy of the reactants was varied from 0.01 to 10 eV. The Ne/sup asterisk/ and Ar/sup asterisk/ each represents a composite of the metastable 0 P/sub 2,0/ states. There is a complication in the present investigation which arises because AI and PI occur in collisions of Ne/sup asterisk/ with ground-state Ar. Since the reactant beams consist of metastable as well as ground-state species, the measurements are composites of chemi-ionization in both the Ne/sup asterisk/--Ar/sup asterisk/ and Ne/sup asterisk/--Ar systems. Information on AI and PI for the Ne/sup asterisk/--Ar/sup asterisk/ system is obtained by subtracting from these composite measurements known contributions of the Ne/sup asterisk/--Ar system. From such information it appears that the molecular states of the reactants are different for reactions (2) and

  19. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  20. Neutron and PIMC determination of the longitudinal momentum distribution of HCP, BCC and normal liquid 4He

    International Nuclear Information System (INIS)

    Blasdell, R.C.; Ceperley, D.M.; Simmons, R.O.

    1993-07-01

    Deep inelastic neutron scattering has been used to measure the neutron Compton profile (NCP) of a series of condensed 4 He samples at densities from 28.8 atoms/nm 3 (essentially the minimum possible density in the solid phase) up to 39.8 atoms/nm 3 using a chopper spectrometer at the Argonne National Laboratory Intense Pulsed Neutron Source. At the lowest density, the NCP was measured along an isochore through the hcp, bcc, and normal liquid phases. Average atomic kinetic energies are extracted from each of the data sets and are compared to both published and new path integral Monte-Carlo (PIMC) calculations as well as other theoretical predictions. In this preliminary analysis of the data, account is taken of the effects of instrumental resolution, multiple scattering, and final-state interactions. Both our measurements and the PIMC theory show that there are only small differences in the kinetic energy and longitudinal momentum distribution of isochoric helium samples, regardless of their phase or crystal structure

  1. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...

  2. Displacive processes in systems with bcc patent lattice

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2011-01-01

    Roč. 56, č. 6 (2011), s. 841-851 ISSN 0079-6425 R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : diffusionless phase transformations * displacive processes * gamma surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 18.216, year: 2011

  3. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    2016-09-01

    Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling

  4. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  5. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is reviewed under the headings: introduction; occurrence and some systematics of omega phase; crystallography; physical properties; kinetics of formation, synthesis and metastability of omega phase; electronic structure of omega phase; electronic basis for omega phase stability; omega phase formation under combined thermal and pressure treatment in alloys; transformation mechanisms and models for diffuse omega phase; conclusion. The following elements of nuclear interest (or their alloys) are included: Zr, Hf, Nb, V, Mo. (U.K.)

  6. Superconducting pinning in BCC niobium-base alloys

    International Nuclear Information System (INIS)

    Hu, S.

    1981-01-01

    The structure dependence of critical current density J/sub c/ in superconducting alloys Nb--Zr and Nb--Ti was studied by means of x-ray analysis and tensile test. Experimental results indicate that, in the absence of second phase particles, annealing increases J/sub c/ in deformed alloys due to rearrangement of dislocations into cell structure and the cell walls are effective pinning centers for magnetic flux. In the precipitation process of second phase particles, new dislocations are formed due to the relaxation of coherent stress field. These new dislocations increases the dislocation density and the flux pinning ability of the cell walls, which in turn lead to a further increase of J/sub c/. The mechanism that causes precipitates to increase the current-carrying ability in Nb--Zr and Nb--Ti alloys is therefore the same as that of cold-work deformation

  7. Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation

    International Nuclear Information System (INIS)

    Ahn, T.-H.; Oh, C.-S.; Kim, D.H.; Oh, K.H.; Bei, H.; George, E.P.; Han, H.N.

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  8. Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite using Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.-H. [Seoul National University; Oh, C.-S. [Korean Institute of Materials Science; Kim, D. H. [Seoul National University; Oh, K. H. [Seoul National University; Bei, Hongbin [ORNL; George, Easo P [ORNL; Han, H. N. [Seoul National University

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  9. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel

    International Nuclear Information System (INIS)

    Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus

    2007-01-01

    In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation

  10. Metastable nanocrystalline carbides in chemically synthesized W-Co-C ternary alloys

    International Nuclear Information System (INIS)

    McCandlish, L.E.; Kear, B.H.; Kim, B.K.; Wu, L.W.

    1989-01-01

    Nanophase materials can be prepared either by physical methods or chemical methods. Physical methods include thermal evaporation, sputtering and melt quenching, whereas chemical methods include glow-discharge decomposition, chemical vapor deposition, sol-gel dehydration and gas-solid reaction. Recently, the authors have used controlled activity gas-solid reactions to prepare nanophase WC-Co cermet powders at different WC loadings. In the process they have discovered some new metastable phases in the W-Co-C ternary system at temperatures below 1000 degrees C

  11. The effect of metastability in the process of fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J.

    1977-01-01

    The influence of martensitic phase transformation on the process of pulsating tensile stress is studied in a metastable type AISI 316 stainless steel in the temperature range from 25 to -196 0 C. Annealed as well as previously deformed specimens are tested for the typical microstructural characteristics. It is concluded that the fatigue limit as well as the crack mechanisms depend upon the nature of the slip of crystalographic planes. The martensitic transformation previously induced by plastic deformation shows an undesirable fatigue character, in the annealed state and tested at 25 0 C, the type 316 steel will need a plastic deformation equal to or slightly above 9% for pulsating tension fracture [pt

  12. Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys

    NARCIS (Netherlands)

    Kormann, F.H.W.; Sluiter, M.H.F.

    2016-01-01

    Refractory high entropy alloys (HEA), such as BCC NbMoTaW, represent a promising materials class for next-generation high-temperature applications, due to their extraordinary mechanical properties. A characteristic feature of HEAs is the formation of single-phase solid solutions. For BCC NbMoTaW,

  13. Boron doped bcc-W films: Achieving excellent mechanical properties and tribological performance by regulating substrate bias voltage

    Science.gov (United States)

    Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao

    2017-11-01

    Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.

  14. Phase selection and microstructure in directional solidification of glass forming Pd-Si-Cu alloys

    Science.gov (United States)

    Huo, Yang

    Phase selection and microstructure formation during the rapid solidification of alloy melts has been a topic of substantial interest over the last several decades, attributed mainly to the access to novel structures involving metastable crystalline and non-crystalline phases. In this work, Bridgeman type directional solidification was conducted in Pd-Si-Cu glass forming system to study such cooling rate dependent phase transition and microstructure formation. The equilibrium state for Pd-Si-Cu ternary system was investigated through three different works. First of all, phase stabilities for Pd-Si binary system was accessed with respects of first-principles and experiments, showing Pd5Si, Pd9Si2, Pd3Si and Pd 2Si phase are stable all way to zero Kevin while PdSi phase is a high temperature stable phase, and Pd2Si phase with Fe2P is a non-stoichiometry phase. A thermodynamic database was developed for Pd-Si system. Second, crystal structures for compounds with ternary compositions were studied by XRD, SEM and TEM, showing ordered and disordered B2/bcc phases are stable in Pd-rich part. At last, based on many phase equilibria and phase transitions data, a comprehensive thermodynamic discrption for Pd-Si-Cu ternary system was first time to be developed, from which different phase diagrams and driving force for kinetics can be calculated. Phase selection and microstructure formation in directional solidification of the best glass forming composition, Pd 77.5Si16.5Cu6, in this system with growth velocities from 0.005 to 7.5mm/s was systematically studied and the solidification pathways at different conditions were interpreted from thermodynamic simulation. The results show that for growth velocities are smaller than 0.1mm/s Pd 3Si phase is primary phase and Pd9Si2 phase is secondary phase, the difficulty for Pd9Si2 phase nucleation gives rise to the formation of two different eutectic structure. For growth velocities between 0.4 and 1mm/s, instead of Pd3Si phase, Pd9Si2

  15. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  16. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy

    International Nuclear Information System (INIS)

    Rao, S.I.; Varvenne, C.; Woodward, C.; Parthasarathy, T.A.; Miracle, D.; Senkov, O.N.; Curtin, W.A.

    2017-01-01

    Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2〈111〉 dislocations in a randomly-distributed model-BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. Core structure variations along an individual dislocation line are found for a/2〈111〉 screw and edge dislocations. One reason for the core structure variations is the local variation in composition along the dislocation line. Calculated unstable stacking fault energies on the (110) plane as a function of composition vary significantly, consistent with this assessment. Molecular dynamics simulations of the critical glide stress as a function of temperature show significant strengthening, and much shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same overall composition, lattice and elastic constants as the target alloy. Interpretation of the strength versus temperature in terms of an effective kink-pair activation model shows the random alloy to have a much larger activation energy than the mean-field alloy or BCC Fe. This is interpreted as due to the core structure variations along the dislocation line that are often unfavorable for glide in the direction of the load. The configuration of the gliding dislocation is wavy, and significant debris is left behind, demonstrating the role of local composition and core structure in creating kink pinning (super jogs) and/or deflection of the glide plane of the dislocation. - Graphical abstract: Measured critical resolved shear stress scaled by the (111) shear modulus (39 GPa) necessary to achieve on-going glide as a function of temperature, for the a/2[111] screw dislocation in the model BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. The upper and lower bounds of the critical resolved shear stress is shown in the plot. Also shown in is the measured strength for the mean-field A-atom material and BCC Fe as a function of

  17. Lattice dynamical study of omega phase formation in Zr-Al system

    International Nuclear Information System (INIS)

    Ghosh, P.S.; Arya, A.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    The hexagonal ω phase occurs in the alloys in which the high temperature β phase (bcc) is stabilized with respect to the martensitic β -> ω transformation. The compositional ranges over which the ω phase can be stabilized is the characteristic of the alloy system under consideration. The formation of ordered ω (B8 2 -Zr 2 Al) phase, having space group P6 3 /mmc has been viewed in terms of a superimposition of displacive and replacive components of phase transformation. While the lattice collapse mechanism of β -> ω transformation is displacive in nature; a replacive transformation involving diffusion is required for decorating different sublattice sites by different atomic species. Although, the extent of overlap of these transformations in the formation of ordered ω phase has not been established so far; attempts have been made to explore this aspect by examining the sequential formation of several intermediate stable/metastable phases. The partial collapse of 2nd - 3rd and 5th - 6th planes along (111) direction leads to intermediate trigonal ω ' phase upto which the transformation is purely displacive in nature. A chemical ordering sets in after this step leading to B82 structure via ω'' structure. Density functional plane wave based calculations using the projector augmented wave (PAW) potentials are employed under the generalized gradient approximation to exchange and correlation to study (a) relative ground state stabilities of these phases, (b) variation of total energy as a function of displacement (z, z = 0 to 1/12) and (c) Frozen-phonon calculations for 2/3 longitudinal phonon along (111) direction. The energy-displacement curve for the B2 structure shows nearly harmonic behavior for small displacements but shows strong anharmonic behavior for large displacements making trigonal ω ' structure metastable with respect to this kind of transformations. The phonon dispersion of B2 structure exhibits imaginary frequencies along (111) making it a

  18. Classification of knotted tori in 2-metastable dimension

    KAUST Repository

    Cencelj, Matija

    2012-11-30

    This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.

  19. Classification of knotted tori in 2-metastable dimension

    KAUST Repository

    Cencelj, Matija; Repovš, Dušan; Skopenkov, Mikhail

    2012-01-01

    This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.

  20. Metastable enhancement of C+ and O+ capture reactions

    International Nuclear Information System (INIS)

    Thomas, E.W.; Moran, T.F.

    1990-09-01

    Single electron capture by 10- to 500-eV singly charged C and O ions traversing targets of H 2 and H was studied with emphasis on comparing cross sections for metastable species with those for the ground state. For an H 2 target cross sections are of the order 10 Angstrom and 20 to 30 times larger than for ground state species. Electron impact ion sources typically produce 5 to 30% of their output in the metastable state. Previous published work has largely ignored (or failed to detect) the presence of metastables and is incorrect by as much as an order of magnitude. Discrepancies between data sets have been resolved, and a reliable data set is provided for energies from 10 to 10 5 eV. Similar experiments for an atomic H target are underway. It is proposed to extend the program to similar studies with multiply charged projectile species

  1. Dynamical SUSY breaking in meta-stable vacua

    International Nuclear Information System (INIS)

    Intriligator, Kenneth; Seiberg, Nathan; Shih, David

    2006-01-01

    Dynamical supersymmetry breaking in a long-lived meta-stable vacuum is a phenomenologically viable possibility. This relatively unexplored avenue leads to many new models of dynamical supersymmetry breaking. Here, we present a surprisingly simple class of models with meta-stable dynamical supersymmetry breaking: N = 1 supersymmetric QCD, with massive flavors. Though these theories are strongly coupled, we definitively demonstrate the existence of meta-stable vacua by using the free-magnetic dual. Model building challenges, such as large flavor symmetries and the absence of an R-symmetry, are easily accommodated in these theories. Their simplicity also suggests that broken supersymmetry is generic in supersymmetric field theory and in the landscape of string vacua

  2. Sequences by Metastable Attractors: Interweaving Dynamical Systems and Experimental Data

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    2017-05-01

    Full Text Available Metastable attractors and heteroclinic orbits are present in the dynamics of various complex systems. Although their occurrence is well-known, their identification and modeling is a challenging task. The present work reviews briefly the literature and proposes a novel combination of their identification in experimental data and their modeling by dynamical systems. This combination applies recurrence structure analysis permitting the derivation of an optimal symbolic representation of metastable states and their dynamical transitions. To derive heteroclinic sequences of metastable attractors in various experimental conditions, the work introduces a Hausdorff clustering algorithm for symbolic dynamics. The application to brain signals (event-related potentials utilizing neural field models illustrates the methodology.

  3. Metastable Structures in Cluster Catalysis from First-Principles: Structural Ensemble in Reaction Conditions and Metastability Triggered Reactivity.

    Science.gov (United States)

    Sun, Geng; Sautet, Philippe

    2018-02-28

    Reactivity studies on catalytic transition metal clusters are usually performed on a single global minimum structure. With the example of a Pt 13 cluster under a pressure of hydrogen, we show from first-principle calculations that low energy metastable structures of the cluster can play a major role for catalytic reactivity and that hence consideration of the global minimum structure alone can severely underestimate the activity. The catalyst is fluxional with an ensemble of metastable structures energetically accessible at reaction conditions. A modified genetic algorithm is proposed to comprehensively search for the low energy metastable ensemble (LEME) structures instead of merely the global minimum structure. In order to reduce the computational cost of density functional calculations, a high dimensional neural network potential is employed to accelerate the exploration. The presence and influence of LEME structures during catalysis is discussed by the example of H covered Pt 13 clusters for two reactions of major importance: hydrogen evolution reaction and methane activation. The results demonstrate that although the number of accessible metastable structures is reduced under reaction condition for Pt 13 clusters, these metastable structures can exhibit high activity and dominate the observed activity due to their unique electronic or structural properties. This underlines the necessity of thoroughly exploring the LEME structures in catalysis simulations. The approach enables one to systematically address the impact of isomers in catalysis studies, taking into account the high adsorbate coverage induced by reaction conditions.

  4. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  5. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  6. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    International Nuclear Information System (INIS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-01-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  7. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  8. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Suzudo, Tomoaki, E-mail: suzudo.tomoaki@jaea.go.jp; Yamaguchi, Masatake

    2015-10-15

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  9. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Terentyev, Dmitry, E-mail: dterenty@SCKCEN.BE [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Yu, Long; Song, Dingkun [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China)

    2015-11-15

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  10. Decay of atomic metastable states in a plasma

    International Nuclear Information System (INIS)

    Kleiman, E.B.

    1985-01-01

    This paper discusses the influence of polarization plasma effects on the lifetime of metastable atomic levels. It is shown that plasma effects can also be important in the case when the distance between the metastable level and the closest emitting level exceeds the Langmuir frequency. The lifetime of the 2S level of a hydrogen atom in a rarefied plasma connected with the action of a longitudinal fluctuation field on the atom is estimated. It is found that this mechanism can determine the lifetime of the 2S level in a rarefied cosmic plasma

  11. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  12. Glassy and Metastable Crystalline BaTi2O5 by Containerless Processing

    Science.gov (United States)

    Yoda, Shinichi; Kentei Yu, Yu; Kumar, Vijaya; Kameko, Masashi

    Many efforts have been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic use. The containerless processing is an attractive synthesis tech-nique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable and glassy materials. We have fabricated a new ferroelectric materiel BaTi2 O5 [1] as bulk glass from melt by us-ing containerless processing and studied the phase relationship between microstructure and ferroelectric properties of BaTi2 O5 [2]. The structures of glassy and metastable crystalline BaTi2 O5 fabricated by the containerless pro-cessing were comprehensively investigated by combined X-ray and neutron diffractions, XANES analyses and computer simulations [3]. The 3-dimensional atomic structure of glassy BaTi2 O5 (g-BaTi2 O5 ), simulated by Reverse Monte Carlo (RMC) modelling on diffraction data, shows that extremely distorted TiO5 polyhedra interconnected with both corner-and edge-shared oxy-gen, formed a higher packing density structure than that of conventional silicate glass linked with only corner-sharing of SiO4 polyhedra. In addition, XANES measurement reveales that five-coordinated TiO5 polyhedra were formable in the crystallized metastable a-and b-BaTi2 O5 phases. The structure of metastable b-BaTi2 O5 was solved by ab initio calculation, and refined by Rietveld refinement as group Pnma with unit lattices a = 10.23784 ˚, b = 3.92715 ˚, c A A = 10.92757 A ˚. Our results show that the glass-forming ability enhanced by containerless pro-cessing, not by `strong glass former', fabricated new bulk oxide glasses with peculiar structures and properties. The intermediate-range structure of g-BaTi2 O5 and the crystalline structure of

  13. Atomistic model application to the problem of magnetite adhesion on iron BCC

    International Nuclear Information System (INIS)

    Forti; M; Alonso, P; Gargano, P; Rubiolo, G

    2012-01-01

    Oxide scale adhesion on a metal substrate has been investigated in the Magnetite - BCC Iron system. An Universal Binding Energy Relation (UBER) has been applied to obtain the interface energy from a fitting parameter. The interface energy thus calculated is in a reasonable order of magnitude when compared to experimental data for similar systems. This result allows this technique to be used to develop a comparative scale based on quantitative data which otherwise would require complex experiments to be obtained (author)

  14. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr

    2011-01-01

    Roč. 33, č. 9 (2011), s. 1182-1188 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : 3D molecular dynamics * fatigue * bcc iron * mode I Subject RIV: JG - Metallurgy Impact factor: 1.546, year: 2011 http://www.sciencedirect.com/science/article/pii/S0142112311000600

  15. Curie temperatures of fcc and bcc Nickel and Permalloy: Supercell and Green's function methods

    Czech Academy of Sciences Publication Activity Database

    Yu, P.; Jin, X.F.; Kudrnovský, Josef; Wang, D. S.; Bruno, P.

    2008-01-01

    Roč. 77, č. 5 (2008), 054431/1-054431/8 ISSN 1098-0121 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616 Institutional research plan: CEZ:AV0Z10100520 Keywords : fcc - and bcc-Ni * Permalloy * magnetic moments * Curie temperatures Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  16. Crack-induced stress, dislocations and acoustic emission by 3-D atomistic simulation in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Spielmannová, Alena; Machová, Anna; Hora, Petr

    2009-01-01

    Roč. 57, č. 14 (2009), s. 4065-4073 ISSN 1359-6454 R&D Projects: GA ČR GA101/09/1630; GA AV ČR KJB200760802; GA ČR(CZ) GA101/07/0789 Institutional research plan: CEZ:AV0Z20760514 Keywords : bcc iron * crack * dislocation emisision Subject RIV: JG - Metallurgy Impact factor: 3.760, year: 2009

  17. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    Science.gov (United States)

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  18. Kinetics of self-interstitial migration in bcc and fcc transition metals

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  19. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Olsson, P.; Domain, Ch.; Wallenius, J.

    2008-01-01

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  20. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    Science.gov (United States)

    Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-09-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.

  1. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    KAUST Repository

    Gong, Zhiqiang

    2017-04-05

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts\\' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM\\'s summer precipitation forecasting ability over EA-NWP.

  2. Investigation of the paramagnetic phase of bcc iron using polarized neutron scattering

    International Nuclear Information System (INIS)

    Wicksted, J.P.; Shirane, G.; Steinsvoll, O.

    1983-01-01

    Recent neutron scattering experiments on Ni and Fe (4%-Si) above T/sub c/ have demonstrated that a simple paramagnetic scattering function S(Qω) proportional to 1/(kappa 1 2 + q 2 ).GAMMA/(GAMMA 2 + ω 2 ) can explain the persistent spin wave ridges previously reported by Lynn and Mook. We present our new polarized beam results on pure Fe and describe in some detail the special problems associated with the unpolarized beam studies of magnetic cross sections at high temperatures

  3. Kinetics of disorder-to-fcc phase transition via an intermediate bcc state

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.; Nie, H.; Bansil, R.; Steinhart, Miloš; Bang, J.; Lodge, T. P.

    2006-01-01

    Roč. 73, č. 6 (2006), 061803-1-061803-6 ISSN 1539-3755 Institutional research plan: CEZ:AV0Z40500505 Keywords : x-ray scattering * polymer blends * polymer solutions Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.438, year: 2006

  4. Metastable defect response in CZTSSe from admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se)4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the device measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.

  5. Metastable Behavior in Uniaxial Ferroelectrics TGS and TGSe near TC

    NARCIS (Netherlands)

    Fernández del Castillo, J.R.; Przeslawski, J.; Iglesias, T.; Noheda, B.; Gonzalo, J.A.

    1998-01-01

    High resolution hysteresis loops measurements in triglycine sulfate (ordinary critical point) and in triglycine selenate (tricritical point) allow the approximate characterization of the behavior in the metastable region (E < 0, P > 0, or vice versa) at T ≤ TC. The coercive field may be assumed to

  6. Metastability of Reversible Random Walks in Potential Fields

    Science.gov (United States)

    Landim, C.; Misturini, R.; Tsunoda, K.

    2015-09-01

    Let be an open and bounded subset of , and let be a twice continuously differentiable function. Denote by the discretization of , , and denote by the continuous-time, nearest-neighbor, random walk on which jumps from to at rate . We examine in this article the metastable behavior of among the wells of the potential F.

  7. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  8. Tumor ocular metastásico Metastatic ocular tumor

    Directory of Open Access Journals (Sweden)

    Martha G Domínguez Expósito

    2004-06-01

    Full Text Available El carcinoma metastásico del ojo es considerado la neoplasia maligna que más frecuente se encuentra de forma intraocular. Solo cerca del 10 % de las personas que tienen una o más lesiones metastásicas intraoculares son detectadas clínicamente antes de la muerte. A menudo, el carcinoma metastásico ocular es diagnosticado por el oftalmólogo ante la presencia de síntomas oculares. Las lesiones están localizadas con preferencia en coroides. Nos motivo a realizar la presentación de este caso la presencia de lesiones intraoculares múltiples tumorales metastásicos en un paciente cuyo síntoma de presentación fue la disminución de la agudeza visualThe eye metastatic carcinoma is considered the most frequently found intraocular malignant neoplasia. Only 10 % of the persons with one or more metastatic intraocular injuries are clinically detected before death. The metastatic ocular carcinoma is often diagnosed by the ophthalmologist in the presence of ocular symptoms. The injuries are preferably located in the choroid. The appearance of multiple metastatic intraaocular tumoral injuries in a patient whose chief complaint was the reduction of visual acuity motivated us to presente this case

  9. Colour chemistry - a study of metastable multiquark molecules

    International Nuclear Information System (INIS)

    Chan, H.-M.; Fukugita, M.; Hansson, T.H.; Hoffman, H.J.; Konishi, K.; Hoegaasen, H.; Tsou, S.T.

    1978-03-01

    A framework is proposed for treating metastable multiquark states in general, borrowing some of the chemist's concepts and terminology. Lists of 'ions' and 'bonds' are are compiled which allow one in principle to construct models of complex 'molecules' and to predict their masses and decays. (author)

  10. 235U isotope enrichment in the metastable levels of UI

    International Nuclear Information System (INIS)

    Gagne, J.M.; Demers, Y.; Dreze, C.; Pianarosa, P.

    1983-01-01

    We have used optical pumping to produce a substantial 235 U enrichment in the metastable levels of UI in the discharge afterglow of a hollow-cathode vapor generator. The measured isotope-enrichment factor for the level at 3800 cm -1 is approximately 20

  11. Magneto-optical trap for metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-01-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 S-3(1)-->3 P-3(2) line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta=-41 MHz) typically contains few times 10(7) atoms at a relatively high (similar

  12. Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fey, Anne

    In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the

  13. Populations and lifetimes in the $v=n-l-1=2$ and 3 metastable cascades of $\\overline{p} He^{+}$ measured by pulsed and continuous antiproton beams

    CERN Document Server

    Hori, Masaki; Widmann, E; Yamazaki, T; Hayano, R S; Ishikawa, T; Torie, H A; Von Egidy, T; Hartmann, F; Ketzer, B; Maierl, C; Pohl, R; Kumakura, M; Morita, N; Horváth, D; Sugai, I

    2004-01-01

    Using the laser spectroscopy, the time evolution of the state population in the v equivalent n-l=2 and 3 metastable cascades of antiprotonic helium atoms were studied. The effects of the collision between antiprotonic helium and the ordinary helium atoms on the atomic cascade were also analyzed. The measurements were done using the pulsed and continuous types of antiproton beams supplied by the Low Energy Antiproton Ring. The studies revealed five phases in the life history of the metastable antiprotonic helium. (Edited abstract) 71 Refs.

  14. Multi-pentad prediction of precipitation variability over Southeast Asia during boreal summer using BCC_CSM1.2

    Science.gov (United States)

    Li, Chengcheng; Ren, Hong-Li; Zhou, Fang; Li, Shuanglin; Fu, Joshua-Xiouhua; Li, Guoping

    2018-06-01

    Precipitation is highly variable in space and discontinuous in time, which makes it challenging for models to predict on subseasonal scales (10-30 days). We analyze multi-pentad predictions from the Beijing Climate Center Climate System Model version 1.2 (BCC_CSM1.2), which are based on hindcasts from 1997 to 2014. The analysis focus on the skill of the model to predict precipitation variability over Southeast Asia from May to September, as well as its connections with intraseasonal oscillation (ISO). The effective precipitation prediction length is about two pentads (10 days), during which the skill measured by anomaly correlation is greater than 0.1. In order to further evaluate the performance of the precipitation prediction, the diagnosis results of the skills of two related circulation fields show that the prediction skills for the circulation fields exceed that of precipitation. Moreover, the prediction skills tend to be higher when the amplitude of ISO is large, especially for a boreal summer intraseasonal oscillation. The skills associated with phases 2 and 5 are higher, but that of phase 3 is relatively lower. Even so, different initial phases reflect the same spatial characteristics, which shows higher skill of precipitation prediction in the northwest Pacific Ocean. Finally, filter analysis is used on the prediction skills of total and subseasonal anomalies. The results of the two anomaly sets are comparable during the first two lead pentads, but thereafter the skill of the total anomalies is significantly higher than that of the subseasonal anomalies. This paper should help advance research in subseasonal precipitation prediction.

  15. Investigation of metastable immiscibility in nuclear-waste-glasses. I-III

    International Nuclear Information System (INIS)

    Egnell, J.; Larsen, J.G.; Moeller, L.; Roed, G.

    1981-12-01

    Metastable liquid-liquid separation in glasses can often cause significant changes in physical and chemical properties of the original homogeneous glass. In some technical borosilicate glasses this phenomenon is used to change the chemical durability of the glass. For potential nuclear-waste-glasses the slow cooling through the temperature range 550 0 C - 700 0 C may lead to such a liquid-liquid phase separation. In order to investigate the susceptibility of phase separation of nuclear-waste-glasses, two KBS model glasses, ABS-39 and ABS-41, were investigated. Two of the subsequent reports are concerned with this problem. The third report also takes into consideration the effects of MoO 3 on the immiscibility gap. The maximum amount of MoO 3 that can be dissolved in ABS-39 and ABS 41 is also determined. (Auth.)

  16. Structure and magnetism of metastable Fe nanoparticles in SrTiO3

    CERN Document Server

    Augustyns, Valerie; Pereira, Lino

    2017-08-30

    Iron (Fe), one of the most abundant elements on Earth, can appear in different structural phases associated with contrasting magnetic properties, depending on temperature and pressure. The most common phase is alpha-Fe, which has a body-centered cubic (bcc) structure and is ferromagnetic. Another iron allotrope, gamma-Fe, a high temperature phase in bulk, has a face-centered cubic structure (fcc). However, this iron allotrope has been stabilized at room temperature in nanostructures, namely in thin films or nanoparticles. In these structures, where one or more dimensions are in the nanoscale regime, the structural and magnetic properties can be different from those of bulk gamma-Fe. Whereas bulk gamma-Fe is antiferromagnetic, different magnetic states have been reported for gamma-Fe thin films. When ferromagnetism was observed, this was associated with a face-centered tetragonal (fct) distortion in the gamma-Fe thin film. In this thesis, the coupling between structure and magnetism in embedded gamma-Fe nanop...

  17. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Dhandayuthapani, T. [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Girish, M. [Department of Physics, Alagappa University, Karaikudi 630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630004 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600025 (India)

    2015-10-30

    Graphical abstract: - Highlights: • MnS films with diverse morphological features were prepared without any complexing agent. • The change in morphology of MnS films may be due to the “oriented aggregation”. • The dual role (as sulfur source and structure directing agent) of thiourea was observed. • Sulfur source concentration induced enhancement in the crystallization of films. - Abstract: In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M–H plot.

  18. Carbon in palladium catalysts: A metastable carbide

    International Nuclear Information System (INIS)

    Seriani, Nicola; Mittendorfer, Florian; Kresse, Georg

    2010-01-01

    The catalytic activity of palladium towards selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively towards partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd 6 C with a hexagonal 6-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation. (author)

  19. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    Science.gov (United States)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  20. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Science.gov (United States)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  1. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    International Nuclear Information System (INIS)

    Li, Xiantao

    2014-01-01

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  2. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    Science.gov (United States)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  3. Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling

    International Nuclear Information System (INIS)

    Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects

  4. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    Science.gov (United States)

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  5. The phase diagram of molybdenum at extreme conditions and the role of local liquid structures

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M

    2008-08-15

    Recent DAC measurements made of the Mo melting curve by the x-ray diffraction studies confirms that, up to at least 110 GPa (3300K) melting is directly from bcc to liquid, evidence that there is no basis for a speculated bcc-hcp or fcc transition. An examination of the Poisson Ratio, obtained from shock sound speed measurements, provides evidence that the 210 GPa (4100K) transition detected from shock experiments is a continuation of the bcc-liquid melting, but is from a bcc-to a solid-like mixed phase rather than to liquid. Calculations, modeled to include the free energy of liquid local structures, predict that the transition from the liquid to the mixed phase is near 150 GPa(3500K). The presence of local structures provides the simplest and most direct explanation for the Mo phase diagram, and the low melting slopes.

  6. Stabilizing effect of driving and dissipation on quantum metastable states

    Science.gov (United States)

    Valenti, Davide; Carollo, Angelo; Spagnolo, Bernardo

    2018-04-01

    We investigate how the combined effects of strong Ohmic dissipation and monochromatic driving affect the stability of a quantum system with a metastable state. We find that, by increasing the coupling with the environment, the escape time makes a transition from a regime in which it is substantially controlled by the driving, displaying resonant peaks and dips, to a regime of frequency-independent escape time with a peak followed by a steep falloff. The escape time from the metastable state has a nonmonotonic behavior as a function of the thermal-bath coupling, the temperature, and the frequency of the driving. The quantum noise-enhanced stability phenomenon is observed in the investigated system.

  7. Dependence of stability of metastable superconductors on copper fraction

    International Nuclear Information System (INIS)

    Elrod, S.A.; Lue, J.W.; Miller, J.R.; Dresner, L.

    1980-12-01

    The stability of composite superconductors operating in the metastable regime depends upon such factors as matrix resistivity, cooled surface dimensions, fraction of critical current, and volume fraction of stabilizer. By assuming constant thermophysical properties, we developed analytic expressions for the energy and voltage of the minimum propagating zone (MPZ). With other factors held constant, these expressions have been used to predict composite superconductor stability as a function of copper fraction: lower copper fractions lead to higher MPZ energies. MPZ voltages have been measured for three NbTi/Cu composites having different copper fractions and different critical current densities for several magnetic fields and transport currents. Experimental MPZ voltages have been used to calculate an effective heat transfer coefficient, which is subsequently used to calculate the MPZ energy. The experimental MPZ energies support the theoretical expectation that lower copper fractions lead to higher stability in the metastable regime

  8. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    Science.gov (United States)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  9. flu, a metastable gene controlling surface properties of Escherichia coli.

    OpenAIRE

    Diderichsen, B

    1980-01-01

    flu, a gene of Escherichia coli K-12, was discovered and mapped between his and shiA. It is shown that flu is a metastable gene that changes frequently between the flu+ and flu states. flu+ variants give stable homogeneous suspensions, are piliated, and form glossy colonies. flu variants aggregate, fluff and sediment from suspensions, are nonpiliated, and form frizzy colonies. flu+ and flu variants can be isolated from most strains. Implications of these observations are discussed, and it is ...

  10. Automatic acquisition and shape analysis of metastable peaks

    International Nuclear Information System (INIS)

    Maendli, H.; Robbiani, R.; Kuster, Th.; Seibl, J.

    1979-01-01

    A method for automatic acquisition and evaluation of metastable peaks due to transitions in the first field-free region of a double focussing mass spectrometer is presented. The data are acquired by computer-controlled repetitive scanning of the accelerating voltage and concomitant accumulation, the evaluation made by a mathematical derivatization of the resulting curve. Examples for application of the method are given. (Auth.)

  11. Stark--Zeeman effect of metastable hydrogen molecules

    International Nuclear Information System (INIS)

    Kagann, R.H.

    1975-01-01

    The Stark effect of the N = 1 rotational level of orthohydrogen and the N = 2 rotational level of parahydrogen in the metastable c 3 PI/sub u/ electronic state has been measured using the molecular beam magnetic resonance method. The Stark effect of the metastable state is 10,000 times larger than that of the ground electronic state. The Stark effect of parahydrogen was found to be weakly dependent on static magnetic field strength, whereas the Stark effect of orthohydrogen was found to be more strongly dependent on the magnetic field strength. The Stark effect of orthohydrogen has been calculated using second-order perturbation theory with a pure Stark effect perturbation. The magnetic field dependence of the Stark effect was calculated using third-order perturbation theory with a mixed Stark--Zeeman effect double perturbation. A comparison of the experimental and theoretical values of α/sub perpendicular/ provides information on the electronic transition moment connecting the c 3 PI/sub u/ state to the a 3 Σ + /sub g/ state. The transition moment is needed to calculate the radiative lifetimes of the various vibrational levels of the c 3 PI/sub u/ state. The transition moment also enters the calculation of the quenching of this metastable state by an external electric field. There is a disagreement between theoretical predictions and the results of an experiment on the electric field quenching of the metastables. A test of the electronic transition moment may help shed light on this question. The experimental determination of the values of the transition moments allows one to test theory by comparing these values to those obtained by calculations employing ab initio wavefunctions

  12. Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

    International Nuclear Information System (INIS)

    Han, Junhee

    2014-01-01

    In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd 35 Ti 35 Co 30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd-Ti-Co system revealed that the stable miscibility gap of binary Gd-Ti extends into the ternary Gd-Ti-Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be

  13. Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe

    International Nuclear Information System (INIS)

    Talati, Mina; Posselt, Matthias; Al-Motasem, Ahmed; Bergner, Frank; Bonny, Giovanni

    2012-01-01

    The effects of lattice vibration on the thermodynamics of nanosized coherent clusters in bcc-Fe consisting of vacancies and/or copper are investigated within the harmonic approximation. A combination of on-lattice simulated annealing based on Metropolis Monte Carlo simulations and off-lattice relaxation by molecular dynamics is applied to obtain the most stable cluster configurations at T = 0 K. The most recent interatomic potential built within the framework of the embedded-atom method for the Fe-Cu system is used. The total free energy of pure bcc-Fe and fcc-Cu as well as the total formation free energy and the total binding free energy of the vacancy-copper clusters are determined for finite temperatures. Our results are compared with the available data from previous investigations performed using many-body interatomic potentials and first-principles methods. For further applications in rate theory and object kinetic Monte Carlo simulations, the vibrational effects evaluated in the present study are included in the previously developed analytical fitting formulae. (paper)

  14. bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: Coupled shuffle and shear modes

    Science.gov (United States)

    Liu, J. B.; Johnson, D. D.

    2009-04-01

    Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.

  15. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals

    Science.gov (United States)

    Dudarev, S. L.; Ma, Pui-Wai

    2018-03-01

    Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a orientation of the defect.

  16. Angular forces and melting in bcc transition metals: A case study of molybdenum

    International Nuclear Information System (INIS)

    Moriarty, J.A.

    1994-01-01

    Both the multi-ion and effective pair potentials also permit a large amount of supercooling of the liquid before the onset of freezing. With v 2 eff a bcc structure is nucleated at freezing, while with the multi-ion potentials an amorphous glasslike structure is obtained, which appears to be related to the energetically competitive A15 structure. In our second approach to melting, the multi-ion potentials have been used to obtain accurate solid and liquid free energies from quasiharmonic lattice dynamics and MD calculations of thermal energies and pressures. The resulting ion-thermal melting curve exactly overlaps the dynamically observed melting point, indicating that no superheating of the solid occurred in our MD simulations. To obtain a full melting curve, electron-thermal contributions to the solid and liquid free energies are added in terms of the density of electronic states at the Fermi level, ρ(E F ). Here the density of states for the solid has been calculated with the linear-muffin-tin-orbital method, while for the liquid tight-binding calculations have been used to justify a simple model. In the liquid ρ(E F ) is increased dramatically over the bcc solid, and the net effect of the electron-thermal contributions is to lower the calculated melting temperatures by about a factor of 2. A full melting curve to 2 Mbar has thereby been obtained and the calculated melting properties near zero pressure are in generally good agreement with experiment

  17. Multiscale modeling of dislocation processes in BCC tantalum: bridging atomistic and mesoscale simulations

    International Nuclear Information System (INIS)

    Yang, L H; Tang, M; Moriarty, J A

    2001-01-01

    Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress

  18. Synthesis and characterization of metastable, 20 nm-sized Pna21-LiCoPO4 nanospheres

    International Nuclear Information System (INIS)

    Ludwig, Jennifer; Nordlund, Dennis; Doeff, Marca M.; Nilges, Tom

    2017-01-01

    The majority of research activities on LiCoPO 4 are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna2 1 modification. Herein, we present a comprehensive study on the structure–property relationships of 15–20 nm Pna2 1 -LiCoPO 4 nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L 2,3 -edge X-ray absorption spectroscopic data confirm the local tetrahedral symmetry of Co 2+ . Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO 4 at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated. - Graphical abstract: Blue nano-sized Pna2 1 -LiCoPO 4, featuring tetrahedrally-coordinated Co 2+ , was synthesized in a rapid one-step microwave-assisted solvothermal process. The phase relation between this metastable and the stable polymorph was analyzed and electrochemical properties are discussed. - Highlights: • Preparation of uniform 15–20 nm nanospheres of metastable Pna2 1 -LiCoPO 4 polymorph. • Structure redetermination shows cation-mixing (Co blocking Li sites). • In situ investigation of phase transformation to olivine Pnma-LiCoPO 4 at 527 °C. • Pna2 1 -LiCoPO 4 reemerges as a stable high-temperature phase above 800 °C. • X-ray absorption spectroscopy confirms local tetrahedral symmetry (T d Co 2+ ).

  19. Cross sections of electron excitation out of metastable helium levels with a fast metastable target product produced via charge exchange

    International Nuclear Information System (INIS)

    Lagus, M.E.; Boffard, J.B.; Anderson, L.W.; Lin, C.C.

    1996-01-01

    Absolute direct cross sections for electron excitation out of the 2 3 S level and into the 3 3 D, 4 3 D, and 3 3 S levels of the helium atom from threshold to 500 eV and into the 3 3 P level over a more limited energy range have been measured using a fast metastable atomic beam target. We produce the metastable atoms via near-resonant charge exchange between a 1.6-keV He + ion beam and Cs vapor. Because this reaction is highly nonresonant with the ground state of helium, the charge-transfer process yields a primarily metastable beam. We use a thermal detector which we calibrate with ions to measure absolutely the neutral beam flux. The atomic beam is crossed by an electron beam, and we collect the resulting fluorescence at right angles to both the electron and atomic beams. We obtain the cross sections for excitation out of the 2 3 S level into the various excited levels by monitoring the emission out of the excited level of interest. copyright 1996 The American Physical Society

  20. Assessment and correction of BCC_CSM's performance in capturing leading modes of summer precipitation over North Asia

    KAUST Repository

    Gong, Zhiqiang

    2017-11-07

    This article examines the ability of Beijing Climate Center Climate System Model (BCC_CSM) in demonstrating the prediction accuracy and the leading modes of the summer precipitation over North Asia (NA). A dynamic-statistic combined approach for improving the prediction accuracy and the prediction of the leading modes of the summer precipitation over NA is proposed. Our results show that the BCC_CSM can capture part of the spatial anomaly features of the first two leading modes of NA summer precipitation. Moreover, BCC_CSM regains relationships such that the first and second mode of the empirical orthogonal function (EOF1 and EOF2) of NA summer precipitation, respectively, corresponds to the development of the El Niño and La Niña conditions in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1\\'s and EOF2\\'s spatial pattern over central NA and EOF2\\'s interannual variability. This can be attributed as the possible reasons why the model is unable to capture the correct relationships among the basic climate elements over the central NA, lacks in its ability to reproduce a consistent zonal atmospheric pattern over NA, and has bias in predicting the relevant Sea Surface Temperature (SST) modes over the tropical Pacific and Indian Ocean regions. Based on the proposed dynamic-statistic combined correction approach, compared with the leading modes of BCC_CSM\\'s original prediction, anomaly correlation coefficients of corrected EOF1/EOF2 with the tropical Indian Ocean SST are improved from 0.18/0.36 to 0.51/0.62. Hence, the proposed correction approach suggests that the BCC_CSM\\'s prediction skill for the summer precipitation prediction over NA and its ability to capture the dominant modes could be certainly improved by choosing proper historical analogue information.

  1. NATO Advanced Research Workshop on Metastable Systems under Pressure: Platform for New Technologies and Environmental Applications

    CERN Document Server

    Rzoska, Sylwester; Mazur, Victor

    2010-01-01

    The fundamental insight and the technological & environmental relevance of metastable systems have given a strong impetus from the last decade development of extreme pressures experimental techniques, from the GPa region to the challenging negative pressures domain. The ultimate verification of theoretical models and reliable equations for portraying basic properties for such systems seems to be possible only when including temperature and pressure paths. This volume presents a set of papers related to novel findings on the glass transition phenomenon, phase transitions in liquid crystals, critical mixtures, bioliquids, geophysical system which can reveal surprising "secret" features only when using extreme pressures. This can be illustrated by the link between colloidal and molecular glassformers, the universal onset of the non-trivial dynamics in glasses, demistification of the secondary relaxation or novel findings associated with liquid - liquid near critical transitions in critical mixture, liquid cr...

  2. Experimental study of the spin density of metastable fcc ferromagnetic Fe-Cu alloys

    International Nuclear Information System (INIS)

    Bove, L. E.; Petrillo, C.; Sacchetti, F.; Mazzone, G.

    2000-01-01

    Magnetization density measurements on metastable Fe x Cu 1-x alloys at four compositions (x=20, 40, 50, and 60 at. %) and at 5 K temperature were carried out by means of polarized neutron diffraction. The samples were produced by high-energy ball milling and characterized by x-ray diffraction and fluorescence measurements. Additional bulk magnetization measurements were carried out on the two samples at high Fe concentration. Over the present concentration region, the Fe-Cu system is ferromagnetic and the four samples were found to be in the fcc phase. Fe-Cu is therefore a very suitable system to investigate the magnetic state of Fe in an fcc environment. Other than confirming that the Fe-Cu system is not a simple dilution alloy, the present results were compatible with a two-state model for fcc Fe--that is, two different coexisting electronic states associated with different magnetic moments and form factors

  3. Martensitic phase transitions

    International Nuclear Information System (INIS)

    Petry, W.; Neuhaus, J.

    1996-01-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs

  4. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W; Neuhaus, J [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  5. Anomalous evolution of Ar metastable density with electron density in high density Ar discharge

    International Nuclear Information System (INIS)

    Park, Min; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung; Shin, Yong-Hyeon

    2011-01-01

    Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

  6. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  7. Combined transmission electron microscope and ion channeling study of metastable metal alloys formed by ion implantation

    International Nuclear Information System (INIS)

    Cullis, A.G.; Borders, J.A.; Hirvonen, J.K.; Poate, J.M.

    1977-01-01

    Recently, ion implantation has been used to produce metastable alloy layers with a range of structures from crystalline substitutional solid solutions to amorphous. The technique offers the possibility of producing metastable metal layers with unique physical properties. Its application in the formation of alloys exhibiting different although complementary types of metastability is described. The metal combinations chosen (Ag-Cu and Ta-Cu) show little mutual solubility under equilibrium conditions

  8. Metastable Features of Economic Networks and Responses to Exogenous Shocks.

    Directory of Open Access Journals (Sweden)

    Ali Hosseiny

    Full Text Available It is well known that a network structure plays an important role in addressing a collective behavior. In this paper we study a network of firms and corporations for addressing metastable features in an Ising based model. In our model we observe that if in a recession the government imposes a demand shock to stimulate the network, metastable features shape its response. Actually we find that there exists a minimum bound where any demand shock with a size below it is unable to trigger the market out of recession. We then investigate the impact of network characteristics on this minimum bound. We surprisingly observe that in a Watts-Strogatz network, although the minimum bound depends on the average of the degrees, when translated into the language of economics, such a bound is independent of the average degrees. This bound is about 0.44ΔGDP, where ΔGDP is the gap of GDP between recession and expansion. We examine our suggestions for the cases of the United States and the European Union in the recent recession, and compare them with the imposed stimulations. While the stimulation in the US has been above our threshold, in the EU it has been far below our threshold. Beside providing a minimum bound for a successful stimulation, our study on the metastable features suggests that in the time of crisis there is a "golden time passage" in which the minimum bound for successful stimulation can be much lower. Hence, our study strongly suggests stimulations to arise within this time passage.

  9. A statistical physics of stationary and metastable states

    International Nuclear Information System (INIS)

    Cabo, A; González, A; Curilef, S; Cabo-Bizet, N G; Vera, C A

    2011-01-01

    We present a generalization of Gibbs statistical mechanics designed to describe a general class of stationary and metastable equilibrium states. It is assumed that the physical system maximizes the entropy functional S subject to the standard conditions plus an extra conserved constraint function F, imposed to force the system to remain in the metastable configuration. After requiring additivity for two quasi-independent subsystems, and the commutation of the new constraint with the density matrix ρ, it is argued that F should be a homogeneous function of ρ, at least for systems in which the spectrum is sufficiently dense to be considered as continuous. Therefore, surprisingly, the analytic form of F turns out to be of the kind F(p i ) = p i q , where the p i are the eigenvalues of the density matrix and q is a real number to be determined. Thus, the discussion identifies the physical relevance of Lagrange multiplier constraints of the Tsallis kind and their q parameter, as enforced by the additivity of the constraint F which fixes the metastable state. An approximate analytic solution for the probability density is found for q close to unity. The procedure is applied to describe the results from the plasma experiment of Huang and Driscoll. For small and medium values of the radial distance, the measured density is predicted with a precision similar to that achieved by minimal enstrophy and Tsallis procedures. Also, the particle density is predicted at all the radial positions. Thus, the discussion gives a solution to the conceptual difficulties of the two above mentioned approaches as applied to this problem, which both predict a non-analytic abrupt vanishing of the density above a critical radial distance

  10. Resonances in the potential scattering and decay of metastable states

    International Nuclear Information System (INIS)

    Batsch, J.

    1975-04-01

    The analytic properties of the S-matrix in the complex energy plane are reviewed for potential scattering with particular attention to resonance scattering and decay of metastable states. For a one dimensional model potential with a potential barrier and a repulsive core exact formulas are derived for the energy and width of a resonance in terms of the scattering amplitudes of the barrier and the repulsive core alone. For narrow resonances simple and intuitive results are obtained, which are applied to semiclassical cases where the WKB approximation is valid. (orig.) [de

  11. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  12. Simple model for the dynamics towards metastable states

    International Nuclear Information System (INIS)

    Meijer, P.H.E.; Keskin, M.; Bodegom, E.

    1986-01-01

    Circumstances under which a quenched system will freeze in a metastable state are studied in simple systems with long-range order. The model used is the time-dependent pair approximation, based on the most probable path (MPP) method. The time dependence of the solution is shown by means of flow diagrams. The fixed points and other features of the differential equations in time are independent of the choice of the rate constants. It is explained qualitatively how the system behaves under varying descending temperatures: the role of the initial conditions, the dependence on the quenching rate, and the response to precooling

  13. Spin dynamics in tunneling decay of a metastable state

    OpenAIRE

    Ban, Yue; Sherman, E. Ya.

    2012-01-01

    We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...

  14. Direct gauge mediation of uplifted metastable supersymmetry breaking in supergravity

    International Nuclear Information System (INIS)

    Maru, Nobuhito

    2010-01-01

    We propose a direct gauge mediation model based on an uplifted metastable supersymmetry (SUSY) breaking coupled to supergravity. A constant superpotential plays an essential role to fix the moduli as well as breaking SUSY and R symmetry and the cancellation of the cosmological constant. Gaugino masses are generated at leading order of SUSY breaking scale, and comparable to the sfermion masses as in the ordinary gauge mediation. The Landau pole problem for QCD coupling can be easily solved since more than half of messengers become superheavy, which are heavier than the grand unified theory (GUT) scale.

  15. Enhanced atom mobility on the surface of a metastable film.

    Science.gov (United States)

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  16. Study of the multiple exchange frequencies in bcc 3He by thermodynamic measurements

    International Nuclear Information System (INIS)

    Bernier, M.; Suaudeau, E.; Roger, M.

    1987-08-01

    To study the multiple exchange hamiltonian of solid 3 He we measured the contribution of the spin exchange to the pressure of bcc solid in various magnetic fields (O≤ H≤ 7.5T). Due to the nature of the atomic exchange of a fermion system this contribution is a strong function of the spin polarization. The characteristic frequencies of the exchange hamiltonian are obtained by fitting the pressure measurements with the results of a statistical calculation using a high temperature series expansion of the hamiltonian in a temperature range where both the magnetic effect is significant and the expansion converges (7mK < T < 30mK). We discuss the results obtained for two molar volumes

  17. Atomistic studies of nucleation of He clusters and bubbles in bcc iron

    International Nuclear Information System (INIS)

    Yang, L.; Deng, H.Q.; Gao, F.; Heinisch, H.L.; Kurtz, R.J.; Hu, S.Y.; Li, Y.L.; Zu, X.T.

    2013-01-01

    Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe–Fe interatomic potential, along with Ackland potential for the Fe–Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster–loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger

  18. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  19. Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics, Geology, and Engineering Technology (United States)

    2016-12-15

    With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema’s semi-empirical model.

  20. Properties of grain boundaries in BCC iron and iron-based alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; He, Xinfu

    2010-01-01

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  1. Compositional Variation of the Phonon Dispersion Curves of bcc Fe-Ga Alloys

    International Nuclear Information System (INIS)

    Zarestky, Jerel L.; Garlea, Vasile O.; Lograsso, Tom; Schlagel, D.L.; Stassis, C.

    2005-01-01

    Inelastic neutron scattering techniques have been used to measure the phonon dispersion curves of bcc Fe1-xGax x=10.8, 13.3, 16.0, 22.5 alloys as a function of Ga concentration. The phonon frequencies of every branch were found to decrease significantly with increasing Ga concentration. The softening was most pronounced for the T2 0 branch and, to a lesser extent, the L branch in the vicinity of = 2 3. The concentration dependence of the shear elastic constant C =1/2 C11-C12 , calculated from the slope of the T2 0 branch, was found to agree with the results of sound velocity measurements. For the higher concentration sample measured, 22.5 at. % Ga, new branches appeared, an effect associated with the increase in the number of atoms per unit cell.

  2. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys

    International Nuclear Information System (INIS)

    Nishihara, Y.; Yamaguchi, Y.; Kohara, T.; Tokumoto, M.

    1985-01-01

    The magnetic and superconducting properties of bcc Cr-Re alloys with up to 40 at. % Re were studied via measurements of the magnetic susceptibility, electrical resistivity, and nuclear magnetic resonance of the Re nuclei. Antiferromagnetic order coexists with superconductivity above 18 at. % Re. The results were analyzed with the coexistence model of spin-density waves and superconductivity. In the Re-concentration range greater than 18 at. %, about 10% of the Fermi surface satisfies the nesting condition and the rest of it contributes to form the superconducting gap. This model also explains the increase in the superconducting transition temperature and the decrease in the magnetic susceptibility by annealing as a competing effect between spin-density waves and superconductivity

  3. Calculation of elastic constants of BCC transition metals: tight-binding recursion method

    International Nuclear Information System (INIS)

    Masuda, K.; Hamada, N.; Terakura, K.

    1984-01-01

    The elastic constants of BCC transition metals (Fe, Nb, Mo and W) are calculated by using the tight-binding d band and the Born-Mayer repulsive potential. Introducing a small distortion characteristic to C 44 (or C') elastic deformation and calculating the energy change up to second order in the atomic displacement, the shear elastic constants C 44 and C' are determined. The elastic constants C 11 and C 12 are then calculated by using the relations B=1/3(C 11 + 2C 12 ) and C'=1/2(C 11 -C 12 ), where B is the bulk modulus. In general, the agreement between the present results and the experimental values is satisfactory. The characteristic elasticity behaviour, i.e. the strong Nsub(d) (number of d electrons) dependence of the observed anisotropy factor A=C 44 /C', will also be discussed. (author)

  4. Nuclear spin relaxation due to hydrogen diffusion in b.c.c. metals

    International Nuclear Information System (INIS)

    Faux, D.A.; Hall, C.K.

    1989-01-01

    We present Monte Carlo simulation results for the proton-proton contribution to the T 1 -1 relaxation rate for hydrogen spins diffusing on the tetrahedral sites of a b.c.c. metal. It is assumed that each hydrogen blocks all sites to the zeroth (no multiple-occupancy), second or third neighbour and that longer-range interactions may be neglected. Comparisons are made to the BPP and Torrey models. It is found that both the BPP and Torrey models give reasonable values for the peak height but that their predictions for the peak position and the high- and low-temperature limit are in error, particularly for large blocking distances. (orig.)

  5. Properties of grain boundaries in BCC iron and iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D.; He, Xinfu

    2010-08-15

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  6. Thermodynamic properties of bcc crystals at high temperatures: The transition metals

    International Nuclear Information System (INIS)

    MacDonald, R.A.; Shukla, R.C.

    1985-01-01

    The second-neighbor central-force model of a bcc crystal, previously used in lowest-order anharmonic perturbation theory to calculate the thermodynamic properties of the alkali metals, is here applied to the transition metals V, Nb, Ta, Mo, and W. The limitations of the model are apparent in the thermal-expansion results, which fall away from the experimental trend above about 1800 K. The specific heat similarly fails to exhibit the sharp rise that is observed at higher temperatures. A static treatment of vacancies cannot account for the difference between theory and experiment. The electrons have been taken into account by using a model that specifically includes d-band effects in the electron ground-state energy. The results thus obtained for the bulk moduli are quite satisfactory. In the light of these results, we discuss the prerequisites for a better treatment of metals when the electrons play an important role in determining the thermodynamic properties

  7. The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Rodney, David

    2006-01-01

    We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {1 1 0} glide plane is obtained at low temperatures. A transition in the twinning region, towards an average {1 1 2} glide plane, with the formation of debris loops is observed at higher temperatures

  8. Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations

    Science.gov (United States)

    You, Y.; Yan, M. F.

    2013-05-01

    C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.

  9. Comparison of interface structure of BCC metallic (Fe, V and Nb) films on MgO (100) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.L. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Zhang, L.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Fu, E.G., E-mail: efu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Ding, X., E-mail: dingxd@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Yu, K.Y., E-mail: kyyu@cup.edu.cn [Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Y.G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, Y.Q.; Baldwin, J.K. [Experimental Physical Sciences Directorate, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Wang, X.J. [State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871 (China); Xu, P. [Department of Chemistry, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)

    2017-07-15

    Highlights: • The difference of BCC metal/MgO(100) interface configuration with various lattice mismatches is identified by experiments and simulations in terms of dislocations and work of separation. • The strength of bonds along interface is found to be the fundamental factor to determine the interface configurations between BCC metal and MgO substrate. • The combination of experiments and simulations shows that the O-atop model is the actual match type between BCC metal and MgO substrate. - Abstract: This study systematically investigates the interface structure of three body-centered-cubic (BCC) metallic (Fe, V and Nb) films grown on MgO(100) substrates through experiments and simulations. Orientation relationships of their interfaces with the different lattice mismatches exhibit cube-on-cube configurations. The misfit dislocations at these three interfaces exhibit different characteristics. High resolution TEM (HRTEM), combined with first principle calculations, demonstrates the O-atop match type between metal atoms and MgO substrates for the first time. The fundamental mechanism in determining the interface configuration is discussed in terms of the work of separation and delocalization of atomic charge density.

  10. Assessment and correction of BCC_CSM's performance in capturing leading modes of summer precipitation over North Asia

    KAUST Repository

    Gong, Zhiqiang; Dogar, Muhammad Mubashar; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-01-01

    in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1's and EOF2's spatial pattern over central NA and EOF2's interannual variability. This can be attributed

  11. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1976--October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Research on irradiation of bcc metals and alloys is reported. Data and information are presented in appendixes on low temperature neutron irradiation of Nb, effects of tritium on the yield stress of Nb, multiple dislocation motion, dislocation group motion, dislocation kinetics, and computer simulation of dislocation motion

  12. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    KAUST Repository

    Gong, Zhiqiang; Dogar, Muhammad Mubashar; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-01-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection

  13. SCC, Bowen's disease and BCC arising on chronic radiation dermatitis due to radiation therapy for tinea pedis

    International Nuclear Information System (INIS)

    Aoki, Eri; Aoki, Mikako; Ikemura, Akiko; Igarashi, Tsukasa; Suzuki, Kayano; Kawana, Seiji

    2000-01-01

    We reported a case who developed three different types of skin cancers: SCC, BCC, and Bowen's disease, on the chronic radiation dermatitis. He had been treated for his tinea pedis et palmaris with radiotherapy in 1940's. It is very ratre that three different types of skin cancers arise in the same patient. This is a second case reported in Japan. (author)

  14. Lattice stability of metastable AlN and wurtzite-to-rock-salt structural transformation by CALPHAD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanhui, E-mail: yanhui.z@hotmail.com [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Franke, Peter; Li, Dajian; Seifert, Hans Jürgen [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-01

    Reliable lattice stability of cubic AlN with rock-salt structure (rs-AlN) is the prerequisite of accurate thermodynamic modeling of cubic (M, Al)N solid solutions (M = Ti, Zr, Cr etc.). In order to derive the Gibbs energy of metastable rs-AlN, and then its lattice stability, we did the pressure-temperature (P-T) assessment of AlN phases by equations-of-state modeling. Meanwhile, the molar volumes and the heat capacities of wurtzite and rock-salt AlN, as well as the wurtzite-to-rock-salt structural transition at high P&T were successfully incorporated in CALPHAD-type database by integrating thermodynamic data from experiments and ab-initio calculations. These results promise subsequent investigations on phase stabilities and transitions of solid solutions with AlN component and the development of novel multicomponent coatings. - Highlights: • Phase stability investigation for novel multi-component metastable coatings. • Structural transition at high temperature and high pressure. • Integrating thermodynamic data from ab-initio calculations and experiments. • Thermal expansion, isothermal compressibility and heat capacity of w-AlN and rs-AlN.

  15. Negative pion trapping by metastable state in liquid helium

    International Nuclear Information System (INIS)

    Nakamura, S.N.; Iwasaki, M.; Outa, H.

    1991-11-01

    We found long-lived metastable states of stopped π - 's in liquid helium by measuring time spectra of two different delayed products: 1) protons emitted after π - absorption by 4 He nuclei and 2) 70-MeV electrons originating from free π - → e - (ν e )-bar decay. The lifetime and fraction of delayed π - absorption obtained by emitted protons are 7.26±0.12 nsec and 1.66±0.05%, respectively. The free-decay fraction was calculated to be 0.64±0.03% from this result, which is consistent with the observed free-decay fraction of π e2 decay. These results imply that 2.30±0.07% of stopped π - are trapped in metastable states which have an overall lifetime of 10.1±0.2 nsec. The same experiment and analysis were performed for stopped π - in liquid neon. No evidence for trapping was found in liquid neon. (author)

  16. Fluxes, hierarchies, and metastable vacua in supersymmetric field theories

    International Nuclear Information System (INIS)

    Bruemmer, F.

    2008-01-01

    This thesis concerns topics both in low-energy effective field theories from type IIB superstring flux compactifications and in four-dimensional, rigidly supersymmetric gauge theories. We introduce flux compactifications with so-called ''warped throat'' regions, which lead to large hierarchies of scales in the effective four-dimensional theory. The correspondence between a particular such throat and a five-dimensional Randall-Sundrum-like model is established. We shown how certain string-theoretic features of the compactification, such as moduli stabilization by fluxes or the presence of an unstabilized Kaehler modulus, are incorporated in the five-dimensional picture. The KKLT construction for metastable de Sitter vacua is reviewed, as well as some possible modifications involving spontaneous F-term supersymmetry breaking. For KKLT-like models with their hidden sector localized inside a throat, the mediation of supersymmetry breaking to the visible sector is investigated. We review the mechanism of mixed modulus-anomaly mediation, and show that there can be additional equally important gravity-mediated contributions. We finally turn to the ISS model of metastable dynamical supersymmetry breaking in four dimensions, and present a renormalizable extension which generates a large hierarchy naturally. We also recapitulate how the ISS model may be obtained from a type IIB superstring model. (orig.)

  17. Fluxes, hierarchies, and metastable vacua in supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, F.

    2008-02-06

    This thesis concerns topics both in low-energy effective field theories from type IIB superstring flux compactifications and in four-dimensional, rigidly supersymmetric gauge theories. We introduce flux compactifications with so-called ''warped throat'' regions, which lead to large hierarchies of scales in the effective four-dimensional theory. The correspondence between a particular such throat and a five-dimensional Randall-Sundrum-like model is established. We shown how certain string-theoretic features of the compactification, such as moduli stabilization by fluxes or the presence of an unstabilized Kaehler modulus, are incorporated in the five-dimensional picture. The KKLT construction for metastable de Sitter vacua is reviewed, as well as some possible modifications involving spontaneous F-term supersymmetry breaking. For KKLT-like models with their hidden sector localized inside a throat, the mediation of supersymmetry breaking to the visible sector is investigated. We review the mechanism of mixed modulus-anomaly mediation, and show that there can be additional equally important gravity-mediated contributions. We finally turn to the ISS model of metastable dynamical supersymmetry breaking in four dimensions, and present a renormalizable extension which generates a large hierarchy naturally. We also recapitulate how the ISS model may be obtained from a type IIB superstring model. (orig.)

  18. Preparation and characterization of thick metastable sputter deposits

    International Nuclear Information System (INIS)

    Allen, R.P.; Dahlgren, S.D.; Merz, M.D.

    1975-01-01

    High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content

  19. Thermodynamic properties of the amorphous and crystalline modifications of carbon and the metastable synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Guencheva, V.; Grantscharova, E.; Gutzow, I. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Physical Chemistry

    2001-07-01

    The temperature dependencies of the thermodynamic properties of the little known (or even hypothetical) undercooled carbon melt and of the glasses that could be obtained from it at appropriate cooling rates are constructed. This is done using both a general thermodynamic formalism to estimate equilibrium properties of undercooled glass-forming melts and the expected analogy in properties of Fourth Group Elements. A comparison of the hypothetical carbon glasses with amorphous materials, obtained by the pyrolisis of organic resins, usually called vitreous (or glassy) carbon, is made. It turns out that from a thermodynamic point of view existing vitreous carbon materials, although characterized by an amorphous, frozen-in structure, differ significantly from the carbon glasses, which could be obtained by a splat-cool-quench of the carbon melt. It is shown also that the hypothetical carbon glasses should have at any temperature a thermodynamic potential, significantly higher than that of diamond. Thus they could be used as a source of constant supersaturation in metastable diamond synthesis. Existing amorphous carbon materials, although showing considerably lower thermodynamic potentials than the hypothetical carbon glasses, could also be used as sources of constant supersaturation in a process of isothermal diamond synthesis if their thermodynamic potential is additionally increased (e.g. by mechano-chemical treatment or by dispersion into nano-size scale). Theoretical estimates made in terms of Ostwald's Rule of Stages indicate that in processes of metastable isothermal diamond synthesis additional kinetic factors (e.g. influencing the formation of sp{sup 3} - carbon structures in the ambient phase) and the introduction of active substrates (e.g. diamond powder) are to be of significance in the realization of this thermodynamic possibility. (orig.)

  20. On the hardenability of Nb-modified metastable beta Ti-5553 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Campo, K.N.; Andrade, D.R.; Opini, V.C.; Mello, M.G.; Lopes, E.S.N.; Caram, R., E-mail: caram@fem.unicamp.br

    2016-05-15

    Among the commercially available titanium alloys, the metastable β Ti-5553 alloy (Ti–5Al–5V–5Mo–3Cr–0.5Fe wt.%) is an object of great interest because it is employed in aerospace structural applications, primarily in the replacement of steel components. One of the primary advantages of this alloy is its high hardenability, which allows it to retain the β phase at room temperature, even at low cooling rates, thereby allowing the thermoprocessing of thick parts. The aim of this investigation was to evaluate the effect of the replacement of V with Nb on the hardenability of Ti-5553. Based on the molybdenum equivalent criterion, the Nb-modified Ti-5553 alloy was designed to present 12 wt.% of Nb instead of 5 wt.% of V. Samples of both alloys were prepared by melting them in an arc furnace under an inert atmosphere, heat-treated at high temperatures for 12 h and plastic deformed using swage forging. Finally, these samples were solution heat-treated at temperatures above the β-transus followed by cooling at different rates using water quenching, furnace cooling and a modified Jominy end quench test. Characterization was performed by measuring Vickers hardness, X-ray diffraction, and light optical, scanning electron and transmission electron microscopy. The results obtained indicate that metastable β phase can be retained when the cooling rate is higher than 21 °C/s for both alloys. At lower cooling rates, α phase precipitation was observed, but it appeared to be less evident in the Nb-modified Ti-5553, suggesting that the replacement of V with Nb increased the hardenability of the alloy. - Highlights: • Hardenability of Ti alloys are assessed using a modified Jominy end quench test. • Ti-5553 and Nb-modified Ti-5553 are subjected to continuous cooling experiments. • β phase decomposition kinetics is reduced by replacing V with Nb in Ti-5553. • Nb-modified Ti-5553 features improved hardenability. • Replacement of V with Nb causes the

  1. Theoretical and experimental study of carburisation and decarburisation of a meta-stable austenitic steel

    Directory of Open Access Journals (Sweden)

    Charles West

    2005-12-01

    Full Text Available Metastable austenitic stainless steels are known to undergo a partial transformation of austenite to martensite as a consequence of plastic deformation. In the case of cyclic loading, a certain level of plastic strain must be exceeded, and phase formation takes place after an incubation period, during which the necessary amount of plastic deformation is accumulated. The susceptibility of the austenitic phase to deformation-induced martensite formation is strongly affected by the temperature of loading and the stability of austenite, which itself depends on the chemical composition. A key element in this regard is carbon which stabilizes the austenitic phase. It is shown in this study that the carbon concentration can be analysed systematically and reproducible by means of annealing treatments, if the parameters of these treatments are carefully defined on the basis of advanced theoretical thermodynamic and kinetic considerations. First results on the effect of carbon concentration and temperature of fatigue testing on the austenite/martensite transformation are presented, in order to illustrate the significance of these parameters on the martensite formation rate.

  2. On the fermion pair production in the process of metastable vacuum decay

    International Nuclear Information System (INIS)

    Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.

    1985-01-01

    Production of fermion pairs during the tunneling process leading to the decay of metastable vacuum is considered. The technique based on non-unitary Bogolyubov transformations is developed and formulae for fermionic spectrum are obtained. As an example, the spectrum of fermionic pairs produced during the homogeneous decay of metastable vacuum is evaluated

  3. Experiments on state selection and Penning ionisation with fast metastable rare gas atoms

    International Nuclear Information System (INIS)

    Kroon, J.P.C.

    1985-01-01

    This thesis describes experiments with metastable He/Ne atoms. The experiments are performed in a crossed beam machine. Two different sources are used for the production of metastable atoms: a source for the production of metastable atoms in the thermal energy range and a hollow cathode arc for the production of metastable atoms in the superthermal energy range (1-7 eV). The progress made in the use of the hollow cathode arc is described as well as the experimental set-up. The rare gas energy-level diagram is characterized by two metastable levels. By optical pumping it is possible to select a single metastable level, both for He and Ne. For the case of He this is done by a recently built He quenchlamp which selectively quenches the metastable 2 1 S level population. In the thermal energy range the quenching is complete; in the superthermal energy range the 2 1 S level population is only partly quenched. For the optical pumping of Ne* atoms a cw dye laser is used. New experiments have been started on the measurement, in a crossed beam machine, of the fluorescence caused by inelastic collisions where metastable atoms are involved. The He* + Ne system is used as a pilot study for these experiments. The He-Ne laser is based on this collision system. (Auth.)

  4. Gas–liquid nucleation at large metastability: unusual features and a new formalism

    International Nuclear Information System (INIS)

    Santra, Mantu; Singh, Rakesh S; Bagchi, Biman

    2011-01-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  5. Gas-liquid nucleation at large metastability: unusual features and a new formalism

    Science.gov (United States)

    Santra, Mantu; Singh, Rakesh S.; Bagchi, Biman

    2011-03-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  6. Nonequilibrium phase formation in oxides prepared at low temperature: Fergusonite-related phases

    International Nuclear Information System (INIS)

    Mather, S.A.; Davies, P.K.

    1995-01-01

    Sol-gel methods have been developed to prepare YNbO 4 , YTaO 4 , and other rare-earth niobates and tantalates with fergusonite-related crystal structures. At low temperatures, all of the fergusonites, with the exception of SmTaO 4 , crystallize in a metastable tetragonal (T') structure similar to that of tetragonal zirconia. Although all of the equilibrium forms of these oxides adopt a crystal structure containing an ordered distribution of the trivalent and pentavalent cations, a random cation distribution is obtained in the metastable T' phase. Metastable phase formation is often ascribed solely to kinetically limited topotactic crystallization. However, the changes in the grain size and unit-cell volumes that accompany the metastable-to-equilibrium fergusonite conversions imply that other physical phenomena induced by small-particle synthesis, namely the Gibbs-Thompson pressure effect and the increased contribution of surface energy, cannot be ignored

  7. Phase formation in contact of dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Savvin, V S; Kazachkova, Yu A; Povzner, A A [Ural State Technical University-UPI, Mira st., 19, A-203, Yekaterinburg 620002 (Russian Federation)], E-mail: savvin-vs@yandex.ru

    2008-02-15

    Formation and growth of intermediate phases in contact of the crystalline samples forming a two-component eutectic system is considered. It is shown that during the competition to a growing liquid phase the intermediate solid phases cannot grow by diffusion. The alternative is formation of metastable areas of a liquid phase. Measurements of liquid layers extent in Pb-Bi and In-Bi systems have allowed to define the composition of liquid on interface where formation of metastable liquid is possible. The results show that the concentration interval of a liquid layer corresponds to a stable constitution diagram. In order to explain the experimental results the hypothesis according to which the intermediate solid phases are formed as a result of precipitation from metastable melt is considered. The experimental confirmation of formation and crystallization of a metastable liquid is the fact that intergrowth of the samples forming system with an intermetallic phase at temperatures below the temperature of fusion of the most low-melting eutectic is observed. The possibility of the processes concerned with the occurrence of metastable areas of a liquid is showed by means of computer imitation.

  8. Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation

    Science.gov (United States)

    Wu, Z.; Zheng, Y.; Wang, K. W.

    2018-02-01

    We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.

  9. Excitation into 3p55p levels from the metastable levels of Ar

    International Nuclear Information System (INIS)

    Jung, R. O.; Boffard, John B.; Anderson, L. W.; Lin, Chun C.

    2007-01-01

    Measurements of cross sections for electron-impact excitation out of the J=0 and J=2 3p 5 4s metastable levels of argon into nine of the ten levels of the 3p 5 5p manifold are presented in the energy range from threshold to 10 eV. A mixed target of atoms in both metastable levels was created by a hollow cathode discharge. Laser quenching was used to depopulate either one of the metastable levels, allowing separate measurements of the cross sections from each of the two metastable levels. Unlike the metastable excitation cross sections into 3p 5 4p levels, the cross sections into the 3p 5 5p levels are not found to be proportional to optical oscillator strengths

  10. Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2.

    Science.gov (United States)

    Wang, Yi; Zhang, Dun; Wang, Jin

    2017-12-01

    Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion were synthesized by direct coprecipitation at room temperature. They are shown to be viable peroxidase mimics that catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 . Kinetic analysis indicated typical Michaelis-Menten catalytic behavior. The findings were used to design a colorimetric assay for H 2 O 2 , best measured at 652 nm. The method has a linear response in the 60 to 200 μM H 2 O 2 concentration range, with a 2 μM detection limit. Benefitting from the chemical stability of the microrods, the method is well reproducible. It also is easily performed and highly specific. Graphic abstract Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion can efficiently catalyze the oxidation reaction of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue color change.

  11. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    Science.gov (United States)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  12. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    Science.gov (United States)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  13. Plastic crystal phases of simple water models

    International Nuclear Information System (INIS)

    Aragones, J. L.; Vega, C.

    2009-01-01

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs–Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail.

  14. Metastable decay of photoionized niobium clusters: Evaporation vs fission fragmentation

    International Nuclear Information System (INIS)

    Cole, S.K.; Liu, K.; Riley, S.J.

    1986-01-01

    The metastable decay of photoionized niobium clusters (Nb/sub n/ + ) has been observed in a newly constructed cluster beam machine. The decay manifests itself in the time-of-flight (TOF) mass spectrum as an asymmetric broadening of daughter ion peaks. Pulsed ion extraction has been used to measure the decay rate constants and to establish the mechanism of the fragmentation, evaporation and/or fission of the photoionized clusters. It is found that within the experimental time window evaporation dominates for the smaller clusters (n 6 sec -1 . The average kinetic energy release is also determined and is found to be on the order of 5 MeV. 8 refs., 3 figs., 1 tab

  15. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  16. Fundamentals of metastability exchange optical pumping in helium

    International Nuclear Information System (INIS)

    Batz, M; Nacher, P-J; Tastevin, G

    2011-01-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  17. Fundamentals of metastability exchange optical pumping in helium

    Science.gov (United States)

    Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    Advances in metastability exchange optical pumping (MEOP) at high laser powers, but also at high gas pressures and high magnetic field strengths, has provided strong motivation for revisiting the understanding of the limitations of this powerful technique. A comprehensive model has been developed for improved description of the combined effects of OP, ME, and relaxation, and of detailed MEOP features observed over the broad range of operating conditions. A brief description is provided, with illustrative comparisons of computed and experimental results. This improved tool is used to explain the excellent photon efficiency of OP obtained at all field strengths. It is combined with an angular momentum budget approach to quantitatively investigate the newly discovered strong OP-enhanced polarisation losses that currently limits MEOP performance.

  18. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  19. The easy way to metastability tunnelling time and critical configurations

    CERN Document Server

    Manzo, F; Olivieri, E; Scoppola, E

    2003-01-01

    for given energy function $H$ and symmetric Markov kernel $q$. We propose a simple approach to determine the asymptotic behavior, for large $\\beta$, of the first hitting time to the ground state starting from a particular class of local minima for $H$ called metastable states. We separate the asymptotic behavior of the transition time from the determination of the tube of typical paths realizing the transition. This approach turns out to be useful when the determination of the tube of typical paths is too difficult, as for instance in the case of conservative dynamics. We analyze the structure of the saddles introducing the notion of ``essentiality" and describing essential saddles in terms of ``gates". As an example we discuss the case of the 2D Ising Model in the degenerate case of integer $2J\\over h$.

  20. Metastable He (n=2) - Ne potential interaction calculation

    International Nuclear Information System (INIS)

    Rahal, H.

    1983-10-01

    Diabatic potential terms corresponding to He (2 1 S)-Ne and He (2 3 S)-Ne interactions are calculated. These potentials reproduce the experimental results thermal metastable atom elastic scattering on Ne target. A model which reduces the interaction to a one-electron problem is proposed: the He excited electron. Its interaction with the He + center is reproduced by a ''l'' dependent potential model with a 1/2 behaviour at short range. The electron interaction facing the Ne is described by a l-dependent pseudopotential reproducing with accuracy the electron elastic scattering on a Ne atom. The importance of the corrective term related to the Ne polarizations by the electron and the He + ion is showed in this work. In the modelling problems, the accuracy cannot be better than 0.1 MeV [fr

  1. Supersymmetry breaking metastable vacua in runaway quiver gauge theories

    CERN Document Server

    Garcia-Etxebarria, Inaki; Uranga, Angel M

    2007-01-01

    In this paper we consider quiver gauge theories with fractional branes whose infrared dynamics removes the classical supersymmetric vacua (DSB branes). We show that addition of flavors to these theories (via additional non-compact branes) leads to local meta-stable supersymmetry breaking minima, closely related to those of SQCD with massive flavors. We simplify the study of the one-loop lifting of the accidental classical flat directions by direct computation of the pseudomoduli masses via Feynman diagrams. This new approach allows to obtain analytic results for all these theories. This work extends the results for the $dP_1$ theory in hep-th/0607218. The new approach allows to generalize the computation to general examples of DSB branes, and for arbitrary values of the superpotential couplings.

  2. Metastable self-trapping of positrons in MgO

    Science.gov (United States)

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1997-01-01

    Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.

  3. Metastable and unstable cellular solidification of colloidal suspensions

    Science.gov (United States)

    Deville, Sylvain; Maire, Eric; Bernard-Granger, Guillaume; Lasalle, Audrey; Bogner, Agnès; Gauthier, Catherine; Leloup, Jérôme; Guizard, Christian

    2009-12-01

    Colloidal particles are often seen as big atoms that can be directly observed in real space. They are therefore becoming increasingly important as model systems to study processes of interest in condensed-matter physics such as melting, freezing and glass transitions. The solidification of colloidal suspensions has long been a puzzling phenomenon with many unexplained features. Here, we demonstrate and rationalize the existence of instability and metastability domains in cellular solidification of colloidal suspensions, by direct in situ high-resolution X-ray radiography and tomography observations. We explain such interface instabilities by a partial Brownian diffusion of the particles leading to constitutional supercooling situations. Processing under unstable conditions leads to localized and global kinetic instabilities of the solid/liquid interface, affecting the crystal morphology and particle redistribution behaviour.

  4. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    International Nuclear Information System (INIS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  5. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, T.F.; Taleyarkhan, R.P., E-mail: rusi@purdue.edu

    2016-09-11

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs – via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C{sub 7}H{sub 16}) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu–Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  6. Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen

    International Nuclear Information System (INIS)

    Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan

    1997-01-01

    A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)

  7. Isotopic and continuous realizability of maps in the metastable range

    International Nuclear Information System (INIS)

    Melikhov, Sergey A

    2004-01-01

    A continuous map f of a compact n-polyhedron into an orientable piecewise linear m-manifold, m-n≥3, is discretely (isotopically) realizable if it is the uniform limit of a sequence of embeddings g k , k element of N (respectively, of an isotopy g t , t element of [0,∞)), and is continuously realizable if any embedding sufficiently close to f can be included in an arbitrarily small such isotopy. It was shown by the author that for m=2n+1, n≠1, all maps are continuously realizable, but for m=3, n=6 there are maps that are discretely realizable, but not isotopically. The first obstruction o(f) to the isotopic realizability of a discretely realizable map f lies in the kernel K f of the canonical epimorphism between the Steenrod and Cech (2n-m)-dimensional homologies of the singular set of f. It is known that for m=2n, n≥4, this obstruction is complete and f is continuously realizable if and only if the group K f is trivial. In the present paper it is established that f is continuously realizable if and only if K f is trivial even in the metastable range, that is, for m≥3(n+1)/2, n≠1. The proof uses higher cohomology operations. On the other hand, for each n≥9 a map S n →R 2n-5 is constructed that is discretely realizable and has zero obstruction o(f) to the isotopic realizability, but is not isotopically realizable, which fact is detected by the Steenrod square. Thus, in order to determine whether a discretely realizable map in the metastable range is isotopically realizable one cannot avoid using the complete obstruction in the group of Koschorke-Akhmet'ev bordisms.

  8. Triviality of the ground-state metastate in long-range Ising spin glasses in one dimension

    Science.gov (United States)

    Read, N.

    2018-01-01

    We consider the one-dimensional model of a spin glass with independent Gaussian-distributed random interactions, which have mean zero and variance 1/|i -j | 2 σ, between the spins at sites i and j for all i ≠j . It is known that, for σ >1 , there is no phase transition at any nonzero temperature in this model. We prove rigorously that, for σ >3 /2 , any translation-covariant Newman-Stein metastate for the ground states (i.e., the frequencies with which distinct ground states are observed in finite-size samples in the limit of infinite size, for given disorder) is trivial and unique. In other words, for given disorder and asymptotically at large sizes, the same ground state, or its global spin flip, is obtained (almost) always. The proof consists of two parts: One is a theorem (based on one by Newman and Stein for short-range two-dimensional models), valid for all σ >1 , that establishes triviality under a convergence hypothesis on something similar to the energies of domain walls and the other (based on older results for the one-dimensional model) establishes that the hypothesis is true for σ >3 /2 . In addition, we derive heuristic scaling arguments and rigorous exponent inequalities which tend to support the validity of the hypothesis under broader conditions. The constructions of various metastates are extended to all values σ >1 /2 . Triviality of the metastate in bond-diluted power-law models for σ >1 is proved directly.

  9. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  10. First-principles calculation for the effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Endo, Tatsuro; Higuchi, Kenji; Ogata, Shigenobu; Kimizuka, Hajime

    2012-01-01

    Effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron has been evaluated using the first-principles calculation. The stable position of a hydrogen atom is found to be near the screw dislocation core and inside the core respectively when the dislocation is at the easy-core or hard-core configuration in BCC iron. The intrinsically unstable hard-core configuration of the screw dislocation is stabilized when a hydrogen atom is trapped inside the core. On the basis of this first-principles result, an elastic string model of a dislocation is developed to predict the kink motion in the presence of a hydrogen atom. It is found that a double-kink formation is facilitated when a hydrogen atom is located near a dislocation line, however, a kink motion is retarded when a hydrogen atom is behind the kink. (author)

  11. Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron

    Science.gov (United States)

    Fikar, Jan; Gröger, Roman; Schäublin, Robin

    2017-12-01

    The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.

  12. Diffusion of Y and Ti/Zr in bcc iron: A first principles study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Sundar, C.S.

    2011-01-01

    The diffusion of yttrium plays an important role in the kinetics of formation of oxide nanoclusters in oxide dispersion strengthened alloys. Also, the diffusivity of minor alloying elements like Ti and Zr are of special interest as they are crucial for fine dispersion of oxide nanoclusters in the ferritic matrix. These solute atoms occupy substitutional sites in bcc Fe. The diffusion coefficients of these solute atoms were calculated using Le Claire’s nine frequency model involving the vacancy mechanism. We have done detailed density functional theory calculation of the interaction of these solute atoms with vacancies (□) and estimated various migration energy barriers of the vacancies in the presence of these solute atoms using nudged elastic band method. Strikingly, compared with Zr and Ti, Y shows a very large relaxation towards first neighbor vacancy resulting in strong binding with the vacancy. The Y-□ binding energy of 1.45 eV is almost double that of Zr-□ binding energy of 0.78 eV. We have also compared the calculated diffusion coefficients of these solute atoms with the experimental values.

  13. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    Science.gov (United States)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  14. Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment

    Directory of Open Access Journals (Sweden)

    Altaf Ahmed Simair

    2017-06-01

    Full Text Available The high cost of fermentation media is one of the technical barriers in amylase production from microbial sources. Amylase is used in several industrial processes or industries, for example, in the food industry, the saccharification of starchy materials, and in the detergent and textile industry. In this study, marine microorganisms were isolated to identify unique amylase-producing microbes in starch agar medium. More than 50 bacterial strains with positive amylase activity, isolated from marine water and soil, were screened for amylase production in starch agar medium. Bacillus sp. BCC 021-50 was found to be the best amylase-producing strain in starch agar medium and under submerged fermentation conditions. Next, fermentation conditions were optimized for bacterial growth and enzyme production. The highest amylase concentration of 5211 U/mL was obtained after 36 h of incubation at 50 °C, pH 8.0, using 20 g/L molasses as an energy source and 10 g/L peptone as a nitrogen source. From an application perspective, crude amylase was characterized in terms of temperature and pH. Maximum amylase activity was noted at 70 °C and pH 7.50. However, our results show clear advantages for enzyme stability in alkaline pH, high-temperature, and stability in the presence of surfactant, oxidizing, and bleaching agents. This research contributes towards the development of an economical amylase production process using agro-industrial residues.

  15. Strain Fields And Crystallographic Characteristics Of Interstitial Dislocation Loops of Various Geometry In BCC Iron

    International Nuclear Information System (INIS)

    Sivak, Alexander B.; Chernov, Viatcheslav M.; Romanov, Vladimir A.

    2008-01-01

    The formation energy, the relaxation volume, the dipole-force tensor, the self strain tensor and strain fields of interstitial dislocation loops in bcc iron (clusters of self interstitial atoms) have been calculated by molecular statics. Hexagonal and square dislocation loops of different types with different Burgers vectors, directions of dislocation segments and habit planes containing up to ∼2500 self-interstitials have been considered. Analytical expressions describing size dependence of the formation energy, the relaxation volume and the self strain tensor for the loops stated have been obtained. The most energetically favorable loops are hexagonal loops with Burgers vector a/2 and habit plane {11x}, where x takes values in the range from 0 to 1 depending on the loop size. The formation energy of a loops with and dislocation segments is ∼14% and 23% greater than that of hexagonal a/2 loops at N>500, respectively. The analysis of the formation energies of a/2 and a loops demonstrated that the nucleation of an a loop by joining of two a/2 loops is possible when the total number of constituent self-interstitials in these loops is larger than 13

  16. Investigation of point defects diffusion in bcc uranium and U–Mo alloys

    International Nuclear Information System (INIS)

    Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.

    2015-01-01

    We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U

  17. Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite

    Science.gov (United States)

    Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.

    2011-03-01

    Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.

  18. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  19. On the Secrecy Capacity Region of the Block-Fading BCC with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2017-02-07

    In this work, we examine the secrecy capacity region of the block-fading broadcast channel with confidential messages (BCC) when the transmitter has limited knowledge of the channel. In particular, we consider a two-user communication system where the transmitter has one common message to be transmitted to both users and one confidential message intended to only one of them. The confidential message has to be kept secret from the other user to whom the information is not intended. The transmitter is not aware of the channel state information (CSI) of neither channel and is only provided by limited CSI feedback sent at the beginning of each fading block. Assuming an error-free feedback link, we characterize the secrecy capacity region of this channel and show that even with a 1-bit CSI feedback, a positive secrecy rate can still be achieved. Then, we look at the case where the feedback link is not error- free and is rather a binary erasure channel (BEC). In the latter case, we provide an achievable secrecy rate region and show that as long as the erasure event is not a probability 1 event, the transmitter can still transmit the confidential information with a positive secrecy rate.

  20. MD and BCA simulations of He and H bombardment of fuzz in bcc elements

    Science.gov (United States)

    Klaver, T. P. C.; Zhang, S.; Nordlund, K.

    2017-08-01

    We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.

  1. Neutron diffraction study of phase relationship of Ti-C-H system

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.; Mirzaev, B.B.; Serikbaev, B.T.; Zaginaichenko, S.Yu.; Schur, D.V.; Pishuk, V.K.; Kuzmenko, L.V.; Garbuz, V.V.; Nuzhda, S.V.; Pishuk, O.V.

    2006-01-01

    temperature the sintering process is very active. Later on, the step increasing of temperature was carried out till 1000 deg. C with a step of 100 deg. C. The briquettes were exposed during 24 h at each temperature. With increasing temperature up to 800-1000 deg. C the pressured powder became well sintered and hydrogen emission from the sample was prevented. The final product was prepared after the annealing at 1000 deg. C followed by quenching in water. Compound of the samples was controlled by chemical analysis and compound of the single-phase samples also was controlled by minimizing the divergence factors of structure determination using neutron diffraction patterns. It is established that at hardening from 1000 deg. C in the samples with low concentration of C and H the solid solution of C and H in BCC β-Ti (with impurity of FCC- TiC x H y -phase) is formed. This metastable phase is stable enough at the room temperature. It is shown that at carbon concentration of 0.30 ≤ x ≤ 0.50 and y ≥ x in Ti-C-H system the ordered hexagonal close-packed (HCP) structure is stabilized, and at y x H y compounds have the ordered HCP structure corresponding to formula Ti 2 C 1-z H 2-z . The crystal structure of the phase is described within the framework of space group, where metal atoms are strongly displaced along c axis (Z Me =0.234±0.001) with respect to their ideal positions (z id =1/4). Step annealing of the single-phase solid solutions at temperatures of 700-600-500 deg. C during 24 h leads to decay of the samples, having concentration C/Ti≤0.43, the hydride phases being separated. Hence, the ordered solid solution Ti 2 C 1-x H 2-y is stable at concentrations 1.00≥C/Ti>0.43 (near carbon stoichiometry Ti 2 C), but it is metastable at concentrations 0.30≤C/T≤0.43. Compound TiC x H y at concentrations 0.45≤x≤0.55 and y< x can have both disordered (sp. gr. Fm3m) and ordered FCC-structure (sp. gr. Fd3m) depending on temperature. At temperatures lower than 600 deg. C

  2. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234 ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  3. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Pokluda, J.; Machová, Anna; Hora, Petr

    2012-01-01

    Roč. 61, AUG 2012 (2012), s. 12-19 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : fatigue * mode II * bcc iron * molecular dynamic simulations Subject RIV: JG - Metallurgy Impact factor: 1.878, year: 2012 http://www.sciencedirect.com/science/article/pii/S0927025612001929

  4. "Soft"or "hard" ionisation? Investigation of metastable gas temperature effect on direct analysis in real-time analysis of Voriconazole.

    Science.gov (United States)

    Lapthorn, Cris; Pullen, Frank

    2009-01-01

    The performance of the direct analysis in real-time (DART) technique was evaluated across a range of metastable gas temperatures for a pharmaceutical compound, Voriconazole, in order to investigate the effect of metastable gas temperature on molecular ion intensity and fragmentation. The DART source has been used to analyse a range of analytes and from a range of matrices including drugs in solid tablet form and preparations, active ingredients in ointment, naturally occurring plant alkaloids, flavours and fragrances, from thin layer chromatography (TLC) plates, melting point tubes and biological matrices including hair, urine and blood. The advantages of this technique include rapid analysis time (as little as 5 s), a reduction in sample preparation requirements, elimination of mobile phase requirement and analysis of samples not typically amenable to atmospheric pressure ionisation (API) techniques. This technology has therefore been proposed as an everyday tool for identification of components in crude organic reaction mixtures.

  5. Effect of cooling rate on the phase structure and magnetic properties of Fe{sub 26.7}Co{sub 28.5}Ni{sub 28.5}Si{sub 4.6}B{sub 8.7}P{sub 3} high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ran; Sun, Huan; Chen, Chen [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Han, Zhenhua [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710068 (China); Li, Fushan, E-mail: fsli@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2017-08-01

    Highlights: • High entropy alloy with amorphous phase and FCC solid solution phase are successfully developed respectively. • The amorphous phase exhibits better soft magnetic properties than that of the solid solution phase. • The BCC phase transformed into FCC phase, and then into BCC phase was found in this HEA. - Abstract: The effect of cooling rate on phase structure and magnetic properties of the Fe{sub 26.7}Co{sub 28.5}Ni{sub 28.5}Si{sub 4.6}B{sub 8.7}P{sub 3} high entropy alloy (HEA) was investigated. The HEA forms into amorphous phase by melt spinning method at high cooling rate and FCC solid solution phase at low cooling rate. The soft magnetic properties of the amorphous phase (saturation magnetization B{sub s} of 1.07T and coercivity H{sub c} of 4 A/m) are better than that of the solid solution phase (B{sub s} of 1.0 T and H{sub c} of 168 A/m). In order to study the phase evolution of the present HEA, anneal experiments were conducted. It is found that crystallization products of amorphous phase are solid solution phase which constitute much of FCC and a small amount of BCC. BCC phase transforms into FCC phase, and then into BCC phase with the increase of annealing temperature.

  6. Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation

    Science.gov (United States)

    Narayanan, Sankar; McDowell, David L.; Zhu, Ting

    2014-04-01

    The mobility of dislocation in body-centered cubic (BCC) metals is controlled by the thermally activated nucleation of kinks along the dislocation core. By employing a recent interatomic potential and the Nudged Elastic Band method, we predict the atomistic saddle-point state of 1/2 screw dislocation motion in BCC iron that involves the nucleation of correlated kinkpairs and the resulting double superkinks. This unique process leads to a single-humped minimum energy path that governs the one-step activation of a screw dislocation to move into the adjacent {110} Peierls valley, which contrasts with the double-humped energy path and the two-step transition predicted by other interatomic potentials. Based on transition state theory, we use the atomistically computed, stress-dependent kinkpair activation parameters to inform a coarse-grained crystal plasticity flow rule. Our atomistically-informed crystal plasticity model quantitatively predicts the orientation dependent stress-strain behavior of BCC iron single crystals in a manner that is consistent with experimental results. The predicted temperature and strain-rate dependencies of the yield stress agree with experimental results in the 200-350 K temperature regime, and are rationalized by the small activation volumes associated with the kinkpair-mediated motion of screw dislocations.

  7. Metastable liquid-liquid transition in a molecular model of water

    Science.gov (United States)

    Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2014-06-01

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  8. Synthesis and characterization of metastable, 20 nm-sized Pna2{sub 1}-LiCoPO{sub 4} nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Jennifer [Technical University of Munich, Department of Chemistry, Synthesis and Characterization of Innovative Materials, Lichtenbergstr. 4, 85747 Garching (Germany); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Doeff, Marca M. [Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Nilges, Tom, E-mail: tom.nilges@lrz.tum.de [Technical University of Munich, Department of Chemistry, Synthesis and Characterization of Innovative Materials, Lichtenbergstr. 4, 85747 Garching (Germany)

    2017-04-15

    The majority of research activities on LiCoPO{sub 4} are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna2{sub 1} modification. Herein, we present a comprehensive study on the structure–property relationships of 15–20 nm Pna2{sub 1}-LiCoPO{sub 4} nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L{sub 2,3}-edge X-ray absorption spectroscopic data confirm the local tetrahedral symmetry of Co{sup 2+}. Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO{sub 4} at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated. - Graphical abstract: Blue nano-sized Pna2{sub 1}-LiCoPO{sub 4,} featuring tetrahedrally-coordinated Co{sup 2+}, was synthesized in a rapid one-step microwave-assisted solvothermal process. The phase relation between this metastable and the stable polymorph was analyzed and electrochemical properties are discussed. - Highlights: • Preparation of uniform 15–20 nm nanospheres of metastable Pna2{sub 1}-LiCoPO{sub 4} polymorph. • Structure redetermination shows cation-mixing (Co blocking Li sites). • In situ investigation of phase transformation to olivine Pnma-LiCoPO{sub 4} at 527 °C. • Pna2{sub 1}-LiCoPO{sub 4} reemerges as a stable high-temperature phase above 800 °C. • X-ray absorption spectroscopy confirms local tetrahedral symmetry (T{sub d} Co{sup 2+}).

  9. Heterophase fluctuation of omega phase and X-ray diffuse scattering from dual phase structure

    International Nuclear Information System (INIS)

    Farjami, Susan; Kubo, Hiroshi

    2003-01-01

    Heterophase fluctuation of athermal omega embryos has been analyzed by assuming a dual phase structure of omega embryos composed of omega and bcc matrix phase. The two-dimensional modulation of dual phase was suggested from the quantitative estimation of coherent free energy of omega embryos using microscopic theory of elasticity and the Landau anharmonic theory for phase transformation. The X-ray diffraction theory was developed in connection to the formation of omega embryos having the dual phase structure. The offset of the diffuse peak position from the ideal omega point in the X-ray diffraction pattern is attributed to the dual phase (incommensurate phase) of omega embryos. It was also shown that the ellipsoidal shape of the diffuse intensity tailing toward the fundamental spot of the matrix phase is originated from the equilibrium shape of the omega embryo. The quantitative estimation of elastic energy modulus (EEM) in the disordered bcc matrix and in the ordered bcc matrix indicates a difference in the deviation amount of the minimum point k(q m ) from the ideal omega point k(q ω ) and a difference in the elliptical shape of embryos

  10. Solubility and partitioning of hydrogen in meta-stable ZR-based alloys used in the nuclear industry

    International Nuclear Information System (INIS)

    Khatamian, D.

    1998-11-01

    Terminal solubility and partitioning of hydrogen in Zr-Nb alloys with different Nb concentrations were examined using differential scanning calorimetry and hot vacuum extraction mass spectrometry. Specimens were charged to different concentrations of hydrogen and annealed at 1123 K to generate a two-phase structure consisting of α-Zr (Zr-0.6 wt.% Nb) and meta-stable β-Zr (Zr-20 wt.% Nb) within the alloy. Specimens were aged at 673 and 773 K for up to 1000 h to evaluate the effect of the decomposition of the meta-stable β-Zr to α-Zr + β-Nb on the solubility limit. The results show that the solubility limit for hydrogen in the annealed Zr-Nb alloys is higher than in unalloyed Zr and that the solubility limit increases with the Nb concentration of the alloy. They also show that the hydrogen solubility limits of the completely aged Zr-Nb alloys are similar and approach the values for pure α-Zr. The solubility ratio of hydrogen in β-Zr (Zr-20 wt.% Nb) to that in α-Zr (Zr-0.6 wt.% Nb) was found to range from 9 to 7 within the temperature range of 520 to 580 K. (author)

  11. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  12. Theoretical investigations of the IO,{sup q+} (q = 2, 3, 4) multi-charged ions: Metastability, characterization and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hammami, H. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); EMIR, Institut Préparatoire aux Etudes d’Ingénieurs, Monastir (Tunisia); Yazidi, O. [Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Le Belvédère, 1060 Tunis (Tunisia); Ben El Hadj Rhouma, M. [EMIR, Institut Préparatoire aux Etudes d’Ingénieurs, Monastir (Tunisia); Al Mogren, M. M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2014-07-07

    Using ab initio methodology, we studied the IO{sup q+} (q = 2, 3, 4) multi-charged ions. Benchmark computations on the IO(X{sup 2}Π) neutral species allow validate the current procedure. For IO{sup 2+}, several potential wells were found on the ground and the electronic excited states potentials with potential barriers with respect to dissociation, where this dication can exist in the gas phase as long-lived metastable molecules. We confirm hence the recent observation of the dication by mass spectrometry. Moreover, we predict the existence of the metastable IO{sup 3+} trication, where a shallow potential well along the IO internuclear distance is computed. This potential well supports more than 10 vibrational levels. The IO{sup 3+} excited states are repulsive in nature, as well as the computed potentials for the IO{sup 4+} tetracation. For the bound states, we give a set of spectroscopic parameters including excitation transition energies, equilibrium distances, harmonic and anharmonic vibrational terms, and rotational constants. At the MRCI + Q/aug-cc-pV5Z(-PP) level, the adiabatic double and triple ionization energies of IO are computed to be ∼28.1 eV and ∼55.0 eV, respectively.

  13. Effect of annealing on metastable shallow acceptors in Mg-doped GaN layers grown on GaN substrates

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Paskov, Plamen P.; Bergman, Peder; Monemar, Bo; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.

    2008-01-01

    Mg-doped GaN layers grown by metal-organic vapor phase epitaxy on GaN substrates produced by the halide vapor phase technique demonstrate metastability of the near-band-gap photoluminescence (PL). The acceptor bound exciton (ABE) line possibly related to the C acceptor vanishes in as-grown samples within a few minutes under UV laser illumination. Annealing activates the more stable Mg acceptors and passivates C acceptors. Consequently, only the ABE line related to Mg is dominant in PL spectra...

  14. Determinants of adherence to therapies among Malaysian women with breast cancer: MyBCC Cohort

    Directory of Open Access Journals (Sweden)

    Mao Li Cheng

    2017-12-01

    Full Text Available Background: Breast cancer therapies have been progressively advancing to improve the breast cancer survival over the last few decades. However, non-adherence to cancer treatments has shown to be associated with reduced treatment effectiveness, increased mortality, and increased health care costs. The aim of the study is to understand the determinants of adherence to therapies among Malaysian breast cancer patients. Methods: This was a secondary analysis of all newly diagnosed Malaysian breast cancer patients recruited into a prospective cohort study in Universiti Malaya Medical Centre, MyBCC cohort, from 1st February 2012 to 31st December 2015. The MyBCC cohort study has ethics approval, MEC number 896.150. The treatment options (surgery, chemotherapy, radiotherapy, and overall therapies, surgical options, socio-demographic characteristics, clinical signs and symptoms, traditional and complementary medicine, and psychosocial assessments were measured using Hospital Anxiety and Depression Scale (HADS and Multidimensional Scale of Perceived Social Support (MSPSS. Results: In total, 467 patients were analysed. The adherence to surgery was 93.8%, chemotherapy 87.7%, radiotherapy 89.1%, and overall therapies 65.8% respectively. Breast conserving surgery was associated with adherence to surgery compared to mastectomy (adjusted OR 5.48 [95% CI 1.00, 30.09], p = 0.034, radiotherapy (adjusted OR 5.44 [95% CI 1.17, 25.16], p = 0.030 and overall therapies (adjusted OR 2.45 [95% CI 1.04, 5.78], p = 0.041. Time from diagnosis to surgery of less than 60 days was associated with adherence to surgery (adjusted OR 49.98 [95% CI 8.47, 289.05], p less than 0.0001 and overall therapies (adjusted OR 9.38 [95% CI 1.26, 69.73], p = 0.029. Adherence to chemotherapy associated with no surgery (adjusted OR 0.15 [95% CI 0.03, 0.70], p = 0.016. Adherence to radiotherapy was associated with financial reimbursement (adjusted OR 4.34 [95% CI 1.03, 18.26], p = 0.045 and

  15. Development of a new formulation of interferons (HEBERPAG for BCC treatment

    Directory of Open Access Journals (Sweden)

    Bello-Rivero I

    2013-12-01

    Full Text Available Purpose: This work is aimed to show briefly, the clinical development of a new pharmaceutical formulation of interferons for the treatment of basal cell carcinoma. Methods: A rationale design of the combination of IFN-α2b and -γ based in their anti-proliferative synergism on several tumors cell lines identified adequate proportions to be combined to obtain the best clinical results. The potential mechanism of antitumoral effect was studied by qPCR mRNA quantification. HEBERPAG (anti-proliferative synergistic combination of co-formulated recombinant interferons-α2b and –γ was used in clinical trials in adult patients with non-melanoma skin cancer. Trials were conducted after approval by the ethics review boards of the institutions participating in trials; and the patients gave their written informed consent to be enrolled in the studies and receive HEBERPAG. Results: HEBERPAG inhibits the proliferation of several tumor cell lines in vitro and in vivo. The combination has improved pharmacodinamic properties. Several clinical trials have demonstrated the efficacy of HEBERPAG in BCC, with excellent cosmetic effect and well tolerable, mild side effects. HEBERPAG was approved by State Control Center for Drug, Medical Equipment and Devises in Cuba, for the treatment of basal cell carcinoma of any subtype, size and localization, and adjuvant to other treatments, surgical or not. After 3-year follow-up, a recurrence rate of 0.03% was detected in treated patients. Conclusions: HEBERPAG is a novel formulation of IFNs, more potent than separated IFNs for the treatment of basal cell carcinoma, with more rapid and prolonged clinical effect and excellent cosmetic effect and safety profile.

  16. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    International Nuclear Information System (INIS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A.D.P.; Valsakumar, M.C.

    2017-01-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  17. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bukkuru, S., E-mail: srinivasaraobukkuru@gmail.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Bhardwaj, U., E-mail: haptork@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Warrier, M., E-mail: manoj.warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Rao, A.D.P., E-mail: adp_rao_99@yahoo.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Valsakumar, M.C., E-mail: mc.valsakumar@gmail.com [IIT Palakkad, Kozhippara P.O., Palakkad 678557, Kerala (India)

    2017-02-15

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  18. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals

    Directory of Open Access Journals (Sweden)

    Yu-Wei You

    2013-01-01

    Full Text Available First-principles calculations are performed to investigate the dissolving, trapping and detrapping of H in six bcc (V, Nb, Ta, Cr, Mo, W and six fcc (Ni, Pd, Pt, Cu, Ag, Au metals. We find that the zero-point vibrations do not change the site-preference order of H at interstitial sites in these metals except Pt. One vacancy could trap a maximum of 4 H atoms in Au and Pt, 6 H atoms in V, Nb, Ta, Cr, Ni, Pd, Cu and Ag, and 12 H atoms in Mo and W. The zero-point vibrations never change the maximum number of H atoms trapped in a single vacancy in these metals. By calculating the formation energy of vacancy-H (Vac-Hn complex, the superabundant vacancy in V, Nb, Ta, Pd and Ni is demonstrated to be much more easily formed than in the other metals, which has been found in many metals including Pd, Ni and Nb experimentally. Besides, we find that it is most energetically favorable to form Vac-H1 complex in Pt, Cu, Ag and Au, Vac-H4 in Cr, Mo and W, and Vac-H6 in V, Nb, Ta, Pd and Ni. At last, we examine the detrapping behaviors of H atoms in a single vacancy and find that with the heating rate of 10 K/min a vacancy could accommodate 4, 5 and 6 H atoms in Cr, Mo and W at room temperature, respectively. The detrapping temperatures of all H atoms in a single vacancy in V, Nb, Ta, Ni, Pd, Cu and Ag are below room temperature.

  19. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  20. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Katahara, K.W.; Manghnani, M.H.; Ming, L.C.; Fisher, E.S.

    1976-01-01

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/