WorldWideScience

Sample records for metastable ag-cu alloys

  1. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  2. Combined transmission electron microscope and ion channeling study of metastable metal alloys formed by ion implantation

    International Nuclear Information System (INIS)

    Cullis, A.G.; Borders, J.A.; Hirvonen, J.K.; Poate, J.M.

    1977-01-01

    Recently, ion implantation has been used to produce metastable alloy layers with a range of structures from crystalline substitutional solid solutions to amorphous. The technique offers the possibility of producing metastable metal layers with unique physical properties. Its application in the formation of alloys exhibiting different although complementary types of metastability is described. The metal combinations chosen (Ag-Cu and Ta-Cu) show little mutual solubility under equilibrium conditions

  3. Aging properties studies in a Cu-Ag-Cr Alloy

    International Nuclear Information System (INIS)

    Jia, S.G.; Zheng, M.S.; Liu, P.; Ren, F.Z.; Tian, B.H.; Zhou, G.S.; Lou, H.F.

    2006-01-01

    A Cu-Ag-Cr alloy was produced by means of vacuum induction melting. The effects of aging processes on microhardness and conductivity of Cu-Ag-Cr alloy were studied. The microstructure of the alloy was examined using transmission electron microscope (TEM). Aging at 450 deg. C for 4 h, the alloy has an excellent combination of microhardness and conductivity, the microhardness and conductivity reach 132 HV and 80% IACS, respectively. The precipitates responsible for the age-hardening effect are fcc Cr. The fine and dispersed precipitates are fully coherent with the Cu matrix and make the Cu-Ag-Cr alloy possesses higher hardness and conductivity

  4. Devitrification behavior and glass-forming ability of Cu-Zr-Ag alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Xie, Guoqiang; Zhang, Wei; Inoue, Akihisa

    2007-01-01

    This paper presents an influence of Ag addition on the glass-forming ability and devitrification behavior of Cu-Zr glassy alloys on heating. The crystallization kinetics and structure changes in Cu 45 Zr 45 Ag 10 and Cu 35 Zr 45 Ag 20 glassy alloys on heating were studied by X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. Based on the results obtained one can assume that the improvement of the glass-forming ability of the Cu-Zr alloys by the addition of Ag is connected with a particular crystallization mechanism and a higher reduced glass-transition temperature of the Cu 45 Zr 45 Ag 10 ternary alloy compared to the binary Cu 55 Zr 45 counterpart. As observed in the present work crystallization of the Cu-Zr-Ag alloys is found to cause embitterment of the samples and should be avoided as these alloys are considered to be used as structural materials. The Cu 35 Zr 45 Ag 20 alloy shows possible submicron-scale phase separation upon annealing

  5. Steady state creep during metastable phase transition in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Youssef, S.B.; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1998-08-16

    The early stages of decomposition of Guinier-Preston zones (G.P. zones) in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys were investigated through creep measurements and electron microscopy observations. It was found that the strengthening and softening of the alloys has been achieved during the formation of metastable phases (G.P. zones and {gamma}`-phase) in the ageing temperature range (428 to 498 K). TEM investigations confirmed that the addition of zirconium to the Al-Ag alloy accelerates the formation and coarsening of the metastable phases. The mean values of activation energy of both alloys were found to be equal to that quoted for precipitate-dislocation interactions. (orig.) 23 refs.

  6. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding

    International Nuclear Information System (INIS)

    Jia, S.G.; Liu, P.; Ren, F.Z.; Tian, B.H.; Zheng, M.S.; Zhou, G.S.

    2005-01-01

    The wear behavior of a Cu-Ag-Cr alloy contact wire against a copper-base sintered alloy strip was investigated. Wear tests were conducted under laboratory conditions with a special sliding wear apparatus that simulated train motion under electrical current conditions. The initial microstructure of the Cu-Ag-Cr alloy contact wire was analyzed by transmission electron microscopy. Worn surfaces of the Cu-Ag-Cr alloy wire were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the wear rate of the Cu-Ag-Cr wire increased with increasing electrical current and sliding. Within the studied range of electrical current, the wear rate increases with increasing electrical current and sliding speed. Compared with the Cu-Ag contact wire under the same testing conditions, the Cu-Ag-Cr alloy wire has much better wear resistance. Adhesive, abrasive, and electrical erosion wear are the dominant mechanisms during the electrical sliding processes

  7. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  8. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.

  9. Local structure of disordered Au-Cu and Au-Ag alloys

    International Nuclear Information System (INIS)

    Frenkel, A. I.; Machavariani, V. Sh.; Rubshtein, A.; Rosenberg, Yu.; Voronel, A.; Stern, E. A.

    2000-01-01

    X-ray-absorption fine structure (XAFS) and x-ray-diffraction (XRD) measurements of disordered alloys Au x Cu 1-x and Au 0.5 Ag 0.5 prepared by melt spinning were performed. In the Au 0.5 Ag 0.5 alloy, no significant local deviations of the atoms from the average fcc lattice were detected while in Au x Cu 1-x alloys, significant deviations of atoms from the average fcc lattice were found. Mean-square vibrations of the Cu-Cu distances revealed by the XAFS in Au x Cu 1-x alloys indicate the weakening of contact between Cu atoms in the dilute limit. Our computer simulation for Au x Cu 1-x clusters of 10 5 atoms reproduces the main features of both the XAFS and XRD data

  10. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    Lecong Dzuong; Do Minh Nghiep; Nguyen van Dzan; Cao the Ha

    1996-01-01

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  11. Relationship between Microstructure and Properties of Cu-Cr-Ag-(Ce) Alloy Using Microscopic Investigation.

    Science.gov (United States)

    Chen, Huiming; Yuan, Dawei; Wu, Shanjiang; Wang, Hang; Xie, Weibin; Yang, Bin

    2017-01-01

    Microstructure, precipitation hardening response, and mechanical and physical properties of Cu-Cr-Ag alloy and Cu-Cr-Ag-Ce alloy have been investigated using transmission electron microscopy, scanning electron microscope, optical microscope, electrical conductivity analysis, and tensile test. The influence of element Ce on the matrix refinement, impurity removal, and precipitation in the Cu-Cr-Ag alloys has been analyzed. The experimental results show that the strength and electrical conductivity of Ce containing alloys are greater than those of Ce-free alloys after each processing step. Improvement of strength and electrical conductivity of the Cu-Cr-Ag alloy by adding Ce element is attributed to removing oxygen and sulfur from as-cast alloy.

  12. Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying

    Science.gov (United States)

    Barman, Sajib K.; Huda, Muhammad N.

    2018-04-01

    As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.

  13. Synthesis of Ag-Cu and Ag-Cu{sub 2}O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Niknafs, Yasaman; Amirjani, Amirmostafa; Marashi, Pirooz, E-mail: pmarashi@aut.ac.ir; Fatmehsari, Davoud Haghshenas

    2017-03-01

    In this paper, Ag, Ag-Cu and Ag-Cu{sub 2}O nanoparticles were synthesized using a modified polyol method. Size, shape and composition of the obtained nanostructures were effectively controlled by adjusting the kinetic and thermodynamic conditions. Response surface methodology was employed to consider the interaction of parameters and to develop a polynomial equation for predicting the size of the silver nanoparticles. The precisely controlled silver nanoaprticles were used as the seeds for the formation of alloyed nanoparticles. By manipulating the involved parameters, both spherical and cubical Ag-Cu and Ag-Cu{sub 2}O nanostructures are obtainable in the size range of 90–100 nm. The morphological, optical and compositional characteristics of the obtained nanostructures were studied using SEM, FE-SEM, UV–Vis, EDS and XRD. - Highlights: • Synthesis of Ag, Ag-Cu and Ag-Cu{sub 2}O alloy nanostructures. • RSM was successfully employed for predicting the size of the AgNPs. • Size and composition tuning by adjusting the kinetic and thermodynamic conditions.

  14. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  15. Tem Observation Of Precipitate Structures In Al-Zn-Mg Alloys With Additions Of Cu/Ag

    Directory of Open Access Journals (Sweden)

    Watanabe K.

    2015-06-01

    Full Text Available Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2at.% and the same as, respectively. Ag or Cu added alloy showed higher maximum hardness than base alloy. The particle shape and rod shape precipitates were observed in all alloys peak-aged at 423K. According to addition of Ag or Cu, the number density of the precipitates increased higher than that of base alloy.

  16. Stability of nanosized alloy thin films: Faulting and phase separation in metastable Ni/Cu/Ag-W films

    International Nuclear Information System (INIS)

    Csiszár, G.; Kurz, S.J.B.; Mittemeijer, E.J.

    2016-01-01

    A comparative study of Me(=Ni/Cu/Ag)-based, W-alloyed, nanocrystalline, heavily faulted thin films was carried out to identify parameters stabilizing the nanocrystalline nature upon thermal treatment. The three systems, initially of comparably, heavily twinned (twin boundaries at spacings of 1–5 nm) microstructures showed similarities but also strikingly different behaviours upon annealing, as observed by application of in particular X-ray diffraction (line-broadening) analysis and (high resolution) transmission electron microscopy. During annealing in the range of 30–600 °C, (i) segregation at the planar faults (for Me = Ni) and at grain boundaries (for Me = Ni,Cu,Ag), as well as nanoscale phase separation (for Me = Cu,Ag) take place, (ii) distinct grain growth does not occur and (iii) the twin boundaries either are largely preserved ((Ni(W) and Ag(W)) or disappear totally (Cu(W))), which was ascribed to an altered faulting energy, due to change of the amount of W segregated at the twin boundaries, and to the evolution of nano-precipitates. The nanosized films exhibit very large internal (macro)stresses parallel to the surface, which change during annealing in the range of 1 GPa (tensile) to −3 GPa (compressive) and thus are sensitive to the microstructural changes in the films (decomposition and relaxation) that happen on a nanoscale. The results are discussed in terms of thermodynamic and/or kinetic constraints controlling these processes and thus the thermal stability of the systems concerned.

  17. Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr

    International Nuclear Information System (INIS)

    Muolo, M.L.; Ferrera, E.; Novakovic, R.; Passerone, A.

    2003-01-01

    Sintered ZrB 2 ceramics, pure and with 4 wt.% Ni as sintering aid, have been tested in contact with liquid Ag, Cu, Ag-Cu and Ag-Cu-Zr. ''Pure'' ZrB 2 ceramics are wetted by Ag-Zr alloys, and ZrB 2 /Ni ceramics also by pure Cu. The wetting behaviour is briefly discussed in terms of existing wetting theories

  18. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  19. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    International Nuclear Information System (INIS)

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  20. Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys

    International Nuclear Information System (INIS)

    Hecht, U; Witusiewicz, V; Drevermann, A

    2012-01-01

    Coupled eutectic growth of Al and Al 2 Cu was investigated in univariant Al-Cu-Ag alloys during solidification with planar and cellular morphology. Experiments reveal the dynamic selection of small spacings, below the minimum undercooling spacing and show that distinct morphological features pertain to nearly isotropic or anisotropic Al-Al 2 Cu interfaces.

  1. Microstructure and mechanical properties of Al-Cu-Mg-Mn-Zr alloy with trace amounts of Ag

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Pan Qinglin; Lu Congge; He Yunbin; Li Wenbin; Liang Wenjie

    2009-01-01

    The microstructure and mechanical properties of Al-Cu-Mg-(Ag)-Mn-Zr alloys were studied by means of tensile testing, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that small additions of Ag to Al-Cu-Mg-Mn-Zr alloy can accelerate the hardening effect of the aged alloy and reduce the time to peak-aged. The mechanical properties can be improved both at room temperature and at elevated temperatures, which is attributed to the fine and uniform plate-like Ω precipitates. Meanwhile the ductility of the studied alloys remains at relatively high level. The major strengthening phases of the Ag-free alloy are θ' and less S', while that of Al-Cu-Mg-Mn-Zr alloy containing trace amounts of Ag are Ω and less θ'.

  2. Experimental study of the spin density of metastable fcc ferromagnetic Fe-Cu alloys

    International Nuclear Information System (INIS)

    Bove, L. E.; Petrillo, C.; Sacchetti, F.; Mazzone, G.

    2000-01-01

    Magnetization density measurements on metastable Fe x Cu 1-x alloys at four compositions (x=20, 40, 50, and 60 at. %) and at 5 K temperature were carried out by means of polarized neutron diffraction. The samples were produced by high-energy ball milling and characterized by x-ray diffraction and fluorescence measurements. Additional bulk magnetization measurements were carried out on the two samples at high Fe concentration. Over the present concentration region, the Fe-Cu system is ferromagnetic and the four samples were found to be in the fcc phase. Fe-Cu is therefore a very suitable system to investigate the magnetic state of Fe in an fcc environment. Other than confirming that the Fe-Cu system is not a simple dilution alloy, the present results were compatible with a two-state model for fcc Fe--that is, two different coexisting electronic states associated with different magnetic moments and form factors

  3. Electronic structure of disordered Cu-Ag alloys

    International Nuclear Information System (INIS)

    Razee, S.S.A.

    1994-08-01

    We present a self-consistent-field Korringa-Kohn-Rostoker coherent potential approximation study of the electronic structure of disordered Cu x Ag 1-x alloys for x=0.0, 0.25, 0.50, 0.75 and 1.0. In particular, we focus on the Fermi surface, density of states, and Bloch spectral density, and study how they evolve as a function of x. We find that, Fermi surface dimensions have a non-linear composition dependence. The disorder-induced smearing of the Fermi surface, as expected, is very high along the direction; both the Cu and Ag Fermi surfaces have a neck in this direction. Whenever possible we have compared our results with the available experimental data. (author). 34 refs, 4 figs

  4. Atomistic study of self-diffusion in Cu-Ag immiscible alloy system

    International Nuclear Information System (INIS)

    Zhang Jianmin; Chen Gouxiang; Xu Kewei

    2006-01-01

    Combining molecular dynamic (MD) simulation with modified analytic embedded-atom method (MAEAM) potential, the formation, migration and activation energies have been calculated for four-kind migrations of Cu vacancy and three-kind migrations of Ag vacancy in Cu-Ag immiscible alloy system. The equilibrium concentration of Cu vacancies is greater than that of Ag vacancies owing to the formation energy of Cu vacancy (1.012 eV) is lower than that of Ag vacancy (1.169 eV). Comparing the migration or activation energy needed for four-kind migrations of Cu vacancy and three-kind migrations of Ag vacancy show that the favorable migration mechanism is the nearest-neighbor (NN) jump for Cu vacancy, while the straight [0 1 0] six-jump cycle (6JC) for Ag vacancy. Furthermore, the activation energy of the NN jump of Cu vacancy (2.164 eV) is lower than that of straight [0 1 0] 6JC of Ag vacancy (2.404 eV) also show that the former is more favorable. We conclude accordingly that the primary migration mechanism is the NN jump of an abundance of Cu vacancies

  5. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  6. Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy

    International Nuclear Information System (INIS)

    Xiao-Mei, Zhang; Wei-Li, Wang; Ying, Ruan; Bing-Bo, Wei

    2010-01-01

    Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe 47.5 Cu 47.5 Sn 5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51–329 K (0.19T L ). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling. (condensed matter: structure, mechanical and thermal properties)

  7. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  8. Coincidence Doppler broadening and 3DAP study of the pre-precipitation stage of an Al-Li-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Honma, T.; Yanagita, S.; Hono, K.; Nagai, Y.; Hasegawa, M.

    2004-01-01

    Pre-precipitation solute clustering in Al-Li-Cu-Mg-Ag and Al-Cu-Mg-Ag alloys has been investigated by coincidence Doppler broadening (CDB) spectroscopy of positron annihilation and three-dimensional atom probe (3DAP) analysis. Although Ag-Mg co-clusters form in the Al-Cu-Mg-Ag alloy in the early stage of aging, no evidence for the co-cluster formation was obtained from the Li containing alloy using 3DAP. While CDB spectra indicated that vacancies are associated with Ag after aging for 15 s in the Al-Cu-Mg-Ag alloy, vacancy-Ag association is suppressed in the Li containing alloy. Based on the 3DAP and CDB results, the reasons for the completely different clustering behaviors observed in these two similar alloys are discussed

  9. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    Science.gov (United States)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  10. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  11. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  12. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite

    International Nuclear Information System (INIS)

    Liu, K.M.; Lu, D.P.; Zhou, H.T.; Atrens, A.; Zou, J.; Yang, Y.L.; Zeng, S.M.

    2010-01-01

    This paper studied Ag micro-alloying in the deformation-processed Cu-14Fe in situ composite, by a comparison of Cu-14Fe and Cu-14Fe-0.06Ag. Each alloy was prepared by casting and processed into an in situ composite by hot and cold working. The microstructures were documented using light microscopy and scanning electron microscopy (SEM). The mechanical properties were measured with a tensile-testing machine. The electrical conductivity was measured with a micro-ohmmeter. For both alloys, the as-cast microstructure consisted of a Cu matrix and Fe dendrites; after hot and cold working the microstructure consisted of a Cu matrix containing Fe fibres elongated in the working direction. The as-cast Ag-containing alloy contained finer Fe dendrites. The Ag-containing in situ composite had thinner Fe fibres, higher tensile strength, higher ductility, and higher conductivity. The cold worked Cu-14Fe-0.06Ag in situ composite with cumulative cold deformation strain η = 7.8 (where η = ln(A 0 /A) and A 0 and A are the original and final cross-section areas, respectively), achieved a tensile strength of 930 MPa and a conductivity of 56%IACS (International Annealed Copper Standard; 17.241 nΩ m is defined as 100%IACS). The Ag micro-alloyed in situ composite had a combination of properties comparable to that of a much more expensive alloy containing much more Ag. After 1 h heat treatment at 300 deg. C, the tensile strength was increased to 950 MPa and the conductivity was increased to 56.4%IACS.

  13. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-01-01

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity

  14. The liquid metastable miscibility gap in Cu-based systems

    DEFF Research Database (Denmark)

    Curiotto, S.; Greco, R.; Pryds, Nini

    2007-01-01

    Some Cu-based alloys, like Cu–Co, Cu–Fe and Cu–Co–Fe, display a liquid metastable miscibility gap. When the melt is undercooled below a certain temperature depending on the alloy composition, they present a separation in two liquid phases, followed by coagulation before dendritic solidification....... In order to predict the phase equilibria and the mechanisms of microstructure formation, a determination of the metastable monotectics in the phase diagrams is essential. This paper focuses on the up-to-date findings on the Cu–Co, Cu–Fe and Cu–Co–Fe metastable miscibility gap in the liquid phase...

  15. The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture

    Directory of Open Access Journals (Sweden)

    Yu Kyoung Kim

    2013-01-01

    Full Text Available The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.

  16. The effects of adding elements of zinc and magnesium on ag-cu eutectic alloy for warming acupuncture.

    Science.gov (United States)

    Kim, Yu Kyoung; Park, Il Song; Kim, Keun Sik; Lee, Min Ho

    2013-01-01

    The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.

  17. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys

    Science.gov (United States)

    Gable, B. M.; Shiflet, G. J.; Starke, E. A.

    2006-04-01

    The coarsening resistance and thermal stability of several Ω plate-dominated microstructures were controlled through altering the chemistry and thermomechanical processing of various Al-Cu-Mg-Ag alloys. Quantitative comparisons of Ω nucleation density, particle size, and thermal stability were used to illustrate the effects of alloy composition and processing conditions. The long-term stability of Ω plates was found to coincide with relatively high levels of silver and moderate magnesium additions, with the latter limiting the competition for solute with S-phase precipitation. This analysis revealed that certain microstructures initially dominated by Ω precipitation were found to remain stable through long-term isothermal and double-aging heat treatments, which represents significant improvement over the previous generation of Al-Cu-Mg-Ag alloys, in which Ω plates dissolved sacrificially after long aging times. The quantitative precipitate data, in conjunction with a thermodynamic database for the aluminum-rich corner of the Al-Cu-Mg-Ag quaternary system, were used to estimate the chemistry of the α/Ω-interphase boundary. These calculations suggest that silver is the limiting species at the α/Ω interfacial layer and that Ω plates form with varying interfacial chemistries during the early stages of artificial aging, which is directly related to the overall stability of certain plates.

  18. Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM

    Directory of Open Access Journals (Sweden)

    Armen Kvryan

    2016-04-01

    Full Text Available The nature of microgalvanic couple driven corrosion of brazed joints was investigated. 316L stainless steel samples were joined using Cu-Ag-Ti and Cu-Ag-In-Ti braze alloys. Phase and elemental composition across each braze and parent metal interface was characterized and scanning Kelvin probe force microscopy (SKPFM was used to map the Volta potential differences. Co-localization of SKPFM with Energy Dispersive Spectroscopy (EDS measurements enabled spatially resolved correlation of potential differences with composition and subsequent galvanic corrosion behavior. Following exposure to the aggressive solution, corrosion damage morphology was characterized to determine the mode of attack and likely initiation areas. When exposed to 0.6 M NaCl, corrosion occurred at the braze-316L interface preceded by preferential dissolution of the Cu-rich phase within the braze alloy. Braze corrosion was driven by galvanic couples between the braze alloys and stainless steel as well as between different phases within the braze microstructure. Microgalvanic corrosion between phases of the braze alloys was investigated via SKPFM to determine how corrosion of the brazed joints developed.

  19. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  20. First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au

    International Nuclear Information System (INIS)

    Wolverton, C.; Ozolins, V.; Zunger, A.

    1998-01-01

    We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American

  1. Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

    DEFF Research Database (Denmark)

    Sopousek, J.; Palcut, Marián; Hodúlová, Erika

    2010-01-01

    The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching...... to room temperature. The samples were analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry...

  2. Effect of microstructure on corrosion behavior of Ag-30Cu-27Sn alloy in vitro media

    International Nuclear Information System (INIS)

    Salehisaki, Mehdi; Aryana, Maryam

    2014-01-01

    Highlights: • High cooling rates decrease the number of Ag intermetallic particles in Cu-rich phase. • Increasing cooling rate improves corrosion behavior of Ag-30Cu-27Sn dental alloy. • Cathode/anode ratio in Cu-rich phases determines the corrosion behavior of alloy. - Abstract: In the present work, three simple heat treatment cycles were used to study the effects of microstructure on electrochemical corrosion behavior of Ag-30Cu-27Sn dental alloy. The electrochemical impedance spectroscopy (EIS) measurements and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of as-cast and heat treated samples in synthetic saliva solution. The presence of intermetallic compounds were studied by X-ray diffraction method (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDAX). The microstructural observations and electrochemical corrosion results revealed that, increasing the cooling rate improves the corrosion behavior of under investigation samples. Improvement of the corrosion behavior is attributed to reducing the area of fine distributed Ag 3 Sn islands in the Cu-rich matrix which decrease the cathode/anode ratio of microgalvanic cells

  3. Effect of composition on the fabrication and properties of Ag-Cu alloy sheathed (Bi,Pb)2223 tapes

    International Nuclear Information System (INIS)

    Nakamura, Yuichi; Nakashima, Sohei; Inada, Ryoji; Oota, Akio

    2004-01-01

    To achieve high J c values as well as high mechanical strength, the effects of Ag-Cu alloy sheath and initial composition of precursor on the microstructure and J c properties of Ag-Cu alloy sheathed tapes were investigated. The alkaline-earth cuprate particles were found to form preferentially near the interface between superconducting core and sheath. Although the worse (Bi,Pb)2223 purity and microstructure of alloy sheathed tapes, the reduction of J c values of the tapes was small especially in 7-filaments tapes. This might be explained by the well grain alignment of (Bi,Pb)2223 into the middle region of the filament due to the high strength of alloy sheath. The usage of the Cu deficient composition was effective to reduce the total amount of 14:24 particle while the filament thickness should be thin to maintain J c values for Ag-Cu alloy sheathed tapes due to the lack of Cu diffusion from the sheath to convert 2212 into (Bi,Pb) in the middle region of the filament

  4. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  5. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Lee, Doung-Hun; Lee, Hee-Kyung; Takada, Yukyo; Okuno, Osamu; Kwon, Yong Hoon; Kim, Hyung-Il

    2006-01-01

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich α 1 phase and the Pd-containing Cu-rich α 2 phase were transformed into four phases of the Ag-rich α 1 ' phase, the Cu-rich α 2 ' phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich α 1 matrix, Cu-rich α 2 particle-like structures of various sizes and the lamellar structure of the α 1 and α 2 phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich α 1 ' and Cu-rich α 2 ' phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich α 1 matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase

  6. Wetting behavior of molten In-Sn alloy on bulk amorphous and crystalline Cu40Zr44Al8Ag8

    International Nuclear Information System (INIS)

    Ma, G. F.; Zhang, H. F.; Li, H.; Hu, Z. Q.

    2007-01-01

    Using the sessile-drop method, the wettability of the molten In-Sn alloy on bulk amorphous and crystalline Cu 40 Zr 44 Al 8 Ag 8 alloy was studied at different temperatures. It was found that the equilibrium contact angle of In-Sn alloy melt on bulk amorphous substrate was smaller than that of the crystalline one. An intermetallic compound existed at the interface of In-Sn alloy on amorphous Cu 40 Zr 44 Al 8 Ag 8 , while no intermediate reaction layer was formed at the interface of In-Sn alloy on crystalline Cu 40 Zr 44 Al 8 Ag 8 in the temperature range studied

  7. Influence of Mn on the tensile properties of SSM-HPDC Al-Cu-Mg-Ag alloy A201

    CSIR Research Space (South Africa)

    Müller, H

    2011-03-01

    Full Text Available A201 aluminium alloy is a high strength casting alloy with a nominal composition of Al-4.6Cu-0.3Mg-0.6Ag. It is strengthened by the O(Al2Cu) phase and the ’(Al2Cu) phase during heat treatment. Further strengthening of this alloy system can...

  8. Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Liu, Xiao Yan; Pan, Qing Lin; Lu, Zhi Lun; Cao, Su Fang; He, Yun Bin; Li, Wen Bin

    2010-01-01

    The effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy were studied by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and tensile test, respectively. The results show that the mechanical property increases and then decreases with increasing the solution temperature. And the residual phases are dissolved into the matrix gradually, the number fraction of the precipitation and the size of recrystallized grains increase. Compared to the solution temperature, the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu-Mg-Ag alloy. The overburnt temperature of Al-Cu-Mg-Ag alloy is 525 o C. The yield strength and the elongation get the best when the alloy is solution treated at 515 o C for 1.5 h, is 504 MPa and 12.2% respectively. The fracture mechanism of the samples is ductile fracture.

  9. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Doung-Hun [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Hee-Kyung [Department of Dental Technology, Daegu Health College, San 7 Taejeon-dong, Buk-gu, Daegu 702-722 (Korea, Republic of); Takada, Yukyo [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Okuno, Osamu [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2006-01-05

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich {alpha}{sub 1} phase and the Pd-containing Cu-rich {alpha}{sub 2} phase were transformed into four phases of the Ag-rich {alpha}{sub 1}{sup '} phase, the Cu-rich {alpha}{sub 2}{sup '} phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich {alpha}{sub 1} matrix, Cu-rich {alpha}{sub 2} particle-like structures of various sizes and the lamellar structure of the {alpha}{sub 1} and {alpha}{sub 2} phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich {alpha}{sub 1}{sup '} and Cu-rich {alpha}{sub 2}{sup '} phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich {alpha}{sub 1} matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase.

  10. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  11. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  12. Precipitation in an Al–Mg–Cu alloy and the effect of a low amount of Ag

    Energy Technology Data Exchange (ETDEWEB)

    Mihara, Mami, E-mail: mihara.m.aa@m.titech.ac.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Marioara, Calin D., E-mail: Calin.D.Marioara@sintef.no [SINTEF Materials and Chemistry, N-7465 Trondheim (Norway); Andersen, Sigmund J., E-mail: Sigmund.J.Andersen@sintef.no [SINTEF Materials and Chemistry, N-7465 Trondheim (Norway); Holmestad, Randi, E-mail: randi.holmestad@ntnu.no [Faculty of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Kobayashi, Equo, E-mail: equo@mtl.titech.ac.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Sato, Tatsuo, E-mail: sato.tatsuo8@gmail.com [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2016-03-21

    Two high-purity aluminium alloys based on composition Al–3.0Mg–1.0Cu (wt%), one with added 0.4 wt% Ag, were compared up to 11 days ageing at 443 K by means of transmission electron microscopy and hardness measurements. The base alloy exhibits an inhomogeneous precipitate microstructure with a high density of fine needle-shaped Guinier-Preston-Bagaryatsky (GPB) zones together with coarser precipitates of S′-Al{sub 2}CuMg and rods of the structurally unknown Z-phase. The S′ phase is preferably formed on dislocations. The addition of Ag has a strong effect, leading to a homogeneous distribution with fine Ag-containing icosahedral quasi-crystalline precipitates (iQC). Both the GPB zones in the base alloy and the iQC phase in the Ag added alloy survive even after long term ageing. Ag is found to suppress the formation of the S′ phase. It is suggested that the Z phase is an approximation phase to the quasi-crystalline phase as is the case for the T-phase, implying they are based on similar (Bergman) clusters.

  13. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  14. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Janghsing Hsieh

    2016-11-01

    Full Text Available Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD, atomic force microscopy (AFM, FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag.

  15. Influence of layer compositions and annealing conditions on complete formation of ternary PdAgCu alloys prepared by sequential electroless and electroplating methods

    Energy Technology Data Exchange (ETDEWEB)

    Sumrunronnasak, Sarocha [Graduate Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Tantayanon, Supawan, E-mail: supawan.t@chula.ac.th [Green Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Kiatgamolchai, Somchai [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-01-01

    PdAgCu ternary alloy membranes were synthesized by the sequential electroless plating of Pd following by electroplating of Ag and Cu onto stainless steel substrate. The composition of the composite was varied by changing the deposition times. The fabricated layers were annealed at the temperatures between 500 and 600 °C for 20–60 h. The Energy Dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were employed to investigate the element distribution in the membrane which provided the insight on membrane alloying process. Complete formation of the alloy could be obtained when the Pd composition was greater than a critical value of 60 wt%, and Ag and Cu contents were in the range of 18–30 wt% and 2–13 wt%, respectively. Deposition times of Ag and Cu were found to affect the completion of alloy formation. Excess amount of the deposited Cu particularly tended to segregate on the surface of the membrane. - Highlights: • Ternary PdAgCu alloy membranes were successfully prepared by the sequential electroless and electroplating methods. • The average Pd composition required to form alloy was found to be approximately at least 60%wt. • The alloy region was achieved for f Pd 60–73 wt%, Cu 18–30 wt% and Ag 2–13 wt%. • Suitable annealing temperature in the range of 500–600 °C for an adequate period of treating time (20–60 h).

  16. In situ investigation of SnAgCu solder alloy microstructure

    International Nuclear Information System (INIS)

    Pietrikova, Alena; Bednarcik, Jozef; Durisin, Juraj

    2011-01-01

    Research highlights: → In situ X-ray diffraction investigation enabled detailed analysis of the melting and solidification process of the SAC305 alloy. → It was found that the SAC305 solder melts at 230 deg. C. When cooling from 240 deg. C the SAC305 alloy solidifies at the temperature of 214 deg. C. During solidification β-Sn and Cu 6 Sn 5 is also formed. Formation of Ag 3 Sn occurs at 206 deg. C and the remaining amount of alloy crystallizes approximately at 160 deg. C. → Furthermore, observation of the thermal expansion behaviour of the β-Sn tetragonal unit cell revealed linear dependence of the unit cell volume on temperature. The unit cell parameters a and c also increase linearly with the temperature. Despite the fact that the c parameter is substantially smaller than parameter a, it exhibits a significantly higher linear thermal expansion coefficient. Comparison between data obtained during heating and cooling indicates that the thermal expansion coefficient is slightly greater in the case of cooling. - Abstract: In situ X-ray diffraction experiments, using synchrotron radiation, were employed to analyze microstructure evolution of the 96.5Sn3Ag0.5Cu (wt.%)-SAC305 lead-free solder alloy during heating (30-240 deg. C), isothermal dwell (240 deg. C) and cooling (240-30 deg. C). The special emphasis was placed on the study of the melting and solidification processes, explaining formation, distribution and the order of crystallization of the crystal phases (β-Sn, intermetallic compounds) in the solder alloy. Furthermore, thermal expansion behaviour of the main constituent phase β-Sn was analyzed prior to melting and after the consequent solidification.

  17. Hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Kim, Gi-Chul; Son, Kuk-Hyeon; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    Age-hardening behaviour and the related microstructural changes were studied to elucidate the hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). By considering hardness test and XRD results together, it was revealed that the hardness increased during the early stage of phase transformation of α into α 1 . In the SEM photographs, two phases of matrix and particle-like structures were observed, and the precipitation of element from the matrix progressed during isothermal aging. By SEM observations and EPMA analysis, it could be supposed that the increase in hardness was caused by the diffusion and aggregation of Cu atoms from the Ag-rich α matrix containing Au and Cu in the early stage of age-hardening process, and that the decrease in hardness was caused by the progress of coarsening of Cu-rich lamellar precipitates in the later stage of the age-hardening process. The changes in the Ag-rich matrix caused both the increase and decrease in hardness, and the CuPd phase containing small amounts of Zn and Sn did not contribute to the hardness changes

  18. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    Science.gov (United States)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  19. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    Science.gov (United States)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  20. Photoemission studies of zinc-noble metal alloys: Zn--Cu, Zn--Ag, and Zn--Au films on Ru(001)

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Hrbek, J.

    1993-01-01

    Zn and the noble metals alloy when coadsorbed on Ru(001). The properties of Zn--Cu, Zn--Ag, and Zn--Au alloys have been studied using core- and valence-level photoemission and temperature programmed desorption. Alloy formation induces only small shifts (-0.2 to -0.3 eV) in the position of the Zn 2p, 3s, and 3d levels. In contrast, the core and valence levels of the noble metals show large shifts toward higher binding energy. For small amounts of Cu, Ag, and Au dissolved in Zn multilayers, the shifts in the core levels of the nobel metals follow the sequence: Cu(2p 3/2 ), 0.8 eV∼Ag(3d 5/2 ), 0.8 eV 7/2 ), 1.4 eV. The magnitude of the shift increases as the Pauling electronegativity of the noble metal increases. However, the sign of the shifts for the Cu(2p 3/2 ), Ag(3d 5/2 ), or Au(4f 7/2 ) levels is not directly determined by the direction of charge transfer within the corresponding Zn-noble metal bond

  1. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in [Department of Metallurgical Engineering, IIT (BHU), Varanasi and DST Unit on Nanoscience and Technology, BHU, Varanasi-221 005 (India); Manda, Premkumar; Singh, A. K. [DefenceMetallurgical Research Laboratory, KanchanBagh, Hyderabad-500058 (India)

    2015-10-15

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  2. Ag-rich precipitates formation in the Cu–11%Al–10%Mn–3%Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Paganotti, A.; Jabase, L. [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [Departamento de Físico-Química, Instituto de Química, UNESP, 14801-970 Araraquara, SP (Brazil)

    2014-12-05

    Highlights: • Cu-rich nanoprecipitates are formed in the presence of Ag. • Bainite precipitation is shifted to higher temperatures in the Cu–11%Al–10%Mn–3%Ag alloy. • The eutectoid α phase and bainite α{sub 1} phase compete by the Cu atoms during precipitation process. - Abstract: The formation of Ag-rich precipitates in the Cu–11%Al–10%Mn–3%Ag alloy initially quenched from 1123 K was analyzed. The results showed that nanoprecipitates of a Cu-rich phase are produced at about 523 K. In higher temperatures these nanoparticles grow and the relative fraction of Ag dissolved in it is increased, thus forming the Ag-rich phase.

  3. Effect of triethanolamine and heliotropin on cathodic polarization of weakly acidic baths and properties of Sn-Ag-Cu alloy electrodeposits

    International Nuclear Information System (INIS)

    Zhang Jinqiu; An Maozhong; Chang Limin; Liu Guiyuan

    2008-01-01

    The effect of triethanolamine (TEA) and heliotropin (HT) on the cathodic polarization of weakly acidic baths and the properties of Sn-Ag-Cu alloy electrodeposits were investigated. Lead-free Sn-Ag-Cu solder alloy were electrodeposited in weakly acidic baths (pH 5.5) containing Sn(CH 3 SO 3 ) 2 , AgI, Cu(CH 3 SO 3 ) 2 , K 4 P 2 O 7 , KI, hydroquinone, TEA, HT and methylsulfonic acid (MSA). The cathodic polarization of baths and the properties of electrodeposits were evaluated by Liner sweep voltammetry (LSV), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results indicate that HT is a main brightening agent that increases the cathodic polarization of baths and refines the grains of electrodeposits; TEA is a complexing agent for copper ions and a brightening promoter that decreases the cathodic polarization of baths and densifies the electrodeposits. The bright, compact, and smooth Sn-Ag-Cu alloy electrodeposits contain 88-95 wt% tin, 5-10 wt% silver and 0.5-2 wt% copper. Organic compounds used in the baths neither adsorb on the electrodeposits surfaces nor are included in the electrodeposits. It can be therefore concluded that the use of both TEA and HT is better than that of them either in the process of electroplating bright Sn-Ag-Cu alloy

  4. Interfacial properties of immiscible Co-Cu alloys

    DEFF Research Database (Denmark)

    Egry, I.; Ratke, L.; Kolbe, M.

    2010-01-01

    Using electromagnetic levitation under microgravity conditions, the interfacial properties of an Cu75Co25 alloy have been investigated in the liquid phase. This alloy exhibits a metastable liquid miscibility gap and can be prepared and levitated in a configuration consisting of a liquid cobalt-ri...

  5. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Son, Kuk-Hyeon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Yu, Chin-Ho [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2005-10-27

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.

  6. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Son, Kuk-Hyeon; Yu, Chin-Ho; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase

  7. Microstructure and Tensile Properties of Sn-1Ag-0.5Cu Solder Alloy Bearing Al for Electronics Applications

    Science.gov (United States)

    Shnawah, Dhafer Abdul-Ameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Hoe, Teh Guan; Che, Fa Xing; Abood, Adnan Naama

    2012-08-01

    This work investigates the effects of 0.1 wt.% and 0.5 wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1 wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5 wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1 wt.% Al-added solder shows a microstructure with coarse β-Sn dendrites. However, the addition of 0.5 wt.% Al has a great effect on suppressing the undercooling and refinement of the β-Sn dendrites. In addition to coarse β-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1 wt.% Al. On the other hand, the fine β-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5 wt.% Al. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5 wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5 wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.

  8. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  9. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-01-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10 −5 Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10 −3 Ω −1 , comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs

  10. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  11. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    Science.gov (United States)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  12. Eutectic crystallization behavior of new Zr48Cu36Al8Ag8 alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Zhang, Q S; Zhang, W; Xie, G Q; Inoue, A

    2009-01-01

    A water quenching method is used to produce as-cast Zr 48 Cu 36 Al 8 Ag 8 rods with diameters from 20 mm to 25 mm. The microstructures of the as-cast samples were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Furthermore, the crystallization behavior of the Zr 48 Cu 36 Al 8 Ag 8 glassy alloy was examined by XRD and transmission electron microscopy. Based on the results obtained one can assume that the simultaneous precipitation of the Zr 2 Cu+AlCu 2 Zr eutectic phases is the possible reason for the high stabilization of the quaternary Zr 48 Cu 36 Al 8 Ag 8 supercooled liquid.

  13. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Ying, Puyou; Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2016-06-21

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  14. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Ying, Puyou; Wang, Jian; Li, Junlin

    2016-01-01

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  15. Kinetics of bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motta, M.B.J.L. [Departamento de Ciências Exatas e da Terra, UNIFESP, Diadema, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Departamento de Físico-Química, IQ-UNESP, Araraquara, SP (Brazil); Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciências Exatas e da Terra, UNIFESP, Diadema, SP (Brazil)

    2017-02-15

    In this work the kinetics of bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy was studied using measurements of microhardness change with aging time, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analyses, measurements of magnetization change with applied field and high-resolution transmission electron microscopy (HRTEM). The results showed that the bainite precipitation is responsible for the hardness increase in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy. The activation energy value obtained for the bainite precipitation is lower than that found in the literature. This was attributed to the presence of Ag dissolved in matrix and the occurrence of the Cu{sub 3}Al(DO{sub 3}) → Cu{sub 2}AlMn(L2{sub 1}) ordering reaction together with the bainite precipitation. - Highlights: • The activation energy for the bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy is around 33 kJ/mol. • During bainite precipitation the Cu{sub 2}AlMn phase formation occurs. • The Cu{sub 3}Al(DO{sub 3}) → Cu{sub 2}AlMn(L2{sub 1}) ordering reaction interferes in the activation energy value.

  16. Zr-(Cu,Ag)-Al bulk metallic glasses

    International Nuclear Information System (INIS)

    Jiang, Q.K.; Wang, X.D.; Nie, X.P.; Zhang, G.Q.; Ma, H.; Fecht, H.-J.; Bendnarcik, J.; Franz, H.; Liu, Y.G.; Cao, Q.P.; Jiang, J.Z.

    2008-01-01

    In this paper, we report the formation of a series Zr-(Cu,Ag)-Al bulk metallic glasses (BMGs) with diameters at least 20 mm and demonstrate the formation of about 25 g amorphous metallic ingots in a wide Zr-(Cu,Ag)-Al composition range using a conventional arc-melting machine. The origin of high glass-forming ability (GFA) of the Zr-(Cu,Ag)-Al alloy system has been investigated from the structural, thermodynamic and kinetic points of view. The high GFA of the Zr-(Cu,Ag)-Al system is attributed to denser local atomic packing and the smaller difference in Gibbs free energy between amorphous and crystalline phases. The thermal, mechanical and corrosion properties, as well as elastic constants for the newly developed Zr-(Cu,Ag)-Al BMGs, are also presented. These newly developed Ni-free Zr-(Cu,Ag)-Al BMGs exhibit excellent combined properties: strong GFA, high strength, high compressive plasticity, cheap and non-toxic raw materials and biocompatible property, as compared with other BMGs, leading to their potential industrial applications

  17. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2015-01-01

    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  18. Phase transformation and microstructural changes during ageing process of an Ag-Pd-Cu-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chin-Ho; Park, Mi-Gyoung; Kwon, Yong Hoon; Seol, Hyo-Joung [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)], E-mail: hilkim@pusan.ac.kr

    2008-07-28

    Age-hardening behaviour and the related phase transformation and microstructural changes during isothermal ageing process were studied to elucidate the age-hardening mechanism of an Ag-based dental casting alloy composed of Ag-Pd-Cu-Au-Zn, Ir and In by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and energy dispersive spectroscopic microanalysis (EDS). In the hardness test at 350 and 400 deg. C, the hardness of the solution-treated specimen began to increase and reached a maximum value with increasing ageing time, and subsequently the hardness decreased gradually. By considering XRD results and SEM observations together, the solution-treated specimen consisted of three phases, the Ag-rich {alpha}{sub 1} phase as a matrix, the Cu-Pd {alpha}{sub 2} phase and the CuPd {beta} phase with a CsCl-type as particle-like structures. By ageing the solution-treated specimen, the Ag-rich {alpha}{sub 1} and Cu-Pd {alpha}{sub 2} phases were transformed into the Ag-rich {alpha}{sup '}{sub 1} and Cu{sub 3}Pd {alpha}{sup '}{sub 2} phases, respectively. The CuPd {beta} phase with a CsCl-type was not changed apparently during the ageing process. From the results of the hardness test, XRD study, SEM observations and EDS analysis, it could be derived that the hardness increased by the diffusion and precipitation of the Cu-rich phase from the Ag-rich matrix during the early stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1} and that the progress of coarsening of the Cu-rich precipitates with an entanglement structure caused the hardness decrease during the later stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1}. The particle-like structures composed of the Cu-Pd {alpha}{sub 2} and the CuPd {beta} phase with a CsCl-type contributed little to the hardness increase which occurred in the early stage of aging process.

  19. Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al--Mg--Si alloys

    International Nuclear Information System (INIS)

    Kim, JaeHwang; Daniel Marioara, Calin; Holmestad, Randi; Kobayashi, Equo; Sato, Tatsuo

    2013-01-01

    Low Cu and Ag additions (≤0.10 at%) were found to strongly affect the age-hardening behavior in Al--Mg--Si alloys with Mg+Si>1.5 at%. The hardness increased during aging at 170 °C and the formation of β ″ precipitates was kinetically accelerated. The activation energy of the formation of the β ″ phase was calculated to 127, 105, 108 and 99 KJmol −1 in the base, Cu-added, Ag-added and Cu--Ag-added alloys, respectively using the Kissinger method. The negative effect of two-step aging caused by the formation of Cluster (1) during natural aging was not overcome by the addition of microalloying elements. However, it was suppressed by the formation of Cluster (2) through a pre-aging at 100 °C. Quantitative analysis of the precipitate microstructure was performed using a transmission electron microscope equipped with a parallel electron energy loss spectrometer for the determination of specimen thickness. The formation of Cluster (2) was found to increase the number density of β ″ precipitates, whereas the formation of Cluster (1) decreased the number density and increased the needle length. The effects of low Cu and Ag additions in combination with multi-step aging are discussed based on microstructure observations and hardness and resistivity measurements.

  20. Positron annihilation studies of vacancies in Ag-Zn alloys

    International Nuclear Information System (INIS)

    Chabik, S.

    1982-01-01

    The temperature dependence of annihilation rate, F(T), at the peak of angular correlation curve has been measured for Ag-29.2%at Zn and Ag-50%at Zn alloys. By applying the trapping model the vacancy formation energy for Ag-29.2%at Zn alloy has been found to be equal to 0.94+-0.06 eV. It has been found that the course of the F(T) curve for Ag-50%at Zn depends on the phase composition and thermal history of the investigated sample. For alloys containing not more than 50%at Zn, the concentration dependence of the vacancy formation energy for Ag-Zn alloys is very similar to that for Cu-Zn alloys. (Auth.)

  1. Microstructural evolution of ternary Ag33Cu42Ge25 eutectic alloy inside ultrasonic field

    Directory of Open Access Journals (Sweden)

    Wei Zhai

    2014-12-01

    Full Text Available Ultrasonic field with a frequency of 20 kHz is introduced into the solidification process of ternary Ag33Cu42Ge25 eutectic alloy from the sample bottom to its top. The ultrasound stimulates the nucleation of alloy melt and prevents its bulk undercooling. At low ultrasound power of 250 W, the primary ε2 phase in the whole alloy sample grows into non-faceted equiaxed grains, which differs to its faceted morphology of long strip under static condition. The pseudobinary (Ag+ε2 eutectic transits from dendrite shape grain composed of rod type eutectic to equiaxed chrysanthemus shape formed by lamellar structure. By contrast, the ultrasound produces no obvious variation in the morphology of ternary (Ag+Ge+ε2 eutectic except a coarsening effect. When ultrasound power rises to 500 W, divorced ternary (Ag+Ge+ε2 eutectic forms at the sample bottom. However, in the upper part, the ultrasonic energy weakens, and it only brings about prominent refining effect to primary ε2 phase. The microstructural evolution mechanism is investigated on the cavitation, acoustic streaming and acoustic attenuation.

  2. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  3. In situ observation of Ag-Cu-Ti liquid alloy/solid oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Durov, O.V. [Frantsevich Institute for Problems of Materials Science of NASU, 3 Krzhyzhanovsky Street, Kiev 142, 03680 (Ukraine)], E-mail: avdu@ukr.net; Krasovskyy, V.P. [Frantsevich Institute for Problems of Materials Science of NASU, 3 Krzhyzhanovsky Street, Kiev 142, 03680 (Ukraine)

    2008-11-15

    In situ investigation methods are a very interesting means for understanding high-temperature interface processes. A method of direct observation of the interactions between transparent materials (Al{sub 2}O{sub 3}, SiO{sub 2}, CaF{sub 2}) and metal melts was elaborated. For the Ag-36.65 at.%Cu-8.15 at.%Ti/sapphire system, the formation of a dark compound at the interface was observed to occur at high temperature. This result does not confirm the conclusion of a neutron spectroscopy study which indicated that titanium oxides form at the interface only during solidification of the alloy. Interactions of the same alloy with SiO{sub 2} and CaF{sub 2} were also considered.

  4. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    International Nuclear Information System (INIS)

    Ding, W.F.; Xu, J.H.; Shen, M.; Su, H.H.; Fu, Y.C.; Xiao, B.

    2006-01-01

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system

  5. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    Science.gov (United States)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  6. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  7. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  8. Electron irradiation effect on short-range ordering in Cu-Al and Ag-Al alloys

    International Nuclear Information System (INIS)

    Kulish, N.P.; Mel'nikova, N.A.; Petrenko, P.V.; Ryabishchuk, A.L.; Tatarov, A.A.

    1990-01-01

    Method of X-ray diffuse scattering is used to study short-range order variation in Cu-Al and Ag-Al alloys under radiation effect and the following heat treatment. Irradiation was carried out at -40 deg C by 1.6 MeV electrons, fluence of 5x10 7 cm -2 and 0.5 MeV gamma-rays, the dose being 10 7 pH

  9. Finite Element-Assisted Assessment of the Thermo-cyclic Characteristics of Leads Soldered with SnAgCu(+Bi,In) Alloys

    Science.gov (United States)

    Lis, Adrian; Nakanishi, Kohei; Matsuda, Tomoki; Sano, Tomokazu; Minagawa, Madoka; Okamoto, Masahide; Hirose, Akio

    2017-07-01

    Solder joints between leads and printed circuit boards in thin small outline packages were produced with conventional Sn1.0Ag0.7Cu (SAC107) and Sn3.0Ag0.7Cu (SAC305) solders as well as various solder alloys with gradually increasing amounts of Bi (up to 3.0 wt.%) and In (up to 1.0 wt.%) within the SAC107 base solder. The reliability of soldered leads in temperature cycle (TC) tests improved most with solder alloys containing both Bi (1.6 wt.%) and In (0.5 wt.%). Microindentation and electron probe microanalysis mappings revealed that the effect originates from a combination of solution and precipitation strengthening of the initial SAC alloy. The distribution of inelastic strain accumulation (ISA), as a measure for degradation, was determined in the solder joints by finite element calculations. It was shown that defects in the solder proximal to the lead (60-75 μm), which was underpinned by similar cracking characteristics along the lead-solder interface. The ISA was confirmed to be lower in SAC+Bi/In alloys owing to their enhanced elasto-plastic properties. Moreover, the addition of a thin Cu coating on the leads could improve the joint reliability, as suggested by the calculation of the ISA and the acceleration factor.

  10. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  11. Investigation of ion sputtering for eutectic Cu-37 at% Ag alloys

    International Nuclear Information System (INIS)

    Wang Zhenxia; Pan Jisheng; Zhang Jiping; Tao Zhenlan; Zhu Fuying; Zhao Lie; Zhang Huiming

    1994-01-01

    Angular distributions of sputtered atoms and the phenomenon of element locally rich relative to micro-topographic feature (ELR-MTF) of sputtered target surface have been investigated for Cu-37 at% Ag alloys by means of RBS, SEM and EPMA measurements. In the paper,emphasis will be put on the correlation between surface topography caused by Ar + ion bombardment with different doses and angular distribution of sputtered atoms ejecting from various micro-zones at topographical surface during sputtering. The experiment result was explained with the so-called ELR-MTF model which can qualitatively interpret the shape of the angular distributions and the variation of the preferential sputtering curves

  12. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.

    Science.gov (United States)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan

    2016-05-27

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  13. Sputtering of two-phase AgxCuγ alloys

    International Nuclear Information System (INIS)

    Bibic, N.; Milosavljevic, M.; Perusko, D.; Wilson, I.H.

    1992-01-01

    Elemental sputtering yields from two phase AgCu alloys were measured for 20, 40 and 50 at % Ag. Argon ion bombardment energies were in the range 35-55 keV and the ion dose was 1 x 10 19 ions cm -2 . The sputtering yield for silver was found to be considerably below what was expected by simple selective sputtering of a two component alloy. Analysis by electron probe X-ray microanalysis and scanning electron microscopy of the eroded surface indicated that surface diffusion of copper from copper rich grains and geometrical constraints in the dense cone forest on Cu/Ag eutectic regions combine to reduce the sputtering yield for silver. (author)

  14. Microstructures and Properties of 40Cu/Ag(Invar) Composites Fabricated by Powder Metallurgy and Subsequent Thermo-Mechanical Treatment

    Science.gov (United States)

    Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming

    2018-03-01

    Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.

  15. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al | Ω interface in a Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Sun Lipeng; Irving, Douglas L.; Zikry, Mohammed A.; Brenner, D.W.

    2009-01-01

    Density functional theory was used to characterize the atomic structure and bonding of the Al | Ω interface in a Al-Cu-Mg-Ag alloy. The most stable interfacial structure was found to be connected by Al-Al bonds with a hexagonal Al lattice on the surface of the Ω phase sitting on the vacant hollow sites of the Al {1 1 1} matrix plane. The calculations predict that when substituted separately for Al at this interface, Ag and Mg do not enhance the interface stability through chemical bonding. Combining Ag and Mg, however, was found to chemically stabilize this interface, with the lowest-energy structure examined being a bi-layer with Ag atoms adjacent to the Al matrix and Mg adjacent to the Ω phase. This study provides an atomic arrangement for the interfacial bi-layer observed experimentally in this alloy.

  16. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Szade, J. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Talik, E. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Zubko, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Wasilkowski, D. [Department of Biochemistry, University of Silesia, Jagiellońska 28, 40-032 Katowice (Poland); Dulski, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Balin, K. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); and others

    2016-07-15

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover, UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.

  17. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    Science.gov (United States)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  18. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    OpenAIRE

    Sun, Lei; Zhang, Liang

    2015-01-01

    SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth) and nanoparti...

  19. Martensite decomposition in Cu–Al–Mn–Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Camila Maria Andrade dos, E-mail: camilaandr@gmail.com [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, Antonio Tallarico [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Galdino da Silva, Ricardo Alexandre [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Carvalho, Thaisa Mary [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2014-12-05

    Highlights: • Martensite decomposition in Cu–Al–Mn–Ag alloys is mainly influenced by Mn. • Interaction between Cu–Mn atomic pairs increases activation energy. • Cu diffusion is disturbed by the interaction between Cu–Mn atomic pairs. - Abstract: The influence of Mn and Ag additions on the isothermal kinetics of martensite decomposition in the Cu–9wt.%Al alloy was studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXS) and microhardness changes measurements with temperature and time. The results indicated that the reaction is disturbed by the increase of Mn, an effect associated with the increase in the Al–Mn and Cu–Mn atomic pairs, which disturbs Cu diffusion and increases the activation energy for the martensite decomposition reaction.

  20. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    International Nuclear Information System (INIS)

    Yang, Ming; Ko, Yong-Ho; Bang, Junghwan; Kim, Taek-Soo; Lee, Chang-Woo; Li, Mingyu

    2017-01-01

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  1. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Ko, Yong-Ho [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Bang, Junghwan [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Kim, Taek-Soo [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Chang-Woo, E-mail: cwlee@kitech.re.kr [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Li, Mingyu, E-mail: myli@hit.edu.cn [Shenzhen Key Laboratory of Advanced Materials, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China)

    2017-02-15

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  2. Studies on Al-Cu-Li-Mg-Ag-Zr alloy processed through vacuum induction melting (VIM) technique

    International Nuclear Information System (INIS)

    Nayan, Niraj; Govind; Nair, K. Suseelan; Mittal, M.C.; Sudhakaran, K.N.

    2007-01-01

    A new technique of lithium addition has been adapted for the processing of Al-Cu-Li-Ag-Mg-Zr alloy, which gives more than 90% recovery of lithium throughout the billet. Processing studies on this alloy include casting, three step homogenization, to avoid incipient melting, and mechanical working particularly forging and rolling. The products in the form of sheets were subjected to various T6 (solution treatment + water quenching + aging) tempers. Mechanical properties were evaluated at room temperature and correlated with microstructure. Characterizations using optical microscope and post-fracture analysis have been carried out using Scanning electron microscope (SEM). Experimental investigation shows highest mechanical properties for the Al-1.3%Li alloy in T6 (500 deg. C/1 h + WQ + 190 deg. C/24 h) condition

  3. Wettability in the liquid Cu-Ag alloy – fireproof material – gas phase system

    Directory of Open Access Journals (Sweden)

    G. Siwiec

    2013-07-01

    Full Text Available In the present paper, results of wettability studies on the liquid metal – fireproof material – gas phase system using copper and Cu-Ag alloys as well as typical fireproof materials, i.e. aluminium oxide, magnesium oxide and graphite, are presented. Contact angle measurements were conducted at 1 373–1 573 K by means of a high-temperature microscope coupled with a camera and a computer equipped with a program for recording and analysing images. For the measurements, the sessile drop method was used.

  4. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  5. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy

    Science.gov (United States)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1990-01-01

    The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.

  6. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  7. Phenomenological approach to the spin glass state of (Cu-Mn, Ag-Mn, Au-Mn and Au-Fe) alloys at low temperatures

    International Nuclear Information System (INIS)

    Al-Jalali, Muhammad A.; Kayali, Fawaz A.

    2000-01-01

    Full text.The spin glass of: (Cu-Mn, Ag-Mn, Au-Mn, Au-Fe) alloys has been extensively studied. The availability of published and assured experimental data on the susceptibility x(T) of this alloys has enabled the design and application of phenomenological approach to the spin glass state of these interesting alloys. The use of and advanced (S.P.S.S) computer software has resulted revealing some important features of the spin glass in these alloys, the most important of which is that the spin glass state do not represent as phase change

  8. The Effect of Ag Addition on the Enhancement of the Thermal and Mechanical Properties of CuZrAl Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Tsan-Man Chung

    2016-09-01

    Full Text Available In this study, the thermal and mechanical properties of Cu50−xZr43Al7Agx (x = 0, 3, 4, 5, 6 bulk metallic glasses (BMGs are investigated by using an X-ray diffractometer (XRD, a differential scanning calorimeter (DSC, differential thermal analysis (DTA, a Vickers hardness tester, a material test system (MTS, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Cu50−xZr43Al7Agx (x = 0, 3, 4, 5, 6 BMGs were made by arc-melting and an injection casting process. The results revealed that the glass transition temperature (Tg and the crystallization temperature (Tx of CuZrAl alloy decreased with the Ag addition. Hence, the supercooled liquid region and γ of Cu45Zr43Al7Ag5 alloy increased to 76 K and 0.42, respectively. The thermal stability and glass forming ability of CuZrAlAg BMG alloys were enhanced by the microalloyed Ag content. The room temperature compressive fracture strength and strain measured of Cu47Zr43Al7Ag3 were about 2200 MPa and 2.1%, respectively. The distribution of vein patterns and the formation of nanocrystalline phases on the fracture surface of Cu47Zr43Al7Ag3 alloy can be observed by SEM and TEM to be significant, indicating a typical ductile fracture behavior and an improved plasticity of alloys with the addition of microalloyed Ag from 0 to 6 atom %.

  9. Mg-controlled formation of Mg–Ag co-clusters in initial aged Al–Cu–Mg–Ag alloys

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Zhou, Xuanwei; Xia, Peng; Zeng, Sumin

    2014-01-01

    Highlights: • The strongest age-hardening response was found in 0.81Mg alloy. • Quantitative APT study showed strong dependence of Mg–Ag co-clustering on Mg content. • A critical Mg content related to the greatest Mg–Ag co-clustering was revealed. • The evolution from Mg–Ag co-clusters to Ω phase was accelerated in 1.18Mg alloy. - Abstract: The effect of Mg variations on the number density, solute concentrations and sizes of Mg–Ag co-clusters at the early aging stage, as well as the age-hardening response of different Al–Cu–Mg–Ag alloys, was well investigated by a combination of Vickers hardness measurement, transmission electron microscopy (TEM) and atom probe tomography (APT). The strongest age-hardening response at 165 °C was found in 0.81Mg alloy, accompanied by the highest nucleation rate of Mg–Ag co-clusters after aging for 0.5 h. However, the least response was revealed in 0.39Mg alloy. By quantitative APT analysis, the observed trend in the total number density of Mg–Ag co-clusters suggested the following order: 0.81Mg alloy > 0.39Mg alloy > 1.18Mg alloy. This parabolic change in the total number density of Mg–Ag co-clusters with increasing Mg highlighted the existence of a critical Mg content, which contributed to the greatest nucleation kinetics of Mg–Ag co-clusters. As Mg increased from 0.39 to 0.81, the formation of small Mg–Ag co-clusters was significantly promoted, whereas the number density of large Mg–Ag co-clusters almost remained constant. Moreover, the remarkable enrichment of Cu within Mg–Ag co-clusters indicated that the accelerated evolution from Mg–Ag co-clusters to Ω phase was responsible for the lowest number density of Mg–Ag co-clusters in 1.18Mg alloy after aging at 165 °C for 0.5 h

  10. On the ternary AgCu – Ga system: Electromotive force measurement and thermodynamic modeling

    International Nuclear Information System (INIS)

    Gierlotka, Wojciech; Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof; Handzlik, Piotr

    2015-01-01

    The ternary silver–copper–gallium system found application as a solder material in jewel crafting and electronics, thus a phase diagram of this system seems to be important tool, which is necessary for a proper application of different alloys. The activity of gallium in liquid phase was determined by electromotive measurement technique and after that the equilibrium diagram of AgCu – Ga was modeled based on available experimental data using Calphad approach. A set of Gibbs energies was found and used for calculation a phase diagram and thermodynamic properties of liquid phase. The experimental data was reproduced well by calculation. - Highlights: • For the first time activity of Ga in liquid AgCu – Ga alloys was measured. • For the first time the ternary AgCu – Ga system was thermodynamically modeled. • Modeled AgCu – Ga system reproduces experimental data well

  11. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  12. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys

    International Nuclear Information System (INIS)

    Muddle, B.C.; Nie, J.F.; Hugo, G.R.

    1994-01-01

    It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ' (Ag 2 Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1 plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites

  13. Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoxia; Zhou, Xuan; Yu, Shuaishuai; Wei, Congcong; Xu, Jing; Wang, Yan, E-mail: mse_wangy@ujn.edu.cn

    2017-05-15

    The effects of annealing treatment on the microstructure, thermal stability, and magnetic properties of the mechanical alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys (HEAs) have been investigated in this project. The simple crystallization products in FeSiBAlNi amorphous HEAs with Co and Ag addition reveal the high phase stability during heating process. At high annealing treatment, the crystallized HEAs possess the good semi-hard magnetic property. It can conclude that crystallization products containing proper FeSi-rich and FeB-rich phases are beneficial to improve the magnetic property. Annealing near the exothermic peak temperature presents the best enhancing effect on the semi-hard magnetic property of FeSiBAlNiCo. It performs both large saturated magnetization and remanence ratio of 13.0 emu/g and near 45%, which exhibit 465% and 105% enhancement compared with as-milled state, respectively. - Highlights: • Co, Cu, Ag additions affect crystallization behavior of FeSiBAlNi amorphous HEAs. • Crystallization products in FeSiBAlNi Co/Ag reveal high phase stability. • Proper FeSi-rich and FeB-rich phases are beneficial to improve magnetic property. • Annealing treatment improves semi-hard magnetic property compared to as-milled state. • Annealing near exothermic peak temperature shows best enhancing effect on magnetism.

  14. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    OpenAIRE

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-01-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. ...

  15. Fabrication of fine spongy nanoporous Ag-Au alloys with improved catalysis properties

    Directory of Open Access Journals (Sweden)

    Cuiting Li

    2017-12-01

    Full Text Available Fine NP-AgAu (nanoporous AgAu alloys with spongy structure was fabricated by chemical dealloying from rapidly solidified amorphous precursors Ag38.75−xCu38.75Si22.5Aux (x=0, 0.5, 1 and 5. The results indicate that the addition of small content Au in precursor can refine both the ligaments and pores obviously. Among the present components of the precursors, NP-AgAu alloys dealloying from Ag37.75Cu38.75Si22.5Au1 had the finest spongy structure. The size of pores was 5–10 nm and the grain size of ligaments was 10–20 nm. It also had the highest surface area of 106.83 m2g−1 and the best catalytic activity towards electro-oxidation of formaldehyde with the peak current of 665 mA mg−1.

  16. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  17. Quantitative transmission electron microscopy and atom probe tomography study of Ag-dependent precipitation of Ω phase in Al-Cu-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song; Ying, Puyou [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2017-02-27

    The close association between the Ω precipitation and various Ag additions is systematically investigated by quantitative transmission electron microscopy and atom probe tomography analysis. Our results suggest that the precipitation of Ω phase is strongly dependent on Ag variations. Increasing the bulk Ag content favors a denser Ω precipitation and hence leads to a greater age-hardening response of Al-Cu-Mg-Ag alloy. This phenomenon, as proposed by proximity histograms, is directly related to the greater abundance of Ag solutes within Ω precursors. This feature lowers its nucleation barrier and increases the nucleation rate of Ω phase, finally contributes to the enhanced Ω precipitation. Also, it is noted that increasing Ag remarkably restricts the precipitation of θ' phase.

  18. Joining of pressureless-sintered SiC to stainless steel using Ag-Cu alloy and insert-metals

    International Nuclear Information System (INIS)

    Yano, Toyohiko; Takada, Naohiro; Iseki, Takayoshi

    1987-01-01

    Brazing of pressureless-sintered SiC to stainless steel using Ag-28 wt% Cu alloy was studied. In SiC plate joined to stainless steel rod (6 mm in diameter) using an Ag-Cu alloy powder containing 1.5 wt% Ti, the bond strength increased with decreasing brazing temperature and holding time. When the increased size of stainless steel plate (10 x 10 x 4 mm), joining was unsuccessful by the method mentioned above and even with Ti insert-metal. However, simultaneous use of Ti and Mo as insert-metal gave a good bonding in the order SiC/Ti/Mo/stainless steel, because of relaxation of residual stress due to thermal expansion mismatch. The shear strength was 30 - 50 MPa. A thin layer, probably Ti 3 SiC 2 , was observed at the interface between SiC and brazing filler immediately after melting. But with increasing both temperature and time, Ti 5 Si 3 (C) and TiC x were formed if Ti was continuously provided from the brazing filler. Since the interface of Ti 3 SiC 2 and either Ti 5 Si 3 (C) or TiC x seemed to be brittle, the formation of Ti 5 Si 3 (C) and TiC x decreased the bond strength. At lower temperature and short time, a high bond strength is expected when Ti was inserted in contact with SiC. (author)

  19. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pei [Fermilab; Ye, L. [North Carolina State U.; Jiang. J., Jiang. J. [Natl. High Mag. Field Lab.; Shen, T. [Fermilab

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  20. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    Science.gov (United States)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  1. In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg

    Energy Technology Data Exchange (ETDEWEB)

    Wollmershauser, J.A. [Department of Materials Science and Engineering, University of Virginia, P.O. Box 400745, 116 Engineer' s Way, Charlottesville, VA 22904-04745 (United States); Kabra, S. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Agnew, S.R. [Department of Materials Science and Engineering, University of Virginia, P.O. Box 400745, 116 Engineer' s Way, Charlottesville, VA 22904-04745 (United States)], E-mail: sra4p@virginia.edu

    2009-01-15

    The internal stress developments of B2 compounds NiAl, CuZn, and CeAg are examined using in situ neutron diffraction. CeAg is a representative of a newly discovered class of fully ordered and ductile B2 compounds. Using polycrystal plasticity modeling to interpret the results, it is revealed that the internal stress evolution of CeAg is nearly identical to that of NiAl, indicating that they share a common primary mechanism of plastic deformation, i.e., <1 0 0>{l_brace}0 1 1{r_brace} 'cube' slip. This result reinforces the dilemma previously observed for rare-earth alloys CuY, AgY, and CuDy, since cube slip provides insufficient independent slip systems to accommodate large-scale homogenous polycrystalline deformation. There is no evidence in the diffraction data of either mechanical twinning or stress-induced phase transformation. The activity of bcc-type <1 1 1>{l_brace}11-bar0{r_brace} slip at high stresses is confirmed and a lower bound for the critical resolved shear stress is quantified.

  2. Effect of {gamma}` and {gamma} (Ag{sub 2}Al) precipitates on the steady state creep of Al-16wt%Ag alloys with and without Zr addition

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Youssef, S.B. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1996-11-16

    The steady state creep behaviour of Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys has been studied at constant load (= 137.2 MPa) and tested at different working temperatures for samples aged at temperatures favouring the formation of {gamma}` and {gamma} precipitates. It was found that addition of Zr to Al-16 wt% Ag alloy accelerates the precipitations {gamma}` and {gamma} due to the formation of the metastable phase Al{sub 3}Zr. For both alloys, two values of activation energy have been obtained as (34 {+-} 0.3) kJ/mol for viscous glide of dislocations due to the existence of {gamma}` precipitates and (68 {+-} 0.3) kJ/mol for grain boundary diffusion due to the existence of {gamma} precipitates. TEM investigations of {gamma}` and {gamma} precipitates confirmed the above-mentioned effect of Zr addition. (orig.)

  3. Enthalpy of mixing of liquid Ag–Bi–Cu alloys at 1073 K

    International Nuclear Information System (INIS)

    Fima, Przemysław; Flandorfer, Hans

    2014-01-01

    Highlights: • Partial and integral mixing enthalpies of liquid Ag–Bi–Cu alloys were determined. • Integral mixing enthalpies are small and endothermic, similar to limiting binaries. • The ternary data were fitted on the basis of Redlich–Kister–Muggianu model. - Abstract: The Ag–Bi–Cu system is among those ternary systems which have not been fully studied yet, in particular the thermodynamic description of the liquid phase is missing. Partial and integral enthalpies of mixing of liquid ternary Ag–Bi–Cu alloys were determined over a broad composition range along six sections: x(Ag)/x(Bi) = 0.25, 1, 4; x(Ag)/x(Cu) = 1.5; x(Bi)/x(Cu) = 1.86, 4. Measurements were carried out at 1073 K using two Calvet type microcalorimeters and drop calorimetric technique. It was found that integral enthalpies of mixing are small and endothermic, similarly to limiting binary alloys. The ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. There are no significant additional ternary interactions

  4. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    Science.gov (United States)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  5. Structure and photoelectrochemistry of silver-copper-indium-diselenide ((AgCu)InSe2) thin film

    Science.gov (United States)

    Zhang, Lin Rui; Li, Tong; Wang, Hao; Pang, Wei; Chen, Yi Chuan; Song, Xue Mei; Zhang, Yong Zhe; Yan, Hui

    2018-02-01

    In this work, silver (Ag) precursors with different thicknesses were sputtered on the surfaces of CuIn alloys, and (AgCu)InSe2 (ACIS) films were formed after selenization at 550 °C under nitrogen condition using a rapid thermal process furnace. The structure and electrical properties of the ACIS films were investigated. The result showed that the distribution of Ag+ ion was more uniform with increasing the thickness of Ag precursor, and the surface of the thin-film became more homogeneous and denser. When Ag/Cu ratio ≥0.249, the small grain particles disappeared. The band gap can be rationally controlled by adjusting Ag content. When (Ag + Cu)/In ratio ≥ 1.15, the surface of the ACIS thin-film mainly exhibited n-type semiconductor. Through the photoelectrochemistry measurement, it was observed that the incorporation of Ag+ ions could improve photocurrent by adjusting the band gap. With the Ag precursor thickness increased, the dark current decreased at the more negative potential.

  6. Effect of Ag additions on the lengthening rate of Ω plates and formation of σ phase in Al-Cu-Mg alloys during thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yaru; Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn; Bai, Song; Ying, Puyou; Lin, Lianghua

    2017-01-15

    Effect of Ag additions on the mechanical properties and microstructures of the peak-aged Al-Cu-Mg alloys during prolonged thermal exposure at 150 °C, was investigated by tensile testing, conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The results showed that after exposure for 500 h, > 85% of the peak strength remained. Microstructure observations indicated that increasing the Ag content from 0.14 to 0.57% promoted the precipitation of a fine and uniform Ω phase and suppressed the formation of the θ′ phase, leading to a notable improvement of the strength properties and thermal stability of the studied alloys. Quantitative TEM analysis showed that the coarsening of Ω phase was predominated by plate lengthening rather than thickening, while its lengthening rate was independent of various Ag additions during exposure at 150 °C. In addition, an increase of Ag also facilitated the formation of a cubic σ phase, which was further supported by STEM results. - Highlights: •Increasing Ag improved strength properties and thermal stability of the alloys. •After exposure for 500 h, > 85% of the peak strength remained. •The lengthening rate of Ω plates remained constant as Ag increased at 150 °C. •Increasing Ag content facilitated the formation of σ phase.

  7. Amorphous Cu-Ag films with high stability

    International Nuclear Information System (INIS)

    Reda, I.M.; Hafner, J.; Pongratz, P.; Wagendristel, A.; Bangert, H.; Bhat, P.K.

    1982-06-01

    Films produced by quenching Cu-Ag vapour onto cooled substrates at liquid nitrogen temperature have been investigated using electron microscopy, electron diffraction and electrical resistivity measurements. In the composition range from 30 to 70 at% Cu the as quenched films are amorphous, and within the range of 35 to 63 at% Cu the amorphous phase is stable above room temperature with a maximum crystallization temperature Tsub(c)=381 K at 47.5 at% Cu. Crystallization results in the formation of a supersaturated fcc solid solution which decomposes in a second crystallization step. The effect of deposition rate, film thickness, temperature and surface of the substrate, and most importantly of the composition on the transition temperatures has been investigated. A comparative study of the formation of amorphous phases in a wide variety of Cu-based alloys is presented. (author)

  8. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  9. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  10. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  11. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  12. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  13. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Science.gov (United States)

    Gangloff, Richard P.; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.

  14. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  15. The Ag-Al-Cu system

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T. [ACCESS e. V., Intzestr. 5, D-52072 Aachen (Germany)]. E-mail: victor@access.rwth-aachen.de; Hecht, U. [ACCESS e. V., Intzestr. 5, D-52072 Aachen (Germany); Fries, S.G. [ACCESS e. V., Intzestr. 5, D-52072 Aachen (Germany); Rex, S. [ACCESS e. V., Intzestr. 5, D-52072 Aachen (Germany)

    2005-01-25

    The thermodynamic description of the Ag-Al-Cu system is obtained by modelling the Gibbs energy of all individual phases in the system using the CALPHAD approach. The model parameters have been evaluated, by means of a computer optimisation technique, based on the descriptions of the constituent binaries proposed in the first part of the work and relevant experimental information for ternary alloys both from literature and own experimental measurements. Several vertical and isothermal sections, the liquidus surface and some thermodynamic properties are calculated using the evaluated parameters. A good agreement between the calculations and the experimental data is achieved.

  16. Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy

    DEFF Research Database (Denmark)

    Pedersen, M.S.; Mørup, Steen; Linderoth, Søren

    1996-01-01

    The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic ....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....

  17. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    Science.gov (United States)

    Boesenberg, Adam J.; Anderson, Iver E.; Harringa, Joel L.

    2012-07-01

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic ( T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2- μm to 5- μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  18. On the effect of stress on nucleation and growth of precipitates in an Al-Cu-Mg-Ag alloy

    Science.gov (United States)

    Skrotzki, B.; Shiflet, G. J.; Starke, E. A.

    1996-11-01

    A study has been made of the effect of an externally applied tensile stress on Ω and Θ' precipitate nucleation and growth in an Al-Cu-Mg-Ag alloy and a binary Al-Cu alloy which was used as a model system. Both solutionized and solutionized and aged conditions were studied. The mechanical properties have been measured and the microstructures have been characterized by transmission electron microscopy (TEM). The volume fraction and number density, as well as the precipitate size, have been experimentally determined. It was found that for as-solutionized samples aged under stress, precipitation occurs preferentially parallel to the stress axis. A threshold stress has to be exceeded before this effect can be observed. The critical stress for influencing the precipitate habit plane is between 120 and 140 MPa for Ω and between 16 and 19 MPa for Θ' for the aging temperature of 160 °C. The major effect of the applied stress is on the nucleation process. The results are discussed in terms of the role of the lattice misfit between the matrix and the precipitate nucleus.

  19. Effect of nano Co reinforcements on the structure of the Sn-3.0Ag-0.5Cu solder in liquid and after reflow solid states

    Energy Technology Data Exchange (ETDEWEB)

    Yakymovych, Andriy, E-mail: yakymovych@univie.ac.at [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria); Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Mudry, Stepan; Shtablavyi, Ihor [Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Ipser, Herbert [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria)

    2016-09-15

    Sn-Ag-Cu (SAC) alloys are commonly recognized as lead-free solders employed in the electronics industry. However, some disadvantages in mechanical properties and their higher melting temperatures compared to Pb-Sn solders prompt new research relating to reinforcement of existing SAC solders. One of the ways to reinforce these solder materials is the formation of composites with nanoparticles as filler materials. Accordingly, this study presents structural features of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} solders with up to 0.8 wt% nano Co. The effect of nano-sized Co particles was investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD) in both liquid and solid states, and scanning electron microscopy (SEM). The experimental data of DTA are compared with available literature data for bulk Sn-3.0Ag-0.5Cu alloy to check the capability of minor nano-inclusions to decrease the melting temperature of the SAC solder. The combination of structural data in liquid and solid states provides important information about the structural transformations of liquid Sn-3.0Ag-0.5Cu alloys caused by minor Co additions and the phase formation during crystallization. Furthermore, scanning electron microscopy has shown the mutual substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases, respectively. - Highlights: • Differential thermal analysis of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} alloys. • Structural transformations of liquid Sn-3.0Ag-0.5Cu solder by minor Co additions. • Structure data of the solid quaternary (Sn-3.0Ag-0.5Cu){sub 100−x}(Co){sub x} alloys. • Substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases.

  20. Transformaciones de fase en aleaciones Zn-22%Al-2%Cu y Zn-22%Al-2%Cu-X (X = 1, 2 y 3%Ag envejecidas isotérmicamente

    Directory of Open Access Journals (Sweden)

    Flores-Ramos, Alfredo

    2014-12-01

    Full Text Available The study of phase transformations that take place in Zn-22%Al-2%Cu and Zn-22%Al-2%Cu-X (X = 1, 2 and 3%Ag alloys was carried out using X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. Alloys were homogenized at 350 °C during 10 days and quenched at ~2 °C. Subsequently, samples were aged at 200 °C for different times. The initial microstructure consists in a matrix of fine equiaxial grains of α and η phases for all the alloys. Besides isolated particles of ε and Φ were observed without and with Ag addition, respectively. During the aging, the four phase reaction, α + ε→η + τ’, takes place to obtain the equilibrium η, α and τ’ phases. However, the Ag addition promotes the formation of the Φ phase, which retards or inhibits the four phase reaction. The stability of the Φ phase is obtained with 3%Ag, which could improve the dimensional stability of the alloy for future industrial applications.En el presente estudio sobre las transformaciones de fase en las aleaciones Zn-22%Al-2%Cu y Zn-22%Al-2%Cu-X (X = 1, 2 y 3%Ag se utilizó Difracción de Rayos X (DRX y Microscopía Electrónica de Barrido (MEB. Las aleaciones fueron homogeneizadas a 350 °C durante 10 días, templadas a ~2 °C y posteriormente envejecidas a 200 °C durante diferentes tiempos. Todas las aleaciones ensayadas presentaron una microestructura inicial formada por una matriz de granos finos y equiaxiales de las fases α y η. Además, para las aleaciones sin Ag se observa la presencia de partículas de la fase ε (CuZn4 y de Φ ((Ag, Cu Zn4 en las que se adicionó Ag. Durante el envejecido, ocurre la reacción de cuatro fases, α + ε→η + τ’, para obtener las fases de equilibrio η, α y τ’. Sin embargo, la adición de Ag promueve la formación de la fase Φ, la cual retarda e incluso inhibe la reacción de cuatro fases. La estabilidad de la fase Φ se obtiene con 3%Ag, lo que podría mejorar la estabilidad dimensional de la aleación para

  1. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  2. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Busson, Bertrand; De Gaudenzi, Gian Pietro; Mele, Claudio; Tadjeddine, Abderrahmane

    2007-01-01

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN - stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface

  3. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, Benedetto [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy)]. E-mail: benedetto.bozzini@unile.it; Busson, Bertrand [CLIO-LCP, Universite Paris-Sud, 91405 Orsay Cedex (France); De Gaudenzi, Gian Pietro [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Mele, Claudio [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Tadjeddine, Abderrahmane [UDIL-CNRS, Bat. 201, Centre Universitaire Paris-Sud, BP 34, 91898 Orsay Cedex (France)

    2007-01-16

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN{sup -} stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface.

  4. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  5. Copper-Silver Alloy Depositions Using Thermionic Vacuum ARC (TVA)

    International Nuclear Information System (INIS)

    Akan, T.

    2004-01-01

    TVA is a plasma source generating pure metal vapor plasma and consists of a heated cathode emitting thermo electrons and an anode containing material to be evaporated. We used Cu and Ag pieces as anode materials and produced their alloys by electron bombarding. Cu-Ag alloys in various mass ratios were prepared by using the TVA and the TVA discharges were generated in the vapors of these alloys. The volt-ampere characteristics of the TVA discharges generated in the vapors of these alloys were investigated with respect to the ratio of Ag in the Cu-Ag alloy. Cu-Ag alloy thin films with various mass ratios were deposited onto the glass substrates by using their TVA discharges. The ratios of Cu and Ag in the thin Cu-Ag alloy films were found using scanning electron microscope-energy dispersive xray (SEM-EDX) microanalyses

  6. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    Science.gov (United States)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  7. Prediction of irradiation induced microstructures in the AgCu model alloy using a multiscale method coupling atomistic and phase field modelling

    OpenAIRE

    Demange, Gilles; Pontikis, Vassilis; Lunéville, Laurence; Simeone, David

    2016-01-01

    In this work, a multiscale approach based on phase field was developed to simulate the microstructure's evolution under irradiation in binary systems, from atomic to microstructural scale. For that purpose, an efficient numerical scheme was developed. In the case of AgCu alloy under Krypton ions irradiation, phenomenological parameters were computed using atomistic methods, as a function of the temperature and the irradiation flux. As a result, we predicted the influence of the irradiation fl...

  8. Surface Morphology Study of Nanostructured Lead-Free Solder Alloy Sn-Ag-Cu Developed by Electrodeposition: Effect of Current Density Investigation

    Directory of Open Access Journals (Sweden)

    Sakinah Mohd Yusof

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Nanostructured lead-free solder Sn-Ag-Cu (SAC was developed by electrodeposition method at room temperature. Electrolite bath which comprised of the predetermined quantity of tin methane sulfonate, copper sulfate and silver sulfate were added sequentially to MSA solution. The methane sulphonic acid (MSA based ternary Sn-Ag-Cu bath was developed by using tin methane sulfonate as a source of Sn ions while the Cu+ and Ag+ ions were obtained from their respective sulfate salts. The rate of the electrodeposition was controlled by variation of current density. The addition of the buffer, comprising of sodium and ammonium acetate helped in raising the pH solution. During the experimental procedure, the pH of solution, composition of the electrolite bath, and the electrodeposition time were kept constant. The electrodeposited rate, deposit composition and microstructure were investigated as the effect of current density. The electrodeposited solder alloy was characterized for their morphology using Field Emission Scanning Electron Microscope (FESEM. In conclusion, vary of current density will play significant role in the surface morphology of nanostructured lead-free solder SAC developed. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New

  9. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  10. Amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Chen Xiuxiu [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Geng Haoran [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)], E-mail: mse_wangy@ujn.edu.cn; Yang Zhongxi [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)

    2009-04-17

    In the present paper, the effect of Nb and different rotation speeds on the amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results show that the minor addition of Nb can shorten the start time of the amorphization reaction, improve the glass forming ability of Zr-Cu alloys, but cannot promote the formation of a single amorphous phase at a lower rotation speed of 200 rpm. The glass forming ability of the Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys increases with increasing Nb additions. At a higher rotation speed of 350 rpm, a single amorphous phase of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) can be successfully fabricated. Moreover, the Nb addition into Zr-Cu alloys can accelerate the amorphization process and improve the stability of the amorphous phase against the mechanically induced crystallization. Furthermore, the amorphous Zr{sub 66.7}Cu{sub 33.3} phase gradually transforms into a metastable fcc-Zr{sub 2}Cu phase with increasing milling time.

  11. The effect of Ag and Ca additions on the age hardening response of Mg–Zn alloys

    International Nuclear Information System (INIS)

    Bhattacharjee, T.; Mendis, C.L.; Oh-ishi, K.; Ohkubo, T.; Hono, K.

    2013-01-01

    The effect of sole and combined additions of Ag and Ca in enhancing the age hardening response in a Mg–2.4Zn (at%) alloy have been studied by systematic microstructure investigations using transmission electron microscopy (TEM) and three dimensional atom probe (3DAP). In the early aging stage of a Mg–2.4Zn–0.1Ag–0.1Ca (at%) alloy at 160 °C, Zn-rich Guinier Preston (G.P.) zones form with Ag and Ca enrichment. Further aging lead to the formation of fine β′ 1 precipitates with Ag and Ca enrichment. We confirmed that the G.P. zones do not form in the Mg–2.4Zn (at%) binary alloy at 160 °C, but form after a prolonged aging at 70 °C. This suggests that the combined addition of Ag and Ca shifts the metastable solvus for the G.P. zones to a higher temperature, thereby making it possible to form G.P. zones even at the artificial aging temperature of 160 °C. Since G.P. zones act as nucleation sites for the β′ 1 precipitates, the peak-aged microstructure is refined substantially by the addition of Ag and Ca

  12. Effect of Heat Treatments on Microstructures and Tensile Properties of Cu-3 wt%Ag-0.5 wt%Zr Alloy

    Science.gov (United States)

    Chen, Gang; Wang, ChuanJie; Zhang, Ying; Yi, Cen; Zhang, Peng

    2018-03-01

    The microstructures and tensile properties of Cu-3 wt%Ag-0.5 wt%Zr alloy sheets under different aging treatments are investigated in this research. As one kind of precipitate, Ag nanoparticles with coherent orientation relationship with matrix precipitate. However, after the peak-age point, most of Ag nanoparticles grow into short rod shape with the interface translating to semi-coherent, which leads to the lower strength of over-aging sample. The yield strength is estimated by considering solid solute, grain boundary and precipitation strengthening mechanisms. The result shows that the Ag precipitates provide the main strengthening role. Then a constitutive equation representing the evolution of dislocation density with plastic strain is built by considering work-hardening behavior coming from shearable and non-shearable precipitates which is mainly the particles containing Zr. The flow stress contributed by shearable particle hardening is higher than that of non-shearable one. Due to the coarsening of grain boundary precipitates and low rate of damage accumulation of these non-shearable particles, the micro-cracks nucleate easily at grain boundary which leads to intergranular fracture.

  13. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  14. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  15. Analysis of the residual strain change of Bi2212, Ag alloy and Ag during the heating and cooling process in Bi2212/Ag/Ag alloy composite wire

    International Nuclear Information System (INIS)

    Shin, J K; Ochiai, S; Okuda, H; Mukai, Y; Sugano, M; Sato, M; Oh, S S; Ha, D W; Kim, S C

    2008-01-01

    The residual strain change of Bi2212 and Ag during the cooling and heating process in the Bi2212/Ag/Ag alloy composite superconductor was studied. First, the residual strain of Bi2212 filaments at room temperature was measured by the x-ray diffraction method. Then, the Young's moduli of the constituents (Bi2212 filaments, Ag and Ag alloy) and yield strains of Ag and Ag alloy were estimated from the analysis of the measured stress-strain curve, based on the rule of mixtures. Also, the coefficient of thermal expansion of the Bi2212 filaments was estimated from the analysis of the measured thermal expansion curve of the composite wire. From the modeling analysis using the estimated property values and the residual strain of Bi2212 filaments, the changes of residual strain of Bi2212, Ag alloy and Ag with temperature during the cooling and heating process were revealed

  16. Synthesis by mechanical alloying and characterization of 95.5Sn/4.0Ag/0.5Cu, (wt%) nanopowder

    International Nuclear Information System (INIS)

    Barreto, Karen Lyn Lima; Manzato, Lizandro; Rivera, Jose Anglada; Oliveira, Marceli Falcao de

    2010-01-01

    This work aims at sintering and characterizing the 95.5Sn/4.0Ag/0.5Cu (wt%) nanopowder, produced by high energy milling. The nano-sized particles reduce the melting point of this solder, which is usually higher for such alloys, for example, when compared with the usual 63Sn/37Pb (wt%) solder. The alloy was processed in a Spex mill with the following parameters: (I) different times of milling, 12, 24 and 48 hours. (II) the ratio of ball/mass powder of 40:1 and (II) hydrogen milling atmosphere. The microstructural evolution during milling was studied by X-ray diffraction and differential calorimetry. Combining these three variables, after grinding, a reduction of the particle size and the melting point of the solder were observed. This material is promising for applications in microelectronics packaging as a lead free solder. (author)

  17. Effect of the Heusler phase formation on the magnetic behavior of the Cu–10 wt.%Mn alloy with Al and Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M., E-mail: thaisa.mary@gmail.com [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra – UNIFESP, 09972-270 Diadema, SP (Brazil); Magnani, M. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The presence of the Cu{sub 2}MnAl phase was observed in annealed alloys. • Al and Ag additions shift the equilibrium concentration to higher Al values. • There is a correlation between the Ag-rich phase and the Cu{sub 2}MnAl phase. - Abstract: In this work, the formation of the Cu{sub 2}AlMn Heusler phase and its influence on the magnetic behavior of the Cu–Mn–Al–Ag alloys in the range of 8–10 wt.% of aluminum and 2–4 wt.% of silver were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and saturation magnetization measurements at 4 K. The results showed that there is a correlation between the presence of the Ag-rich phase and the formation of the Cu{sub 2}MnAl phase.

  18. Machinability of experimental Ti-Ag alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2008-03-01

    This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.

  19. Surface properties and wetting behavior of liquid Ag-Sb-Sn alloys

    Directory of Open Access Journals (Sweden)

    Sklyarchuk V.

    2012-01-01

    Full Text Available Surface tension and density measurements of liquid Ag-Sb-Sn alloys were carried out over a wide temperature range by using the sessile drop method. The surface tension experimental data were analyzed by the Butler thermodynamic model in the regular solution approximation. The wetting characteristics of these alloys on Cu and Ni substrates have been also determined. The new experimental results were compared with the calculated values as well as with data available in the literature.

  20. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  1. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    Science.gov (United States)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  2. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    Science.gov (United States)

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (film matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst

    Science.gov (United States)

    Wang, Shing-Dar; Chen, Ting-Wei

    2018-06-01

    In this work, Cu, Ag, or Ag/Cu was used as a metal catalyst to study the surface texturization of diamond-wire-sawn (DWS) multi-crystalline silicon (mc-Si) wafer by a metal-assisted chemical etching (MACE) method. The DWS wafer was first etched by standard HF-HNO3 acidic etching, and it was labeled as AE-DWS wafer. The effects of ratios of Cu(NO3)2:HF, AgNO3:HF, and AgNO3:Cu(NO3)2 on the morphology of AE-DWS wafer were investigated. After the process of MACE, the wafer was treated with a NaF/H2O2 solution. In this process, H2O2 etched the nanostructure, and NaF removed the oxidation layer. The Si {1 1 1} plane was revealed by etching the wafer in a mixture of 0.03 M Cu(NO3)2 and 1 M HF at 55 °C for 2.5 min. These parallel Si {1 1 1} planes replaced some parallel saw marks on the surface of AE-DWS wafers without forming a positive pyramid or an inverted pyramid structure. The main topography of the wafer is comprised of silicon nanowires grown in direction when Ag or Ag/Cu was used as a metal catalyst. When silicon is etched in a mixed solution of Cu(NO3)2, AgNO3, HF and H2O2 at 55 °C with a concentration ratio of [Cu2+]/[Ag+] of 50 or at 65 °C with a concentration ratio of [Cu2+]/[Ag+] of 33, a quasi-inverted pyramid structure can be obtained. The reflectivity of the AE-DWS wafers treated with MACE is lower than that of the multiwire-slurry-sawn (MWSS) mc-Si wafers treated with traditional HF + HNO3 etching.

  4. Microstructure and adhesion strength of Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu after electrochemical polarization in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.-L. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, Y.-R.; Chang, K.-M. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Liu, C.-Y.; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-08-11

    The microstructure and adhesion strength of the Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu interface after electrochemical polarization have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and pull-off testing. The equilibrium potentials of Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu are -1.31 V{sub sce} and -1.22 V{sub sce}, respectively, indicating that Sn-9Zn-1.5Ag-2Bi/Cu has a better corrosion resistance than that of Sn-9Zn-1.5Ag/Cu. The intermetallic compounds of Cu{sub 6}Sn{sub 5}, Cu{sub 5}Zn{sub 8} and Ag{sub 3}Sn are formed at the soldered interface between the Sn-9Zn-1.5Ag-xBi solder alloy and the Cu substrate. The scallop-shaped Cu{sub 6}Sn{sub 5} is close to the Cu substrate and the scallop-shaped Cu{sub 5}Zn{sub 8} is found at the interface in the solder matrix after soldering at 250 deg. C for 10 s. The corrosion products are ZnCl{sub 2}, SnCl{sub 2} and ZnO. On the other hand, pits are also formed on the surface of both solder alloys. The interfacial adhesion strength of the Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu decreases from 8.27 {+-} 0.56 MPa and 12.67 {+-} 0.45 MPa to 4.78 {+-} 0.45 MPa and 8.14 {+-} 0.38 MPa, respectively, after electrochemical polarization in a 3.5 wt% NaCl solution. The fracture path of the Sn-9Zn-1.5Ag-2Bi/Cu is along the solder alloy/ZnO and solder/Cu{sub 6}Sn{sub 5} interfaces.

  5. Precipitation and strengthening phenomena in Al-Si-Ge and Al-Cu-Si-Ge alloys

    International Nuclear Information System (INIS)

    Mitlin, D.; Morris, J.W.; Dahmen, U.; Radmilovic, V.

    2000-01-01

    The objective of this work was to determine whether Al rich Al-Si-Ge and 2000 type Al-Cu-Si-Ge alloys have sufficient hardness to be useful for structural applications. It is shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. However, Al-Cu-Si-Ge displayed a uniquely fast aging response, a high peak hardness and a good stability during prolonged aging. The high hardness of the Cu containing alloy is due to the dense and uniform distribution of fine θ' precipitates (metastable Al 2 Cu) which are heterogeneously nucleated on the Si-Ge particles. High resolution TEM demonstrated that in both alloys all the Si-Ge precipitates start out, and remain multiply twinned throughout the aging treatment. Since the twinned section of the precipitate does not maintain a low index interface with the matrix, the Si-Ge precipitates are equiaxed in morphology. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  6. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Bakhtiar, E-mail: engrbakhtiaralikhan@gmail.com; Sabri, Mohd Faizul Mohd, E-mail: faizul@um.edu.my; Jauhari, Iswadi, E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-07-19

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCs size (Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5}), especially the Cu{sub 6}Sn{sub 5} IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.

  7. The effect of high-temperature treatment on the formation of nanoscale intermetallic compounds of transition metals in Al-Cu-Mn-Zr alloy

    Science.gov (United States)

    Monastyrska, Tetiana O.; Berezina, Alla L.; Labur, Tetiana M.; Molebny, Oleh A.; Kotko, Andrii V.

    2018-02-01

    The precipitation of intermetallic compounds of transition metals during aging of the Al-5.8%Cu-0.3%Mn-0.1%Zr alloy has been studied using DSC, resistometry, X-ray and transmission electron microscopy. In these age hardenable alloys, the nanoscale metastable Θ″ and Θ' phases of the Al2Cu compound are the main strengthening phases, which are formed at low temperature aging of T stresses, etc.) on the aging with the precipitation of strengthening phases has been investigated.

  8. Temperature stability of AgCu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sopoušek, Jiří, E-mail: sopousek@mail.muni.cz; Zobač, Ondřej; Vykoukal, Vít [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Buršík, Jiří; Roupcová, Pavla [Institute of Physics of Materials ASCR (Czech Republic); Brož, Pavel; Pinkas, Jiří [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Vřešťál, Jan [Masaryk University, Central European Institute of Technology, CEITEC (Czech Republic)

    2015-12-15

    The colloidal solutions of the Ag–Cu nanoparticles (NPs, 10–32 nm) were prepared by solvothermal reactions. The samples of dried AgCu NPs and the resulting microstructures after heat treatment in air were investigated by various methods including electron microscopy (TEM, SEM) and high-temperature X-ray powder diffraction (HTXRD). The AgCu randomly mixed, Cu-rich, and Ag-rich face centred cubic crystal lattices were detected during the experiments. The temperature induced sintering was observed experimentally by HTXRD at 250 °C. The phase transformations at high temperatures were monitored by differential scanning calorimetry. The formation of the Ag-rich grains during heating in air and evolution of copper oxide microstructure were detected.Graphical abstract.

  9. Stable and metastable phases in reciprocal systems PbSe + Ag2I2 Ag2Se + PbI2 and PbSe + CdI2 = CdSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.

    2005-01-01

    Mutual system PbSe + Ag 2 I 2 = Ag 2 Se + PbI 2 is investigated. It is shown that diagonal Ag 2 Se-PbI 2 is stable. Liquidus surface and isothermal section at 633 K of phase diagram of PbSe-Ag 2 Se-PbI 2 system are built. Transformations directing to crystallization metastable ternary compound forming in PbSe-PbI 2 system and metastable polytype modifications of lead iodide in PbSe-Ag 2 Se-PbI 2 system at 620-685 K are studied. By hardening from molten state (1150-1220 K) new interstitial metastable phases crystallizing in CdCl 2 structural type are obtained in PbSe-Ag 2 Se-PbI 2 and PbSe + CdI 2 = CdSe + PbI 2 systems [ru

  10. Fatigue and creep deformed microstructures of aged alloys based on Al-4% Cu-0.3% Mg

    International Nuclear Information System (INIS)

    Reddy, A. Somi

    2008-01-01

    The addition of 0.4 wt.% of silver or cadmium to the alloy Al-4% Cu-0.3% Mg which has a high Cu:Mg ratio, changes the nature, morphology and dispersion of the precipitates that forms on age hardening at medium temperatures such as 150-200 o C. Fatigue and creep tests were carried out on alloys aged to peak strength at 170 o C. The tensile properties of the alloys aged at 170 o C increased in the order Al-4% Cu, Al-4% Cu-0.3% Mg, Al-4% Cu-0.3% Mg-0.4% Cd, and Al-4% Cu-0.3% Mg-0.4% Ag. Despite differences in their microstructures and tensile properties, the fatigue performance of the alloys was relatively unaffected. Fatigue behaviour was similar in each case and the alloys showed identical fatigue limits. Major differences were observed in the creep performance of the alloys creep tested at 150 o C in the peak strength condition age hardened at 170 o C. Creep performance of the alloys increased in the order of their tensile properties. The purpose of the present work was to discuss the fatigue and creep deformed microstructure of these alloys

  11. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    Science.gov (United States)

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  12. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate

    International Nuclear Information System (INIS)

    Sun, Peng; Andersson, Cristina; Wei, Xicheng; Cheng, Zhaonian; Shangguan, Dongkai; Liu, Johan

    2007-01-01

    In this paper, the coupling effect in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joint with sandwich structure by long time reflow soldering was studied. It was found that the interfacial compound at the Cu substrate was binary Cu-Sn compound in Sn-Ag-Bi solder joint and Cu 5 Zn 8 phase in Sn-Zn-Bi solder joint. The thickness of the Cu-Zn compound layer formed at the Cu substrate was greater than or equal to that of Cu-Sn compound layer, although the reflow soldering temperature of Sn-Zn-Bi (240 o C) was lower than that of Sn-Ag-Bi (250 o C). The stable Cu-Zn compound was the absolute preferential phase in the interfacial layer between Sn-Zn-Bi and the Cu substrate. The ternary (Cu, Ni) 6 Sn 5 compound was formed at the Sn-Ag-Bi/Ni(P)-Cu metallization interface, and a complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P)-Cu metallization interface. It was noted that Cu atoms could diffuse from the Cu substrate through the solder matrix to the Ni(P)-Cu metallization within 1 min reflow soldering time for both solder systems, indicating that just 30 s was long enough for Cu to go through 250 μm diffusion length in the Sn-Ag-Bi solder joint at 250 o C. The coupling effect between Ni(P)/Cu metallization and Cu substrate was confirmed as the type of IMCs at Ni(P) layer had been changed from Ni-Sn system to Cu-Sn system apparently by the diffusion effect of Cu atoms. The (Cu, Ni) 6 Sn 5 layer at the Ni(P)/Cu metallization grew significantly and its thickness was even greater than that of the Cu-Sn compound on the opposite side, however the growth of the complex alloy including Sn, Ni, Cu and Zn on the Ni(P)/Cu metallization was suppressed

  13. Synthesis and Characterization of Monometallic (Ag, Cu and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications

    Directory of Open Access Journals (Sweden)

    Marta Paszkiewicz

    2016-01-01

    Full Text Available In this paper, the experimental studies are concerned with the effect of the synthesis parameters on the formation of monometallic Ag and Cu nanoparticles (NPs. We consider the synthesis strategies verification for the bimetallic core-shell and alloy particles preparation. It was successfully obtained by chemical reduction method. The obtained colloidal solution is characterized by the transmission electron microscopy (TEM with energy-dispersive X-ray spectroscopy (EDX data, UV-Vis spectra, particle size distribution, and zeta potential. This work presents a comprehensive overview of experimental studies of the most stable colloidal solutions to impregnate fabrics that will exhibit a bactericidal and fungicidal activity against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  14. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    Chang, T.-C.; Chou, S.-M.; Hon, M.-H.; Wang, M.-C.

    2006-01-01

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  15. Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys

    International Nuclear Information System (INIS)

    Ng, Chun; Guo, Sheng; Luan, Junhua; Wang, Qing; Lu, Jian; Shi, Sanqiang; Liu, C.T.

    2014-01-01

    Highlights: • The solid solution phase in the high-entropy alloy was confirmed to be metastable. • The alloy exhibited microstructural and mechanical stability against annealing. • Only as-cast alloys showed sufficient tensile plasticity. • A large variability of the measured tensile properties was recorded. • The alloys showing slip banding behavior did not necessarily have tensile ductility. -- Abstract: High-entropy alloys (HEAs) are becoming new research frontiers in the metallic materials field. The phase stability of HEAs is of critical significance, but a convincing understanding on it has been somewhat held back by the slow diffusion kinetics, which prevents the completion of diffusion assisted phase transformations toward the equilibrium state. Here a unique methodology, combining both the thermomechanical treatments and thermodynamic calculations, was employed to reveal the phase stability of HEAs, exemplified using the newly developed Al 0.5 CrCuFeNi 2 alloy. The metastable nature of the solid solution phases in this high-entropy alloy was uncovered through thermomechanical treatments induced phase transformations, and supported by the thermodynamic calculations. Meanwhile, the tensile properties for both the as-cast and thermomechanically treated alloys were measured, and correlated to their indentation behavior

  16. Cubic-to-Tetragonal Phase Transitions in Ag-Cu Nano rods

    International Nuclear Information System (INIS)

    Delogu, F.; Mascia, M.

    2012-01-01

    Molecular dynamics simulations have been used to investigate the structural behavior of nano rods with square cross section. The nano rods consist of pure Ag and Cu phases or of three Ag and Cu domains in the sequence Ag-Cu-Ag or Cu-Ag-Cu. Ag and Cu domains are separated by coherent interfaces. Depending on the side length and the size of individual domains, Ag and Cu can undergo a transition from the usual face-centered cubic structure to a body-centered tetragonal one. Such transition can involve the whole nano rod, or only the Ag domains. In the latter case, the transition is accompanied by a loss of coherency at the Ag-Cu interfaces, with a consequent release of elastic energy. The observed behaviors are connected with the stresses developed at the nano rod surfaces.

  17. The evolution of interface microstructure in a ZrO2/Ag-Cu-Al-Ti system

    International Nuclear Information System (INIS)

    Lee, Youngmin; Yu, Jin

    1993-01-01

    Among ceramic/metal (C/M) joining technologies, the active filler metal method has been studied extensively due to the simple brazing process and excellent joint strength. Active metal elements, typically Ti, are intentionally added to braze alloys to enhance the formation of reaction products between the ceramic and the braze metal at the C/M interface. In the brazing of Al 2 O 3 with the Ag-Cu-Ti filler metal, reaction products such as γ-TiO, Cu 2 (Ti, Al) 4 O, Ti 3 (Cu 0.76 Al 0.18 Sn 0.06 ) 3 O were found, while products such as Ti 5 Si 3 and TiN formed in the brazing of Si 3 N 4 . The presence of reaction layers at the C/M interface influences the interface strength in a complex way. In Cu/Al 2 O 3 , Co/Al 2 O 3 , Ni/Al 2 O 3 , and Cu/diamond systems, maxima of joint strength were observed at some intermediate Ti addition, while the flexural strength decreased substantially with the thickening of the TiO layer in a ZrO 2 /Ag-Cu-Sn-Ti system. Thus, composition of the braze alloy (particularly, the content of the active metal), process conditions such as brazing temperature and time, microstructure and mechanical properties of reaction products at the C/M interfaces, interfacial chemistry, and residual stress are primary factors to be studied in order to understand the strengths of the C/M interfaces systematically. In the present and the following papers, evolutions of interfacial microstructures at various brazing conditions, and corresponding interface strengths are reported, respectively, for a ZrO 2 /Ag-Cu-Al-Ti system

  18. Effect of Natural Aging and Cold Working on Microstructures and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag alloy

    Science.gov (United States)

    Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie

    2013-06-01

    This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.

  19. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    Science.gov (United States)

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-03-01

    Full Text Available The effect of Cu addition on dispersoid precipitation, mechanical properties and creep resistance was investigated in an Al-Mn-Mg 3004 alloy. The addition of Cu promoted dispersoid precipitation by increasing the number density and decreasing the size of dispersoids. Metastable β′-Mg2Si and Q-AlCuMgSi precipitates were observed during the heating process and both could provide favorable nucleation sites for dispersoid precipitation. The addition of Cu improved the thermal stability of dispersoids during a long-term thermal holding at 350 °C for 500 h. Results of mechanical testing show that the addition of Cu remarkably improved the hardness at room temperature, as well as the yield strength and creep resistance at 300 °C, which was mainly attributed to dispersoid strengthening and Cu solid solution strengthening. The yield strength contribution at 300 °C was quantitatively evaluated based on the dispersoid, solid solution and matrix contributions. It was confirmed that dispersoid strengthening is the main strengthening mechanism in the experimental alloys.

  1. Interaction of Ag with YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Shamrai, V.F.; Efimov, Yu.V.; Frolova, T.M.; Myasnikova, E.A.; Postnikov, A.M.

    1992-01-01

    The aim of the work was to investigate the effect of Ag (0.3 to 20 mass%) on the structure, the composition and some superconducting and magnetic properties of Y-HTSC. The alloys were studied by scanning electron microscopy (in secondary and elastically backscattering electron mode) and X-ray diffraction analysis (DRON-2.0; CuKα-radiation). T c was measured by both resistive and inductive methods at T >> 77 K. The resistivity was determined by four-point technique (Ag solder) at 100 to 300 K and with 1 mA (operating current). Magnetic flux penetration was studied by a mechanical method in sound frequency interval. (orig./MM) [de

  2. Isothermal α″ formation in β metastable titanium alloys

    International Nuclear Information System (INIS)

    Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.

    2013-01-01

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″

  3. Isothermal α″ formation in β metastable titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aeby-Gautier, E., E-mail: Elisabeth.Gautier@mines.inpl-nancy.fr [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Settefrati, A. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Airbus Operations, Materials and Processes, Toulouse (France); Bruneseaux, F. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Appolaire, B. [Laboratoire d’Etudes des Microstructures ONERA – CNRS Chatillon (France); Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France)

    2013-11-15

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″.

  4. Dendritic morphology observed in the solid-state precipitation in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Husain, S.W.; Ahmed, M.S.; Qamar, I. [Dr. A.Q. Khan Research Labs., Rawalpindi (Pakistan)

    1999-06-01

    The precipitation of {gamma}{sub 2} phase in Cu-Al {beta}-phase alloys has been observed to occur in the dendritic morphology. Such morphology is rarely observed in the solid-state transformations. Earlier it was reported that the {gamma} precipitates were formed in the dendritic shape when Cu-Zn {beta}-phase alloys were cooled from high temperature. The characteristics of these two alloy systems have been examined to find the factors promoting the dendritic morphology in the solid-state transformations. Rapid bulk diffusion and fast interfacial reaction kinetics would promote such morphology. The kinetics of atom attachment to the growing interface is expected to be fast when crystallographic similarities exist between the parent phase and the precipitate. The authors have predicted the dendritic morphology in the solid-state precipitation in many binary alloy systems simply based on such crystallographic similarities. These alloys include, in addition to Cu-Al and Cu-Zn, the {beta}-phase alloys in Ag-Li, Ag-Zn, Cu-Ga, Au-Zn, and Ni-Zn systems, {gamma}-phase alloys in Cu-Sn and Ag-Cd systems, and {delta}-phase alloys in Au-Cd system. Of these, the alloys in Ag-Zn, Ni-Zn, Ag-Cd, and Cu-Sn systems were prepared and it was indeed found that the precipitates formed in the dendritic shape.

  5. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Moram Sree Satya Bharati

    2018-03-01

    Full Text Available Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk in HAuCl4 (5 mM solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2,4,6-trinitrophenol (PA, 2,4-dinitrotoluene (DNT and a common dye methylene blue (MB using the surface enhanced Raman spectroscopy (SERS technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT and few picograms in the case of a common dye molecule (MB. Typical enhancement factors achieved were estimated to be ~104, ~105, and ~107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  6. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  7. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  8. The electronic structure of Cu(In1-xGax)Se2 alloyed with silver

    International Nuclear Information System (INIS)

    Erslev, Peter T.; Lee, JinWoo; Hanket, Gregory M.; Shafarman, William N.; Cohen, J. David

    2011-01-01

    We have examined the electronic properties of (Ag 1-x Cu x )(In 1-y Ga y )Se 2 (ACIGS) alloys over a wide range of compositions to assess whether such alloys might allow one to achieve larger values of V OC at larger band gaps compared to the Cu(In 1-y Ga y )Se 2 (CIGS) alloys. Our studies employed junction capacitance techniques such as drive level capacitance profiling (DLCP) and transient photocapacitance (TPC) spectroscopy, as well as temperature dependent J-V measurements. The TPC spectra revealed not only that the band gap did indeed increase as the Ag-fraction was increased, but also that the bandtailing (or Urbach energies) in all ACIGS samples were substantially smaller than for CIGS samples of corresponding band gaps. This indicates that the Ag alloying somehow reduces the degree of disorder present. The DLCP measurements indicated very low free carrier densities, on the order of 10 14 cm -3 , as well as evidence of defects located at the CdS/ACIGS junction. Temperature-dependent I-V measurements revealed a distinct 'kink' in the V OC vs T characteristics, suggesting a transition from an interface-trap limited regime to a bulk-limited regime. At temperatures below 250 K, the V OC increased by up to 0.1 V as the sample was light soaked. This suggests that the interface traps limiting the V OC can be passivated by exposure to light.

  9. Characterization and structure of precipitates in 6xxx Aluminium Alloys

    International Nuclear Information System (INIS)

    Holmestad, Randi; Bjørge, Ruben; Ehlers, Flemming J H; Torsæter, Malin; Marioara, Calin D; Andersen, Sigmund J

    2012-01-01

    Solute atom nanoscale precipitates are responsible for the favourable mechanical properties of heat treatable aluminium alloys such as Al-Mg-Si (6xxx). The shape, structure and strengthening properties of age-hardening precipitates depend on alloy composition and thermo-mechanical history. We seek an improved understanding of the physics related to nucleation and precipitation on the atomistic level in these alloys. Once these mechanisms are sufficiently well described and understood, the hope is that 'alloy design' simulations can assist tailoring of materials with desired properties. In pure Al-Mg-Si we have determined the structure of nearly all the known metastable precipitate phases, by combining advanced TEM techniques (such as high resolution TEM and nano-beam diffraction) with atom probe tomography and density functional theory. We are now studying effects of additions /substitutions of Cu, Ag and/or Ge that promote formation of more disordered precipitates, employing aberration corrected high angle annular dark field scanning TEM. We find that all metastable precipitates contain variations of a widely spaced 'Si/Ge network'. In spite of disorder or defects, this network is surprisingly well ordered, with hexagonal projected sub-cell dimensions a = b ≅ 0.4 nm and c (along the fully coherent precipitate main growth direction) equal to 0.405 nm or a multiple of it.

  10. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: V<CuCu can improve the ductility of YAg alloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  11. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; No, Young Soo; Kim, Su Youn; Cho, Woon Jo; Kwack, Kae Dal; Kim, Tae Whan

    2011-01-01

    Research highlights: The CuAlO 2 /Ag/CuAlO 2 multilayer films were grown on glass substrates using radio-frequency magnetron sputtering at room temperature. Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. The morphology Ag films with a thickness of 8 nm was uniform. The morphology of the Ag films inserted in the CuAlO 2 films significantly affected the optical transmittance and the resistivity of the CuAlO 2 films deposited on glass substrates. The maximum transmittance of the CuAlO 2 /Ag/CuAlO 2 multilayer films with a thickness of 8 nm was 89.16%. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films with an Ag film thickness of 18 nm was as small as about 2.8 x 10 -5 Ω cm. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films was decreased as a result of the thermal annealing treatment. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as TCO films in solar cells. - Abstract: Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. The resistivity of the 40 nm-CuAlO 2 /18 nm-Ag/40 nm-CuAlO 2 multilayer films was 2.8 x 10 -5 Ω cm, and the transmittance of the multilayer films with an Ag film thickness of 8 nm was approximately 89.16%. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as

  12. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  13. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  14. Structural evolution of Cu{sub (1−X)}Y{sub X} alloys prepared by mechanical alloying: Their thermal stability and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Suhrit, E-mail: smulafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Setman, Daria [Physics of Nanostructured Materials, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria); Youssef, Khaled [Department of Materials Science and Technology, Qatar University, P.O. Box 2713, Doha (Qatar); Scattergood, R.O.; Koch, Carl C [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States)

    2015-04-05

    Highlights: • Metastable solid solutions were prepared from Cu–Y nonequilibrium compositions by mechanical alloying. • Gibbs free energy change as per Miedema’s model confirms the formation of metastable alloys. • High Y content alloys showed high thermal stability during extensive annealing at high temperatures. • Stabilized alloys showed very high hardness and improved yield strength. • Mechanisms of high thermal stability and improved mechanical properties were discussed. - Abstract: In the present study, an attempt has been made to synthesize copper based disordered solid solutions by mechanical alloying (MA) of non-equilibrium compositions. The blended compositions of Cu–1% Y, Cu–3% Y, Cu–5% Y and Cu–7.5% Y (at.%) (all the compositions will be addressed as % only hereafter until unless it is mentioned) were ball-milled for 8 h, and then annealed at different temperatures (200–800 °C) for different length of duration (1–5 h) under high purity argon + 2 vol.% H{sub 2} atmosphere. X-ray diffraction (XRD) analysis and Gibbs free energy change calculation confirm the formation of disordered solid solution (up to 7.5%) of Y in Cu after milling at a room temperature for 8 h. The XRD grain size was calculated to be as low as 7 nm for 7.5% Y and 22 nm for 1% Y alloy. The grain size was retained within 35 nm even after annealing for 1 h at 800 °C. Transmission electron microscopy (TEM) analysis substantiates the formation of ultra-fine grained nanostructures after milling. Microhardness value of the as-milled samples was quite high (3.0–4.75 GPa) compared to that of pure Cu. The hardness value increased with increasing annealing temperatures up to 400 °C for the alloys containing 3–7.5% Y, and thereafter it showed a decreasing trend. The increase in the hardness after annealing is attributed to the formation of uniformly distributed ultrafine intermetallic phases in the nanocrystalline grains. The stabilization effect is achieved due to

  15. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  16. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    Science.gov (United States)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  17. Stability of an amorphous alloy of the Mm-Al-Ni-Cu system

    Directory of Open Access Journals (Sweden)

    Carlos Triveño Rios

    2012-10-01

    Full Text Available An investigation was made of the stability of melt-spun ribbons of Mm55Al25Ni10Cu10 (Mm = Mischmetal amorphous alloy. The structural transformations that occurred during heating were studied using a combination of X-ray diffraction (XRD and differential scanning calorimetry (DSC. Crystallization took place through a multi-stage process. The first stage of transformation corresponded to the formation of a metastable phase followed by cfc-Al precipitation, while in the second stage, exothermic transformations led to the formation of complex and unidentified Mm(Cu, Ni and MmAl(Cu, Ni phases. The transformation curves recorded from isothermal treatments at 226 °C and 232 °C indicated that crystallization occurred through nucleation and growth, with diffusion-controlled growth occurring in the first crystallization stage. The supercooled liquid region, ∆Tx, at 40 K/min was ~80 K. This value was obtained by the substitution of Mm (=Ce + La + Nd + Pr for La or Ce, saving chemical element-related costs.

  18. Phase transformations in ion-mixed metastable (GaSb)1/sub 1 -x/(Ge2)/sub x/ semiconducting alloys

    International Nuclear Information System (INIS)

    Cadien, K.C.; Muddle, B.C.; Greene, J.E.

    1984-01-01

    Low energy (75--175 eV) Ar + ion bombardment during film deposition has been used to produce well-mixed amorphous GaSb/Ge mixtures which, when annealed, transform first to single phase polycrystalline metastable (GaSb)/sub 1-x/(Ge 2 )/sub x/ alloys before eventually transforming to the equilibrium two-phase state. At 500 0 C, for example, the annealing time t/sub a/ required for the amorphous to crystalline metastable (ACM) transformation was approx.10 min, while t/sub a/ for the crystalline metastable to equilibrium (CME) transformation was >6 h. The exothermic enthalpy of crystallization and the onset temperature of the ACM transition were determined as a function of alloy composition using differential thermal analysis. The thermodynamic data was then used to calculate the surface energy per unit area sigma of the amorphous/metastable-crystal interface. sigma was found to exhibit a minimum between x = 0.3 and 0.4. The driving energy for the transition from the crystalline metastable state to the equilibrium two-phase state was of the order of 0.12 kJ cm -3 while the activation barrier was approx.19 kJ cm -3 . Thus, the metastable alloys, which had average grain sizes of 100--200 nm and a lattice constant which varied linearly with x, exhibited good thermal and temporal stability

  19. Diffusive Phenomena and the Austenite/Martensite Relative Stability in Cu-Based Shape-Memory Alloys

    Science.gov (United States)

    Pelegrina, J. L.; Yawny, A.; Sade, M.

    2018-02-01

    The main characteristic of martensitic phase transitions is the coordinate movement of the atoms which takes place athermally, without the contribution of diffusion during its occurrence. However, the impacts of diffusive phenomena on the relative stability between the phases involved and, consequently, on the associated transformation temperatures and functional properties can be significant. This is particularly evident in the case of Cu-based shape-memory alloys where atomic diffusion in both austenite and martensite metastable phases might occur even at room-temperature levels, giving rise to a variety of intensively studied phenomena. In the present study, the progresses made in the understanding of three selected diffusion-related effects of importance in Cu-Zn-Al and Cu-Al-Be alloys are reviewed. They are the after-quench retained disorder in the austenitic structure and its subsequent reordering, the stabilization of the martensite, and the effect of applied stress on the austenitic order. It is shown how the experimental results obtained from tests performed on single crystal material can be rationalized under the shed of a model developed to evaluate the variation of the relative stability between the phases in terms of atom pairs interchanges.

  20. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  1. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    Science.gov (United States)

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  2. Superconductivity in CeCu/sub 2/Si/sub 2/: dependence of Tsub(c) on alloying and stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Spille, H; Rauchschwalbe, U; Steglich, F [Technische Hochschule Darmstadt (Germany, F.R.). Inst. fuer Festkoerperphysik

    1938-01-01

    The authors have determined the transition temperatures of the alloy systems (Ce,M)Cu/sub 2/Si/sub 2/ with M = La, Y, Sc, Ce(Cu,T)/sub 2/Si/sub 2/ with T = Ag, Au, Mn, Ru, Rh, Pd and CeCu/sub 2/(Si,Ge)/sub 2/ as well as of CeCu/sub 2/Si/sub 2/ samples with varying stoichiometry. In each case, alloying is found to depress Tsub(c), the critical concentrations necessary to destroy superconductivity ranging between < 1 at.% and 10 at.%. Off-stoichiometry samples with a Cu- or Ce-deficiency of a few at.% are not superconducting, while samples prepared with a comparable excess of Cu or Ce show sharp transitions at Tsub(c) >approx. 600 mK. It is inferred that stoichiometric CeCu/sub 2/Si/sub 2/ contains substantial concentrations of Cu- and Ce-vacancies, which hinder superconductivity. First results on CeCu/sub 2/Si/sub 2/ single crystals, which exhibit bulk superconductivity, are also reported.

  3. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    Science.gov (United States)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  4. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  5. On the hardenability of Nb-modified metastable beta Ti-5553 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Campo, K.N.; Andrade, D.R.; Opini, V.C.; Mello, M.G.; Lopes, E.S.N.; Caram, R., E-mail: caram@fem.unicamp.br

    2016-05-15

    Among the commercially available titanium alloys, the metastable β Ti-5553 alloy (Ti–5Al–5V–5Mo–3Cr–0.5Fe wt.%) is an object of great interest because it is employed in aerospace structural applications, primarily in the replacement of steel components. One of the primary advantages of this alloy is its high hardenability, which allows it to retain the β phase at room temperature, even at low cooling rates, thereby allowing the thermoprocessing of thick parts. The aim of this investigation was to evaluate the effect of the replacement of V with Nb on the hardenability of Ti-5553. Based on the molybdenum equivalent criterion, the Nb-modified Ti-5553 alloy was designed to present 12 wt.% of Nb instead of 5 wt.% of V. Samples of both alloys were prepared by melting them in an arc furnace under an inert atmosphere, heat-treated at high temperatures for 12 h and plastic deformed using swage forging. Finally, these samples were solution heat-treated at temperatures above the β-transus followed by cooling at different rates using water quenching, furnace cooling and a modified Jominy end quench test. Characterization was performed by measuring Vickers hardness, X-ray diffraction, and light optical, scanning electron and transmission electron microscopy. The results obtained indicate that metastable β phase can be retained when the cooling rate is higher than 21 °C/s for both alloys. At lower cooling rates, α phase precipitation was observed, but it appeared to be less evident in the Nb-modified Ti-5553, suggesting that the replacement of V with Nb increased the hardenability of the alloy. - Highlights: • Hardenability of Ti alloys are assessed using a modified Jominy end quench test. • Ti-5553 and Nb-modified Ti-5553 are subjected to continuous cooling experiments. • β phase decomposition kinetics is reduced by replacing V with Nb in Ti-5553. • Nb-modified Ti-5553 features improved hardenability. • Replacement of V with Nb causes the

  6. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Kim, Han-Ki; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok

    2015-01-01

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs

  7. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Joong; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Lee, Hyun Hwi [Pohang Accelerator Laboratory, POSTECH, Jigokro-127beon-gil, Nam-gu, Pohang 790-784 (Korea, Republic of); Kal, Jinha; Hahn, Jungseok [Future Technology Research Group, Kolon Central Research Park, 154 Mabukro, Giheung-ku, Yongin-si, Kyunggi-do, 16910 (Korea, Republic of)

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  8. Recent results on the preparation and properties of Li-containing Cu alloys

    International Nuclear Information System (INIS)

    Mendelsohn, M.H.; Gruen, D.M.; Krauss, A.R.

    1986-01-01

    Homogeneous solid solutions of Li in copper have been prepared containing up to 6 to 8 at. % Li. However, the possible metastable nature of these materials has not yet been fully investigated. The existence of a unique intermetallic compound near the composition Cu 4 Li is currently being investigated by single crystal x-ray diffraction and powder neutron diffraction techniques. The copper-lithium binary alloy has demonstrated potential as a means of forming a self-sustaining coating for the reduction of sputtering-induced erosion in fusion applications. The initial performance under high flux conditions is strongly dependent on the lithium content and method of preparation

  9. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Directory of Open Access Journals (Sweden)

    Yee Mei Leong

    2016-06-01

    Full Text Available Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag content solder SAC105 (Sn-1.0Ag-0.5Cu because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al addition (0.1–0.5 wt.% to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  10. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Science.gov (United States)

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  11. An experimental investigation of ionic transport properties in CuI-Ag2WO4 and CuI-Ag2CrO4 mixed systems

    International Nuclear Information System (INIS)

    Suthanthiraraj, S. Austin; Premchand, Y. Daniel

    2004-01-01

    The phenomenon of ionic transport in the case of two different mixed systems (CuI) (1-x) -(Ag 2 WO 4 ) x (0.15= (1-y) -(Ag 2 CrO 4 ) y (0.15= -3 Scm -1 for the composition (CuI) 0.45 -(Ag 2 WO 4 ) 0.55 and 1.1x10 -4 Scm -1 in the case of (CuI) 0.55 -(Ag 2 CrO 4 ) 0.45 at room temperature has been discussed in terms of the observed characteristics

  12. Phase equilibria and thermodynamic functions for Ag-Hg and Cu-Hg binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yajun, E-mail: yajunliu@gatech.edu [School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Guan [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Jiang [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Chen, Yang [Mining, Metallurgy and Materials Research Department, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Long, Zhaohui [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer The thermodynamic properties of Ag-Hg and Cu-Hg are explored in order to facilitate dental materials design. Black-Right-Pointing-Pointer A self-consistent set of thermodynamic parameters is obtained. Black-Right-Pointing-Pointer The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag-Hg and Cu-Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.

  13. Temperature-dependent transformation from whisker- to nanoparticle-strengthened composite interface in the Al2O3/Ag-based alloy system and mechanical properties of the joints

    International Nuclear Information System (INIS)

    Wang, Yifeng; Cao, Jian; Wang, Zhijie; Chen, Zhe; Song, Xiaoguo; Feng, Jicai

    2015-01-01

    Al 4 B 2 O 9 -whisker-coated Al 2 O 3 ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. The microstructure of the whisker-coated Al 2 O 3 joints was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A continuous (Cu,Al) 3 Ti 3 O layer formed against the alloy at lower bonding temperatures, and a complex transition zone bordering the whiskers was observed, which consisted of Ag nanoparticles, titanium oxides, TiB 2 , (Cu,Al) 3 Ti 3 O nanoparticles and possible Ag 3 Al. As the bonding temperature increased, the Al 2 O 3 /AgCuTi interface was found to transform from whisker- to nanoparticle-strengthened composite region. Bend test results revealed that both the whiskers grown on Al 2 O 3 and the dispersive nanoscale products in the alloy played positive roles in improving the joint properties. The maximum bend strength of the whisker-coated Al 2 O 3 joints was 313 MPa at the bonding temperature of 820 °C. - Highlights: • Al 4 B 2 O 9 -whisker-coated Al 2 O 3 ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. • Microstructures of whisker-coated Al 2 O 3 joints were investigated in detail. • Both whiskers and the dispersive nanoscale products can improve the joint properties. • The maximum bend strength of the whisker-coated Al 2 O 3 joints was 313 MPa.

  14. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    Science.gov (United States)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  15. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  16. Misfit dislocations in (001) Cu/(111) Ag epitaxial bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vook, R W; Chao, S S

    1979-01-01

    Two sets of elongated epitaxial (111) Ag islands rotated by 90/sup 0/ with respect to each other were observed to grow on (001) Cu substrates. In addition, two sets of edge misfit dislocations lay parallel to (110) Cu and (110) Cu or equivalently along (110) Ag and (112) Ag. Their Burgers vectors were determined, together with the elastic strains in these two directions. The island elongation was interpreted as arising from a lower strain energy in the preferred direction of growth.

  17. Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications

    International Nuclear Information System (INIS)

    Wen, Ming; Wen, Cuie; Hodgson, Peter; Li, Yuncang

    2014-01-01

    Highlights: • The Ti–26Nb–5Ag alloy sintered by SPS showed a dense structure without any pores. • Nanostructure Ag was distributed in the Ti–26Nb–5Ag alloy sintered by SPS. • The SPS sample displayed higher strength than that of traditional sintered sample. - Abstract: Ti and some of its alloys are widely used as orthopedic implants. In the present study, Ti–26Nb–5Ag alloys were prepared by mechanical alloying followed by vacuum furnace sintering or spark plasma sintering (SPS). The microstructure and mechanical properties of the Ti–Nb–Ag alloys were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), compressive and micro-hardness tests. The effect of different sintering methods on the microstructure and properties of Ti–Nb–Ag alloy was discussed. The results showed that the titanium alloy sintered by vacuum furnace exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase; whilst the SPS sintered alloy exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase, as well as a nanostructured Ag homogeneously distributed at the boundaries of the β phases. The Ti–Nb–Ag alloy sintered by SPS possessed fracture strength nearly 3 times of the alloy sintered by vacuum furnace

  18. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    Science.gov (United States)

    Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-01

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  19. Strain softening during tension in cold drawn Cu–Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.L., E-mail: lilichang@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Wen, S.; Li, S.L.; Zhu, X.D. [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Shang, X.J. [Jinan Baoshida Industrial Development Co., Ltd, Jinan, Shandong 250061 (China)

    2015-10-15

    Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed to be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.

  20. Control of texture in Ag and Ag-alloy substrates for superconducting tapes

    International Nuclear Information System (INIS)

    Gladstone, T.A.

    2000-01-01

    The use of a biaxially textured silver tape as a substrate for high temperature superconductor (HTS) phases is one possible route towards the fabrication of high-J c superconducting tape. Using a cold-rolling and annealing process we have reproducibly fabricated {110} textured silver which is stable up to 900 deg. C. We have found that there are two critical process requirements for the formation of this texture; a low oxygen content in the material prior to deformation, and a cold-rolling thickness reduction of less than 97%. To overcome the problems associated with the poor mechanical strength of pure silver, texture development in Ag-Mg and Ag-Hf alloys with improved mechanical properties has been studied. Heat treatments in a reducing atmosphere allow the {110} annealing texture to be obtained in Ag-0.1 wt%Mg. The recrystallization behaviour of a Ag-Pd alloy with an increased stacking fault energy was also investigated and a partial cube texture was obtained in this material. Using orientation distribution function (ODF) analysis we have shown that minor variations in the deformation texture of both pure silver and Ag-based alloys can lead to significant differences in the recrystallization textures obtained. (author)

  1. Multi-scale modeling of elasto-plastic response of SnAgCu lead-free solder alloys at different ageing conditions: Effect of microstructure evolution, particle size effects and interfacial failure

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Milad; Cugnoni, Joel, E-mail: joel.cugnoni@epfl.ch; Botsis, John

    2016-04-20

    In microelectronics applications, SnAgCu lead-free solder joints play the important role of ensuring both the mechanical and electrical integrity of the components. In such applications, the SnAgCu joints are subjected to elevated homologous temperatures for an extended period of time causing significant microstructural changes and leading to reliability issues. In this study, the link between the change in microstructures and deformation behavior of SnAgCu solder during ageing is explained by developing a hybrid multi-scale microstructure-based modeling approach. Herein, the SnAgCu solder alloy is seen as a three phase metal matrix composite in which Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5} hard intermetallics play the role of reinforcements and Sn the role of a ductile matrix. The hardening of the Sn matrix due to fine intermetallics in the eutectic mixture is modeled by incorporating the mean field effects of geometrically necessary dislocations. Subsequently, a two level homogenization procedure based on micromechanical finite element (FE) models is used to capture the interactions between the different phases. For this purpose, tomographic images of microstructures obtained by Focused Ion Beam (FIB) and synchrotron X-Ray in different ageing conditions are directly used to generate statistically representative volume elements (RVE) using 3D FE models. The constitutive behavior of the solder is determined by sequentially performing two scales of numerical homogenization at the eutectic level and then at the dendrite level. For simplification, the anisotropy of Sn as well as the potential recovery processes have been neglected in the modeling. The observed decrease in the yield strength of solder due to ageing is well captured by the adopted modeling strategy and allows explaining the different ageing mechanisms. Finally, the effects of potential debonding at the intermetallic particle-matrix interface as well as particle fracture on the overall strength of solder are

  2. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy

    International Nuclear Information System (INIS)

    Mondal, Chandan; Mukhopadhyay, A.K.

    2005-01-01

    Aluminum alloys, encompassed by AA 7055 alloy composition, having the nominal zinc content (i.e. 8 wt.%) but varying copper and magnesium contents across the alloy composition range were examined in the as-cast form by a combination of light microscopy, scanning electron microscopy (SEM), electron probe micro analysis (EPMA) and X-ray diffraction (XRD). It is observed that for all compositions, the second phases based on η(MgZn 2 ), T(Al 2 Mg 3 Zn 3 ) and S(Al 2 CuMg) are present. The T phase dissolves copper up to 28 wt.%, whilst the S phase shows metastable solubility of zinc that may range up to 30 wt.%. In alloys with magnesium at the lower limit and the copper contents approaching the upper limit of the alloy composition, the θ phase (Al 2 Cu) of the constituent binary Al-Cu system is further observed. The θ phase (Al 2 Cu) does not dissolve either zinc or magnesium. Below the nominal composition, the alloys could be homogenized substantially using a commercially viable homogenization treatment leaving small amounts of undissolved S phase that does not contain any zinc

  3. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to

  4. Role of Ag-alloy in the thermal stability of Ag-based ohmic contact to GaN(0 0 0 1) surface

    International Nuclear Information System (INIS)

    Xiong, Zhihua; Qin, Zhenzhen; Zhao, Qian; Chen, Lanli

    2015-01-01

    First-principles calculations are performed to study Ag and Ag-alloy adsorption stability on GaN(0 0 0 1) surface. We find Ag only contact to GaN surface is unstable under high temperature. While Ag-alloy adsorption exhibits better adsorption stability and electronic properties than that of the Ag only contact,due to the enhanced interaction between Ag-alloy and GaN(0 0 0 1) surface. The Ag-alloy, particularly AgNi, is proposed to be used as very promising ohmic contact to GaN for practical applications

  5. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  6. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr{sup 2+}) irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbing, E-mail: 12hy1@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Zhang, Ken; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Kirk, Mark A. [Material Science Division Argonne National Laboratory, Argonne, IL, 60439 (United States); Long, Fei; Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2016-02-15

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr{sup 2+}) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  7. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ning Shuang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian Xiufang, E-mail: xfbian@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ren Zhenfeng [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-09-01

    Activation energy is obtained from temperature dependence of viscosities by means of a fitting to the Arrhenius equation for liquid alloys of Cu-Sb, Cu-Te, Cu-Sn and Cu-Ag systems. We found that the changing trend of activation energy curves with concentration is similar to that of liquidus in the phase diagrams. Moreover, a maximum value of activation energy is in the composition range of the intermetallic phases and a minimum value of activation energy is located at the eutectic point. The correlation between the activation energy and the phase diagrams has been further discussed.

  8. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University (Egypt)]. E-mail: gaberaf@acc.aun.edu.eg; Ali, A. Mossad [Physics Department, Faculty of Science, Assiut University (Egypt); Matsuda, K. [Faculty of Engineering, University of Toyama (Japan); Kawabata, T. [Faculty of Engineering, University of Toyama (Japan); Yamazaki, T. [Faculty of Engineering, University of Toyama (Japan); Ikeno, S. [Faculty of Engineering, University of Toyama (Japan)

    2007-04-25

    Heat treatable Al-Mg-Si containing Cu alloys can be strengthened by the precipitation of the nano-scale metastable precipitates. In order to follow the precipitation sequence in balanced Al-1 mass%Mg{sub 2}Si containing 0.5 mass%Cu during continuous heating, differential scanning calorimetry (DSC) was performed. Analysis of non-isothermal DSC scans at various heating rates were carried out to evaluate the overall activation energies associated with the precipitation processes and, therefore, the mechanism of the developed precipitates has been characterized. The most important developed precipitates that assist the strength of the alloy are random, Q' and {beta}' precipitates. According to the obtained activation energies, the kinetics of the evolved Q'-precipitates could be controlled by the diffusion of Mg, Si and Cu in the crystal lattice of the alloy. Both conventional and high resolution transmission electron microscopy (HRTEM) were utilized to confirm the obtained results.

  9. Effect of Ag additions on the β phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T., E-mail: atadorno@iq.unesp.br [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Carvalho, T.M. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Santos, C.M.A.; Magdalena, A.G. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The results suggest a multi-step process involving reversible reactions. • Ag solubilizes preferably at the Cu matrix. • Ag additions decrease the activation energy for the process. - Abstract: The influence of 4 and 5 wt.%Ag additions on the kinetics of β [T{sub 7}-(CuMn){sub 3}Al] phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that the conversion dependence of the activation energy has a descending shape, suggesting a multi-step process involving reversible reactions. The presence of Ag facilitates the formation of the β phase. The results also showed that the Ag precipitates formation includes the dissolution of Mn and Al atoms, thus decreasing the partial fraction of these elements available to react.

  10. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Jiamusi University, Jiamusi 154007 (China); Zheng, Lanlan [Jiamusi University, Jiamusi 154007 (China); Liu, Jie [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Dept. of Prosthodontics, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003 (China); Bai, Bing [Dept. of Prosthodontics, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang 110001 (China); Liu, Cong [Jiamusi University, Jiamusi 154007 (China)

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation.

  11. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Zheng, Lanlan; Liu, Jie; Bai, Bing; Liu, Cong

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation

  12. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    Science.gov (United States)

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n -type 9.104 × 10 -3 mol % PbI₂-doped PbTe TE legs and the Ag 0.32 Cu 0.43 In 0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  13. Modified analytic EAM potentials for the binary immiscible alloy systems

    International Nuclear Information System (INIS)

    Fang, F.; Shu, X.L.; Deng, H.Q.; Hu, W.Y.; Zhu, M.

    2003-01-01

    Modified analytic embedded atom method (MAEAM) type potentials have been constructed for seven binary immiscible alloy systems: Al-Pb, Ag-Ni, Fe-Cu, Ag-Cu, Cu-Ta, Cu-W and Cu-Co. The potentials are fitted to the lattice constant, cohesive energy, unrelaxed monovacancy formation energy and elastic constants for only pure metals which consist the immiscible alloy systems. In order to test the reliability of the constructed MAEAM potentials, formation enthalpies of disordered alloys for those seven binary immiscible alloy systems have been calculated. The calculated results are in general agreement with the experimental data available and those theoretical results calculated by other authors. As only very limited experimental information is available for alloy properties in immiscible alloy systems, the MAEAM is demonstrated to be a reasonable method to construct the interatomic potentials for immiscible alloy systems because only the properties of pure elements are needed in calculation

  14. Comparison of partial structures of melts of superionic AgI and CuI and non-superionic AgCl

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Tahara, Shuta [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Fujii, Hiroyuki [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2007-08-22

    Neutron and high-energy x-ray diffraction analyses of molten AgI have been performed and the partial structures are discussed in detail with the aid of the structural modelling procedure of the reverse Monte Carlo (RMC) technique by comparison with those of molten CuI and AgCl. It is well known that AgI and CuI have a superionic solid phase below the melting point, in which the cations favour a tetrahedral configuration, while solid AgCl has a rock-salt structure with an octahedral environment around both Ag and Cl atoms. Even in the molten states, there is a significant difference between superionic and non-superionic melts. The cation is located on the triangular plain formed by three iodine ions in molten AgCl and CuI, while molten AgCl favours a 90 deg. Cl-Ag-Cl bond angle, which is understood to maintain a similar local environment to that in the solid state. The atomic configurations of the RMC model suggest that the cation distributions in superionic melts of CuI and AgI exhibit large fluctuations, while Ag ions in the non-superionic melts of AgCl are distributed much more uniformly.

  15. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  16. Investigation of new type Cu-Hf-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Nagy, E; Ronto, V; Solyom, J; Roosz, A

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu 49 Hf 42 Al 9 , Cu 46 Hf 45 Al 9 , Cu 50 Hf 42.5 Al 7.5 and Cu 50 Hf 45 Al 5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  17. Pressure dependence of Raman modes in the chalcopyrite quaternary alloy AgxCu1-xGaS2

    International Nuclear Information System (INIS)

    Choi, In-Hwan; Yu, Peter Y.

    2000-01-01

    Raman scattering in the chalcopyrite quaternary alloy Ag x Cu 1-x GaS 2 has been studied under high pressure (up to 7 GPa) and at low temperature (50 K) using a diamond anvil high pressure cell for alloy concentrations x=1, 0.75, 0.5, 0.25 and 0. This has allowed us to determine the dependence of their zone-center phonon modes on both pressure and alloy concentration. The resultant phonon pressure coefficients are helpful in understanding the nature of the phonon modes in these chalcopyrites

  18. Fragility and structure of Al-Cu alloy melts

    International Nuclear Information System (INIS)

    Lv Xiaoqian; Bian Xiufang; Mao Tan; Li Zhenkuan; Guo Jing; Zhao Yan

    2007-01-01

    The dynamic viscosity measurements are performed for Al-Cu alloy melts with different compositions using an oscillating-cup viscometer. The results show that the viscosities of Al-Cu alloy melts increase with the copper content increasing, and also have a correlation with the correlation radius of clusters, which is measured by the high-temperature X-ray diffractometer. It has also been found that the fragilities of superheated melts (M) of hypereutectic Al-Cu alloys increase with the copper content increasing. There exists a relationship between the fragility and the structure in Al-Cu alloy melts. The value of the M reflects the variation of activation energy for viscous flow

  19. Study of properties of Cu-Y and Cu-Y-Al system alloys

    International Nuclear Information System (INIS)

    Shparo, N.B.; Nikolaev, A.K.; Rozenberg, V.M.

    1978-01-01

    Investigated were the strength properties of alloys Cu(0-1.2)% Y and Cu-(10-0.5)% Al-(0-0.5)% Y after being treated under various heat conditions and tested at temperatures of 20, 400 and 600 deg C. Yttrium additions raise the temperature of recrystallization of copper and of copper-aluminium alloys. Small additions of yttrium (0.05%) increase considerably strength of Cu-Al alloys without increasing their electric resistance. Optimum properties are attained after hardening, deformation and ageing at 400 deg C

  20. Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell

    Science.gov (United States)

    Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee

    2018-03-01

    We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.

  1. Photoconductive properties of organic-inorganic Ag/p-CuPc/n-GaAs/Ag cell

    Energy Technology Data Exchange (ETDEWEB)

    Karimov, Khasan Sanginovich; Saeed, Muhammad Tariq; Khalid, Fazal Ahmad [GIK Institute of Engineering Sciences and Technology, Top 23640, Swabi, Khyber Pakhtunkhwa (Pakistan); Karieva, Zioda Mirzoevna, E-mail: tariqchani@hotmail.com [Tajik Technical University, Rajabov St.10, Dushanbe, 734000 (Tajikistan)

    2011-07-15

    A thin film of copper phthalocyanine (CuPc), a p-type semiconductor, was deposited by thermal evaporation in vacuum on an n-type gallium arsenide (GaAs) single-crystal semiconductor substrate. Then semi-transparent Ag thin film was deposited onto the CuPc film also by thermal evaporation to fabricate the Ag/p-CuPc/n-GaAs/Ag cell. Photoconduction of the cell was measured in photoresistive and photodiode modes of operation. It was observed that with an increase in illumination, the photoresistance decreased in reverse bias while it increased in forward bias. The photocurrent was increased in reverse bias operation. In forward bias operation with an increase in illumination, the photocurrent showed a different behavior depending on the voltage applied. (semiconductor physics)

  2. Effect of Ag addition on phase transitions of the Cu–22.26 at.%Al–9.93 at.%Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [DCET, Universidade Federal de São Paulo, Campus Diadema, SP (Brazil); Gama, S.; Paganotti, A. [DCET, Universidade Federal de São Paulo, Campus Diadema, SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [DFQ, Instituto de Química – Unesp, Campus Araraquara, SP (Brazil)

    2013-02-20

    Highlights: ► A kinetic mechanism for the dissolution of DO{sub 3} phase is suggested. ► The intermediate phase interferes on the kinetics of the DO{sub 3} phase dissolution. ► The presence of Ag changes the stability of intermediate phase. - Abstract: The phase transitions that occur in the Cu–22.26 at.%Al–9.93 at.%Mn and Cu–22.49 at.%Al–10.01 at.%Mn–1.53 at.%Ag alloys after slow cooling were studied using differential scanning calorimetry at different heating rates, microhardness changes with temperature, magnetization changes with temperature, scanning electron microscopy and energy dispersion X-ray spectroscopy. The results indicated that the presence of Ag does not modify the transition sequence of Cu–Al–Mn alloy, introduces a new transition due to the (Ag-Cu)-rich precipitates dissolution at about 800 K, and changes the mechanism of DO{sub 3} phase dissolution. This mechanistic change was analyzed and a sequence of phase transitions was proposed for the reaction.

  3. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Subhajit; Jana, Manoj K.; Pan, Jaysree; Guin, Satya N.; Waghmare, Umesh V.; Biswas, Kanishka [New Chemistry Unit and Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata (India)

    2018-04-03

    Crystalline solids with intrinsically low lattice thermal conductivity (κ{sub L}) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ{sub L} of 0.35 Wm{sup -1} K{sup -1} in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ{sub L} in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Mechanical, Auto, and Materials Engineering, University of Windsor, Windsor, N9B 3P4 (Canada); Gyenge, Elod L. [Chemical and Biological Engineering, The University of British Colombia, Vancouver, BC, V6T 1Z4 (Canada)

    2007-10-15

    In this study, colloidal silver and silver-alloys (Ag-Pt, Ag-Au, Ag-Ir, and Ag-Pd) prepared by the Boenneman technique were evaluated as anode catalysts for sodium borohydride oxidation using cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and rotating disk electrode (RDE) voltammetry. The CV results show that the colloidal Ag-alloys were electrochemically active towards borohydride oxidation with oxidation potentials ranging between -0.7 and 0.4 V vs. Hg/HgO (MOE). The most negative oxidation potential was recorded on Ag-Pt. CA results show that the steady state current density was highest on Ag-Pt, followed by Ag-Ir, Ag-Au, and Ag-Pd. The lowest overpotential was recorded on Ag-Ir for a current step change of 10mAcm{sup -2}. A significant temperature effect and a small rotation speed effect were found in the rotating disc voltammetry for all the investigated colloids. The highest peak current was recorded on Ag-Au, while the most negative peak potential was recorded on Ag-Ir. (author)

  5. Synthesis, characterization and catalytic property of CuO and Ag/CuO nanoparticles for the epoxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Lashanizadegan, Maryam; Erfaninia, Nasrin [Alzahra University, Tehran (Iran, Islamic Republic of)

    2013-11-15

    CuO nanorodes, CuO nanoplates and Ag/CuO nanoparticles were synthesized in the presence of polyethylene glycol by depositional in alkaline environment. Oxide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared absorption spectra (FT-IR). CuO and Ag/CuO nanoparticles show high catalytic activity for the selective epoxidation of styrene to styrene oxide by TBHP. Under the optimized reaction condition, the oxidation of styrene catalyzed by CuO nanorods gave 100% conversion with 60 and 35% styrene oxide and benzaldehyde, respectively. Ag/CuO gave 99% conversion and styrene oxide (71%) and benzaldehyde (12%) being the major product.

  6. Small-angle scattering from GP zones in Al–Cu alloy

    Indian Academy of Sciences (India)

    Administrator

    ficial aging, which are extensively used in commercial practice. It is well established ... Cu system shows the variety of metastable states follow- ing the sequence SSS .... the model for spinodal decomposition of GP 1 zones in. Al–Cu system ...

  7. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  8. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  9. AgCuO2: Preparationand Electrochemical Behaviors in Alkaline Electrolytes%AgCuO2:制备及其在碱性溶液中的电化学行为

    Institute of Scientific and Technical Information of China (English)

    张婷锦; 张校刚; 胡风平

    2005-01-01

    The silver cuprate AgCuO2 powder was prepared by a chemical co-precipitation method and characterized by XRD, SEM and TEM techniques. The electrochemical behaviors of AgCuO2 electrodes and AgCuO2 modified by sulfur were studied by means of galvanostatic discharge and line sweep voltammetry experiments. The resuits indicated that the specific capacity of AgCuO2 could reach 422.32 mAh·g-1 at middle discharge rate and the addition of sulfur could significantly improve the discharge performance of AgCuO2. The mechanism for this modified effect was also discussed.

  10. Electrical resistivity of liquid noble metal alloys

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-08-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au, Cu-Ag, Cu-Au binary alloys on composition are reported. The structure of the binary alloy is described as a hard sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trends is observed in cases where experimental information is available. (author)

  11. Temperature-dependent transformation from whisker- to nanoparticle-strengthened composite interface in the Al{sub 2}O{sub 3}/Ag-based alloy system and mechanical properties of the joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Cao, Jian, E-mail: cao_jian@hit.edu.cn; Wang, Zhijie; Chen, Zhe; Song, Xiaoguo; Feng, Jicai

    2015-11-15

    Al{sub 4}B{sub 2}O{sub 9}-whisker-coated Al{sub 2}O{sub 3} ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. The microstructure of the whisker-coated Al{sub 2}O{sub 3} joints was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A continuous (Cu,Al){sub 3}Ti{sub 3}O layer formed against the alloy at lower bonding temperatures, and a complex transition zone bordering the whiskers was observed, which consisted of Ag nanoparticles, titanium oxides, TiB{sub 2}, (Cu,Al){sub 3}Ti{sub 3}O nanoparticles and possible Ag{sub 3}Al. As the bonding temperature increased, the Al{sub 2}O{sub 3}/AgCuTi interface was found to transform from whisker- to nanoparticle-strengthened composite region. Bend test results revealed that both the whiskers grown on Al{sub 2}O{sub 3} and the dispersive nanoscale products in the alloy played positive roles in improving the joint properties. The maximum bend strength of the whisker-coated Al{sub 2}O{sub 3} joints was 313 MPa at the bonding temperature of 820 °C. - Highlights: • Al{sub 4}B{sub 2}O{sub 9}-whisker-coated Al{sub 2}O{sub 3} ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. • Microstructures of whisker-coated Al{sub 2}O{sub 3} joints were investigated in detail. • Both whiskers and the dispersive nanoscale products can improve the joint properties. • The maximum bend strength of the whisker-coated Al{sub 2}O{sub 3} joints was 313 MPa.

  12. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mian [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti–Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti–Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti–Ag phase, residual pure Ag and Ti were the mainly phases in Ti–Ag(S75) sintered alloy while Ti{sub 2}Ag was synthesized in Ti–Ag(S10) sintered alloy. The mechanical test indicated that Ti–Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti–Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti–Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3 wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti{sub 2}Ag and its distribution. - Highlights: • Ti–Ag alloy with up to 99% antibacterial rate was developed by powder metallurgy. • The effects of the Ag powder size and the Ag content on the

  13. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  14. Measurement of thermoelectric power of Fe-Cu binary alloys

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2007-01-01

    In INSS, non-destructive evaluation (NDE) of irradiation embrittlement of low alloy steel using thermoelectric power (TEP) measurement has been considered, as well as NDE of thermal aging of cast duplex stainless steel which has been studied in recent years. Material degradation is evaluated based on a relation between progress of the degradation and change in TEP due to change in material structure caused by the degradation event. So it is necessary for NDE of irradiation embrittlement to measure the change in TEP due to precipitation of Cu contained as an impurity, which is known as one of the reasons for the embrittlement. In this study, TEP of Fe-Cu binary alloys with different Cu content was measured for investigation of the relationship between TEP of the alloys and Cu content. In addition, appropriateness of measuring TEP of Fe-Cu binary alloy in the same way to measure TEP of duplex stainless steel was examined. It was found that increment of Cu contained in the alloys changed TEP in a negative direction and the rate was evaluated as -6.6μV/K/wt%Cu. There were the cases that it took 20 minutes for measurement values to become stable in measurement of Fe-Cu binary alloys. It was much longer than the time taken in measurement of duplex stainless steel. So the measurement time per a point was extended to 60 minutes in case of Fe-Cu binary alloys. (author)

  15. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  16. Integrated Computational Materials Engineering Development of Alternative Cu-Be Alloys

    Science.gov (United States)

    2012-08-01

    metastable FCC state @ Room temp.  Alloying to suppress martensitic transformation  Significant work-hardening associated with the phase... transformation  Existing CoCr alloy rely upon cold- or warm- work to achieve high strength (size dependent!) ● No equivalent to L12- strengthened Ni... strengthened Copper and Cobalt alloy VIM/VAR melting Homogen- ization Hot working >4” dia. Solution treatment Machining Tempering Processing

  17. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuesong; Zheng, Jingxu; Li, Zhi; Luo, Ruichun [School of Materials Science and Engineering, Shanghai Jiao Tong University (China); Frontier Research Center for Materials Structure, Shanghai Jiao Tong University (China); Chen, Bin, E-mail: steelboy@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University (China); Frontier Research Center for Materials Structure, Shanghai Jiao Tong University (China)

    2017-04-13

    The present study, using advanced Cs-corrected high-angle annular dark field – scanning transmission electron microscopy (HAADF-STEM), reports on a comprehensive investigation into the precipitate structures in an Al-Zn-Mg-Cu alloy aged at 150 ℃, including GP zones, η’ and η precipitates. In the nucleation stage, Zn atoms enrich on the {111}{sub Al}-planes abutting spherical Mg clusters that are approximately 3–6 nm in diameter. In the subsequent growth, the as-nucleated structures extend with an increasing diameter and a constant width along [111]{sub Al} and grow into platelet precipitates. η’ is proved to be a group of metastable structures existing in the transition from FCC Al to HCP MgZn{sub 2} (η). Some metastable structures are assembled by local-ordered rhombohedral units and orthorhombic units as building blocks. Subsequently, the precipitates evolve into η phases with stacking faults.

  18. Relación estructura-propiedades en aleaciones inteligentes con memoria de forma Cu-Al-Ag de alta temperatura de transformación martensítica termoelástica

    Directory of Open Access Journals (Sweden)

    Guilemany, J. M.

    1998-05-01

    Full Text Available New shape memory alloys have been developed in the last few years with high martensitic transformation temperatures. However, the highest martensitic transformation temperatures are lower than 200°C and they are achieved with very complex alloys. New Cu-Al-Ag shape memory alloys have been developed with martensitic transformation temperatures ranging from 250 to 400°C. It is really interesting to increase the knowledge of the phase stability behaviour when cycling the alloy above or below the martensitic transformation temperature because of the high temperatures involved. Two Cu-Al-Ag shape memory alloys with very different composition have been thermal cycled in a DSC following the amount of energy release during the forward and reverse transformation and the changes of the martensitic transformation temperatures in order to follow the phase changes that takes place during cycling.

    En los últimos años, se han desarrollado nuevas aleaciones con memoria de forma, de altas temperaturas de transformación martensítica. Sin embargo, las temperaturas de transformación martensítica más elevadas son inferiores a 200°C e implican aleaciones de gran complejidad. Nuevas aleaciones con memoria de forma Cu-Al-Ag han sido desarrolladas con temperaturas de transformación entre 250 y 400°C. Es de gran importancia incrementar el conocimiento de la estabilidad de las fases durante el ciclado por encima o por debajo de la temperatura de transformación martensítica a causa de las altas temperaturas involucradas. Dos aleaciones con memoria de forma Cu-Al-Ag con muy diferente composición química han sido cicladas en el DSC midiendo la cantidad de energía liberada durante las transformaciones directa e inversa, así como los cambios en las temperaturas de transformación, con objeto de caracterizar las transformaciones de fase que tienen lugar durante el ciclado.

  19. Syntheses and crystal structures of BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica C.; Ibers, James A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM-UMR 5257 CNRS/CEA/UM2/ENSCM, Bat 426, BP 17171, 30207 Bagnols/Ceze (France)

    2015-06-15

    Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}, were synthesized by the reactions of the elements at 1173-1273 K. For CsAgUTe{sub 3} CsCl flux was used. Their crystal structures were determined by single-crystal X-ray diffraction studies. The sulfide BaAgTbS{sub 3} crystallizes in the BaAgErS{sub 3} structure type in the monoclinic space group C{sup 3},{sub 2h}-C2/m, whereas the tellurides BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3} crystallize in the KCuZrS{sub 3} structure type in the orthorhombic space group D{sup 1},{sub 2}{sup 7},{sub h}-Cmcm. The BaAgTbS{sub 3} structure consists of edge-sharing [TbS{sub 6}{sup 9-}] octahedra and [AgS{sub 5}{sup 9-}] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features {sup 2}{sub ∞}[MLnTe{sub 3}{sup 2-}] layers for BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and {sup 2}{sub ∞}[AgUTe{sub 3}{sup 1-}] layers for CsAgUTe{sub 3}. These layers comprise [MTe{sub 4}] tetrahedra and [LnTe{sub 6}] or [UTe{sub 6}] octahedra. Ba or Cs atoms separate these layers. As there are no short Q..Q (Q = S or Te) interactions these compounds achieve charge balance as Ba{sup 2+}M{sup +}Ln{sup 3+}(Q{sup 2-}){sub 3} (Q = S and Te) and Cs{sup +}Ag{sup +}U{sup 4+}(Te{sup 2-}){sub 3}. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Determination of nuclear moments and nuclear radii changes of the metastable silverisotopes sup(108m)Ag and sup(110m)Ag from the hyperfine structure of silver-I-resonance lines

    International Nuclear Information System (INIS)

    Meier, T.

    1973-01-01

    The hyperfine structure of the resonance lines of the metastable silver isotopes sup(108m), sup(110m)Ag were investigated by means of optical interference spectroscopy. Both radioactive silver isotopes were obtained by irradiating isotope-pure 107 Ag or 109 Ag with neutrons in the reactor. In spite of the slight enrichment of the isotopes to be investigated compared to the stable isotopes ( [de

  1. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mrityunjay [Ohio Aerospace Institute, Cleveland, OH 44142 (United States); Matsunaga, Tadashi [R and D Division, Ube Industries, Ltd., Ube-shi, Yamaguchi 755-8633 (Japan); Lin, Hua-Tay [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6068 (United States); Asthana, Rajiv, E-mail: asthanar@uwstout.edu [Department of Engineering and Technology, 326 Fryklund Hall, University of Wisconsin-Stout, Menomonie, WI 54751 (United States); Ishikawa, Toshihiro [R and D Division, Ube Industries, Ltd., Ube-shi, Yamaguchi 755-8633 (Japan)

    2012-11-15

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohex{sup Registered-Sign }) has been carried out using a Ti-containing Ag-Cu active braze alloy (Cusil-ABA{sup Registered-Sign }). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti-Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 Degree-Sign C and 750 Degree-Sign C, respectively. The fracture at the higher temperature occurred at the interface between the reaction-formed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to {mu}-FEA simulation results.

  2. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  3. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  4. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  5. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  6. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    Science.gov (United States)

    Zhao, Jun; Zhang, Dongming; Zhao, Jie

    2011-09-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu@Ag) core-shell powders.

  7. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  8. Silver contents and Cu/Ag ratios in Martian meteorites and the implications for planetary differentiation

    Science.gov (United States)

    Wang, Zaicong; Becker, Harry

    2017-11-01

    Silver and Cu show very similar partitioning behavior in sulfide melt-silicate melt and metal-silicate systems at low and high pressure-temperature (P-T) experimental conditions, implying that mantle melting, fractional crystallization and core-mantle differentiation have at most modest (within a factor of 3) effects on Cu/Ag ratios. For this reason, it is likely that Cu/Ag ratios in mantle-derived magmatic products of planetary bodies reflect that of the mantle and, in some circumstances, also the bulk planet composition. To test this hypothesis, new Ag mass fractions and Cu/Ag ratios in different groups of Martian meteorites are presented and compared with data from chondrites and samples from the Earth's mantle. Silver contents in lherzolitic, olivine-phyric and basaltic shergottites and nakhlites range between 1.9 and 12.3 ng/g. The data display a negative trend with MgO content and correlate positively with Cu contents. In spite of displaying variable initial Ɛ143Nd values and representing a diverse spectrum of magmatic evolution and physiochemical conditions, shergottites and nakhlites display limited variations of Cu/Ag ratios (1080 ± 320, 1 s, n = 14). The relatively constant Cu/Ag suggests limited fractionation of Ag from Cu during the formation and evolution of the parent magmas, irrespectively of whether sulfide saturation was attained or not. The mean Cu/Ag ratio of Martian meteorites thus reflects that of the Martian mantle and constrains its Ag content to 1.9 ± 0.7 ng/g (1 s). Carbonaceous and enstatite chondrites display a limited range of Cu/Ag ratios of mostly 500-2400. Ordinary chondrites show a larger scatter of Cu/Ag up to 4500, which may have been caused by Ag redistribution during parent body metamorphism. The majority of chondrites have Cu/Ag ratios indistinguishable from the Martian mantle value, indicating that Martian core formation strongly depleted Cu and Ag contents, but probably did not significantly change the Cu/Ag ratio of the

  9. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ag-related alloy formation and magnetic phases for Ag/Co/Ir(111) ultrathin films

    International Nuclear Information System (INIS)

    Tsay, Jyh-Shen; Tsai, Du-Cheng; Chang, Cheng-Hsun-Tony; Chen, Wei-Hsiang

    2013-01-01

    The Kerr intensity versus the Ag thickness for Ag grown on the top of Co/Ir(111) exhibits an oscillating behavior with a period around one monolayer which should be due to the morphological change related electronic structure differences of the Ag layer. From systematical investigations of Ag/Co/Ir(111) films with the Co layer thinner than 4 monolayers at temperatures below 900 K, a magnetic phase diagram has been established. As the annealing temperature increases for Ag/Co/Ir(111) films, enhancements of the coercive force occur in both the polar and longitudinal configurations due to the intermixing of Ag and Co at the interface and the formation of Co–Ir alloy. The disappearance of ferromagnetism is mainly attributed to the reduced atomic percent of cobalt in Co–Ir alloy, the lowered Curie temperature by a reduction of the thickness of magnetic layers, and the intermixing of Ag and Co at the Ag/Co interface. - Highlights: • An oscillating behavior occurs due to the morphological change for Ag on Co/Ir(111). • A magnetic phase diagram has been established for Ag/Co/Ir(111). • Some Ag atoms intermix with the underlying Co layer at high temperatures. • Polar coercive force is enhanced due to the compositional change

  11. Solubility and partitioning of hydrogen in meta-stable ZR-based alloys used in the nuclear industry

    International Nuclear Information System (INIS)

    Khatamian, D.

    1998-11-01

    Terminal solubility and partitioning of hydrogen in Zr-Nb alloys with different Nb concentrations were examined using differential scanning calorimetry and hot vacuum extraction mass spectrometry. Specimens were charged to different concentrations of hydrogen and annealed at 1123 K to generate a two-phase structure consisting of α-Zr (Zr-0.6 wt.% Nb) and meta-stable β-Zr (Zr-20 wt.% Nb) within the alloy. Specimens were aged at 673 and 773 K for up to 1000 h to evaluate the effect of the decomposition of the meta-stable β-Zr to α-Zr + β-Nb on the solubility limit. The results show that the solubility limit for hydrogen in the annealed Zr-Nb alloys is higher than in unalloyed Zr and that the solubility limit increases with the Nb concentration of the alloy. They also show that the hydrogen solubility limits of the completely aged Zr-Nb alloys are similar and approach the values for pure α-Zr. The solubility ratio of hydrogen in β-Zr (Zr-20 wt.% Nb) to that in α-Zr (Zr-0.6 wt.% Nb) was found to range from 9 to 7 within the temperature range of 520 to 580 K. (author)

  12. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    International Nuclear Information System (INIS)

    Zhao Jun; Zhang Dongming; Zhao Jie

    2011-01-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu-Ag) core-shell powders. - Graphical abstract: Mechanism of fabricating Cu-Ag particles with good dispersibility using β-CDs as a protective agent was studied because of its special structure. Highlights: → Green supramolecular β-CD used as a protective agent and ascorbic acid(Vc) as a reducing agent to fabricate Cu-Ag powders. → Particles are monodisperse and the diameter is close to nanoscale(100-150 nm). → Resistance of Cu particles to oxidation was higher. → Formation mechanism explained.

  13. Cu-segregation at the Q'/α-Al interface in Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Teguri, Daisuke; Uetani, Yasuhiro; Sato, Tatsuo; Ikeno, Susumu

    2002-01-01

    Cu segregation was detected at the Q ' /α-Al interface in an Al-Mg-Si-Cu alloy by energy-filtered transmission electron microscopy. By contrast, in a Cu-free Al-Mg-Si alloy no segregation was observed at the interface between the matrix and Type-C precipitate

  14. Microstructure and mechanical properties of Cu-Ni-Si alloys

    International Nuclear Information System (INIS)

    Monzen, Ryoichi; Watanabe, Chihiro

    2008-01-01

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni 2 Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 μm shows higher stress relaxation resistance than the alloy with a small grain size of 10 μm because of a lower density of mobile dislocations in the former alloy

  15. Microstructure and mechanical properties of Cu-Ni-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Ryoichi [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)], E-mail: monzen@t.kanazawa-u.ac.jp; Watanabe, Chihiro [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2008-06-15

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni{sub 2}Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 {mu}m shows higher stress relaxation resistance than the alloy with a small grain size of 10 {mu}m because of a lower density of mobile dislocations in the former alloy.

  16. Mechanical properties of Al-Cu alloy-SiC composites

    Science.gov (United States)

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-01

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  17. Mechanical properties of Al-Cu alloy-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Anggara, B. S., E-mail: anggorobs1960@yahoo.com [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, Indonesia 13220 and PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia); Handoko, E. [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, 13220 (Indonesia); Soegijono, B. [PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia)

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  18. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  19. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Wang, Kunchan; Xia, Ming; Xiao, Tao; Lei, Ting; Yan, Weishan

    2017-01-01

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  20. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kunchan; Xia, Ming [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Weishan [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-01-15

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  1. Gas atomization of Cu-modified AB5 metal hydride alloys

    International Nuclear Information System (INIS)

    Young, K.; Ouchi, T.; Banik, A.; Koch, J.; Fetcenko, M.A.; Bendersky, L.A.; Wang, K.; Vaudin, M.

    2011-01-01

    Research highlights: → The gas atomization process together with a hydrogen annealing process was demonstrated on AB5 alloys. → The method was found to be effective in restoring the original cycle life sacrificed by the incorporation of copper in the alloy formula as a means of improving the low temperature performance of AB 5 alloys. → The new process also improves high rate, low temperature, and charge retention performances for both Cu-free and Cu-containing AB 5 alloys. - Abstract: Gas atomization together with a hydrogen annealing process has been proposed as a method to achieve improved low-temperature performance of AB 5 alloy electrodes in Ni/MH batteries and restore the original cycle life which was sacrificed by the incorporation of copper in the alloy formula. While the gas atomization process reduces the lattice constant aspect ratio c/a of the Cu-containing alloys, the addition of a hydrogen annealing step recovers this property, although it is still inferior to the conventionally prepared annealed Cu-free alloy. This observation correlates very well with the cycle life performance. In addition to extending the cycle life of the Cu-containing metal hydride electrode, processing by gas atomization with additional hydrogen annealing improves high-rate, low-temperature, and charge retention performances for both Cu-free and Cu-containing AB 5 alloys. The degradation mechanisms of alloys made by different processes through cycling are also discussed.

  2. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material.

    Science.gov (United States)

    Arfat, Yasir Ali; Ejaz, Mohammed; Jacob, Harsha; Ahmed, Jasim

    2017-02-10

    Guar gum (GG) based nanocomposite (NC) films were prepared by incorporating silver-copper alloy nanoparticles (Ag-Cu NPs) through solution casting method. Effect of NP loadings (0.5-2%) on the thermo-mechanical, optical, spectral, oxygen barrier and antimicrobial properties of the GG/Ag-Cu NC films were investigated. Tensile testing showed an improvement in the mechanical strength, and a decrease in elongation at break for all NP loadings. NP incorporation into GG films showed a marked influence on the color values. The NC films showed excellent UV, light and oxygen barrier capability. Thermal properties of the NC films were improved as evidenced from the differential scanning calorimetry and the thermal conductivity data. NC films became rough and coarse over neat GG film as visualized through the scanning electron microscopy. A strong antibacterial activity was exhibited by NC films against both Gram-positive and Gram-negative bacteria, and therefore, the film could be considered as an active food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mechanism of abnormally slow crystal growth of CuZr alloy

    International Nuclear Information System (INIS)

    Yan, X. Q.; Lü, Y. J.

    2015-01-01

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed

  4. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  5. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite

    International Nuclear Information System (INIS)

    Radovanović, Željko; Jokić, Bojan; Veljović, Djordje; Dimitrijević, Suzana; Kojić, Vesna; Petrović, Rada; Janaćković, Djordje

    2014-01-01

    Hydroxyapatite (HAp) powders doped with Ag + or Cu 2+ were synthesized by a hydrothermal method in order to obtain biomaterial with an antimicrobial effect. The synthesis was performed with two contents of dopant (Ag + or Cu 2+ ) by considering both the antimicrobial activities and biocompatibility of the powders. The doped HAp was annealed at 1200 °C for 2 h with the intention of investigating the influence of doping with Ag + and Cu 2+ on the creation of the biphasic HAp/α-tricalcium phosphate (HAp/α-TCP) and determining the antimicrobial activity and biocompatibility of the obtained biphasic powders. Analyses of all powders, undoped and doped HAp and HAp/α-TCP, were performed by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and energy-dispersive X-ray spectroscopy (EDS). The in vitro antibacterial activities of the powders were evaluated against: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. All powders showed good antimicrobial activity but generally the powders of doped HAp/α-TCP had more uniform results against all pathogenic microorganisms than the powders of doped HAp. In vitro biocompatibility tests, MTT and DET, were used to evaluate the biocompatibility of Ag + - and Cu 2+ -doped HAp/α-TCP with MRC-5 human fibroblast cells. These tests confirmed that powders do not have a cytotoxic effect. The HAp/α-TCP powders doped with the lower content of Ag + and Cu 2+ showed especially good biocompatibility. Antimicrobial and biocompatibility tests recommend the Ag + - and Cu 2+ -doped HAp/α-TCP as promising material for use in reconstructive surgery of bone.

  6. Gamma Radiolytic Formation of Alloyed Ag-Pt Nanocolloids

    Directory of Open Access Journals (Sweden)

    M. K. Temgire

    2011-01-01

    Full Text Available Colloidal dispersions of Ag-Pt composite nanoparticles were prepared by gamma radiolysis technique in the presence of nonionic surfactant Brij'97. Simultaneous as well as sequential reduction methods were employed in order to study the structural formation of Ag-Pt bimetallic clusters. Similar shape and trend was observed in optical spectra for both methods. Radiolysis yielded nearly spherical Ag-Pt bimetallic clusters by use of AgNO3 instead of AgClO4. The disappearance of the silver resonance and the simultaneous growth of the 260 nm resonance are independent of cluster structure and degree of alloying. To understand formation of Ag-Pt aggregate, the optical studies were also done as a function of amount of dose absorbed, concentration of surfactant, that is, Brij'97. The shape of the absorption spectrum did not change with increase in gamma radiation dose. TEM analysis exhibited fine dispersions of Ag-Pt clusters surrounded by a mantle when capped with Brij'97. The particle size obtained was in the range of 5–9 nm. On the basis of optical, XRD, and TEM analysis, alloy formation is discussed.

  7. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Energy Technology Data Exchange (ETDEWEB)

    Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Batenina, I.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Kuptsov, K.A. [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Zhitnyak, I.Y.; Anisimova, N.Yu.; Gloushankova, N.A. [N.N. Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation)

    2013-11-15

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4–4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC{sub 0.5}–Ca{sub 3}(PO{sub 4}){sub 2} target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  8. Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation

    International Nuclear Information System (INIS)

    Williams, P.L.; Mishin, Y.

    2009-01-01

    We apply the semi-grand-canonical Monte Carlo method with an embedded-atom potential to study grain boundary (GB) premelting in Cu-rich Cu-Ag alloys. The Σ5 GB chosen for this study becomes increasingly disordered near the solidus line while its local chemical composition approaches the liquidus composition at the same temperature. This behavior indicates the formation of a thin layer of the liquid phase in the GB when the grain composition approaches the solidus. The thickness of the liquid layer remains finite and the GB can be overheated/oversaturated to metastable states slightly above the solidus. The premelting behavior found by the simulations is qualitatively consistent with the phase-field model of the same binary system presented in Part I of this work [Mishin Y, Boettinger WJ, Warren JA, McFadden GB. Acta Mater, in press]. Although this agreement is encouraging, we discuss several problems arising when atomistic simulations are compared with phase-field modeling.

  9. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  10. Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions

    International Nuclear Information System (INIS)

    Zhang Qingbo; Lee, J Y; Yang Jun; Boothroyd, Chris; Zhang Jixuan

    2007-01-01

    Ag-Au alloy nanoparticles with tunable size and composition were prepared by a replacement reaction between Ag nanoparticles and HAuCl 4 at elevated temperatures. The formation of homogeneous alloy nanoparticles was confirmed by selected-area energy-dispersive x-ray spectroscopy (SAEDX), UV-visible absorption spectroscopy, high resolution transmission electron microscopy (HRTEM) and electron diffraction. This method leverages upon the rapid interdiffusion of Ag and Au atoms in the reduced dimension of a nanoparticle, elevated temperatures and the large number of vacancy defects created in the replacement reaction. This method of preparation has several notable advantages: (1) independent tuning of the size and composition of alloy nanoparticles; (2) production of alloy nanoparticles in high concentrations; (3) general utility in the synthesis of alloy nanoparticles that cannot be obtained by the co-reduction method

  11. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  12. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    Kuijers, F.J.

    1978-01-01

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  13. Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys

    International Nuclear Information System (INIS)

    Naka, M.; Hoshimoto, K.; Masumoto, T.

    1978-01-01

    Corrosion rates and anodic polarization curves of amorphous and crystalline Cu 50 Ti 50 and Cu 50 Zr 50 alloys have been examined in various acidic, neutral and alkaline solutions. The amorphous alloys are very stable in acidic and alkaline solutions, but unstable in agressive chloride solutions. The corrosion resistance of these amorphous alloys is higher than that of the crystallized alloys. The high corrosion resistance of amorphous alloys is attributable to the high chemical homogeneity of amorphous alloys without localized crystalline defects such as precipitates, segregates, grain boundaries, etc. Metalloid elements play an important role in the corrosion behavior of amorphous alloys; the addition of phosphorus to amorphous Cu-Ti alloy greatly increases the corrosion resistance, even in 1N HCl. (Auth.)

  14. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    International Nuclear Information System (INIS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-01-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of ∝0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.)

  15. Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Handwerker, Carol A.

    2018-01-01

    The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20-250°C, 1-5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22-64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy's β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.

  16. Electrical resistivity of liquid Ag-Au alloy

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-01-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au binary alloy on composition are reported. The structure of the binary alloy is described as a hard-sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trend is observed. (author)

  17. Hot mechanical behaviour of dispersion strengthened Cu alloys

    International Nuclear Information System (INIS)

    Garcia G, Jose; Espinoza G, Rodrigo; Palma H, Rodrigo; Sepulveda O, Aquiles

    2003-01-01

    This work is part of a research project which objective is the improvement of the high-temperature mechanical properties of copper, without an important decrease of the electrical or thermal conduction properties. The general hypothesis is that this will be done by the incorporation of nanometric ceramic dispersoids for hindering the dislocation and grain boundaries movement. In this context, the object of the present work is the study of the resistance to hot deformation of dispersion-strengthened copper alloys which have prepared by reactive milling. Two different alloys, Cu-2,39wt.%Ti-0.56wt.%C and Cu-1.18wt.%Al, were prepared so as obtain a copper matrix reinforced with nanometric TiC y Al 2 O 3 particles with a nominal total amount of 5 vol.%. The particles were developed by an in-situ formation process during milling. The materials were prepared in an attritor mill, and consolidated by extrusion at 750 o C, with an area reduction rate of 10:1. The resistance to hot deformation was evaluated by hot compression tests at 500 and 850 o C, at initial strain rates of 10 -3 and 10 -4 s-1. To evaluate the material softening due temperature, annealing at 400, 650 y 900 o C during 1h were applied; after that, hardness was measured at room temperature. Both studies alloys presented a higher resistance to hot deformation than pure copper, with or without milling. Moreover, the Cu-Ti-C alloy presented a mechanical resistance higher than that of the Cu-Al one. Both alloys presented strain-stress compression curves with a typical hot-work shape: an initial maximum followed by a stationary plateau. The Cu-Ti-C alloy had a higher hardness and did not present a hardness decay even after annealings at the higher temperature imposed (900 o C), while the Cu-Al alloy did exhibit a strong decay of hardness after the annealing at 900 o C. The best behaviour exhibited by the Cu-Ti C alloy, was attributed to the formation of a major quantity of dispersoids that in the Cu-Al alloy. In

  18. The Mechanical Properties of AlSi17Cu5 Cast Alloy after Overheating and Modification of CuP Master Alloy

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2013-09-01

    Full Text Available The paper presents the results of studies on the effect of the AlSi17Cu5 alloy overheating to atemperature of 920°C and modification with phosphorus (CuP10 on the resultingmechanical (HB, Rm, R0.2 and plastic (A5 and Z properties. It has been shown that, so-called, "timethermal treatment" (TTT of an alloy in the liquid state, consisting inoverheating the metal to about 250°C above Tliq,holding at this temperature by 30 minutes improvesthe mechanical properties. It has also been found that overheating of alloy above Tliq.enhances the process of modification, resulting in the formation of fine-grain structure. The primary silicon crystals uniformly distributed in the eutectic and characteristics ofthe α(Al solution supersaturated with alloying elements present in the starting alloy composition (Cu, Fe provide not only an increase of strength at ambient temperature but also at elevated temperature (250°C.

  19. Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kurmanaeva, Lilia, E-mail: lkurmanaeva@ucdavis.com [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Topping, Troy D. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); California State University, Sacramento, 6000 J Street, Sacramento, CA 95819 (United States); Wen, Haiming; Sugahara, Haruka; Yang, Hanry; Zhang, Dalong; Schoenung, Julie M.; Lavernia, Enrique J. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2015-05-25

    Highlights: • Ultra-fine and coarse grained Al–Cu–Mg–Ag alloy samples were processed by methods of powder metallurgy. • Despite thermal exposure during consolidation,cryomilled materials retain an ultra-fine grained structure due to the presence of nano-dispersoids at grain boundaries. • Cryomilling results in a change in precipitation kinetics, due to the depletion of Mg atoms at the grain interiors and segregation of Mg, Cu and Ag atoms at grain boundaries. • Dominant deformation mechanisms in cryomilled samples were grain boundary strengthening and dispersion strengthening from oxides and nitrides. - Abstract: In the last decade, the commercially available heat-treatable aluminum alloy (AA) 2139 (Al–Cu–Mg–Ag) has generated interest within the aerospace and defense communities because of its high strength and damage tolerance as compared to those of other AA 2XXX alloys. In this work we investigate the possibility of enhancing the performance of AA 2139 via a nanostructuring approach involving the consolidation of cryomilled powders. For comparison purposes, two types of feedstock powders (cryomilled and unmilled, gas-atomized powder), were consolidated via dual mode dynamic forging. Our results show that, following heat treatment (HT), the strength of the cryomilled material increases in the range of ∼25% to ∼200% relative to that of the unmilled counterparts, depending on specific processing parameters. We present microstructural data, including grain size and precipitate chemistry, to provide insight into the underlying strengthening mechanisms. Vickers microhardess tests are used to evaluate peak heat treatments, and tensile testing is performed to characterize mechanical behavior. The kinetics of precipitation, strengthening mechanisms and deformation behavior are discussed. It is proposed that the combination of elemental segregation with the presence of oxides along grain boundaries, both facilitated by enhanced diffusion paths, are

  20. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal......The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient......-Al-Ni-Cu-Ag quasicrystals induced by pressure....

  1. Martensitic transformation in Cu-2be alloys induced by explosive cladding

    Science.gov (United States)

    Ganin, E.; Weiss, B. Z.; Komem, Y.

    1986-11-01

    Formation of a lath-type structure was observed at a distance greater than 100 ώm from the bond interface created by explosive cladding. The laths were found to have a strong deviation from cubic symmetry and to contain numerous internal faults. The electron diffraction patterns do not fit any equilibrium or metastable phase known to exist in a Cu-2Be alloy. Crystallographic analysis based on electron diffraction showed that the laths have an orthorhombic structure. It is postulated that the orthorhombic phase results from a shear (martensitic) transformation which takes place in the a (fcc) phase during cladding. The proposed model assumes that shear occurs on the (111) plane in the [112] direction, and the orientation relationship is suggested to be [100]ORTH(M)∥[110]α and (001)ORTH(M) II (111)α, which is consistent with electron diffraction results. The transformation causes a volume decrease of 1.1 pct. Formation of the new phase was observed only in the solution-treated specimens of Cu-2Be and not in those aged prior to cladding. It is suggested that this may be a result of different stacking fault energies.

  2. Recombination luminescence of Cu and/or Ag doped lithium tetraborate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Romet, I. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); Aleksanyan, E. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); A. Alikhanyan National Science Laboratory, 2 Br. Alikhanyan Str., 0036 Yerevan (Armenia); Brik, M.G. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); College of Sciences, Chongqing University of Posts and Telecommunications, 400065 Chongqing (China); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Corradi, G. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Kotlov, A. [Photon Science at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Nagirnyi, V., E-mail: vitali.nagirnoi@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50411 Tartu (Estonia); Polgár, K. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)

    2016-09-15

    Complex investigations of thermostimulated luminescence (TSL) and radioluminescence properties of Li{sub 2}B{sub 4}O{sub 7} (LTB), LTB:Cu, LTB:Ag and LTB:Cu, Ag crystals suitable for tissue equivalent dosimeters were carried out in the temperature range 4.2–700 K. TSL, cathodoluminescence and X-ray excited luminescence spectra are compared to those measured under photoexcitation. The emission band at 4.6 eV in LTB:Ag is reliably related to Ag{sup +} ions based on the comparison of the results of optical spectroscopy studies and first principle calculations. Energy transfer from the relaxed exited state of the Ag{sup +} ion to the Cu{sup +} ion in double-doped LTB:Cu, Ag crystals is demonstrated. Thermostimulated recombination of charge carriers in irradiated crystals is seen to take place mainly at oxygen sites at low temperatures and at impurity sites at high temperatures. For the first time, the appearance of the low-temperature TSL peak at 90 K is assigned to ionic processes in LTB crystals. The appearance of pyroelectric flashes due to the lattice relaxation in the temperature region 90–240 K is demonstrated and their surface-related nature clarified. In accordance with EPR studies the dosimetric TSL peaks in copper and silver doped LTB crystals are attributed to thermally released electrons recombining with Cu{sup 2+} and Ag{sup 2+} centres.

  3. Spectroscopy of microcrystals of CuI-AgI system

    International Nuclear Information System (INIS)

    Voll, V.A.; Barmasov, A.V.; Struts, A.V.

    1994-01-01

    By means of comparison of absorption and luminescence spectra analysis for samples with different relative component concentrations is considered obtaining in a gelatin matrix and the structure of CuI-AgI system composite microcrystals. Resonant character of excitation and its localization in the region of the interphase boundary of substrate/epitaxy is established. The most probable composition of thermally stable photolytic centers is discussed in dependence on the Cu and Ag relative content t. 25 refs

  4. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  5. Computer simulation of the structure of liquid metal halides RbBr, CuCl, CuBr, CuI, and AgBr

    International Nuclear Information System (INIS)

    Belashchenko, D.K.; Ostrovskij, O.I.

    2003-01-01

    The computerized models of the RbBr, AgBr, CuCl, CuBr and CuI liquid ion systems of 498 ions dimension are simulated at the temperatures of 753-960 K on the basis of the known diffraction data through the BELION algorithm. Good agreement of diffraction and model partial pair correlation functions (PPCF), excluding the PPCF first peaks heights, is obtained in all the cases. The simulation is carried out by the varied ion charges (the atomization energy values, close to the real ones, are obtained by ion charges ±1.00 for the RbBr, ±1.15 for AgBr, ±1.20 for CuCl, ±1.48 for CuBr and ±1.367 for CuI). The noncoulomb contributions in the interparticle potentials are calculated [ru

  6. X-ray diffraction analysis of cold rolled strip from jewelry 585 gold alloy

    Directory of Open Access Journals (Sweden)

    Karastojković Zoran

    2017-01-01

    Full Text Available Here is investigated an golden alloy 585 as one of widely used gold alloy in jewelry production. Insufficient data, even in nowadays, exist about the production schedule of gold alloys, including melting, rolling and heat treatment regimes. The structures of complex alloys, such as used golden alloy, are less known and/or investigated. Principally, the constitutional diagram of Au-Ag-Cu system is known, as a (metastable equilibrium diagram. But, after relatively fast cooling from liquid state during casting will be obtained polycrystalline grains, different from equilibrium conditions. Such polycrystalline material frequently undergoes to rolling for obtaining a desired shape of (semiproduct. Those processes, casting and rolling, will show the influence on the final structure to be obtained, also on properties of such treated alloy. The structural changes and obtained phases in metal working processes of 585 gold alloy still are not well examined, so here is provided an XRD examination after heavy reduction at cold rolling of a strip. The castings were in the flat form in dimension of 4,5x50x50mm, than cold rolled to 1,5mm, intermediate annealed and finally cold rolled to thickness of 0,5mm with height reduction of 66,7%.

  7. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Hernandez-Santiago, Felipe; Lopez-Hirata, Victor; Dorantes-Rosales, Hector J.; Saucedo-Munoz, Maribel L.; Gonzalez-Velazquez, Jorge L.; Paniagua-Mercado, Ana Ma.

    2008-01-01

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol -1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  8. Electrodeposition of Cu-In alloys for preparing CuInS sub 2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, J; Ortega, J [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1990-01-01

    Copper-indium alloys were prepared by electroplating from citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) baths onto Ti substrate. Formation of the alloys was carried out by direct codeposition of the elements and by sequential electrodeposition of copper and indium. Studies of the alloy formation by electrochemical measurements and X-ray diffraction were performed. The presence of Cu{sub 7}In{sub 4} in direct deposit as well as in sequentially electrodeposited material was observed during the alloy formation. The as-deposited layers were heated in H{sub 2}S. X-ray diffraction showed the annealed layers to be CuInS{sub 2} with the chalcopyrite structure, where the CuIn{sub 5}S{sub 8} phase was included during the annealing process. Photoelectrochemical characterization of the samples allowed us to determine the photoconductivity which is related with the Cu/In ratio in the samples. The energy gap for CuInS{sub 2} photoelectrodes in polysulphide solution was 1.57 Ev. (orig.).

  9. Synthesis and characterization of Ag@Cu nano/microstructure ordered arrays as SERS-active substrates

    Science.gov (United States)

    Zhang, Pinhua; Cui, Guangliang; Xiao, Chuanhai; Zhang, Mingzhe; Chen, Li; Shi, Changmin

    2016-06-01

    We fabricated an Ag decorated Cu (Ag@Cu) nano/microstructure ordered array by facile template-free 2D electrodeposition combined with a galvanic reduction method for SERS applications. The Cu nano/microstructure ordered arrays were first synthesized by a 2D electrodeposition method, then Ag nanocubes were decorated on the arrays by galvanic reduction without any capping agent. The pollution-free surface and edge-to-face heterostructure of Ag nanocubes and Cu nano/microstructure arrays provide the powerful field-enhancements for SERS performance. The results verified that the Ag@Cu nano/microstructure ordered arrays have excellent activity for 4-Mercaptopyridine, and the sensitivity limit is as low as 10-8 M. Therefore, this facile route provides a useful platform for the fabrication of a SERS substrate based on nano/microstructure ordered arrays.

  10. Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195

    Science.gov (United States)

    Chen, P. S.; Bhat, B. N.

    1999-01-01

    Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0

  11. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  12. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  13. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  14. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.

    Science.gov (United States)

    Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin

    2017-06-01

    In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Santhi, Kalavathy [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Department of Physics, Women’s Christian College, Chennai 600006 (India); Kumarsan, Dhanapal [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Vengidusamy, Naryanan [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Arumainathan, Stephen, E-mail: stephen_arum@hotmail.com [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India)

    2017-07-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  16. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    International Nuclear Information System (INIS)

    Santhi, Kalavathy; Kumarsan, Dhanapal; Vengidusamy, Naryanan; Arumainathan, Stephen

    2017-01-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  17. Study On Nanohardness Of Phases Occurring In ZnAl22Cu3 And ZnAl40Cu3 Alloys

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2015-06-01

    Full Text Available Zn-Al alloys are mainly used due to their high tribological and damping properties. A very important issue is determination of the hardness of the phases present in the Zn-Al-Cu alloys. Unfortunately, in literature there is lack of studies on the hardness of the phases present in the alloys Zn-Al-Cu. The aim of this research was to determine the hardness of the phases present in the ZnAl22Cu3Si and ZnAl40Cu3Si alloys. The scope of the research included examination of the structure, chemical composition of selected micro-regions and hardness of phases present in the examined alloys. The research carried out has shown, that CuZn4 phase is characterized by a similar hardness as the hardness of the interdendritic areas. The phases present in the structure of ZnAl40Cu3 and ZnAl22Cu3 alloys after soaking at the temperature of 185 °C are characterized by lower hardness than the phase present in the structure of the as-cast alloys.

  18. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    International Nuclear Information System (INIS)

    Cheng, Feng; He, Xiang; Chen, Zhao-Xu; Huang, Yu-Gai

    2015-01-01

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys

  19. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); He, Xiang [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); Huang, Yu-Gai [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); JiangSu Second Normal University, Nanjing (China)

    2015-11-05

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys.

  20. Modeling of metastable phase formation diagrams for sputtered thin films.

    Science.gov (United States)

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  1. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    International Nuclear Information System (INIS)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-01-01

    Highlights: • TiO 2 nanotubes were modified with Cu, AgCu, Bi nanoparticles via gamma radiolysis. • Excessive amount of deposited metal decreased photocatalytic activity. • AgCu-modified samples were more active than Cu-modified (with the same Cu content). • AgCu nanoparticles exist in a core (Ag) -shell (Cu) form. • Examined photocatalysts were resistant towards photocorrosion processes. - Abstract: TiO 2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Ag core -Cu shell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  2. Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes

    International Nuclear Information System (INIS)

    Li, Dong-Fang; Mao, Jin-Chuan; Chen, De-Li; Chen, Fang; Ze-Wen, Hong; Zhou, Xiao-Yi; Wang, Ya-Hao; Zhou, Xiao-Shun; Niu, Zhen-Jiang; Maisonhaute, Emmanuel

    2015-01-01

    The single-molecule conductance of 1,4-dicyanobenzene (DCB), 1,4-benzenediamine (BDA) and 4,4'-biphenyldicarbonitrile (BPDC) with Ag and/or Cu electrodes is measured by electrochemical jump-to-contact STM-break junction. All single-molecule junctions present three sets of conductance values revealing different contact geometries. We observe that the single-molecule conductance of Ag-BDA-Ag junction is larger that of Ag-DCB-Ag junction, and DCB with Ag contacts are more conductive than that with Cu ones. This is related to a different electronic coupling between the molecules and the electrodes. Tunneling decay constants of 1.70 and 1.68 per phenyl group were found for Ag and Cu electrodes, respectively. The present study therefore shows that nitrile and amino groups can also be used as effective anchors for other metals than gold

  3. Origin of the Distinct Diffusion Behaviors of Cu and Ag in Covalent and Ionic Semiconductors.

    Science.gov (United States)

    Deng, Hui-Xiong; Luo, Jun-Wei; Li, Shu-Shen; Wei, Su-Huai

    2016-10-14

    It is well known that Cu diffuses faster than Ag in covalent semiconductors such as Si, which has prevented the replacement of Ag by Cu as a contact material in Si solar cells for reducing the cost. Surprisingly, in more ionic materials such as CdTe, Ag diffuses faster than Cu despite that it is larger than Cu, which has prevented the replacement of Cu by Ag in CdTe solar cells to improve the performance. But, so far, the mechanisms behind these distinct diffusion behaviors of Cu and Ag in covalent and ionic semiconductors have not been addressed. Here we reveal the underlying mechanisms by combining the first-principles calculations and group theory analysis. We find that the symmetry controlled s-d coupling plays a critical role in determining the diffusion behaviors. The s-d coupling is absent in pure covalent semiconductors but increases with the ionicity of the zinc blende semiconductors, and is larger for Cu than for Ag, owing to its higher d orbital energy. In conjunction with Coulomb interaction and strain energy, the s-d coupling is able to explain all the diffusion behaviors from Cu to Ag and from covalent to ionic hosts. This in-depth understanding enables us to engineer the diffusion of impurities in various semiconductors.

  4. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  5. Decomposition in aluminium alloys: diffuse scattering and crystal modelling

    International Nuclear Information System (INIS)

    Aslam-Malik, A.

    1995-01-01

    In the present study the microstructure of metastable precipitates in Al-Ag and Al-Cu, so called pre-precipitates or Guinier-Preston (GP) zones, was investigated. In both systems important aspects of the microstructure are still controversially discussed. In Al-Ag two forms of GP zones are suggested; depending on the aging temperatures above or below about 443 K, ε- or η-zones should evolve. Differences between these two types of zones may be due to differences in internal order and/or composition. In Al-Cu the characterization of GP I zones is difficult because of the strong atomic displacements around the zones. The proper separation of short-range order and displacement scattering within a diffuse scattering experiment is still under discussion. The technique used to determine the short-range order in both alloys was diffuse scattering with neutrons and X-rays. To separate short-range order and displacement scattering, the methods of Georgopoulos-Cohen (X-ray scattering) and Borie-Sparks (neutron scattering) were used. Of main importance is the optimization of the scattering contrast and thus the scattering contribution due to short-range order. Short-range order scattering is rationalized in terms of pair correlations. Crystals may subsequently be modelled to visualize the microstructure. The Al-Ag system was investigated by diffuse X-ray wide-angle scattering and small-angle neutron scattering. The small-angle neutron scattering measurement was necessary since the GP zones in Al-Ag are almost spherical and the main scattering contribution is found close to the origin of reciprocal space. The small-angle scattering is not that important in the case of Al-Cu because the main scattering extends along (100) owing to the planar character of the GP I zones on (100) lattice planes. (author) 24 figs., 10 tabs., refs

  6. Chlorine-induced modifications in the electronic structure of Ag surfaces: a metastable deexcitation spectroscopy and photoemission comparative study

    CERN Document Server

    Pasquali, L; Canepa, M; Staicu-Casagrande, E M; Esaulov, V A

    2003-01-01

    Surface-sensitive spectroscopic techniques, namely metastable deexcitation spectroscopy (MDS) and ultraviolet photoemission (UPS), have been applied to investigate the effects of chlorine chemisorption on the electronic properties (surface density of states and charge density) of Ag(100), Ag(110) and Ag(111) surfaces. Initial stages of chemisorption, up to the formation of a saturated Cl overlayer, have been examined. In particular, MDS permitted us to observe at low Cl gas exposure a progressive depletion of the Ag (5s) charge due to transfer and bonding with Cl atoms. From both MDS and UPS it was possible to observe the development of Cl (3p) bonding and anti-bonding states, the amount of their splitting increasing with coverage. Differences between chemisorption at the three surfaces have been noticed and they have been justified in terms of the different adatom packing and possible formation of small AgCl clusters (especially for the Ag(111) surface).

  7. Chlorine-induced modifications in the electronic structure of Ag surfaces: a metastable deexcitation spectroscopy and photoemission comparative study

    International Nuclear Information System (INIS)

    Pasquali, L; Nannarone, S; Canepa, M; Staicu-Casagrande, E M; Esaulov, V A

    2003-01-01

    Surface-sensitive spectroscopic techniques, namely metastable deexcitation spectroscopy (MDS) and ultraviolet photoemission (UPS), have been applied to investigate the effects of chlorine chemisorption on the electronic properties (surface density of states and charge density) of Ag(100), Ag(110) and Ag(111) surfaces. Initial stages of chemisorption, up to the formation of a saturated Cl overlayer, have been examined. In particular, MDS permitted us to observe at low Cl gas exposure a progressive depletion of the Ag (5s) charge due to transfer and bonding with Cl atoms. From both MDS and UPS it was possible to observe the development of Cl (3p) bonding and anti-bonding states, the amount of their splitting increasing with coverage. Differences between chemisorption at the three surfaces have been noticed and they have been justified in terms of the different adatom packing and possible formation of small AgCl clusters (especially for the Ag(111) surface)

  8. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  9. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  10. Wetting of molybdenum with molten Cu-O alloys

    International Nuclear Information System (INIS)

    Yupko, V.L.; Garbuz, V.V.; Kryuchkova, N.I.

    1992-01-01

    The Cu-O alloys were prepared from type MOb copper (GOST 859-78) with an oxygen content of 0.001 wt.% and type ChDA cuprous oxide (MRTU 6-09-1451-64), the powder of which was first pressed into briquettes. The weighted portions of Cu 2 O were weighed on an Elektrobalans scale having an absolute error of ±5 · 10 -7 g. The relative error in weighing an approximately 1 · 10 -4 g weighed portion of Cu 2 O for preparation of the alloy with the minimum oxygen content of 0.002% was, therefore, ± 0.5% and consequently for the alloys with a higher oxygen content the accuracy was higher. The alloys were prepared on a ZrO 2 + 5% Y 2 O 3 ceramic at 1,420 K in a vacuum of 6.7 · 10 -3 Pa,d their weight was 1.0-1.5 g, and the melting time 30 sec. The pure type MOb copper was remelted in the same manner. The time relationships of the angle of wetting of molybdenum by molten Cu-O alloys under conditions of combined heating are given. With an increase in oxygen content from 0.004 to 0.005%, wetting drops sharply

  11. Corrosion behavior of Zr-x(Nb, Sn and Cu) binary alloys

    International Nuclear Information System (INIS)

    Kim, M. H.; Lee, M. H.; Park, S. Y.; Jung, Y. H.; We, M. Y.

    1999-01-01

    For the development of advanced zirconium alloys for nuclear fuel cladding, the corrosion behaviors of zirconium binary alloys were studied on the Zr-xNb, Zr-xSn, and Zr-xCu alloys. The corrosion test were performed in water at 360 deg C, steam at 400 deg C and LiOH at 360 deg C for 45 days. The corrosion behaviors of Zr-xNb was similar to that of Zr-xCu alloys. However, the corrosion behavior of Zr-xSn was different from Zr-xNb and Zr-xCu. The weight gain of Zr-xNb and Zr-xCu was increased with addition of alloying elements. When Sn is added to Zr matrix in range below the solubility limit, the corrosion resistance decrease with increasing Sn-content, while in the range over solubility limit, Sn has an adverse effect on the corrosion resistance. Especially, Zr-xSn alloys showed higher corrosion resistance than Zr-xNb and Zr-xCu alloys in LiOH solution

  12. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    Science.gov (United States)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-05-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  13. Physical Properties Of Some Pd-Au-Ag Ternary Alloys: A Md Study

    International Nuclear Information System (INIS)

    Aydin, G.

    2010-01-01

    Mechanical properties of palladium (Pd), gold (Au) and silver (Ag) and their ternary alloys in the following concentrations (Au 5 0Ag 2 5Pd 2 5, Au 4 0Ag 2 0Pd 4 0) are studied by using by using molecular dynamics with Quantum Sutton-Chen (Q-SC) potential. Cell constants, densities, enthalpies, elastic constants and heat capacities are investigated. Calculations are performed in the solid phase. Rafii-Tabar combination rules are used and it is showed that these combination rules are valid for ternary alloys also. Additionally, temperature dependence of mechanical properties of alloys are investigated.

  14. Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites

    International Nuclear Information System (INIS)

    An, X. H.; Cao, Y.; Liao, X. Z.; Zhu, S. M.; Nie, J. F.; Kawasaki, M.; Ringer, S. P.; Langdon, T. G.; Zhu, Y. T.

    2015-01-01

    We report an atomic-scale investigation of interface-facilitated deformation twinning behaviour in Ag-Cu nanolamellar composites. Profuse twinning activities in Ag supply partial dislocations to directly transmit across the Ag-Cu lamellar interface that promotes deformation twinning in the neighbouring Cu lamellae although the interface is severely deformed. The trans-interface twin bands change the local structure at the interface. Our analysis suggests that the orientation relationship and interfacial structure between neighbouring Ag-Cu lamellae play a crucial role in such special interface-facilitated twinning behaviour

  15. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    Science.gov (United States)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  16. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  17. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  18. Ion beam mixing in Ag-Pd alloys

    International Nuclear Information System (INIS)

    Klatt, J.L.; Averback, R.S.; Peak, D.

    1989-01-01

    Ion beam mixing during 750 keV Kr + irradiation at 80 K was measured on a series of Ag-Pd alloys using Au marker atoms. The mixing in pure Ag was the greatest and it decreased monotonically with increasing Pd content, being a factor of 10 higher in pure Ag than in pure Pd. This large difference in mixing cannot be explained by the difference in cohesion energy between Ag and Pd in the thermodynamic model of ion beam mixing proposed by Johnson et al. [W. L. Johnson, Y. T. Cheng, M. Van Rossum, and M-A. Nicolet, Nucl. Instrum. Methods B 7/8, 657 (1985)]. An alternative model based on local melting in the cascade is shown to account for the ion beam mixing results in Ag and Pd

  19. Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys

    International Nuclear Information System (INIS)

    Lee, Seok-Woo; Huh, Moo-Young; Fleury, Eric; Lee, Jae-Chul

    2006-01-01

    This study examined the parameter governing the plasticity observed in various Cu-Zr containing monolithic amorphous alloys. All the alloys were fully amorphous in their as-cast condition but exhibited different plastic strains. Microscopic observations of the quasi-statically compressed alloys showed abundant nanocrystallites in the amorphous matrices in the alloys that exhibited pronounced plasticity. On the other hand, insignificant changes in the microstructure were observed in the alloy that did not show plasticity. The mechanism for the formation of these deformation-induced nanocrystallites was examined from the viewpoints of thermodynamics and kinetics. The role of the deformation-induced nanocrystallites on the plasticity of the amorphous alloy was examined using high-resolution transmission electron microscopy. The results demonstrate that compressive loading facilitates nanocrystallization in monolithic Cu-Zr containing amorphous alloys, resulting in plasticity. The parameter governing the plasticity in these monolithic Cu-Zr containing amorphous alloys lies in the activation energy for the overall crystallization process

  20. Diffusivities and atomic mobilities in Cu-rich fcc Al-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming; Du, Yong; Cui, Senlin; Xu, Honghui; Liu, Shuhong [Central South Univ., Changsha (China). State Key Laboratory of Powder Metallurgy; Zhang, Lijun [Bochum Univ. (DE). Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)

    2012-07-15

    Via solid-solid diffusion couples, electron probe microanalysis and the Whittle and Green method, interdiffusivities in fcc Al-Cu-Mn alloys at 1 123 K were measured. The reliability of the obtained diffusivities is validated by comparing the computed diffusivities with literature data plus constraints among the diffusivities. Through assessments of experimentally determined diffusion coefficients by means of a diffusion-controlled transformations simulation package, the atomic mobilities of Al, Cu, and Mn in fcc Al-Cu-Mn alloys are obtained. Comprehensive comparisons between the model-predicted and the experimental data indicate that the presently obtained atomic mobilities can reproduce most of the diffusivities, concentration profiles, and diffusion paths reasonably. (orig.)

  1. Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2.

    Science.gov (United States)

    Wang, Yi; Zhang, Dun; Wang, Jin

    2017-12-01

    Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion were synthesized by direct coprecipitation at room temperature. They are shown to be viable peroxidase mimics that catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 . Kinetic analysis indicated typical Michaelis-Menten catalytic behavior. The findings were used to design a colorimetric assay for H 2 O 2 , best measured at 652 nm. The method has a linear response in the 60 to 200 μM H 2 O 2 concentration range, with a 2 μM detection limit. Benefitting from the chemical stability of the microrods, the method is well reproducible. It also is easily performed and highly specific. Graphic abstract Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion can efficiently catalyze the oxidation reaction of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue color change.

  2. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO{sub 2} nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Nischk, Michał [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza 11/12 St., 80-233 Gdansk (Poland); Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland); Mazierski, Paweł [Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland); Wei, Zhishun [Institute for Catalysis, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdansk (Poland); Kouame, Natalie Amoin [Laboratoire de Chimie Physique, CNRS—UMR 8000,Université Paris-Sud, Université Paris-Saclay, Bâtiment 349, 91405 Orsay (France); Kowalska, Ewa [Institute for Catalysis, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Remita, Hynd [Laboratoire de Chimie Physique, CNRS—UMR 8000,Université Paris-Sud, Université Paris-Saclay, Bâtiment 349, 91405 Orsay (France); Zaleska-Medynska, Adriana, E-mail: adriana.zaleska@ug.edu.pl [Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland)

    2016-11-30

    Highlights: • TiO{sub 2} nanotubes were modified with Cu, AgCu, Bi nanoparticles via gamma radiolysis. • Excessive amount of deposited metal decreased photocatalytic activity. • AgCu-modified samples were more active than Cu-modified (with the same Cu content). • AgCu nanoparticles exist in a core{sub (Ag)}-shell{sub (Cu)} form. • Examined photocatalysts were resistant towards photocorrosion processes. - Abstract: TiO{sub 2} nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Ag{sub core}-Cu{sub shell} form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  3. Microstructural characterization of alloys of the quasibinary Cu-NiBe system

    Energy Technology Data Exchange (ETDEWEB)

    Spaic, S.; Markoli, B. [Univ. of Ljubljana, Faculty of Natural Science and Engineering, Ljubljana (Slovenia)

    2003-08-01

    Alloys of the quasibinary section Cu-NiBe were experimentally investigated with differential thermal analysis, optical microscopy, electron microanalysis, transmission electron microscopy and X-ray diffraction. The construction of the quasibinary Cu-NiBe phase diagram was made based on the experimental results. The constitution of alloys of the whole section was studied along with the investigation of the microstructure and crystallographic relationship of the NiBe phase in aged alloys from the Cu-rich corner of the Cu-NiBe system. (orig.)

  4. Electronic structure of the L-cysteine films on dental alloys studied by ultraviolet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ogawa, K; Takahashi, K; Azuma, J; Kamada, M; Tsujibayashi, T; Ichimiya, M

    2013-01-01

    The valence electronic structures of the dental alloys, type 1, type 3, K14, and MC12 and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The electronic states of the MC12 dental alloy originate dominantly from Cu 3d states and Pd 4d states around the top of the valence bands, while the 4∼7-eV electronic structure of MC12 originates from the Ag 4d states. The peak shift and the change in shape due to alloying are observed in all the dental alloys. For the L-cysteine thin films, new peak or structure observed around 2 eV on all the dental alloys is suggested to be due to the bonding of S 3sp orbitals with the dental alloy surfaces. The Cu-S bond as well as the Au-S and Au-O bonds may cause the change in the electronic structure of the L-cysteine on type 1, type 3 and K14. For MC12, the interaction with L-cysteine may be dominantly due to the Pd-S, Cu-S, and Ag-O bonds, while the contribution of the Ag-S bond is small.

  5. Stability of Cu-Precipitates in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Torsten E. M. Staab

    2018-06-01

    Full Text Available We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on {100}-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on {100}-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations.

  6. Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids: The Effect of Cu and Ag

    Directory of Open Access Journals (Sweden)

    Susana I. L. Gomes

    2015-06-01

    Full Text Available The effects of several copper (Cu and silver (Ag nanomaterials were assessed using the cellular energy allocation (CEA, a methodology used to evaluate the energetic status and which relates with organisms’ overall condition and response to toxic stress. Enchytraeus crypticus (Oligochatea, was exposed to the reproduction effect concentrations EC20/50 of several Cu and Ag materials (CuNO3, Cu-Field, Cu-Nwires and Cu-NPs; AgNO3, Ag NM300K, Ag-NPs Non-coated and Ag-NPs PVP-coated for 7 days (0-3-7d. The parameters measured were the total energy reserves available (protein, carbohydrate and lipid budgets and the energy consumption (Ec integrated to obtain the CEA. Results showed that these parameters allowed a clear discrimination between Cu and Ag, but less clearly within each of the various materials. For Cu there was an increase in Ec and protein budget, while for Ag a decrease was observed. The results corroborate known mechanisms, e.g., with Cu causing an increase in metabolic rate whereas Ag induces mitochondrial damage. The various Cu forms seem to activate different mechanisms with size and shape (e.g., Cu-NPs versus Cu-Nwires, causing clearly different effects. For Ag, results are in line with a slower oxidation rate of Ag-NMs in comparison with Ag-salt and hence delayed effects.

  7. ECAE-processed Cu-Nb and Cu-Ag nanocomposite wires for pulse magnet applications

    International Nuclear Information System (INIS)

    Edgecumbe Summers, T.S.; Walsh, R.P.; Pernambuco-Wise, P.

    1997-01-01

    Cu-Nb and Cu-Ag nanocomposites have recently become of interest to pulse magnet designers because of their unusual combination of high strength with reasonable conductivity. In the as-cast condition, these conductors consist of two phases, one of almost pure Nb (or Ag) and the other almost pure Cu. When these castings are cold worked as in a wire-drawing operation for example, the two phases are drawn into very fine filaments which produce considerable strengthening without an unacceptable decrease in conductivity. Unfortunately, any increase in strength with operations such as wire drawing is accompanied by a reduction in the cross section of the billet, and thus far, no wires with strengths on the order of 1.5 GPa or more have been produced with cross sections large enough to be useful in magnet applications. Equal Channel Angular Extrusion (ECAE) is an innovative technique which allows for the refinement of the as-cast ingot structure without a reduction in the cross sectional dimensions. Samples processed by the ECAE technique prior to wire drawing should be stronger at a given wire diameter than those processed by wire drawing alone. The tensile properties of wire-drawn Cu-18%Nb and Cu-25%Ag both with and without prior ECAE processing were tested and compared at both room temperature and 77K. All samples were found to have resistivities consistent with their strengths, and the strengths of the ECAE-processed wires were significantly higher than their as-cast and drawn counterparts. Therefore, with ECAE processing prior to wire drawing, it appears to be possible to make high-strength conductors with adequately large cross sections for pulse magnets

  8. Antimicrobial activity and biocompatibility of Ag{sup +}- and Cu{sup 2+}-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag{sup +}- and Cu{sup 2+}-doped hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Radovanović, Željko, E-mail: zradovanovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Jokić, Bojan; Veljović, Djordje; Dimitrijević, Suzana [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Kojić, Vesna [Oncology Institute of Vojvodina, Institutski put 4, 21204 Sremska Kamenica (Serbia); Petrović, Rada; Janaćković, Djordje [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia)

    2014-07-01

    Hydroxyapatite (HAp) powders doped with Ag{sup +} or Cu{sup 2+} were synthesized by a hydrothermal method in order to obtain biomaterial with an antimicrobial effect. The synthesis was performed with two contents of dopant (Ag{sup +} or Cu{sup 2+}) by considering both the antimicrobial activities and biocompatibility of the powders. The doped HAp was annealed at 1200 °C for 2 h with the intention of investigating the influence of doping with Ag{sup +} and Cu{sup 2+} on the creation of the biphasic HAp/α-tricalcium phosphate (HAp/α-TCP) and determining the antimicrobial activity and biocompatibility of the obtained biphasic powders. Analyses of all powders, undoped and doped HAp and HAp/α-TCP, were performed by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and energy-dispersive X-ray spectroscopy (EDS). The in vitro antibacterial activities of the powders were evaluated against: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. All powders showed good antimicrobial activity but generally the powders of doped HAp/α-TCP had more uniform results against all pathogenic microorganisms than the powders of doped HAp. In vitro biocompatibility tests, MTT and DET, were used to evaluate the biocompatibility of Ag{sup +}- and Cu{sup 2+}-doped HAp/α-TCP with MRC-5 human fibroblast cells. These tests confirmed that powders do not have a cytotoxic effect. The HAp/α-TCP powders doped with the lower content of Ag{sup +} and Cu{sup 2+} showed especially good biocompatibility. Antimicrobial and biocompatibility tests recommend the Ag{sup +}- and Cu{sup 2+}-doped HAp/α-TCP as promising material for use in reconstructive surgery of bone.

  9. High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys

    International Nuclear Information System (INIS)

    Palma, Rodrigo H.; Sepulveda, Aquiles; Espinoza, Rodrigo; Dianez, M. Jesus; Criado, Jose M.; Sayagues, M. Jesus

    2005-01-01

    The hot mechanical behaviour and microstructure of Cu-5 vol.% TiC, Cu-5 vol.% ZrO 2 and Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 alloys prepared by reaction milling were studied. After a test of 1 h annealing at 1173 K, the Cu-5 vol.% ZrO 2 alloy presented the lower softening resistance to annealing, while the other two ones kept their initial room-temperature hardness (about 2 GPa). Hot-compression tests at 773 and 1123 K, at initial true strain rates of 0.85 x 10 -3 and 0.85 x 10 -4 s -1 were performed. The Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 and the Cu-5 vol.% ZrO 2 alloys were the strongest and softest materials, respectively. Moreover, by electron microscopy, nanometric TiC and micrometric particles were detected in the Cu-5 vol.% TiC and Cu-5 vol.% ZrO 2 alloys, respectively. A possible explanation for the observed behaviour of these materials is proposed. In the compression tests, it was also found that strain rate has a low effect on flow stress, as it has been previously observed by various authors in dispersion-strengthened alloys deformed at high temperatures

  10. Photocatalytic performances and activities of Ag-doped CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhengru, E-mail: zhengruzhu@gmail.com [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China); State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Xinyong; Zhao, Qidong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Yonghua; Sun, Caizhi; Cao, Yongqiang [Research Center of Hydrology and Water Source, School of Urban and Environment, Liaoning Normal University, Dalian, 116029 (China)

    2013-08-01

    Graphical abstract: - Highlights: • CuFe{sub 2}O{sub 4} nanocrystals were synthesized by a co-precipitation method. • Ag/CuFe{sub 2}O{sub 4} catalyst was prepared by the wetness impregnation strategy. • The structural properties of Ag/CuFe{sub 2}O{sub 4} were investigated by XRD, TEM, DRS, and XPS techniques. • Ag/CuFe{sub 2}O{sub 4} has higher photocatalytic activity. - Abstract: In this work, CuFe{sub 2}O{sub 4} nanoparticles were synthesized by a chemical co-precipitation route. The Ag/CuFe{sub 2}O{sub 4} catalyst was prepared based on the CuFe{sub 2}O{sub 4} nanoparticles by the incipient wetness impregnation strategy, which showed excellent photoelectric property and catalytic activity. The structural properties of these samples were systematically investigated by X-ray powder diffraction (XRD), transmission electronic microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage (SPV) measurement. The photocatalytic degradation of 4-CP by the Ag/CuFe{sub 2}O{sub 4} and CuFe{sub 2}O{sub 4} samples were comparatively studied under xenon lamp irradiation. The results indicate that the Ag/CuFe{sub 2}O{sub 4} sample exhibited the higher efficiency for the degradation of 4-CP.

  11. Intermixing, band alignment and charge transport in AgIn5S8/CuI heterojunctions

    International Nuclear Information System (INIS)

    Konovalov, I.; Makhova, L.; Hesse, R.; Szargan, R.

    2005-01-01

    Possibilities of creating photovoltaic devices using CuI/AgIn 5 S 8 heterojunctions are considered. Among other properties, preferential formation of polar (111) surfaces makes n-type AgIn 5 S 8 an attractive candidate for absorber layers of top cells in 4-terminal tandem structures. Cu-Ag exchange at the interface with p-type CuI was observed. This intermixing results in an additional component of Ag 3d5 photoelectron line after deposition of CuI, in the Cu (but not I) contamination of the surface after a chemical removal of CuI, and in a photoelectric sensitivity of the junction at energies below the band gaps. Valence band offsets of 0.4 and 0.5 eV (cliff) were found at interfaces with thin film and bulk AgIn 5 S 8 , supporting a conduction mechanism through interface recombination. Pinning conflict at the interface between materials with contradictory doping limitations is likely to promote the intermixing

  12. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region

    International Nuclear Information System (INIS)

    Ren, Shoutian; Wang, Yingying; Wang, Benyang; Wang, Qiang; Zhao, Guoliang

    2015-01-01

    Sandwiched ZnO@Ag@Cu 2 O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV–vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu 2 O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu 2 O was estimated as a function of the Cu 2 O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu 2 O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu 2 O photocatalysts. (paper)

  13. A study of ion damage in Al, Al/Cu and Al/Ag

    International Nuclear Information System (INIS)

    Marikar, P.

    1979-06-01

    Specimens of pure aluminium, aluminium-copper and aluminium-silver have been irradiated with 20 keV helium ions and/or 100 keV aluminium ions and the nature of the damage assessed using transmission electron microscopy. Irradiation with 20 keV helium ions to a dose of 2.7 x 10 15 ions cm -2 results in the formation of interstitial loops and helium gas bubbles. The helium bubbles were detectable only after annealing at a high temperature following irradiation. When the helium preinjected aluminium specimens were irradiated with 100 keV Al + ions to a dose of 84 dpa at temperatures above 150 0 C, voids were observed to form. At a lower dose of 64 dpa, only a high density of dislocation loops was observed. Al-1 wt% Cu alloy containing partially coherent theta' precipitates resists void formation to a considerable extent, and Al-10 wt% Ag alloy containing coherent G.P. zones offers complete resistance to both dislocation loop nucleation and void formation. The experimental results are discussed in the light of the current theories of irradiation induced damage in metals. The importance of the dislocation-sink efficiency for point defects, the gaseous impurity and the alloying elements in determining void formation is highlighted. (author)

  14. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  15. Quality analysis of the Al-Si-Cu alloy castings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. Method was developed for analysis of the casting defects images obtained with the X-ray detector analysis of the elements made from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type as well as the method for classification of casting defects using the artificial intelligence tools, including the neural networks; the developed method was implemented as software programs for quality control. Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. The computer system, in which the artificial neural networks as well as the automatic image analysis methods were used makes automatic classification possible of defects occurring in castings from the Al-Si-Cu alloys, assisting and automating in this way the decisions about rejection of castings which do not meet the defined quality requirements, and therefore ensuring simultaneously the repeatability and objectivity of assessment of the metallurgical quality of these alloys.

  16. The complex structure of liquid Cu{sub 6}Sn{sub 5} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin Jingyu; Gu Tingkun; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Southern Campus, Jinan 250061 (China); Liu Hui [Shandong High Performance Computing Center, Shandong University, Southern Campus, Jinan 250061 (China)

    2009-04-15

    By applying ab initio molecular dynamics simulation to liquid Cu{sub 6}Sn{sub 5} alloy, the hetero-coordination tendency is discovered by Bathia-Thornton partial correlation functions and a chemical short-range parameter. However the local structural environment of Sn in l-Cu{sub 6}Sn{sub 5} alloy resembles that of liquid Sn by Voronoi analysis. A new feature, i.e. a subpeak in between the first and second peaks, is discovered by the present method which implies that topologically disordered {beta}-Sn-type structural units may exist in l-Cu{sub 6}Sn{sub 5} alloy. The local density states of electrons show that both Cu-Sn and Sn-Sn bonding exist in l-Cu{sub 6}Sn{sub 5} alloy. This work suggests that chemical short-range order between unlike atoms and self-coordination between Sn atoms coexists in l-Cu{sub 6}Sn{sub 5} alloy.

  17. Phase evolution and thermal stability of 2 Mg–Cu alloys processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, C., E-mail: carola.martinezu@usach.cl [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Ordoñez, S., E-mail: stella.ordonez@usach.cl [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y CRIDESAT, Av. Copayapu 485, Casilla de Correo 240, Copiapó (Chile); Serafini, D. [Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 307, Santiago (Chile); Iturriza, I. [CEIT, Manuel de Lardizábal 15, 20018 San Sebastián, España (Spain); Bustos, O. [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile)

    2013-12-25

    Highlights: •Study of phase evolution of elemental powders Mg and Cu by mechanical alloying. •The presence of an amorphous precursor which crystallizes to Mg{sub 2}Cu can be observed. •Establishing the sequence of phase transformations leading to the formation of Mg{sub 2}Cu. •The feasibility to obtain Mg{sub 2}Cu by means two possible routes has been established. -- Abstract: Phase evolution during mechanical alloying (MA) of elemental Mg and Cu powders and their subsequent heat treatment is studied. Elemental Mg and Cu powders in a 2:1 atomic ratio were mechanically alloyed in a SPEX 8000D mill using a 10:1 ball-to-powder ratio. X-ray diffraction (XRD) shows that the formation of the intermetallic Mg{sub 2}Cu takes place between 3 and 4 h of milling, although traces of elemental Cu are still present after 10 h of milling. The thermal behavior of different powder mixtures was evaluated by differential scanning calorimetry (DSC). The combination of DSC, heat treatment and XRD has shown a sequence of phase transformations that results in the intermetallic Mg{sub 2}Cu from an amorphous precursor. This amorphous phase is converted into Mg{sub 2}Cu by heating at low temperature (407 K). Short MA times and the formation of the amorphous precursor, together with its subsequent transformation into Mg{sub 2}Cu at low temperatures; represent an advantageous alternative route for its preparation.

  18. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  19. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  20. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  1. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    Science.gov (United States)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  2. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lipeng [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Zhang, Zhiqing; Sanders, Robert E.; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Centre for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-03-11

    The natural aging and artificial aging behaviours of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions were investigated using Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterisation. Excess Si and Cu additions enhanced the alloy hardening ability during natural (NA) and artificial aging (AA). Alloys with low Cu and high Si contents exhibited higher precipitation hardening than alloys rich in Mg during artificial aging. In contrast, the alloys with high amounts of Cu were less dependent on the Mg/Si ratio during precipitation hardening due to their similar aging kinetics. The main precipitate phases that contributed to the peak-aging hardness were the L, Q′ and β″ phases. In the over-aging conditions, the alloys rich in Mg and Cu had finer and more numerous precipitates than their Si-rich equivalents due to the preferential precipitation of the L phase. The combination of excess Mg and high Cu resulted in an alloy with a relatively low hardness in T4 temper and a relatively higher hardness after the paint baking cycle. Thus, this alloy has good potential for use in auto body panel applications.

  3. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    International Nuclear Information System (INIS)

    Roy, Shibayan; Allard, Lawrence Frederick Jr; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-01-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  4. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  5. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  6. Enhancement in electrical conductivity of pastes containing submicron Ag-coated Cu filler with palmitic acid surface modification

    Science.gov (United States)

    Choi, Eun Byeol; Lee, Jong-Hyun

    2017-09-01

    The fabrication and applied use of submicron Ag-coated Cu (Cu@Ag) particles as a filler material for epoxy-based conductive pastes having the advantages of a lower material cost and antioxidation behavior were studied. Submicron Cu@Ag particles were successfully prepared and surface-modified using palmitic acid. Diffuse reflectance infrared Fourier transform spectroscopy and thermogravimetric differential scanning calorimetry results indicated the formation of an organic layer by the chemical interaction between the Cu@Ag surface and palmitic acid and the survival of the organic layer after treatment at 160 °C for 3 h in air. The printed pastes containing both commercial micron Cu@Ag flakes and the fabricated submicron Cu@Ag particles showed a greatly reduced electrical resistivity (4.68 × 10-4 Ω cm) after surface modification compared to an initial value of 1.85 × 10-3 Ω cm when cured.

  7. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    2003-01-01

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in ammonia...

  8. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency.

    Science.gov (United States)

    Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W

    2017-11-14

    Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.

  9. Characterization of Binary Ag-Cu Ion Mixtures in Zeolites: Their Reduction Products and Stability to Air Oxidation

    International Nuclear Information System (INIS)

    Fiddy, Steven; Petranovskii, Vitalii; Ogden, Steve; Iznaga, Inocente Rodriguez

    2007-01-01

    A series of Ag+-Cu2+ binary mixtures with different Ag/Cu ratios were supported on mordenite with different Si/Al ratios and were subsequently reduced under hydrogen in the temperature range 323K - 473K. Ag and Cu K-edge X-ray Absorption Spectroscopy (XAS) was conducted on these systems in-situ to monitor the reduction species formed and the kinetics of their reduction. In-situ XANES clearly demonstrates that the formation of silver particles is severely impeded by the addition of copper and that the copper is converted from Cu(II) to Cu(I) during reduction and completely reverts back to Cu(II) during cooling. There are no indications at any stage of the formation of bimetallic Ag-Cu clusters. Interestingly, the Ag/Cu ratio appears to have no influence of the reduction kinetics and reduction products formed with only the highest Si/Al ratio (MR = 128) investigated during this study having an influence on the reduction and stability to air oxidation

  10. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    Science.gov (United States)

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  11. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Mo eq . For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 V SCE . No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode

  12. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    Science.gov (United States)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  13. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.

    Science.gov (United States)

    Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J

    2018-05-11

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  14. Cu-capped surface alloys of Pt/Cu left brace 100 right brace

    CERN Document Server

    Alshamaileh, E; Wander, A

    2003-01-01

    The room-temperature deposition of 0.5 monolayer (ML) Pt on Cu left brace 100 right brace followed by annealing to 525 K results in a sharp c(2 x 2) low-energy electron diffraction (LEED) pattern. The structure of this surface alloy is investigated by means of symmetrized automated tensor low-energy electron diffraction (SATLEED) analysis and ab initio plane wave density functional calculations. The results are then compared with those for the similar system 0.5 ML Pd/Cu left brace 100 right brace. SATLEED results for the Pt/Cu left brace 100 right brace show that it consists of an ordered c(2 x 2) Cu-Pt second layer alloy capped with a pure Cu first layer. The first and second interlayer spacings are found to be expanded by +5.1 +- 1.7 and +3.5 +- 1.7% respectively (relative to the bulk Cu interlayer spacing of 1.807 A) due to the insertion of the 8% larger Pt atoms into the second layer. The ordered mixed layer is found to be rippled by 0.08 +- 0.06 A with Pt atoms rippled outwards towards the solid-vacuum ...

  15. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    Science.gov (United States)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  16. Dissociation of dilute immiscible copper alloy thin films

    International Nuclear Information System (INIS)

    Barmak, K.; Lucadamo, G. A.; Cabral, C. Jr.; Lavoie, C.; Harper, J. M. E.

    2000-01-01

    The dissociation behavior of dilute, immiscible Cu-alloy thin films is found to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. Available thermodynamic and tracer diffusion data shed further light on alloy behavior. Eight alloying elements were selected for these studies, with five elements from groups 5 and 6, two from group 8, and one from group 11 of the periodic table. They are respectively V, Nb, Ta, Cr, Mo, Fe, Ru, and Ag. The progress of precipitation in approximately 500-nm-thick alloy films, containing 2.5-3.8 at. % solute, was followed with in situ resistance and stress measurements as well as with in situ synchrotron x-ray diffraction. In addition, texture analysis and transmission electron microscopy were used to investigate the evolution of microstructure and texture of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900 degree sign C. However, in most cases, substantial reductions in resistivity of the films took place below 400 degree sign C, at temperatures of interest to copper metallization schemes for silicon chip technology. (c) 2000 American Institute of Physics

  17. Defects induced by swift heavy ions in the 18R martensite of Cu-Zn-Al alloy

    International Nuclear Information System (INIS)

    Zelaya, Eugenia; Tolley, Alfredo; Condo, Adriana; Lovey, Francisco; Schumacher, G

    2003-01-01

    The swift heavy ion incidence over the surface of a given material produces a strong energy deposition in a nanometric scale.Swift heavy ions, of the order of one thousand of MeV, deposit their energy as electronic excitations.This highly localized deposition can induce metastable transformations within the material. For example, in martensitic NiTi alloys irradiated with swift heavy ions, it has been observed changes on the martensitic transformation temperature and amorphous areas induced by the irradiation.In this work, the effects produced by swift heavy ions on the martensitic 18R structure of Cu-Zn-Al alloy (Cu - 12.17 Zn - 17.92 Al, in %at) were analyzed.Crystalline samples were irradiated in a direction close to the [2 1 0] of 18R with Xe + 230 MeV, Au + of 350 MeV and Kr + of 200 MeV ion beams.Defects of the order of nanometers induced by the irradiation were observed by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM).It was also observed, that the average size of the irradiation defects induced by Au + ion is larger than those induced by Xe + and Kr + ions.In this case, no relationship between the observed defects and the energy deposition was found in the 23 keV/nn to 48 keV/nn range

  18. Stress induced martensitic transformation from bcc to fcc in Ag-Zn

    International Nuclear Information System (INIS)

    Takezawa, K.; Akamatsu, R.; Marukawa, K.

    1995-01-01

    The martensitic transformation in Ag-Zn alloys of low-Zn content has been studied by optical and electron microscopic observations and by tensile tests. The β 1 phase of B2 structure transforms to the thermo-elastic martensite having 9R structure similar to Cu-based alloys upon cooling to temperature below Ms. When the β 1 phase is stretched at room temperature, the slip deformation occurs at first and then the stress-induced martensite(SIM) of wedge-like morphology forms. The SIM has the ordered fcc structure containing micro-twins. This direct transformation from bcc to fcc is a unique feature in Ag-Zn alloys. In Cu alloys, martensites of fcc structure appear only after the second transformation from the first transformation product of 9R structure. The critical stress for the martensitic transformation and a degree of order of SIM decrease as the deformation temperature rises. In Ag-Zn alloys, the martensite of disordered fcc is thermally produced also by up-quenching to a higher temperature. In the present study, the relation between martensites of ordered and disordered fcc is discussed through thermodynamical calculations. The condition for the direct transformation from bcc to fcc is also examined. (orig.)

  19. Ductile shape memory alloys of the Cu-Al-Mn system

    International Nuclear Information System (INIS)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1995-01-01

    Cu-Al-Mn shape memory alloys with enhanced ductility have been developed by decreasing the degree of order in the β parent phase. Cu-Al-Mn alloys with Al contents lower than 18% exhibit good ductility with elongations of about 15% and excellent cold-workability arising from a lower degree of order in the Heusler (L21) β 1 parent phase, without any loss in their shape memory behavior. In this paper the mechanical and shape memory characteristics, such as the cold-workability, the Ms temperatures, the shape memory effect and the pseudo-elasticity of such ductile Cu-Al-Mn alloys are presented. (orig.)

  20. CuO and Ag2O effect on electrical properties of barium vanadate glasses

    International Nuclear Information System (INIS)

    Bogomolova, L.D.; Glasova, M.N.; Kalygina, V.M.; Spasibkina, S.N.; Khorikov, A.A.

    1987-01-01

    Effect of CuO on barium vanadate glass (BVG) conductivity on direct and alternating currents in the frequency range (10 2 -10 4 )Hz has been studied. Effect of Ag 2 O has been also studied for comparison, as Ag and Cu have idendical structure of external electron shells (d 10 , S 1 ). CuO introduction to binary barium vanadate glasses as a modificator results in the conductivity improvement on direct and alternating currents conditioned with reducing activation energy of small radius polaron jump, apparently, owing to exchange (ferromagnetic) interaction between V(IV) and Cu(II). Jump activation energy in barium vanadate glasses with Ag 2 O increases and conductivity drops due to the distance increase between vanadium atoms

  1. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yun; Liu, Qing, E-mail: qingliu@cqu.edu.cn; Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn; Xing, Yuan; Ding, Lipeng; Wang, Xueli

    2017-05-31

    Highlights: • High Cu alloy with high Mg/Si ratio has the best comprehensive property. • Addition of excess Mg could improve the intergranular corrosion resistance. • Si containing particles on the grain boundaries of Si-rich alloys promote IGC. • IGC susceptibility depends primarily on Cu content and secondarily on Mg/Si ratio. - Abstract: 6000-series aluminium alloys with high Cu or excess Si addition were susceptible to intergranular corrosion (IGC). In order to obtain good IGC resistance, four alloys with low/high Cu and various Mg/Si ratios were designed. The corrosion behaviour of four alloys was investigated by accelerated corrosion test, electrochemical test and electron microscopies. It was revealed that IGC susceptibility of alloys was the result of microgalvanic coupling between the noble grain boundary precipitates and the adjacent precipitates free zone (PFZ), which was closely related to a combination of Cu content and the Mg/Si ratio. Excess Mg could improve the IGC resistance of alloys by forming discontinuous precipitates on the grain boundaries. The designed alloy with high Cu and excess Mg has the same corrosion level as the commercial alloy with low Cu and excess Si, which provides possibility for developing new alloy.

  2. Alloying behaviour of electroplated Ag film with its underlying Pd/Ti film stack for low resistivity interconnect metallization

    International Nuclear Information System (INIS)

    Ezawa, Hirokazu; Miyata, Masahiro; Tatsumi, Kohei

    2014-01-01

    Highlights: • Alloying behavior of Ag/Pd/Ti film stack was studied by annealing at 400-800 °C. • The Ag film resistivity decreased with increasing annealing temperature. • Formation of the Pd-Ti intermetallics was found to be dominant over Ag-Pd alloying. • The excess Ti was consumed to form Ti oxides, which inhibited Ti alloying with Ag. -- Abstract: In this paper, viability of electroplated Ag film into device application was studied. Alloying behavior of the Ag film with its underlying Pd(50 nm)/Ti(100 nm) film stack was investigated with respect to heat treatment at different temperatures from 400 °C to 800 °C in an argon ambient. After annealing at 400 °C, the electrical resistivity of the Ag film increased due to Pd alloying with Ag. Formation of Pd–Ti intermetallic phases became dominant over Ag–Pd alloying with increasing annealing temperature, leading to the resistivity decrease of the Ag film. The resistivity of the 800 °C annealed Ag film approached that of its as-plated Ag film. The excess Ti atoms which were not consumed to form the intermetallic phases with the Pd atoms migrated to the Ag film surface to form Ti oxides along the Ag grain boundaries on the topmost film surface. The Ag/Pd/Ti film stack has been confirmed to maintain the resistivity of the Ag film at as-plated low levels after high temperature annealing. This paper also discusses process integration issues to enable the Ag metallization process for future scaled and three dimensionally chip stacked devices

  3. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    International Nuclear Information System (INIS)

    Lang, Peter; Wojcik, Tomasz; Povoden-Karadeniz, Erwin; Falahati, Ahmad; Kozeschnik, Ernst

    2014-01-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed

  4. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  5. Formation of metastable and equilibrium phases in the decomposition of the β solid solution in Zr alloys

    International Nuclear Information System (INIS)

    Zakharova, M.I.; Kirov, S.A.; Khundzhua, A.G.

    1978-01-01

    The decomposition of the β solid solution is studied in Zr-Nb alloys with adding Mo, Al, V, Fe by the methods of electron microscopy and X-ray diffraction on single crystals. The intermetallic compounds forming during crystallization of the alloys do not influence the precipitation of the ω- and α-phases during ageing. In the local regions of foils prepared by electropolishing after ageing the formation of the metastable f.c.c. phase and in some cases the inverse transformation of two phase state to the parent phase is observed. (author)

  6. Microalloying with Cd of Antifriction Sn-Sb-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2012-09-01

    Full Text Available In the case of bimetallic sliding linings with superior technological characteristics, the use of an antifriction ally is imposed an alloy of the type Sn-Sb-Cu, which possesses a high adherence to the steel stand and a high durability in exploitation. For this reason we use the microalloying of the antifriction alloy with cadmium. The microalloying with Cd of antifriction alloys Sn-Sb-Cu determines an increase of the adhesion property of the antifriction alloy on the steel stand. The steel stand is previously subjected to a process of degreasing with ZnCl2 and washing so that is can later be subjected to a thermal-chemical treatment of tinning.

  7. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingguang, E-mail: xingguangliu1@gmail.com [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Iamvasant, Chanon, E-mail: ciamvasant1@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Liu, Chang, E-mail: chang.liu@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Matthews, Allan, E-mail: allan.matthews@manchester.ac.uk [Pariser Building - B24 ICAM, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom); Leyland, Adrian, E-mail: a.leyland@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-01-15

    Highlights: • Coatings with nitrogen content up to 16 at.% exhibit a metallic Cr solid solution, even after post-coat annealing at 300 °C and 500 °C. • At higher N/Cr atomic ratios (approaching Cr{sub 2}N stoichiometry), chromium was still inclined to exist in solid solution with nitrogen, rather than as a ceramic nitride phase, even after annealing at 500 °C. • Transportation of Cu and Ag to the surface depends on annealing temperature, annealing duration, nitrogen concentration and ‘global’ Cu + Ag concentration. • Incorporation of copper appears to be a powerful strategy to enhance Ag mobility at low concentration (∼3 at.% Ag in this study) under moderately high service temperature. • A significant decrease in friction coefficient was obtained at room temperature after annealing, or during sliding wear testing at elevated temperature. - Abstract: CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also

  8. Growth and characterization of NixCu1-x alloy films, NixCu1-x/NiyCu1-y multilayers, and nanowires

    International Nuclear Information System (INIS)

    Kazeminezhad, I.

    2001-12-01

    It was found that it is possible to grow Ni x Cu 1-x alloy systems of arbitrary composition by electrodepositing well-defined sub-monolayer quantities of Ni and Cu in alternation using a new method based on that used previously to prepare potentiostatically deposited magnetic multilayers from a single sulphamate-based electrolyte. Following growth, the chemical composition of Ni x Cu 1-x alloy films was obtained by ZAF-corrected energy dispersive X-Ray (EDX) analysis and less than a 4% difference between the nominal and actual composition was observed. The structure of the films was investigated by high-angle X-ray diffractometry (HAXRD) and transmission electron microscopy (TEM). The films grown on polycrystalline Cu substrates had (100) texture, while those grown on Au-coated glass had (111) texture. Some evidence of Ni clustering was obtained by vibrating sample magnetometry (VSM). Self-organisation of the deposited metal was suggested for Ni potentials more positive than ∼-1.4V. The transition from a Ni/Cu multilayer to a Ni x Cu 1-x alloy was also studied and an interesting aspect, namely a plateau region in a plot of magnetisation as a function of Ni layer thickness was observed, suggesting a preferred Ni cluster size in these alloy films. Anisotropic magnetoresistance (AMR) of the films decreased with increasing Cu content at 300K and 77K. SQUID measurements for Ni 0.52 Cu 0.48 and Ni 0.62 CU 0.38 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T B ) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni x Cu 1-x /Ni y Cu 1-y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed

  9. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  10. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  11. Kinematic viscosity of liquid Al-Cu alloys

    International Nuclear Information System (INIS)

    Konstantinova, N Yu; Popel, P S

    2008-01-01

    Temperature dependences of kinematic viscosity n of liquid Al 100-x -Cu x alloys (x = 0.0, 10.0, 17.1, 25.0, 32.2, 40.0 and 50.0 at.%) were measured. A technique based on registration of the period and the decrement of damping of rotating oscillations of a cylindrical crucible with a melt was used. Viscosity was calculated in low viscous liquids approximation. Measurements were carried out in vacuum in crucibles of BeO with a temperature step of 30 deg. C and isothermal expositions of 10 to 15 minutes during both heating up to 1100-1250 deg. C and subsequent cooling. We have discovered branching of heating and cooling curves v(T) (hysteresis of viscosity) below temperatures depending on the copper content: 950 deg. C at 10 and 17.1 at.% Cu, 1050 deg. C at 25 and 40 at.% Cu, 850 deg. C at 32.2 at.% Cu. For samples with 10 and 17.1 at.% Cu the cooling curve 'returns' to the heating one near 700 deg. C. An abnormally high spreading of results at repeated decrement measurements was fixed at heating of the alloy containing 50 at.% Cu above 1000 deg. C. During subsequent cooling the effect disappeared. Isotherms of kinematic viscosity have been fitted for several temperatures

  12. Comparative Compton scattering studies in Cu2O and Ag2O

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.; Chatterjee, A.K.; Saha, S.K.; Chatterjee, A.

    1994-01-01

    Compton scattering studies in polycrystalline Cu 2 O and Ag 2 O with 59.54 keV γ radiation are reported. A comparison has been made between the valance Compton profiles of these two components scaled to lattice momentum by normalizing them to equal electron density for outer valence electrons, and this comparison shows some differences between the bonding characters of Cu 2 O and Ag 2 O. (author)

  13. The interaction of deuterium with AgPd/Pd(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diemant, Thomas; Martin, Jan; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2016-07-01

    AgPd/Pd(111) surface alloys, which consist of a reactive and an inert metal, represent an ideal test case for the study of ensemble effects on bimetallic surfaces. In the present contribution, we have studied their deuterium adsorption properties by temperature-programmed desorption (TPD) measurements. The structural properties (surface contents and atom distribution) were determined already earlier by high-resolution scanning tunnelling microscopy (STM), which enables us to correlate the structural properties of these surface alloys to their adsorption behaviour. Most prominently, a steady decrease of the adsorbate coverage with increasing Ag content is observed. The results will be compared to findings on the interaction of CO with these surface alloys.

  14. Preparation and characterization of sub-20 nm Cu{sub X}@Ag{sub 1} core-shell nanoparticles by changing concentration of silver precursor

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Sang-Soo; Lee, Jong-Hyun, E-mail: pljh@snut.ac.kr

    2017-01-01

    Ultrafine Ag-coated Cu (Cu@Ag) nanoparticles (NPs) less than 20 nm in diameter were prepared. After synthesizing ultrafine Cu NPs using a solvothermal method to serve as the core particles, Cu@Ag NPs were fabricated with different initial Ag precursor concentrations, resulting in different thicknesses, densities, and uniformities of Ag shells. The average thickness and density of the Ag shell increased with increasing initial Ag precursor concentration in a Cu:Ag atomic ratio from 6:1 to 1:1. However, excessive Ag precursor concentrations induced homogeneous nucleation and growth of surplus fine pure NPs. Ag dewetting behavior and Cu oxidation in the Cu{sub 4}@Ag{sub 1} NPs were observed, they occurred during heating at 200 and 250 °C, respectively. The electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films decreased with increasing temperature from 200 to 240 °C. The resistivity after washing the OA and sintering for 60 min at 240 °C in air was measured to be 4.96 × 10{sup −3} Ω cm. The film was sintered in nitrogen using the ink containing non-washed Cu{sub 4}@Ag{sub 1} NPs indicated the lower resistivity of 2.70 × 10{sup −3} Ω cm owing to the non-oxidation atmosphere, although the chemically capped oleylamine in the core-shell NPs hindered the sintering behavior. - Highlights: • Ultrafine Ag-coated Cu nanoparticles less than 20 nm in diameter were fabricated. • Different Ag precursor concentrations influenced thickness and density of Ag shell. • Excessive Ag precursor concentrations induced formation of surplus fine pure NPs. • Ag dewetting behavior and Cu oxidation in Cu{sub 4}@Ag{sub 1} nanoparticles were observed. • Electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films were 2.70–4.96 × 10{sup −3} Ω cm.

  15. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Matthew G. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  16. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Chung, C.Y.; Lam, C.W.H.

    1999-01-01

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >A f =80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  17. Electronic structure of metastable bcc Cu–Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liebscher, C.H.; Freysoldt, C. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany); Dennenwaldt, T. [Institute of Condensed Matter Physics and Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Harzer, T.P.; Dehm, G. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany)

    2017-07-15

    Metastable Cu–Cr alloy thin films with nominal thickness of 300 nm and composition of Cu{sub 67}Cr{sub 33} (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50 nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu{sub 85}Cr{sub 15} (at%) and Cu{sub 42}Cr{sub 58} (at%) and domain size of 1–5 nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu–Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu–Cr solid solutions with bcc crystal structure a single peak after the L{sub 3}-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu–Cr solid solutions with 10 at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu{sub 50}Cr{sub 50} (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu–Cr d-band that lies between the delocalized d-bands of Cu and Cr. - Highlights: • Compositional fluctuations on the order of 1–5 nm in Cu- and Cr-rich domains are observed. • EELS determines a single van Hove singularity for bcc Cu–Cr solid solutions. • The electronic structure is dominated by d

  18. Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics

    International Nuclear Information System (INIS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-01-01

    In this work, we synthesized uniform Cu–Ag core–shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core–shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu–Ag core–shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu–Ag core–shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu–Ag core–shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu–Ag core–shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties. (paper)

  19. Effect of Intermetallic on Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints: Experimental and First-Principles Study

    Science.gov (United States)

    Zhou, Wei; Liu, Lijuan; Li, Baoling; Wu, Ping

    2009-06-01

    Electromigration phenomena in a one-dimensional Cu/SnAg3.0Cu0.5/Cu joint were investigated with current stressing. The special effect of intermetallic compound (IMC) layers on the formation of serious electromigration damage induced by nonuniform current density distribution was discussed based on experimental results. Meanwhile, hillocks were observed both at the anode and near the cathode of the joint, and they were described as the result of diffusion of atoms and compressive stress released along grain boundaries to the relatively free surface. Moreover, the diffusion behavior of Cu at the cathode was analyzed with the electromigration equation, and the stability of Ag atoms in the solder during electromigration was evaluated with a first-principles method.

  20. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  1. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  2. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  3. Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy

    International Nuclear Information System (INIS)

    Zhong, Y.; Yin, F.; Sakaguchi, T.; Nagai, K.; Yang, K.

    2007-01-01

    Dislocation densities and dislocation structure arrangements in cold compressed polycrystalline commercial M2052 (Mn-20Cu-5Ni-2Fe) high damping alloy with various strains were determined in scanning mode by X-ray peak profile analysis and electron backscatter diffraction (EBSD). The results indicate that the Mn-Cu-Ni-Fe alloy has an evolution behavior quite similar to the dislocation structure in copper. The dislocation arrangement parameter shows a local minimum in the transition range between stages III and IV that can be related to the transformation of the dislocation arrangement in the cell walls from a polarized dipole wall (PDW) into a polarized tile wall (PTW) structure. This evolution is further confirmed by the results of local misorientation determined by EBSD. In addition, during deformation, the multiplication of dislocation densities in the MnCu alloy is significantly slower than that in copper, and the transition of the dislocation structure is strongly retarded in the MnCu alloy compared with copper. These results can be explained by the mechanism of elastic anisotropy on the dislocation dynamics, as the elastic anisotropy in the MnCu alloy is larger than that in copper, which can strongly retard the multiplication of the dislocation population and the transformation of the dislocation structure. These results are important for research into the plastic working behavior of Mn-Cu-Ni-Fe high damping alloy

  4. Superplastic formability of Al-Cu-Li alloy Weldalite (TM) 049

    Science.gov (United States)

    Ma, Bao-Tong; Pickens, Joseph R.

    1991-01-01

    Extensive research during the past decade shows that several aluminum lithium alloys can be processed to attain a microstructure that enables superplasticity. The high tensile stress of Al-Cu-Li alloy Weldalite (TM) 049 in the T4 and T6 tempers offers tremendous potential for attaining exceptional post-SPF (superplastic formability) properties. The used SPF material is Weldalite, which was shown to induce SPF behavior in other Al-Cu-Li alloys. The superplastic behavior and resulting post-SPF mechanical properties of this alloy, which was designed to be the next major structural alloy for space applications, were evaluated. The results indicate that Weldalite alloy does indeed exhibit excellent superplasticity over a wide range of temperatures and strain rates and excellent post-SPF tensile strength at various potential service temperatures.

  5. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  6. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S. [Army Research Laboratory, 2800 Adelphi, Maryland 20783 (United States)

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  7. Interaction between impurities in Ag dilute alloys

    International Nuclear Information System (INIS)

    Krolas, K.; Wodniecka, B.; Wodniecki, P.; Uniwersytet Jagiellonski, Krakow

    1977-01-01

    Time dependent perturbed angular correlation measurements of gamma radiation in 111 Cd after 111 In decay were performed in AgPd and AgPt alloys. The concentration of Pd or Pt atoms being the nearest neighbours to the probe atoms is much higher than that one deduced from random impurity distribution. This effect results from the attractive interaction between the In probe atoms and Pt or Pd impurity atoms in silver host lattice. The binding energy of InPd and InPt complexes was measured as 135 +- 9 meV and 171 +- 9 meV, respectively. (author)

  8. Microstructure and magnetic behavior of Cu–Co–Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chabri, Sumit, E-mail: sumitchabri2006@gmail.com [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Bera, S. [Department of Metallurgical & Materials Engineering, National Institute of Technology, Durgapur 713209 (India); Mondal, B.N. [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Basumallick, A.; Chattopadhyay, P.P. [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2017-03-15

    Microstructure and magnetic behavior of nanocrystalline 50Cu–40Co–10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450–650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  9. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  10. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    International Nuclear Information System (INIS)

    Hodulova, Erika; Palcut, Marian; Lechovic, Emil; Simekova, Beata; Ulrich, Koloman

    2011-01-01

    Highlights: → In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. → Bi and In decrease the parabolic rate constant of Cu 3 Sn layer growth. → In increases the parabolic rate constant of Cu 6 Sn 5 layer growth. → High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu 3 Sn and Cu 6 Sn 5 . Cu 6 Sn 5 is formed during soldering. Cu 3 Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu 3 Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu 6 (Sn,In) 5 instead of Cu 6 Sn 5 , with a higher rate constant. The mechanism of the Cu 6 (Sn,In) 5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  11. Development and Processing Improvement of Aerospace Aluminum Alloys

    Science.gov (United States)

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  12. Qualitative study the effect of conditions milling of 95.5Sn/4.0Ag/0.5Cu, (wt%) nanopowder; Estudo qualitativo do efeito das condicoes de moagem de alta energia da liga Sn-4,0Ag-0,5Cu (% peso)

    Energy Technology Data Exchange (ETDEWEB)

    Manzato, L., E-mail: lizandro@ifam.edu.b [Instituto Federal de Educacao, Ciencia e Tecnologia do Amazonas (IFAM/CMDI), Manaus, AM (Brazil). Campus Manaus Distrito Industrial; Anglada-Rivera, J. [Instituto Federal de Educacao, Ciencia e Tecnologia do Amazonas (IFAM/CMC), Manaus, AM (Brazil). Campus Manaus Centro; Oliveira, M.F. de [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia

    2010-07-01

    The SAC-405, Sn-4.0Ag-0.5Cu (wt%) nanopowders, which has potential applications in microelectronics, such as lead-free solder, were obtained by high energy milling. The purpose of this study was to investigate the structural changes of the SAC-405 produced by high energy milling with times of 12, 24 and 48, under an atmosphere of hydrogen and power grinding 40:1. The crystallite size and micro-deformations of the nanopowders was measured by X-ray diffraction (XRD) using Rietveld method. Preliminary results show that it is possible to obtain nanopowders by mechanical alloying for the SAC-405 alloy with average particle size of 10 {approx} 18 nm. There are also strong indications of a reduction of {approx} 7 deg C melting temperature of the dust that is characteristic of nano-sized particles. (author)

  13. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Wang, Jiaqi; Shin, Seungha

    2017-01-01

    Room temperature (T room , 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room . The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room , compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  14. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys.

    Science.gov (United States)

    Zhang, Erlin; Ren, Jing; Li, Shengyi; Yang, Lei; Qin, Gaowu

    2016-10-21

    Ti-Cu sintered alloys have shown good antibacterial abilities. However, the sintered method (powder metallurgy) is not convenient to produce devices with a complex structure. In this paper, Ti-Cu alloys with 2.0, 3.0 and 4.0 wt.% Cu were prepared in an arc melting furnace and subjected to different heat treatments: solid solution and ageing, to explore the possibility of preparing an antibacterial Ti-Cu alloy by a casting method and to examine the effect of Cu content. Phase identification was conducted on an XRD diffraction meter, and the microstructure was observed by a metallographic microscope, a scanning electron microscope (SEM) with energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM). Microhardness and the compressive property of Ti-Cu alloys were tested, and the corrosion resistance and antibacterial activity were assessed in order to investigate the effect of the Cu content. Results showed that the as-cast Ti-Cu alloys exhibited a very low antibacterial rate against Staphylococcus aureus (S. aureus). Heat treatment improved the antibacterial rate significantly, especially after a solid and ageing treatment (T6). Antibacterial rates as high as 90.33% and 92.57% were observed on Ti-3Cu alloy and Ti-4Cu alloy, respectively. The hardness, the compressive yield strength, the anticorrosion resistance and the antibacterial rate of Ti-Cu alloys increased with an increase of Cu content in all conditions. It was demonstrated that homogeneous distribution and a fine Ti 2 Cu phase played a very important role in the mechanical property, anticorrosion and antibacterial properties. Furthermore, it should be pointed out that the Cu content should be at least 3 wt.% to obtain good antibacterial properties (>90% antibacterial rate) as well as satisfactory mechanical properties.

  15. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  16. Magnetic properties of metastable bcc and fcc Fe-Cu alloys produced by vapor quenching

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Yoshitake, Tsutomu; Nakamura, Yoji

    1984-01-01

    High concentration Fesub(1-x)Cusub(x) alloys have been obtained by rf sputtering technique and investigated by X-ray diffraction and magnetization measurements. The bcc phase is extended over the region with x=0-0.4, while the fcc phase with x=0.6-1.0. For x=0.4-0.6, we have the mixed phase of bcc and fcc. The lattice constant of bcc phase increases slightly and that of fcc phase decreases with increasing x. In the bcc alloys, the average magnetic moment decreases with increasing x and deviates upwards from the simple dilution law. In the fcc alloys, the magnetic moment also decreases with increasing x but it deviates downwards from the simple dilution law. The Curie temperature, Tsub(c), of the Fesub(1-x)Cusub(x) alloys decreases abruptly with increasing x: Tsub(c) is higher than 750 K for the bcc alloys, while it is lower than 320 K for the fcc alloys and become 0 K at about x=0.92. (author)

  17. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement

    International Nuclear Information System (INIS)

    Lin, J C; Chang, T K; Yang, J H; Jeng, J H; Lee, D L; Jiang, S B

    2009-01-01

    Micrometer Ni–Cu alloy columns have been fabricated by the micro-anode-guided electroplating (MAGE) process in the citrate bath. The surface morphology and chemical composition of the micro-columns were determined by copper concentration in the bath and by the electrical bias of MAGE. When fabricated in a bath of dilute copper (i.e. 4 mM) at lower voltages (e.g. 3.8 and 4.0 V), the alloy micro-columns revealed uniform diameter and smooth appearance. The alloy composition demonstrated an increase in the wt% ratio of Ni/Cu from 75/25, 80/20, 83/17 to 87/13 with increasing electrical bias from 3.8, 4.0, 4.2 to 4.4 V. However, it decreases from 75/25, 57/43 to 47/53 with increasing copper concentration from 4, 8 to 12 mM in the bath. Citrate plays a role in forming complexes with nickel and copper at similar reduction potentials, thus reducing simultaneously to Ni–Cu alloy. The mechanism for fabricating alloy micro-columns could be delineated on the basis of cathodic polarization of the complexes. A couple of micro-columns were fabricated using MAGE in constructing a pure copper micro-column on the top of a Ni/Cu (at 47/53) alloy micro-column. This micro-thermocouple provides a satisfactory measurement with good sensitivity and precision

  18. Production and processing of Cu-Cr-Nb alloys

    International Nuclear Information System (INIS)

    Ellis, D.L.; Michal, G.M.; Orth, N.W.

    1990-01-01

    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling

  19. Production and processing of Cu-Cr-Nb alloys

    Science.gov (United States)

    Ellis, David L.; Michal, Gary M.; Orth, Norman W.

    1990-01-01

    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling.

  20. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  1. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    Science.gov (United States)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  2. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  3. Virtual thermal expansion coefficient of Cu precipitated in the Fe95Cu5 alloy

    International Nuclear Information System (INIS)

    Koeszegi, L.; Somogyvari, Z.

    1999-01-01

    Complete text of publication follows. Precipitations on grain boundaries play very important role in the formation of material's characteristics like embrittlement, durability etc. It was already shown [1] that Cu precipitations are under different stress conditions than the bulk material. The situation is more complicated in the case when a construction is exposed to temperature changes as well. In that case not only the residual stresses during the fabrication but the different thermal expansion coefficients can produce additional problems. This situation was modelled using Fe 95 Cu 5 alloy where Cu precipitates on the grain boundaries. The alloy was produced by high-frequency melting and an extra heat treatment was used to produce a quasi-equilibrium state. Pure Cu was also measured to compare the behaviours. Cu(111) Bragg peak was measured at different temperatures by high resolution neutron diffraction. The measurements were carried out on the G5-2 spectrometer at LLB in Saclay. Measurements show that not only residual stress can be recognised on the Cu precipitates but the thermal expansion coefficient of these precipitates definitly differ from the ones of pure Cu. (author)

  4. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  5. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  6. Effect of solute Cu on ductile-to-brittle behavior of martensitic Fe-8% Ni alloy

    International Nuclear Information System (INIS)

    Junaidi Syarif; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2007-01-01

    Effect of solute Cu on the ductile-to-brittle (DBT) behaviour of martensitic Fe-8mass%Ni alloy is investigated to understand the effect of solute Cu on mechanical properties of martensitic steel. The DBT behaviours of the Fe-8mass%Ni and the Fe-8mass%Ni-1mass%Cu alloys are almost the same. It is thought to be due to disappearance of the solid solution softening in the martensitic Fe-8mass%Ni-Cu alloys. The solute Cu gives small influence on temperature and strain rate dependences of yield stress and suppressing the twin deformation at lower temperature in the martensitic Fe-8mass%Ni alloy. Therefore, the DBT temperature of the martensitic Fe-8mass%Ni-Cu alloy was not shifted to lower side. (author)

  7. Effect of Bi-content on hardness and micro-creep behavior of Sn-3.5Ag rapidly solidified alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M. [Metal Physics Laboratory, Faculty of Science, Mansoura University (Egypt); Gouda, El Said [Metal Physics Laboratory, Department of Solid State Physics, Physics Division, National Research Center, Dokki, Giza (Egypt); Marei, L.K. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2009-12-15

    In the present paper, the influence of 1, 3, 5 and 10 % Bi (weight %) as ternary additions on structure, melting and mechanical properties of rapidly solidified Sn-3.5Ag alloy has been investigated. The effect of Bi was discussed based on the experimental results. The experimental results showed that the alloys of Sn-3.5Ag, Sn-3.5Ag-1Bi and Sn-3.5Ag-3Bi are composed of two phases; Ag{sub 3}Sn IMC embedded in Sn matrix phase, which indicated that the solubility of Bi phase in Sn-matrix was extended to 3 % as a result of rapid solidification. Bi precipitation in Sn matrix was only observed in Sn-3.5Ag-5Bi and Sn-3.5Ag-10Bi alloys. Also, addition of Bi decreased continuously the melting point of the eutectic Sn-3.5Ag alloy to 202.6 C at 10 % Bi. Vickers hardness of Sn-3.5Ag rapidly solidified alloy increased with increasing Bi content up to 3 % due to supersaturated solid solution strengthening hardening mechanism of Bi phase in Sn matrix, while the alloys contain 5 and 10 % Bi exhibited lower values of Vickers hardness. The lower values can be attributed to the precipitation of Bi as a secondary phase which may form strained regions due to the embrittlement of Bi atom. In addition, the effect of Bi addition on the micro-creep behavior of Sn-3.5Ag alloy as well as the creep rate have been described and has been calculated at room temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    Science.gov (United States)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  9. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium

    International Nuclear Information System (INIS)

    Bai, Zhihao; Qiu, Feng; Wu, Xiaoxue; Liu, Yingying; Jiang, Qichuan

    2013-01-01

    The effects of praseodymium on age hardening behavior and creep resistance of cast Al–Cu alloy were investigated. The results indicated that praseodymium facilitated the formation of the θ′ precipitates during the age process and improved the hardness of the Al–Cu alloy. Besides, praseodymium resulted in the formation of the Al 11 Pr 3 phase in the grain boundaries and among the dendrites of the modified alloy. Because of the good thermal stability of Al 11 Pr 3 phase, it inhibits grain boundary migration and dislocation movement during the creep process, which contributes to the improvement in the creep resistance of the modified alloy at elevated temperatures. - Highlights: • Pr addition enhances the hardness and creep resistance of the Al–Cu alloy. • Pr addition facilitates the formation of the θ′ precipitates. • Pr addition results in the formation of the Al11Pr3 phase in the Al–Cu alloy

  10. Isothermal Stability and Selected Mechanical Properties of Zr48Cu36Al8Ag8 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Błyskun P.

    2017-09-01

    Full Text Available The aim of this work was to investigate the influence of isothermal annealing on the amorphous structure stability of the Zr48Cu36Al8Ag8 alloy. A series of continuous heating examinations was performed on the differential scanning calorimeter in order to determine the temperature limits for isothermal annealing series where the time to crystallization was measured. The obtained results were calculated and a time-temperature-transformation diagram was created and discussed. Static compression test as well as microhardness measurements of the as-quenched samples gave a mechanical properties results supplement. The measured properties (σc = 1800 MPa and 614 HV0.05 are comparable to the literature results for this alloy. Fractographic observations with the scanning electron microscope were also performed in order to prove some plasticity observed during the strength tests.

  11. Generalized stacking fault energies of alloys.

    Science.gov (United States)

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  12. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Albuquerque, Victor Hugo C. de; Melo, Tadeu Antonio de A; Gomes, Rodinei M.; Lima, Severino Jackson G. de; Tavares, Joao Manuel R.S.

    2010-01-01

    Research highlights: → This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. → The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. → Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. → First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. → The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  13. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Victor Hugo C. de, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Melo, Tadeu Antonio de A, E-mail: tadeu@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Gomes, Rodinei M., E-mail: gomes@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Lima, Severino Jackson G. de, E-mail: jackson@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica (DEMec)/Instituto de Engenharia Mecanica e Gestao Industrial INEGI, Rua Dr. Roberto Frias, S/N 4200-465 Porto (Portugal)

    2010-11-25

    Research highlights: {yields} This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. {yields} The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. {yields} Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. {yields} First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. {yields} The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  14. Effect of polyvinyl alcohol (PVA) on Ag-Cu nanopaste performance

    Science.gov (United States)

    Noordin, Norasiah Mohammad; Razak, Khairunisak Abd; Cheong, Kuan Yew

    2017-07-01

    Electronic devices used for extreme high temperature continue to be in demand, for instance in aviation, aerospace and automotive industry. The reliability of these devices strongly depends on electronic packaging. Die attach materials is vital in electronic packaging as it provides an interface in between a die and a substrate, and its quality will determine the performance of the devices. Nanopaste is one of categories classified in the die attach systems. It is a mixture of nano sized metal particles and organic additives (binder, surfactant, solvent). In this study, Ag and Cu nanoparticles was mixed into an organic binder system, polyvinyl alcohol (PVA) serves as binder and ethylene glycol functions as surfactant while deionized water used to dissolve PVA. The mixture was inserted in vacuum oven at 70°C and then proceeds for sintering in horizontal tube furnace with various sintering temperature, a dwell time of 30 min and ramp rate of 5°C/min. The samples were then characterized using field emission scanning electron microscope (FE-SEM) to examine the morphology, X-ray diffraction (XRD) for phase identification, Four Point Probe to measure sheet resistance, and thermogravimetric and differential scanning calorimetry analysis (TGA/DSC) to study the thermal response with respect to temperature. These parameter were studied, the effect of PVA amount (0.10, 0.15, 0.20, 0.30, 0.40, 0.50 g) in Ag-Cu nanopaste formulation was visual inspected, the variation of drying time (20, 30, 40, 60, 80, 100, 120 min) in vacuum oven and sintering temperature (280, 300, 320, 340, 360, 380, 400°C) was recorded. The optimum condition for producing Ag-Cu nanopaste is by using 0.15 g of PVA in the Ag-Cu formulation, 30 min drying time and 340°C sintering temperature.

  15. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  16. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  17. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    Science.gov (United States)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  18. Newly developed EMF cell with zirconia solid electrolyte for measurement of low oxygen potentials in liquid Cu-Cr and Cu-Zr alloys

    Directory of Open Access Journals (Sweden)

    Katayama I.

    2012-01-01

    Full Text Available In order to measure the very low oxygen potential by use of stabilized zirconia solid electrolyte emf method, a new cell construction was devised. The idea was based on Janke but a zirconia rod was used instead of the zirconia crucible which contacts liquid alloy electrode. The cell was used for determination of the oxygen potentials in liquid dilute Cu-Cr and Cu-Zr alloys. The reference electrode was Cr,Cr2O3. Emf measurements were performed in the temperature range of 1400-1580K and composition range of 0.198-3.10at%Cr-Cu alloys, and 1380-1465K, 0.085-0.761at%Zr-Cu alloys. The composition of liquid alloys were determined by picking up from the liquid alloys and ICP analysis. By use of the newly devised cell construction in this study, stable emf values were obtained at each temperature and alloy composition. Emf values were corrected by using the parameter for electronic contribution of the YSZ. Activity of Cr obeys Henry’s law and activity coefficient at infinitely dilute alloys of Cr in Cu-Cr alloys are: lng0 Cr =(3.80 at 1423K, (3.57 at 1473K, (3.38 at 1523K and (3.20 at 1573K. At 1423 K activity coefficient of Zr at infinitely diluted alloy is lnγo Zr = -4.0.

  19. Electronic structure of clean and Ag-covered single-crystalline Bi2Sr2CuO6

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.

    1989-01-01

    Photoemission studies of single-crystalline samples of Bi 2 Sr 2 CuO 6 show clear resemblance to the corresponding data for single crystals of Bi 2 Sr 2 CaCu 2 O 8 . In particular, a sharp Fermi-level cutoff, giving evidence of metallic conductivity at room temperature, as well as single-component O 1s emission and Cu 2p satellites with a strength amounting to about 50% of that of the main Cu 2p line, are observed. An analysis of the relative core-level photoemission intensities shows that the preferential cleavage plane of single-crystalline Bi 2 Sr 2 CuO 6 is between adjacent Bi-O layers. Deposition of Ag adatoms causes only weak reaction with the Bi and O ions of the Bi 2 Sr 2 CuO 6 substrate, while the Cu states rapidly react with the Ag adatoms, as monitored by a continuous reduction of the Cu 2p satellite intensity as the Ag overlayer becomes thicker

  20. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application.

    Science.gov (United States)

    Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing

    2016-12-01

    Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Formation of Al70Cu20Fe10 icosahedral quasicrystal by mechanically alloyed method

    International Nuclear Information System (INIS)

    Yin Shilong; Bian Qing; Qian Liying; Zhang Aimei

    2007-01-01

    The structural evolutions of the mechanically alloyed ternary Al 70 Cu 20 Fe 10 powders with the milling time and the annealing treatment have been studied by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and X-ray absorption fine-structure spectroscopy (XAFS) techniques. Results show that an Al 2 Cu compound forms with short-time milling, while a Cu 9 Al 4 compound forms with long-time milling. Fe can react with Al-Cu alloy by annealing treatment. Al 7 Cu 2 Fe compound with tetragonal structure or Al (Cu, Fe) solid solution with cubic structure may form at lower temperature, while a quasicrystal phase of Al 65 Cu 20 Fe 15 alloy may form at higher temperature

  2. Diffusion Brazing of Ti-6Al-4V and Stainless Steel 316L Using AgCuZn Filler Metal

    Directory of Open Access Journals (Sweden)

    R. Soltani Tashi

    2013-09-01

    Full Text Available In the present study, vacuum brazing was applied to join Ti-6Al-4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness. It has been shown that shear strength decreased with increasing the brazing temperature and time. The wettability of the filler alloy was increased by enhancing the wetting test temperature. By increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe-Cu-Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for different brazing temperatures.

  3. Temperature dependence of the electric field gradient in AgPd and AgPt alloys

    International Nuclear Information System (INIS)

    Krolas, K.

    1977-07-01

    The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)

  4. Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition

    Directory of Open Access Journals (Sweden)

    J. F. Sánchez-Ramírez

    2008-01-01

    Full Text Available Colloidal solid-solution-like Au-Ag alloy nanoclusters of different compositions were synthesized through citrate reduction of mixed metal ions of low concentrations, without using any other protective or capping agents. Optical absorption of the alloy nanoclusters was studied both theoretically and experimentally. The position of the surface plasmon resonance (SPR absorption band of the nanoclusters could be tuned from 419 nm to 521 nm through the variation of their composition. Considering effective dielectric constant of the alloy, optical absorption spectra for the nanoclusters were calculated using Mie theory, and compared with the experimentally obtained spectra. Theoretically obtained optical spectra well resembled the experimental spectra when the true size distribution of the nanoparticles was considered. High-resolution transmission electron microscopy (HREM, high-angle annular dark field (HAADF imaging, and energy dispersive spectroscopy (EDS revealed the true alloy nature of the nanoparticles with nominal composition being preserved. The synthesis technique can be extended to other bimetallic alloy nanoclusters containing Ag.

  5. Structure and mechanical properties of nanostructured Al-0.3%Cu alloy

    DEFF Research Database (Denmark)

    Wakeel, Aneela; Huang, Tianlin; Wu, Guilin

    2014-01-01

    An Al-0.3%Cu alloy has been produced using extremely high purity (99.9996%) Al and OFHC Cu.The alloy was cold rolled to 98% thickness reduction, forming a stable lamellar structure that has a lamellar boundary spacing of about 200nm and a tensile strength of 225MPa. During recovery annealing at t...

  6. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Man, Jin; Jing, Li; Jie, Shao Guang

    2007-01-01

    The effects of Cu addition on the microstructure and thermal stability of 6082 Al-Mg-Si alloys were investigated. The results show the Q' precipitates are formed when aged at 170 o C for 4 h in 6082 alloy with 0.6% Cu addition. The hardness value of the alloy with 0.6% Cu is always distinctly higher than that of the alloy without Cu during isothermal treatment at 250 o C. Based on the TEM and three-dimensional atom probe (3DAP) results, the thermal stability of the 6082 alloys with Cu addition is discussed with respect to the distribution of Cu

  7. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    Science.gov (United States)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  8. H2S interaction with Cu(100)-(2 √2 × √2 )R45°-O: Formation of a metastable ‖05 52sulfur surface reconstruction

    DEFF Research Database (Denmark)

    Colaianni, M. L.; Syhler, P.; Chorkendorff, Ib

    1995-01-01

    This paper utilizes scanning tunneling microscopy, low-energy electron diffraction, Auger-electron spectroscopy, and temperature-programmed desorption to examine a metastable \\(52)(05)\\-S structure which forms after the interface reaction of H2S with a Cu(100)-(2 root (2) over bar X root (2) over....... Heating the \\(52)(05)\\-S surface to temperatures above 600 K converts this structure to the thermally stable Cu(100)rootX root)R14 degrees-S (i.e., \\((1) over bar 4)(41)\\-S overlayer. A model for the metastable \\(52)(05)\\-S reconstruction is proposed....

  9. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  10. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinxin; Wang, Hongying; Li, Fangbing; Li, Muqin; Zhang, Erlin; Yang, Ke

    2014-01-01

    The antibacterial activity, the cytotoxicity and the cell function of a sintered Ti-10 wt% Cu alloy were investigated in order to assess the suitability of the alloy for biomedical application. The antibacterial activity of the alloy was investigated by a plate-count method and the cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell function was monitored by measuring the AKP activity. The Cu ion released from the Ti–Cu alloy was also measured by an inductively coupled plasma spectrometer at different immersion durations. The results show that the antibacterial rates of the alloy against Escherichia coli and Staphylococcus aureus increase with an increase in the incubation duration. After 7 h of incubation, the alloy showed an antibacterial rate of 91.66% against S. aureus and 99. 01% against E. coli. With a further extension of incubation time to 24 h, the antibacterial rate increased to 100% against S. aureus and 99.93% against E. coli. No cytotoxicity was observed on the alloy by a CKK8 test during three days of incubation in comparison with commercially available pure titanium (cp-Ti). AKP test results showed a significantly high AKP value (p = 0.001 < 0.01) on the Ti–Cu alloy on day 1. The Cu ion release was thought to contribute to the strong antibacterial property, but the Cu ion did not lead to cell cytotoxicity. Strong antibacterial activity and good cell biocompatibility suggest that the Ti–Cu alloy could reduce bacterial infection and have a potential application as an implant material. (paper)

  11. Wetting phenomena of Al-Cu alloys on sapphire below 800 deg. C

    International Nuclear Information System (INIS)

    Klinter, Andreas J.; Leon-Patino, Carlos A.; Drew, Robin A.L.

    2010-01-01

    Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions θ transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl 2 O 4 for Al-7Cu and Al 2 O 3 for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl 2 O 4 under CuAl 2 drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl 2 O 4 causes the reduced σ sl and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in θ with higher copper contents is the increasing σ lv of the alloy.

  12. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  13. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  14. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  15. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    International Nuclear Information System (INIS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-01-01

    Highlights: • The effects of IB metal dopants on the S poisoning features of Ni are analyzed. • IB metal dopants can modify the surface electronic structure of Ni. • IB metal dopants can increase the S tolerance of Ni at an optimized concentration. • Au is a preferred dopant to increase the resistance to sulfur poisoning of Ni. - Abstract: The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we incr