WorldWideScience

Sample records for metals cd cu

  1. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.

    Science.gov (United States)

    Senthilkumar, P; Prince, W S P M; Sivakumar, S; Subbhuraam, C V

    2005-09-01

    Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.

  2. Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiali [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Tang, Cilai [Department of Environmental Engineering, College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002 (China); Wang, Fengwu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); School of Civil Engineering, East China Jiaotong University, 808 Shuang Gang East Road, Nanchang, Jiangxi 330013 (China); Wu, Yonghong, E-mail: yhwu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China)

    2016-03-05

    Highlights: • Periphyton was capable of simultaneously entrapping Cu and Cd from paddy fields. • Cu and Cd bioavailability decreased with time after exposure to periphyton. • Periodic adsorption–desorption was the main mechanism used to remove Cd and Cu. • Periphyton was able to adapt to steady accumulation of Cu and Cd. • The inclusion of periphyton will help entrap heavy metals in paddy fields. - Abstract: The ubiquitous native periphyton was used to entrap Cu and Cd from paddy fields. Results showed that Cu- and Cd-hydrate species such as CuOH{sup +}, Cu{sub 2}(OH){sub 2}{sup 2+}, CdOH{sup +}, and Cu{sub 3}(OH){sub 4}{sup 2+} decreased with time in the presence of periphyton. When the initial concentrations of Cu and Cd were 10 mg/L, the heavy metal content in the periphyton fluctuated from 145.20 mg/kg to 342.42 mg/kg for Cu and from 101.75 mg/kg to 236.29 mg/kg for Cd after 2 h exposure. The concentration of Cd in periphytic cells varied from 42.93 mg/kg to 174 mg/kg after 2 h. The dominant periphyton microorganism species shifted from photoautotrophs to heterotrophs during the exposure of periphyton to Cu and Cd co-contamination. Although Cu and Cd could inhibit periphyton photosynthesis and carbon utilization, the periphyton was able to adapt to the test conditions. Cu and Cd accumulation in rice markedly decreased in the presence of periphyton while the number of rice seeds germinating was higher in the periphyton treatments. These results suggest that the inclusion of native periphyton in paddy fields provides a promising buffer to minimize the effects of Cu and Cd pollution on rice growth and food safety.

  3. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  4. Subcellular metal partitioning in larvae of the insect Chaoborus collected along an environmental metal exposure gradient (Cd, Cu, Ni and Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Rosabal, Maikel; Hare, Landis [Institut national de la Recherche scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 de la Couronne, Quebec, Quebec, G1K 9A9 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [Institut national de la Recherche scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 de la Couronne, Quebec, Quebec, G1K 9A9 (Canada)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Midge larvae were collected from 12 lakes representing Cd, Cu, Ni and Zn gradients. Black-Right-Pointing-Pointer Along the gradients, the heat-stable protein fractions increased for Cd, Ni and Cu. Black-Right-Pointing-Pointer However, this metal detoxification response was incomplete for Cd and Ni. Black-Right-Pointing-Pointer Concentrations of these two metals increased in putative metal-sensitive fractions. Black-Right-Pointing-Pointer Metal detoxification is Chaoborus is compared to that in other freshwater animals. - Abstract: Larvae of the phantom midge Chaoborus are common and widespread in lakes contaminated by metals derived from mining and smelting activities. To explore how this insect is able to cope with potentially toxic metals, we determined total metal concentrations and subcellular metal partitioning in final-instar Chaoborus punctipennis larvae collected from 12 lakes situated along gradients in aqueous Cd, Cu, Ni and Zn concentrations. Concentrations of the non-essential metals Cd and Ni were more responsive to aqueous metal gradients than were larval concentrations of the essential metals Cu and Zn; these latter metals were better regulated and exhibited only 2-3-fold increases between the least and the most contaminated lakes. Metal partitioning was determined by homogenization of larvae followed by differential centrifugation, NaOH digestion and heat denaturation steps so as to separate the metals into operationally defined metal-sensitive fractions (heat-denaturable proteins (HDP), mitochondria, and lysosomes/microsomes) and metal-detoxified fractions (heat stable proteins (HSP) and NaOH-resistant or granule-like fractions). Of these five fractions, the HSP fraction was the dominant metal-binding compartment for Cd, Ni and Cu. The proportions and concentrations of these three metals in this fraction increased along the metal bioaccumulation gradient, which suggests that metallothionein-like proteins

  5. Bioaccumulation of toxic metals (Cd and Cu) by Groenlandia densa (L.) Fourr.

    Science.gov (United States)

    Kara, Yesim; Zeytunluoglu, Ali

    2007-12-01

    In this study, Groenlandia densa (L.) Fourr. (opposite-leaved pondweed), was exposed to prepared stock solution of cadmium and copper with 1.0, 3.0, 5.0 and 7.0 mg L(-1) concentration in certain periods (24, 48, 72 and 96 h) and changing amount of accumulation of plants in depending on time and concentration was measured by atomic absorption spectrophotometer. The results show that under experimental conditions, G. densa (L.) Fourr. proved to be a good accumulator of Cd and Cu. Removal of the metals from solution was fast in the first 4 days. The accumulation of Cd and Cu increased with the initial concentration and also with time. The highest concentrations of each trace element accumulated in opposite-leaved pondweed tissues were 1,955 mug Cd g(-1), 6,135 microg Cu g(-1) after 4 days. The maximum values of bioconcentration factor (BCF) were found for Cd and Cu 724 and 1,669, respectively. BCF values for Cd and Cu increased with time.

  6. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Abboud, Pauline; Wilkinson, Kevin J.

    2013-01-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd–Pb and Cd–Cu, but not the Cd–Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. -- Highlights: •Cd bioaccumulation and phytochelatin production were evaluated for metal mixtures. •Bioaccumulated metal rather than free ion was a better predictor of biological effect. •Calcium additions decreased Cd bioaccumulation but increased phytochelatin production. •Copper additions increased Cd bioaccumulation and phytochelatin production. •Lead additions had little effect on either Cd bioaccumulation or phytochelatin production. -- In metal mixtures containing Cd and Ca, Pb or Cu, bioaccumulated metal rather than free ion was a better predictor of biological effect

  7. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Klimiuk, Ewa

    2012-01-01

    The influence of multiple saponin washing on copper, cadmium and zinc removal and stability in three types of soils (loamy sand, loam, silty clay) was investigated. Distribution of metals and their mobility measured as the ratio of exchangeable form to the sum of all fractions in soils was differential. After single washing the highest efficiency of metal removal was obtained in loamy sand (82-90%) and loam (67-88%), whereas the lowest in silty clay (39-62%). In loamy sand and loam metals had higher mobility factors (44-61% Cu, 60-76% Cd, and 68-84% Zn) compared to silty clay (9% Cu, 28% Cd and 36% Zn). Triplicate washing led to increase both efficiency of metal removal and percentage content of their stable forms. In consequence, fractional patterns for metals before and after treatment changed visibly as a result of their redistribution. Based on the redistribution index, the most stable metal (mainly in residual and organic fractions) after triplicate washing was Cu in loamy sand and loam. For silty clay contaminated with Cd, effective metal removal and its stabilization required a higher number of washings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

    Science.gov (United States)

    Abboud, Pauline; Wilkinson, Kevin J

    2013-08-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    Science.gov (United States)

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-05

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from ...

    African Journals Online (AJOL)

    cinthia

    This study was carried out to evaluate the efficiency of metals (Cu, Fe, Pb, Cr and Cd) removal from mixed metal ions solution using coconut husk as adsorbent. The effects of varying contact time, initial metal ion concentration, adsorbent dose and pH on adsorption process of these metals were studied using synthetically ...

  11. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    Science.gov (United States)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  12. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    International Nuclear Information System (INIS)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da; Melo, Jessica V. de

    2013-01-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  13. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: jmnilda@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: Jessica_clorofila@hotmail.com [Universidade de Pernambuco, Recife, PE (Brazil)

    2013-07-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  14. Effects of Acute and Chronic Heavy Metal (Cu, Cd, and Zn Exposure on Sea Cucumbers (Apostichopus japonicus

    Directory of Open Access Journals (Sweden)

    Li Li

    2016-01-01

    Full Text Available Acute and chronic toxicity tests were conducted with sea cucumber (Apostichopus japonicus exposed to heavy metals. Acute toxicity values (96 h LC50 were 2.697, 0.133, and 1.574 mg L−1 for Zn, Cu, and Cd, respectively, and were ranked in order of toxicity: Cu > Cd > Zn. Under chronic metal exposure the specific growth rates of sea cucumbers decreased with the increase of metal concentration for all the three metals. After acute metal exposure, the oxygen consumption rate (OCR decreased. The OCRs in all groups were significantly different than control (P muscle > intestine in natural sea water. After chronic Zn, Cu, and Cd exposure, the change pattern of HK and PK in respiratory tree, muscle, and intestine varied slightly. However, the activity of the enzyme showed a general trend of increase and then decrease and the higher the exposure concentration was, the earlier the highest point of enzyme activity was obtained.

  15. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China

    Science.gov (United States)

    Li, Li; Xiaojing, Wang; Jihua, Liu; Xuefa, Shi

    2017-02-01

    Trace metals play an important role in biogeochemical cycling in ocean systems. However, because the use of trace metal clean sampling and analytical techniques has been limited in coastal China, there are few accurate trace metal data for that region. This work studied spatial distribution of selected dissolved trace metals (Ag, Cu, Co, Cd, and Ni) and Cu speciation in the southern Yellow Sea (SYS) and Bohai Sea (BS). In general, the average metal (Cu, Co, Cd, and Ni) concentrations found in the SYS were lower by a factor of two than those in BS, and they are comparable to dissolved trace metal concentrations in coastal seawater of the United States and Europe. Possible sources and sinks and physical and biological processes that influenced the distribution of these trace metals in the study region were further examined. Close relationships were found between the trace metal spatial distribution with local freshwater discharge and processes such as sediment resuspension and biological uptake. Ag, owing to its extremely low concentrations, exhibited a unique distribution pattern that magnified the influences from the physical and biological processes. Cu speciation in the water column showed that, in the study region, Cu was strongly complexed with organic ligands and concentrations of free cupric ion were in the range of 10-12.6-10-13.2 mol L-1. The distribution of Cu-complexing ligand, indicated by values of the side reaction coefficient α', was similar to the Chl a distribution, suggesting that in situ biota production may be one main source of Cu-complexing organic ligand.

  16. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  17. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  18. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  19. Heavy Metals (Cu, Pb and Cd) in Water and Angel Fish (Chelmon rostractus) from Batam Coastal, Indonesia

    OpenAIRE

    Ismarti Ismarti; Ramses Ramses; Suheryanto Suheryanto; Fitrah Amelia

    2017-01-01

    Fish play an important role in human nutrition and therefore need to be carefully and routinely monitored to ensure that there are no high levels of heavy metals being transferred to human through their consumption. This study has been carried out to determine level of heavy metals (Cu, Pb, and Cd) in water and angel fish, Chelmon rostractus collected from coast of Batam. We report levels of Cu, Cd and Pb in water and angel fish from Coast Batam using Atomic Absorption Spectroscopy (AAS). Lev...

  20. The Investigation of Heavy Metal Content (Cu, Cd, Pb in Sapu-Sapu Fish (Hypostomus plecostomus in Bengawan Solo River

    Directory of Open Access Journals (Sweden)

    Ristiyana Eko Setyarini

    2016-12-01

    Full Text Available A study had been carried out to investigate heavy metal (Cu, Cd, Pb content in sapu-sapu fish (hypostomus plecostomus in Bengawan Solo river. The type of this research was observational research, with sapu-sapu fish inhabit Bengawan Solo River as the population. The samples were taken with purposive random sampling. Nine sapu-sapu fishes taken from 3 places, i.e.: Nguter Sukoharjo area, Premulung river outlet and Anyar river, 3 fishes from each palce, and then take examined the content of heavy metal. The result of study showed that the average content of Cu: 0.027 mg/100gr, Cd: 0.005 mg/100gr and Pb: 0.042 mg/100gr. Hence, sapu-sapu fish in Be3ngawan Solo had been contaminated with heavy metal (Cu, Cd, and Pb and should not be consumed.

  1. Enriquecimiento, disponibilidad y contaminación de metales traza (Cd, Cu, Pb y Zn en sedimentos de lagunas urbanas de Concepción-Chile Enrichment, availability and contamination of trace metals (Cd, Cu, Pb and Zn in sediments of urban lagoons in Concepción, Chile

    Directory of Open Access Journals (Sweden)

    Elizabeth González Sepúlveda

    2009-01-01

    Full Text Available Trace metals (Cd, Cu, Pb and Zn enrichment, availability and contamination in superficial sediments of three interconnected urban lagoons localized in Concepción-Chile, were evaluated. According to the results of geochemical fracctionation analysis, Cu and Pb are rather associated with oxi-hydroxides, Cd is associated with exchangeable and carbonates fraction, while Zn is mainly associated with organic, oxi-hydroxides and residual fraction. The estimation of the availability percentages indicate that Cu is the most mobile metal and the less mobile is the Cd. An evaluation of the geo-accumulation index and urban industrial pollution allowed to classify the studied zone as moderately to highly contaminated.

  2. Effects of waterborne Cu and Cd on anti-oxidative response, lipid peroxidation and heavy metals accumulation in abalone Haliotis discus hannai ino

    Science.gov (United States)

    Lei, Yanju; Zhang, Wenbing; Xu, Wei; Zhang, Yanjiao; Zhou, Huihui; Mai, Kangsen

    2015-06-01

    The aim of this study was to compare the effects of waterborne copper (Cu) and cadmium (Cd) on survival, anti-oxidative response, lipid peroxidation and metal accumulation in abalone Haliotis discus hannai. Experimental animals (initial weight: 7.49 g ± 0.01 g) were exposed to graded concentrations of waterborne Cu (0.02, 0.04, 0.06, 0.08 mg L-1) or Cd (0.025, 0.05, 0.25, 0.5 mg L-1) for 28 days, respectively. Activities of the anti-oxidative enzymes (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidases, GPx; glutathione S-transferase, GST), contents of the reduced glutathione (GSH) and malondiadehyde (MDA) in the hepatopancreas, and metal accumulation in hepatopancreas and muscles were analyzed after 0, 1, 3, 6, 10, 15, 21, 28 days of metal exposure, respectively. Results showed that 0.04 mg L-1, 0.06 mg L--1 and 0.08 mg L-1 Cu caused 100% death of abalone on the 21st, 10th and 6th day, respectively. However, no dead abalone was found during the 28-day waterborne Cd exposure at all experimental concentrations. Generally, activities of SOD and GST in hepatopancreas under all Cu concentrations followed a decrease trend as the exposure time prolonged. However, these activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Activities of CAT in all Cu exposure treatments were higher than those in the control. These activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Contents of MDA in hepatopancreas in all Cu treatments significantly increased first and then decreased to the control level. However, the MDA contents in hepatopancreas were not significantly changed during the 28-day Cd exposure. The metals accumulation in both hepatopancreas and muscles of abalone significantly increased with the increase of waterborne metals concentration and exposure time. These results indicated that H. discus hannai has a positive anti-oxidative defense

  3. 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Tehuantepec, South Pacific of Mexico

    International Nuclear Information System (INIS)

    Ruiz-Fernandez, Ana Carolina; Paez-Osuna, Federico; Machain-Castillo, Maria Luisa; Arellano-Torres, Elsa

    2004-01-01

    Distributions of Al, Cd, Cu, Fe, Li, Mn and Pb were analyzed in a sediment core collected in the Gulf of Tehuantepec, an important fisheries region located in the South Pacific of Mexico, where data on metal accumulation and accretion rates were previously almost nonexistent. Depth profiles of metal concentrations were converted to time-based profiles by using a 210 Pb-derived vertical accretion rate, estimated to be 0.05 cm year -1 on the average. Sediments were dated up to 8 cm depth, corresponding to a layer of ca. 140 years old. The historical changes of metal accumulation along the sediment core have shown a moderate enrichment of Cd, Cu and Pb concentrations at present, of about threefold the corresponding background concentrations. Chronological trace metal records showed that metal fluxes have increased over the last 20 years, reaching the maximum values at present of 2.5, 22.5 and 45.8 (μg cm -2 year -1 ) for Cd, Pb and Cu, respectively. These increments in metal fluxes are likely influenced by the development of anthropogenic land-based activities since over this period of time oil production activities in the region have had a significant development

  4. Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system

    Science.gov (United States)

    Wang, Deli; Lin, Wenfang; Yang, Xiqian; Zhai, Weidong; Dai, Minhan; Arthur Chen, Chen-Tung

    2012-12-01

    This study for the first time examined dissolved metals (Cu, Cd, and Mn) together with dissolved oxygen and carbonate system in the whole Pearl River Estuary system, from the upper rivers to the groundwater discharges until the estuarine zone, and explored their potential impacts in the adjacent northern South China Sea (SCS) during May-August 2009. This river-groundwater-estuary system was generally characterized by low dissolved metal levels as a whole, whilst subject to severe perturbations locally. In particular, higher dissolved Cu and Cd occurred in the North River (as high as 60 nmol/L of Cu and 0.99 nmol/L of Cd), as a result of an anthropogenic source from mining activities there. Dissolved Cu levels were elevated in the upper estuary near the city of Guangzhou (Cu: ˜40 nmol/L), which could be attributable to sewage and industrial effluent discharges there. Elevated dissolved metal levels (Cu: ˜20-40 nmol/L; Cd: ˜0.2-0.8 nmol/L) also occurred in the groundwaters and parts of the middle and lower estuaries, which could be attributable to a series of geochemical reactions, e.g., chloride-induced desorption from the suspended sediments, oxidation of metal sulfides, and the partial dissolution of minerals. The high river discharge during our sampling period (May-August 2009) significantly diluted anthropogenic signals in the estuarine mixing zone. Of particular note was the high river discharge (which may reach 18.5 times as high as in the dry season) that transported anthropogenic signals (as indicated by dissolved Cu and Cd) into the adjacent shelf waters of the northern SCS, and might have led to the usually high phytoplankton productivity there (chlorophyll-a value >10 μg/L).

  5. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    International Nuclear Information System (INIS)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-01-01

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl 2 ) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg -1 , 10.3 to 95 mg kg -1 Zn, 0.1 to 1.8 mg Cd kg -1 and 5.2 to 183 mg kg -1 Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg -1 , 312 to 39,000 mg kg -1 Zn, 6 to 302 mg Cd kg -1 and 609 to 12,000 mg kg -1 Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K d ) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  6. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia)

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl{sub 2}) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg{sup -1}, 10.3 to 95 mg kg{sup -1} Zn, 0.1 to 1.8 mg Cd kg{sup -1} and 5.2 to 183 mg kg{sup -1} Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg{sup -1}, 312 to 39,000 mg kg{sup -1} Zn, 6 to 302 mg Cd kg{sup -1} and 609 to 12,000 mg kg{sup -1} Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K{sub d}) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  7. Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... Water pollution and fish physiology. CRC press. Florida, USA, p. 245. Kalay M, Canli M (2000). Elimination of essential (Cu, Zn) and nonessential (Cd, Pb) metals from tissue of a freshwater fish Tilapia zillii following and uptake protocol. Turk. J. Zool. 24: 429-436. Karadede H, Ünlü E (2000). Concentrations ...

  8. Cu-Doping Effects in CdI(2) Nanocrystals: The Role of Cu-Agglomerates.

    Science.gov (United States)

    Miah, M Idrish

    2008-11-22

    Cu-doping effects in CdI(2) nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG) as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI(2) crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  9. Cu-Doping Effects in CdI2Nanocrystals: The Role of Cu-Agglomerates

    Directory of Open Access Journals (Sweden)

    Miah M

    2008-01-01

    Full Text Available Abstract Cu-doping effects in CdI2nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI2crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  10. Removal of Pb(II), Cu(II) and Cd(II) from aqueous solution by some fungi and natural adsorbents in single and multiple metal systems

    International Nuclear Information System (INIS)

    Shoaib, A.; Badar, T.; Aslam, N.

    2011-01-01

    Six fungal and 10 natural biosorbents were analyzed for their Cu(II), Cd(II) and Pb(II) uptake capacity from single, binary and ternary metal ion system. Preliminary screening biosorption of assays revealed 2 fungi (Aspergillus niger and Cunninghamella echinulata) and three natural [Cicer arietinum husk, Moringa oleifera flower and soil (clay)] adsorbents hold considerable high adsorption efficiency and capacity for 3 meta l ions amongst the adsorbents. Further biosorption trials with five elected adsorbents showed a considerable reduction in metal uptake capability of adsorbents in binary- and ternary systems as compared to singly metal system. Cd(II) manifested the highest inhibitory effect on the biosorption of other metal ions, followed by Pb(II) and Cu(II). On account of metal preference, the selectivity order for metal ion towards the studied biomass matrices was Pb(II) (40-90%) > Cd(II) (2-53%) > Cu(II) (2-30%). (author)

  11. Seasonal variations in hepatic Cd and Cu concentrations and in the sub-cellular distribution of these metals in juvenile yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Kraemer, Lisa D.; Campbell, Peter G.C.; Hare, Landis

    2006-01-01

    Temporal fluctuations in metal (Cd and Cu) concentrations were monitored over four months (May to August) in the liver of juvenile yellow perch (Perca flavescens) sampled from four lakes situated along a metal concentration gradient in northwestern Quebec: Lake Opasatica (reference lake, low metal concentrations), Lake Vaudray (moderate metal concentrations) and lakes Osisko and Dufault (high metal levels). The objectives of this study were to determine if hepatic metal concentrations and metal-handling strategies at the sub-cellular level varied seasonally. Our results showed that Cd and Cu concentrations varied most, in both absolute and relative values, in fish with the highest hepatic metal concentrations, whereas fish sampled from the reference lake did not show any significant variation. To examine the sub-cellular partitioning of these two metals, we used a differential centrifugation technique that allowed the separation of cellular debris, metal detoxified fractions (heat-stable proteins such as metallothionein) and metal sensitive fractions (heat-denaturable proteins (HDP) and organelles). Whereas Cd concentrations in organelle and HDP fractions were maintained at low concentrations in perch from Lakes Opasatica and Vaudray, concentrations in these sensitive fractions were higher and more variable in perch from Lakes Dufault and Osisko, suggesting that there may be some liver dysfunction in these two fish populations. Similarly, Cu concentrations in these sensitive fractions were higher and more variable in perch from the two most Cu-contaminated lakes (Dufault and Osisko) than in perch from the other two lakes, suggesting a breakdown of homeostatic control over this metal. These results suggest not only that metal concentrations vary seasonally, but also that concentrations vary most in fish from contaminated sites. Furthermore, at the sub-cellular level, homeostatic control of metal concentrations in metal-sensitive fractions is difficult to maintain in

  12. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China

    International Nuclear Information System (INIS)

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-01-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. -- Highlights: ► Agricultural soils contain higher metal concentrations than non-agricultural soils. ► The site located in the factory district has the highest metal concentration. ► Cu, Zn and Cd are dominated by residual fraction, and Pb by reducible fraction. ► Cd pollution should not be overlooked in soils upstream of Pearl River. -- The mobility of four investigated metals is low but Cd pollution should not be overlooked in soils upstream of Pearl River

  13. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  14. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    Science.gov (United States)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  15. Characteristics of Heavy Metals Adsorption Cu, Pb and Cd Using Synthetics Zeolite Zsm-5

    OpenAIRE

    Priyadi,; Iskandar,; Suwardi,; Mukti, Rino Rakhmata

    2015-01-01

    It is generally known that zeolite has potential for heavy metal adsorption. The objectives of this study were to synthesize and characterize zeolite ZSM-5 and to figure out the adsorption capacity of zeolite ZSM-5 for heavy metals of Cu2+, Pb2+ and Cd2+. Characterization of zeolite ZSM-5 included some variables i.e. crystal structure (XRD), morphology (SEM), specific surface area and total pore volume (N2 physisorption). Adsorption capacity of zeolite ZSM-5 was analysed using a batch system...

  16. Linking biosensor responses to Cd, Cu and Zn partitioning in soils

    International Nuclear Information System (INIS)

    Dawson, J.J.C.; Campbell, C.D.; Towers, W.; Cameron, C.M.; Paton, G.I.

    2006-01-01

    Soils bind heavy metals according to fundamental physico-chemical parameters. Bioassays, using bacterial biosensors, were performed in pore waters extracted from 19 contrasting soils individually amended with Cd, Cu and Zn concentrations related to the EU Sewage Sludge Directive. The biosensors were responsive to pore waters extracted from Zn amended soils but less so to those of Cu and showed no toxicity to pore water Cd at these environmentally relevant amended concentrations. Across the range of soils, the solid-solution heavy metal partitioning coefficient (K d ) decreased (p d values. Gompertz functions of Cu and Zn, K d values against luminescence explained the relationship between heavy metals and biosensors. Consequently, biosensors provide a link between biologically defined hazard assessments of metals and standard soil-metal physico-chemical parameters for determining critical metal loadings in soils. - Biosensors link biological hazard assessments of metals in soils with physico-chemical partitioning

  17. Enriquecimiento, disponibilidad y contaminación de metales traza (Cd, Cu, Pb y Zn) en sedimentos de lagunas urbanas de Concepción-Chile Enrichment, availability and contamination of trace metals (Cd, Cu, Pb and Zn) in sediments of urban lagoons in Concepción, Chile

    OpenAIRE

    Elizabeth González Sepúlveda; María Retamal Cifuentes; Valentina Medina Pedreros; Ramón Ahumada Bermúdez; José Neira Hinojosa

    2009-01-01

    Trace metals (Cd, Cu, Pb and Zn) enrichment, availability and contamination in superficial sediments of three interconnected urban lagoons localized in Concepción-Chile, were evaluated. According to the results of geochemical fracctionation analysis, Cu and Pb are rather associated with oxi-hydroxides, Cd is associated with exchangeable and carbonates fraction, while Zn is mainly associated with organic, oxi-hydroxides and residual fraction. The estimation of the availability percentages indi...

  18. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2009-05-01

    Heavy metal sequestration by a multimetal resistant Pseudomonas strain isolated from a uranium mine was characterized for its potential application in metal bioremediation. 16S rRNA gene analysis revealed phylogenetic relatedness of this isolate to Pseudomonas fluorescens. Metal uptake by this bacterium was monophasic, fast saturating, concentration and pH dependent with maximum loading of 1048 nmol Ni(2+) followed by 845 nmol Co(2+), 828 nmol Cu(2+) and 700 nmol Cd(2+)mg(-1) dry wt. Preferential metal deposition in cell envelope was confirmed by TEM and cell fractionation. FTIR spectroscopy and EDX analysis revealed a major role of carboxyl and phosphoryl groups along with a possible ion exchange mechanism in cation binding. Binary system demonstrated selective metal binding affinity in the order of Cu(2+)>Ni(2+)>Co(2+)>Cd(2+). A comparison with similar metal uptake reports considering live bacteria strongly indicated the superiority of this strain in metal sequestration, which could be useful for developing efficient metal removal system.

  19. Oxidoreductases provide a more generic response to metallic stressors (Cu and Cd) than hydrolases in soil fungi: new ecotoxicological insights.

    Science.gov (United States)

    Lebrun, Jérémie D; Demont-Caulet, Nathalie; Cheviron, Nathalie; Laval, Karine; Trinsoutrot-Gattin, Isabelle; Mougin, Christian

    2016-02-01

    The present study investigates the effect of metals on the secretion of enzymes from 12 fungal strains maintained in liquid cultures. Hydrolases (acid phosphatase, β-glucosidase, β-galactosidase, and N-acetyl-β-glucosaminidase) and ligninolytic oxidoreductases (laccase, Mn, and lignin peroxidases) activities, as well as biomass production, were measured in culture fluids from fungi exposed to Cu or Cd. Our results showed that all fungi secreted most of the selected hydrolases and that about 50% of them produced a partial oxidative system in the absence of metals. Then, exposure of fungi to metals led to the decrease in biomass production. At the enzymatic level, Cu and Cd modified the secretion profiles of soil fungi. The response of hydrolases to metals was contrasted and complex and depended on metal, enzyme, and fungal strain considered. By contrast, the metals always stimulated the activity of ligninolytic oxidoreductases in fungal strains. In some of them, oxidoreductases were specifically produced following metal exposure. Fungal oxidoreductases provide a more generic response than hydrolases, constituting thus a physiological basis for their use as biomarkers of metal exposure in soils.

  20. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag in the southeastern Atlantic and the Southern Ocean

    Directory of Open Access Journals (Sweden)

    M. Boye

    2012-08-01

    Full Text Available Comprehensive synoptic datasets (surface water down to 4000 m of dissolved cadmium (Cd, copper (Cu, manganese (Mn, lead (Pb and silver (Ag are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P, yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high

  1. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Raimundo, J. [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia, 1449-006 Lisbon (Portugal)], E-mail: jraimundo@ipimar.pt; Vale, C. [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia, 1449-006 Lisbon (Portugal); Duarte, R.; Moura, I. [REQUIMTE - CQFB, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, Qta Torre, 2829-516 Monte da Caparica (Portugal)

    2008-02-15

    Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment.

  2. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal)

    International Nuclear Information System (INIS)

    Raimundo, J.; Vale, C.; Duarte, R.; Moura, I.

    2008-01-01

    Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment

  3. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd

    OpenAIRE

    Duguid, J.; Bloomfield, V.A.; Benevides, J.; Thomas Jr, G.J.

    1993-01-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) ind...

  4. Cumulation of Cu, Zn, Cd, and Mn in Plants of Gardno Lake

    Directory of Open Access Journals (Sweden)

    Trojanowski J.

    2013-04-01

    Full Text Available In the present paper there have been shown the results of research on yhe content of Zn, Cd, Cu, Mn and Pb in chosen plants of Lake Gardno.The biggest concentration of those metals has been observed in Potamogton natans and Elodea canadensis, on average Zn – 34.9, Pb -2.77, Cd – 0.62, Cu – 3.24 and Mn – 257.4 μg g-1. It has been found that the over-ground parts of the plants under analysis cumulate several times less of heavy metals than their roots. The determined enrichment factors enabled the researchers to state that Cu in the examined plants is of natural origin while Mn, Cd and Zn – of anthropogenic origin.

  5. Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso?

    Science.gov (United States)

    Ondo Zue Abaga, Norbert; Dousset, Sylvie; Mbengue, Saliou; Munier-Lamy, Colette

    2014-10-01

    In Burkina-Faso, urban vegetable agriculture is often characterized by urban solid waste fertilizer inputs containing heavy metals such as Cu and Cd. Thus, the relevance of surrounding urban vegetable plots with vetiver hedges to reduce environmental pollution by Cu and Cd was investigated by adsorption studies and pot experiments. Vetiver biomass, its metal contents and, its total and MgCl2 extractable soil metals were monitored over 6months in the presence of a mixture of metal at two concentrations: 2-10 and 100-500mgkg(-1), for Cd and Cu, respectively. The Freundlich adsorption coefficient (Kf) values increased after vetiver growth and were significantly higher for vertisol than for lixisol. After 6months, the vetiver that was grown on lixisol accumulated more metal, increasing up to 4635mgkg(-1) for Cu and to 21.8mgkg(-1) for Cd, than did the vetiver that was grown on vertisol, increasing up to 1534mgkg(-1) for Cu and to 7.2mgkg(-1) for Cd. The metal bioconcentration factor, which was significantly higher for Cd, increased with the applied concentration and ranged from 1.6 to 14 for Cu and from 2.3 to 22 for Cd. Additionally, the translocation factors were higher for Cd (0.38-7.3) than for Cu (0.07-2.6), and the translocation was easiest from lixisol than from vertisol. Thus our results demonstrate the ability of vetiver for Cu and Cd phytoremediation in Burkina Faso soils. Nevertheless, these results should be confirmed across the field to advocate the establishment of vetiver hedges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Spatial distribution of Cd and Cu in soils in Shenyang Zhangshi Irrigation Area (SZIA), China*

    Science.gov (United States)

    Sun, Li-na; Yang, Xiao-bo; Wang, Wen-qing; Ma, Li; Chen, Su

    2008-01-01

    Heavy metal contamination of soils, derived from sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides, and so on, has been of wide concern in the last several decades. The Shenyang Zhangshi Irrigation Area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years. This study investigated the spatial distribution and temporal variation of soil cadmium (Cd) and copper (Cu) contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd and Cu in soils was analyzed and then the spatial distribution and temporal variation of Cd and Cu in soils were modeled using Kriging methods. The results show that long-term sewage irrigation had caused serious Cd and Cu contamination in soils. The mean and the maximum of soil Cd are markedly higher than the levels in second grade standard soil (LSGSS) in China, and the maximum of soil Cu is close to the LSGSS in China in 2004 and is more than the LSGSS in China in 1990. The contamination magnitude of soil Cd and the soil extent of Cd contamination had evidently increased since sewage irrigation ceased in 1992. The contamination magnitude of soil Cu and the soil extent of Cu contamination had evidently increased in topsoil, but obviously decresed in subsoil. The soil contamination of Cd and Cu was mainly related to Cd and Cu reactivation of contaminated sediments in Shenyang Xi River and the import of Cd and Cu during irrigation. The eluviation of Cd and Cu in contaminated topsoil with rainfall and irrigation water was another factor of temporal-spatial variability of Cd and Cu contamination in soils. PMID:18357631

  7. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species

    International Nuclear Information System (INIS)

    Canli, Mustafa; Atli, Gueluezar

    2003-01-01

    Significant relationships between metal concentrations and fish size were negative. - Heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) concentrations in the muscle, gill and liver of six fish species (Sparus auratus, Atherina hepsetus, Mugil cephalus, Trigla cuculus, Sardina pilchardus and Scomberesox saurus) from the northeast Mediterranean Sea were measured and the relationships between fish size (length and weight) and metal concentrations in the tissues were investigated by linear regression analysis. Metal concentrations (as μg/g d.w.) were highest in the liver, except for iron in the gill of Scomberesox saurus and lowest in the muscle of all the fish species. Highest concentrations of Cd (4.50), Cr (17.1) and Pb (41.2) were measured in liver tissues of T. cuculus, Sardina pilchardus and A. hepsetus, respectively. The liver of M. cephalus showed strikingly high Cu concentrations (202.8). The gill of Scomberesox saurus was the only tissue that showed highest (885.5) iron concentrations. Results of linear regression analysis showed that, except in a few cases, significant relationships between metal concentrations and fish size were negative. Highly significant (P<0.001) negative relationships were found between fish length and Cr concentrations in the liver of A. hepsetus and M. cephalus, and Cr concentrations in the gill of T. cuculus. Cr and Pb concentrations in the liver and Cu concentrations in all the tissues of Scomberesox saurus also showed very significant (P<0.001) negative relationships. Negative relationships found here were discussed

  8. Soluble/insoluble (dilute-HCl-extractable fractionation of Cd, Pb and Cu in Antarctic snow and its relationship with metal fractionations in the aerosol

    Directory of Open Access Journals (Sweden)

    Annibaldi A.

    2013-04-01

    Full Text Available A chemical fractionation methodology for determination of the (water soluble and the insoluble (dilute-HCl-extractable fractions of Cd, Pb and Cu in Antarctic snow was set-up and verified for the additivity of the two fractions detected. Molten samples were filtrated and the water-insoluble fraction was extracted by dilute ultrapure HCl (pH ~1.5. Metal determinations were carried out in the two fractions by square wave anodic stripping voltammetry. The total metal concentrations in samples collected in the 2000–2001 austral summer in a clean area (Faraglione Camp in the neighbourhood of the Mario Zucchelli Italian Station were of the order of Cd 10-20 pg g−1, Pb 20–40 pg g−1, Cu 60–120 pg g−1 with an approximate equidistribution between soluble and insoluble fractions. These fractionations compare well (and show a quite consistent temporal trend with those observed in the aerosol samples collected in the same area/period and confirm the close relationship between metal distributions in snow/ice and in the aerosol. At the station metal concentrations increase due to anthropic contribution and the distribution changes with Cd predominantly present in the soluble fraction (~80%, while Pb and Cu are more concentrated in the insoluble fraction, 70–80% and ~70%, respectively.

  9. Heavy metal (Pb, Cu, Zn and Cd content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region

    Directory of Open Access Journals (Sweden)

    Violina Angelova

    1999-09-01

    Full Text Available The investigation was carried out in the period 1991-1993 with cv. Mavrud, grown in the region with a major industrial pollutant the Non-Ferrous-Metal Works (NFMW and a region with no industrial pollutants (as a control. The heavy metal content in soil, grapes and wine was determined. Most of the heavy metals in the grapes precipitate during fermentation into the sediments, which is the reason for their significantly lower content in the wine. Water washing of grape before processing leads to about 2 time decrease in the Pb, Cu, Zn and Cd contents of wine. The pre-washing of grapes does not lead to any quality deterioration in the wine produced. The amounts of Cu, Zn and Cd in the wine from cv. Mavrud, grown in the region of the NFMW-Plovdiv, are lower than the maximum admissible levels, while the Pb content exceeds them about two times.

  10. Ferromagnetic half-metallic characteristic in bulk Ni 0.5M 0.5O (M=Cu, Zn and Cd): A GGAU study

    KAUST Repository

    Mi, Wenbo; Yang, Hua; Cheng, Yingchun; Bai, Haili

    2012-01-01

    Ferromagnetic half metallicity with a high spin polarization of 100% was predicted in the bulk Ni 0.5Cu 0.5O using density-functional theory method. The band gap of majority spin is 3.45 eV for Ni 0.5Cu 0.5O. The density of states of minority spin at the Fermi level are mainly from Cu 3d and O 2p in the Ni 0.5Cu 0.5O. The magnetic moments are from Ni 3d states. Ni 0.5Zn 0.5O and Ni 0.5Cd 0.5O systems are ferromagnetic insulators, but the magnetic moment of Ni 2 ions is enhanced by the Zn and Cd incorporation. Therefore, Ni 0.5Cu 0.5O is the potential candidate for spintronics devices because of the predicted high spin polarization. © 2012 Elsevier Ltd. All rights reserved.

  11. Ferromagnetic half-metallic characteristic in bulk Ni 0.5M 0.5O (M=Cu, Zn and Cd): A GGAU study

    KAUST Repository

    Mi, Wenbo

    2012-07-01

    Ferromagnetic half metallicity with a high spin polarization of 100% was predicted in the bulk Ni 0.5Cu 0.5O using density-functional theory method. The band gap of majority spin is 3.45 eV for Ni 0.5Cu 0.5O. The density of states of minority spin at the Fermi level are mainly from Cu 3d and O 2p in the Ni 0.5Cu 0.5O. The magnetic moments are from Ni 3d states. Ni 0.5Zn 0.5O and Ni 0.5Cd 0.5O systems are ferromagnetic insulators, but the magnetic moment of Ni 2 ions is enhanced by the Zn and Cd incorporation. Therefore, Ni 0.5Cu 0.5O is the potential candidate for spintronics devices because of the predicted high spin polarization. © 2012 Elsevier Ltd. All rights reserved.

  12. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Phytoextraction of initial cutting of Salix matsudana for Cd and Cu.

    Science.gov (United States)

    Wang, Wen-Wen; Cheng, Liu Ke; Hao, Jie Wei; Guan, Xin; Tian, Xing-Jun

    2016-06-27

    Salix species are widely used as vegetation filters because of their flourishing root system and fast growth rate. However, studies have yet to determine whether the root system functions in vegetable filters with mixed heavy metal (HM) pollution or whether initial cutting participates in the phytoextraction of HMs. This study aims to determine the function of the root system and initial cutting as vegetation filters in the absorption and accumulation of Cd and Cu. Thick (>1 cm in diameter) and fine (phytoextraction capacity of plants. The initial cuttings could also absorb and accumulate HMs in the early growth stages of willow without roots. Cu inhibited the plant absorption and accumulation of Cd and promoted Cd transport to shoots. Cd inhibited the Cu absorption of the root system. Our study provided essential data regarding woody species as vegetation filters of HM pollution.

  14. Phytoremediation efficiency of pondweed (Potamogeton crispus in removing heavy metals (Cu, Cr, Pb, As and Cd from water of Anzali wetland

    Directory of Open Access Journals (Sweden)

    Hajar Norouznia

    2014-09-01

    Full Text Available Plant-based remediation (i.e. phytoremediation is one of the most significant eco-sustainable techniques to cope with devastating consequences of pollutants. In the present study, the potential of a wetland macrophyt (i.e. Potamogeton crispus for the phytoremediation of heavy metals (i.e. Cu, Cr, Pb, As and Cd in the Anzali wetland was evaluated. The results showed that P. crispus tends to accumulate notable amounts of Cu, Cr, Pb, As and Cd according to their assayed concentrations as follows: 8.2 µg g-1 dw, 0.97 µg g-1 dw, 6.04 µg g-1 dw, 2.52 µg g-1 dw and 0.34 µg g-1 dw, respectively. Further accurate perception of the phytoremediation efficiency were conducted using both bioconcentration factor and translocation factor. The average of the highest bioconcentration factors was presented in a descending order as: 2.9×103, 1.9×103, 1.17×103, 0.68×103 and 0.46×103 for the Cu, Cr, Pb, Cd and As, respectively. Based on the results, P. crispus presents high potential to absorb all the alluded metals except for As and partly Cd. Correspondingly, the mean values of translocation factor were reported in the range of 0.41 to 2.24. Eventually, relying on the observed findings, the results support the idea that P. crispus species would be employed as the prospective candidate for the phytoremediation processes in Anzali wetland.

  15. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu{sub 2}MoS{sub 4}) nanosheets as co-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr

    2017-02-28

    Highlights: • Developed Cu{sub 2}MoS{sub 4} nanosheets as co-catalysts. • Cu{sub 2}MoS{sub 4} as active replacements for precious noble metal. • Controlled charge recombination for use in photocatalytic H{sub 2} evolution. • Obtained superior rate of H{sub 2} production by using Cu{sub 2}MoS{sub 4} loaded CdS nanorods. - Abstract: Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H{sub 2}) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu{sub 2}MoS{sub 4}) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H{sub 2} evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu{sub 2}MoS{sub 4} nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu{sub 2}MoS{sub 4}nanosheets. These layered Cu{sub 2}MoS{sub 4} nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H{sub 2} production by water splitting. We have obtained superior H{sub 2} production rates by using Cu{sub 2}MoS{sub 4} loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.

  16. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    Science.gov (United States)

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  17. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  18. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  19. Photovoltaic properties of sintered CdS/CdTe solar cells doped with Cu

    International Nuclear Information System (INIS)

    Park, J.W.; Ahn, B.T.; Im, H.B.; Kim, C.S.

    1992-01-01

    In this paper, all polycrystalline CdS/CdTe solar cells doped with Cu are prepared by a screen printing and sintering method. Cell parameters of the sintered CdS/CdTe solar cells have been investigated in an attempt to find out the optimum doping conditions and concentrations of Cu by adding various amounts of CuCl 2 either into CdTe layer or into back contact carbon layer. Cell parameters of the sintered CdS/CdTe solar cells which contained various amounts of CuCl 2 in the CdTe layers before sintering stay at about the same values as the amount of CuCl 2 increases up to 25 ppm, and then decreases sharply as the amount of CuCl 2 further increases. The Cu added in the CdTe layer diffuses into the CdS layer during the sintering of the CdS-CdTe composite at 625 degrees C to densify the CdTe layer and causes the decrease in the optical transmission of CdS resulting in the degradation of the cell performance. In case the Cu dopant was dispersed in the back carbon paint and was followed by annealing, all cell parameters are improved significantly compared with those fabricated by adding CuCl 2 in the CdTe layer before sintering. A sintered CdS/CdTe solar cell which contained 25 ppm CuCl 2 in the carbon paste and was annealed at 350 degrees C for 10 min shows the highest efficiency. The efficiency of this cell is 12.4% under solar irradiation with an intensity of 80.4 mW/cm 2

  20. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  1. Diffusion and influence of Cu on properties of CdTe thin films and CdTe/CdS cells

    Energy Technology Data Exchange (ETDEWEB)

    Dzhafarov, T.D.; Yesilkaya, S.S.; Yilmaz Canli, N.; Caliskan, M. [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2005-01-31

    The effective diffusion coefficients of Cu for thermal and photodiffusion in the CdTe films have been estimated from resistivity versus duration of thermal or photoannealing curves. In the temperature range 60-200{sup o}C the effective coefficient of thermal diffusion (D{sub t}) and photodiffusion (D{sub ph}) are described as D{sub t}=7.3x10{sup -7}exp(-0.33/kT) and D{sub ph}=4.7x10{sup -8}exp(-0.20/kT). It is found that the diffusion doping of CdTe thin films by Cu at 400{sup o}C results in a sharp decrease of resistivity up to 7 orders of magnitude of p-type material, depending on thickness of Cu film. The comparative study of performance of CdTe(Cu)/CdS and CdTe/CdS cells has been studied. It is shown that the diffusion doping of CdTe film by Cu increases efficiency of CdTe(Cu)/CdS cells from 0.9% to 6.8%. The degradation of photovoltaic parameters of CdTe(Cu)/CdS cell, during testing under forward and reverse bias at room temperature, proceeds at a larger rate than those of CdTe/CdS cell without Cu. The degradation of performance of CdTe(Cu)/CdS cells is tentatively assigned to electrodiffusion of Cu in CdTe, resulting in redistribution of concentration of Cu-related centers in CdTe film and heterojunction region.

  2. Atmospheric Deposition of Pb, Zn, Cu, and Cd in Amman, Jordan

    International Nuclear Information System (INIS)

    Momani, K.A.; Jiries, A.G.; Jaradat, Q.M.

    1999-01-01

    Atmospheric samples were collected by high-volume air sampler and dust fall containers during the summer of 1995 at different sites in Amman City, Jordan. Heavy metal contents in settle able (dust fall) as well as in air particulates (suspended) were analyzed by graphite furnace atomic absorption spectrophotometry. The atmospheric concentrations of Zn, Cu, Pb, and Cd were 344, 170, 291, and 3.8 ng/m 3 , respectively. On the other hand, the levels of these elements in dust fall deposition were 505, 94, 74, and 3.1 μg/g, respectively. The fluxes and dry deposition velocities of these heavy metals were determined and compared with the findings of other investigators worldwide. Significant enrichment coefficients of heavy metals in dust fall were observed. The enrichment coefficients were 12.1, 6.1, 11.7, and 1.1 for Zn, Cu, Pb, and Cd, respectively

  3. Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Galván, A., E-mail: amendoza@qro.cinvestav.mx [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Laboratory of Applied Optics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Arreola-Jardón, G. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Karlsson, L.H.; Persson, P.O.Å. [Thin Film Physics Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Jiménez-Sandoval, S. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico)

    2014-11-28

    The effective complex dielectric function (ε) of Cu and O containing CdTe thin films is reported in the spectral range of 0.05 to 6 eV. The films were fabricated by rf sputtering from targets comprised by a mixture of CdTe and CuO powders with nominal Cu and O concentrations in the range of 2–10 at.%. Low concentration levels improved the crystalline quality of the films. Spectroscopic ellipsometry and transmittance measurements were used to determine ε. The critical point energies E{sub 1}, E{sub 1} + Δ{sub 1}, and E{sub 2} of CdTe are red-shifted with the incorporation of Cu and O. Also, an absorption band is developed in the infrared range which is associated with a mixture of CdTe and low resistivity phases Cu{sub 2−x}Te according to an effective medium analysis. The elemental distribution of the films was mapped by energy dispersive X-ray spectroscopy using scanning transmission electron microscopy. - Highlights: • Incorporation of 2 to 10 at.% of Cu and O atoms in CdTe films • Improved crystalline quality with 2 and 3 at.% of Cu and O • Complex dielectric function of Cu and O containing CdTe thin films • Effective medium modeling of below band-gap absorption.

  4. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Directory of Open Access Journals (Sweden)

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

  5. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts

    Science.gov (United States)

    Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu

    2017-02-01

    Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H2) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H2 evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu2MoS4 nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu2MoS4nanosheets. These layered Cu2MoS4 nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H2 production by water splitting. We have obtained superior H2 production rates by using Cu2MoS4 loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.

  6. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: Implication for phytoextraction and food safety

    International Nuclear Information System (INIS)

    Li Zhongyang; Tang Shirong; Deng Xiaofang; Wang Ruigang; Song Zhengguo

    2010-01-01

    A pot experiment in six open-top chambers with two levels of CO 2 and two multi-metal contaminated soils was conducted to investigate combined effects of elevated CO 2 levels and metals (Cu and Cd) on rice. Elevated CO 2 significantly increased the total dry weight biomass of six Chinese rice by 20-108 and 32-142% for low and high levels of contaminated soils, respectively. We observed dilution/little varied phenomena in grain Cu concentration in six rice varieties grown on both contaminated soils under elevated CO 2 . We found significantly higher Cd concentrations in the parts of three rice varieties under elevated CO 2 , but lower levels for the others. Two major conclusions can be drawn from our study: (1) rice varieties with significantly increased biomass and metal uptake under elevated CO 2 exhibit greater potential for phytoextraction and (2) given expected global increases in CO 2 concentration, CO 2 -induced accumulation of metals in rice might be a component contributing to the potential health risk in the future, with Cd being a more important threat to human health than Cu.

  7. Analysis Of Non-Volatile Toxic Heavy Metals (Cd, Pb, Cu,Cr And Zn In ALLIUM SATIVUM (Garlic And Soil Samples ,Collected From Different Locations Of Punjab, Pakistan By Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ata S.

    2013-04-01

    Full Text Available Garlic is one of the most widely used medicinal plants. The monitoring of toxic metals such as lead, Cadmium, Chromium, Copper and Zinc in garlic and the soil of garlic fields collected from ten different cities of Punjab is critical for preventing public health against the hazards of metal toxicity. The levels of toxic heavy metals in garlic and soil samples were investigated using Atomic absorption spectrometer. The metal content in garlic samples was found to be in increasing order as Cr> Pb> Cd> Cu> Zn. Infield metal content in the soil also followed the same trend. In garlic samples, Pb, Cd, Cr, Zn and Cu ranged from 0.039mg/L to 0.757mg/L, N.D to 1.211mg/L, 0.03mg/L to 0.451mg/L, 0.02mg/Lto0.42mg/L and 0.451mg/L to 0.893mg/L respectively. In soil samples, Pb, Cd, Cr, Zn and Cu were ranged from 0.459mg/L to 0.797mg/L, 0.205mg/L to1.062mg/L, 0.074mg/L to 2.598mg/L, 0.124mg/L to 0.276mg/L and 0.494mg/L to 0.921mg/L respectively. In our study, the Pb and Cd was found more in garlic from Gujranwala and Jaranwala, Cu and Zn were more in samples from Kasur while Cr was predominant in sample from Sheikhupura. Heavy metal content in soil and garlic samples was within the permissible limits proposed by World Health Organization (WHO.

  8. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils

    International Nuclear Information System (INIS)

    Spurgeon, David J.; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I.J.

    2008-01-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated. - Metal distributions and risks explained by balance of sources and soil property effects on fate

  9. Study of surfaces and interfaces in CdS-Cu2S and (Cd sub(x) Zn sub(1-x))S-Cu2S solar cells

    International Nuclear Information System (INIS)

    Dhere, N.G.; Dhere, R.G.; Bloss, W.H.; Schock, H.W.; Bauer, E.; Cyris, P.

    1983-01-01

    Auger microprobe was used for the analysis of interfaces and surfaces in several stages involved in the preparation of solar cells, in order to study the origin of adhesion problems and to study the formation of CdS-Cu 2 S barrier by the wet method. The detachment of the first CdS and (Cd sub(x) Zn sub(1-x))S films, during the dip process, was attributed to the contamination of Cr-Ag metallic substrates by existing chlorine from the environment next to the sea, due to long film stocking, by degasified species from the evaporating material and by the ejection of particles together with CdS vapour during deposition. The formation of conical mounds on the surface and of the CdS-Cu 2 S barrier at aproximatelly 3000 A depth in the dipped samples were observed. The migration of copper towards surface direction and the formation of a superficial thin layer of copper oxide after treatment in H 2 plasma and air heating, were also verified. (C.L.B.) [pt

  10. Cu-Doped-CdS/In-Doped-CdS Cosensitized Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS quantum dot solar cells (QDSCs are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion, open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.

  11. Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti Contact

    International Nuclear Information System (INIS)

    Gessert, T.A.; Asher, S.; Johnston, S.; Young, M.; Dippo, P.; Corwine, C.

    2007-01-01

    High-performance CdS/CdTe photovoltaic devices can be produced using a ZnTe:Cu/Ti back contact deposited onto the CdTe layer. We observe that prolonged exposure of the ZnTe:Cu and Ti sputtering targets to an oxygen-containing plasma significantly reduces device open-circuit voltage and fill factor. High-resolution compositional analysis of these devices reveals that Cu concentration in the CdTe and CdS layers is lower for devices with poor performance. Capacitance-voltage analysis and related numerical simulations indicate that the net acceptor concentration in the CdTe is also lower for devices with poor performance. Photoluminescence analyses of the junction region reveal that the intensity of a luminescent peak associated with a defect complex involving interstitial Cu (Cu i ) and oxygen on Te (O Te ) is reduced in devices with poor performance. Combined with thermodynamic considerations, these results suggest that oxygen incorporation into the ZnTe:Cu sputtering target reduces the ability of sputtered ZnTe:Cu film to diffuse Cu into the CdTe

  12. Contrasting effects of elevated CO{sub 2} on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: Implication for phytoextraction and food safety

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhongyang [Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191 (China); Open Key Laboratory of Agro-environment and Agro-product Safety of Ministry of Agriculture, Tianjin (China); Tang Shirong, E-mail: tangshir@hotmail.com [Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191 (China); Open Key Laboratory of Agro-environment and Agro-product Safety of Ministry of Agriculture, Tianjin (China); Deng Xiaofang; Wang Ruigang; Song Zhengguo [Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191 (China); Open Key Laboratory of Agro-environment and Agro-product Safety of Ministry of Agriculture, Tianjin (China)

    2010-05-15

    A pot experiment in six open-top chambers with two levels of CO{sub 2} and two multi-metal contaminated soils was conducted to investigate combined effects of elevated CO{sub 2} levels and metals (Cu and Cd) on rice. Elevated CO{sub 2} significantly increased the total dry weight biomass of six Chinese rice by 20-108 and 32-142% for low and high levels of contaminated soils, respectively. We observed dilution/little varied phenomena in grain Cu concentration in six rice varieties grown on both contaminated soils under elevated CO{sub 2}. We found significantly higher Cd concentrations in the parts of three rice varieties under elevated CO{sub 2}, but lower levels for the others. Two major conclusions can be drawn from our study: (1) rice varieties with significantly increased biomass and metal uptake under elevated CO{sub 2} exhibit greater potential for phytoextraction and (2) given expected global increases in CO{sub 2} concentration, CO{sub 2}-induced accumulation of metals in rice might be a component contributing to the potential health risk in the future, with Cd being a more important threat to human health than Cu.

  13. Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pb2+, Cd2+, and Cu2+

    Directory of Open Access Journals (Sweden)

    Matibur Zamadar

    2016-01-01

    Full Text Available Here we report the sensing properties of the aqueous solution of meso-tetra(N-methyl-4-pyridylporphine tetrachloride (1 for simultaneous detection of toxic metal ions by using UV-vis spectroscopy. Cationic porphyrin 1 displayed different electronic absorptions in UV-vis region upon interacting with Hg2+, Pb2+, Cd2+, and Cu2+ ions in neutral water solution at room temperature. Quite interestingly, the porphyrin 1 showed that it can function as a single optical chemical sensor and/or metal ion receptor capable of detecting two or more toxic metal ions, particularly Hg2+, Pb2+, and Cd2+ ions coexisting in a water sample. Porphyrin 1 in an aqueous solution provides a unique UV-vis sensing system for the determination of Cd2+ in the presence of larger metal ions such as Hg2+, or Pb2+. Finally, the examination of the sensing properties of 1 demonstrated that it can operate as a Cu2+ ion selective sensor via metal displacement from the 1-Hg2+, 1-Pb2+, and 1-Cd2+.

  14. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.

    Science.gov (United States)

    Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-01-01

    Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.

  15. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  16. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    Science.gov (United States)

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  17. Distribution and Behaviors of Cd, Cu, and Ni in the East China Sea Surface Water off the Changjiang Estuary

    Directory of Open Access Journals (Sweden)

    Kuo-Tung Jiann

    2009-01-01

    Full Text Available Trace metal (Cd, Cu, and Ni dis tri bu tions and be hav iors in sur face waters of the East China Sea continental shelf were investigated during an expeditioncon ducted in June 2004. Dissolved and particulate trace metal con centrations, as well as fractions of dissolved trace metals, fraction ated based on their different chemical affinities to ion exchangers, were determined using ultra-clean techniques and graphite furnace atomic absorption spectrometry (GFAAS. Large variations of dissolved (< 0.45 mm metal concentrations in the East China Sea shelf waters were found (n = 16 and ranged between 0.036 - 0.287 nM for Cd, 0.87 - 8.66 nM for Cu, and 2.66 - 6.04 nM for Ni. Particulate metal contributions were highest near the river mouth. Dis solved Cd and Ni were pre dominantly present (98% for Cd and 86% for Ni as Chelex-labile fractions in the shelf waters.

  18. Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase.

    Science.gov (United States)

    Khairy, Alaaldin Idris H; Oh, Mi Jeong; Lee, Seung Min; Kim, Da Som; Roh, Kwang Soo

    2016-06-01

    Toxic heavy metals such as cadmium (Cd) and copper (Cu) are global problems that are a growing threat to the environment. Despite some heavy metals are required for plant growth and development, others are considered toxic elements and do not play any known physiological role in plant cells. Elevated doses of Cd or Cu cause toxicity in plants and generate damages due to the stress condition and eventually cause a significant reduction in quantity and quality of crop plants. The nitric oxide (NO) donor sodium nitroprusside (SNP) is reported to alleviate the toxicity of some heavy metals like Cd and Cu. In the current study, the role of NO in alleviating stresses of Cd and Cu was investigated in in vitro -grown tobacco ( Nicotiana tabacum ) Based on plant growth, total chlorophyll contents, contents and activities of rubisco and rubisco activase. According to the results of this study, the growth and total chlorophyll contents of Cd/Cu stressed plants were hugely decreased in the absence of SNP, while the supplementation of SNP resulted in a significant increase of both fresh weight and total chlorophyll contents. Remarkable reductions of Rubisco and rubisco activase contents and activities were observed in Cd and Cu-induced plants. SNP supplementation showed the highest contents and activities of rubisco and rubisco activase compared to the control and Cu/Cd-stressed plants. Taken together, our findings suggest that SNP could play a protective role in regulation of plant responses to abiotic stresses such as Cd and Cu by enhancing Rubisco and Rubisco activase.

  19. Levels Of Mn, Fe, Ni, Cu, Zn And Cd, In Effluent From A Sewage ...

    African Journals Online (AJOL)

    This study reports the results of preliminary investigation of heavy metal levels-Ni, Cd, Fe, Zn, Cu and Mn; pH; temperature and electrical conductivity in effluents from a sewage treatment oxidation pond and its receiving stream. The heavy metal concentrations were determined with Inductively Coupled Plasma-Mass ...

  20. A study: removal of Cu(II), Cd(II), and Pb(II) ions from real industrial water and contaminated water using activated sludge biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal; Yildirim, Deniz [Arts and Sciences Faculty, Chemistry Department, Cukurova University, Balcali, Adana (Turkey); Samil, Ali [Arts and Sciences Faculty, Chemistry Department, Sutcu Imam University, Kahramanmaras (Turkey); Gulnaz, Osman [Arts and Sciences Faculty, Biology Department, Cukurova University, Balcali, Adana (Turkey)

    2012-11-15

    This study aims to remove of Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+} ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion-exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of 6.0 based on its monolayer capacities. Maximum monolayer capacities of AS biomass (q{sub max}) were calculated as 0.478, 0.358, and 0.280 mmol g{sup -1} for Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}, respectively, and the adsorption equilibrium time was found as 60 min for each metal. The adsorbed amount of metal rose with increasing of initial metal ion concentration. The equilibrium adsorption capacity of AS for initial 0.25 mmol L{sup -1} metal concentration was determined as 0.200, 0.167, and 0.155 mmol g{sup -1} for Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+} ions, respectively. These relevant values were determined as 0.420, 0.305, and 0.282 mmol g{sup -1} for Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+} ions, respectively, when initial metal concentration was 0.50 mmol L{sup -1}. In the multi-metal sorption system, the adsorption capacity of AS biomass was observed in the order of Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. In the presence of 100 mmol L{sup -1} H{sup +} ion, the order of ion-exchange affinity with H{sup +} was found as Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. The adsorption kinetics were also found to be well described by the pseudo-second-order and intraparticle diffusion models. Two different rate constants were obtained as k{sub i1} and k{sub i2} and k{sub i1} (first stage) was found to be higher than k{sub i2} (second stage). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    Science.gov (United States)

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  2. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    Science.gov (United States)

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [Agricultural College, Henan University of Science and Technology, 70 Tianjin Road, Luoyang, Henan Province 471003 (China) and Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)]. E-mail: wfy1975@163.com; Lin Xiangui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China); Yin Rui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)

    2007-05-15

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens.

  4. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    International Nuclear Information System (INIS)

    Wang Fayuan; Lin Xiangui; Yin Rui

    2007-01-01

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens

  5. Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).

    Science.gov (United States)

    Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva

    2014-01-01

    This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.

  6. Electrochemiluminescence assay of Cu2+ by using one-step electrodeposition synthesized CdS/ZnS quantum dots.

    Science.gov (United States)

    Zhao, Guanhui; Li, Xiaojian; Zhao, Yongbei; Li, Yueyuan; Cao, Wei; Wei, Qin

    2017-08-21

    A sensitive and selective method was proposed to detect Cu 2+ based on the electrochemiluminescence quenching of CdS/ZnS quantum dots (QDs). Herein, CdS/ZnS QDs were one-step electrodeposited directly on a gold electrode from an electrolyte (containing Cd(NO 3 ) 2 , Zn(NO 3 ) 2 , EDTA and Na 2 S 2 O 3 ) by cycling the potential from 0 to -1.8 V. The prepared CdS/ZnS QDs exhibited excellent solubility and strong and stable cathodic ECL activity. Meanwhile, Nafion was used to immobilize CdS/ZnS QDs. The quenching effect of Cu 2+ on the cathodic ECL of CdS/ZnS QDs was found to be selective and concentration dependent. The linear range for Cu 2+ detection was from 2.5 nM to 200 nM with a detection limit of 0.95 nM. Furthermore, the designed method for the detection of Cu 2+ can provide a reference for the detection of other heavy metal ions.

  7. The Existence of Heavy Metals such as Pb, Cd, Fe, and Cu in Hair Samples from Gas Station Worker at Yogyakarta Special District

    International Nuclear Information System (INIS)

    Supriyanto, C.; Zainul Kamal; Samin

    2002-01-01

    The monitoring of heavy metals existence such as Pb, Cd, Fe, and Cu in hair samples from gas station worker has been carried out with atomic absorption spectrometry method. The initial preparation of sample were done by immersing them in alcohol over night, after they were dried then they were digested using the teflon bomb digester at the temperature at 150 o C for 3 hours. The content of Pb, Cd, Fe, and Cu in were determined with calibration standard curve method. The content of Pb obtained at hair samples in the range of time at 20 years tend to increase. If it was correlated to the worker who has been working, there was no significant different from the worker who has been working for 20 years there was no significant different. While the content of Cu in sample at range time 20 years showed the significant different if it was correlated to the worker who has been working. The validity of method was tested with CRM Human Hair GBW 07601 from IAEA showed that the content of Fe and Cu were in the certified range of CRM. (author)

  8. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    Science.gov (United States)

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  9. Determination of field-based sorption isotherms for Cd, Cu, Pb and Zn in Dutch soils

    NARCIS (Netherlands)

    Otte JG; Grinsven JJM van; Peijnenburg WJGM; Tiktak A; LBG; ECO

    1999-01-01

    Sorption isotherms for metals in soil obtained in the laboratory generally underpredict the observed metal content in the solid phase in the field. Isotherms based on in-situ data are therefore required. The aim of this study is to obtain field-based sorption isotherms for Cd, Cu, Pb and Zn as input

  10. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  11. Disponibilidade e fracionamento de Cd, Pb, Cu e Zn em função do pH e tempo de incubação com o solo Availability and fractionation of Cd, Pb, Cu, AND Zn in soil as a function of incubation time and pH

    Directory of Open Access Journals (Sweden)

    Évio Eduardo Chaves de Melo

    2008-06-01

    Full Text Available O pH e o tempo de contato influenciam a distribuição dos metais entre frações do solo e a eficiência da fitoextração. Objetivou-se, neste trabalho estudar a disponibilidade dos metais Cd, Pb, Cu e Zn para a fitoextração, bem como suas redistribuições no solo, em função do tempo de incubação em solo com e sem calagem. O solo recebeu Cd, Pb, Cu e Zn nas doses 20, 150, 100 e 150 mg kg-1, respectivamente, na forma de sal solúvel. As amostras foram incubadas por 210, 180, 150, 120, 90, 60, 30 e 0,5 dia. Terminada a incubação, mucuna preta (Stizolobium aterrimum Piper & Tracy foi cultivada por 30 dias. EDTA (10 mmol kg-1 foi aplicado sete dias, antes da coleta das plantas. As amostras de solo foram submetidas à extração química e fracionada. A concentração de metais pesados e a calagem afetaram a produção de matéria seca da parte aérea e da raiz. Em solos sem calagem, o aumento da solubilidade dos metais aumentou a fitoextração de Cd e Zn, mesmo sem aplicação do EDTA. A aplicação do EDTA ao solo com calagem mostrou-se eficiente para a fitoextração de Pb e Cu. A calagem reduziu os teores disponíveis de Cd, Pb, Cu e Zn. A calagem provocou redução nos teores de Cd, Pb, Cu e Zn trocáveis e aumento nas frações matéria orgânica, óxidos de ferro amorfo e cristalino.It is known that pH and incubation time influence the distribution of metals into soil fractions and therefore affect phytoextraction. Taking this in account, the aim of this work was to study the fractionation and availability of heavy metals for phytoextraction, as a function of incubation period in soils with or without liming. The soil samples were applied to Cd, Pb, Cu, and Zn at concentrations of 20, 150, 100, and 150 mg kg-1, respectively, in the form of soluble salt. The samples were kept incubated for high incubation periods: 210, 180, 150, 120, 90, 60, 30, and 0,5 day. After that, velvetbean (Stizolobium aterrimum Piper & Tracy was cultivated

  12. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste

    International Nuclear Information System (INIS)

    Zheng Wei; Li Xiaoming; Yang Qi; Zeng Guangming; Shen Xiangxin; Zhang Ying; Liu Jingjin

    2007-01-01

    Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1 mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl 2 , NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper

  13. Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI).

    Science.gov (United States)

    Ge, Li-Qiang; Cang, Long; Liu, Hui; Zhou, Dong-Mei

    2016-07-01

    Global warming has received growing attentions about its potential threats to human in recent, however little is known about its effects on transfer of heavy metals in agro-ecosystem, especially for Cd in rice. Pot experiments were conducted to evaluate Cd/Cu translocation in a contaminated soil-rice system under Free Air Temperature Increase (FATI). The results showed that warming gradually decreased soil porewater pH and increased water-soluble Cd/Cu concentration, reduced formation of iron plaque on root surface, and thus significantly increased total uptake of Cd/Cu by rice. Subsequently, warming significantly promoted Cd translocation from root to shoot, and increased Cd distribution percentage in shoot, while Cu was not significantly affected. Enhanced Cd uptake and translocation synergistically resulted in higher rice grain contamination with increasing concentration from 0.27 to 0.65 and 0.14-0.40 mg kg(-1) for Indica and Japonica rice, respectively. However increase of Cu in brown grain was only attributed to its uptake enhancement under warming. Our study provides a new understanding about the food production insecurity of heavy metal contaminated soil under the future global warming. Copyright © 2016. Published by Elsevier Ltd.

  14. The effect of Cu on the properties of CdO/Cu/CdO multilayer films for transparent conductive electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Raaif, M.; Mohamed, S.H. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2017-06-15

    Transparent conductive CdO/Cu/CdO multilayer films were prepared using rf plasma magnetron sputtering and electron beam evaporation techniques. The CdO layers were prepared using rf plasma magnetron sputtering, while the Cu interlayer was prepared by electron beam evaporation technique. The Cu layer thickness was varied between 1 and 10 nm. The structural and optical properties as well as the sheet resistance of the multilayer films were studied. X-ray diffraction measurements revealed the presence of cubic CdO structure and the Cu peak was only observed for the multilayers prepared with 10 nm of Cu. It has been observed that the Cu interlayer thickness has a great influence on the optical and electrical properties of the multilayers. The transmittance of the multilayer films decreased while the reflectance increased with increasing Cu interlayer thickness. The refractive index and the extinction coefficient of the multilayer films were calculated. The estimated optical band gap values were found to be decreased from 2.75 ± 0.02 to 2.40 ± 0.02 eV as the Cu interlayer thickness increased from 1 to 10 nm. The sheet resistance was sensitive to the Cu interlayer thickness and it decreased with increasing Cu interlayer thickness. A sheet resistSSance of 21.7 Ω/sq, an average transmittance (between 700 and 1000 nm) of 77%, and an optical band gap of 2.5 ± 0.02 eV were estimated for the multilayer film with 2 nm Cu layer. The multilayer film with 2 nm Cu layer has the highest figure of merit value of 3.2 x 10{sup -3} Ω{sup -1}. This indicates that the properties of this multilayer film are suitable for transparent conductive electrode applications. (orig.)

  15. Earthworm responses to Cd and Cu under fluctuating environmental conditions: a comparison with results from laboratory exposures

    International Nuclear Information System (INIS)

    Spurgeon, David J.; Svendsen, Claus; Lister, Lindsay J.; Hankard, Peter K.; Kille, Peter

    2005-01-01

    Laboratory toxicity tests are usually conducted under stable ambient conditions, while exposures in ecosystems occur in a fluctuating climate. To assess how climate influences the toxicity of Cu and Cd for the earthworm Lumbricus rubellus, this study compared effects for life-cycle parameters (survival, reproduction), cellular status (lysosomal membrane stability), gene expression (transcript of the metal binding protein metallothionein-2) and tissue metal concentration measured under outdoor conditions, with the same responses under constant conditions as measured by Spurgeon et al. [Spurgeon, D.J., Svendsen, C., Weeks, J.M., Hankard, P.K., Stubberud, H.E., Kammenga, J.E., 2003. Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete Lumbricus rubellus. Environmental Toxicology and Chemistry 22, 1465-1472]. Both metals were found to significantly influence earthworm reproduction, compromise lysosomal membrane stability and induce MT-2 gene expression in the outdoor system. Comparison with physiological and life-cycle responses in the laboratory indicated similar response patterns and effect concentrations for Cu. For Cd, lysosomal membrane stability and MT-2expression showed comparable responses in both exposures. Juvenile production rate, however, gave different dose response relationships, with the EC- 50 in the outdoor test approximately half that in the laboratory test. A difference in Cd accumulation was also seen. Overall, however, the comparison indicated only a marginal effect of environmental fluctuations typical for northern temperate Europe on earthworm sensitivity to the two metals. - Comparative analysis of life-cycle, physiological and molecular responses to Cu and Cd indicate similar responses under static and fluctuating climate regimes

  16. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    Science.gov (United States)

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  17. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.

    Science.gov (United States)

    Li, Meng; Zheng, Shili; Liu, Biao; Du, Hao; Dreisinger, David Bruce; Tafaghodi, Leili; Zhang, Yi

    2017-07-01

    A large amount of Cu-Cd zinc plant residues (CZPR) are produced from the hydrometallurgical zinc plant operations. Since these residues contain substantial amount of heavy metals including Cd, Zn and Cu, therefore, they are considered as hazardous wastes. In order to realize decontamination treatment and efficient extraction of the valuable metals from the CZPR, a comprehensive recovery process using sulfuric acid as the leaching reagent and air as the oxidizing reagent has been proposed. The effect of temperature, sulfuric acid concentration, particle size, solid/liquid ratio and stirring speed on the cadmium extraction efficiency was investigated. The leaching kinetics of cadmium was also studied. It was concluded that the cadmium leaching process was controlled by the solid film diffusion process. Moreover, the order of the reaction rate constant versus H 2 SO 4 concentration, particle size, solid/liquid ratio and stirring speed was calculated. The XRD and SEM-EDS analysis results showed that the main phases of the secondary sulfuric acid leaching residues were lead sulfate and calcium sulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. First-principles-based analysis of the influence of Cu on CdTe electronic properties

    International Nuclear Information System (INIS)

    Krasikov, D.; Knizhnik, A.; Potapkin, B.; Selezneva, S.; Sommerer, T.

    2013-01-01

    The maximum voltage of CdTe solar cells is limited by low majority carrier concentration and doping difficulty. Copper that enters from the back contact can form both donors and acceptors in CdTe. It is empirically known that the free carrier concentration is several orders lower than the total Cu concentration. Simplified thermodynamic models of defect compensation after Cu introduction can be found in literature. We present a first-principles-based analysis of kinetics of defect formation upon Cu introduction, and show that Cu i is mobile at room temperature. Calculations of properties of Cu i –V Cd and Cu i –Cu Cd complexes show that the neutral Cu i –Cu Cd complex is mobile at elevated temperatures, while formation of the V CdCu i complex is unlikely because it transforms into the Cu Cd defect. - Highlights: ► First-principles calculations of copper defects in CdTe are performed. ► Formation of Cd vacancy + Cu interstitial(Cu i ) complex is unlikely. ► Cu i defect is mobile at room temperature. ► Cu i + Cu on Cd-site (Cu Cd ) complex is mobile at elevated temperature. ► Cu Cd defect forms by kicking-out of the regular lattice Cd by Cu i

  19. Investigation of Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2}/CdS interfaces using hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ümsür, B., E-mail: buenyamin.uemsuer@helmholtz-berlin.de [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Calvet, W.; Höpfner, B.; Steigert, A.; Lauermann, I.; Gorgoi, M.; Prietzel, K.; Navirian, H.A.; Kaufmann, C.A.; Unold, T. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, M. Ch. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Department of Physics, Arnimallee 14, D-14195 Berlin (Germany)

    2015-05-01

    Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2} (CIGSe) absorbers were used as substrates for the chemical bath deposition of ultrathin CdS buffer layers in the thickness range of a few nanometers in order to make the CIGSe/CdS interface accessible by hard X-ray photo-emission spectroscopy. The composition of both, the absorber and the buffer layer as well as the energetics of the interface was investigated at room temperature and after heating the samples to elevated temperatures (200 °C, 300 °C and 400 °C). It was found that the amount of Cd after the heating treatment depends on the near surface composition of the CIGSe absorber. No Cd was detected on the Cu-poor surface after the 400 °C treatment due to its diffusion into the CIGSe layer. In contrast, Cd was still present on the Cu-rich surface after the same treatment at 400 °C. - Highlights: • Cd diffusion into Cu(In,Ga)Se{sub 2} (CIGSe) absorber is investigated. • Cu-poor and Cu-rich CIGSe samples are compared. • Cd diffusion into CIGSe is found to be dependent on the surface composition of CIGSe.

  20. Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... and analysed for Cd and Pb by electro-thermal AAS, and for Cu and Zn by flame AAS. ... measurements and the dolomitic hard water and high pH of the Mooi River water .... Copper and zinc were determined by flame analysis at 324.8 nm ... were placed separately in clean 20 ml glass vials and one ml de-.

  1. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  2. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Loureiro, Jose M. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: loureiro@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO{sub 3} as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  3. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Loureiro, Jose M.; Botelho, Cidalia M.S.; Boaventura, Rui A.R.

    2008-01-01

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO 3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions

  4. Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Marwoto, Putut; Made, D. P. Ngurah; Sugianto [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Wibowo, Edy; Astuti, Santi Yuli; Aryani, Nila Prasetya [Materials Research Group, Laboratory of Thin Film, Department of Physics, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Othaman, Zulkafli [Departement of Physics, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru (Malaysia)

    2013-09-03

    Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV.

  5. Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment

    DEFF Research Database (Denmark)

    Tankere-Muller, Sophie; Zhang, Hao; Davison, William

    2007-01-01

    to less than 0.3 μM. With both DET and DGT measurements, there were sharply defined maxima of Cu and Cd within 2 mm of the sediment water interface, consistent with their release from organic material as it is oxidised. There was a Co maximum about 5–8 mm lower than the Cu and Cd maxima, apparently...... coincidental with Mn mobilisation. While there were clear Ni maxima, their location appeared to vary from being coincident with Co to a few mm above the Co maxima. The remobilisation of metals could not be explained by the pH gradients in the near-surface sediments. As sulphate reduction rates were appreciable...

  6. A test of the stability of Cd, Cu, Hg, Pb and Zn profiles over two decades in lake sediments near the Flin Flon Smelter, Manitoba, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Percival, J.B.; Outridge, P.M., E-mail: outridge@nrcan.gc.ca

    2013-06-01

    Lake sediments are valuable archives of atmospheric metal deposition, but the stability of some element profiles may possibly be affected by diagenetic changes over time. In this extensive case study, the stability of sedimentary Cd, Cu, Hg, Pb and Zn profiles was assessed in dated sediment cores that were collected in 2004 from four smelter-affected lakes near Flin Flon, Manitoba, which had previously been cored in 1985. Metal profiles determined in 1985 were in most cases clearly reproduced in the corresponding sediment layers in 2004, although small-scale spatial heterogeneity in metal distribution complicated the temporal comparisons. Pre-smelter (i.e. pre-1930) increases in metal profiles were likely the result of long-range atmospheric metal pollution, coupled with particle mixing at the 1930s sediment surface. However, the close agreement between key inflection points in the metal profiles sampled two decades apart suggests that metals in most of the lakes, and Hg and Zn in the most contaminated lake (Meridian), were stable once the sediments were buried below the surface mixed layer. Cadmium, Cu and Pb profiles in Meridian Lake did not agree as well between studies, showing evidence of upward remobilization over time. Profiles of redox-indicator elements (Fe, Mn, Mo and U) suggested that the rate of Mn oxyhydroxide recycling within sediment was more rapid in Meridian Lake, which may have caused the Cd, Cu and Pb redistribution. - Highlights: • Sedimentary Cd, Cu, Hg, Pb and Zn profiles in four lakes were mostly unchanged over 19 years. • In one lake, Cd, Cu and Pb profiles were offset relative to the originals. • The offset could indicate diagenetic upcore dispersal of these metals.

  7. Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

    International Nuclear Information System (INIS)

    Horsfall, M.; Spiff, A. I.; Abia, A. A.

    2004-01-01

    Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb Cu 2+ and Cd 2+ from aqueous solution over a wide range of reaction conditions at 30 .deg. C. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the Cu 2+ /Cd 2+ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for Cu 2+ than Cd 2+ . According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g Cu 2+ and 119.6 mg/g Cd 2+ . The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be 2.04 x 10 -3 min -1 and 1.98 x 10 -3 min -1 for Cu 2+ and Cd 2+ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents

  8. Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India

    Science.gov (United States)

    Devi, Upama; Bhattacharyya, Krishna G.

    2018-03-01

    The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.

  9. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn

    International Nuclear Information System (INIS)

    Shi Dalin; Wang Wenxiong

    2004-01-01

    To examine the Cd, Hg, Ag, and Zn accumulation in the green mussel Perna viridis affected by previous exposure to Cu, Ag, or Zn, the dietary metal assimilation efficiency (AE) and the uptake rate from the dissolved phase were quantified. The mussel's filtration rate, metallothionein (MT) concentration, and metal tissue burden as well as the metal subcellular partitioning were also determined to illustrate the potential mechanisms underlying the influences caused by one metal pre-exposure on the bioaccumulation of the other metals. The green mussels were pre-exposed to Cu, Ag, or Zn for different periods (1-5 weeks) and the bioaccumulation of Cd, Hg, Ag, and Zn were concurrently determined. Pre-exposure to the three metals did not result in any significant increase in MT concentration in the green mussels. Ag concentration in the insoluble fraction increased with increasing Ag exposure period and Ag ambient concentration. Our data indicated that Cd assimilation were not influenced by the mussel's pre-exposure to the three metals (Cu, Ag, and Zn), but its dissolved uptake was depressed by Ag and Zn exposure. Although Hg assimilation from food was not affected by the metal pre-exposure, its influx rate from solution was generally inhibited by the exposure to Cu, Ag, and Zn. Ag bioaccumulation was affected the most obviously, in which its AE increased with increasing Ag tissue concentration, and its dissolved uptake decreased with increasing tissue concentrations of Ag and Cu. As an essential metal, Zn bioaccumulation remained relatively stable following the metal pre-exposure, suggesting the regulatory ability of Zn uptake in the mussels. Zn AE was not affected by metal pre-exposure, but its dissolved uptake was depressed by Ag and Zn pre-exposure. All these results indicated that the influences of one metal pre-exposure on the bioaccumulation of other metals were metal-specific due to the differential binding and toxicity of metals to the mussels. Such factors should

  10. Titulações potenciométricas de cátions metálicos tendo como eletrodo indicador o sistema Cu/Cu(II-EDTA Potentiometric titrations of metal cations with edta using the Cu/Cu(II-EDTA system as indicator electrode

    Directory of Open Access Journals (Sweden)

    Paulo H. Pereira da Silva

    2008-01-01

    Full Text Available In potentiometric titrations of metal cations with EDTA the Hg/HgY2- system is usually used to detect the end point. However, the use of mercury has been discouraged in analytical procedures due to its toxicity. In this work the Cu/CuY2- system was used as indicator electrode for potentiometric titrations of some metal cations with EDTA. The solutions of Cu2+, Cd2+, Mn2+, Co2+ and Zn2+ were titrated with Na2EDTA solution in the presence of a small concentration of the CuY2- complex using a copper wire as indicator electrode. The potentiometric titrations with the Cu/CuY2- system showed good correlation when compared with an Hg/HgY2- system.

  11. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    Science.gov (United States)

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  12. Spatial and Temporal Distribution of Trace Metals (Cd, Cu, Ni, Pb, and Zn in Coastal Waters off the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Kuo-Tung Jiann

    2014-01-01

    Full Text Available Surface water samples were collected along the west coast of Taiwan during two expedition cruises which represent periods of different regional climatic patterns. Information on hydrochemical parameters such as salinity, nutrients, suspended particulate matter (SPM, and Chlorophyll a concentrations were obtained, and dissolved and particulate trace metal (Cd, Cu, Ni, Pb, and Zn concentrations were determined. Spatial variations were observed and the differences were attributed to (1 influence of varying extents of terrestrial inputs from the mountainous rivers of Taiwan to the coast, and (2 urbanization and industrialization in different parts of the island. Geochemical processes such as desorption (Cd and adsorption to sinking particles (Pb also contributed to the variability of trace metal distributions in coastal waters. Results showed temporal variations in chemical characteristics in coastal waters as a consequence of prevailing monsoons. During the wet season when river discharges were higher, the transport of particulate metals was elevated due to increased sediment loads. During the dry season, lower river discharges resulted in a lesser extent of estuarine dilution effect for chemicals of anthropogenic sources, indicated by higher dissolved concentrations present in coastal waters associated with slightly higher salinity.

  13. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables

    International Nuclear Information System (INIS)

    Alexander, P.D.; Alloway, B.J.; Dourado, A.M.

    2006-01-01

    Metal contaminants in garden and allotment soils could possibly affect human health through a variety of pathways. This study focused on the potential pathway of consumption of vegetables grown on contaminated soil. Five cultivars each of six common vegetables were grown in a control and in a soil spiked with Cd, Cu, Pb and Zn. Highly significant differences in metal content were evident between cultivars of a number of vegetables for several of the contaminants. Carrot and pea cultivars exhibited significant differences in accumulated concentrations of Cd and Cu with carrot cultivars also exhibiting significant differences in Zn. Distinctive differences were also identified when comparing one vegetable to another, legumes (Leguminosae) tending to be low accumulators, root vegetables (Umbelliferae and Liliaceae) tending to be moderate accumulators and leafy vegetables (Compositae and Chenopodiaceae) being high accumulators. - Genotypic differences between cultivars of vegetable species can be important in determining the extent of accumulation of metals from contaminated soil

  14. Removal of heavy metals from aqueous solutions using Fe{sub 3}O{sub 4}, ZnO, and CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Shahriar, E-mail: smahdaviha@yahoo.com; Jalali, Mohsen, E-mail: jalali@basu.ac.ir [College of Agriculture, Bu-Ali Sina University, Department of Soil Science (Iran, Islamic Republic of); Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [College of Chemistry, Bu-Ali Sina University, Department of Analytical Chemistry (Iran, Islamic Republic of)

    2012-08-15

    This study investigated the removal of Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Pb{sup 2+} from aqueous solutions with novel nanoparticle sorbents (Fe{sub 3}O{sub 4}, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe{sub 3}O{sub 4}, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g{sup -1}, for ZnO, CuO, and Fe{sub 3}O{sub 4}, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd{sup 2+} > Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+}, while the following order was determined in multiple component solutions: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd{sup 2+} and Pb{sup 2+} was adsorption, whereas both Cu{sup 2+} and Ni{sup 2+} sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

  15. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  16. Determination of the levels of heavy metal (Cu, Fe, Ni, Pb and Cd ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    consumption or animal feed. This because the ingestion level of these metals are far above ... shown that the extent of soil pollution by heavy metals some of which were soil micronutrients is very alarming ... terrestrial foods grown in contaminated soil contain high level of Cd. Lead has no known beneficial effect to man ( ...

  17. Synthesis and characterization of heterobimetallic complexes of the type [Cu(pn2][MCl4] where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II, and Hg(II

    Directory of Open Access Journals (Sweden)

    Seema Yadav

    2016-11-01

    Full Text Available A series of new bimetallic transition metal complexes of the type [Cu(pn2] [MCl4] have been synthesized (where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II and Hg(II, pn = 1,3-diaminopropane and characterized by elemental analysis, molar conductance, TGA, IR and electronic spectra. All the compounds are 1:1 electrolyte in DMF. The Cu(II ion is square-planar while metal ions in the anionic moiety acquire their usual tetrahedral arrangement. On the basis of these studies it is concluded that anionic moiety is electrically stabilized by its cationic counterpart.

  18. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    Science.gov (United States)

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  19. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    Science.gov (United States)

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  20. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  1. Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems

    Science.gov (United States)

    Mizutani, U.; Noritake, T.; Ohsuna, T.; Takeuchi, T.

    2010-05-01

    The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga and Ni-Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co-Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.

  2. Levels of Cd (II, Mn (II, Pb (II, Cu (II, and Zn (II in Common Buzzard (Buteo buteo from Sicily (Italy by Derivative Stripping Potentiometry

    Directory of Open Access Journals (Sweden)

    P. Licata

    2010-01-01

    Full Text Available The purpose of this study was to determine the concentrations of heavy metals (Cd, Pb, Cu, Mn, and Zn in different organs (liver, kidney, muscle, lung, skin, and feathers of buzzards (Buteo buteo, utilized as a “biological indicator” for environmental contamination, from different areas of Sicily and to investigate the relationships between birds sex, age, and weight and metal levels in these samples. All samples of common buzzards were collected at the “Recovery Center of Wild Fauna” of Palermo, through the Zooprophilactic Institute. Potentiometric stripping analysis (PSA was used to determine the content of Cd(II, Cu(II, Mn(II, Pb(II, and Zn(II in bird tissues. For toxic metals, the highest levels of Pb were in liver and those of Cd in lung; Zn levels were higher than Cu and Mn in all tissues analyzed. The concentrations in liver, lung, kidney, and muscle could be considered as an indicative of chronic exposure to metals while the presence of metals in skin could be consequential to storing and elimination processes. The found concentrations of metals in the studied matrices required a highly sensitive method for their determination and a simple sample preparation procedure, and the proposed method was well suited for this purpose.

  3. Distribution and accumulation of Cd, Cu, Hg, Pb and Zn in the surface sediments of El Tobari Lagoon, central-East Gulf of California: An ecosystem associated with agriculture and aquaculture activities.

    Science.gov (United States)

    Jara-Marini, M E; Tapia-Alcaraz, J N; Dumer-Gutiérrez, J A; García-Rico, L; García-Hernández, J; Páez-Osuna, F

    2013-01-01

    The purpose of this research is to provide a comprehensive assessment of the concentration levels and spatial variability of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn) in El Tobari Lagoon in surface sediments during two seasons for several geochemical variables that could explain the observed heavy metal variability. Seventy-two surface sediments samples were collected in 12 different sites of the El Tobari Lagoon. Sediment samples were dried and subjected to acid extraction using a microwave system and five metals (Cd, Cu, Hg, Pb and Zn) were measured using atomic adsorption spectrometry. A certificate sediment material and blanks were used as quality control purposes. The enrichment factor (EF) and the index of geoaccumulation (Igeo) were calculated as index of metals contamination for the sediments, using aluminum as the conservative element. The five metals examined in sediments from El Tobari Lagoon exhibited a linear correlation with Al as result of the large specific surface areas of these sediment components and the chemical affinities between them. The metals contents in sites of the El Tobari Lagoon were variable, and Cd, Cu and Hg presented a seasonal behavior. The enrichment factor and index of geoaccumulation analysis indicated that Cd and Hg exhibited a certain extent (EF for Cd ranged from 4.10 to 10.29; EF for Hg ranged from 2.77 to 12.89) of anthropogenic pollution, while Cu showed sporadic (EF ranged from 0.43 to 2.54) anthropogenic contamination. The highest concentrations of Cd, Cu and Hg were found in the sites that regularly received discharge effluents from agriculture and aquaculture.

  4. Electroluminescent Cu-doped CdS quantum dots

    NARCIS (Netherlands)

    Stouwdam, J.W.; Janssen, R.A.J.

    2009-01-01

    Incorporating Cu-doped CdS quantum dots into a polymer host produces efficient light-emitting diodes. The Cu dopant creates a trap level that aligns with the valence band of the host, enabling the direct injection of holes into the quantum dots, which act as emitters. At low current densities, the

  5. Estudo da labilidade de Cu(II, Cd(II, Mn(II e Ni(II em substâncias húmicas aquáticas utilizando-se membranas celulósicas organomodificadas Lability study of Cu(II, Cd(II, Mn(II and Ni(II complexed by aquatic humic substances using organomodified cellulose membranes

    Directory of Open Access Journals (Sweden)

    André Henrique Rosa

    2007-02-01

    Full Text Available In this work commercial filters papers were organomodified with tetraethylorthosilicate (TEOS and 3-aminopropyltriethoxysilane (3-APTS, aiming at the development of a new analytical procedure for in-situ speciation of labile and inert metal species in aquatic systems. Parameters that exert influence on the metal lability such as pH, chelating time, concentration and characteristics of the organic matter were studied in the laboratory using tests for metal recuperation. The results showed slower kinetics for Cu ion than for Ni, Mn and Cd in the absence of aquatic humic substances (AHS. The relative lability observed for complexed metals in aquatic humic substances using organomodified filter papers was Cu>>Cd>Ni>Mn. The pH values, structural characteristics and concentration of AHS exert strong influence on the lability of the metals. The results obtained showed that the utilization of organomodified filter papers can be an interesting and promising alternative for in situ characterization of metal lability in aquatic systems.

  6. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    International Nuclear Information System (INIS)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-01-01

    Highlights: • Cu-doped CdS QDs were deposited on TiO_2 by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J_S_C = 9.40 mA cm"−"2, V_O_C = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J_S_C = 7.12 mA cm"−"2, V_O_C = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  7. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Muthalif, Mohammed Panthakkal Abdul [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Lee, Young-Seok [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Sunesh, Chozhidakath Damodharan [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Kim, Hee-Je [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Choe, Youngson, E-mail: choe@pusan.ac.kr [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of)

    2017-02-28

    Highlights: • Cu-doped CdS QDs were deposited on TiO{sub 2} by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J{sub SC} = 9.40 mA cm{sup −2}, V{sub OC} = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J{sub SC} = 7.12 mA cm{sup −2}, V{sub OC} = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  8. Lattice parameter values and phase transitions for the Cu2Cd1-zMnzSnSe4 and Cu2Cd1-zFezSnSe4 alloys

    International Nuclear Information System (INIS)

    Moreno, E.; Quintero, M.; Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P.; Delgado, G.E.; Contreras, J.E.; Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L.; Henao, J.A.; Macias, M.A.

    2009-01-01

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu 2 Cd 1-z Mn z SnSe 4 and Cu 2 Cd 1-z Fe z SnSe 4 alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu 2 Cd 0.8 Fe 0.2 SnSe 4 as well as for Cu 2 Cd 0.2 Fe 0.8 SnSe 4 the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter σ decreases as Cd is replaced by either Mn and/or Fe. For the Cu 2 Cd 1-z Mn z SnSe 4 and Cu 2 Cd 1-z Fe z SnSe 4 alloy systems, only two single solid phase fields, the tetragonal stannite α(I4-bar2m) and the wurtz-stannite δ (Pmn2 1 ) structures were found to occur in the diagram. In addition to the tetragonal stannite α phase extra X-ray diffraction lines due to MnSe and/or FeSe 2 were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  9. Bonding in d9 complexes derived from EPR: Application to CuCl2-4, CuBr2-4, and CdCl2:Cu2+

    Science.gov (United States)

    Aramburu, J. A.; Moreno, M.

    1985-12-01

    In this work are reported the theoretical expressions for the [g], hyperfine, and superhyperfine (shf) tensors of a d9 square-planar complex within a molecular orbital (MO) scheme. These expressions include contributions arising from crystal field and charge transfer excitations calculated up to third and second order perturbations, respectively. This makes the present framework more general than those previously used. Through those expressions we have derived from the experimental EPR and optical data the MO coefficients corresponding to the valence b1g(x2-y2), b2g(xy), and eg(xz,yz) levels and also the core polarization contribution K to the hyperfine tensor for the systems CuCl2-4, CuBr2-4, and CdCl2:Cu2+. The 3d charge obtained for CuCl2-4 is equal to 0.61, 0.83, and 0.85 for the antibonding 3b1g, 2b2g, and 2eg levels, respectively. These figures are much closer to the Xα results by Bencini and Gatteschi [J. Am. Chem. Soc. 105, 5535 (1983)] than to those by Desjardins et al. [J. Am. Chem. Soc. 105, 4590 (1983)]. The σ and π covalency for CuBr2-4 are both higher than for CuCl2-4 in accord to the lower electronegativity for bromine. However, only for the antibonding 3b1g level of CuBr2-4 have we obtained an electronic charge lying mainly on ligands. The covalency of CdCl2:Cu2+ is smaller than that found for CuCl2-4, a fact associated to a higher metal-ligand distance for the former. Evidence of this statement are also given from the analysis of crystal-field spectra and isotropic shf constant. The values of K derived for CuCl2-4 (128.1×10-4 cm-1), CuBr2-4 (103.6×10-4 cm-1), and CdCl2:Cu2+ (123.9×10-4 cm-1) point out the dependence of K on the equatorial covalency but also on the existence of axial ligands. The [g] tensor of CuBr2-4 is dominated by the charge transfer contribution while the crystal field one is negative. Finally an analysis of the importance of each one of the involved contributions to the spin-Hamiltonian parameters is reported for the

  10. Influence of a step-change in metal exposure (Cd, Cu, Zn) on metal accumulation and subcellular partitioning in a freshwater bivalve, Pyganodon grandis: A long-term transplantation experiment between lakes with contrasting ambient metal levels

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Sophie [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bonneris, Emmanuelle [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada) and Bayer S.A.S., Bayer CropScience, 16 Rue Jean-Marie Leclair, CP 90106, F 69266 Lyon Cedex 09 (France); Michaud, Annick [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada) and Direction des Évaluations environnementales, Ministère du Développement durable, de l’Environnement et des Parcs, 675, boul. René-Lévesque Est, 6e étage, Québec, QC G1R 5V7 (Canada); Pinel-Alloul, Bernadette [Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Montréal, QC H3C 3J7 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada)

    2013-05-15

    Highlights: ? We transferred freshwater bivalves from a reference lake to a Cd and Zn contaminated lake. ? Changes in metal accumulation and subcellular partitioning were followed over time (up to 860 d). ? Metal detoxification strategies differed between target organs (gills vs. digestive gland). ? The ability to handle Cd is inherent in P. grandis, not a trait acquired after long-term adaptation. -- Abstract: The objective of the present field experiment was to identify detoxification responses in the gills and digestive gland of a freshwater unionid bivalve, Pyganodon grandis, subjected to a step-change in metal exposure. Adult bivalves were transferred from a reference site (Lake Opasatica) and a metal-contaminated lake (Lake Héva) to a second contaminated lake (Lake Vaudray) in northwestern Quebec, Canada. Changes in organ metal concentrations, in the subcellular distribution of metals and in metallothionein concentrations were followed over time (t = 0, 132, (400) and 860 days). At each collection time and for each bivalve, the gills and digestive gland were excised and gently homogenized; six sub-cellular fractions were separated by differential centrifugation and analyzed for their Cd, Cu and Zn content, and metallothionein was quantified independently. Metal detoxification strategies were shown to differ between target organs: in the gills, incoming metals were sequestered largely in the granules, whereas in the digestive gland the same metals primarily accumulated in the cytosol, in the metallothionein-like protein fraction. These metal-handling strategies, as employed by the metal-naïve bivalves originating in the reference lake, closely resemble those identified in free-living P. grandis chronically exposed in the metal-contaminated lake, suggesting that the ability to handle incoming metals (Cd in particular) is inherent in P. grandis and is not a trait acquired after long-term adaptation of the bivalve to metal-contaminated environments. The

  11. Cu(I), Ag(I), Cd(II), and Pb(II) binding to biomolecules studied by perturbed angular correlation of $\\gamma$-rays (PAC) spectroscopy

    CERN Multimedia

    Metal ions display diverse functions in biological systems and are essential components in both protein and nucleic acid structure and function, and in control of biochemical reaction paths and signalling. Similarly, metal ions may be used to control structure and function of synthetic biomolecules, and thus be a tool in the design of molecules with a desired function. In this project we address a variety of questions concerning both the function of metal ions in natural systems, in synthetic biomolecules, and the toxic effect of some metal ions. All projects involve other experimental techniques such as NMR, EXAFS, UV-Vis, fluorescence, and CD spectroscopies providing complementary data, as well as interpretation of the experimental data by quantum mechanical calculations of spectroscopic properties. The isotopes to be employed in the proposal are the following: $^{111m}$Cd, $^{111}$Ag, $^{199m}$Hg, $^{204m}$Pb, $^{61}$Cu, $^{68m}$Cu

  12. Metal accumulation in the polychaete Hediste japonica with emphasis on interaction between heavy metals and petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Sun Fuhong; Zhou Qixing

    2007-01-01

    The accumulation of cadmium (Cd) and copper (Cu) in the polychaete Hediste japonica exposed to the mixture of Cd (or Cu) and petroleum hydrocarbons (PHCs) was investigated and compared with that exposed to single Cd (or Cu). The increased bioavailability of Cd or Cu with exposure concentrations resulted in an increase in the accumulation and net accumulation rate of Cd or Cu during single metal exposure. The net accumulation rate of Cd increased, but the net accumulation rate of Cu decreased with exposure time during single metal exposure, suggesting that H. japonica could actively regulate Cu burden in their body by inhibition of absolute uptake or promotion of excretion. The interactions between Cd (or Cu) and PHCs had complicated influences on the net accumulation rate of Cd and Cu in H. japonica under the condition of the binary mixture, which are dependent on their concentration combinations and exposure time. - The influences of petroleum hydrocarbons on Cd and Cu accumulation in H. japonica depend on their concentration combinations and exposure time

  13. Study on Characteristics of CdS/Cu2S Photovoltaic Cell

    International Nuclear Information System (INIS)

    Nwe Nwe Htun

    2011-12-01

    In this paper the CdS-Cu2S photovoltaic cell has been prepared and characteristiced by using evaporation method on glass substrate. CdS film was deposited on the Pyrex glass substrate by evaporation and Cu2S layer was obtained by electroplating in a dilute acqueous solution of CusO4 at room temperature. Silver electrode was applied to the electroplated surface. The results of electrical and optical characteristics of the CdS-Cu2S hetrojunction were investigated. The photovoltaic response has been observed under various illuminated intensity for different wavelengths in visible region. It was found to be the photovoltage and photocurrent varying with different light intensities. It can be concluded that formation of a low resistivity CdS film and Cu2S layer play a big role in obtaining a high efficiency cell.

  14. Isotherm Studies of Equilibrium Sorption of Cu2+ and Cd2+ from Aqueous Solutions by Modified and Unmodified Breadfruit Seed Hull

    Directory of Open Access Journals (Sweden)

    Christopher Uchechukwu Sonde

    2015-09-01

    Full Text Available The ability of an economically cheap adsorbent material of natural origin, African breadfruit seed hull, was assessed for Cu(II and Cd(II ions’ adsorption from aqueous solutions. The effects of adsorbent dose, particle size and initial metal ion concentrations were investigated in a batch adsorption process. The experimental data were analyzed using five two-parameter isotherm equations (i.e., Langmuir, Freundlich, Temkin, Harkins-Jura and Halsey isotherm models. Freundlich and Halsey models provided the best description for the adsorption data while the other three models gave fairly good interpretation to the experimental adsorption data. The maximum adsorption capacity corresponding to saturation of sites (qmax, obtained from the Langmuir plots, were 7.76 and 8.06 mg g-1 for Cu(II and Cd(II onto the unmodified breadfruit seed hull (UBSH and 12.67 and 13.97 mg g-1, respectively for Cu(II and Cd(II adsorption onto the modified breadfruit seed hull (MBSH. The experimental results showed that there was an enhancement in the removal of the metal ions by the mercaptoacetic acid-modified breadfruit seed hull. DOI: http://dx.doi.org/10.17807/orbital.v7i3.625 

  15. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

    Science.gov (United States)

    Yang, Jingli; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping; Li, Chenghao

    2011-03-01

    A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

  16. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Science.gov (United States)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-02-01

    In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including JSC = 9.40 mA cm-2, VOC = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, JSC = 7.12 mA cm-2, VOC = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV-vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  17. Analysis of Metal-Binding Features of the Wild Type and Two Domain-Truncated Mutant Variants of Littorina littorea Metallothionein Reveals Its Cd-Specific Character

    Directory of Open Access Journals (Sweden)

    Òscar Palacios

    2017-07-01

    Full Text Available After the resolution of the 3D structure of the Cd9-aggregate of the Littorina littorea metallothionein (MT, we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF, Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M9-LlwtMT complexes with Zn(II and Cd(II, while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I. As expected, the truncated mutants gave rise to unique M6-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II than for Zn(II, although the analysis of the Zn(II/Cd(II displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II binding. Contrarily, the analysis of their Cu(I binding abilities revealed that every LlMT domain is prone to build Cu4-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.

  18. Contents of Cd, Cu and Zn in Rhizophora (mangrove and avicennia germinans of the Cienaga Grande de Santa Marta and Chengue bay, Colombian Caribbean coast

    International Nuclear Information System (INIS)

    Campos, Nestor Hernando; Gallo, Maria Cristina

    1997-01-01

    In order to determine concentration levels of some heavy metals (Cd, Cu, Zn) in leaves of the mangrove species Rhizophora mangle and Avicennia germinans, four samplings were made between March and December 1993, in two from the Magdalenas coast. Leaf material, sediments, and surface water were taken. Metal concentrations and organic matter content were measured from the leaves and sediments. Salinity, redox potential, and ph were determined from the water. Flame Atomic Absorption Spectrophotometry measured the metal contents in the samples. The general behavior of three metals in the two species was greatly influenced by the season. The comparison between the total metal contents at the two stations showed no statistically significant differences. In the large majority of cases the concentrations of the three metals were larger in A. germinans than in R. Mangle. Also, young leaves of both species had higher concentrations than old ones. The contents in the plant material and in the sediments showed the relation Cd < Cu < Zn both

  19. Pixe analysis of Cu,Zn,Hg and Cd in mussels samples in bay of Algiers

    International Nuclear Information System (INIS)

    Benamar, M.A.; Tchantchane, A.; Benouali, N.; Azbouche, A.; Tobbeche, S.

    1995-01-01

    The purpose of our work is the elaboration of and absolute technique for determination of trace elements in biological matrices by means of Pixe analysis. We are interested in the determination of heavy metals in mussels samples taken from differents sits of algies coast (Cu,Zn,Cd and Hg). The reason of our choise is the element toxicity and the possible contamination of the marine environment

  20. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.

    Science.gov (United States)

    Duguid, J; Bloomfield, V A; Benevides, J; Thomas, G J

    1993-11-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between

  1. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    International Nuclear Information System (INIS)

    Tipping, E.; Rothwell, J.J.; Shotbolt, L.; Lawlor, A.J.

    2010-01-01

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  2. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.u [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Rothwell, J.J. [Upland Environments Research Unit, School of Environment and Development, University of Manchester, Manchester M13 9PL (United Kingdom); Shotbolt, L. [Geography Department, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2010-05-15

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  3. Distribution and Behaviors of Cd, Cu, and Ni in the East China Sea Surface Water off the Changjiang Estuary

    OpenAIRE

    Kuo-Tung Jiann; Liang-Saw Wen; Gwo-Ching Gong

    2009-01-01

    Trace metal (Cd, Cu, and Ni) dis tri bu tions and be hav iors in sur face waters of the East China Sea continental shelf were investigated during an expeditioncon ducted in June 2004. Dissolved and particulate trace metal con centrations, as well as fractions of dissolved trace metals, fraction ated based on their different chemical affinities to ion exchangers, were determined using ultra-clean techniques and graphite furnace atomic absorption spectrometry (GFAAS). Large variations of dissol...

  4. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Wu, P.; Zhou, Y.

    2008-01-01

    In this study fixed-bed sorption filters are filled with an iron based sorbent (ferrosorp plus, FP) and used to remove a range of heavy metals (i.e. As, Cd, Cr, Cu, Ni, and Zn) from polluted water. It is found that FP is very effective at simultaneous removal of the heavy metals, and the magnitude...... inflow pH of 6.8 and heavy metal concentration of ≈2.8 μM. It is concluded that FP has high affinity to heavy metals and it can be used (e.g. as a filter medium) to treat waters containing a wide range of heavy metals, e.g. stormwater, industrial wastewater....

  5. Levels of Cd, Cu, Pb and V in marine sediments in the vicinity of the Single Buoy Moorings (SBM3) at Mina Al Fahal in the Sultanate of Oman

    International Nuclear Information System (INIS)

    Al-Husaini, Issa; Abdul-Wahab, Sabah; Ahamad, Rahmalan; Chan, Keziah

    2014-01-01

    Highlights: • Assessed metal contamination in the SBM3 marine sediments of Mina Al Fahal, Oman. • Examined heavy metal concentration levels of Cd, Cu, Pb and V. • Mean concentration in the sediments, from highest to lowest, is V > Cu > Pb > Cd. • Highest concentration of V due to waste discharges from nearby heavy tanker traffic. • ICP-OES found low concentrations of all four heavy metals; SMB3 region in good quality. - Abstract: Recently in the Sultanate of Oman, there has been a rapid surge of coastal developments. These developments cause metal contamination, which may affect the habitats and communities at and near the coastal region. As a result, a study was conducted to assess the level of metal contamination and its impact on the marine sediments in the vicinity of the Single Buoy Moorings 3 (SBM3) at Mina Al Fahal in the Sultanate of Oman. Marine subtidal sediment samples were collected from six different stations of the SBM3 for the period ranging from June 2009 to April 2010. These samples were then analyzed for their level and distribution of the heavy metals of cadmium (Cd), copper (Cu), lead (Pb) and vanadium (V). Overall, low concentrations of all four heavy metals were measured from the marine sediments, indicating that the marine at SBM3 is of good quality

  6. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Adsorption of Pb, Cd, Zn, Cu and Hg ions on Formaldehyde and ...

    African Journals Online (AJOL)

    Adsorption of Pb(II), Cd(II), Zn(II), Cu(II) and Hg(II) ions on formaldehyde and Pyridine modified bean husks were determined. The adsorption capacity of formaldehyde modified bean husks (mg/g) was: Pb2+, 5.01; Cd2+, 3.63; Zn2+, 2.18; Hg2+, 1.82; Cu2+, 1.58 and that of pyridine modified bean husk was: Hg2+, 6.92; Cd2+ ...

  8. Description of two-metal biosorption equilibria by Langmuir-type models.

    Science.gov (United States)

    Chong, K H; Volesky, B

    1995-08-20

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-matal systems containing either (Cu + Zn), (Cu + Cd), or (Zn + Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 "affinity" for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu or Cd were present. The uptake of Cd wasmuch more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the "affinity" of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal. (c) 1995 John Wiley & Sons Inc.

  9. Preconcentration and solid phase extraction method for the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples using activated carbon by FAAS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, K. [Department of Environmental Sciences, S. V. University, Tirupati 517502, AP (India); Suresh Kumar, K. [Department of Chemistry, S. V. University, Tirupati 517502, AP (India); Suvardhan, K. [Department of Chemistry, S. V. University, Tirupati 517502, AP (India); Janardhanam, K. [Department of Environmental Sciences, S. V. University, Tirupati 517502, AP (India)]. E-mail: kandukurijanardhanam@gmail.com; Chiranjeevi, P. [Department of Chemistry, S. V. University, Tirupati 517502, AP (India)

    2007-08-17

    2-{l_brace}[1-(2-Hydroxynaphthyl) methylidene] amino{r_brace} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0 {+-} 0.2 and eluted with 6 ml of 1 M HNO{sub 3} in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 {mu}g ml{sup -1}. The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples.

  10. Preconcentration and solid phase extraction method for the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples using activated carbon by FAAS

    International Nuclear Information System (INIS)

    Kiran, K.; Suresh Kumar, K.; Suvardhan, K.; Janardhanam, K.; Chiranjeevi, P.

    2007-01-01

    2-{[1-(2-Hydroxynaphthyl) methylidene] amino} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0 ± 0.2 and eluted with 6 ml of 1 M HNO 3 in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 μg ml -1 . The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples

  11. Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals.

    Science.gov (United States)

    Dey, Priyadarshini; Gola, Deepak; Mishra, Abhishek; Malik, Anushree; Kumar, Peeyush; Singh, Dileep Kumar; Patel, Neelam; von Bergen, Martin; Jehmlich, Nico

    2016-11-15

    In the present study, five fungal strains viz., Aspergillus terreus AML02, Paecilomyces fumosoroseus 4099, Beauveria bassiana 4580, Aspergillus terreus PD-17, Aspergillus fumigatus PD-18, were screened for simultaneous multimetal removal. Highest metal tolerance index for each individual metal viz., Cd, Cr, Cu, Ni, Pb and Zn (500mg/L) was recorded for A. fumigatus for the metals (Cd, 0.72; Cu, 0.72; Pb, 1.02; Zn, 0.94) followed by B. bassiana for the metals (Cd, 0.56; Cu, 0.14; Ni, 0.29; Zn, 0.85). Next, the strains were exposed to multiple metal mixture (Cd, Cr, Cu, Ni, Pb and Zn) of various concentrations (6, 12, 18, 30mg/L). Compared to other strains, B. bassiana and A. fumigatus had higher cube root growth (k) constants indicating their better adaptability to multi metal stress. After 72h, multimetal accumulation potential of B. bassiana (26.94±0.07mg/L) and A. fumigatus (27.59±0.09mg/L) were higher than the other strains at initial multimetal concentration of 30mg/L. However, considering the post treatment concentrations of individual metals in multimetal mixture (at all the tested concentrations), A. fumigatus demonstrated exceptional performance and could bring down the concentrations of Cd, Cu, Ni, Pb and Zn below the threshold level for irrigation prescribed by Food and Agriculture Organization (FAO). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The role of Cd and Ga in the Cu(In,Ga)S2/CdS heterojunction studied with X-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Johnson, Benjamin E.

    2010-01-01

    Photovoltaic cells with the structure Glass/Mo/Cu(In,Ga)S 2 /CdS/i-ZnO/n+-ZnO are currently among the most successful and promising thin-layer solar cells. In this system, the Cu(In,Ga)S 2 (CIS) acts as the absorber, the CdS as the buffer layer and the ZnO as the window layer. The goal of this work is the investigation of the Cu(In,Ga)S 2 /CdS semiconductor heterojunction both as a component of the solar cell and as a separate material system. The characteristics of this junction were investigated both during junction formation through chemical bath deposition (CBD) and after the junction was completed. It is currently thought that the Cu(In,Ga)S 2 /CdS junction is responsible for several different properties of the solar cell: lattice matching and band offset optimization between the absorber and window layer and chemical passivation of the absorber surface by the CBD-CdS process on CIS which acts to reduce the surface defect density. The Cd may also pin the Fermi Level on the CIS surface or cause a type inversion of the absorber surface from p-type to n-type. In order to investigate the junction several new methods were used along side the conventional methods of X-ray, Ultraviolet and Inverse Photoelectron Spectroscopy. These were Near-UV Constant Final State Yield Spectroscopy for the measurement of the valence band offset at the interface between CIS and CdS and Near Edge X-ray Absorption Fine Structure to follow the development of the Cu(In,Ga)S 2 conduction band edge with increasing Ga concentration. Additionally, the advantages and disadvantages of the established and new methods were compared and discussed. It was discovered that the deposition of CdS neither pins the Fermi Level on the CIS surface at a position important for the solar cell, nor does it dope the absorber surface, although the deposition does lead to the formation of a Cd-containing CIS surface layer (CIS:Cd). Because this surface layer is not soluble in HCl it cannot be CdS as this is

  13. Mecanismos de resistencia a Metales tóxicos (CD) bajo variaciones abióticas en Microalgas

    OpenAIRE

    Alondra A. Cortés Téllez; Sebastián Sánchez-Fortún Rodríguez; Ma. Carmen Bartolomé Camacho

    2018-01-01

    En los ecosistemas acuáticos, la presencia de ciertos metales (Cu, Zn, Fe) a concentraciones traza son esencialespara distintas actividades biológicas. Sin embargo, otros metales como el Cd y Pb son considerados tóxicos aconcentraciones muy bajas y no participan como micronutrientes. Estos metales interactúan con componentesesenciales a través de enlaces iónicos y covalentes induciendoestrés oxidativo, reemplazo de cationes esenciales,etc. Asimismo, presentan la capacidad de acumularse y biom...

  14. Short-term influence of Cu, Zn, Ni and Cd excess on metabolism, ultrastructure and distribution of elements in lichen Xanthoria parietina (L.) Th. Fr.

    Science.gov (United States)

    Piovár, J; Weidinger, M; Bačkor, M; Bačkorová, M; Lichtscheidl, I

    2017-11-01

    Lichens are symbiotic organisms that are very sensitive to heavy metal pollution. However, there is little evidence of how heavy metal pollution affects the physiological status, ultrastructural changes and distribution of elements in the layers of lichen thalli. For this purpose we simulated metal pollution to lichens and studied its impact on Xanthoria parietina. Thalli were treated with the heavy metals Cu, Zn, Ni, Cd in the form of sulfates at concentrations of 100µM and 500µM during 24, 48 and 72h. Untreated lichens served as controls. We assessed the status of physiological parameters (fluorescence and integrity of chlorophyll a, content of soluble proteins and ergosterol), ultrastructural changes, especially to the photobiont, and the distribution of elements in the layers of thalli in relation to treatment with heavy metals. We found positive correlations between the content of all tested heavy metals and the physiological response. We assessed the toxicity of the selected metals as follows: Cd >= Cu >= Ni > Zn, based on the effects on the photobiont layer in the lichen thallus and physiological measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam; Evaluacion de metales pesados Cr, Fe, Ni, Cu, Zn, Cd, Pb y Hg en agua, sedimento y lirio acuatico (Eichhornia crassipes) de la Presa Jose Antonio Alzate, Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Avila P, P

    1996-12-31

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences ({alpha} < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author).

  16. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.

    Science.gov (United States)

    Massadeh, A M; El-Khateeb, M Y; Ibrahim, S M

    2017-08-01

    There is no sufficient data that evaluate heavy metal content in cosmetic products in Jordan as well as Sudan and Syria. This study aims to assess metal levels which include Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) in cosmetic products. These elements have draft limits because they are identified as potential impurities and are known to be toxic. This study aims to provide information to the population that may be beneficial to public health. Samples were collected from different brands obtained from markets in Jordan, Sudan, and Syria. Some of the selected cosmetic products were eyeliner, eye pencil, mascara, lipstick, powder, face cream, body cream, sun block, Vaseline, and the traditional eye cosmetic (kohl). The heavy metal content in these samples were determined by atomic absorption spectrometry (AAS). Based on analysis of variance analysis, a significant difference in heavy metal levels was found for samples obtained from Jordanian and Sudanese markets. The acid digestion method used in this study was based on procedures recommended by Nnorom et al. with some modifications as follows. (i) A weight of 2.0 g of cosmetic sample was dissolved in a mixture of 6 mL of high quality concentrated 69% nitric acid (HNO 3 ; Merck, Darmstadt, Germany) and 4 mL of concentrated 37% hydrochloric acid (Scharlau, Spain) in a porcelain crucible and heated on a hotplate to near dryness. (ii) An aliquot of 15 mL HNO 3 (1.00 M) was added to the digested sample and filtered through a Whatman No. 40 filter paper. (iii) The digested sample was transferred quantitatively into a 25 mL volumetric flask and then diluted with deionized water. (iv) Each digested sample was evaporated at 70 °C to about 1 mL and transferred into a polyethylene flask and diluted with 25 mL deionized water. (v) Blank was treated in the same procedure. In Jordan the concentration ranges of heavy metals in the collected samples were: Cd (0.03-0.10 μg/g), Cr (0.0-1.00

  17. Risk assessment for Cd, Cu, Pb and Zn in urban soils: Chemical availability as the central concept

    International Nuclear Information System (INIS)

    Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, Paul F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO 3 (reactive), 0.01 M CaCl 2 (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioaccessible pool). Oral bioaccessibility in urban soils was higher than in samples from rural, industrial and mining areas which is most likely related to sources of metals and parent materials of corresponding soils. The availability and reactivity were described well by non-linear Freundlich-type equations when considering differences in soil properties. The resulting empirical models are able to predict availability and reactivity and can be used to improve the accuracy of risk assessment. Furthermore, a close 1:1 relationship exists between results from the 0.43 M HNO 3 method and the SBET method which substantially facilitates risk assessment procedures and reduces analytical costs. -- Highlights: ► Availability of PTEs in urban soils is described well by non-linear Freundlich-type equations. ► A 1:1 relationship was obtained between the 0.43 M HNO 3 method and the SBET method. ► A single soil extraction indicates reactivity and bioaccessibility of metals in soils. ► The reactive pool is suitable to assess risks of Cd, Cu, Pb and Zn in urban soils. -- A single analysis of the reactive pool by dilute nitric acid is suitable to assess risks of Cd, Cu, Pb and Zn in urban soils related to leaching to (ground)water and exposure to human beings (bioaccessibility)

  18. Cd, Zn, Ni and Cu in the Indian Ocean

    NARCIS (Netherlands)

    Saager, Paul M.; Baar, Hein J.W. de; Howland, Robin J.

    1992-01-01

    Vertical profiles of dissolved Cd, Zn, Ni and Cu in the Northwest Indian Ocean (Arabian Sea) exhibit a nutrient type distribution also observed in other oceans. The area is characterized by strong seasonal upwelling and a broad oxygen minimum zone in intermediate waters. However, neither Cd, Zn, Ni

  19. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  20. Evaluation of the air quality regarding total suspended particles and heavy metals (Pb, Cd, Ni, Cu, Cr) in the Hermosillo city, Sonora, Mexico, during a yearly period; Evaluacion de la calidad del aire respecto de particulas suspendidas totales y metales pesados (Pb, Cd, Ni, Cu, Cr) en la Ciudad de Hermosillo, Sonora, Mexico, durante un periodo anual

    Energy Technology Data Exchange (ETDEWEB)

    Cruz C, M. E.; Quintero N, M. [Universidad Autonoma de Baja California, Instituto de Ingenieria, Campus Mexicali, Calle de la Normal s/n, y Blvd. Benito Juarez, Col. Insurgentes Este, Mexicali, Baja California (Mexico); Gomez A, A.; Varela S, J., E-mail: martincruzcampas@hotmail.com [Universidad de Sonora, Departamento de Ingenieria Quimica y Metalurgia, Blvd. Rosales y Luis Ensina s/n, Edificio 5B, Col. Centro, 83000 Hermosillo, Sonora (Mexico)

    2013-07-01

    In the present study, the air quality of the city of Hermosillo, Sonora, Mexico was assessed considering total suspended particulates (tsp) and heavy metals (Pb, Cd, Ni, Cu, Cr) from June 2001 through May 2002 in three monitoring sites Centro (Mazon), Nor este (CESUES) and Noroeste (CBTIS). The filter-samples used for that purpose were provided by the Air Quality Evaluation and Improvement Program (PEMCA) of the municipality of Hermosillo. The sampling method was based on high volume sampling frequency set every 6 days with non-simultaneous sampling among the three sampling sites. Filters were dissolved for metal determination by acidic-extraction, and then analyzed by flame atomic absorption spectrophotometry. Results indicate that tsp concentrations at Centro and Noroeste sites were frequently higher than the maximum daily permissible level (260 {mu}g/m{sup 3}), while in the three sites the annual average was higher than the maximum annual permissible level (75 {mu}g/m{sup 3}) both established in the standard NOM-024-Ssa-1993 (Ssa 1994a). According to the Air Quality Standard Index (US EPA 1992a), used in Mexico by Air Quality Metropolitan Index (IMECA) the results indicate that the air quality in the city of Hermosillo regarding tsp was placed between no satisfactory and poor. In regard to heavy metals (Pb, Cd, Ni, Cu, Cr), concentrations detected were below the maximum permissible levels and/or criteria taking into account the standard NOM-026-Ssa-1993 (Ssa 1994b), the Who criterion (2000), the European Union criterion (Cec 2003), and the European Environmental Agency criteria (EEA 2004). Such findings would mean that airborne metals are of no concern; however, air quality is still classified as no satisfactory due to high particulate matter concentrations. Keeping air quality parameters monitoring is recommended in order to get extensive data for use in risk studies of air quality and health (morbidity/mortality), as well as topographic conditions

  1. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  2. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam

    International Nuclear Information System (INIS)

    Avila P, P.

    1995-01-01

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences (α < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author)

  3. Lattice parameter values and phase transitions for the Cu2Cd1-zMn zGeSe4 and Cu2Cd1-zFe zGeSe4 alloys

    International Nuclear Information System (INIS)

    Quintero, E.; Tovar, R.; Quintero, M.; Delgado, G.E.; Morocoima, M.; Caldera, D.; Ruiz, J.; Mora, A.E.; Briceno, M.; Fernandez, J.L.

    2007-01-01

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu 2 Cd 1-z Mn z GeSe 4 and Cu 2 Cd 1-z Fe z GeSe 4 alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. The effect of the annealing temperature and cooling rate to room temperature are discussed. For the Cu 2 Cd 1-z Fe z GeSe 4 system, only two single solid phase fields, the tetragonal stannite α and the wurtz-stannite δ structures were found to occur in the diagram. For the Cu 2 Cd 1-z Mn z GeSe 4 system, in addition to the tetragonal stannite α and the wurtz-stannite δ phases, MnSe was found to exist in the diagram. The DTA experiments showed that the cooling curves for both systems exhibited effects of undercooling

  4. Forest Soil Pollution with Heavy Metals (Pb, Zn, Cd, and Cu in the Area of the “French Mines” on the Medvednica Mountain, Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Perković

    2017-01-01

    Full Text Available Background and Purpose: This paper deals with the results of the investigation of the selected heavy metal contents in forest soil in the region of an abandoned mine. The analysis of the forest ecosystem soil on the Medvednica Mountain was conducted in the region of the so-called “French Mines” (FM. The elements selected for analyses were cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn because of their toxicological characteristics. Material and Methods: In the investigated area - five entrances of the FM - composite topsoil samples (0–5 cm were taken. Those samples were compared to the control samples which were taken outside the area affected by mines. The soil samples were analysed for the following parameters: pH, particle size distribution, organic C content and pseudo-total mass fractions of the selected heavy metals. The heavy metals were determined by atomic emission spectrometry with inductively coupled plasma (ICP-MS. Results and Conclusion: The results reveal that the soil is locally polluted, i.e. the highest mass fraction values of these four heavy metals were found in the area of the FM. Average pseudo-total fraction of Cd in the analysed topsoil samples was in the range of 0.17–4.41 mg·kg−1 (median: 0.97 mg·kg−1. Cu was found in the range of 4.54–1260 mg·kg−1 (median: 45.7 mg·kg−1. In the case of Zn, mass fraction values were found in the range of 36.8–865 mg·kg−1 (median: 137 mg·kg−1. Finally, average values of the pseudo-total fraction of Pb were found in the range of 58.4–12000 mg·kg−1 (median: 238 mg·kg−1. The results reveal that mining activities leave consequences on soil for a long time.

  5. The role of Cd and Ga in the Cu(In,Ga)S{sub 2}/CdS heterojunction studied with X-ray spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benjamin E.

    2010-08-15

    Photovoltaic cells with the structure Glass/Mo/Cu(In,Ga)S{sub 2}/CdS/i-ZnO/n+-ZnO are currently among the most successful and promising thin-layer solar cells. In this system, the Cu(In,Ga)S{sub 2} (CIS) acts as the absorber, the CdS as the buffer layer and the ZnO as the window layer. The goal of this work is the investigation of the Cu(In,Ga)S{sub 2}/CdS semiconductor heterojunction both as a component of the solar cell and as a separate material system. The characteristics of this junction were investigated both during junction formation through chemical bath deposition (CBD) and after the junction was completed. It is currently thought that the Cu(In,Ga)S{sub 2}/CdS junction is responsible for several different properties of the solar cell: lattice matching and band offset optimization between the absorber and window layer and chemical passivation of the absorber surface by the CBD-CdS process on CIS which acts to reduce the surface defect density. The Cd may also pin the Fermi Level on the CIS surface or cause a type inversion of the absorber surface from p-type to n-type. In order to investigate the junction several new methods were used along side the conventional methods of X-ray, Ultraviolet and Inverse Photoelectron Spectroscopy. These were Near-UV Constant Final State Yield Spectroscopy for the measurement of the valence band offset at the interface between CIS and CdS and Near Edge X-ray Absorption Fine Structure to follow the development of the Cu(In,Ga)S{sub 2} conduction band edge with increasing Ga concentration. Additionally, the advantages and disadvantages of the established and new methods were compared and discussed. It was discovered that the deposition of CdS neither pins the Fermi Level on the CIS surface at a position important for the solar cell, nor does it dope the absorber surface, although the deposition does lead to the formation of a Cd-containing CIS surface layer (CIS:Cd). Because this surface layer is not soluble in HCl it cannot

  6. SWASV speciation of Cd, Pb and Cu for the determination of seawater contamination in the area of the Nicole shipwreck (Ancona coast, Central Adriatic Sea).

    Science.gov (United States)

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe

    2011-12-01

    The study reports for the first time on the heavy metal contamination of the waters surrounding a shipwreck lying on the sea floor. Square wave anodic stripping voltammetry has been used for a survey of the total and dissolved Cd, Pb and Cu contents of the seawater at the site of the sinking of the Nicole M/V (Coastal Adriatic Sea, Italy). Results show that the hulk has a considerable impact as regards all three metals in the bottom water, especially for the particulate fraction concentrations, which increased by factors of ≈ 9 (Cd), ≈ 3 (Pb) and ≈ 5 (Cu). The contaminated plume extended downstream for about 2 miles. Much lower contamination was observed for dissolved bottom concentrations; nevertheless Pb (0.56 ± 0.03 nmol/L) is higher than the Italian legal limits established for 2015 and Cd (0.23 ± 0.03 nmol/L) is very close the limit of Cd will be exceeded if the hulk is not removed. Copyright © 2011. Published by Elsevier Ltd.

  7. Cd, Pb and Cu in spring waters of the Sibylline Mountains National Park (Central Italy, determined by square wave anodic stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Truzzi C.

    2013-04-01

    Full Text Available Square wave anodic stripping voltammetry (SWASV was used to determine Cd, Pb and Cu in spring waters of the Sibylline Mountains National Park, Central Italy. Samples were collected from three different areas of the Park (Mount Bove North, Mount Bove South and Springs of River Nera during the period 2004-2011. Physical-chemical parameters were also determined to obtain a general characterization of the waters. Very low metal concentrations were observed (i.e., Cd 1.3±0.4 ng L-1, Pb 13.8±5.6 ng L-1, Cu 157±95 ng L-1, well below the legal limits and also below the medians of known Italian and European data. Comparing the three areas it was noted that waters from the area of the Nera Springs are the poorest in heavy metals and the richest in minerals, that conversely the waters of Mt. Bove North are the richest in heavy metals and the poorest in mineral salts, and finally that intermediate values both for heavy metals and mineral salts were observed for the waters of Mt. Bove South.

  8. Bioavailability and Variability of Cd, Pb, Zn, and Cu Pollution in Soft Tissues and Shell of Saccostrea cucullata Collected from the Coast of Qeshm Island, Persian Gulf, Iran

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2016-07-01

    Full Text Available Background: Marine pollution is a global environmental problem that its monitoring by ideal biomonitors is of great importance. Marine organisms, especially mussels, have the ability to accumulate metals from the environment; they can be considered as a biomonitoring agent. Methods: In this study, concentrations of heavy metals were measured in Saccostrea cucullata collected from seven sites on Qeshm Island's Coast. To achieve a digesting sample, each soft tissue was obtained and each of the shell homogeneous powders, 0.8 g and 1 g, respectively, were mixed with 10 mL HNO3 (69% and poured into a PTFE digestion vessel. The prepared samples were evaluated for Cd, Cu, and Zn by using a flame AAS Model 67OG and for Pb by using a graphite furnace AAS. Results: The distributions of metals between soft tissues and shells were compared in each sampling site. For seven sites, Cd, Zn, and Cu levels in soft tissues were higher than in the shells, but Pb level was higher in the shells than in the soft tissues. In addition, the results indicated the coefficient of variation (CV in the soft tissues was lower than the shells for Cd, and in the shells lower than the soft tissues for Pb, whereas the CV values were different in both the soft tissues and shells for Zn and Cu. Conclusion: The results of this study support using these materials in S. cucullata for biomonitoring. Shells are appropriate for monitoring Pb contamination, and the soft tissues are more apt for monitoring Cd, Zn, and Cu contamination.

  9. Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia)

    International Nuclear Information System (INIS)

    Blasco, J.; Puppo, J.

    1999-01-01

    The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200-600 μg·l -1 ), Pb (350-700 μg·l -1 ) and Cu (10-20 μg·l -1 ) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l -1 , 7 days) and copper (20 μg·l -1 , 5 days) were observed significant differences (P -1 . A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Effects of Different Doping Ratio of Cu Doped CdS on QDSCs Performance

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2015-01-01

    Full Text Available We use the successive ionic layer adsorption and reaction (SILAR method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.

  11. Determination of Cu, Zn and Cd in Soil, Water and Food Products in the Vicinity of RMG Gold and Copper Mine, Kazreti, Georgia

    Directory of Open Access Journals (Sweden)

    Guranda Avkopashvili

    2017-06-01

    Full Text Available Functioning of polymetallic factories are considerable harming the ecological systems in the environment. Operation of RMG Gold and Copper Mine in the SE part of Georgia causes severe ecological problems in the region. It is vital that conducted monitoring near the areas where industrial activities are underway. The study is aimed at eco-monitoring of the Bolnisi municipality, Georgia. The monitoring was conducted of heavy metals (Cu, Zn, Cd in system “water-soil-plant” in the area of Kazreti (Madneuli – villages: Balichi, Ratevani, Naxiduri, Xidiskhuri. According to the results obtained in the soil, content of heavy metals are significantly higher than the allowable concentration limit. In spite of this in crops of the plants which were grown on this soil, content of Cu and Zn does not exceed the allowed concentration limits, Cd content was not found. Study plants were green been, mauhroom, green walnut, green pepper, cucumber, cherry, potato, tomato, walnut, garlic, dry been and corn. Study water were rivers Kazretula and Mashavera's water. Rivers Kazretula and Mashavera water content Zn and Cd concentration.

  12. Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land)

    Energy Technology Data Exchange (ETDEWEB)

    Annibaldi, A.; Truzzi, C.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche - Ancona, Department of Marine Science, Ancona (Italy)

    2007-02-15

    Eight PM10 aerosol samples were collected in the vicinity of the ''Mario Zucchelli'' Italian Antarctic Station (formerly Terra Nova Bay Station) during the 2000-2001 austral summer using a high-volume sampler and precleaned cellulose filters. The aerosol mass was determined by differential weighing of filters carried out in a clean chemistry laboratory under controlled temperature and humidity. A two-step sequential extraction procedure was used to separate the water-soluble and the insoluble (dilute-HCl-extractable) fractions. Cd, Pb and Cu were determined in the two fractions using an ultrasensitive square wave anodic stripping voltammetric (SWASV) procedure set up for and applied to aerosol samples for the first time. Total extractable metals showed maxima at midsummer for Cd and Pb and a less clear trend for Cu. In particular, particulate metal concentrations ranged as follows: Cd 0.84-9.2 {mu}g g{sup -1} (average 4.7 {mu}g g{sup -1}), Pb 13.2-81 {mu}g g{sup -1} (average 33 {mu}g g{sup -1}), Cu 126-628 {mu}g g{sup -1} (average 378 {mu}g g{sup -1}). In terms of atmospheric concentration, the values were: Cd 0.55-6.3 pg m{sup -3} (average 3.4 pg m{sup -3}), Pb 8.7-48 pg m{sup -3} (average 24 pg m{sup -3}), Cu 75-365 pg m{sup -3} (average 266 pg m{sup -3}). At the beginning of the season the three metals appear widely distributed in the insoluble (HCl-extractable) fraction (higher proportions for Cd and Pb, 90-100%, and lower for Cu, 70-90%) with maxima in the second half of December. The soluble fraction then increases, and at the end of the season Cd and Pb are approximately equidistributed between the two fractions, while for Cu the soluble fraction reaches its maximum level of 36%. Practically negligible contributions are estimated for crustal and sea-spray sources. Low but significant volcanic contributions are estimated for Cd and Pb ({proportional_to}10% and {proportional_to}5%, respectively), while there is an evident although not

  13. Determination of Cd, Pb, Zn and Cu in Sediment Compartments by Sequential Extraction and Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID-ICP-MS

    Directory of Open Access Journals (Sweden)

    Gardolinski Paulo C. F. C.

    2002-01-01

    Full Text Available Trace concentrations of Cd, Cu, Pb and Zn in four different sediment fractions extracted in sequence were determined by isotope dilution inductively coupled mass spectrometry (IDICPMS. The metals from each fraction were extracted following the sequential extraction procedure recommended by the Bureau Commun de Référence (BCR of the Commission of the European Communities. As an alternative to external calibration, the elements were quantified by spiking the extracted solutions with 112Cd, 63Cu, 208Pb and 66Zn and application of isotope dilution. The proposed approach was applied to a sample collected from a lake and two standard reference materials, NIST2704 river sediment from the National Institute of Standards & Technology and the BCR-277 estuarine sediment. Detection limits, for each extracted solution, varied from 0.31 to 0.53 mug L¹ for Cd, 0.92 to 2.9 mug L¹ for Cu, 0.22 to 1.1 mug L¹ for Pb and 1.3 to 7.6 mug L¹ for Zn. The sum of the metals concentration in the different fractions was compatible with 95% confidence level found amounts obtained with complete digestion of the samples and with the certified values of the standard reference materials.

  14. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils

    International Nuclear Information System (INIS)

    Hobbelen, P.H.F.; Koolhaas, J.E.; Gestel, C.A.M. van

    2006-01-01

    The aim of this study was to determine important metal pools for bioaccumulation by the earthworms Lumbricus rubellus and Aporrectodea caliginosa in soils with high binding capacity. Cd, Cu and Zn concentrations in soil, pore water and CaCl 2 extracts of soil, in leaves of the plant species Urtica dioica and in earthworms were determined at 15 field sites constituting a gradient in metal pollution. Variations in the Cu and Cd concentrations in L. rubellus and Cu concentrations in A. caliginosa were best explained by total soil concentrations, while variation in Cd concentration in A. caliginosa was best explained by pore water concentrations. Zn concentrations in L. rubellus and A. caliginosa were not significantly correlated to any determined variable. It is concluded that despite low availability, earthworms in floodplain soils contain elevated concentrations of Cu and Cd, suggesting that uptake takes place not only from the soluble metal concentrations. - Earthworms in floodplain soils not only accumulate heavy metals from soluble metal pools

  15. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils

    Energy Technology Data Exchange (ETDEWEB)

    Hobbelen, P.H.F. [Department of Animal Ecology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)]. E-mail: phobbelen@usgs.gov; Koolhaas, J.E. [Department of Animal Ecology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Gestel, C.A.M. van [Department of Animal Ecology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2006-11-15

    The aim of this study was to determine important metal pools for bioaccumulation by the earthworms Lumbricus rubellus and Aporrectodea caliginosa in soils with high binding capacity. Cd, Cu and Zn concentrations in soil, pore water and CaCl{sub 2} extracts of soil, in leaves of the plant species Urtica dioica and in earthworms were determined at 15 field sites constituting a gradient in metal pollution. Variations in the Cu and Cd concentrations in L. rubellus and Cu concentrations in A. caliginosa were best explained by total soil concentrations, while variation in Cd concentration in A. caliginosa was best explained by pore water concentrations. Zn concentrations in L. rubellus and A. caliginosa were not significantly correlated to any determined variable. It is concluded that despite low availability, earthworms in floodplain soils contain elevated concentrations of Cu and Cd, suggesting that uptake takes place not only from the soluble metal concentrations. - Earthworms in floodplain soils not only accumulate heavy metals from soluble metal pools.

  16. Evaluation of the air quality regarding total suspended particles and heavy metals (Pb, Cd, Ni, Cu, Cr) in the Hermosillo city, Sonora, Mexico, during a yearly period

    International Nuclear Information System (INIS)

    Cruz C, M. E.; Quintero N, M.; Gomez A, A.; Varela S, J.

    2013-01-01

    In the present study, the air quality of the city of Hermosillo, Sonora, Mexico was assessed considering total suspended particulates (tsp) and heavy metals (Pb, Cd, Ni, Cu, Cr) from June 2001 through May 2002 in three monitoring sites Centro (Mazon), Nor este (CESUES) and Noroeste (CBTIS). The filter-samples used for that purpose were provided by the Air Quality Evaluation and Improvement Program (PEMCA) of the municipality of Hermosillo. The sampling method was based on high volume sampling frequency set every 6 days with non-simultaneous sampling among the three sampling sites. Filters were dissolved for metal determination by acidic-extraction, and then analyzed by flame atomic absorption spectrophotometry. Results indicate that tsp concentrations at Centro and Noroeste sites were frequently higher than the maximum daily permissible level (260 μg/m 3 ), while in the three sites the annual average was higher than the maximum annual permissible level (75 μg/m 3 ) both established in the standard NOM-024-Ssa-1993 (Ssa 1994a). According to the Air Quality Standard Index (US EPA 1992a), used in Mexico by Air Quality Metropolitan Index (IMECA) the results indicate that the air quality in the city of Hermosillo regarding tsp was placed between no satisfactory and poor. In regard to heavy metals (Pb, Cd, Ni, Cu, Cr), concentrations detected were below the maximum permissible levels and/or criteria taking into account the standard NOM-026-Ssa-1993 (Ssa 1994b), the Who criterion (2000), the European Union criterion (Cec 2003), and the European Environmental Agency criteria (EEA 2004). Such findings would mean that airborne metals are of no concern; however, air quality is still classified as no satisfactory due to high particulate matter concentrations. Keeping air quality parameters monitoring is recommended in order to get extensive data for use in risk studies of air quality and health (morbidity/mortality), as well as topographic conditions, meteorological and

  17. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.

    Science.gov (United States)

    Shen, Zhang Jun; Xu, De Cong; Chen, Yan Song; Zhang, Zhen

    2017-09-01

    Fengdan (Paeonia ostii) is one of Chinese 34 famous medicinal materials. This study investigated the concentrations of Arsenic (As), Chromium (Cr), Cadmium (Cd), Copper (Cu), Lead (Pb), Iron (Fe), Manganese (Mn), and Zinc (Zn) in rhizosphere soils, cortex mouton and seeds of Fengdan planted in a metal mining area, China. The mean concentrations of As, Cd, Cu, and Zn in the rhizosphere soils were above the limits set by the Chinese Soil Environmental Quality Standard (GB 15618-1995). The contamination factor (CF) of Cd was >5, while it was >2for As, Cu, Pb, and Zn in all the soils. The integrated pollution index for all the soils was >3 and ˂ 5. Metal concentrations in the edible parts of Fengdan were in the following decreasing order: Mn>Fe>Zn>Cu>Pb>As>Cr≥Cd. The transfer factor mean values for As, Cu, Cd and Fe in the cortex moutan of old Fengdan (over 6 years) were significantly higher than in young Fengdan. Available metal concentrations, pH and soil organic matter content influenced the metal concentrations of the cortex moutan. The results indicated that mining and smelting operations have led to heavy metals contamination of soils and medicinal parts of Fengdan. The major metal pollutants were elemental Cd, Cu, Pb, and Zn. Heavy metals mainly accumulated in the cortex moutan of Fengdan. The mean concentrations of Cd, Cu, and Pb in the old cortex moutan (over 6 years) were above those of the Chinese Green Trade Standards for Medicinal Plants and Preparations in Foreign Trade (WM/T2-2004). Copyright © 2017. Published by Elsevier Inc.

  18. Distribution of Cd, Pb and Cu between dissolved fraction, inorganic particulate and phytoplankton in seawater of Terra Nova Bay (Ross Sea, Antarctica) during austral summer 2011-12.

    Science.gov (United States)

    Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C

    2017-10-01

    During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Speciation of Cr, Co, Cu, Cd, Zn and Pbin the sediment of Almendares river

    International Nuclear Information System (INIS)

    De La Rosa, D.; Olivares, S.; Lima, L.; Borroto, J.; Santana, J.L.; Gonzalez, M.; Ravelo, R.

    2004-01-01

    This work presents the speciation of Cr, Co, Cu, Cd, Zn and Pbin the sediment of Almendares river. The procedure of sequential extraction in three steps (SM and T) was used and the levels of metals in the residual phase were determined. The lake sediment sample (CRM-BCR 601) specific for this process, was used for the validation of the sample from the river. Detection limits and quantification acceptable for the determination of metals were achieved by the use of the method of analysis with AAE. Parameters as repeatability and reproducibility of the equipment, of the extraction method, and of the digestion of the sample, as well as the influence of the extrayents solutions in the different step of solution were evaluated

  20. Assessing metal contamination from construction and demolition (C&D) waste used to infill wetlands: using Deroceras reticulatum (Mollusca: Gastropoda).

    Science.gov (United States)

    Staunton, John A; Mc Donnell, Rory J; Gormally, Michael J; Williams, Chris D; Henry, Tiernan; Morrison, Liam

    2014-11-01

    Large quantities of construction and demolition waste (C&D) are produced globally every year, with little known about potential environmental impacts. In the present study, the slug, Deroceras reticulatum (Mollusca: Gastropoda) was used as the first biomonitor of metals (Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Ti, Tl, V and Zn) on wetlands post infilling with construction and demolition (C&D) waste. The bioaccumulation of As, Ba, Cd, Co, Sb, Se and Tl were found to be significantly elevated in slugs collected on C&D waste when compared to unimproved pastures (control sites), while Mo, Se and Sr had significantly higher concentrations in slugs collected on C&D waste when compared to known contaminated sites (mining locations), indicating the potential hazardous nature of C&D waste to biota. Identifying exact sources for these metals within the waste can be problematic, due to its heterogenic nature. Biomonitors are a useful tool for future monitoring and impact studies, facilitating policy makers and regulations in other countries regarding C&D waste infill. In addition, improving separation of C&D waste to allow increased reuse and recycling is likely to be effective in reducing the volume of waste being used as infill, subsequently decreasing potential metal contamination.

  1. UV-Induced Anisotropy In CdBr2-CdBr2: Cu Nanostructures

    Directory of Open Access Journals (Sweden)

    El-Naggar A. M.

    2015-09-01

    Full Text Available We have found an occurrence of anisotropy in the nanostructure CdBr2-CdBr2: Cu nanocrystalline films. The film thickness was varied from 4 nm up to 80 nm. The films were prepared by successive deposition of the novel layers onto the basic nanocrystals. The detection of anisotropy was performed by occurrence of anisotropy in the polarized light at 633 nm He-Ne laser wavelength. The occurrence of anisotropy was substantially dependent on the film thickness and the photoinduced power density. Possible mechanisms of the observed phenomena are discussed.

  2. Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Andersen, Ulrik Grønbjerg; Thyssen, Anders

    2010-01-01

    The formation of shear bands during plastic deformation of Cu0.50Zr0.50 and Mg0.85Cu0.15 metallic glasses is studied using atomic-scale computer simulations. The atomic interactions are described using realistic many-body potentials within the effective medium theory, and are compared with similar...... simulations using a Lennard-Jones description of the material. The metallic glasses are deformed both in simple shear and in a simulated nanoindentation experiment. Plastic shear localizes into shear bands with a width of approximately 5 nm in CuZr and 8 nm in MgCu. In simple shear, the shear band formation...... is very clear, whereas only incipient shear bands are seen in nanoindentation. The shear band formation during nanoindentation is sensitive to the indentation velocity, indenter radius and the cooling rate during the formation of the metallic glass. For comparison, a similar nanoindentation simulation...

  3. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  4. Analysis and Pollution Assessment of Heavy Metal in Soil, Perlis

    International Nuclear Information System (INIS)

    Siti Norbaya Mat Ripin; Siti Norbaya Mat Ripin; Sharizal Hasan; Mohd Lias Kamal; NorShahrizan Mohd Hashim

    2014-01-01

    Concentration of 5 heavy metals (Cu, Cr, Ni, Cd, Pb) were studied in the soils around Perlis, to assess heavy metals contamination distribution due to industrialization, urbanization and agricultural activities. Soil samples were collected at depth of 0-15 cm in eighteen station around Perlis. The soil samples (2 mm) were obtained duplicates and subjected to hot block digestion and the concentration of total metal was determined via ICP-MS. Overall concentrations of Cu, Cr, Ni, Cd and Pb in the soil samples ranged from 0.38-240.59, 0.642-3.921, 0.689-2.398, 0-0.63 and 0.39-27.47 mg/ kg respectively. The concentration of heavy metals in the soil display the following decreasing trend: Cu> Pb> Cr> Ni> Cd. From this result, found that level of heavy metal in soil near centralized Chuping industrial areas give maximum value compared with other location in Perlis. The Pollution index revealed that only 11 % of Cu and 6 % of Cd were classes as heavily contaminated. Meanwhile, Cu and Pb showed 6 % from all samples result a moderately contaminated and the others element give low contamination. Results of combined heavy metal concentration and heavy metal assessment indicate that industrial activities and traffic emission represent most important sources for Cu, Cd and Pb whereas Cr, Ni mainly from natural sources. Increasing anthropogenic influences on the environment, especially pollution loadings, have caused negative changes in natural ecosystems and decreased biodiversity. (author)

  5. Square-wave anodic-stripping voltammetric determination of Cd, Pb and Cu in wine: Set-up and optimization of sample pre-treatment and instrumental parameters

    International Nuclear Information System (INIS)

    Illuminati, Silvia; Annibaldi, Anna; Truzzi, Cristina; Finale, Carolina; Scarponi, Giuseppe

    2013-01-01

    For the first time, square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for the determination of Cd, Pb and Cu in white wine after UV photo-oxidative digestion of the sample. The best procedure for the sample pre-treatment consisted in a 6-h UV irradiation of diluted, acidified wine, with the addition of ultrapure H 2 O 2 (three sequential additions during the irradiation). Due to metal concentration differences, separate measurements were carried out for Cd (deposition potential −950 mV vs. Ag/AgCl/3 M KCl deposition time 15 min) and simultaneously for Pb and Cu (E d −750 mV, t d 30 s). The optimum set-up of the main instrumental parameters, evaluated also in terms of the signal-to-noise ratio, were as follows: E SW 20 mV, f 100 Hz, ΔE step 8 mV, t step 100 ms, t wait 60 ms, t delay 2 ms, t meas 3 ms. The electrochemical behaviour was reversible bielectronic for Cd and Pb, and kinetically controlled monoelectronic for Cu. Good accuracy was found both when the recovery procedure was used and when the results were compared with data obtained by differential pulse anodic stripping voltammetry. The linearity of the response was verified up to ∼4 μg L −1 for Cd and Pb and ∼15 μg L −1 for Cu. The detection limits for t d = 5 min in the 10 times diluted, UV digested sample were (ng L −1 ): Cd 7.0, Pb 1.2 and Cu 6.6, which are well below currently applied methods. Application to a Verdicchio dei Castelli di Jesi white wine revealed concentration levels of Cd ∼0.2, Pb ∼10, Cu ∼30 μg L −1 with repeatabilities of (±RSD%) Cd ±6%, Pb ±5%, Cu ±10%

  6. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins

    Directory of Open Access Journals (Sweden)

    Atrian Sílvia

    2011-01-01

    Full Text Available Abstract Background The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT were used as model molecules in order to elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD and ultra violet-visible (UV-Vis spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was

  7. An investigation of the evolution of evolution of distribution and accumulation of heavy metals(Cr, Ni, Cu, Cd, Zn and Pb) in Anzali wetland's sediments

    International Nuclear Information System (INIS)

    Sartaj, M.; Fatollahi, F.; Filizadeh, Y.

    2005-01-01

    To investigate the precipitation of heavy metals in Anzali wetland and evaluate its refining performance this study was carried out on the wetland. Monthly samples of sediments from 15 stations including inlets, outlets and some internal locations in the wetland were collected and analyzed over a period of six months (July - December 2002). Sediment samples were analyzed for six metals of Cr, Cd, Pb, Zn, Cu and Ni. Wet digestion method was employed for extraction of metals in samples by and through a solution containing HN03 and HCL. Atomic Adsorption spectrophotometry was employed for measurement of the heavy metals. Statistical methods, including analysis of variance (ANOVA), correlation and Cluster analysis were used for analysis of the data. The results indicated that concentration of heavy metals present in sediments (collected from different stations and at different times) here significantly different. Among the metals studied, Zn was of the highest concentration Heavy metal concentrations in stations 1 1, 12 and 13 were lower than in other stations. Sediments in station 5 contained the highest concentrations of heavy metals among all sediments. It can be stated that concentration of heavy metals decreases with an increase in the distance from delta of rivers entering the wetland.2. This is due to the role and performance of wetland chemical contents in reduction of pollutants, the self-purification action of wetland as well as precipitation of heavy metals at the beginning of the entries into the wetland

  8. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  9. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  10. Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata

    Directory of Open Access Journals (Sweden)

    M. Shuhaimi-Othman

    2012-01-01

    Full Text Available Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae were exposed for a four-day period in laboratory conditions to a range of copper (Cu, cadmium (Cd, zinc (Zn, lead (Pb, nickel (Ni, iron (Fe, aluminium (Al, and manganese (Mn concentrations. Mortality was assessed and median lethal times (LT50 and concentrations (LC50 were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al. Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals.

  11. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    Science.gov (United States)

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Holm, Peter E.; Fantke, Peter

    2015-01-01

    H or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about...... the influence of aging time on the reactivity of metals from anthropogenic sources in soils. Thus, for calculating comparative toxicity potentials of man-made metal contaminations in soils, we recommend using time-horizon independent accessibility factors derived from source-specific reactive fractions....

  13. Brazing of Cu with Pd-based metallic glass filler

    Energy Technology Data Exchange (ETDEWEB)

    Terajima, Takeshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: terajima@jwri.osaka-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Yuji [Materials and Structures Laboratory, Tokyo Institute of Technology (Japan); Zhang, Wei; Kimura, Hisamichi; Inoue, Akihisa [Institute for Materials Research, Tohoku University (Japan)

    2008-02-25

    Metallic glass has several unique properties, including high mechanical strength, small solidification shrinkage, small elastic modulus and supercooling state, all of which are well suited as a residual stress buffer for metal and ceramic joining. In the present preliminary study, we demonstrated brazing of Cu rods with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass filler. The brazing was carried out at 873 K for 1 min in a vacuum atmosphere (1 x 10{sup -3} Pa), and then the specimens were quenched at the rate of 30 K/s by blowing He. The metallic glass brazing of Cu using Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler was successful, with the exception that several voids remained in the filler. According to micro-focused X-ray diffraction, no diffraction patterns were observed at both the center of the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler and the Cu/Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} interface. The result showed that the Cu specimens were joined with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler in the glassy state. The tensile fracture strength of the brazed specimens ranged from 20 to 250 MPa. The crack extension from the voids in the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler may have caused the results to be uneven and very low compared to the strength of Pd-based bulk metallic glass.

  14. Immunoglobulin classes, metal binding proteins, and trace metals in ...

    African Journals Online (AJOL)

    , IgA and IgM), metal binding proteins (Transferrin, Caeruloplasmin, Alpha-2- Macroglobulin and Haptoglobin) and nutritionally essential trace metals/heavy metals (Zn, Fe, Se, Cu, Mg, Cd and Pb) in Nigerian cassava processors using single ...

  15. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    Science.gov (United States)

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electrical parameters of metal doped n-CdO/p-Si heterojunction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, P. [Department of Physics, Sri Vidya College of Engineering & Technology, Virudhunagar 626005, Tamilnadu (India); Prithivikumaran, N., E-mail: janavi_p@yahoo.com [Nanoscience Research Lab, Department of Physics, VHNSN College, Virudhunagar 626001, Tamilnadu (India)

    2016-11-15

    The CdO, Al doped CdO and Cu doped CdO thin films were coated on p-type silicon substrates by sol–gel spin coating method. The structural, surface morphological and electrical properties of undoped, Al and Cu doped CdO films on silicon substrate were studied. The Ag/CdO/p-Si, Ag/Al: CdO/p-Si and Ag/Cu: CdO/p-Si heterojunction diodes were fabricated and the diode parameters such as reverse saturation current, barrier height and ideality factor of the diodes were investigated by current–voltage (I–V)characteristics. The reverse current of the diode was found to increase strongly with the doping. The values of barrier height and ideality factor were decreased by doping with aluminium and copper. Photo response of the heterojunction diodes was studied and it was found that, the heterojunction diode constructed with the doped CdO has larger Photo response than the undoped heterojunction diode.

  17. Cu induced reactions on 110Cd-108Cd-106Cd, 109Ag-107Ag and 110Pd. New rhenium, osmium and iridium isotopes

    International Nuclear Information System (INIS)

    Cabot, C.; Della Negra, S.; Deprun, C.; Gauvin, H.; Le Beyec, Y.

    1978-01-01

    By 63 Cu induced reactions on 110 Cd, 108 Cd, 106 Cd, 109 Ag, 107 Ag and 110 Pd targets, new isotopes were searched in the Ir, Os, Re region. Cross bombardments and excitation function measurements were used to identify new α emitting isotopes. The α-decay measurements are compared to the Qα values obtained from different mass predictions

  18. Controllable architecture of CdS and CuS by single-source precursor-mediated approach and their photocatalytic activity

    International Nuclear Information System (INIS)

    Sahoo, Ashish K.; Srivastava, Suneel K.

    2013-01-01

    The present work deals with the preparation of hexagonal CdS and CuS by solvothermal decomposition of the morpholine-4-carbdithioate (MCDT) complexes of Cd and Cu in a water/THF mixture at 140–180 °C for 24 h and characterization. Scanning electron microscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy show that CdS exhibits a hierarchical star- and lotus flower-like morphology in the presence of disodium salt of ethylenediamine tetraaceticacid and sodium dodecyl benzene sulphonate as soft templates at 140 and 160 °C, respectively. However, Cu complex of MCDT forms CuS nanoparticles in the temperature range of 140–180 °C. On the contrary, CdS nanoparticles and CuS microparticles are formed in the absence of any template under the identical experimental conditions. Raman studies show the characteristic peak of CdS and CuS, irrespective of their size and morphology. Finally, CdS and CuS of varying morphology have successfully been used as catalysts in UV photocatalytic decomposition of methylene blue dye. These findings show that CdS lotus-like microflowers are more effective catalysts than hierarchical stars, though the latter is found to have better reusability.Graphical AbstractA simple soft template-assisted and single complex source precursor-mediated solvothermal synthesis of CdS and CuS with a diverse set of morphology has been reported. In addition, the morphology and application in photocatalysis are also discussed.

  19. Controllable architecture of CdS and CuS by single-source precursor-mediated approach and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Ashish K.; Srivastava, Suneel K., E-mail: sunil111954@yahoo.co.uk [Indian Institute of Technology Kharagpur, Department of Chemistry (India)

    2013-04-15

    The present work deals with the preparation of hexagonal CdS and CuS by solvothermal decomposition of the morpholine-4-carbdithioate (MCDT) complexes of Cd and Cu in a water/THF mixture at 140-180 Degree-Sign C for 24 h and characterization. Scanning electron microscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy show that CdS exhibits a hierarchical star- and lotus flower-like morphology in the presence of disodium salt of ethylenediamine tetraaceticacid and sodium dodecyl benzene sulphonate as soft templates at 140 and 160 Degree-Sign C, respectively. However, Cu complex of MCDT forms CuS nanoparticles in the temperature range of 140-180 Degree-Sign C. On the contrary, CdS nanoparticles and CuS microparticles are formed in the absence of any template under the identical experimental conditions. Raman studies show the characteristic peak of CdS and CuS, irrespective of their size and morphology. Finally, CdS and CuS of varying morphology have successfully been used as catalysts in UV photocatalytic decomposition of methylene blue dye. These findings show that CdS lotus-like microflowers are more effective catalysts than hierarchical stars, though the latter is found to have better reusability.Graphical AbstractA simple soft template-assisted and single complex source precursor-mediated solvothermal synthesis of CdS and CuS with a diverse set of morphology has been reported. In addition, the morphology and application in photocatalysis are also discussed.

  20. Simulating the long-term chemistry of an upland UK catchment: Heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: et@ceh.ac.uk; Lawlor, A.J. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology (Lancaster), Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Shotbolt, L. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom)

    2006-05-15

    CHUM-AM was used to investigate the behaviours of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in three moorland sub-catchments in Cumbria UK. The principal processes controlling cationic metals are competitive partitioning to soil organic matter, chemical interactions in solution, and chemical weathering. Metal deposition histories were generated by combining measured data for the last 30 years with local lake sediment records. For Ni, Cu, Zn and Cd, default parameters for the interactions with organic matter provided reasonable agreement between simulated and observed present-day soil metal pools and average streamwater concentrations. However, for Pb, the soil binding affinity in the model had to be increased to match the observations. Simulations suggest that weakly-sorbing metals (Ni, Zn, Cd) will respond on timescales of decades to centuries to changes in metal inputs or acidification status. More strongly-sorbing metals (Cu, Pb) will respond over centuries to millennia. - Catchment turnover times for the strongly-retained metals Cu and Pb are of the order of centuries, whereas those for the more mobile Ni, Zn and Cd are appreciably shorter.

  1. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Krześlak, Anna; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Morawiec-Sztandera, Alina [Department of Head and Neck Surgery, Medical University of Łódź, Paderewskiego 4, 93-509 Łódź (Poland); Aleksandrowicz, Paweł [Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin (Poland); Lewy-Trenda, Iwona [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  2. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    International Nuclear Information System (INIS)

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona

    2014-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels

  3. Use of analcime zeolite from mineral coal fly ash in adsorption of Cu"+"2 and Cd"+"2 in aqueous solutions

    International Nuclear Information System (INIS)

    Rocha Junior, C.A.F.; Santos, S.C.A.; Angelica, R.S.; Neves, R.F.; Souza, C.A.G.

    2011-01-01

    The use of zeolite for removing heavy metals from contaminated effluents over the years has been widespread due to its high cation exchange capacity in aqueous solutions. Thus this study aims to use analcime zeolite for removal of Cu"+"2 and Cd"+"2 from aqueous solutions at different concentrations, and the zeolitic material synthesized from coal fly ash generated in an alumina plant in northern Brazil . The use of zeolite analcime proved quite satisfactory, since this product has removed almost entirely Cu"+"2 and Cd"+"2 solutions with concentrations up to 200ppm, and demonstrated an average capacity for solutions of 400ppm, which shows good applicability of this material for the treatment of effluent contamination in the ranges studied. The adsorption models of Langmuir and Freundlich showed a good fit to experimental data generated in this work. (author)

  4. Bio-geochemical studies of indus delta mangrove ecosystem through heavy metal assessment

    International Nuclear Information System (INIS)

    Ismail, S.; Saifullah, S.M.

    2014-01-01

    In the present study monitoring of heavy metal pollution was done in the mangrove habitats of Indus Delta. Different levels of four heavy metal (Pb, Cu, Cd, and Zn) in abiotic component (sediments and water) and biotic components (mangrove plants parts like, (Pneumatophores, bark, leaves, flowers, and fruits) were determined. The highest average concentration of heavy metals (111 ppm Zn, 60.0 ppm Pb, 52.2 ppm Cu, 1.43 ppm Cd) were measured in sediments and the lowest in the water (0.13 ppm Zn, 0.0014 ppm Cu, 0.0007 ppm Pb , 0.00061 ppm Cd). Among the four heavy metals, Zn was the most abundant metal in all components of the ecosystem, followed by Cu, Pb, and Cd (Zn>Cu>Pb>Cd), and hence A. marina can be proposed as a hyper-accumulator for Zn, which opens doors for further research. The pollution load index (PLI) had values higher than 1 and varied between 2.02-1.70 at Indus Delta, whereas at MianiHor the PLI was 0.65, which indicated that Indus Delta mangrove Ecosystem was under threat of pollution under the present scenario. (author)

  5. Chemical reactions at CdS heterojunctions with CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Angel; Rockett, Angus [Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801 (United States)

    2013-03-15

    The stability of the CdS/CuInSe{sub 2} (CIS) heterojunction is critical to understanding the projected lifetime of CIS devices and the effect of processing conditions on the nanoscale chemistry of the heterojunction. This article reports the results of annealing heterojunctions between CdS deposited by chemical bath deposition and single crystal and polycrystalline CIS films between 200 and 500 Degree-Sign C for 10 to 150 min. No atomic movement was observed by secondary ion mass spectrometry at temperatures of 300 Degree-Sign C and below. At 400 Degree-Sign C even for the shortest time studied, Cu and In were found throughout the region initially consisting of CdS only and Cd was found to have moved into the CIS. In the polycrystal, annealing at 500 Degree-Sign C resulted in movement of Cd throughout the CIS layer. No time dependence was observed in the 400 and 500 Degree-Sign C anneals indicating that a reaction had occurred forming a compound that was in thermodynamic equilibrium with the remaining CIS. Diffusion turns on rapidly between 300 and 400 Degree-Sign C, indicating a high activation energy for atomic movement ({approx}2.4 eV). The onset of diffusion is consistent with the onset of Cu diffusion in CIS.

  6. Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2013-01-01

    The effect of pulse current on the acidification process and the removal of heavy metals during suspended electrodialytic soil remediation were investigated in this work. Eight experiments with constant and pulse current in two polluted soils were conducted using a 3-compartment membrane cell......, predominately working under overlimiting current density conditions. Soil 1 was sampled from a pile of excavated soil at a site with mixed industrial pollution (Cu and Cd), and soil 2 was sampled from the top layer of a wood preservation site (Cu and As). Results showed that pulse current improved...... the acidification by supplying more reactive H+ ions (defined as the H+ ions causing release of heavy metals from soil particles). The molar ratio of reactive H+ ions to total produced H+ ions (RH+/PH+) was higher in every pulse current experiment than in the corresponding constant current experiment. In addition...

  7. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  8. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    Science.gov (United States)

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-05

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  9. Risk assessment of excessive CO_2 emission on diatom heavy metal consumption

    International Nuclear Information System (INIS)

    Liu, Fengjiao; Li, Shunxing; Zheng, Fengying; Huang, Xuguang

    2016-01-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO_2 in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO_2 emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO_2 in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and CdCu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO_2.

  10. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.

    Science.gov (United States)

    Evangelou, Michael W H; Bauer, Uwe; Ebel, Mathias; Schaeffer, Andreas

    2007-06-01

    Phytoextraction, the use of plants to extract contaminants from soils and groundwater, is a promising approach for cleaning up soils contaminated with heavy metals. In order to enhance phytoextraction the use of chelating agents has been proposed. This study aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposed, as an alternative to ethylene diamine tetraacetate (EDTA). EDDS revealed a higher toxicity to tobacco (Nicotiana tabacum) in comparison to EDTA, but no toxicity to microorganisms. The uptake of Cu was increased by the addition of EDTA and EDDS, while no increase was observed in the uptake of Cd. Both chelating agents showed a very low root to shoot translocation capability and the translocation factor was lower than the one of the control. Heavy metals where significantly more phytoavailable than in the control, even after harvesting, resulting in a high heavy metal leaching possibility, probably owing to a low biodegradation rate of EDDS. New seedlings which were transplanted into the EDDS treated pots 7d after the phytoextraction experiment, showed signs of necrosis and chlorosis, which resulted in a significantly lower biomass in comparison to the control. The seedlings on the EDTA treated pots showed no toxicity signs. Contrary to previous opinions the results of this study revealed the chelating agents EDTA and EDDS as unsuitable for enhanced phytoextraction using tobacco.

  11. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    Science.gov (United States)

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  12. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch [Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environment Science, Faculty of Sciences, University of Geneva, 10, route de Suisse, 1290 Versoix (Switzerland); Pinheiro, José Paulo [IBB/CBME, Department of Chemistry and Biochemistry, University of the Algarve, Gambelas Campus, 8005-139 Faro (Portugal); Floriani, Magali [IRSN/DEI/SECRE/LRE CEA Cadarache, 13115 Saint-Paul-Lez-Durance (France); Garcia, Miguel [School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Station 15, CH-1015 Lausanne (Switzerland)

    2013-10-15

    Highlights: • QDs associate with C. metallidurans in time and concentration dependent manner. • 12.9 nm size QDs adhere to the bacterial surface and enter the periplasmic space. • QDs bound significantly Cu and Pb. • QDs increase Cu and Pb content in C. metallidurans during short term exposure. -- Abstract: In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C. metallidurans. The percentage of bacterial cells displaying QD-fluorescence increased proportionally with contact time and QD concentration in bacterial medium demonstrating the association of QDs with the metal resistant bacteria. No evidence of QD internalization into bacterial cytoplasm was found by transmission electron microscopy with energy dispersive X-ray spectrometry, however QD clusters of sizes between 20 and 50 nm were observed on the bacterial surface and in the bacterial periplasmic compartment; observations consistent with the losses of membrane integrity induced by QDs. The presence of 20 nM QDs induced about 2-fold increase in Cu and Pb uptake fluxes by C. metallidurans exposed to 500 nM Pb or Cu, respectively. Overall, the results of this work suggest that when present in mixture with Cu and Pb, low levels of QDs originating from possible incidental release or QD disposal could increase metal accumulation in metal resistant bacterium.

  13. Synchrotron-radiation photoemission study of CdS/CuInSe2 heterojunction formation

    International Nuclear Information System (INIS)

    Nelson, A.J.; Gebhard, S.; Rockett, A.; Colavita, E.; Engelhardt, M.; Hoechst, H.

    1990-01-01

    Synchrotron-radiation soft-x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the CdS/CuInSe 2 heterojunction interface. CdS overlayers were deposited in steps on single-crystal p- and n-type CuInSe 2 at 250 degree C. Results indicate that the CdS grows in registry with the substrate, initially in a two-dimensional growth mode followed by three-dimensional island growth as is corroborated by reflection high-energy electron-diffraction analysis. Photoemission measurements were acquired after each growth in order to observe changes in the valence-band electronic structure as well as changes in the In 4d, Se 3d, Cd 4d, and S 2p core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the CdS/CuInSe 2 heterojunction valence-band discontinuity and the consequent heterojunction band diagram. These results show that the Katnani-Margaritondo method is unreliable in determining offsets for heterojunctions where significant Fermi-level pinning may occur and where the local structure and chemistry of the interface depends strongly on the specific heterojunction

  14. Lattice parameter values and phase transitions for the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, E. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Quintero, M., E-mail: mquinter@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E.; Contreras, J.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macias, M.A. [Grupo de Investigacion en Quimica Estructural (GIQUE), Facultad de Ciencias, Escuela de Quimica, Universidad Industrial de Santander, Apartado aereo 678, Bucaramanga (Colombia)

    2009-11-03

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu{sub 2}Cd{sub 0.8}Fe{sub 0.2}SnSe{sub 4} as well as for Cu{sub 2}Cd{sub 0.2}Fe{sub 0.8}SnSe{sub 4} the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter sigma decreases as Cd is replaced by either Mn and/or Fe. For the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems, only two single solid phase fields, the tetragonal stannite alpha(I4-bar2m) and the wurtz-stannite delta (Pmn2{sub 1}) structures were found to occur in the diagram. In addition to the tetragonal stannite alpha phase extra X-ray diffraction lines due to MnSe and/or FeSe{sub 2} were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  15. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  16. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  17. Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent

    Directory of Open Access Journals (Sweden)

    Shazia Akhtar, Muhammad Mahmood-ul-Hassan, Rizwan Ahmad, Vishandas Suthor and Muhammad Yasin

    2013-05-01

    Full Text Available Considering the importance of filamentous fungi for bioremediation of wastewater and contaminated soils, this study was planned to investigate the metal tolerance potential of indigenous filamentous fungi. Nineteen fungal strains were isolated from soils irrigated with untreated municipal/industrial effluent using dilution technique and 10 prominent isolates were used for metal tolerance. The isolated fungal isolates were screened for metal tolerance index (MTI at I mM cadmium (Cd, nickel (Ni and copper (Cu concentrations and for minimum inhibitory concentration (MIC and metal tolerance by growing on potato dextrose agar plates amended with varying amounts of Cd, Cu and Ni. Seven out of 10 isolated fungi belonged to the genera Aspergillus and three belonged to Curvularia, Acrimonium and Pithyum. The results revealed that the order of tolerance of isolates for metals was Cd > Cu > Ni and Aspergillus sp. were more tolerant than other fungi. Tolerance ranged from 900 – 9218 mg L-1 for Cd, followed by 381 - 1780 mg L-1 for Cu and 293-1580 mg L-1for Ni. The isolated fungi exhibiting great tolerance to metals (Cd, Cu and Ni can be used successfully for bioremediation of metals from contaminated soil and wastewaters.

  18. 111Cd TDPAC investigation of metal sites in superoxide dismutase: A comparison with X-ray diffraction data

    DEFF Research Database (Denmark)

    Bauer, R.; Bjerrum, M.J.; Danielsen, E.

    1990-01-01

    111Cd Time Differential Ferturbed γ-γ Angular Correlation (TDPAC) has been used to investigate the Zn-site in Cu2, Zn2-superoxide dismutase. These experiments show a clear difference between Cu(II)2 Cd2 SOD and Cu(I)2Cd2SOD. The result of Cu(II)2, Cd2-SOD agrees with the Angular Overlap Model (AO...

  19. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning

    2013-10-01

    The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.

  20. Urban Metal Flows - A Case Study of Stockholm. Review and Conclusions

    International Nuclear Information System (INIS)

    Bergbaeck, B.; Johansson, K.; Mohlander, U.

    2001-01-01

    Metals have rapidly accumulated in the anthroposphere, especially in urban areas, indicating possible environmental and resource problems. Here, Stockholm City was chosen for a case study of urban metal flows, i.e. metal inflow to, metals in the stock of,and metal outflow from the anthroposphere to the biosphere. The metal stock of Stockholm is large and still growing. The large amounts of metals in the solid waste fraction totally dominate the outflow from the city. For major parts of the stock, the emissions from goods in use are negligible. There are, however,goods applications corresponding to significant emissions: e.g. the traffic sector (Cu, Zn, Cr, Ni, Pb), the tapwater system (Cu), roofs/fronts or other metal surfaces (Cu, Zn). Today's known metal flows from the anthroposphere of Stockholm to the biosphere and sewage sludge are quantitatively dominated by Zn(34 ton y -1 ) and Cu (14 ton y -1 ). Historical and present emissions have resulted in high metal concentrations in sediments (especially Cd, Hg and Pb, but also Cu and Zn), groundwater (Cu, Hg) and in soils (Hg, Cu, Pb). At present the annual median concentrations are below the Swedish limits for metals in sewage sludge, even if the safety margins are small for Cd, Hg and to some extent Cu. The flows of Cu and Zn to Stockholm soils are high with a significant accumulation indicating an environmental impact in a longer time perspective.High levels of metals in surface sediments in the water environments reflects an ongoing input where these metals are transported from known (Cu, Zn) and or partly unknown (Cd, Hg, Pb) sources. In future urban areas, monitoring of metal flows must be performed both in the anthroposphere and the biospherein order to have a pro active approach to urban environmental problems and to get prompt answers to measures taken

  1. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  2. Zr-(Cu,Ag)-Al bulk metallic glasses

    International Nuclear Information System (INIS)

    Jiang, Q.K.; Wang, X.D.; Nie, X.P.; Zhang, G.Q.; Ma, H.; Fecht, H.-J.; Bendnarcik, J.; Franz, H.; Liu, Y.G.; Cao, Q.P.; Jiang, J.Z.

    2008-01-01

    In this paper, we report the formation of a series Zr-(Cu,Ag)-Al bulk metallic glasses (BMGs) with diameters at least 20 mm and demonstrate the formation of about 25 g amorphous metallic ingots in a wide Zr-(Cu,Ag)-Al composition range using a conventional arc-melting machine. The origin of high glass-forming ability (GFA) of the Zr-(Cu,Ag)-Al alloy system has been investigated from the structural, thermodynamic and kinetic points of view. The high GFA of the Zr-(Cu,Ag)-Al system is attributed to denser local atomic packing and the smaller difference in Gibbs free energy between amorphous and crystalline phases. The thermal, mechanical and corrosion properties, as well as elastic constants for the newly developed Zr-(Cu,Ag)-Al BMGs, are also presented. These newly developed Ni-free Zr-(Cu,Ag)-Al BMGs exhibit excellent combined properties: strong GFA, high strength, high compressive plasticity, cheap and non-toxic raw materials and biocompatible property, as compared with other BMGs, leading to their potential industrial applications

  3. Risk assessment of excessive CO{sub 2} emission on diatom heavy metal consumption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengjiao; Li, Shunxing, E-mail: shunxing_li@aliyun.com; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO{sub 2} in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO{sub 2} emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO{sub 2} in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and CdCu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO{sub 2}.

  4. The influence of grain boundary diffusion on the electro-optical properties of CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Albin, D.S.; Gessert, T.A.; Reedy, R.C.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States); Woods, L.M. [Colorado State Univ., Fort Collins, CO (United States)

    1998-09-01

    The authors report on a study of the effects of diffusion of metals through polycrystalline CdTe thin films. The metals Ni, Pd, Cu, Cr, and Te are deposited onto the back surface of 10-{micro}m thick CdTe/CdS device structures using room-temperature evaporation. The authors found that four out of the five metals produce significant changes in the photoluminescence (PL) of the near-junction CdTe material. These changes are explained in terms of spatial variations of the photoexcited carrier distribution and spatial variations in the sulfur composition of the CdTeS alloy material near the CdTeS interface. The changes in carrier distribution appear to be associated with band bending and electric fields induced by diffusion of the metals to the CdTe/CdS interface. In addition to PL measurements, the authors have also utilized a technique for detaching the CdTe film from the CdS/TCO/glass superstrate to directly access the front surface of the CdTe absorber layer. The authors have used secondary ion mass spectroscopy to measure the metal diffusion profiles from this interface.

  5. Pengaruh Konsentrasi H2so4 Dan Berat Dari Bentonit Alam Teraktivasi Dan Komersil Terhadap Adsorpsi Logam Kadmium (Cd) Dan Tembaga (Cu) Dalam Larutan Standar Dalam Metode Spektrofotometri Serapan Atom

    OpenAIRE

    Ramadani, Eko

    2011-01-01

    The various concentration effect’s of H2SO4 and weight of activated bleaching earth and commercial to adsoption of cadmium metal (Cd) and copper (Cu) in standard solution using Atomic Absorption Spectrophotometric method has been studied. Bleaching earth activation process assessed various concentration of H2SO4 which is 0,4; 0,8; 1,2; 1,6; and 2,0 M. 1, 2, 3, 4, and 5 g activated bleaching earth and commercial added into cadmium standard solution (Cd) and copper (Cu) , stirred up to 6 hours,...

  6. The Pathogenic A2V Mutant Exhibits Distinct Aggregation Kinetics, Metal Site Structure, and Metal Exchange of the Cu2+ -Aβ Complex

    DEFF Research Database (Denmark)

    Somavarapu, Arun Kumar; Shen, Fei; Teilum, Kaare

    2017-01-01

    2V. 1H NMR relaxation exhibits the same trend for the non-coordinating aromatic residues (A2T2V), and implies markedly faster inter-peptide Cu2+exchange for the A2V variant than for WT and A2T. We therefore hypothesize that component I of the Cu–Aβ complex is related to pathogenicity......A prominent current hypothesis is that impaired metal ion homeostasis may contribute to Alzheimer's disease (AD). We elucidate the interaction of Cu2+ with wild-type (WT) Aβ1–40 and the genetic variants A2T and A2V which display increasing pathogenicity as A2T2V. Cu2+ significantly extends...... the lag phase in aggregation kinetics, in particular for the pathogenic A2V variant. Additionally, a rapid, initial, low intensity ThT response is observed, possibly reflecting formation of Cu2+ induced amorphous aggregates, as supported by atomic force microscopy (AFM) and circular dichroism (CD...

  7. Adsorción de metales pesados en andisoles, vertisoles y ácidos húmicos

    Directory of Open Access Journals (Sweden)

    Luis Enrique Cortés Páez

    2015-01-01

    Full Text Available Se estudió la adsorción de los metales pesados cadmio (Cd, cobre (Cu, níquel (Ni, plomo (Pb y zinc (Zn en Andisoles (Typic Melanudand y Vertisoles (Epiaquert ústico arcilloso fino isohipertérmico 1% de Colombia y en ácidos húmicos (AH extraídos de muestras de leonardita tomadas en España. En todos los casos se determinaron las propiedades químicas y físicas: pH, capacidad de intercambio catiónico (CIC, carbono orgánico (%CO, bases intercambiables y contenido total de metales. La composición química de los AH se determinó empleando técnicas espectrométricas como ICP_MS, FTIR, UV-Vis, CPMAS 13C NMR y Py-GC/MS-THMA. Los resultados de adsorción de los metales ajustados al modelo de Freundlich mostraron un comportamiento diferente de los adsorbentes en relación con los metales estudiados, siendo la máxima capacidad de adsorción (K y la fuerza de retención (n de los metales diferente (P Pb > Cu > Ni > Zn; en Andisol: Pb > Cu > Cd > Zn > Ni; y en Vertisol: Cd > Pb > Cu > Ni > Z. Para n en ácidos húmicos: Pb > Zn > Cd > Cu > Ni; en Andisol: Cu > Ni > Zn > Pb > Cd, y en Vertisol: Zn > Ni > Cu > Pb > Cd.

  8. Pb, Cd, Cu and Zn biogeochemical behaviour and biological transfer processes in the Northwestern Mediterranean

    International Nuclear Information System (INIS)

    Nicolas, E.; Marty, J.C.; Miquel, J.C.; Fowler, S.W.

    1999-01-01

    Cd, Pb, Cu and Zn concentrations were determined in planktonic organisms (Salps, copepods), their associated faecal pellets and in particles collected at 200 and 2000 m depth in sediment traps moored in the Ligurian Sea. Al and P were also measured and taken as tracers of lithogenic and biogenic components, respectively. The aim of this work was to determine the fluxes of trace metals in the Ligurian Sea and their variations with depth, and to to assess the biogeochemical behaviour of elements having, for some of them, an anthropogenic origin, by the study of biologically-mediated uptake and removal processes

  9. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  10. Synthesis, Characterization, and Biological Activity of Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II Complexes of N-Thiophenoyl-N′-Phenylthiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2013-01-01

    Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.

  11. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr

    2015-12-15

    Highlights: • Waste Lyocell fiber was chemically modified into cellulose xanthate. • The sorbent showed high affinity for Pb(II), Cd(II) and Cu(II) ions. • The sorbent also showed strong Cu(II) selectivity in Pb(II)–Cd(II)–Cu(II) ternary metal solutions. - Abstract: In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29 ± 0.28 mg/g, 505.64 ± 0.21 mg/g, and 123.08 ± 0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  12. Hillock Formation, Metal Lifting and Voiding of an AlCu Metallization due to Temperature Treatment

    International Nuclear Information System (INIS)

    Foerster, J.; Schuderer, B.; Haeuser, M.; Kallensee, O.; Gross, Th.

    2004-01-01

    A metalstack with a layer composition of Ti/TiN/AlCu/TiN was evaluated in an AlCu metallization. Reliability results show a higher electromigration lifetime compared to a Ti/AlCu/Ti/TiN stack. During the metallization process flow large elevations were seen by optical inspection. Analysis by SEM cross sections showed different deviations. A metal lifting with void formation as consequence was found in large aluminum areas above tungsten plugs. Also voiding in the passivated Metal 2 and the unpassivated Metal 3 with a cracked anti-reflective coating as a result of the expansion of the aluminum was seen. The influence of processes with high thermal budget on the stress behaviour of the new metalstack was investigated. The final annealing was found as the process with the most critical influence. This study shows the influence of different final annealing temperatures on hillock formation and voiding using a Ti/TiN/AlCu/TiN metalstack. A reduction of the maximum temperature of the final annealing process is necessary for using the new AlCu metallization stack. The use of a surface treatment before deposition showed an optimization of the adhesion

  13. Extraction studies of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II) using N, N', N, N' -Bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2-pyridylmethyl)) -ethylenediamine as a novel ligand

    International Nuclear Information System (INIS)

    Laus, R.; Anjos, A.D.; Naves, A.

    2008-01-01

    In the present study, the use of N,N',N,N'-bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2- pyridylmethyl))-ethylenediamine (H2L) as ligand was evaluated in the liquid-liquid (water- chloroform) extraction of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II). Experiments were carried out to determine the pH for maximum extraction for each metal ion by ligand, maximum extraction capacity, extraction kinetics and extraction selectivity. The results revealed that the extraction of metal ions is dependent on the pH: maximum extraction maximum was obtained in the pH range of 4.5 - 6.0 for Cu(II) and 8.0 - 9.0 for Zn(II). Cd(II) and Mn(II) were best extracted at pH 9.0 and Ni(II) at 10.0. The ligand H2L was effective for the extraction of Cd(II), Cu(II) and Zn(II) (extraction efficient, %E equal 100%), whereas %E of 76% and 23.5% were observed for Mn(II) and Ni(II), respectively. The ligand presented high selectivity for the extraction of Cu(II) at pH 4.0. (author)

  14. Characterizing the environmental impact of metals in construction and demolition waste.

    Science.gov (United States)

    Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben

    2018-05-01

    Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.

  15. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    Science.gov (United States)

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  16. Status of heavy metal in sediment of Saguling Lake, West Java

    Science.gov (United States)

    Wardhani, E.; Roosmini, D.; Notodarmojo, S.

    2017-03-01

    The quality of water in the Saguling lake has been monitored since 1990 by the state agency for environmental control. However, no data on heavy metal in sediment had been reported. Metal pollutans have receives considerable attention due to their persistence, biogeochemical recycling, and environmental risk. The objective of this study was to assess the level contamination of heavy metals (Cd, Cr, Cu, and Pb) in the surface sediment of the Saguling Lake West Java. Surface sediment samples were collected from 10 location of the Saguling Lake on July and November 2015. The concentration of heavy metals in the surface sediment on July and November 2015 decreased in the order of Cu>Cr>Pb>Cd and Cr>Cu>Pb>Cd respectively. Mean metals concentrations (mg/kg) in July 2015 were in the range of: Cd: 10.69-16.65, Cr: 76.67-138.38, Cu:106.02-229.54, Pb: 23.93-80.17. Mean metals concentrations (mg/kg) in November 2015 were in the range of Cd: 18.64-23.25, Cr: 152.16-197.98, Cu: 63.32-152.53, Pb: 20.31-32.74. Geochemical approaches such as contamination factor, and pollution load index were exploited for the assessment of the contamination and enrichment level of heavy metals in the lake sediment. Contamination factor and pollution load index values indicated that surface sediments around Saguling Lake were polluted with heavy metals. The finding of this study would help in formulating guidelines to control the pollution and suggested for Saguling lake revitalization.

  17. Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China.

    Science.gov (United States)

    Gong, Xing; Chen, Zhihua; Luo, Zhaohui

    2014-12-01

    This study first presents the spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a nonferrous metal mine area in China. Unconfined groundwater was polluted by Pb, Zn, As, and Cu, in order, while confined karst water in the mines showed pollution in the following sequence: Zn, Cd, Cu, Pb, and As. Pollution by Pb was widespread, while Zn, As, Cu, and Cd were found to be high in the north-central industrial region and to decrease gradually with distance from smelters and tailings. Vertically, more Pb, Zn, Cu, and Cd have accumulated in shallow Quaternary groundwater, while more As have migrated into the deeper fracture groundwater in the local discharge area. Zn, Cd, and Cu concentrations in groundwater along the riverside diminished owing to reduced wastewater drainage since 1977, while samples in the confluence area were found to have increasing contents of Pb, Zn, As, Cu, and Cd since industrialization began in the 1990s. Sources of heavy metals in groundwater were of anthropogenic origin except for Cr. Pb originated primarily from airborne volatile particulates, wastewater, and waste residues and deposited continuously, while Zn, Cd, and Cu were derived from the wastewater of smelters and leakage of tailings, which corresponded to the related soil and surface residue researches. Elevated As values around factories might be the result of chemical reactions. Flow patterns in different hydrogeological units and adsorption capability of from Quaternary sediments restricted their cross-border diffusion.

  18. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    Directory of Open Access Journals (Sweden)

    S. Sobhan Ardakani

    2015-01-01

    Full Text Available Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were filtered (0.45 ?m and maintained cool in polyethyl-ene bottles. The samples were taken for the analysis of cations, the former was acidified with HNO3 to pH lower than 2. Minor elements were determined using ICP-OES. All statistical analyses were performed using the SPSS statistical package. Also, Kriging Method was used to prepare spatial distribution maps of elements in groundwater samples. Results: The results showed that the mean concentrations of Pb, Cd, Cu and Mg in the groundwater samples during the spring were 5.60±0.66, 0.21±0.04, 32.10±2.21 and 6990.0±302.10 ppb, respectively, and the mean concentrations of these elements in the groundwater samples in the summer were 4.86±0.46, 0.30±0.08, 25.55±3.63 and 3654.05±215.65 ppb, respectively. Comparing the mean concentrations of the evaluated metals with WHO permissible limits showed a significant difference (p<0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusion: Although the groundwater resources of Razan Plain are not currently polluted with heavy metals, long-term excessive use of agricultural inputs and establishment of pollut-ing industries, can pose a threat to groundwater resources of this area. (Sci J Hamadan Univ Med Sci 2015; 21(4:319-329

  19. Metal distributions in complexes with Chlorella vulgaris in seawater and wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, P.R.; Kowalak, A.D.

    1999-10-01

    Divalent cadmium (Cd), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn) simultaneous complexes with an algal biomass Chlorella vulgaris were studied for bioremediation purposes in various aqueous media: distilled-deionized water (DDIW), seawater, nuclear-reactor pool water, and process wastewater. Reactions were monitored using various dry masses of algae at constant temperature and constant metal concentrations for reaction times ranging from 0 to 150 minutes. Complexes occurred within 30 minutes and reached a steady state after 80 to 120 minutes. Distribution constants (K{prime}{sub d}) were calculated for the complexes and relative orders of K{prime}{sub d} were reported. The K{prime}{sub d} are used to evaluate relative efficiency of metal remediation from waters. Lead, Cu, and Ni complexes had the greatest K{prime}{sub d} values and those metals were most efficiently removed from these waters. Zinc and Fe formed the most labile complexes. The order of K{prime}{sub d} values for complexes in DDIW was Pb > Cu > Cd > Zn, then Cu > Cd > Zn in seawater, Cd > Cu > Zn in reactor pool water, and Ni > Cd > Cu > Zn > Fe in wastewater. C. vulgaris biomass may potentially be used as an alternative to traditional water treatment methods for simultaneous extraction of metals from seawater, process wastewater, or drinking water.

  20. Heavy metal levels and solid phase speciation in street dusts of Delhi, India

    International Nuclear Information System (INIS)

    Banerjee, Anju D.K.

    2003-01-01

    Although the street dusts of Delhi contain considerably high levels of Cr, Ni, Cu, Cd, Zn and Pb, solid phase speciation results indicate comparatively limited environmental mobility and bioavailability of Ni and Cr. - Street dust samples were collected from three different localities (industrial, heavy traffic and rural) situated in the greater Delhi area of India. The samples analyzed for Cd, Zn, Pb, Ni, Cu, and Cr indicated remarkably high levels of Cr, Ni, and Cu in the industrial area, whilst Pb and Cd did not show any discernible variations between the three localities. A multivariate statistical approach (Principal Component Analysis) was used to define the possible origin of metals in dusts. The street dusts were sequentially extracted so that the solid pools of Cd, Zn, Pb, Ni, Cu, Cr could be partitioned into five operationally defined fractions viz. exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. Metal recoveries in sequential extractions were ±10% of the independently measured total metal concentrations. Cd was the only metal present appreciably (27.16%) in the exchangeable fraction and Cu was the only metal predominantly associated (44.26%) with organic fraction. Zn (45.64%) and Pb (28.26%) were present mainly in the Fe-Mn oxide fraction and the residual fraction was the most dominant solid phase pool of Cr (88.12%) and Ni (70.94%). Assuming that the mobility and bioavailability are related to the solubility of geochemical forms of the metals and decrease in order of extraction, the apparent mobility and potential metal bioavailability for these highly contaminated street dust samples is: Cd>Zn congruent with Pb>Ni>Cu>Cr

  1. Dissolved trace metals in the water column of Reloncaví Fjord, Chile Metales trazas disueltos en la columna de agua en el fiordo Reloncaví, Chile

    Directory of Open Access Journals (Sweden)

    Ramón Ahumada

    2011-11-01

    Full Text Available We analyzed the concentration of dissolved trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb in the water column of Reloncaví Fjord. Sampling was performed during the CIMAR 12 Fiordos cruise in 2006. A total of 36 passive samplers or DGTs (diffusion gradient in thin films were anchored at four stations along the longitudinal axis of the fjord. The DGTs were deployed at three depths per station and left there for 48 h. The metal contents on each thin film were analyzed using inductively coupled plasma atomic emission spectroscopy. Concentrations were highest in the surface layer at the head of the estuary, which is directly influenced by Petrohué River. Characteristic sequences of the studied metals were defined in the area with the greatest continental influence (Z(5-25m = Cu >Mn> Fe > Ni >Pb> Cr > Cd > Co and in the area with a marine or coastal influence (Z(5-25m = Fe > Cu>Mn> Ni >Pb> Cr > Cd > Co. A similar metal sequence was found in the deepest layer: Z(40-m = Fe >Mn> Cu >Pb> Ni > Cd > Cr > Co. The passive sampling technique using DGTs to determine dissolved trace metals in the sea water provided robust information on the concentrations of the ten metals analyzed.Se analiza la concentración de metales trazas disueltos (Cd, Co, Cr, Cu, Fe, Mn, Ni y Pb, en la columna de agua del fiordo Reloncaví. El muestreo se realizó durante la campaña CIMAR 12 Fiordos, 2006. Para ello se fondeó en cuatro estaciones y en tres profundidades, un total de 36 muestreadores pasivos o DGT (láminas de gradiente de difusión a lo largo del eje longitudinal del fiordo, durante 48 h. El contenido de metales en cada lámina fue analizado mediante espectroscopía de emisión atómica con acoplamiento inductivo de plasma. Las mayores concentraciones se observaron en la superficie de la columna de agua, en la cabeza del estuario, directamente influenciada por el río Petrohué. Se definió para el área una secuencia de los metales estudiados característica, para la

  2. Effects of Crop Straw Returning with Lime on Activity of Cu, Zn, Pb and Cd in Paddy Soil

    Directory of Open Access Journals (Sweden)

    NI Zhong-ying

    2017-05-01

    Full Text Available Crop straw returning is an important measure for increasing soil carbon fixation and soil fertility in China, but it also may result in some risk of raising activity of heavy metals in the soil. In order to understand the effects of different sources of crop straw on heavy metals activity in soil with different pollution levels, and to take appropriate measures to prevent the activation of heavy metals in the soil, both pot and field experiments were carried out to study the effects of crop straw returning with lime on activity of Cu, Zn, Pb and Cd in paddy soil. The experiments were carried out in the soils with both light and heavy pollution of heavy metals. In the pot experiment, three straws, including rice straw with heavy pollution of heavy metals, rice straw with light pollution of heavy metals, and rape straw with light pollution of heavy metals, were tested. Two dosages of lime(0 kg·hm-2 and 750 kg·hm-2were applied. Field experiment had three treatments, ie., control without application of straw and lime, straw returning and straw returning + lime. Soil available heavy metals, accumulation of heavy metals in rice grain, and chemical forms of soil heavy metals were dynamical monitored. The results showed that crop straw returning increased significantly the concentrations of dissolved organic carbon and water soluble heavy metals in paddy soils at the early stage of experiment (in first 20 days. The increase in water soluble heavy metals in the soil with heavy pollution of heavy metals was most obvious as compared with the control treatment. After 60th day of the experiment, the effects of straw returning on the activity of heavy metals in the soil decreased gradually with the time, and became no obvious. The concentrations of water soluble heavy metals in the soil treated with rape straw was generally lower than that of rice straw, while those in the soil treated with heavy pollution of rice straw was higher than low pollution of rice

  3. SXPS investigation of the Cd partial electrolyte treatment of CuInSe2 absorbers

    International Nuclear Information System (INIS)

    Hunger, R.; Schulmeyer, T.; Klein, A.; Jaegermann, W.; Lebedev, M.V.; Sakurai, K.; Niki, S.

    2005-01-01

    The chemical modification of polycrystalline CuInSe 2 absorber surfaces by the so-called Cd partial electrolyte (PE) treatment was studied by synchrotron X-ray photoelectron spectroscopy (SXPS). The Cd PE treatment was found to remove surface indium oxides and hydroxides and segregated sodium compounds. A hydroxide-terminated CdSe surface layer of one monolayer thickness is formed by the partial electrolyte treatment. The reaction mechanism is discussed as substrate site-controlled exchange reaction, where surface indium is removed and replaced by cadmium. Electronically, the Cd PE treated surface is inverted and exhibits a surface barrier which is by 0.2 eV higher than a comparable structure that was prepared by the vacuum deposition of one monolayer of CdS onto clean CuInSe 2

  4. Study of Fe, Zn, Cu, Cd, Pb concentrations in liver, kidney and muscle tissue of cow and sheep marketed in Hamedan in 2011

    Directory of Open Access Journals (Sweden)

    S Sobhanardakani

    2012-11-01

    Full Text Available Importance of heavy metals in food safety and detrimental effects of their high concentrations in food stuff is well documented. In this study, concentrations of Fe, Zn, Cu, Cd and Pb in kidney, liver and muscle tissues of cow and sheep at Hamedan retails were evaluated. A total number of 180 samples was assessed for the amount of heavy metals as ppb in wet weight. For this, wet-digestion method was used to determine the concentration of given elements by ICP (Varian ES-710. Results showed that the highest concentration of heavy metals was determined in the liver and kidney samples, while the lowest concentration was found in muscle tissue. Among the heavy metals, Fe in cow’s liver had the highest concentration (25507±879 ppb and Cd in muscle tissue of sheep has the lowest concentration (192±54 ppb. In overall, accumulation of heavy metals in tissues of cows was higher than sheep. Statistical comparison of accumulated metals concentration in various tissues of these two animal groups showed significant difference (P

  5. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  6. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria

    International Nuclear Information System (INIS)

    Ivanina, Anna V.; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B.; Ringwood, Amy H.; Sokolova, Inna M.

    2013-01-01

    Highlights: •P CO 2 alters accumulation of Cd and Cu in clam cells. •Accumulation of Cd induces release of free Zn 2+ . •Accumulation of Cu induces an increase in free Cu 2+ and Fe 2+ . •Metal-induced oxidative stress is alleviated at high P CO 2 . •Toxicity of Cu in likely enhanced while that of Cd alleviated by high P CO 2 . -- Abstract: Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO 2 (P CO 2 ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high P CO 2 (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between P CO 2 and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of P CO 2 (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants – cadmium (Cd) and copper (Cu). Elevated P CO 2 resulted in a decrease in intracellular pH (pH i ) of the isolated mantle cells from 7.8 to 7.4. Elevated P CO 2 significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated P CO 2 levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd 2+ concentration remained the same, while intracellular levels of free Zn 2+ increased suggesting that Cd 2+ substitutes bound Zn 2+ in these cells. In contrast, Cu exposure did not affect intracellular Zn 2+ but led to a profound increase in the intracellular levels

  7. Contamination and Health Risks from Heavy Metals (Cd and Pb and Trace Elements (Cu and Zn in Dairy Products

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghafari

    2017-08-01

    Conclusion: Considering the serious contamination of some brands of butter and cheese by Cu and Pb, a control of heavy metals and trace elements levels during the whole production processing of dairy products must be applied.

  8. Toxicity of Metals to a Freshwater Ostracod: Stenocypris major

    Directory of Open Access Journals (Sweden)

    Mohammad Shuhaimi-Othman

    2011-01-01

    Full Text Available Adults of freshwater ostracod Stenocypris major (Crustacea, Candonidae were exposed for a four-day period in laboratory conditions to a range of copper (Cu, cadmium (Cd, zinc (Zn, lead (Pb, nickel (Ni, iron (Fe, aluminium (Al, and manganese (Mn concentrations. Mortality was assessed, and median lethal times (LT50 and concentrations (LC50 were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. LC50s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 25.2, 13.1, 1189.8, 526.2, 19743.7, 278.9, 3101.9, and 510.2 μg/L, respectively. Metals bioconcentration in S. major increases with exposure to increasing concentrations, and Cd was the most toxic to S. major, followed by Cu, Fe, Mn, Pb, Zn, Al, and Ni (Cd>Cu>Fe>Mn>Pb>Zn>Al>Ni. Comparison of LC50 values for metals for this species with those for other freshwater crustacean reveals that S. major is equally or more sensitive to metals than most other tested crustacean.

  9. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Mikkelsen, Peter Steen; Ledin, Anna

    2016-01-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd......, Cu, Ni and Zn is about 4 h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH ~. 8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >. 7) decreased...... that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads...

  10. Assessment of metals content in dandelion (Taraxacum officinale) leaves grown on mine tailings

    Science.gov (United States)

    Levei, Levente; Andrei, Mariana Lucia; Hoaghia, Maria Alexandra; Ozunu, Alexandru

    2017-12-01

    Dandelion (Taraxacum officinale) is one of the plant species that has the ability to spontaneously grow on mine tailings, due to its high tolerance for harsh environmental conditions (low nutrients level, high metal contents). The concentrations of Cd, Cu, Pb and Zn were determined in tailings and dandelion leaves grown on nonferrous mine tailings from Romania, while the metal accumulation was assessed by transfer factors (TFs) calculated as the ratio between the metal concentration in plant leaves and in tailings underneath. The results showed that the metal concentrations in tailings ranged between 0.4-8.0 mg/kg Cd, 20-1300 mg/kg Cu, 27-570 mg/kg Pb and 48-800 mg/kg Zn, while the metal concentrations in dandelion ranged between 0.2-4.8 mg/kg Cd, 6.2-17 mg/kg Cu, 0.5-75 mg/kg Pb and 27-260 mg/kg Zn. The TFs were below 0.8 for Cd and Zn and below 0.4 for Cu and Pb and decreased in the following order Cd≥Zn>Cu≥Pb, suggesting the Cd and Zn accumulation capability of dandelion.

  11. Parasites modify sub-cellular partitioning of metals in the gut of fish

    Energy Technology Data Exchange (ETDEWEB)

    Oyoo-Okoth, Elijah, E-mail: elijaoyoo2009@gmail.com [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Osano, Odipo [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Kraak, Michiel H.S. [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Gichuki, John; Ogwai, Caleb [Kenya Marine and Fisheries Research Institute, P.O. Box 1881, Kisumu (Kenya)

    2012-01-15

    Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria.

  12. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    Directory of Open Access Journals (Sweden)

    Shinya Hosokawa

    Full Text Available Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems.

  13. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration.

    Science.gov (United States)

    Gao, Shi; Wang, Wen-Xiong

    2014-12-01

    The Hong Kong oysters Crassostrea hongkongensis are widely farmed in the estuarine waters of Southern China, but they accumulate Cu and Zn to alarmingly high concentrations in the soft tissues. Health risks of seafood consumption are related to contaminants such as toxic metals which are bioaccessible to humans. In the present study, we investigated the oral bioaccessibility of five toxic metals (Ag, Pb, Cd, Cu and Zn) in contaminated oysters collected from different locations of a large estuary in southern China. In all oysters, total Zn concentration was the highest whereas total Pb concentration was the lowest. Among the five metals, Ag had the lowest oral bioaccessibility (38.9-60.8%), whereas Cu and Zn had the highest bioaccessibility (72.3-93.1%). Significant negative correlation was observed between metal bioaccessibility and metal concentration in the oysters for Ag, Cd, and Cu. We found that the oral bioaccessibility of the five metals was positively correlated with their trophically available metal fraction (TAM) in the oyster tissues, and negatively correlated with metal distribution in the cellular debris. Thus, metal partitioning in the TAM and cellular debris controlled the oral bioaccessibility to humans. Given the dependence of oral bioaccessibility on tissue metal contamination, bioaccessibility needs to be incorporated in the risk assessments of contaminated shellfish. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... Cadmium, lead and ... removal of Cd, Cr, Cu, Ni, Pb, and Zn (Prasad and ... collected for the analysis of heavy metal concentrations of Cd, Cr ... One hundred millgram (100 mg) of leaf tissues ..... Variability for the fatty acid.

  15. Spatial distribution and risk assessment of heavy metals in sediments of Shuangtaizi estuary, China

    International Nuclear Information System (INIS)

    Li, Chen; Song, Chengwen; Yin, Yanyan; Sun, Menghan; Tao, Ping; Shao, Mihua

    2015-01-01

    Highlights: • Five heavy metals are analyzed in the sediments from Shuangtaizi estuary. • Particle size of the sediment effects the concentration of heavy metals. • Pb, Cu, Zn and Hg pose low ecological risks in the Shuangtaizi estuary. • Heavy metal pollution in Shuangtaizi estuary is mainly dominated by Cd. - Abstract: In order to evaluate the spatial distribution and potential ecological risk of Pb, Cu, Zn, Cd, and Hg, the surface sediments were collected from 18 sites in the Shuangtaizi estuary. The concentrations of Pb, Cu, Zn, Cd, and Hg were analyzed by atomic absorption spectrophotometry and atomic fluorescence spectrometry after digestion. The particle sizes of the sediments were analyzed using a laser diffraction particle size analyzer. The results show that the heavy metal contents in the sediments are observed in the following order: Zn (18.25–126.75 mg/kg) > Pb (4.38–9.65 mg/kg) > Cu (1.80–17.68 mg/kg) > Cd (0.241–0.764 mg/kg) > Hg (0.007–0.021 mg/kg). In comparison with the concentrations of heavy metals in other regions, the concentrations of Pb, Cu, and Zn in the Shuangtaizi estuary are generally low, and the Cd concentrations are close to those reported in other regions. Both the potential ecological risk index and the geoaccumulation index reveal that the heavy metal pollution in Shuangtaizi estuary is mainly dominated by Cd

  16. Use of sequential extraction to assess metal partitioning in soils

    International Nuclear Information System (INIS)

    Kaasalainen, Marika; Yli-Halla, Markku

    2003-01-01

    The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles. - Sequential extraction is most useful with soils with low metal pollutant levels

  17. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    International Nuclear Information System (INIS)

    Lee, K.O.; Nazaruddin Ramli; Mamot Said; Musa Ahmad; Suhaimi Mohd Yasir; Arbakariya Ariff

    2011-01-01

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO 3 , 0.1 M HCl and 0.1 M H 2 SO 4 , respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C≡N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  18. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K O; Ramli, Nazaruddin; Said, Mamot; Ahmad, Musa [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, selangor (Malaysia); Yasir, Suhaimi Mohd [School of Sciences and Technology, Universiti Malaysia Sabah (UMS), Sabah (Malaysia); Arbakariya Ariff, E-mail: naza@ukm.my [Faculty of Biotechnology and Biomolecular science, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia)

    2011-07-15

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO{sub 3}, 0.1 M HCl and 0.1 M H{sub 2}SO{sub 4}, respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C{identical_to}N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  19. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters

    KAUST Repository

    Wu, Zhennan

    2017-03-20

    Aggregation/assembly induced emission (AIE) has been observed for metal nanoclusters (NCs), but the origin of the enhanced emission is not fully understood, yet. In this work, the significant contribution of metal defects on AIE is revealed by engineering the self-assembly process of Cu NCs using ethanol. The presence of ethanol leads to a rapid assembly of NCs into ultrathin nanosheets, promoting the formation of metal defects-rich surface. Detailed studies and computer simulation confirm that the metal defects-rich nanosheets possess increased Cu(I)-to-Cu(0) ratio, which greatly influences ligand-to-metal-metal charge transfer and therewith facilitates the radiative relaxation of excitons. Consequently, the Cu NCs self-assembly nanosheets exhibit obvious emission enhancement.

  20. DNA damage and transcriptional changes in the gills of mytilus galloprovincialis exposed to nanomolar doses of combined metal salts (Cd, Cu, Hg.

    Directory of Open Access Journals (Sweden)

    Laura Varotto

    Full Text Available Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes. Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs.

  1. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    Science.gov (United States)

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Study on accumulation of Fe, Pb, Zn, Ni and Cd in Nerita lineata and Thais bitubercularis from Tanjung Harapan and Teluk Kemang, Malaysia.

    Directory of Open Access Journals (Sweden)

    Tengku

    2017-01-01

    Full Text Available The presence of Cd, Cu, Zn, Ni, Fe, Al, Zn, Mn, Cr, and Sn were attributed to metal industries. Cu contamination was associated with piggery industry. Shipping activities contribute to elevated levels of Pb, Cu and As. Elevated levels of metals in the sediments are attributed to anthropogenic activities. Samples were collected in April 2012 and analysed using inductively coupled plasma mass spectrometry (ICP-MS. Fe is the most abundant metal in the tissue and shell compared to the rest of the metals. The concentrations of heavy metals in the soft tissues of Nerita lineata taken from Tanjung Harapan follow this order: Fe > Zn > Ni > Cu > Cd while in Thais bitubercularis, the metal concentrations were higher following the order of Fe > Zn > Cu > Ni > Cd. The samples taken from Teluk Kemang were higher and exhibited different trend for both organisms. Results from this study are useful for further exploration of Thais bitubercularis as accumulators of Cu, Cd, and Zn. For recommendation, more studies on monitoring the concentration level of heavy metals in marine environment should be done regularly and increase numbers of samples use to biomonitor the heavy metals in marine environment as it is important to have information or data regarding the quality of marine environment in order to control pollution such as water pollution from being contaminated with heavy metals. This is essential as the pollutants emit in the marine environment may affect marine lives as well as human’s health

  3. Associations between standardized school performance tests and mixtures of Pb, Zn, Cd, Ni, Mn, Cu, Cr, Co, and V in community soils of New Orleans

    International Nuclear Information System (INIS)

    Zahran, Sammy; Mielke, Howard W.; Weiler, Stephan; Hempel, Lynn; Berry, Kenneth J.; Gonzales, Christopher R.

    2012-01-01

    In New Orleans a strong inverse association was previously identified between community soil lead and 4th grade school performance. This study extends the association to zinc, cadmium, nickel, manganese, copper, chromium, cobalt, and vanadium in community soil and their comparative effects on 4th grade school performance. Adjusting for poverty, food security, racial composition, and teacher-student ratios, regression results show that soil metals variously reduce and compress student scores. Soil metals account for 22%–24% while food insecurity accounts for 29%–37% of variation in school performance. The impact on grade point averages were Ni > Co > Mn > Cu ∼Cr ∼ Cd > Zn > Pb, but metals are mixtures in soils. The quantities of soil metal mixtures vary widely across the city with the largest totals in the inner city and smallest totals in the outer city. School grade point averages are lowest where the soil metal mixtures and food insecurity are highest. - Highlights: ► Mixtures of metals vary; largest totals in the inner city and lowest in the outer city. ► An inverse association between soil Pb and 4th grade school performance is known. ► Assuming the same exposure pathway, multiple metals are compared to performance. ► Soil metals account for 22%–24% of variation in school test performance. ► Soil metal plus food insecurity accounts for 54% of explained variance. - Controlling for potential confounding variables, the accumulation of metals (Pb, Zn, Cd, Ni, Mn, Cu, Cr, and Co) in neighborhood soils is significantly negatively associated with 4th grade school performance on standardized tests in New Orleans.

  4. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  5. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica)

    Energy Technology Data Exchange (ETDEWEB)

    Truzzi, C.; Annibaldi, A.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche, Ancona (Italy). Department of Marine Science

    2008-09-15

    Square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for simultaneous determination of cadmium, lead, and copper in siliceous spicules of marine sponges, directly in the hydrofluoric acid solution ({proportional_to}0.55 mol L{sup -1} HF, pH {proportional_to}1.9). A thin mercury-film electrode (TMFE) plated on to an HF-resistant epoxy-impregnated graphite rotating-disc support was used. The optimum experimental conditions, evaluated also in terms of the signal-to-noise ratio, were as follows: deposition potential -1100 mV vs. Ag/AgCl, KCl 3 mol L{sup -1}, deposition time 3-10 min, electrode rotation 3000 rpm, SW scan from -1100 mV to +100 mV, SW pulse amplitude 25 mV, frequency 100 Hz, {delta}E{sub step} 8 mV, t{sub step} 100 ms, t{sub wait} 60 ms, t{sub delay} 2 ms, t{sub meas} 3 ms. Under these conditions the metal peak potentials were Cd -654{+-}1 mV, Pb -458 {+-} 1 mV, Cu -198{+-}1 mV. The electrochemical behaviour was reversible for Pb, quasi-reversible for Cd, and kinetically controlled (possibly following chemical reaction) for Cu. The linearity of the response with concentration was verified up to {proportional_to}4 {mu}g L{sup -1} for Cd and Pb and {proportional_to}20 {mu}g L{sup -1} for Cu. The detection limits were 5.8 ng L{sup -1}, 3.6 ng L{sup -1}, and 4.3 ng L{sup -1} for Cd, Pb, and Cu, respectively, with t{sub d}=5 min. The method was applied for determination of the metals in spicules of two specimens of marine sponges (Demosponges) from the Portofino natural reserve (Ligurian Sea, Italy, Petrosia ficiformis) and Terra Nova Bay (Ross Sea, Antarctica, Sphaerotylus antarcticus). The metal contents varied from tens of ng g{sup -1} to {proportional_to}1 {mu}g g{sup -1}, depending on the metal considered and with significant differences between the two sponge species. (orig.)

  6. Phytoremediation of heavy metal copper (Cu2+) by sunflower (Helianthus annuus l.)

    Science.gov (United States)

    Mahardika, G.; Rinanti, A.; Fachrul, M. F.

    2018-01-01

    A study in microcosmic condition has been carried out to determine the effectiveness of Helianthus annuus as a hyperaccumulator plant for heavy metal, Copper (Cu2+), that exposed in the soil. Artificial pollutants containing Copper (Cu2+) 0, 60, 120, 180 ppm are exposed to uncontaminated soil. The 12-weeks old H. annuus seedling were grown in Cu2+ contaminated soil, with variations of absorption time 3, 6, and 9 weeks. Analysis of Cu2+ concentration on soil and H. annuus (root, stem, leaf) was analised by Atomic Absorbtion Spectrometry (AAS). H. annuus are capable for Cu2+ removal, and the highest removal of Cu2+ is 85.56%, the highest metal accumulation/bioconcentration factor (BCF) is 0.99 occurred at roots with 9 weeks of exposure time and the highest translocation factor (TF) is 0.71. This highest removal is five times better than absorption by stems and leaves. The results concluded, the use of H. annuus for phytoextraction of heavy metals Cu2+ in contaminated soil can be an alternative to the absorption of heavy metal Cu2+ with low concentration metals which is generally very difficult to do in physical-chemical removal.

  7. Epidemiological Study on Metal Pollution of Ningbo in China

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2018-02-01

    Full Text Available Background: In order to search for effective control and prevention measures, the status of metal pollution in Ningbo, China was investigated. Methods: Nine of the most common contaminating metals including lead (Pb, cadmium (Cd, copper (Cu, iron (Fe, manganese (Mn, chromium (Cr, nickel (Ni, zinc (Zn, and mercury (Hg in samples of vegetables, rice, soil, irrigation water, and human hair were detected using inductively coupled plasma-mass spectrometry (ICP-MS. Three different districts including industrial, suburban and rural areas in Ningbo were studied through a stratified random sample method. Results: (1 Among all of the detected vegetable samples, Cd exceeded the standard limit rates in industrial, suburban and rural areas as high as 43.9%, 27.5% and 5.0%, respectively; indicating the severity of Cd pollution in Ningbo. (2 The pollution index (PI of Cd and Zn in soil (1.069, 1.584, respectively suggests that soil is slightly polluted by Cd and Zn. Among all samples, metal contamination levels in soil were all relatively high. (3 A positive correlation was found between the concentrations of Pb, Cd and Cu in vegetables and soil; Pb, Cu, Cr and Ni in vegetables and irrigation water, as well as, Cu and Ni in rice and irrigation water; and, (4 Higher Pb and Cd concentrations were found in student scalp hair in both industrial and suburban areas compared to rural areas. (5 Hg and Pb that are found in human scalp hair may be more easily absorbed from food than any of the other metals. Conclusions: In general, certain harmful metal pollutions were detected in both industrial and suburban areas of Ningbo in China.

  8. Contenido de metales en Cancer polyodon (Crustacea: Decapoda en un sistema de bahías del norte de Chile (27°S Metal contents in Cancer polyodon (Crustacea: Decapoda in a bay system of northern Chile (27°S

    Directory of Open Access Journals (Sweden)

    Alexis Castillo

    2011-11-01

    Full Text Available El contenido de Zn, Cu, Cd, Pb, Fe, Al y Ni fue analizado en tejido muscular de Cancer polyodon en las bahías de Caldera, Calderilla, Inglesa y Salada (Atacama, Chile. Los resultados fueron comparados con estudios similares desarrollados por otros autores y la normativa de carácter nacional e internacional relacionada con el contenido de metales pesados en crustáceos para consumo humano. El orden de abundancia de los metales analizados en C. polyodon fue CdThe contents of Zn, Cu, Cd, Pb, Fe, Al and Ni in the muscle tissue of Cancer polyodon from Caldera, Calderilla, Inglesa, and Salada bays (Atacama, Chile were quantified. The results were compared with similar studies by other authors and with the national and international regulatory standards for heavy metal contents in crustaceans for human consumption. In increasing order, the metal contents in C. polyodon were: Cd< Ni< Cu< Pb< ZnCd, Pb, Fe and Al were highest in Salada Bay: Cu and Ni were highest in Caldera Bay; and Zn was highest in Inglesa Bay. All the metals except Cu differed significantly (P < 0.05 among the analyzed bays. Of the seven metals analyzed, Pb, Fe, and Al concentrations in C. polyodon were higher than those reported for other coastal systems. Concentrations of Cu (except Calderilla, Cd (except Caldera and Inglesa, and Pb exceeded the threshold values indicated by the national and international standards, suggesting that the presence of these metals in C. polyodon represents a potential risk for human health.

  9. Competitive sorption of heavy metals by water hyacinth roots.

    Science.gov (United States)

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Sandhopper solar orientation as a behavioural biomarker of trace metals contamination

    International Nuclear Information System (INIS)

    Ungherese, Giuseppe; Ugolini, Alberto

    2009-01-01

    Although many studies have focused on trace metals accumulation, investigations of talitrid amphipods as biomarkers are rare. This study explores the possibility of using the solar orientation capacity of Talitrus saltator as a behavioural marker of exposure to two essential (Cu and Zn) and two non-essential (Cd and Hg) metals. LC 50 analyses performed before the solar orientation tests showed that the 72 h LC 50 for Hg was 0.02 ppm while the 96 h LC 50 values for Cu, Cd and Zn were 13.28 ppm, 27.66 ppm, and 62.74 ppm, respectively. The presence of metals in seawater affects the solar orientation capacity of T. saltator in a concentration-dependent manner and according to the toxicity ranking of the metals (Hg > Cu > Cd > Zn). Therefore, the solar orientation capacity of T. saltator seems to be a promising behavioural marker for exposure to trace metals. - Solar orientation capacity is a promising behavioural marker for exposure to trace metals in sandhoppers

  11. Metals in coastal zones impacted with urban and industrial wastes: Insights on the metal accumulation pattern in fish species

    Science.gov (United States)

    La Colla, Noelia S.; Botté, Sandra E.; Marcovecchio, Jorge E.

    2018-05-01

    The pollution of aquatic environments is a worldwide problem of difficult solution since these areas are used for the disposal and dilution of anthropogenic wastes. This study evaluated the concentrations of Cd, Cu, Ni and Zn in the gills, liver and muscle tissues of six economically important fish species from the Bahía Blanca estuary in Argentina, a coastal environment that is under anthropogenic pressure. Metal contents in 147 fish samples were determined by digestion and a subsequent analysis with an ICP OES. The concentrations (μg/g, wet weight) of each metal in the fish tissues ranged from below the limit of detection for the four metals to 5.2 in the case of Cd, 340 for Cu, 20 for Ni, and 101 for Zn. The results suggested that metal burden in fishes varied with the species and metal elements, with Cd, Cu and Zn mean maximum accumulation towards the liver tissue. Ni showed a high number of samples with concentrations below the limit of detection. Among species, Cynoscion guatucupa was found to have the highest concentrations of Cu and Zn in the liver tissues, whereas the gills and liver tissues of Mustelus schmitti showed the lowest levels of Ni and Zn. As regards the human health risks, two samples of muscle tissue belonging to C. guatucupa reached to Cd levels that exceeded the permissible levels for human consumption. Moreover, the estimated daily intakes calculated suggest that people would not experience significant health risks from the intake of individual metals through fish consumption.

  12. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Directory of Open Access Journals (Sweden)

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  13. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions

    OpenAIRE

    Zhou, Dan; Fu, Yurong; Lai, Weiyong; Zhang, Junqing

    2016-01-01

    20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost...

  14. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    Science.gov (United States)

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  15. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    Science.gov (United States)

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  16. A facile synthesis and spectral characterization of Cu{sup 2+} doped CdO/ZnS nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Joyce Stella, R.; Thirumala Rao, G.; Babu, B.; Pushpa Manjari, V. [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, AP 522510 (India); Reddy, Ch. Venkata; Shim, Jaesool [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ravikumar, R.V.S.S.N., E-mail: rvssn@yahoo.co.in [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, AP 522510 (India)

    2015-06-15

    A facile two-step method is demonstrated for the preparation of Cu{sup 2+} doped CdO/ZnS nanocomposite. Systematic investigations like X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDS, transmission electron microscopy (TEM), FT-IR, electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and magnetic studies are carried out for the prepared material. From powder XRD, the nanocomposites are comprised for cubic phase of both CdO and ZnS in a close contact with each other. The ground state wave function of dopant ions has been estimated from EPR studies. Optical and EPR data confirm that doped Cu{sup 2+}ions occupy rhombically distorted octahedral sites with the host material. Due to doping, band gap has been changed and blue shifts occurred in PL. Magnetic measurements indicate a possible ferromagnetic response, associated to the exchange interaction between local spin-polarized electrons of Cu{sup 2+} ions and conductive electrons. - Graphical abstract: M–H curve of Cu{sup 2+} doped CdO–ZnS nanocomposites. The magnetic properties of Cu{sup 2+} doped CdO/ZnS nanocomposite has been investigated using vibrating sample magnetometer given as magnetization and hysteresis (M–H) curve. The magnetization curve with noticeable coercivity of M–H loop clearly indicate the existence of ferromagnetic ordering in Cu{sup 2+} doped CdO/ZnS nanocomposite at room temperature. According to the Ruderman–Kittel–Kasuya–Yosida (RKKY) theory, the exchange interaction between local spin-polarized electrons (such as the electrons of Cu{sup 2+} ions) and conductive electrons is the main cause that leads to the ferromagnetism. Coercivity (Hc) of the field is about 98 Oe, saturation magnetization (Ms) and remnant magnetization (Mr) of present sample is estimated to be 15.8×10{sup −3} and 1.43×10{sup −3} emu/g respectively. The ferromagnetism observed in the prepared material is not commencing with other impurities but expected to

  17. Concentración de metales pesados (Cu, Ni, Zn, Cd, Pb en la biota y sedimentos de una playa artificial, en la bahía San Jorge 23°S, norte de Chile Heavy metals concentration (Cu, Ni, Zn, Cd, Pb, in biota and sediments of an artificial beach, in San Jorge bay 23°S, northern Chile

    Directory of Open Access Journals (Sweden)

    Gabriel Castro

    2012-07-01

    Full Text Available Se evaluó el contenido de metales pesados (Cu, Ni, Zn, Cd, Pb en la biota y el sedimento de una playa artificial (Paraíso y una playa natural (El Lenguado, ubicadas en la bahía San Jorge, norte de Chile. Los resultados fueron utilizados para comparar ambos sistemas, el grado de cumplimiento de la normativa ambiental nacional e internacional, y el efecto de la construcción de la playa artificial sobre el nivel de contaminación por metales existentes históricamente en esa zona. En cada playa se ubicaron estaciones equidistantes que abarcaron desde el intermareal hasta el submareal de las cuales fueron extraídos los organismos. Se tomaron muestras de sedimento en cada playa y se determinaron las pendientes con el método de Emery. El análisis granulométrico evidenció el predominio de arena media en playa El Lenguado, y arena media y fina en playa Paraíso. El contenido de materia orgánica fue mayor en El Lenguado. En playa Paraíso se determinaron cinco phylum/superclase agrupados en 19 taxa, mientras que en El Lenguado se encontraron cuatro phylum/superclase agrupados en cc taxa. El contenido de metales en sedimentos y en la mayoría de organismos presentó valores mayores en playa Paraíso. Estos resultados, junto a las normas de calidad chilenas y norteamericanas, sugieren un evidente deterioro en la calidad ambiental de playa Paraíso lo que se demostró por un incremento en las concentraciones de estos metales desde su construcción, los que sobrepasan los límites establecidos por ambas normas.It was evaluated the heavy metal content (Cu, Ni, Zn, Cd, Pb in biota and sediment of an artificial beach (Paraíso and a natural beach (El Lenguado, both located in San Jorge bay, northern Chile. The results were used to compare both systems, the degree of fulfillment of national and international environmental regulations, and the effect of the construction of the artificial beach on the level of metal contamination historically existing in

  18. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    Comparison of trace element contamination levels (Cu, Zn, Fe, Cd and Pb) in the soft tissues of the gastropods Tympanotonus fuscatus fuscatus and Tf radula collected in the Ebrié Lagoon (Côte d'Ivoire): Evidence of the risks linked to linked to lead and.

  19. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae.

    Science.gov (United States)

    Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin

    2018-01-01

    The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization of Heavy metals from banana farming soils

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dian; Huang, Cheng He; Huang, Dong Yi [College of Agronomy, Hainan University, Haikou City, Hainan Province (China); Ouyang, Ying [Department of Water Resources, St. Johns River Water Management District, Palatka, FL (United States)

    2010-06-15

    There is a growing public concern about the contamination of heavy metals in agricultural soils in China due to the increasingly applications of chemical fertilizers and pesticides during the last two decades. This study characterized the variability of heavy metals, including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and nickel (Ni), from the banana farming soils in western Hainan Island, China. Five banana farms from different locations in the island were selected to collect 69 mixed-soil samples in this study. Experimental data showed that concentrations of Cu ranged from 3.38 to 54.52, Zn from 24.0 to 189.8, Pb from 15.98 to 58.42, Cd from 0.43 to 3.21, and Ni from 3.47 to 121.86 mg kg{sup -1} dry wt. In general, concentrations of the heavy metals varied with metal species and changed from location to location, which occurred presumably due to the variations of soil parent materials and to a certain extent due to the use of different types of agrochemicals. Our study further revealed that concentrations of Cu and Zn were higher in the banana farming soils than in the natural (control) soils among all of the five locations, whereas mixed results were observed for Pb, Cd, and Ni in both the banana farming and control soils, depending on the locations. Comparisons of the heavy metal concentrations with the Chinese Soil Quality Standards (CSQSs) showed that Cu, Zn, and Pb contents were lower but Cd and Ni contents were higher in the banana farming soils than the Class II standard of the CSQSs. Results suggested that accumulation of Cu, Zn, and Pb in the soils is safe for banana fruit production, whereas accumulation of Cd and Ni in the same soils could potentially pose threats to banana fruit safety. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    Science.gov (United States)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  2. Lattice parameter values and phase transitions for the Cu{sub 2}Cd{sub 1-z}Mn {sub z}GeSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe {sub z}GeSe{sub 4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, E. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Tovar, R. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Quintero, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)]. E-mail: mquinter@ula.ve; Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Caldera, D. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Ruiz, J. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Mora, A.E. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela); Briceno, M. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela); Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela)

    2007-04-25

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu{sub 2}Cd{sub 1-z}Mn {sub z}GeSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe {sub z}GeSe{sub 4} alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. The effect of the annealing temperature and cooling rate to room temperature are discussed. For the Cu{sub 2}Cd{sub 1-z}Fe {sub z}GeSe{sub 4} system, only two single solid phase fields, the tetragonal stannite {alpha} and the wurtz-stannite {delta} structures were found to occur in the diagram. For the Cu{sub 2}Cd{sub 1-z}Mn {sub z}GeSe{sub 4} system, in addition to the tetragonal stannite {alpha} and the wurtz-stannite {delta} phases, MnSe was found to exist in the diagram. The DTA experiments showed that the cooling curves for both systems exhibited effects of undercooling.

  3. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    Science.gov (United States)

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  4. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  5. Removal of Pb, Cu, Cd, and Zn Present in Aqueous Solution Using Coupled Electrocoagulation-Phytoremediation Treatment

    Directory of Open Access Journals (Sweden)

    Francisco Ferniza-García

    2017-01-01

    Full Text Available This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.

  6. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  7. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils

    International Nuclear Information System (INIS)

    Kuo, S.; Lai, M.S.; Lin, C.W.

    2006-01-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1 ± 0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl 2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them

  8. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Longo, Paolo; Buha, Joka; Botton, Gianluigi A.; Lazar, Sorin; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo; Prato, Mirko; Li, Hongbo; Ghosh, Sandeep; Palazon, Francisco; De Donato, Francesco; Lentijo Mozo, Sergio; Zuddas, Efisio; Falqui, Andrea

    2016-01-01

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  9. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  10. Monitoring of heavy metal load - by mosses or rain water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T. [Finnish Meteorological Inst., Helsinki (Finland); Maekelae, K. [National Board of Waters and the Environment, Helsinki (Finland)

    1995-12-31

    The deposition of heavy metals is usually determined from precipitation chemistry but the moss technique has been increasingly used, particularly in the Nordic countries. Some international monitoring programmes, e.g. UN/ECE Integrated Monitoring, give them as alternative methods. However, their comparability has not been sufficiently determined. This study compares the two monitoring methods for Pb, Cd, Cu and Zn, which have different sources. The metal industry is an important source of Pb and Cd emissions. Long- range transport as well as traffic and local emissions are also important sources for Pb. The use of fertilizers and fossil fuels also result in Cd emissions. Cu and Zn are emitted from metal industries and local sources. Unlike Pb and Cd, Cu and Zn are essential elements for living organisms. Cu and Zn are needed in many enzymes and Zn in proteins. Mosses are thought to take all their nutrients from the air. The deposition of heavy metals is also effectively retained by mosses and may be used to indicate levels of heavy metal deposition. In northern countries the mosses are isolated from air (and therefore also from deposition) by snow in winter. In this study both the bulk deposition of the whole year (later `total deposition`) and the bulk deposition of the snow-free period (later `bare ground deposition`) are compared to the metal concentrations in mosses. (author)

  11. Monitoring of heavy metal load - by mosses or rain water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T [Finnish Meteorological Inst., Helsinki (Finland); Maekelae, K [National Board of Waters and the Environment, Helsinki (Finland)

    1996-12-31

    The deposition of heavy metals is usually determined from precipitation chemistry but the moss technique has been increasingly used, particularly in the Nordic countries. Some international monitoring programmes, e.g. UN/ECE Integrated Monitoring, give them as alternative methods. However, their comparability has not been sufficiently determined. This study compares the two monitoring methods for Pb, Cd, Cu and Zn, which have different sources. The metal industry is an important source of Pb and Cd emissions. Long- range transport as well as traffic and local emissions are also important sources for Pb. The use of fertilizers and fossil fuels also result in Cd emissions. Cu and Zn are emitted from metal industries and local sources. Unlike Pb and Cd, Cu and Zn are essential elements for living organisms. Cu and Zn are needed in many enzymes and Zn in proteins. Mosses are thought to take all their nutrients from the air. The deposition of heavy metals is also effectively retained by mosses and may be used to indicate levels of heavy metal deposition. In northern countries the mosses are isolated from air (and therefore also from deposition) by snow in winter. In this study both the bulk deposition of the whole year (later `total deposition`) and the bulk deposition of the snow-free period (later `bare ground deposition`) are compared to the metal concentrations in mosses. (author)

  12. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils.

    Science.gov (United States)

    Li, Hongying; Ye, Xinxin; Geng, Zhigang; Zhou, Hongjian; Guo, Xisheng; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2016-03-05

    Long-term effect of biochar on PTEs (potential toxic elements) immobilization depends upon biochar own property and its aging process in soil. To understand the role of biachar type on PTEs stabilization, two types of biochar, corn-straw-derived biochar (CB) and hardwood-derived biochar (HB), were compared for their efficacy in achieving a stable decrease in the bio-availability of Cd and Cu in soils. The 3-year pot-culture experiment showed that HB reduced the concentration of CaCl2-extractable Cd and Cu by 57.9 and 63.8% in soil, and Cd and Cu uptake by 63.6 and 56.3% in rice tissue respectively, in the first year, whereas these values increased in the next two years. On the other hand, CB decreased these values steadily year by year. At the end of the 3 years, CB at 5% level had lowered the levels of CaCl2-extractable Cd and Cu by 53.6 and 66.8%, respectively. These variations between CB and HB were due to the differences in the way the two types of biochar age in the soil. The aging process was simulated in the laboratory, and the XPS results showed that the oxidization of the biochars introduced more oxygen-containing groups (especially carboxyl) on the surface of CB than HB, leading to a correspondingly greater number of oxygenated binding sites for Cd and Cu in the case of CB. The content of lignin was the major factor resulting in the variation of oxidation degree in two biochars. These results suggest that it is important to select the right kind of biochar to stably decrease the bio-availability of potential toxic elements (Cd and Cu) in contaminated soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Study of Selected Metals Distribution, Source Apportionment, and Risk Assessment in Suburban Soil, Pakistan

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2015-01-01

    Full Text Available Composite soil samples collected from suburban areas were analyzed for Cd, Co, Cr, Cu, Fe, Mn, Pb, Sr, and Zn by atomic absorption spectrophotometry. Based on pseudototal metal analysis, Fe, Mn, Sr, and Zn were the prevailing metals while Cd, Co, Cr, and Pb were the least participants. However, based on bioavailability, Cd, Co, Pb, and Sr were easily leachable and might pose adverse effects to soil biota. In ecological risk assessment, contamination factor demonstrated moderate contamination by Co, Sr, and Zn and high contamination by Cd, Cu, and Pb; geoaccumulation index indicated heavy to extreme contamination by Cd and heavy contamination by Pb; enrichment factor revealed significant enrichment by Co, Cr, Cu, Mn, Sr, and Zn and extreme enrichment by Cd and Pb. Substantial human inputs for Cd, Co, Cr, Cu, Mn, Pb, Sr, and Zn were also revealed by principal component analysis in the examined soil. Overall the study area was found to be contaminated at considerable/high degree.

  14. Metal toxicity- a possible cause of idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Javed, M.S.; Gilani, R.

    2011-01-01

    Idiopathic pulmonary fibrosis is a fatal disease of unknown etiology. Attempts are being made in the world to understand the disease mechanism by knowing its causes. Present research is a part to that contribution. Concentrations of some toxic metals were estimated in the blood and lung tissues of the persons diagnosed to be the subject of idiopathic pulmonary fibrosis. IPF subjects were selected for this purpose which was admitted in different hospitals in Lahore. Blood samples were taken directly from the patients whereas lung tissue samples were collected from the relevant biopsy labs. Three control blood samples were also collected from healthy persons. The samples were digested with Conc. HNO/sub 3/ to make their solutions for the estimation of metals. The metals selected were Cu, Pb, Cd, Cr, Be, Zn, Al, As and Co. Atomic Absorption Spectrophotometer (AAS) was used to estimate the metal concentrations in the sample solutions. The mean values of the concentrations (ppm) of these metals in the blood samples were Cu (0.65), Pb(0.69), Cd(1.17), Cr(0.21), Be(0.67), Zn(6.31), Al(1.33), As(0.46) and Co(0.46). The mean values of the concentrations (ppm) of these metals in the lung tissue samples were Cu (1.57), Pb(1.01), Cd(1.70), Cr(0.46), Be(2.02), Zn(10.20), Al(1.68), As(0.83) and Co(0.65). The concentrations of these metals were also estimated in the blood samples of control healthy persons and compared with the subjects. The difference of concentrations (ppm) in the blood samples of IPF subjects and Control Maximum (Mean Subjects - Control Max.) were Cu (0.50), Pb(0.62), Cd(1.17), Cr(0.21), Be(0.56), Zn(5.06), Al(1.31), As(0.46) and Co(0.46). Comparison of the mean values of concentrations of metals in blood samples of IPF subjects with the maximum concentration of metals in the blood samples of control healthy persons shows that metals levels are higher in the subjects than the control ones. i.e. Cu(76.92%), Pb(89.6%), Cd(100%), Cr(100%), Be(83.58%), Zn(80

  15. PET Imaging of Abdominal Aortic Aneurysm with 64Cu-Labeled Anti-CD105 Antibody Fab Fragment.

    Science.gov (United States)

    Shi, Sixiang; Orbay, Hakan; Yang, Yunan; Graves, Stephen A; Nayak, Tapas R; Hong, Hao; Hernandez, Reinier; Luo, Haiming; Goel, Shreya; Theuer, Charles P; Nickles, Robert J; Cai, Weibo

    2015-06-01

    The critical challenge in abdominal aortic aneurysm (AAA) research is the accurate diagnosis and assessment of AAA progression. Angiogenesis is a pathologic hallmark of AAA, and CD105 is highly expressed on newly formed vessels. Our goal was to use (64)Cu-labeled anti-CD105 antibody Fab fragment for noninvasive assessment of angiogenesis in the aortic wall in a murine model of AAA. Fab fragment of TRC105, a mAb that specifically binds to CD105, was generated by enzymatic papain digestion and conjugated to NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) for (64)Cu labeling. The binding affinity/specificity of NOTA-TRC105-Fab was evaluated by flow cytometry and various ex vivo studies. BALB/c mice were anesthetized and treated with calcium phosphate to induce AAA and underwent weekly PET scans using (64)Cu-NOTA-TRC105-Fab. Biodistribution and autoradiography studies were also performed to confirm the accuracy of PET results. NOTA-TRC105-Fab exhibited high purity and specifically bound to CD105 in vitro. Uptake of (64)Cu-NOTA-TRC105-Fab increased from a control level of 3.4 ± 0.1 to 9.5 ± 0.4 percentage injected dose per gram (%ID/g) at 6 h after injection on day 5 and decreased to 7.2 ± 1.4 %ID/g on day 12, which correlated well with biodistribution and autoradiography studies (i.e., much higher tracer uptake in AAA than normal aorta). Of note, enhanced AAA contrast was achieved, due to the minimal background in the abdominal area of mice. Degradation of elastic fibers and highly expressed CD105 were observed in ex vivo studies. (64)Cu-NOTA-TRC105-Fab cleared rapidly through the kidneys, which enabled noninvasive PET imaging of the aorta with enhanced contrast and showed increased angiogenesis (CD105 expression) during AAA. (64)Cu-NOTA-TRC105-Fab PET may potentially be used for future diagnosis and prognosis of AAA. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    International Nuclear Information System (INIS)

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  17. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  18. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.

    Science.gov (United States)

    Wang, Xin; Jia, Youngfeng

    2010-08-01

    Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil. The soil was spiked with a combination of Cd, Cu, and Zn at concentrations of 1.5, 100, and 200 mg.kg(-1), respectively. The results showed that the biomass of poplar (Populus canadensis Moench) was lower by 26.0% in the soil spiked with a mixture of Cd, Cu, and Zn, compared with the control. Concentrations of Cd in poplar leaf and Cu in poplar roots in the treated soil were 4.11 and 14.55 mg kg(-1), respectively, which are much greater than in corresponding controls. The migration of heavy metals in woody plant body was in the order Cd > Zn > Cu. Poplar had higher metal concentrations in aboveground tissues and a higher biomass compared with larch of the same age and therefore is potentially more suitable for remediation. In the heavy metal-polluted soil of this study, phytoremediation by poplar may take 56 and 245 years for Cd and Cu, respectively, for meeting the soil standards of heavy metals, and the corresponding phytoremediation times by larch would take 211 and 438 years. The research findings could be used as a basis to develop ecological engineering technologies for environmental control and remediation of pollution caused by heavy metals in soils.

  19. Heavy metal distribution and bioaccumulation in Chihuahuan Desert Rough Harvester ant (Pogonomyrmex rugosus) populations

    International Nuclear Information System (INIS)

    Del Toro, I.; Floyd, K.; Gardea-Torresdey, J.; Borrok, D.

    2010-01-01

    Heavy metal contamination can negatively impact arid ecosystems; however a thorough examination of bioaccumulation patterns has not been completed. We analyzed the distribution of As, Cd, Cu, Pb and Zn in soils, seeds and ant (Pogonomyrmex rugosus) populations of the Chihuahuan Desert near El Paso, TX, USA. Concentrations of As, Cd, Cu, and Pb in soils, seeds and ants declined as a function of distance from a now inactive Cu and Pb smelter and all five metals bioaccumulated in the granivorous ants. The average bioaccumulation factors for the metals from seeds to ants ranged from 1.04x (As) to 8.12x (Cd). The findings show bioaccumulation trends in linked trophic levels in an arid ecosystem and further investigation should focus on the impacts of heavy metal contamination at the community level. - Heavy metals bioaccumulate in desert ants.

  20. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, Grazyna [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Babczynska, Agnieszka [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Augustyniak, Maria [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Migula, Pawel [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland)]. E-mail: migula@us.edu.pl

    2004-12-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex.

  1. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Wilczek, Grazyna; Babczynska, Agnieszka; Augustyniak, Maria; Migula, Pawel

    2004-01-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex

  2. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  3. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.

    Science.gov (United States)

    Sun, Zehang; Xie, Xiande; Wang, Ping; Hu, Yuanan; Cheng, Hefa

    2018-05-19

    Although metal ore mining activities are well known as an important source of heavy metals, soil pollution caused by small-scale mining activities has long been overlooked. This study investigated the pollution of surface soils in an area surrounding a recently abandoned small-scale polymetallic mining district in Guangdong province of south China. A total of 13 tailing samples, 145 surface soil samples, and 29 water samples were collected, and the concentrations of major heavy metals, including Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Se, were determined. The results show that the tailings contained high levels of heavy metals, with Cu, Zn, As, Cd, and Pb occurring in the ranges of 739-4.15 × 10 3 , 1.81 × 10 3 -5.00 × 10 3 , 118-1.26 × 10 3 , 8.14-57.7, and 1.23 × 10 3 -6.99 × 10 3  mg/kg, respectively. Heavy metals also occurred at high concentrations in the mine drainages (15.4-17.9 mg/L for Cu, 21.1-29.3 mg/L for Zn, 0.553-0.770 mg/L for Cd, and 1.17-2.57 mg/L for Pb), particularly those with pH below 3. The mean contents of Cu, Zn, As, Cd, and Pb in the surface soils of local farmlands were up to 7 times higher than the corresponding background values, and results of multivariate statistical analysis clearly indicate that Cu, Zn, Cd, and Pb were largely contributed by the mining activities. The surface soils from farmlands surrounding the mining district were moderately to seriously polluted, while the potential ecological risk of heavy metal pollution was extremely high. It was estimated that the input fluxes from the mining district to the surrounding farmlands were approximately 17.1, 59.2, 0.311, and 93.8 kg/ha/yr for Cu, Zn, Cd, and Pb, respectively, which probably occurred through transport of fine tailings by wind and runoff, and mine drainage as well. These findings indicate the significant need for proper containment of the mine tailings at small-scale metal ore mines. Copyright © 2018. Published by Elsevier

  4. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    Science.gov (United States)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  5. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Specific features of band structure and optical anisotropy of Cu{sub 2}CdGeSe{sub 4} quaternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G., E-mail: brik@fi.tartu.ee [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Parasyuk, O.V. [Department of Chemistry, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Myronchuk, G.L. [Department of Physics, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Kityk, I.V. [Institute of Materials Science and Engineering, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2014-09-15

    Complex theoretical and experimental studies of the band structure and optical functions of a new Cu{sub 2}CdGeSe{sub 4} quaternary crystal are reported. The benchmark band structure calculations were performed using the first-principles methods. As a result, the structural, electronic, optical and elastic properties of Cu{sub 2}CdGeSe{sub 4} were calculated in the general gradient approximation (GGA) and local density approximation (LDA). The calculated dielectric function and optical absorption spectra exhibit some anisotropic behavior. Detailed analysis of the band energy dispersion and effective space charge density helped in establishing the origin of the band structure anisotropy. All calculated properties are compared with the experimental data. An additional comparison with a similar crystal of Cu{sub 2}CdGeSe{sub 4} allowed to reveal the role played by the anions (S or Se) in formation of the optical properties of these two materials. - Highlights: • The structural, electronic, optical properties of Cu{sub 2}CdGeSe{sub 4} were calculated. • Pressure effects on these properties were modeled. • Comparison with a similar compound of Cu{sub 2}CdGeS{sub 4} was performed.

  7. One-pot noninjection synthesis of Cu-doped Zn(x)Cd(1-x)S nanocrystals with emission color tunable over entire visible spectrum.

    Science.gov (United States)

    Zhang, Wenjin; Zhou, Xinggui; Zhong, Xinhua

    2012-03-19

    Unlike Mn doped quantum dots (d-dots), the emission color of Cu dopant in Cu d-dots is dependent on the nature, size, and composition of host nanocrystals (NCs). The tunable Cu dopant emission has been achieved via tuning the particle size of host NCs in previous reports. In this paper, for the first time we doped Cu impurity in Zn(x)Cd(1-x)S alloyed NCs and tuned the dopant emission in the whole visible spectrum via variation of the stoichiometric ratio of Zn/Cd precursors in the host Zn(x)Cd(1-x)S alloyed NCs. A facile noninjection and low cost approach for the synthesis of Cu:Zn(x)Cd(1-x)S d-dots was reported. The optical properties and structure of the obtained Cu:Zn(x)Cd(1-x)S d-dots have been characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The influences of various experimental variables, including Zn/Cd ratio, reaction temperature, and Cu dopant concentration, on the optical properties of Cu dopant emission have been systematically investigated. The as-prepared Cu:Zn(x)Cd(1-x)S d-dots did show PL emission but with quite low quantum yield (QY) (typically below 6%). With the deposition of ZnS shell around the Cu:Zn(x)Cd(1-x)S core NCs, the PL QY increased substantially with a maximum value of 65%. More importantly, the high PL QY can be preserved when the initial oil-soluble d-dots were transferred into aqueous media via ligand replacement by mercaptoundeconic acid. In addition, these d-dots have thermal stability up to 250 °C. © 2012 American Chemical Society

  8. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  10. Trace metal pollution in Umtata River | Fatoki | Water SA

    African Journals Online (AJOL)

    Dissolved trace metals, i.e Fe, Mn, Al, Cu, Zn, Pb and Cd were determined in the Umtata River. High levels of Al, Cd, Pb, Zn and. Cu were observed, which may affect the “health” of the aquatic ecosystem. The high levels of Al, Cd and Pb may also affect the health of the rural community that uses the river water directly for ...

  11. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments.

    Science.gov (United States)

    Krami, Loghman Khoda; Amiri, Fazel; Sefiyanian, Alireza; Shariff, Abdul Rashid B Mohamed; Tabatabaie, Tayebeh; Pradhan, Biswajeet

    2013-12-01

    One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EF(G)) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EF(G) techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EF(G) technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.

  12. Subcellular partitioning profiles and metallothionein levels in indigenous clams Moerella iridescens from a metal-impacted coastal bay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zaosheng, E-mail: zswang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Feng, Chenglian; Ye, Chun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Youshao [State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Yan, Changzhou, E-mail: czyan@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); Li, Rui; Yan, Yijun; Chi, Qiaoqiao [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China)

    2016-07-15

    Highlights: • Subcellular partitioning profile of metals were investigated in biomonitor organism. • Cu, Zn and Cd levels in main fraction of HSP increase along accumulation gradients. • Despite MTs as the major binding pool, detoxification of Cd and Pb was incomplete. • Induced MTs were sequentially correlated with Cu, Zn and Cd levels in HSP fraction. • Intracellular metal fates highlighted the metabolic availability within organism. - Abstract: In this study, the effect of environmental metal exposure on the accumulation and subcellular distribution of metals in the digestive gland of clams with special emphasis on metallothioneins (MTs) was investigated. Specimens of indigenous Moerella iridescens were collected from different natural habitats in Maluan Bay (China), characterized by varying levels of metal contamination. The digestive glands were excised, homogenized and six subcellular fractions were separated by differential centrifugation procedures and analyzed for their Cu, Zn, Cd and Pb contents. MTs were quantified independently by spectrophotometric measurements of thiols. Site-specific differences were observed in total metal concentrations in the tissues, correlating well with variable environmental metal concentrations and reflecting the gradient trends in metal contamination. Concentrations of the non-essential Cd and Pb were more responsive to environmental exposure gradients than were tissue concentrations of the essential metals, Cu and Zn. Subcellular partitioning profiles for Cu, Zn and Cd were relatively similar, with the heat-stable protein (HSP) fraction as the dominant metal-binding compartment, whereas for Pb this fraction was much less important. The variations in proportions and concentrations of metals in this fraction along with the metal bioaccumulation gradients suggested that the induced MTs play an important role in metal homeostasis and detoxification for M. iridescens in the metal-contaminated bay. Nevertheless

  13. Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China.

    Science.gov (United States)

    Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng

    2017-05-01

    Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.

  14. Metal complexes with 5-aminotetrazole

    International Nuclear Information System (INIS)

    Lavrenova, L.G.; Larionov, S.V.; Grankina, Z.A.; Ikorskij, V.N.

    1983-01-01

    Nitrate and chloride complexes of Co(2), Ni(2), Cu(2), Cd(2), Hg(2), Pb(2) with 5 aminotetrazole (ATE) and compoUnds Zn(ATE') 2 and Cd(ATEE') 2 , where ATE' is a 5 aminotetrazole ano /nion. On the base of spectroscopic data (spectrophotometry, IR- spectra, EPR and magnetic measurements assumptions on M(2) coordination in complexes are made. Most probably ATE is a bridge ligand which is joined by two nitrogen atoms to various M(2) ions. In Co(2), Ni(2) and Cu(ATE) 3 -Cl 2 compounds the metal has a distorted actahedral coordination and forms MN 6 unit, which suggests the interaction of metal ions with ATE nitrogen atoms along the Z-axis. In the Cu(ATE) 2 (NO 3 ) 2 octahedral complex the CuN 4 O 2 coordination unit is realized at the expense of participation of nitratogroups in coordination

  15. Manifestaciones cutáneas como parámetro de teratogenicidad en la intoxicación con metales pesados Cutaneous signs as parameter in teratogenicity by heavy metal intoxication

    Directory of Open Access Journals (Sweden)

    N L Pauza

    2007-03-01

    Full Text Available Se estudiaron los efectos teratogénicos de metales pesados (acetatos de Cd2+ y Pb2+ y sulfato de Cu2+, en embriones de pollo en desarrollo, después de la administración de una monodosis del metal. Los huevos embrionados fueron inyectados en la yema en el día 12 de incubación. Las concentraciones de los iones fueron (nmoles/g huevo: Cd2+: Dosis 1 (D1: 0,16 y Dosis 2 (D2: 0,32; Pb2+: D1: 8,0 y D2: 16,0 y Cu2+: D1: 1,7 y D2: 3,3. Los resultados se evaluaron después de continuar la incubación in ovo durante 12 y 60 hs Cu2+ y Pb2+ no aumentaron la mortalidad de los embriones, en cambio, la presencia de Cd2+ produjo entre 30 y 86 % de mortalidad de los embriones, con efectos dosis y tiempo dependientes. Los embriones intoxicados con la D2 de Cd2+ durante 60 hs fueron los únicos ejemplares que presentaron disminución en su peso promedio, respecto de los ejemplares de control. La administración de Cd2+ causó efectos teratogénicos más severos que los tratamientos con Cu2+ y Pb2+. Se puede concluir que los metales pesados son embriotóxicos e inducen teratogenia en embriones de pollo en desarrollo. Se sugiere que los mejores parámetros para evaluar la teratogenicidad producida por la intoxicación Cd2+, Cu2+ y Pb2+ son los derrames cutáneos y hepáticos.Teratogenic effects of heavy metals (Cd2+- and Pb2+- acetates and Cu2+- suphate were studied on chick embryos, after the administration as a single dose. Test materials were injected into the yolk on day 12 of incubation. Tested concentrations were (nmole/g egg: Cd2+ Dose 1 (D1: 0.16 and Dose 2 (D2: 0.32; Pb2+: D1: 8.0 and D2: 16.0 and Cu2+: D1: 1.7 and D2: 3.3. Evaluations were performed after in ovo incubation for 12 and 60 hours. Embryonic mortality did not increase at the two dose levels of Cu2+ and Pb2+, while Cd2+ caused 30 and 86% of mortality, showing dose and time responses. Eggs treated with D2 of Cd2+ for 60 hs, significantly decreased the average of body mass embryo, when

  16. Study of the role of biotic and abiotic factors in modifying metal accumulation by Chironomus (Diptera: Chironomidae)

    Energy Technology Data Exchange (ETDEWEB)

    Krantzberg, G.B.

    1987-01-01

    The author examined the variability in metal bioaccumulation by chironomids collected from sites that differed in the extent of metal and acid loadings. Bioaccumulation by Chironomus was related to both biotic and abiotic factors. Metal accumulation was age and weight dependent. Aluminum, Ca, and Fe concentrations increased with age, Cd and Ni decreased, and Cu, Mn, Pb, and Zn remained constant with age. Calcium, Fe, and Ni concentration increased with weight, Cd decrease, and Cu, Mn, and Zn remained constant with weight. Age and weight effects on metal accumulation were identified as a potential source of spacial and temporal variability in tissue concentrations. Metal regulation differed between populations of Chironomus. Lead and Cd were not regulated, Zn was regulated, and larvae from a Cu and Ni contaminated system appeared to regulate Cu and Ni. X-ray probe microanalysis provided further support that metal metabolism differed between population, and results from laboratory experiments suggested that populations differed in relation to metal tolerance. There was evidence that pH modified metal accumulation.

  17. [Heavy metals distribution characteristics and ecological risk evaluation in surface sediments of dammed Jinshan lake].

    Science.gov (United States)

    Zhou, Xiao-Hong; Liu, Long-Mei; Chen, Xi; Chen, Zhi-Gang; Zhang, Jin-Ping; Li, Yi-Min; Liu, Biao

    2014-11-01

    In order to reveal the pollution loading of heavy metals in Dammed Jinshan lake, six heavy metals (As, Cu, Pb, Cd, Zn, Cr) from 18 sediment samples were analyzed using ICP, and the distribution characteristics of heavy metals in the sediment were comprehensively evaluated through concentration coefficient, geo-acumulation indexes, potential ecological risk evaluation and traceability analysis. The results showed that (1) the average contents of As, Pb, Cu, Zn, Cr, Cd were 23.22, 26.20, 24.42, 143.12, 245.30 and 0.67 mg x kg(-1), respectively, in the surface sediments of dammed Jinshan Lake. The average contents of Pb and Cu were lower than the primary standard and secondary standards of soil environmental quality standards. The average contents of Zn and Cr were lower than the primary standard and higher than the secondary standards of soil environmental quality standards. The average contents of As and Cd were higher than the primary and secondary standards of soil environmental quality standards. From the spatial distribution, the contents of Pb and Zn were the highest at sampling site No. 1, which was located at the Beigushan Square. The contents of As,Cu, Cr, Cd were the highest at sampling sites Nos. 12, 3, 14, and 7, respectively; (2) The order of concentration coefficient was As > Cr > Cd > Pb > Zn > Cu, which indicated that the enrichment amount of As was the highest and that of Cu was the lowest; (3) Based on the geo-acumulation indexes, the Cu is clean and Pb, Zn, Cd is the light pollution and As, Cr moderate pollution; (4) The order of Potential ecological risk coefficient was Cd > As > Cr > Pb > Cu > Zn, Cr, Pb, Cu, Zn were of light ecological risk and As, Cd were of medium ecological risk. From the spatial distribution, the sampling sites Nos. 1, 6, 7 and 12 had medium potential ecological risk, and the rest sample points had slight potential ecological risk; (5) The principal component analysis (PCA) revealed that the main reason for the differences

  18. Microalloying with Cd of Antifriction Sn-Sb-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2012-09-01

    Full Text Available In the case of bimetallic sliding linings with superior technological characteristics, the use of an antifriction ally is imposed an alloy of the type Sn-Sb-Cu, which possesses a high adherence to the steel stand and a high durability in exploitation. For this reason we use the microalloying of the antifriction alloy with cadmium. The microalloying with Cd of antifriction alloys Sn-Sb-Cu determines an increase of the adhesion property of the antifriction alloy on the steel stand. The steel stand is previously subjected to a process of degreasing with ZnCl2 and washing so that is can later be subjected to a thermal-chemical treatment of tinning.

  19. Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode

    Science.gov (United States)

    Arya, Sandeep; Sharma, Asha; Singh, Bikram; Riyas, Mohammad; Bandhoria, Pankaj; Aatif, Mohammad; Gupta, Vinay

    2018-05-01

    Copper (Cu) doped p-CdS nanoparticles have been synthesized via sol-gel method. The as-synthesized nanoparticles were successfully characterized and implemented for fabrication of Glass/ITO/n-ZnO/p-CdS/Al thin film photodiode. The fabricated device is tested for small (-1 V to +1 V) bias voltage. Results verified that the junction leakage current within the dark is very small. During reverse bias condition, the maximum amount of photocurrent is obtained under illumination of 100 μW/cm2. Electrical characterizations confirmed that the external quantum efficiency (EQE), gain and responsivity of n-ZnO/p-CdS photodiode show improved photo response than conventional p-type materials for such a small bias voltage. It is therefore revealed that the Cu-doped CdS nanoparticles is an efficient p-type material for fabrication of thin film photo-devices.

  20. Comparation of the Uptake and Accumulation of Heavy Metals by Rape Species Grown in Contaminated Soil Surrounding Mining Tails in Chenzhou, China

    Directory of Open Access Journals (Sweden)

    YANG Yang

    2015-08-01

    Full Text Available The rape is usually used for phytoremediation of metal-contaminated soils, because it has the characteristics of rapid growth, large biomass, and high potential to tolerate and accumulate large quantities of heavy metals. In this work, accumulation and transformation of Cu, Zn, Pb, Cd in four rape species(B. juncea L.(BJ, Brassica napus L.(BL, Canadian Brassica napus L.(CBL, local rape(LRwere investigated in soils surrounding mine area contaminated by lead-zinc ore tailings in Chenzhou, Hunan Province. The results showed a significantly high accumulation of Cu, Zn and Cd in leaves and roots of four rape species. However, the concentration of Pb in roots of all rape species was usually one or two orders of magnitude than other parts, and the concentration of heavy metals in stems and fruits was lower. The accumulation of heavy metals in leaves parts was in the order: Zn >Cu >Pb >Cd, and in roots was as: Pb >Zn >Cu >Cd; the order of bioconcentration factor(BCFof heavy metals in above-ground parts(leavesof rape species was: Cu: BJ ≥LR >BL >CBL, Zn: BL >CBL >BJ >LR, Pb: BJ≈LR > BL≈CBL, Cd: BL >CBL >BJ >LR; and the order of translocation factor(TFfrom stems to leaves was: Cu: LR >BJ≈CBL >BL,Zn: BL >LR > BJ >CBL, Pb: BJ >CBL≈LR >BL,Cd: BJ >BL >CBL >LR. It indicated there were significant differences among the species. The results of the field experiment suggested that B. juncea L. was suitable for phytoextraction of Cu, Pb contaminated soil, Brassica napus L. could be used to remediate Zn, Cd or heavy metal combined polluted soils.

  1. Phase relations in the quasi-binary Cu{sub 2}GeS{sub 3}-ZnS and quasi-ternary Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems and crystal structure of Cu{sub 2}ZnGeS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine)]. E-mail: oleg@lab.univer.lutsk.ua; Piskach, L.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Romanyuk, Y.E. [Advanced Photonics Laboratory, Institute of Imaging and Applied Optics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Olekseyuk, I.D. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Zaremba, V.I. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 L' viv (Ukraine); Pekhnyo, V.I. [V.I. Vernadskii Institute of General and Inorganic Chemistry, Ukrainian National Academy of Sciences, Palladina Ave 32-34, 03680 Kiev (Ukraine)

    2005-07-19

    The isothermal section of the Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems at 670K was constructed using X-ray diffraction analysis. At this temperature, two quaternary intermediate phases, Cu{sub 2}CdGeS{sub 4} and {approx}Cu{sub 8}CdGeS{sub 7}, exist in the Cu{sub 2}S-CdS-GeS{sub 2} system, and only one phase, Cu{sub 2}ZnGeS{sub 4}, exists in the Cu{sub 2}S-ZnS-GeS{sub 2} system. The phase diagram of the Cu{sub 2}GeS{sub 3}-ZnS system was constructed using differential-thermal analysis and X-ray diffraction, and the existence of Cu{sub 2}ZnGeS{sub 4} has been confirmed. It forms incongruently at 1359K. Powder X-ray diffraction was used to refine the crystal structure of Cu{sub 2}ZnGeS{sub 4}, which crystallizes in the tetragonal stannite-type structure at 670K (space group I4-bar 2m, a=0.534127(9)nm, c=1.05090(2)nm, R{sub I}=0.0477). The possibility of the formation of quaternary compounds in the quasi-ternary systems A{sup I}{sub 2}X-B{sup II}X-C{sup IV}X{sub 2}, where A{sup I}-Cu, Ag; B{sup II}-Zn, Cd, Hg; C{sup IV}-Si, Ge, Sn and X-S, Se, Te is discussed.

  2. Retenção de metais pesados em micélio de fungos micorrízicos arbusculares Retention of heavy metals by arbuscular mycorrhizal fungi mycelium

    Directory of Open Access Journals (Sweden)

    Lucélia Cabral

    2010-01-01

    Full Text Available This work evaluated the kinetics as well as the retention capacity of Cu, Zn, Cd, and Pb by arbuscular mycorrhizal fungi (AMF mycelium. The metal retention is a fast process with Cu being retained 3, 30, and 60 times faster than Zn, Cd, and Pb, respectively. Metal retention capacity varied amongst the different tested AMF species and decreased in the following order: Cu>Zn>>Cd>Pb. The Glomus clarum mycelium showed the highest retention capacity for Cu, Cd and Pb, whereas Zn was mostly retained by Gigaspora gigantea mycelium. The simultaneous application of all tested metals in solution decreased Cu and Zn retention by AMF mycelium. The high retention capacity of Cu and Zn by mycelium of G. clarum and G. gigantea suggests a promising use of these isolates in phytoremediation.

  3. Accumulation of metal ions by pectinates

    Science.gov (United States)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  4. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers

    International Nuclear Information System (INIS)

    Croteau, Marie-Noele; Luoma, Samuel N.; Pellet, Bastien

    2007-01-01

    We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53 Cr, 65 Cu and 106 Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53 Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53 Cr was recovered in the feces after 22.5 h of depuration (GRT). 53 Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65 Cu and 106 Cd assimilation was detectable for most experimental snails, i.e., 65/63 Cu and 106/114 Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ± 0.07 g g -1 d -1 . IR was inferred from the amount of 53 Cr egested in the feces during depuration and the concentration of 53 Cr in the labelled lettuce. Assimilation efficiencies (±95% CI) determined using mass balance calculations were 84 ± 4% for Cu and 85 ± 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals

  5. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin.

    Science.gov (United States)

    Staples, Christopher R.; Dhawan, Ish K.; Finnegan, Michael G.; Dwinell, Derek A.; Zhou, Zhi Hao; Huang, Heshu; Verhagen, Marc F. J. M.; Adams, Michael W. W.; Johnson, Michael K.

    1997-12-03

    The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).

  6. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Chemical analysis of the trace elements in the soft tissues. The trace elements of interest (Cu, Zn, Fe, Pb, Cd) were then determined in the digested solutions, using Thermoelemental type. M6 brand of an atomic absorption Spectrometer equipped with a flame operated atomisation system and a deuterium ...

  7. Concentrations and distributions of metals in tissues of stranded green sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil

    International Nuclear Information System (INIS)

    da Silva, Cinthia Carneiro; Varela, Antonio Sergio; Barcarolli, Indianara Fernanda; Bianchini, Adalto

    2014-01-01

    Silver (Ag), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) concentrations were analyzed in tissues of juvenile green sea turtles (Chelonia mydas) found stranded along the southern Atlantic coast in Brazil. Green sea turtles were collected (n = 29), measured (curved carapace length: CCL) and had their muscle, liver, and kidney dissected for metal concentration measurements. Sex was identified in 18 individuals (10 females and 8 males) through gonad histology. No gender differences in CCL and tissue metal concentrations were observed. In the muscle, there was a negative correlation between CCL and Cd and Cu concentrations. Metal concentrations were lower in the muscle than in the liver and kidney. Zn concentration in the muscle was the highest of all metals analyzed (16.6 mg/kg). The kidney showed the highest concentrations of Pb, Cd and Zn (5.4, 28.3 and 54.3 mg/kg, respectively), while the liver had the highest values of Ag and Cu (0.8 and 100.9 mg/kg, respectively). Tissue Ag, Zn and Cd concentrations were similar to those found in green sea turtles from other regions while Cu and Pb values were elevated, likely due to the metal-rich water and sediment reported in the collection area. In the liver and kidney, concentrations of non-essential (Ag, Cd and Pb) and essential (Cu or Zn) metals were positively correlated, likely due to an induced metallothionein synthesis to protect tissue against the toxic effect of metals. This is the first study to report and correlate the concentrations of essential and non-essential metals in tissues of green sea turtles in the Brazilian southern Atlantic coast, an important feeding and developing area for this turtle species. - Highlights: •Juvenile female and male green sea turtles have similar concentrations of metals. •Kidney accumulated more Cd, Pb and Zn while liver accumulated more Ag and Cu. •Cu and Pb concentrations are elevated in liver of sea turtles from southern Brazil. •Concentrations of Cd and Cu in

  8. Concentrations and distributions of metals in tissues of stranded green sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    da Silva, Cinthia Carneiro [Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul (Brazil); Varela, Antonio Sergio; Barcarolli, Indianara Fernanda [Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul (Brazil); Bianchini, Adalto, E-mail: adaltobianchini@furg.br [Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul (Brazil); Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul (Brazil)

    2014-01-01

    Silver (Ag), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) concentrations were analyzed in tissues of juvenile green sea turtles (Chelonia mydas) found stranded along the southern Atlantic coast in Brazil. Green sea turtles were collected (n = 29), measured (curved carapace length: CCL) and had their muscle, liver, and kidney dissected for metal concentration measurements. Sex was identified in 18 individuals (10 females and 8 males) through gonad histology. No gender differences in CCL and tissue metal concentrations were observed. In the muscle, there was a negative correlation between CCL and Cd and Cu concentrations. Metal concentrations were lower in the muscle than in the liver and kidney. Zn concentration in the muscle was the highest of all metals analyzed (16.6 mg/kg). The kidney showed the highest concentrations of Pb, Cd and Zn (5.4, 28.3 and 54.3 mg/kg, respectively), while the liver had the highest values of Ag and Cu (0.8 and 100.9 mg/kg, respectively). Tissue Ag, Zn and Cd concentrations were similar to those found in green sea turtles from other regions while Cu and Pb values were elevated, likely due to the metal-rich water and sediment reported in the collection area. In the liver and kidney, concentrations of non-essential (Ag, Cd and Pb) and essential (Cu or Zn) metals were positively correlated, likely due to an induced metallothionein synthesis to protect tissue against the toxic effect of metals. This is the first study to report and correlate the concentrations of essential and non-essential metals in tissues of green sea turtles in the Brazilian southern Atlantic coast, an important feeding and developing area for this turtle species. - Highlights: •Juvenile female and male green sea turtles have similar concentrations of metals. •Kidney accumulated more Cd, Pb and Zn while liver accumulated more Ag and Cu. •Cu and Pb concentrations are elevated in liver of sea turtles from southern Brazil. •Concentrations of Cd and Cu in

  9. Geofractionation of heavy metals and application of indices for pollution prediction in paddy field soil of Tumpat, Malaysia.

    Science.gov (United States)

    Sow, Ai Yin; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2013-12-01

    The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.

  10. Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method

    Science.gov (United States)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali

    2018-04-01

    In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.

  11. Electrodialytic removal of heavy metals from MSWI fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    In this work a method called electrodialytic remediation, which is a combination of electrokinetic remediation and electrodialysis, is used for the extraction of heavy metals from MSWI fly ashes. It is shown that the use of electric current enhances the metal desorption significantly compared to traditional, chemical extraction. The metals of concern are Cd, Pb, Zn, Cu and Cr. Addition of ammonium citrate to the ash before and during remediation enhances the desorption and removal rate of all the examined heavy metals (Cd, Pb, Zn, Cu and Cr) compared to experiments only added distilled water. By introducing continuous stirring of the ash slurry during electrodialytic remediation, it is shown that the remediation rate is improved significantly compared to 'traditional' electrodialytic remediation experiments. The development of the acidic front is avoided due to better pH-control, and a better contact between the ash particles and the liquid is achieved. Up to 62% of the initial Cd, 8.3% Pb, 73% Zn, 59% Cu, and 20% Cr has been removed from two different fly ashes in electrodialytic remediation experiments. (orig.)

  12. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea

    International Nuclear Information System (INIS)

    Ji, Kyunghee; Kim, Jungkon; Lee, Minjung; Park, Soyoung; Kwon, Ho-Jang; Cheong, Hae-Kwan; Jang, Jae-Yeon; Kim, Dae-Seon; Yu, Seungdo; Kim, Young-Wook; Lee, Kwang-Young; Yang, Seoung-Oh; Jhung, Ik Jae; Yang, Won-Ho; Paek, Do-Hyun; Hong, Yun-Chul; Choi, Kyungho

    2013-01-01

    Metal contamination from mining activity is of great concern because of potential health risks to the local inhabitants. In the present study, we investigated the levels of Cd, Cu, As, Pb, and Zn in environmental samples and foodstuffs grown in the vicinity of the mines in Goseong, Korea, and evaluated potential health risks among local residents. Soils near the mines exceeded the soil quality standard values of Cu, As, and Zn contamination. The concentrations of Cd, Cu, Pb, and Zn in crop samples collected from the study area were significantly higher than those of the reference area. Some rice samples collected from the study area exceeded the maximum permissible level of 0.2 mg Cd/kg. The intake of rice was identified as a major contributor (≥75%) to the estimated daily intake among the residents. The average estimated daily intakes of metals were, however, below the provisional tolerable daily intake. -- Highlights: •Area near the abandoned mines was significantly contaminated with metals. •Some rice grains exceeded the maximum permissible level of Cd. •The estimated daily intake of metals was below the provisional tolerable daily intake. •Intake of rice was constituted the major proportion of estimated daily intake. -- Cadmium was detected relatively high in rice, and was identified as a chemical of potential concern in an area near abandoned copper mines of Goseong, Korea

  13. Metal accumulation in Nitellopsis obtusa cells from the laboratory solution

    International Nuclear Information System (INIS)

    Marciulioniene, D.; Montvydiene, D.; Ceburnis, D.

    2001-01-01

    The ability of Nitellopsis obtusa to accumulate heavy metals from the laboratory solution containing ions of Cd2+, Cr6+, Cu2+, Mn2+, Ni2+, Pb2+ and Zn2+ was investigated. Concentrations of heavy metals in the algae cells were determined, and the accumulation coefficient (AC) of heavy metals in the live cells (in the wall and the protoplast), in the dead cells (in the wall), and in the cells which have lost turgor were estimated. It was found that, according to the accumulation coefficient values in the cell wall of N. obtusa, the studied metals followed the order: Cr6+ < Pb2+ < Ni2+ < Cd2+ < Cu2+ < Zn2+ < Mn2+, while according to the accumulation coefficient values in the protoplast, the order was: Pb2+ < Cr6+ < Ni2+ < Zn2+ < Cd2+ < Cu2+ < Mn2+ . It was demonstrated that in both media metals were accumulated very similarly. The difference between AC in the cell walls of the live and dead cells was negligible. The obtained data allowed to conclude that all investigated metals were not only absorbed in the algae cell wall but they were intensively up taken into the cell. Data showed that among all investigated metals Cr6+ was the least absorbed in the cell wall, while Pb was predominantly absorbed in the cell wall, as well as Cd2+ and Cu2+ were more intensively up taken into the cell than other metals It was established that Mn2+ was Intensively adsorbed in the cell wall, and its uptake into the cell was intensive, too. (author)

  14. Defects in Cu(InGa)Se2/CdS heterostructure films induced by hydrogen ion implantation

    International Nuclear Information System (INIS)

    Yakushev, M.V.; Tomlinson, R.D.; Hill, A.E.; Pilkington, R.D.; Mudryi, A.V.; Bondar, I.V.; Victorov, I.A.; Gremenok, V.F.; Shakin, I.A.; Patuk, A.I.

    1999-01-01

    The influence of H + ion implantation on the photoluminescence properties of Cu(InGa)Se 2 /CdS heterostructures has been studied. This treatment was found to increase the photoluminescence intensity of donor-acceptor band at 1.13 eV because of the passivation by hydrogen atoms of the non-radiative recombination centers on the boundary of Cu(InGa)Se 2 and CdS layers. Two broad bands peaks at 0.96 eV and at 0.82 eV in photoluminescence spectra of ion-implanted Cu(InGa)Se 2 films have been found. The tentative model to explain the origin of the broad photoluminescence bands has been discussed

  15. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  16. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: A case study in Shenzhen, China

    International Nuclear Information System (INIS)

    Chen Kouping; Jiao, Jiu J.

    2008-01-01

    The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system. - Metals in coastal groundwater and marine sediment are affected by land reclamation

  17. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions

    DEFF Research Database (Denmark)

    Maar, Marie; Larsen, Martin Mørk; Tørring, Ditte Bruunshøj

    2015-01-01

    corresponding to Good Ecological Status (GES) in the European Union Water Framework Directive (WFD) and in future climate change scenarios (higher metal concentrations and higher temperatures). For this purpose, GES is interpreted as good chemical status for the metals using the Environmental Quality Standards...... targets for Cd, Ni and Pb are not protective with respect to marine mussel production and probably should be reduced for marine waters. Climate changes may increase the metal contamination of mussels, but not to any critical level at the relatively unpolluted study sites. In conclusion, WFD targets should...

  18. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  19. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    Science.gov (United States)

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  20. [Evaluation and cumulative characteristics of heavy metals in soil-Uncaria rhynchophylla system of different functional areas].

    Science.gov (United States)

    Zhang, Jia-Chun; Zeng, Xian-Ping; Zhang, Zhen-Ming; Lin, Shao-Xia; Zhang, Qing-Hai; Lin, Chang-Hu

    2016-10-01

    Soil and Uncaria rhynchophylla in different functional areas were selected for the study,the content of heavy metals such as As, Cd, Cu, Cr, Pb, and Hg in soil and U. rhynchophylla was discussed, the characteristics of their accumulation in the U.rhynchophylla was analyzed, the contamination levels of heavy metals in soil in different functional areas was evaluated. The results showed that content of Cu, As, Pb and Cr in soil was being cropland>woodland>wasteland, content of Cd was being woodland>cropland>wasteland, content of Hg was being cropland>woodland>wasteland. According to quality standard of soil environment, soil Cd in woodland, cropland and wasteland all exceeded the state-level standards, soil Cd in woodland exceeded the secondary standard, soil Hg in cropland and wasteland all exceeded the state-level standards. According to technical conditions of green food producing area, soil Cd in woodland exceeded the limit value of standard. According to Green Trade Standards of Importing Exporting Medicinal Plants Preparations,the content of heavy metals of U.rhynchophylla in cropland,woodland and wasteland were correspond to the specification. From the single factor pollution index, the soil in woodland was polluted by Cd. From the comprehensive pollution index, the soils in different functional areas were not contaminated by heavy metals. The enrichment coefficient of heavy metals such as As, Cu, Cr, and Pb in hook of U.rhynchophylla was being wasteland>woodland>cropland, the enrichment coefficient of Cu in hook of U. rhynchophylla in wasteland was more than 1. Except Cu, the enrichment coefficient of other heavy metals was low. Copyright© by the Chinese Pharmaceutical Association.

  1. A large enhancement of photoinduced second harmonic generation in CdI2--Cu layered nanocrystals.

    Science.gov (United States)

    Miah, M Idrish

    2009-02-12

    Photoinduced second harmonic generation (PISHG) in undoped as well as in various Cu-doped (0.05-1.2% Cu) CdI2 nanocrystals was measured at liquid nitrogen temperature (LNT). It was found that the PISHG increases with increasing Cu doping up to approximately 0.6% and then decreases almost to that for the undoped CdI2 for doping higher than approximately 1%. The values of the second-order susceptibility ranged from 0.50 to 0.67 pm V(-1) for the Cu-doped nanocrystals with a thickness of 0.5 nm. The Cu-doping dependence shown in a parabolic fashion suggests a crucial role of the Cu agglomerates in the observed effects. The PISHG in crystals with various nanosizes was also measured at LNT. The size dependence demonstrated the quantum-confined effect with a maximum PISHG for 0.5 nm and with a clear increase in the PISHG with decreasing thickness of the nanocrystal. The Raman scattering spectra at different pumping powers were taken for thin nanocrystals, and the phonon modes originating from interlayer phonons were observed in the spectra. The results were discussed within a model of photoinduced electron-phonon anharmonicity.

  2. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  3. Cd isotopes as a potential source tracer of metal pollution in river sediments

    International Nuclear Information System (INIS)

    Gao, Bo; Zhou, Haidong; Liang, Xirong; Tu, Xianglin

    2013-01-01

    Tracing the sources of heavy metals in water environment is key important for our understanding of their pollution behavior. In this present study, Cd concentrations and Cd isotopic compositions in sediments were determined to effectively identify possible Cd sources. Results showed that elevated concentrations and high enrichment factor for Cd were found in all sediments, suggesting anthropogenic Cd origin. Cd isotopic compositions in sediments yielded relative variations ranged from −0.35‰ to 0.07‰ in term of δ 114/110 Cd (the mean: −0.08‰). Large fractionated Cd was found in sediments collected from a smelter and an E-waste town. Cd isotopic compositions and Cd concentrations measured in sediments allowed the identification of three main origins (dust from metal refining (δ 114/110 Cd 114/110 Cd > 0), and those δ 114/110 Cd = 0, such as background and mining activity). According to the actual precision obtained, Cd isotopes could be a potential tool for tracing metal pollution sources in water environment. -- The information and application of Cd isotopic compositions will provide a new direction in tracing metal pollution in water environment

  4. Assessment of heavy metals bioavailability in dumpsites of Zaria ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... Cd, Cu, Mn, Pb and Zn in refuse waste soils of some dumpsites in Zaria metropolis. The heavy metals .... soil solution ratio) in acid digestion Teflon cup. It was dry ashed ..... of Cu, Pb, Cd and Zn in soils from or near Donana National Park. J. Environ. ... Administrative Divisions of the World. http://www.world-.

  5. Comparative toxicity of VO3-, CrO42-, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ to lettuce seedlings

    International Nuclear Information System (INIS)

    Berry, W.L.

    1978-01-01

    Lettuce seeds imbibed, germinated, and grown in a 0.1-strength modified Hoagland culture solution were subjected to a series of increasing concentrations of individual heavy metals up to and exceeding lethal levels. After an exposure of 5 days, seedlings were harvested, examined, and measured to determine toxic effects. A log--log plot of root length (yield) vs. heavy metal concentration was made for each metal to produce a dose response curve. The curves showed a growth plateau at low concentrations of the respective metals which was equivalent to the growth of the control. All metals inhibited root growth and caused lethal toxicity in the sub- and low-milliequivalent range. When concentrations of the tested metals exceeded their thresholds of acute toxicity, root growth was inhibited. In the zone of inhibition, between the acute toxic threshold and complete inhibition, the log--log dose response curves were approximately linear or were a series of linear steps. The threshold toxicity and the response slope were characteristic for each metal. Seedling lettuce showed a monophasic response to VO 3 - , Cu 2+ , and Zn 2+ ; a biphasic response to CrO 4 2 -, Mn 2+ , Ni 2+ , and Cd 2+ ; and a quadraphasic response to Co 2+ . The acute toxicity threshold on an equivalent basis increased according to the following sequence: Cd 2+ much less than VO 3 - 2+ 2+ 2+ 4 2- 2+ much less than Mn 2+ . On this basis, Cd 2+ is the most toxic of the trace elements tested

  6. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    Science.gov (United States)

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  7. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    Science.gov (United States)

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  8. Rapid and gradual modes of aerosol trace metal dissolution in seawater

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2015-01-01

    Full Text Available Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al, cadmium (Cd, cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, nickel (Ni, lead (Pb, and zinc (Zn from natural aerosol samples in seawater over a 7 day period to (1 evaluate the role of extraction time in trace metal dissolution behavior and (2 explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples, to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples. Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples. Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.

  9. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe

    Science.gov (United States)

    Wright, Joshua T.; Forsythe, Kyle; Hutchins, Jamie; Meulenberg, Robert W.

    2016-04-01

    This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current-voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level.This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of

  10. Determination of Cd, Pb and Cu in Mandovi estuary by differential pulse anodic stripping voltammetry

    Digital Repository Service at National Institute of Oceanography (India)

    George, M.D.; Sawkar, K.; Reddy, C.V.G.

    Dissolved labile and non-labile (organically associated) concentration of Cd, Pb and Cu in Mandovi Estuary, Goa, India have been measured for 1 y (February 1980 to January 1981). Percentage non-labile form varies from 0-50% of the total for Cd, from...

  11. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  12. Tape seagrass (Enhalus acoroides) as a bioindicator of trace metal contamination in Merambong shoal, Johor Strait, Malaysia.

    Science.gov (United States)

    Sidi, Nordiani; Aris, Ahmad Zaharin; Mohamat Yusuff, Ferdaus; Looi, Ley Juen; Mokhtar, Nor Farhanna

    2018-01-01

    Revealing the potential of seagrass as a bioindicator for metal pollution is important for assessing marine ecosystem health. Trace metal ( 111 Cd, 63 Cu, 60 Ni, 208 Pb, 66 Zn) concentrations in the various parts (root, rhizome, and blade) of tape seagrass (Enhalus acoroides) collected from Merambong shoal of Sungai Pulai estuary, Johor Strait, Malaysia were acid-extracted using a microwave digester and analysed via inductively coupled plasma-mass spectrometry (ICP-MS). The ranges of trace metal concentrations (in μgg -1 dry weight) were as follows: Cd (0.05-0.81), Cu (1.62-27.85), Ni (1.89-9.35), Pb (0.69-4.16), and Zn (3.44-35.98). The translocation factor revealed that E. acoroides is a hyperaccumulator plant, as its blades can accumulate high concentrations of Cd, Cu, Ni, and Zn, but not Pb. The plant limits Pb mobility to minimize Pb's toxic impact. Thus, E. acoroides is a potential bioindicator of metal pollution by Cd, Cu, Ni, and Zn in estuarine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    Science.gov (United States)

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  14. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    Science.gov (United States)

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  16. Evaluation of liquid metal embrittlement of SS304 by Cd and Cd-Al solutions

    International Nuclear Information System (INIS)

    Thomas, J.K.; Iyer, N.C.; Begley, J.A.

    1992-01-01

    The susceptibility of stainless steel 304 to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The active, or cadmium (Cd) bearing, portion of the safety rod consists of a 0.756 in. diameter aluminum allow (Al-6061) core, a 0.05 in. thick Cd layer, and a 0.042 in. thick Type 304 stainless steel cladding. The safety rod thermal tests were conducted as part of a program to define the response of reactor core components to a hypothetical LOCA for the Savannah River Site (SRS) production reactor. LME was considered as a potential failure mechanism based on the nature of the failure and susceptibility of austenitic stainless steels to embrittlement by other liquid metals

  17. Bioaccumulation of heavy metals and metalloids in luffa (luffa cylindrica l.) irrigated with domestic wastewater in jhang, pakistan: a prospect for human nutrition

    International Nuclear Information System (INIS)

    Khani, Z.I.; Ahmad, K.

    2015-01-01

    In the present study, 12 heavy metals (Cr, Mn, Ni, Cd, Co, Cu, Pb, Zn, Fe, Se, As, and Mo) were assessed in a potential vegetable Luffa cylindrica. The vegetable was collected randomly from two different sites located at Jhang, Punjab Pakistan. The analyses of variance of data collected from soil showed non-significant effect on Se, Zn, As, Cr, Ni, Mo and Pb while significant effect on Fe, Co, Mn, Cu and Cd metals. Concentrations of all 12 heavy metals in the soil samples were low at sampling site-I as compared to those at site-II except Ni. These concentrations were found below the safe limits except that of Cd. At site-I, the concentrations recorded for different heavy metals were: As > Fe > Pb > Mn > Cd > Co > Cu > Mo > Zn > Ni > Se > Cr while at site-II were: As > Fe > Mn > Pb > Co > Cd > Cu > Mo > Zn > Ni > Se > Cr. Enrichment co-efficient of Cr was higher which showed that root of luffa plant accumulated more Cr concentration from the contaminated soil. The order of enrichment co-efficient was recorded at site-I as: Cr > Zn > Mn > Cu > Fe > Ni > Mo > Pb > As > Se > Co > Cd, and at site-II Cr > Zn > Mn > Ni > Cu > Fe > Mo > Pb > Se > As > Co > Cd. The transfer co-efficient of Mn was higher which indicates that more contents of Mn were transferred from roots to upper edible part. The order of transfer co-efficient at site-I was: Ni > Se > Mo > Cr > Zn > Fe > Mn > Cd > Pb > As > Cu > Co and at site-II was Mn > Zn > As > Fe > Pb > Se > Cd > Co > Mo > Cu > Ni > Cr. Correlation analysis showed that Mn, Se, Co, Cd, Ni, Mo and Pb had positive non-significant correlation, whereas a negative and non-significant correlation for Zn, As, Fe and Cr. The order of pollution load index at site-I was Cd > Mo > Se > Pb > Cu > Co > As > Fe > Mn > Ni > Zn > Cr and at site-II: Cd > Mo > Se > Pb > Cu > Co > As > Fe > Mn > Ni > Zn > Cr. Overall, at both sites, lowest concentration of Cr and highest of As were observed which need substantial awareness. Health risk index depends on

  18. Trace metal associations in the water column of South San Francisco Bay, California

    Science.gov (United States)

    Kuwabara, J.S.; Chang, Cecily C.Y.; Cloern, J.E.; Fries, T.L.; Davis, J.A.; Luoma, S.N.

    1989-01-01

    Spatial distributions of copper (Cu), zinc (Zn) and cadmium (Cd) were followed along a longitudinal gradient of dissolved organic carbon (DOC) in South San Francisco Bay (herein referred to as the South Bay). Dissolved Cu, Zn and Cd concentrations ranged from 24 to 66 nM, from 20 to 107 nM and from 1??2 to 4??7 nM, respectively, in samples collected on five dates beginning with the spring phytoplankton bloom and continuing through summer,1985. Dissolved Cu and Zn concentrations varied indirectly with salinity and directly with DOC concentration which ranged from 2??1 to 4??1 mg l-1. Available thermodynamic data strongly support the hypothesis that Cu speciation may be dominated by association with dissolved organic matter. Analogous control of Zn speciation by organic complexation was, however, not indicated in our computations. Computed free ion activity estimates for Cu, Zn and Cd were of the order of 10-10, 10-8 and 10-10 M, respectively. The availability of these metals may be among the factors regulating the growth of certain phytoplankton species within this region of the estuary. In contrast to dissolved Cu, dissolved Cd was directly related to the concentration of suspended particulate matter, suggesting a source of dissolved Cd coincident with elevated particle concentrations in the South Bay (e.g. runoff and solute desorption). Consistent with work in other estuaries, partitioning of all three trace metals onto suspended particulates was negatively correlated with salinity and positively correlated with increases in particulate organic carbon associated with the phytoplankton bloom. These results for the South Bay indicate that sorption processes influence dissolved concentrations of these trace metals, the degree of this influence varies among metals, and processes controlling metal distribution in this estuary appear to be more element-specific than spatially- or temporally-specific. ?? 1989.

  19. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    Science.gov (United States)

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd Cu < As < Hg <Cd. The minimum BCFs of Cd, Cr, As, Pb, Hg, Cu, and Zn in corn grains were 0.054, 6.65 × 10 -4 , 7.94 × 10 -4 , 0.0044, 0.028, 0.13, and 0.19, respectively. The corresponding BCFs values for wheat grains were 0.25, 0.0045, 5.42 × 10 -4 , 0.009, 4.03 × 10 -4 , 0.11, and 0.054, respectively.

  20. Temporal Variation and Ecological Risk Assessment of Metals in Soil Nearby a Pb⁻Zn Mine in Southern China.

    Science.gov (United States)

    Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan; Yang, Linsheng

    2018-05-09

    Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb⁻Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes ( E r ) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd.

  1. Sequestration of radionuclides and heavy metals by hydroxyapatite doped with Fe, Cu and Sn

    International Nuclear Information System (INIS)

    Neidel, Linnah L.; Moore, Robert Charles; Salas, Fred; Grouios, Fotini; Holt, Kathleen Caroline; Helean, Katheryn B.

    2005-01-01

    Apatite, Ca 5 (PO 4 ) 3 (F,OH,Cl)(P6 3 /m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca 5 (PO 4 ) 3 OH(P2 1 /b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of distortion caused by extensive chemical substitutions. Metal cations (e.g. REE, actinides, K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Fe) substitute for Ca, and oxyanions (e.g. AsO 4 3- , SO 4 2- , CO 3 2- , SiO 4 4- , CrO 4 2- ) replace PO 4 3- through a series of coupled substitutions that preserve electroneutrality. Owing to the ability of apatite to incorporate 'impurities'(including actinides) gives rise to its proposed use as a waste form for radionuclides. Recent work at Sandia National Laboratory demonstrated that hydroxyapatite has a strong affinity for U, Pu, Np, Sr and Tc reduced from pertechnetate (TcO 4 - ) by SnCl 2 (Moore et al., 2002). Based on these earlier promising results, an investigation was initiated into the use of apatite-type materials doped with aliovalent cations including Fe, Cu and Sn as Tc-scavengers. Synthetic Fe and Cu-doped hydroxyapatite samples were prepared by precipitation of Ca, from Ca-acetate, and P, from ammonium phosphate. The Fe and Cu were introduced as chlorides into the Ca-acetate solution. Stannous chloride was used as a reducing agent and was apparently incorporated into the crystal structures of the hydroxyapatite samples in small, as yet undetermined quantities.

  2. Sequestration of Radionuclides and Heavy Metals by Hydroxyapatite Doped with Fe, Cu and Sn

    International Nuclear Information System (INIS)

    K.B. Helean; R.C. Moore

    2005-01-01

    Apatite, Ca 5 (PO 4 ) 3 (F,OH,Cl) (P6 3 /m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca 5 (PO 4 ) 3 OH (P2 1 /b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of distortion caused by extensive chemical substitutions. Metal cations (e.g. REE, actinides, K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Fe) substitute for Ca, and oxyanions (e.g. AsO 4 3- , SO 4 2- , CO 3 2- , SiO 4 4- , CrO 4 2- ) replace PO 4 3- through a series of coupled substitutions that preserve electroneutrality. Owing to the ability of apatite to incorporate ''impurities'' (including actinides) gives rise to its proposed use as a waste form for radionuclides. Recent work at Sandia National Laboratory demonstrated that hydroxyapatite has a strong affinity for U, Pu, Np, Sr and Tc reduced from pertechnetate (TcO 4 - ) by SnCl 2 (Moore et al., 2002). Based on these earlier promising results, an investigation was initiated into the use of apatite-type materials doped with aliovalent cations including Fe, Cu and Sn as Tc-scavengers. Synthetic Fe and Cu-doped hydroxyapatite samples were prepared by precipitation of Ca, from Ca-acetate, and P, from ammonium phosphate. The Fe and Cu were introduced as chlorides into the Ca-acetate solution. Stannous chloride was used as a reducing agent and was apparently incorporated into the crystal structures of the hydroxyapatite samples in small, as yet undetermined quantities

  3. Observation on Heavy Metals in Sediment of Jakarta Bay Waters

    Directory of Open Access Journals (Sweden)

    Abdul Rozak

    2007-04-01

    Full Text Available Observation on heavy metals in Jakarta Bay, from June and September 2003. Heavy metals Pb in sediment at the West have been conductet of Jakarta Bay Waters varied between Pb = 8,49-31,22 ppm, Cd = <0,001-0,47 ppm, Cu = 13,81-193,75 ppm, Zn = 82,18-533,59 ppm and Ni = 0,99-35,38 ppm,while those at the Center of Jakarta Bay, varied between Pb = 2,21-69,22 ppm, Cd = <0,001-0,28 ppm, Cu = 3,36-50,65 ppm, Zn = 71,13-230,54 ppm and Ni = 0,42-15,58 ppm and at the East of Jakarta Bay, Pb content varied between 0,25-77,42 ppm, Cd = <0,001-0,42 ppm, Cu = 0,79-44,94 ppm, Zn = 93,21-289,00 ppm and Ni = 0,42-128,47 ppm. Hevy metals content in sediment the West of Jakarta Bay was high of equivalent the Center and East of Jakarta Bay. At than those composition sediment at the west was black, that indicated high heavy metals content.

  4. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water

    Directory of Open Access Journals (Sweden)

    Tshabalala, M. A.

    2007-02-01

    Full Text Available Bark flour from ponderosa pine (Pinus ponderosa was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(II, Zn(II, Cd(II, and Ni(II under both equilibrium and dynamic adsorption conditions. The experimental data for Cd(II and Zn(II showed a better fit to the Langmuir than to the Freundlich isotherm. The Cu(II data best fit the Freundlich isotherm, and the Ni(II data fitted both Freundlich and Langmuir isotherms equally. According to the Freundlich constant KF, adsorption capacity of pelletized bark for the metal ions in aqueous solution, pH 5.1 ± 0.2, followed the order Cd(II > Cu(II > Zn(II >> Ni(II; according to the Langmuir constant b, adsorption affinity followed the order Cd(II >> Cu(II ≈ Zn(II >> Ni(II. Although data from dynamic column adsorption experiments did not show a good fit to the Thomas kinetic adsorption model, estimates of sorption affinity series of the metal ions on pelletized bark derived from this model were not consistent with the series derived from the Langmuir or Freundlich isotherms and followed the order Cu(II > Zn(II ≈ Cd(II > Ni(II. According to the Thomas kinetic model, the theoretical maximum amounts of metal that can be sorbed on the pelletized bark in a column at influent concentration of ≈10 mg/L and flow rate = 5 mL/min were estimated to be 57, 53, 50, and 27 mg/g for copper, zinc, cadmium, and nickel, respectively. This study demonstrated the potential for converting low-cost bark residues to value-added sorbents using starting materials and chemicals derived from renewable resources. These sorbents can be applied in the removal of toxic heavy metals from waste streams with heavy metal ion concentrations of up to 100 mg/L in the case of Cu(II.

  5. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China].

    Science.gov (United States)

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang

    2015-01-01

    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  6. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.

    Science.gov (United States)

    Kim, Sung-Hyun; Lee, In-Sook

    2010-02-01

    Chelates have been shown to enhance the phytoextraction of metal from contaminated soil. In this study, we evaluated the ability of chelates to enhance the phytoextraction of metals by barnyard grass (Echinochloa crus-galli) from soils contaminated with multiple metals. The results revealed that EDTA increased the ability of barnyard grass to take up Cd, Cu and Pb, but that it resulted in increased soil leaching. Conversely, citric acid induced the removal of Cd, Cu and Pb from soil without increasing the risk of leaching. Furthermore, E.crus-galli showed no signs of phytotoxicity in response to treatment with citric acid, whereas its shoot growth decreased in response to treatment with EDTA (p acid is a good agent for the enhancement of the phytoextraction of metals.

  7. Heavy metal pollutant tolerance of Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.; Jana, S.

    1986-01-01

    The effects of Hg, As, Pb, Cu, Cd, and Cr (1,2 and 5 mg L/sup -1/ each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L/sup -1/) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L/sup -1/. The harmful effects of the metals were, in general, found by the treatments in the order: Cd > Hg > Cu > As > Pb > Cr. There was no significant change in these parameters at 1 mg L/sup -1/ of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L/sup -1/ each.

  8. Heavy metal tolerance and accumulation of Triarrhena sacchariflora, a large amphibious ornamental grass.

    Science.gov (United States)

    Tian, R N; Yu, S; Wang, S G; Zhang, Y; Tang, J Y; Liu, Y L; Nie, Y H

    2013-01-01

    In this study, we report the tolerance and accumulation of Triarrhena sacchariflora to copper (Cu) and cadmium (Cd). The results show that T. sacchariflora had strong tolerance to Cu and Cd stress. The tolerance indexes (TI) were greater than 0.5 for all treatments. The bioconcentration factors (BCFs) to Cu and Cd were both above 1.0. The accumulation ability of roots was stronger than that of shoots, and ranges of BCF to Cu and Cd in roots were 37.89-79.08 and 83.96-300.57, respectively. However, the translocation ability to Cu and Cd was weak, with more than 86% of Cu or Cd accumulated in roots, suggesting an exclusion strategy for heavy metal tolerance. The uptake efficiency (UE) and translocation efficiency (TE) to Cu and Cd increased linearly as the Cu and Cd concentration in the substrate increased. UE was higher than TE, with a maximum of 2,118.90 μg g(-1) root dry weight (DW) (50 mg L(-1) Cu) and 1,847.51 μg g(-1) root DW (20 mg L(-1)Cd), respectively. The results indicate that T. sacchariflora is a Cu- and Cd-tolerant non-hyperaccumulator plant, suggesting that T. sacchariflora could play an important role in phytoremediation in areas contaminated with Cu and Cd.

  9. Enrichment of marsh soils with heavy metals by effect of anthropic pollution

    International Nuclear Information System (INIS)

    Vega, Flora A.; Covelo, Emma F.; Cerqueira, Beatriz; Andrade, Maria Luisa

    2009-01-01

    The impact of waste disposal on marsh soils was assessed in topsoil samples collected at eight randomly selected points in the salt marsh in Ramallosa (Pontevedra, Spain) at 4-month intervals for 2 years. Polluted soil samples were characterized in physico-chemical terms and their heavy metal contents determined by comparison with control, unpolluted samples. The results revealed a marked effect of waste discharges on the soils in the area, which have low contents in heavy metals under normal environmental conditions. In fact, the studied soils were found to contain substantial amounts of total and DTPA-extractable Cd, Cu, Pb and Zn. Based on the relationship of the redox potential with the DTPA-extractable Cd, Cu, Pb, and Zn contents of the soils, strongly reductive conditions raised the total contents in these elements by effect of their remaining in the soils as precipitated sulphides. Such contents, however, decreased as oxidative conditions gradually prevailed. The contents in DTPA-extractable metals increased with increasing Eh through the release of the metals in ionic form to the soil solution under oxidative conditions. The contents in heavy metals concentrating in the polluted soils were several times higher than those in the control soils (viz. 2 vs. 6 for Cd, 4 vs. 6 for Cu, 4 vs. 20 for Pb, and 2 vs. 15 for Zn, all in mg kg -1 ). This can be expected to influence the amounts of available heavy metals present in the soils, and hence the environmental quality of the area, in the near future. Based on its geoaccumulation index (Class ≥3 for Cd and Cu, and 1-4 for Pb and Zn), the Ramallosa marsh is highly polluted with Cd and moderately to highly polluted with Cu, Pb and Zn. The enrichment factors obtained confirm that the salt marsh is highly polluted (especially with Cd) as the primary result of anthropic activity.

  10. Heavy metals contamination in fish and shrimp from coastal regions of karachi, pakistan

    International Nuclear Information System (INIS)

    Ali, S.S.

    2013-01-01

    in the present study, the heavy metals (Pb, Cu, Cd, Fe, Zn) concentration was determined by using atomic absorption spectrophotometer (AAS) in 5 species of fish and 3 species of shrimp commonly taken by locals at the coastal regions of Karachi, Pakistan Concentrations of Cd and Pb studied in tissues of Mushka (Otolithes ruber; 0.120 and 1.018 micro g/ wet weight) and palaemon longirostris shrimp (2.457 and 0.480 micro g/g wet weight) were found near to safe level for human consumption. Mullet, Tarli, Surmai, Dohtar fishes and Blacktiger shrimp were found contaminated by Cd and Pb but still within the limits fit for and human consumption. the distribution of trace metals detected in all fish and shrimp species followed the order of Zn >Pb> Fe>Cu> Cd and Cd> Fe > Zn> Cu>Ph, respectively. Metal concentration exhibited significant species variation and followed the order In fishes as otolithes ruber> Liza vaigiensis>sardinella albella>Scomberomorus guttatus>pomadasys olivaecum and in shrimp as palaemon longirostris>penaeus monodon> penaeus penicillatu. (author)

  11. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    Science.gov (United States)

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  12. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    International Nuclear Information System (INIS)

    Klinck, J.S.; Green, W.W.; Mirza, R.S.; Nadella, S.R.; Chowdhury, M.J.; Wood, C.M.; Pyle, G.G.

    2007-01-01

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca 2+ , principally that elevated dietary Ca 2+ reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut

  13. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    Energy Technology Data Exchange (ETDEWEB)

    Klinck, J.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada)], E-mail: klinckjs@mcmaster.ca; Green, W.W.; Mirza, R.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada); Nadella, S.R.; Chowdhury, M.J.; Wood, C.M. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Pyle, G.G. [Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada)

    2007-08-30

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca{sup 2+}, principally that elevated dietary Ca{sup 2+} reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.

  14. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    Science.gov (United States)

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  15. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    OpenAIRE

    Megumi Sakurai; Taro Sato; Jiawei Xu; Soichi Sato; Tatsuya Fujino

    2018-01-01

    Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO) as the matrix. Salicylic acid (Sal), glucuronic acid (Glu), ibuprofen (Ibu), and tyrosine (Tyr) were ionized as deprotonated species (carboxylate anions) by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe....

  16. Organic Light-Emitting Diodes with Magnesium Doped CuPc as an Efficient Electron Injection Layer

    International Nuclear Information System (INIS)

    Jun-Song, Cao; Min, Guan; Guo-Hua, Cao; Yi-Ping, Zeng; Jin-Min, Li; Da-Shan, Qin

    2008-01-01

    Bright organic electroluminescent devices are developed using a metal-doped organic layer intervening between the cathode and the emitting layer. The typical device structure is a glass substrate/indium-tin oxide (ITO)/copper phthalocyanine(CuPc)/N,N-bis-(1-naphthl)-diphenyl-1, 1'-biphenyl-4,4'-diamine (NPB)/Tris(8-quinolinolato) alu-minum(Alq 3 )/Mg-doped CuPc/Ag. At a driving voltage of 11 V, the device with a layer of Mg-doped CuPc (1:2 in weight) shows a brightness of 4312 cd/m 2 and a current efficiency of 2.52 cd/A, while the reference device exhibits 514 cd/m 2 and 1.25 cd/A

  17. Temporal variations of heavy metals levels in Perna viridis, on the Chacopata-Bocaripo lagoon axis, Sucre State, Venezuela.

    Science.gov (United States)

    Pinto, Rafael; Acosta, Vanessa; Segnini, Mary Isabel; Brito, Leonor; Martínez, Gregorio

    2015-02-28

    Perna viridis was used as biomonitor to assess heavy metal levels in the Chacopata-Bocaripo lagoon axis, Venezuela, during rain and drought seasons. The mussels were weighed and measured. The metal concentrations were determined by atomic absorption spectrophotometry. For rain period, the order of bioavailability was: Cu>Ni>Mn>Co>Cd>Pb, and for drought: Cu>Mn>Ni>Co>Pb>Cd. The concentrations of Ni, Co, Cd and Pb showed significant differences (P<0.05) in both periods. There was higher metal accumulation during drought season, possibly related to upwelling, since it produces an increase in primary productivity, which translates more food into organisms, making metals bioavailable for mussels. Only Cu and Mn showed significant relationships between the size and metal concentration, during drought period, it may be because of the organisms need for these essential metals in different physiological processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  19. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    Science.gov (United States)

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  20. Spatial distribution and biological effects of trace metals (Cu, Zn, Pb, Cd) and organic micropollutants (PCBs, PAHs) in mussels Mytilus galloprovincialis along the Algerian west coast.

    Science.gov (United States)

    Benali, Imene; Boutiba, Zitouni; Grandjean, Dominique; de Alencastro, Luiz Felippe; Rouane-Hacene, Omar; Chèvre, Nathalie

    2017-02-15

    Native mussels Mytilus galloprovincialis are used as bioindicator organisms to assess the concentration levels and toxic effects of persistent chemicals, polychlorobiphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals using biomarker responses, such as catalase (CAT), glutathione s-transferase (GST), and condition indices, for the Algerian coast. The results show that mussels of Oran Harbour are extremely polluted by PCBs and PAHs, i.e., 97.6 and 2892.1μg/kg d.w., respectively. Other sites present low levels of pollution. Furthermore, high concentrations of zinc, lead and cadmium are found in mussels from fishing, agricultural and estuarine sites, respectively, while low concentrations of copper are found in all of the sites studied. CAT activity is negatively correlated with Cd and Cu, and Zn is positively correlated with GST and CAT. Site classification tools reveal the potential toxicity of coastal areas exposed to anthropogenic pressure and a gradient of toxicity along the Algerian west coast. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    Directory of Open Access Journals (Sweden)

    Iryna Kuklina

    2014-01-01

    Full Text Available To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše and one contaminated site (Darkovské moře in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr, while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb. The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys.

  2. [Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China].

    Science.gov (United States)

    Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing

    2015-02-01

    In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.

  3. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    International Nuclear Information System (INIS)

    Reboreda, Rosa; Cacador, Isabel

    2007-01-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system

  4. Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study

    International Nuclear Information System (INIS)

    Li, X.F.; Zhang, J.; Xu, B.; Yao, K.L.

    2012-01-01

    Electronic structures and magnetism of Cu-doped zinc-blende ZnO have been investigated by the first-principle method based on density functional theory (DFT). The results show that Cu can induce stable ferromagnetic ground state. The magnetic moment of supercell including single Cu atom is 1.0 μ B . Electronic structure shows that Cu-doped zinc-blende ZnO is a p-type half-metallic ferromagnet. The half-metal property is mainly attribute to the crystal field splitting of Cu 3d orbital, and the ferromagnetism is dominated by the hole-mediated double exchange mechanism. Therefore, Cu-doped zinc-blende ZnO should be useful in semiconductor spintronics and other applications. - Highlights: → Magnetism of Cu-doped zinc-blende ZnO. → Cu-doped zinc-blende ZnO shows interesting half-metal character. → Total energies calculations reveal that Cu can induce ferromagnetic ground state. → Ferromagnetism dominated by the hole-mediated double exchange mechanism.

  5. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  6. Spectroscopy of Deep Traps in Cu2S-CdS Junction Structures

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2012-12-01

    Full Text Available Cu2S-CdS junctions of the polycrystalline material layers have been examined by combining the capacitance deep level transient spectroscopy technique together with white LED light additional illumination (C-DLTS-WL and the photo-ionization spectroscopy (PIS implemented by the photocurrent probing. Three types of junction structures, separated by using the barrier capacitance characteristics of the junctions and correlated with XRD distinguished precipitates of the polycrystalline layers, exhibit different deep trap spectra within CdS substrates.

  7. Trace metals in Mediterranean mussel Mytilus galloprovincialis (L.1758) and in surficial sediments from Urla-Iskele/ Turkey

    International Nuclear Information System (INIS)

    Sunlu, U.; Egemen, O.; Kaymakci, A.

    1999-01-01

    Accumulation of Pb, Cd, Cu, Zn by the Mediterranean Mussel Mytilus galloprovincialis and bottom sediment samples were studied monthly at Aquaculture site of Urla-Iskele (Izmir Bay-Turkey). All metals showed a significant seasonal variations. The observed pattern was primarily related to the biological cycle of the mussel and only secondarily to environmental parameters. The order of enhanced metal concentrations found in mussels was Zn>Cu>Pb>Cd whereas in the sediment the order was different, i.e. Zn>Pb>Cu>Cd. In this work, the all over the metal concentrations in mussels and sediment samples from Urla-Iskele are similar to those reported for other Mediterranean regions. The soft tissues of the mussels which still contain concentrations lie just within the range given by WHO

  8. Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films

    International Nuclear Information System (INIS)

    Chiang, Ming-Hung; Fu, Yaw-Shyan; Shih, Cheng-Hung; Kuo, Chun-Cheng; Guo, Tzung-Fang; Lin, Wen-Tai

    2013-01-01

    The effects of hydrazine on the synthesis of Cu 2 ZnSnSe 4 (CZTSe) and Cu 2 CdSnSe 4 (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu 2 Se, and Cu 2 SnSe 3 , and Cu 2 SnSe 3 and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu 2 ZnSnSe 4 and Cu 2 CdSnSe 4 nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices

  9. Use of constructed wetland for the removal of heavy metals from industrial wastewater.

    Science.gov (United States)

    Khan, Sardar; Ahmad, Irshad; Shah, M Tahir; Rehman, Shafiqur; Khaliq, Abdul

    2009-08-01

    This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.

  10. Mazzaella laminarioides and Sarcothalia crispata as possible bioindicators of heavy metal contamination in the marine coastal zone of Chile.

    Science.gov (United States)

    Encina-Montoya, Francisco; Vega-Aguayo, Rolando; Díaz, Oscar; Esse, Carlos; Nimptsch, Jorge; Muñoz-Pedreros, Andrés

    2017-10-26

    The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L -1 ; Zn = 5.00 μg L -1 ; Pb = 0.03 μg L -1 ; Cd = 0.05 μg L -1 ; Hg = 0.05 μg L -1 ); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or

  11. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes

    International Nuclear Information System (INIS)

    Zhang Weiguo; Feng Huan; Chang Jinna; Qu Jianguo; Xie Hongxia; Yu Lizhong

    2009-01-01

    Surface sediments (0-5 cm) from 59 stations within the Yangtze River intertidal zone (YRIZ) were sampled for metal contamination analysis in April and August 2005. The concentrations ranged (in mg kg -1 dry weight): Al, 40,803-97,213; Fe, 20,538-49,627; Cd, 0.12-0.75; Cr, 36.9-173; Cu, 6.87-49.7; Mn, 413-1,112; Ni, 17.6-48.0; Pb, 18.3-44.1; and Zn, 47.6-154; respectively. Among the 59 sampling stations, enrichment factors (EF) indicate enrichment of Cd (52 stations), Cr (54 stations), Cu (5 stations), Ni (26 stations), Pb (5 stations) and Zn (5 stations). Geoaccumulation indexes (I geo ) also suggest individual metal contamination in localized areas. This study indicates that Cd, Cr and Ni enrichment in the YRIZ sediment is widespread whereas Cu, Mn, Pb and Zn enrichment is localized or nonexistent. Factor and cluster analyses indicate that Cd is associated with total organic carbon whereas Cu, Cr, Ni, Pb and Zn have a close association with Mn. - Surface sediment metal enrichment is evidenced for Cd, Cr and Ni in the Yangtze River intertidal zone.

  12. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    Science.gov (United States)

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  13. Cu/sub x/S-CdS thin film solar cells - aftertreatment and stability. Cu/sub x/S-CdS Duennschicht-Solarzellen - Untersuchungen ueber die Nachbehandlung und die Stabilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Pfisterer, F

    1987-02-19

    The performance of Cu/sub x/S-CdS thin film solar cells can be improved significantly by a secondary treatment of the Cu layer. The physical mechanisms underlying the aftertreatment process were investigated both experimentally and theoretically. A historical review is followed by an outline of the technology and theory of these solar cells (material properties, process engineering, photovoltaic properties) and a description of Cu aftertreatment and H glowing (experimental set-up, surface potential shift, electron beam scanning). Capacity measurements in this type of thin film cell are described (space charge profile, electrolytic decomposition, copper depletion between the contact web). Aftertreatment of the copper layer enhances the solar cell efficiency, stability, and productivity, makes the immersion process less tedious, and corrects the stoichiometry. (HWJ).

  14. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    Science.gov (United States)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  15. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. [Analysis and assessment of atmospheric pollution based on accumulation characterization of heavy metals in Platanus acerifolia leaves].

    Science.gov (United States)

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Wang, Cheng-Run

    2014-03-01

    The present work was aimed to evaluate the heavy metal pollution in the atmosphere of Huainan City. We measured and clustered the accumulation of six heavy metals in Platanus acerifolia leaves in 20 sampling fields with six types of environmental conditions, and analyzed the EF value of heavy metal enrichment in the leaves. The results showed that the accumulations in Platanus acerifolia leaves varied according to different types of metals, following the order of Zn > Cu > Cr > Ni > Pb > Cd. Environmental conditions also had great influence on the accumulation of heavy metals. Cd and Cu were mostly found in cement plant and mine, respectively, and Cr, Ni, Pb and Zn were significant higher in main road, compared with other environmental conditions. The average values of EF for all the metals expect Cr in scenic and village area were over 1. The average values of EF for all the metals in mine, power plant, main road and cement plant were above 3. The overall pollution condition of heavy metals in Huainan City followed the order of Cd > Cu > Zn > Ni > Pb > Cr.

  17. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain.

    Science.gov (United States)

    Cui, Hongbiao; Zhang, Shiwen; Li, Ruyan; Yi, Qitao; Zheng, Xuebo; Hu, Youbiao; Zhou, Jing

    2017-09-01

    Phosphate amendments have been used to immobilize heavy metal-contaminated soils. However, phosphate amendments contain large amounts of phosphorus, which could leach out to potentially contaminate groundwater and surface water. A laboratory column leaching experiment was designed to study the effects of simulated acid rain (SAR) on the potential release of copper (Cu), lead (Pb), cadmium (Cd), and phosphorus (P), and their availability after immobilizing with hydroxyapatite (HAP) and potassium dihydrogen phosphate (PDP). The application of HAP and PDP enhanced the leachate electrical conductivity, total organic carbon, and pH. Higher P was found in the PDP- (>4.29 mg L -1 ) and HAP-treated (>1.69 mg L -1 ) columns than that in untreated (phosphate amendments might promote the leaching of some metals while immobilizing others.

  18. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.

    Science.gov (United States)

    Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M

    2013-09-15

    Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in

  19. THERMODYNAMIC STUDIES ON THE ADSORPTION OF Cu2+ ...

    African Journals Online (AJOL)

    KEY WORDS: Amine-modified bentonite, TEPA, Heavy metal ions, Adsorption ..... charged due to the isomorphous substitutions within the layers of Al3+ for Si4+ in ... temperature, high temperature was advantageous for Cu2+, Ni2+ and Cd2+ ...

  20. Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Mi [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Boyle, Edward A., E-mail: eaboyle@mit.edu [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Echegoyen-Sanz, Yolanda; Fitzsimmons, Jessica N. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Zhang Ruifeng [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Kayser, Richard A. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-07

    A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3-1.5 mL per element) of seawater. Pre-concentration and salt-separation of a stable isotope spiked sample are achieved by single batch extraction onto nitrilotriacetate (NTA)-type Superflow chelating resin beads (100-2400 beads depending on the element). Metals are released into 0.1-0.5 M HNO{sub 3}, and trace metal isotope ratios are determined by ICPMS. The benefit of this method compared to our previous Mg(OH){sub 2} coprecipitation method is that the final matrix is very dilute so cone-clogging and matrix sensitivity suppression are minimal, while still retaining the high accuracy of the isotope dilution technique. Recovery efficiencies are sensitive to sample pH, number of resin beads added, and the length of time allowed for sample-resin binding and elution; these factors are optimized for each element to yield the highest recovery. The method has a low procedural blank and high sensitivity sufficient for the analysis of pM-nM open-ocean trace metal concentrations. Application of this method to samples from the Bermuda Atlantic Time-Series Study station provides oceanographically consistent Cu, Cd, Pb, and Fe profiles that are in good agreement with other reliable data for this site. In addition, the method can potentially be modified for the simultaneous analysis of multiple elements, which will be beneficial for the analysis of large number of samples.

  1. Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lee, Jong-Mi; Boyle, Edward A.; Echegoyen-Sanz, Yolanda; Fitzsimmons, Jessica N.; Zhang Ruifeng; Kayser, Richard A.

    2011-01-01

    A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3-1.5 mL per element) of seawater. Pre-concentration and salt-separation of a stable isotope spiked sample are achieved by single batch extraction onto nitrilotriacetate (NTA)-type Superflow chelating resin beads (100-2400 beads depending on the element). Metals are released into 0.1-0.5 M HNO 3 , and trace metal isotope ratios are determined by ICPMS. The benefit of this method compared to our previous Mg(OH) 2 coprecipitation method is that the final matrix is very dilute so cone-clogging and matrix sensitivity suppression are minimal, while still retaining the high accuracy of the isotope dilution technique. Recovery efficiencies are sensitive to sample pH, number of resin beads added, and the length of time allowed for sample-resin binding and elution; these factors are optimized for each element to yield the highest recovery. The method has a low procedural blank and high sensitivity sufficient for the analysis of pM-nM open-ocean trace metal concentrations. Application of this method to samples from the Bermuda Atlantic Time-Series Study station provides oceanographically consistent Cu, Cd, Pb, and Fe profiles that are in good agreement with other reliable data for this site. In addition, the method can potentially be modified for the simultaneous analysis of multiple elements, which will be beneficial for the analysis of large number of samples.

  2. Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shiming [Chinese Geological Survey, Nanjing Center, Nanjing (China); Mathur, Ryan, E-mail: mathurr@juniata.edu [Department of Geology, Juniata College, Huntingdon, PA (United States); Ruiz, Joaquin [Department of Geosciences, University of Arizona, Tucson, AZ (United States); Chen, Dandan [Chinese Geological Survey, Nanjing Center, Nanjing (China); Allin, Nicholas [Department of Geology, Juniata College, Huntingdon, PA (United States); Guo, Kunyi; Kang, Wenkai [Chinese Geological Survey, Nanjing Center, Nanjing (China)

    2016-02-15

    Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS{sub 2} has a ‘tight’ cluster of Cu isotope values (− 0.15‰ to + 1.65‰; + 0.37 ± 0.6‰, 1σ, n = 10), and the second mineral source, pyrite (FeS{sub 2}), has a much larger range of Cu isotope values (− 4‰ to + 11.9‰; 2.7 ± 4.3‰, 1σ, n = 16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately + 1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (< 0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ{sup 65}Cu ranging between + 2 to + 5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. - Highlights:

  3. Diffusion barrier performance of novel Ti/TaN double layers for Cu metallization

    International Nuclear Information System (INIS)

    Zhou, Y.M.; He, M.Z.; Xie, Z.

    2014-01-01

    Highlights: • Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum. • The Ti/TaN double layers improved the adhesion with Cu thin films and showed good diffusion barrier between Cu and SiO 2 /Si up to the annealing condition. • The failure mechanism of Ti/TaN bi-layer is similar with the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu 3 Si. - Abstract: Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum better than 1 × 10 −3 Pa. Ti/TaN double layers were formed on SiO 2 /Si substrates by DC magnetron sputtering and then the properties of Cu/Ti/TaN/SiO 2 /Si film stacks were studied. It was found that the Ti/TaN double layers provide good diffusion barrier between Cu and SiO 2 /Si up to 750 °C for 30 min. The XRD, Auger and EDS results show that the Cu–Si compounds like Cu 3 Si were formed by Cu diffusion through Ti/TaN barrier for the 800 °C annealed samples. It seems that the improved diffusion barrier property of Cu/Ti/TaN/SiO 2 /Si stack is due to the diffusion of nitrogen along the grain boundaries in Ti layer, which would decrease the defects in Ti film and block the diffusion path for Cu diffusion with increasing annealing temperature. The failure mechanism of Ti/TaN bi-layer is similar to the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu 3 Si

  4. Synthesis and characterization of CdS/CuAl2O4 core-shell: application to photocatalytic eosin degradation

    Science.gov (United States)

    Bellal, B.; Trari, M.; Afalfiz, A.

    2015-08-01

    The advantages of the hetero-junction CdS/CuAl2O4 for the photocatalytic eosin degradation are reported. Composite semiconductors are elaborated by co-precipitation of CdS on the spinel CuAl2O4 giving a core-shell structure with a uniform dispersion and intimate contact of the spinel nanoparticles inside the hexagonal CdS. The Mott-Schottky plots ( C -2- V) of both materials show linear behaviors from which flat band potentials are determined. The photoactivity increases with increasing the mass of the sensitizer CdS and the best performance is achieved on CdS/CuAl2O4 (85 %/15 %). The pH has a strong influence on the degradation and the photoactivity peaks at pH 7.78. The dark adsorption eosin is weak (~4 %), hence the change in the eosin concentration is attributed to the photocatalytic process. The degradation follows a zero-order kinetic with a rate constant of 5.2 × 10-8 mol L-1 mn-1 while that of the photolysis is seven times lower (0.75 × 10-8 mol L-1 mn-1).

  5. Magnetic behavior in heterometallic one-dimensional chains or octanuclear complex regularly aligned with metal-metal bonds as -Rh-Rh-Pt-Cu-Pt

    Science.gov (United States)

    Uemura, Kazuhiro

    2018-06-01

    Heterometallic one-dimensional chains, [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}]n(PF6)2n (1 and 2, piam = pivalamidate) and [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}2](CF3CO2)2(ClO4)2·2H2O (3), are paramagnetic one-dimensional chains or octanuclear complexes that are either aligned as -Rh-Rh-Pt-Cu-Pt- (1 and 2) or as Pt-Cu-Pt-Rh-Rh-Pt-Cu-Pt (3) with metal-metal bonds. Compounds 1-3 have rare structures, from the standpoint of that the paramagnetic species of Cu atoms are linked by direct metal-metal bonds. Magnetic susceptibility measurements for 1-3 performed at temperatures of 2 K-300 K indicated that the unpaired electrons localize in the Cu 3dx2-y2 orbitals, where S = 1/2 Cu(II) atoms are weakly antiferromagnetically coupled with J = -0.35 cm-1 (1), -0.47 cm-1 (2), and -0.45 cm-1 (3).

  6. Effects of heavy metal Cd pollution on microbial activities in soil.

    Science.gov (United States)

    Shi, Weilin; Ma, Xiying

    2017-12-23

    Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  7. Effects of heavy metal Cd pollution on microbial activities in soil

    Directory of Open Access Journals (Sweden)

    Weilin Shi

    2017-12-01

    Full Text Available Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  8. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Joshua T.; Forsythe, Kyle; Hutchins, Jamie; Meulenberg, Robert W.

    2016-04-13

    This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current–voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level.

  9. Chemical bath deposition of CdS thin films doped with Zn and Cu

    Indian Academy of Sciences (India)

    Abstract. Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ... Cadmium sulfide; chemical bath deposition; doping; optical window. 1. ..... at low temperature (10 K), finding similar trends than.

  10. Atomic structure and formation of CuZrAl bulk metallic glasses and composites

    International Nuclear Information System (INIS)

    Kaban, I.; Jóvári, P.; Escher, B.; Tran, D.T.; Svensson, G.; Webb, M.A.; Regier, T.Z.; Kokotin, V.; Beuneu, B.; Gemming, T.; Eckert, J.

    2015-01-01

    Graphical abstract: Partial radial distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass and relevant crystal structures. - Abstract: Cu 47.5 Zr 47.5 Al 5 metallic glass is studied experimentally by high-energy X-ray diffraction, neutron diffraction with isotopic substitution, electron diffraction and X-ray absorption spectroscopy. The atomic structure of the glass is modeled by reverse Monte-Carlo and molecular dynamics simulations. RMC modeling of seven experimental datasets enabled reliable separation of all partial pair distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass. A peculiar structural feature of the ternary alloy is formation of the strong Al–Zr bonds, which are supposed to determine its high viscosity and enhanced bulk glass formation. Analysis of the local atomic order in Cu 47.5 Zr 47.5 Al 5 glass and Cu 10 Zr 7 , CuZr 2 and CuZr B2 crystalline structures elucidates their similarities and differences explaining the phase formation sequence by devitrification of the glass.

  11. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    International Nuclear Information System (INIS)

    Owsianiak, Mikołaj; Holm, Peter E.; Fantke, Peter; Christiansen, Karen S.; Borggaard, Ole K.; Hauschild, Michael Z.

    2015-01-01

    Metal exposure to terrestrial organisms is influenced by the reactivity of the solid-phase metal pool. This reactivity is thought to depend on the type of emission source, on aging mechanisms that are active in the soil, and on ambient conditions. Our work shows, that when controlling for soil pH or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about the influence of aging time on the reactivity of metals from anthropogenic sources in soils. Thus, for calculating comparative toxicity potentials of man-made metal contaminations in soils, we recommend using time-horizon independent accessibility factors derived from source-specific reactive fractions. - Highlights: • We found an effect of source on reactivity of anthropogenic metals in soils. • The influence of aging on reactivity of anthropogenic metals was not consistent. • We recommend including source and disregarding aging in calculation of CTPs values. - Improving current life cycle inventory (LCI) and life cycle impact assessment (LCIA) practice in terrestrial ecotoxicity assessment of metals.

  12. The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Dursun KISA

    2017-12-01

    Full Text Available Plants maintain their life cycles under the various environmental conditions such as oxidative stress induced by heavy metals. Accumulation of metal ions in plants causes the formation of free radicals and stimulates the antioxidative defense systems. In this study, the activities of APX, POD, and SOD are investigated in the leaves and roots of tomato cultivated under the heavy metal-induced stress. The activities of APX, POD, and SOD exhibited remarkable induction with the treatment of Cd, Cu and Pb (10, 20 and 50 ppm in the leaves of tomato compared to control plants except for 50 ppm Pb. In roots, APX activity changed depending on the heavy metal types and concentrations, while Cd clearly increased it with stress conditions, but Cu decreased in tomato compared to control. The activity of POD clearly exhibited that the all doses of heavy metals reduced the enzyme activity in roots polluted with heavy metals. The treatment of Cd (10, 20 and 50 ppm significantly increased the activity of SOD, however, Cu showed the opposite effect which significantly decreased with increasing doses in roots compared to uncontaminated plants. Also, roots from plants grown on the high concentration of Pb (20 and 50 ppm induced the activity of SOD. Briefly, it is clear responses which Cd significantly raised the activities of APX and SOD in leaves and roots of tomato. The decreases caused by these metals in the activity of POD and Cu in the activities of APX and SOD in roots of tomato can be clarified by the result of heavy metal-induced the over production of free radical.

  13. Reactivity of Cu with poly(tetrafluoroethylene) and poly(vinyl chloride): Effect of pre- and post-metallization modification on the metal/polymer interface

    International Nuclear Information System (INIS)

    Perry, C.C.; Torres, J.; Carlo, S.R.; Fairbrother, D. Howard

    2002-01-01

    The reactivity of Cu with poly(tetrafluoroethylene) (PTFE) and poly(vinylchloride) (PVC) during thermal evaporation, as well as the effect of pre- and post-metallization Ar + ion and x-ray mediated surface modification treatments on the metal/polymer interface, have been studied using in situ x-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM). During thermal evaporation, copper was unreactive on PTFE but reacted with PVC to form CuCl. Pretreatment of PTFE or PVC surfaces by Ar + ion or x-ray irradiation did not modify the chemical reactivity of the polymer surface during subsequent Cu deposition, although significant morphological changes were observed on PTFE by AFM. In contrast, post-metallization modification of the Cu/PTFE interface by Ar + ion or x-ray irradiation lead to the production of CuF 2 , and increased the yield of CuCl in the Cu/PVC system. In either the Cu/PTFE or Cu/PVC systems, the maximum concentration of copper halide formed and dependence upon treatment time was found to be similar for either Ar + ion or x-ray irradiation post-metallization treatment strategies, suggesting a common reaction mechanism

  14. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    Science.gov (United States)

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  15. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani, Narsito, Nuryono, Eko Sri Kunarti

    2015-12-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted hybrid material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media. Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, CH3COONa 0.1 M (pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition. Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS. At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique

  16. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2012-02-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted amino-silica (HAS material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media.  Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, acetat buffer at pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition.  Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS.  At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique.

  17. Essential trace (Zn, Cu, Mn and toxic (Cd, Pb, Cr elements in the liver of birds from Eastern Poland

    Directory of Open Access Journals (Sweden)

    Komosa A.

    2012-01-01

    Full Text Available We have focused our study on the concentrations of essential heavy metals (Zn, Cu and Mn and non-essential trace metals (Pb, Cd and Cr in the livers of birds from Eastern Poland. The largest mean amount of Zn - as much as 279 mg/kg dry mass (d.m. - was found in mute swans. However, only in one of the analysed buzzard specimens the concentration of Zn, found to be 664 mg/kg d.m., exceeded the level indicative of poisoning for this element. Birds specializing in catching rodents accumulated Mn in their livers in a very narrow range of concentrations, around 5.0 mg/kg d.m. on average. The range of mean Mn concentrations (around 6.5 mg/kg d.m. was also found to be narrow for piscivorous birds. The highest mean levels of Pb were found in mute swans (2.7 mg/kg d.m., and the highest levels of Cd (2.0 mg/kg d.m. for rooks. Concentrations of total Cr above detection level were found in 22 specimens (53.7%, and concentration values were highest for rooks. Analyses showed that the concentrations of biogenic elements did not exceed the levels indicative of poisoning (except in one specimen. The study demonstrated that lead shots remain a hazard to water ecosystems. Pb, Cd and Cr levels in the livers of omnivorous and piscivorous species indicate the permanent presence of these elements in the environment and may confirm the thesis about the growing role of electronic waste, including metallic e-waste, in the emission of the total amount of contamination with these elements.

  18. Bioaccumulation of some heavy metals in tilapia fish relevant to their ...

    African Journals Online (AJOL)

    Concentrations of some heavy metals (Pb, Cd, Hg, Cu and Cr) were determined in water, sediment and tissues of tilapia fish collected from Wadi Hanifah during summer 2010. The concentrations of the heavy metal in water were within the international permissible level. Cu had the highest accumulating level in fish whilst ...

  19. Detection of Genetic Variations in Marine Algae Ulva lactuca (Chlorophyta Induced by Heavy Metal Pollutants

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-09-01

    Full Text Available Ulva lactuca (Chlorophyta green macroalgae has been successfully used as bioindicator for heavy metals pollution in ecosystems. Random amplified microsatellite polymorphism (RAMP marker was employed to investigate genetic DNA pattern variability in green U. lactuca 5 days after exposure to Cu, Pb, Cd and Zn heavy metals stress. Genomic template stability (GTS% value was employed as a qualitative DNA changes measurement based on RAMP technique. In this respect, estimated GTS% value was recorded to be 65.215, 64.630, 59.835 and 59.250% for Pb, Cu, Cd and Zn treatment, respectively. Moreover, genetic similarity (GS induced by the above heavy metals was also evaluated to measure genetic distance between algae treated plants and their respective control. In this respect, estimated GS values generated by RAMP marker ranged between 0.576 (between control and Zn treatment - 0.969 (for both case; between Pb and Cu and between Cd and Zn treatment with an average of 0.842. Based upon data presented herein based on variant bands number (VB, GTS% and GS values; the present study could be suggested that Pb and Cu followed similar tendency at genomic DNA changes. Similar finding was also observed with Cd and Zn ions. Thereby, RAMP marker successfully highlighted DNA change patterns induced by heavy metals stress.

  20. Distribution and Ecological Risk Assessment of Heavy Metals in Arable Soils in Bijiang Watershed, China

    Directory of Open Access Journals (Sweden)

    HUANG Wei-heng

    2017-08-01

    Full Text Available It has been paid much attention to soil heavy metal pollution in the Bijiang watershed caused by the Lanping lead-zinc mine. We collected 35 arable soil samples along Bijiang, then sampled and tested the contents of As, Cu, Zn, Cd, Pb, Hg. And then with Nemerow Multi-Factor Index and the Potential Ecological Risk Index method, we evaluated the heavy metal pollution risk. The results showed:(1The accumulation of Pb, Zn, Cd was in a relatively high level, the average was 1 146.97, 579.15, 4.85 mg·kg-1 respectively, which was seriously polluted; the average accumulation of As was 26.85 mg·kg-1; but Cu, Hg was slightly polluted. (2Statistical analysis showed that Lanping area was a main point source pollution of As, Zn, Pb, Cd, while Cu, Hg was pollution caused by different non-point source pollution.(3Within this basin, the Nemerow index was 17.69, which was serious heavy metal pollution, while the comprehensive potential ecological risk index was 773.38, which was a strong potential ecological risk. The contribution of pollutants was Cd > Pb > Zn> As> Hg > Cu. (4As a whole, the soil heavy metal pollution of paddy field was higher than of the dry land.

  1. Size effect on the SHG properties of Cu-doped CdI2 nanocrystals

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Because the optically induced second harmonic generation (SHG) is prevented by symmetry in a centrosymmetric material, one needs to form noncentrosymmetric processes in order to observe the SHG. However, one of the efficient ways to enhance the noncentrosymmetricity of a material is to dope it with an appropriate impurity and amount. We grow Cu-doped CdI 2 layered nanocrystal structures from the mixture of CdI 2 and CuI using the standard Bridgman-Stockbarger method and investigate the nano-confined effects by studying the second-order optical effect via the measurements of SHG. The second-order susceptibility for the nanocrystals is calculated and the values at liquid helium temperature range from 0.38 to 0.83 pm V -1 for the thicknesses of 10-0.8 nm respectively. The size dependence demonstrates the nano-sized quantum-confined effect with a clear increase in the SHG with decreasing the thickness of the nanocrystal or crystal temperature. Since the local electron-phonon anharmonicity is described by third-order rank tensors in disordered systems, the SHG is very similar to that one introduced for the third-order optical susceptibility. It has been confirmed by observing the large photoluminescent yield of the pure crystals. The Raman scattering spectra taken for thin nanocrystals confirm the phonon modes originating from interlayer phonons crucially responsible for the observed effects. The obtained results show that the Cu-doped CdI 2 layered nanocrystals are promising materials for applications in optoelectronic nano-devices.

  2. Assessment of nutrients and metals in sediments of Ogba river ...

    African Journals Online (AJOL)

    Total organic carbon (TOC) and nitrate (NO3--N) were negatively correlated with sand but positively related to clay (P<0.01). No significant relationship was found between metals except for Ni and cadmium (Cd), and Fe and Ni. In addition, no significant relationship was found between TOC and metals (Fe, Zn, Cu, Cd, ...

  3. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones

    Science.gov (United States)

    2014-01-01

    Background Silicon (Si) application has been known to enhance the tolerance of plants against abiotic stresses. However, the protective mechanism of Si under heavy metals contamination is poorly understood. The aim of this study was to assess the role of Si in counteracting toxicity due to cadmium (Cd) and copper (Cu) in rice plants (Oryza sativa). Results Si significantly improved the growth and biomass of rice plants and reduced the toxic effects of Cd/Cu after different stress periods. Si treatment ameliorated root function and structure compared with non-treated rice plants, which suffered severe root damage. In the presence of Si, the Cd/Cu concentration was significantly lower in rice plants, and there was also a reduction in lipid peroxidation and fatty acid desaturation in plant tissues. The reduced uptake of metals in the roots modulated the signaling of phytohormones involved in responses to stress and host defense, such as abscisic acid, jasmonic acid, and salicylic acid. Furthermore, the low concentration of metals significantly down regulated the mRNA expression of enzymes encoding heavy metal transporters (OsHMA2 and OsHMA3) in Si-metal-treated rice plants. Genes responsible for Si transport (OsLSi1 and OsLSi2), showed a significant up-regulation of mRNA expression with Si treatment in rice plants. Conclusion The present study supports the active role of Si in the regulation of stresses from heavy metal exposure through changes in root morphology. PMID:24405887

  4. Sediment Metal Contamination in the Kafue River of Zambia and Ecological Risk Assessment.

    Science.gov (United States)

    M'kandawire, Ethel; Choongo, Kennedy; Yabe, John; Mwase, Maxwell; Saasa, Ngonda; Nakayama, Shouta M M; Bortey-Sam, Nesta; Blindauer, Claudia A

    2017-07-01

    Zambia's Kafue River receives wastes from various sources, resulting in metal pollution. This study determined the degree of contamination of 13 metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Hg and Pb) in Kafue River sediment and the associated ecological risks at six sites in three different seasons. The level of contamination for most metals showed significant site and seasonal differences. The contamination factor and pollution load index indicated that concentrations of most metals particularly copper (Cu), cobalt (Co), manganese (Mn) and arsenic (As) were very high at sites within the Copperbelt mining area. The geoaccumulation index showed an absence of anthropogenic enrichment with Cd and Hg at all the study sites and extreme anthropogenic enrichment with Cu at sites in the Copperbelt mining area. Potential ecological risk showed that Cu and As were likely to cause adverse biological effects to aquatic organisms in the Copperbelt mining region of the Kafue River.

  5. Mesoporous CuO–ZnO binary metal oxide nanocomposite for decontamination of sulfur mustard

    International Nuclear Information System (INIS)

    Praveen Kumar, J.; Prasad, G.K.; Ramacharyulu, P.V.R.K.; Garg, P.; Ganesan, K.

    2013-01-01

    Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. They were prepared by precipitation pyrolysis method and characterized by means of X-ray diffraction, transmission electron microscopy, nitrogen adsorption, Fourier transform infrared spectroscopy techniques. Obtained data indicated the presence of mesopores with diameter ranging from 2 to 80 nm and the materials exhibited relatively high surface area 86 m 2 g −1 when compared to the individual metal oxide nanoparticles. Reactive sites of mesoporous CuO–ZnO binary metal oxide nanocomposites were studied by infrared spectroscopy technique using pyridine as a probe molecule. These materials demonstrated superior decontamination properties against sulfur mustard when compared to single component metal oxides and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Graphical abstract: Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. These materials demonstrated superior decontamination properties against sulfur mustard and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Highlights: • Preparation of mesoporous CuO–ZnO binary metal oxide nanocomposite. • CuO–ZnO with better surface area was synthesized by precipitation pyrolysis. • Decontamination of HD using mesoporous CuO–ZnO binary metal oxide nanocomposite. • HD decontaminated by elimination and hydrolysis reactions

  6. Mesoporous CuO–ZnO binary metal oxide nanocomposite for decontamination of sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, J.; Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Garg, P.; Ganesan, K.

    2013-11-01

    Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. They were prepared by precipitation pyrolysis method and characterized by means of X-ray diffraction, transmission electron microscopy, nitrogen adsorption, Fourier transform infrared spectroscopy techniques. Obtained data indicated the presence of mesopores with diameter ranging from 2 to 80 nm and the materials exhibited relatively high surface area 86 m{sup 2} g{sup −1} when compared to the individual metal oxide nanoparticles. Reactive sites of mesoporous CuO–ZnO binary metal oxide nanocomposites were studied by infrared spectroscopy technique using pyridine as a probe molecule. These materials demonstrated superior decontamination properties against sulfur mustard when compared to single component metal oxides and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Graphical abstract: Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. These materials demonstrated superior decontamination properties against sulfur mustard and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Highlights: • Preparation of mesoporous CuO–ZnO binary metal oxide nanocomposite. • CuO–ZnO with better surface area was synthesized by precipitation pyrolysis. • Decontamination of HD using mesoporous CuO–ZnO binary metal oxide nanocomposite. • HD decontaminated by elimination and hydrolysis reactions.

  7. Augmenting granular activated carbon with natural clay for multicomponent sorption of heavy metals from aqueous solutions.

    Science.gov (United States)

    Mu'azu, Nuhu Dalhat; Essa, Mohammed Hussain; Lukman, Salihu

    2017-10-01

    Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.

  8. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst

    Science.gov (United States)

    Wang, Shing-Dar; Chen, Ting-Wei

    2018-06-01

    In this work, Cu, Ag, or Ag/Cu was used as a metal catalyst to study the surface texturization of diamond-wire-sawn (DWS) multi-crystalline silicon (mc-Si) wafer by a metal-assisted chemical etching (MACE) method. The DWS wafer was first etched by standard HF-HNO3 acidic etching, and it was labeled as AE-DWS wafer. The effects of ratios of Cu(NO3)2:HF, AgNO3:HF, and AgNO3:Cu(NO3)2 on the morphology of AE-DWS wafer were investigated. After the process of MACE, the wafer was treated with a NaF/H2O2 solution. In this process, H2O2 etched the nanostructure, and NaF removed the oxidation layer. The Si {1 1 1} plane was revealed by etching the wafer in a mixture of 0.03 M Cu(NO3)2 and 1 M HF at 55 °C for 2.5 min. These parallel Si {1 1 1} planes replaced some parallel saw marks on the surface of AE-DWS wafers without forming a positive pyramid or an inverted pyramid structure. The main topography of the wafer is comprised of silicon nanowires grown in direction when Ag or Ag/Cu was used as a metal catalyst. When silicon is etched in a mixed solution of Cu(NO3)2, AgNO3, HF and H2O2 at 55 °C with a concentration ratio of [Cu2+]/[Ag+] of 50 or at 65 °C with a concentration ratio of [Cu2+]/[Ag+] of 33, a quasi-inverted pyramid structure can be obtained. The reflectivity of the AE-DWS wafers treated with MACE is lower than that of the multiwire-slurry-sawn (MWSS) mc-Si wafers treated with traditional HF + HNO3 etching.

  9. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    Science.gov (United States)

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    Science.gov (United States)

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers. © 2013 Published by Elsevier Inc.

  11. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  12. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    Science.gov (United States)

    Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N

    2015-06-10

    Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.

  13. 620 ASSESSMENT OF HEAVY METALS, pH AND EC IN EFFLUENT ...

    African Journals Online (AJOL)

    Osondu

    evaluated metals were Cu, Fe, Ni, Mn, Cr, Zn, Cd, Co, and Ag. The pH, EC, TDS, DO ... heavy metals, but the high heavy metal concentrations in the soil could seriously ... Key words: Heavy metals, AAS, contamination, floriculture and effluents.

  14. Study of Cd Te recrystallization by hydrated-CdCl_2 thermal treatment

    International Nuclear Information System (INIS)

    Hernandez V, C.; Albor A, M. L.; Galarza G, U.; Aguilar H, J. R.; Gonzalez T, M. A.; Flores M, J. M.; Jimenez O, D.

    2017-01-01

    Cd Te thin films solar cells are currently produced using a layer sequence of glass/FTO/CdS/Cd Te/metal contact (Cu/Ag), these films are deposited by two different techniques, chemical bath deposition (CBD) and close space vapour transport (CSVT). In order to reach reasonable conversion efficiencies, the device has to be thermally treated in a hydrated-CdCl_2 atmosphere. This study was carried out using X-ray diffraction (XRD), photoluminescence, Sem-EDS, four probe method and Sims profiling of Cd Te. These analyses confirm the presence of hydrated CdCl_2 and Cd Te phases on Cd Te surface and shown a good recrystallization morphology helping to the carriers mobility along the structure. Using the thermal treatment was possible to reduce the resistivity of Cd Te thin film; it is a result to the Cl migration along the Cd Te solar cell structure, reducing the defects between CdS and Cd Te thin films. A strong Cd Te thin film recrystallization was observed by the implementation of a hydrated-CdCl_2 treatment doing to this a good candidate to Cd Te solar cells process. (Author)

  15. Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: Multiple pollution indices approach.

    Science.gov (United States)

    Saher, Noor Us; Siddiqui, Asmat Saleem

    2016-04-15

    Heavy metals concentrations (Fe, Cu, Zn, Ni, Cr, Co, Pb, and Cd) were scrutinized during two monitoring years (2001 and 2011) in the coastal sediment of Pakistan. The status of metal contamination in coastal sediment was interpreted using sediment quality guidelines, and single and combined metal pollution indices. Ni, Cr, and Cd were recognized for their significant (p<0.05) intensification in the sediment during the last decade. Sediment quality guidelines recognized the frequent adverse biological effect of Ni and the occasional adverse biological effect of Cu, Cr, Pb and Cd. Single metal pollution indices (Igeo, EF, CF, and ER) revealed that sediment pollution is predominantly caused by Pb and Cd. Low to moderate contamination was appraised along the coast by multi-metal pollution indices (CD and PERI). Correlation study specifies that heavy metals were presented diverse affiliations and carriers for distribution in the sediment during the last decade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.

    Science.gov (United States)

    Moreno-Jiménez, Eduardo; Peñalosa, Jesús M; Manzano, Rebeca; Carpena-Ruiz, Ramón O; Gamarra, Roberto; Esteban, Elvira

    2009-03-15

    The present work concerns the distribution and mobility of heavy metals (Fe, Mn, Cu, Zn and Cd) in the surrounding soils of a mine site and their transfer to wild flora. Thus, soils and plants were sampled from a mining valley in NW Madrid (Spain), and total and extractable heavy metals were analysed. Soils affected by mining activities presented total Cd, Cu and Zn concentrations above toxic thresholds. The percentage of extractable element was highest for Cd and lowest for Cu. A highly significant correlation was observed between the total and extractable concentrations of metals in soils, indicating that, among the factors studied, total metals concentration is the most relevant for heavy metals extractability in these soils. (NH(4))(2)SO(4)-extractable metal concentrations in soils are correlated better with metal concentrations in several plant species than total metals in soils, and thus can be used as a suitable and robust method for the estimation of the phytoavailable fraction present in soils. Twenty-five vascular plant species (3 ferns and 22 flowering plants) were analysed, in order to identify exceptional characteristics that would be interesting for soil phytoremediation and/or reclamation. High Cd and Zn concentrations have been found in the aerial parts of Hypericum perforatum (Cd), Salix atrocinerea (Cd, Zn) and Digitalis thapsi (Cd, Zn). The present paper is, to the best of our knowledge, the first report of the metal accumulation ability of the two latter plant species. The phytoremediation ability of S. atrocinerea for Cd and Zn was estimated, obtaining intervals of time that could be considered suitable for the phytoextraction of polluted soils.

  17. Concentrations, Distribution, and Ecological Risk Assessment of Heavy Metals in Daya Bay, China

    Directory of Open Access Journals (Sweden)

    Huijuan Tang

    2018-06-01

    Full Text Available Surface sediment samples were collected from 19 sites throughout Daya Bay, China to study the concentrations, spatial distributions, potential ecological risk, and possible sources of heavy, including metals copper (Cu, zinc (Zn, arsenic (As, cadmium (Cd, nickel (Ni, lead (Pb, mercury (Hg, and chromium (Cr. The mean concentrations of the eight heavy metals were 24, 109, 6.5, 0.09, 35.3, 26.8, 0.07, and 109 µg g−1, respectively. The concentrations of most heavy metals were within range of those recorded in previous years. The spatial distribution pattern of most heavy metals were similar, with lowest values recorded along the southeast coast and the open sea area; the highest values were recorded in the northern Daya Bay, especially the northwest. Cu, Zn, As, Cd, Pb, and Hg were classified as Class I, and Ni and Cr were classified as Class II according to the Sediment Quality Guidelines (SQGs of China. The potential ecological risk (Eif indices of Cu, Zn, As, Pb, Ni, and Cr specify that these metals pose low risk to the ecosystem of the Bay, whereas Cd and Hg pose a very high risk in some sites. The geoaccumulation indices (Igeo of Cu, Zn, As, Ni, and Cr specify weak or no pollution in Daya Bay, whereas those of Pb, Cd, and Hg in some sites indicate moderate or even high pollution. Spatial distribution, carbon/nitrogen analysis, Pearson correlation, and principal components analysis indicated that Cu, Zn, As, Pb, Ni, Cr, total organic carbon (TOC, and total nitrogen (TN originated from the same sources. Ballast water or sewage from the cargo ships that park at the harbors or anchor in the Bay were the important sources for Cu, Zn, As, Pb, Ni, Cr, TOC, and TN. Other anthropogenic sources, such as agricultural runoff and aquaculture, might also be responsible, whereas Hg and Cd originated from other point sources.

  18. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id; Dipojono, H. K., E-mail: dipojono@tf.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  19. Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments

    International Nuclear Information System (INIS)

    McLean, Christopher M.; Koller, Claudia E.; Rodger, John C.; MacFarlane, Geoff R.

    2009-01-01

    The current study represents the first investigation of the suitability of marsupial and eutherian mammalian hair as indicator tissue for metal exposure and accumulation within contaminated Australian terrestrial ecosystems. A soil metal contamination gradient was established across 22 sites at increasing distances from a decommissioned Lead/Zinc smelter in NSW, Australia. Within each site, soil and small mammal populations were sampled. An Australian native marsupial, the insectivorous Brown Antechinus, Antechinus stuartii: Dasyuridae, and introduced rodents, the omnivorous Brown or Norway Rat, Rattus norvegicus: Muridae and the Black Rat, Rattus rattus: Muridae were assessed for hair concentrations of Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). Metals in soil were most elevated at sites within close proximity to the smelter, with soil metal concentrations decreasing with distance from the smelter. The non-essential metals Pb and Cd were accumulated in hair, both metals exhibiting positive linear relationships with environmental exposure (soil metal concentrations). When the variables of weight and snout-vent length were considered, no further contribution in terms of explaining the variability in hair Cd or Pb was observed for all species examined. The essential metals Cu and Zn were regulated in hair, remaining similar across the metal contamination gradient. A significant negative correlation between snout-vent length and hair Cu concentration was found for the Brown Rat; greater hair Cu concentrations were found in smaller individuals of this species. Accumulation of Pb to hair was similar among species while concentrations of Cd in Brown Rat hair were higher than both Black Rat and Brown Antechinus hair. As each of the three aforementioned species exhibit similar bioaccumulation relationships for Pb, we suggest that sampling hair from introduced rodents (pest species) may provide a suitable proxy for the assessment of Pb bioavailability for a range of

  20. Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Christopher M. [Ecology and Ecotoxicology Laboratory, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW Australia (Australia); Centre for the Risk Management of Bushfires, Institute for Conservation Biology and Law, University of Wollongong, Wollongong, NSW (Australia); Koller, Claudia E. [Ecology and Ecotoxicology Laboratory, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW Australia (Australia); Rodger, John C. [Marsupial Research Laboratory, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW Australia (Australia); MacFarlane, Geoff R., E-mail: geoff.macfarlane@newcastle.edu.au [Ecology and Ecotoxicology Laboratory, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW Australia (Australia)

    2009-05-15

    The current study represents the first investigation of the suitability of marsupial and eutherian mammalian hair as indicator tissue for metal exposure and accumulation within contaminated Australian terrestrial ecosystems. A soil metal contamination gradient was established across 22 sites at increasing distances from a decommissioned Lead/Zinc smelter in NSW, Australia. Within each site, soil and small mammal populations were sampled. An Australian native marsupial, the insectivorous Brown Antechinus, Antechinus stuartii: Dasyuridae, and introduced rodents, the omnivorous Brown or Norway Rat, Rattus norvegicus: Muridae and the Black Rat, Rattus rattus: Muridae were assessed for hair concentrations of Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). Metals in soil were most elevated at sites within close proximity to the smelter, with soil metal concentrations decreasing with distance from the smelter. The non-essential metals Pb and Cd were accumulated in hair, both metals exhibiting positive linear relationships with environmental exposure (soil metal concentrations). When the variables of weight and snout-vent length were considered, no further contribution in terms of explaining the variability in hair Cd or Pb was observed for all species examined. The essential metals Cu and Zn were regulated in hair, remaining similar across the metal contamination gradient. A significant negative correlation between snout-vent length and hair Cu concentration was found for the Brown Rat; greater hair Cu concentrations were found in smaller individuals of this species. Accumulation of Pb to hair was similar among species while concentrations of Cd in Brown Rat hair were higher than both Black Rat and Brown Antechinus hair. As each of the three aforementioned species exhibit similar bioaccumulation relationships for Pb, we suggest that sampling hair from introduced rodents (pest species) may provide a suitable proxy for the assessment of Pb bioavailability for a range of

  1. Data on heavy metals and selected anions in the Persian popular herbal distillates

    OpenAIRE

    Keshtkar, Mozhgan; Dobaradaran, Sina; Soleimani, Farshid; Karbasdehi, Vahid Noroozi; Mohammadi, Mohammad Javad; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji

    2016-01-01

    In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including NO3− , NO2−, PO4−3 and SO4−2 in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain (“Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran” (Dobaradaran et al., 2013) [1...

  2. Interactive effects of pH and metals on mitochondrial functions of intertidal bivalves Crassostrea virginica and Mercenaria mercenaria

    International Nuclear Information System (INIS)

    Ivanina, Anna V.; Sokolova, Inna M.

    2013-01-01

    Highlights: •Interactive effects of trace metals Cd and Cu and pH were studied in mitochondria of clams and oysters. •Mitochondrial respiration and membrane potential of bivalves were robust to pH variation (6.6–7.8). •Elevated levels of Cd and Cu inhibited mitochondrial respiration in the pH-dependent manner but did not affect the membrane potential. •Negative effects of Cd and Cd on mitochondrial respiration were alleviated at low pH (7.0 and below). •Moderate acidosis may protect molluscan mitochondria from metal toxicity. -- Abstract: Intertidal bivalves experience broad fluctuations of environmental temperature, pH and oxygen content which could change their intracellular pH. They are also exposed to trace metals such as cadmium (Cd) and copper (Cu) that accumulate in their tissues and may negatively affect mitochondrial functions and bioenergetics. We determined the interactive effects of pH and trace metals (25 μM Cd or Cu) on mitochondrial functions (including respiration and membrane potentials in both ADP-stimulated (state 3) and resting (state 4) states) of two common marine bivalves, the hard clams (Mercenaria mercenaria) and eastern oysters (Crassostrea virginica). In the absence of the trace metals, mitochondrial functions of C. virginica and M. mercenaria were insensitive to pH in a broad physiologically relevant range (6.6–7.8). Mitochondrial respiration was generally suppressed by 25 μM Cd or Cu (with the stronger effects observed for ADP-stimulated compared to the resting respiration) while the mitochondrial membrane potential was unaffected. pH modulated the effects of Cu and Cd on mitochondrial respiration of the bivalves. In oysters, Cu suppressed ADP-stimulated mitochondrial respiration at high and low pH values (6.6 and 7.8, respectively), but had no effect in the intermediate pH range (7.0–7.4). In clams, the negative effect of Cu on ADP-stimulated respiration was only observed at extremely high pH (7.8). A decrease in p

  3. Interactive effects of pH and metals on mitochondrial functions of intertidal bivalves Crassostrea virginica and Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Ivanina, Anna V.; Sokolova, Inna M., E-mail: isokolov@uncc.edu

    2013-11-15

    Highlights: •Interactive effects of trace metals Cd and Cu and pH were studied in mitochondria of clams and oysters. •Mitochondrial respiration and membrane potential of bivalves were robust to pH variation (6.6–7.8). •Elevated levels of Cd and Cu inhibited mitochondrial respiration in the pH-dependent manner but did not affect the membrane potential. •Negative effects of Cd and Cd on mitochondrial respiration were alleviated at low pH (7.0 and below). •Moderate acidosis may protect molluscan mitochondria from metal toxicity. -- Abstract: Intertidal bivalves experience broad fluctuations of environmental temperature, pH and oxygen content which could change their intracellular pH. They are also exposed to trace metals such as cadmium (Cd) and copper (Cu) that accumulate in their tissues and may negatively affect mitochondrial functions and bioenergetics. We determined the interactive effects of pH and trace metals (25 μM Cd or Cu) on mitochondrial functions (including respiration and membrane potentials in both ADP-stimulated (state 3) and resting (state 4) states) of two common marine bivalves, the hard clams (Mercenaria mercenaria) and eastern oysters (Crassostrea virginica). In the absence of the trace metals, mitochondrial functions of C. virginica and M. mercenaria were insensitive to pH in a broad physiologically relevant range (6.6–7.8). Mitochondrial respiration was generally suppressed by 25 μM Cd or Cu (with the stronger effects observed for ADP-stimulated compared to the resting respiration) while the mitochondrial membrane potential was unaffected. pH modulated the effects of Cu and Cd on mitochondrial respiration of the bivalves. In oysters, Cu suppressed ADP-stimulated mitochondrial respiration at high and low pH values (6.6 and 7.8, respectively), but had no effect in the intermediate pH range (7.0–7.4). In clams, the negative effect of Cu on ADP-stimulated respiration was only observed at extremely high pH (7.8). A decrease in p

  4. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  5. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Immobilization of Cu2 + and Cd2 + by earthworm manure derived biochar in acidic circumstance

    Institute of Scientific and Technical Information of China (English)

    Zhanghong Wang; Fei Shen; Dekui Shen; Yahui Jiang; Rui Xiao

    2017-01-01

    Earthworm manure,the by-product obtained from the disposing of biowastes by earthworm breeding,is largely produced and employed as a feedstock for biochar preparation through pyrolysis.For repairing acidic soil or acidic electroplating effluent,biochar physicochemical properties would suffer from some changes like an acidic washing process,which hence affected its application functions.Pristine biochar (UBC)from pyrolysis of earthworm manure at 700℃ and biochar treated by HCl (WBC) were comparatively investigated regarding their physicochemical properties,adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics ofbiochar in acidic environment.After HCl treatment,the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C==O,aromatic C=C and Si-O-Si,compared to that of UBC.All adsorption processes can be well described by Langmuir isotherm model.The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56and 29.31 mg/g,respectively,which were higher than that of WBC (8.64 and 12.81 mg/g,respectively),indicating that HCl treatment significantly decreased biochar adsorption ability.Mechanism analysis revealed that alkali and alkaline earth metallic,salts (carbonates,phosphates and silicates),and surface functional groups were responsible for UBC adsorption,corresponding to ion exchange,precipitation and complexation,respectively.However,ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content.WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl C==O and aromatic C=C).

  7. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...

  8. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India

    Science.gov (United States)

    Satpathy, Deepmala; Reddy, M. Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future. PMID:24995308

  9. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions

    Directory of Open Access Journals (Sweden)

    Dan Zhou

    2016-01-01

    Full Text Available 20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As, mercury (Hg, lead (Pb, cadmium (Cd, and copper (Cu in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost all the samples were in accordance with The Green Trade Standards. The contents of Cu were higher than the criteria for heavy metals except the samples from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. The best cultivation regions of Alpinia oxyphylla Miq. were from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. This research would provide the scientific basis for quality control and standardization of Alpinia oxyphylla Miq.

  10. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions.

    Science.gov (United States)

    Zhou, Dan; Fu, Yurong; Lai, Weiyong; Zhang, Junqing

    2016-01-01

    20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost all the samples were in accordance with The Green Trade Standards. The contents of Cu were higher than the criteria for heavy metals except the samples from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. The best cultivation regions of Alpinia oxyphylla Miq. were from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. This research would provide the scientific basis for quality control and standardization of Alpinia oxyphylla Miq.

  11. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials.

    Science.gov (United States)

    Al-Hwaiti, Mohammad; Al-Khashman, Omar

    2015-04-01

    Phosphogypsum (PG) is a waste produced by the phosphate fertilizer industry that has relatively high concentrations of some heavy metals (e.g., Cd, Cr, Cu, Pb, V, and Zn). The present study was conducted to investigate heavy metal contamination in soils and vegetables (tomatoes and green peppers) and to evaluate the possible health risks associated with the consumption of vegetables grown in PG-amended soils. The enrichment factor values indicated that Pb, Cr, Cu, Ni, Zn, and V were depleted to minimally enriched, and Cd was moderately enriched. The pollution load index values indicated that the PG-amended soils were strongly polluted with Cd, moderately polluted with Cr and Ni, and slightly polluted with Pb, Cu, Zn and V. The geo-accumulation index values indicated that the PG-amended soils were uncontaminated with Pb, Cr, Cu, Ni, Zn, V, and moderately contaminated with Cd. The trace metal transfer for Cd, Cr, Pb, and Zn concentrations was below what are considered as acceptable limits ( Pb > Cd > Cr. The biological absorption coefficients in plants are, in order of highest to lowest, Pb > Zn > Cd > Cr, which suggests that Pb is more bioavailable to plants than Cd, Cr, and Zn. Furthermore, this study highlights that both adults and children consuming vegetables (e.g., tomatoes and green peppers) grown in PG-amended soils ingest significant amounts of the metals studied. However, the daily intake of metals (DIM) and the health risk index (HRI) values are contaminated soils, which were not included in this study.

  12. Metal-induced changes in photosynthetic electron transport in poplar Ieaves

    International Nuclear Information System (INIS)

    Kralova, K.; Gaplovsky, A.; Masarovicova, E.; Havranek, E.

    2001-01-01

    This study reports the effect of different toxic metals (Cu, Hg and Cd) on dark-induced changes in the photochemical activity of detached poplar leaves that were submersed in solutions of tested metals at different pH level, on the metal accumulation in poplar leaves as well as on fluorescence quenching ability of the tested metals. Cu and Hg inhibited the photosynthetic electron transport (PET) in chloroplast prepared from the leaves of P. nigra and the corresponding IC 50 values were 32.7 and 512.7 μmol dm -3 , respectively. We could not determine the IC 50 value for CdCl 2 due to its very low PET-inhibiting activity. These results are in agreement with previous findings concerning PET inhibition by the studied metals in spinach chloroplasts. The accumulated metal amounts in poplar leaves were determined using radionuclide X-ray fluorescence analysis. The accumulated metal amount increased with the increasing metal concentration and with the decreasing pH value of the applied metal solution. (authors)

  13. Reconstructing temporal trends in heavy metal deposition: Assessing the value of herbarium moss samples

    Energy Technology Data Exchange (ETDEWEB)

    Shotbolt, L. [Geography Department, Queen Mary, University of London, London, E1 4NS (United Kingdom)]. E-mail: l.shotbolt@qmul.ac.uk; Bueker, P. [Stockholm Environment Institute, University of York, Heslington, YO10 5DD (United Kingdom)]. E-mail: pb25@york.ac.uk; Ashmore, M.R. [Environment Department, University of York, Heslington, YO10 5DD (United Kingdom)]. E-mail: ma512@york.ac.uk

    2007-05-15

    The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni. - Herbarium moss samples can contribute to the reconstruction of past heavy metal deposition.

  14. Reconstructing temporal trends in heavy metal deposition: Assessing the value of herbarium moss samples

    International Nuclear Information System (INIS)

    Shotbolt, L.; Bueker, P.; Ashmore, M.R.

    2007-01-01

    The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni. - Herbarium moss samples can contribute to the reconstruction of past heavy metal deposition

  15. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    International Nuclear Information System (INIS)

    Adams, Scott V.; Barrick, Brian; Christopher, Emily P.; Shafer, Martin M.; Makar, Karen W.; Song, Xiaoling; Lampe, Johanna W.; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  16. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Barrick, Brian [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Christopher, Emily P. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Shafer, Martin M. [Environmental Chemistry and Technology, Wisconsin State Laboratory of Hygiene, University of Wisconsin, 2601 Agriculture Dr., Madison, WI 53718 (United States); Makar, Karen W.; Song, Xiaoling [Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Lampe, Johanna W. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Vilchis, Hugo [Border Epidemiology and Environmental Health Center, New Mexico State University, Box 30001 MSC 3BEC, Las Cruces, NM 88003 (United States); Ulery, April [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Newcomb, Polly A. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States)

    2015-12-15

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  17. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    Science.gov (United States)

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  18. Evolution with time of 12 metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi and U) and of lead isotopes in the snows of Coats Land (Antarctica) since the 1830's

    International Nuclear Information System (INIS)

    Planchon, F.

    2001-01-01

    This work shows that it is now possible to get reliable data on the occurrence of numerous heavy metals at ultra low levels in Antarctic snow, by combining ultra clean field sampling and laboratory sub-sampling procedures and the use of ultra sensitive analytical techniques such as ICP-SFMS and TIMS. It has allowed us to determine concentrations of twelve metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi et U) and lead isotopic composition in the ultra clean series of snow samples collected at Coats Land, in the Atlantic sector of Antarctica. This work presents a 150 years record of metal inputs from natural and anthropogenic sources to Antarctica from the 1830's to the early 1990's. Lead atmospheric pollution begins as early as the end of the 19. century, peaks during the 1970's-1980's and then falls sharply during recent decades. Evolution in lead isotopic abundance shows that Pb inputs to Antarctica reflect a complex blend of contributions originating from the Southern part of South America and Australia. For Cr, Cu, Zn, Ag, Bi and U, concentrations in the snow show significant increases from 1950 to 1980. These enhancements which cannot be explained by variations in natural inputs, illustrate that atmospheric pollution for heavy metals linked with anthropogenic activities in the Southern Hemisphere countries such as for example ferrous and non-ferrous metal mining and smelting is really global. Study of the time period 1920-1990, has allowed us to detail short-term (intra and inter annual) heavy metals concentration's changes. The large short-term variability, observed in Coats Land snow, shows the complex patterns of metal inputs to Antarctica, associated for instance to changes in long-range transport processes from mid-latitude to polar zone and to variability in the different natural sources, such local volcanic activity, sea-salt spray or crustal dust inputs. (author)

  19. Spatial Distribution, Chemical Fraction and Fuzzy Comprehensive Risk Assessment of Heavy Metals in Surface Sediments from the Honghu Lake, China

    Science.gov (United States)

    Xiao, Minsi; Zhang, Jingdong; Liu, Chaoyang; Qiu, Zhenzhen; Cai, Ying

    2018-01-01

    Spatial concentrations and chemical fractions of heavy metals (Cr, Cu, Pb, Zn and Cd) in 16 sampling sites from the Honghu Lake were investigated using an atomic absorption spectrophotometer and optimized BCR (the European Community Bureau of Reference) three-stage extraction procedure. Compared with the corresponding probable effect levels (PELs), adverse biological effects of the studied five sediment metals decreased in the sequence of Cr > Cu > Zn > Pb > Cd. Geo-accumulation index (Igeo) values for Cr, Cu, Pb and Zn in each sampling site were at un-contamination level, while the values for Cd varied from un-contamination level to moderate contamination level. Spatially, the enrichment degree of Cd in lower part of the South Lake, the west part of the North Lake and the outlet were higher than the other parts of Honghu Lake. For metal chemical fractions, the proportions of the acid-extractable fraction of five metal contents were in the descending order: Cd, Cu, Zn, Pb and Cr. Cd had the highest bioaccessibility. Being the above indexes focused always on heavy metals’ total content or chemical fraction in deterministic assessment system, which may confuse decision makers, the fuzzy comprehensive risk assessment method was established based on PEI (Potential ecological risk index), RAC (Risk assessment code) and fuzzy theory. Average comprehensive risks of heavy metals in sediments revealed the following orders: Cd (considerable risk) > Cu (moderate risk) > Zn (low risk) > Pb > Cr. Thus, Cd and Cu were determined as the pollutants of most concern. The central part of South Honghu Lake (S4, S5, S6, S9, S12 and S14), east part of the North Honghu Lake (S1) and outlet of outlet of the Honghu Lake (S10) were recommended as the priority control areas. Specifically, it is necessary to pay more attention to S1, S4, S5, S6, S9 and S16 when decision making for their calculated membership values (probabilities) of adjacent risk levels quite close. PMID:29373483

  20. Bioaccumulation of metals by Rhodophyta species at Antikyra Gulf (Greece) near an aluminium factory

    Energy Technology Data Exchange (ETDEWEB)

    Malea, P. [Thessaloniki Univ. (Greece). Inst. of Botany; Haritonidis, S. [Thessaloniki Univ. (Greece). Inst. of Botany; Stratis, I. [Inst. of Analytical Chemistry, School of Chemistry, Thessaloniki (Greece)

    1994-11-01

    The bioaccumulation of Fe, Cu, Zn, Cd, Pb, Na, K, Ca and Mg by seven species of red algae (Rhodophyta) was studied after their seasonal collection from 9 stations in Antikyra Gulf (Greece). This area is characterized by its bauxite substrate and the discharge of wastes from an aluminium factory. Corallina elongata, Jania rubens and Liagora viscida showed elevated concentrations of Cu, Na and Mg and low Fe, Na and K concentrations, whereas Pterosiphonia complanata, Laurencia obtusa and Vidalia volubilis displayed entirely contrary behaviour. These interspecific differences are discussed in relation to morphology, ecology, plant structure and the binding sites available on the algae. Among the nine metals, only Cd concentrations in P. complanata showed significantly positive correlation with the respective concentrations in the sediment; no metal in L. obtusa and P. complanata showed a significant correlation with the concentrations of the dissolved metals in seawater. Significant positive or negative correlations with the concentrations of several metals in L. obtusa and P. complanata were also observed, which may be attributed to metal interactions in binding to plant tissues. The concentrations of Fe, Cu, Zn, K, Na and Ca in Laurencia obtusa were higher in summer or autumn; Pb and Mg followed an opposite pattern of seasonal variation, whereas Cd levels were higher in spring and summer. The red algae of Antikyra Gulf generally exhibited higher Fe, Ca, Cu, Cd and Pb concentrations than those of similar species from other geographical areas. (orig.)

  1. Heavy Metal Concentration in Black Tea in Iran

    Directory of Open Access Journals (Sweden)

    Nafiseh Yousefi

    2017-03-01

    Full Text Available Background & Aims of the Study: Tea is one of the most important beverages that consumes in several parts of the world including Iran. Tea plant can be contaminated during manufacturing processes and growth period by pollutants such as heavy metals. In this study, the concentration of some heavy metals in different brands of both Iranian and imported black tea to Iran was investigated to survey the human exposure to such pollutants. Materials & Methods: The study was carried out on different brands of black tea that most widely consume in Iran. The samples were collected from available supermarkets in Tehran city and concentrations of Mn, Cd and Cu were determined in black tea, using ICP-OES. Finally obtained results, by one way ANOVA analysis, compared to maximum contaminant concentration which is determined by WHO. Results: Results showed that concentrations of measured heavy metals in sampled black tea were different according to the brand of tea. The mean of Mn, Cu and Cd elements in all tea samples were 664.78, 26.15 and 0.194 µg/g, respectively. Generally, Cu content in studied samples was not significantly above WHO but Cd content, in some cases, was significantly higher than WHO. The guideline value is not given by WHO for Mn content of tea. Conclusions: According to the obtained results, Cd content is exceeding than WHO standards, therefore, control of Cd, as a toxic element that can accumulate in living systems, is necessary.

  2. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal)

    International Nuclear Information System (INIS)

    Pereira, Patricia; Cacador, Isabel; Vale, Carlos; Caetano, Miguel; Costa, Ana Luisa

    2007-01-01

    The concentrations of C, Fe, Mn, Zn, Cu, Pb and Cd were determined monthly in decomposing roots of Halimione portulacoides, using litterbag experiments, in two salt marshes of the Tagus estuary with different levels of contamination. Although carbon concentrations varied within a narrow interval during the experiment, litter decomposed rapidly in the first month (weight loss between 0.051 and 0.065 g d -1 ). The time variation of metals was examined in terms of Me/C ratios and metal stocks. Ratios of Fe/C and Mn/C and their metal stocks increased in spring, presumably due to the precipitation of oxides in the surface of decomposing roots. Subsequent decrease of Fe/C and Mn/C ratios suggests the use of Fe and Mn oxides, as electron acceptors, in the organic matter oxidation. Zinc, Cu, Pb and Cd ratios to C were, in general, higher than at initial conditions implying that metal that leached out was slower than carbon. However, metal stocks decreased during the experiment indicating that incorporation or sorption of metals in Fe and Mn oxides did not counterbalance the amount of Zn, Pb and Cd released from decomposing litter. An exception was observed for Cu, since stock in the less contaminated marsh (Pancas) increased during the decomposition, indicating that litter was efficient on Cu binding under more oxidising conditions. These results emphasize the importance of litter decomposition and sediment characteristics on metal cycling in salt marshes

  3. Heavy metal bio-accumulation in tissues of sturgeon species of the Lower Danube River, Romania

    Directory of Open Access Journals (Sweden)

    ONĂRĂ Dalia Florentina

    2013-12-01

    Full Text Available This study investigates bio-accumulation of heavy metals in tissues of sturgeons of the North-Western Black Sea and Lower Danube River (LDR. Samples (10 – 30 gr of liver, muscle, fat, gonads and skin tissues collected in October 2003 from 21 adult specimens of three sturgeon species: Acipenser stellatus (10, A. gueldenstaedtii (2, and Huso huso (9 were analysed for content in Cd, Cu, Zn, Pb, Mn, Fe and Ni, using VARIAN Spectra A100. The highest concentrations of Zn, Cu and Cd were found in liver and the smallest in muscles of sturgeons. The highest heavy metal content was detected in tissues of stellate sturgeons, followed by Russian sturgeons. In all three species Cd and Cu content of the liver as well as of the stellate sturgeon muscle surpassed the admitted limits for human consumption (Cd – 0.05; Zn - 50; Cu – 5.0; Pb – 0.3 [mg / kg wet weight]. In view of a future re-opening of the commercial fishing of wild sturgeons it is strongly recommended testing the heavy metal level prior delivering sturgeon products to the market. Avoiding human consumption of liver of sturgeons captured in the LDR is strongly recommended as well. In the case of Cd a bio-accumulation with age of sturgeons was visible. In all species males seem to accumulate more heavy metals in their tissues. We explain this as effect of more frequent spawning migration of males in the LDR, the major contamination source. Beluga sturgeons show less heavy metal bio-accumulation of tissues.

  4. Content Heavy Metal Pb, Cd In Perna viridis And Sediments In Semarang Bay

    Science.gov (United States)

    Suprapto, D.; Suryanti, S.; Latifah, N.

    2018-02-01

    Waste disposal from human activities, generally contain heavy metals such as Pb and Cd which derived from industrial activities. The aims of the study were to know the concentration of Pb and Cd heavy metals contained in Perna viridis tissue, sediment and water at Semarang Bay. This study was conducted in May 2017 at Semarang Bay. - Samples were collected using purposive sampling method. The heavy metal content in the water and clam was observed using- APHA method and was analyzed using AAS (Atomic Absorption Spectrophotometer). The results showed that concentration of heavy metal of Pb in the water was 0.00-50.5mg/L and the Cd content was of 26.9-51.7 mg/L, whereas the concentration of Pb in the sediment is 445.5-2.053.0mg/L and Cd 963.3-2,150.0 mg/L. Pb content in soft tissue of Perna viridis - is 67.1-1.933.9 mg/L and the concentration of Cd was 203.5-5.787.3 mg/L. The analysis of Pb and Cd in seawater, sediment and soft tissue of Perna viridis according to Enviroment Ministerial decree (KepMenLH ) number 51 of 2004 and applied by NOAA 1999 does not exceed the quality standard, that meant that the Perna viridis has been contaminated by metal Pb it is controversial with the above sentence and Cd. It concluded that the metal content of Pb and Cd in Perna viridis tissue exceeds the quality standard, so it is not suitable to be consumed, especially in high quantity

  5. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China.

    Science.gov (United States)

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui

    2013-11-01

    Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.

  6. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account

    International Nuclear Information System (INIS)

    Hobbelen, P.H.F.; Koolhaas, J.E.; Gestel, C.A.M. van

    2004-01-01

    Floodplains of the European rivers Rhine and Meuse are heavily polluted. We investigated the risk of heavy metal pollution (Cd, Cu, Pb, Zn) for detritivores living in a floodplain area, the Biesbosch, the Netherlands, affected by these rivers. Total soil, pore water and 0.01 M CaCl 2 extractable concentrations and concentrations in plant leaves, earthworms, isopods and millipedes were measured in two sites and compared with literature data to assess possible risks. Based on total metal concentrations in soil, serious effects on detritivores were expected. However, 0.01 M CaCl 2 extractable, pore water and plant leaf concentrations were similar to metal concentrations found in unpolluted areas. Concentrations of Cu and Cd in earthworms and Cu in millipedes were higher in the Biesbosch than in animals from reference areas. All other measured concentrations of heavy metals in earthworms, isopods and millipedes were similar to the ones found in reference areas. Despite high total soil concentrations, effects of Zn, Cu, Pb and Cd pollution on isopods are therefore not expected, while millipedes may only be affected by Cu. Since Cu and Cd levels in earthworms were increased compared to animals in unpolluted soils, this faunal group seems to be most at risk. Given the engineering role of earthworms in ecosystems, effects on the ecological functioning of floodplain soils therefore cannot be excluded. - Low bioavailability reduced the impact on detritivores

  7. A new colorimetric chemosensors for Cu{sup 2+} and Cd{sup 2+} ions detection: Application in environmental water samples and analytical method validation

    Energy Technology Data Exchange (ETDEWEB)

    Tekuri, Venkatadri; Trivedi, Darshak R., E-mail: darshak_rtrivedi@yahoo.co.in

    2017-06-15

    A new heterocyclic thiophene-2-caboxylic acid hydrazide based chemosensor R1 to R4 were designed, synthesized and characterized by various spectroscopic techniques like FT-IR, UV-Vis, {sup 1}H NMR, {sup 13}C NMR, Mass and SC-XRD. The chemosensor R3 showed a significant color change from colorless to yellow in the presence of Cu{sup 2+} ions and chemosensor R4 showed a significant color change from colorless to yellow in the presence of Cd{sup 2+} ions over the other tested cations such as Cr{sup 3+}, Mn{sup 2+}, Fe{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, Ag{sup 2+}, Al{sup 3+}, Pb{sup 2+}, Hg{sup 2+}, K{sup +}, Ca{sup 2+} and Mg{sup 2+}. The high selective and sensitivity of R3 towards Cu{sup 2+} and R4 towards Cd{sup 2+} ions was confirmed by UV-Vis spectroscopic study. The R3 showed a red shift in the presence of Cu{sup 2+} ions by Δλ{sub max} 67 nm and R4 showed a red shift in the presence of Cd{sup 2+} ions by Δλ{sub max} 105 nm in the absorption spectrum. The binding stoichiometric ratio of the complex between R3 - Cu{sup 2+} and R4 - Cd{sup 2+} ions have been found to be 1:1 using the B-H plot. Under optimized experimental conditions, the R3 and R4 exhibits a dynamic linear absorption response range, from 0 to 50 μM for Cu{sup 2+} ions and 0 to 30 μM for Cd{sup 2+} ions, with the detection limit of 2.8 × 10{sup −6} M for Cu{sup 2+} and 2.0 × 10{sup −7} M for Cd{sup 2+} ions. The proposed analytical method for the quantitative determination of Cu{sup 2+} and Cd{sup 2+} ions was validated and successfully applied for the environmental samples with good precision and accuracy. - Highlights: • Detection of Cu{sup 2+} and Cd{sup 2+} ions has gained significance by virtue of its key role in biological and environmental science. • The R3 and R4 showed instantaneous color change from colorless to yellow in the presence of Cu{sup 2+} and Cd{sup 2+} ions respectively. • The proposed detection methods were validated and

  8. Adsorption of heavy metals by bio-chars produced from pyrolysis of paper mulberry from simulated industrial wastewater

    International Nuclear Information System (INIS)

    Adil, S.; Asma, M.

    2014-01-01

    Paper mulberry bio-char (by-product of pyrolysis) was evaluated for the removal of heavy metals (Cd, Cr, Cu, Zn and Pb) from simulated industrial waste water. The surface properties and surface area of the bio-char was found suitable for metal adsorption. Batch sorption studies for adsorption potential of paper mulberry bio-char for Cd, Cr, Cu, Pb and Zn were investigated under different experimental conditions of pH, temperature and contact time. Maximum removal efficiency of Cd, Cu, Pb and Zn was 97.8, 76.8, 85.6, and 82.2 % respectively at pH 12 while maximum removal of Cr was recorded (98%) at pH 2. The removal efficiency showed different behaviour at different contact times. Maximum removal efficiency of Cd, Cr, Zn was 81, 86, 61.4% at contact time of 3 hr. The maximum removal of Cu was 64.2% observed at a contact time of 4 hours while the maximum removal of Pb and Zn was 85% at contact time of 2 hr. The values of the thermodynamic parameters, enthalpy delta H, Gibbs free energy delta G of sorption and entropy delta So were calculated to define endothermic or exothermic behavior of the sorbent used. Negative value of delta G for Cd, Cu, Cr and Pb indicated paper mulberry bio-char as a feasible sorbent for the efficient removal of Cd, Cu, Cr and Pb. Negative value of delta H was observed for Cd and Pb indicating that the adsorption process is exothermic while positive value of delta H was calculated for Cu, Cr and Zn showed that the adsorption is endothermic. The results obtained showed that plant residue bio-char can act as an effective sorbent for the removal of heavy metals from aqueous solutions. (author)

  9. Heavy metal contamination of selected spices obtained from Nigeria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this study, the levels of trace metals (Cd, Cr, Cu, Co, Fe, Mn, Ni, Mo, Pb,. Zn) in twenty ... can accumulate exceeding levels of toxic metals whose potential risk to human health should ..... toxicity of the metal (WHO, 1999b). In fact ...

  10. Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake.

    Science.gov (United States)

    Cao, Qingqing; Song, Ying; Zhang, Yiran; Wang, Renqing; Liu, Jian

    2017-12-01

    In order to understand the risk of heavy metals in sediments of the rivers flowing into Nansi Lake, 36 surface sediments were sampled from six rivers and seven heavy metals (Cr, Cu, Ni, Zn, As, Pb, and Cd) were determined. Potential ecological risk index (RI) of the six rivers showed significant differences: Xinxue River, Jiehe River, and Guangfu River were at medium potential risk, whereas the risk of Chengguo River was the lowest. Jiehe River, Xuesha River, and Jiangji River were meeting the medium potential risk at river mouths. Geo-accumulation index (I geo ) of the seven heavy metals revealed that the contamination of Cu and Cd was more serious than most other metals in the studied areas, whereas Cr in most sites of our study was not polluted. Moreover, correlation cluster analysis demonstrated that the contamination of Cu, Ni, and Zn in six rivers was mainly caused by local emissions, whereas that of As, Pb, and Cd might come from the external inputs in different forms. Consequently, the contamination of Cu and Cd and the potential risk in Xinxue River, Jiehe River, and Guangfu River as well as the local emissions should be given more attention to safeguard the water quality of Nansi Lake and the East Route Project of South to North Water Transfer.

  11. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    Science.gov (United States)

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  12. Evaluation of some heavy metals loading in dust fall of three ...

    African Journals Online (AJOL)

    Generally for the three sites used, the heavy metal concentrations decreased in the following order: Mn>Zn>Pb>Ni>Cu>Cd. This implies that dust-fall in the parks are heavily loaded with some heavy metals that are of concentrations above Romania standard threshold limit for Cd and Pb while concentration values obtained ...

  13. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.

    Science.gov (United States)

    Li, Wanlu; Xu, Binbin; Song, Qiujin; Liu, Xingmei; Xu, Jianming; Brookes, Philip C

    2014-02-15

    Chinese agricultural soils and crops are suffering from increasing damage from heavy metals, which are introduced from various pollution sources including agriculture, traffic, mining and especially the flourishing private metal recycling industry. In this study, 219 pairs of rice grain and corresponding soil samples were collected from Wenling in Zhejiang Province to identify the spatial relationship and pollution hotspots of Cd, Cu, Ni and Zn in the soil-rice system. The mean soil concentrations of heavy metals were 0.316 mg kg(-1) for Cd, 47.3 mg kg(-1) for Cu, 31.7 mg kg(-1) for Ni and 131 mg kg(-1) for Zn, and the metal concentrations in rice grain were 0.132 mg kg(-1) for Cd, 2.46 mg kg(-1) for Cu, 0.223 mg kg(-1) for Ni and 17.4 mg kg(-1) for Zn. The coefficient of variability (CV) of soil Cd, Cu and rice Cd were 147%, 146% and 180%, respectively, indicating an extensive variability. While the CVs of other metals ranged from 23.4% to 84.3% with a moderate variability. Kriging interpolation procedure and the Local Moran's I index detected the locations of pollution hotspots of these four metals. Cd and Cu had a very similar spatial pattern, with contamination hotspots located simultaneously in the northwestern part of the study area, and there were obvious hotspots for soil Zn in the north area, while in the northeast for soil Ni. The existence of hotspots may be due to industrialization and other anthropogenic activities. An Enrichment Index (EI) was employed to measure the uptake of heavy metals by rice. The results indicated that the accumulation and availability of heavy metals in the soil-rice system may be influenced by both soil heavy metal concentrations and soil physico-chemical properties. Cross-correlograms quantitatively illustrated that EIs were significantly correlated with soil properties. Soil pH and organic matter were the most important factors controlling the uptake of heavy metals by rice. As results, positive measures should be taken into

  14. Variation in levels and removal efficiency of heavy and trace metals ...

    African Journals Online (AJOL)

    The general abundance distribution pattern for metals was Zn > Cu > Pb > Cr > Ni > As > Co > Cd > Hg. The removal efficiency ranged from 1.5% for Hg at Zandvliet WWTP plant during winter to 98.27% for Cu at Athlone WWTP treatment plant during summer. The final effluent concentration for most of the metals were within ...

  15. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.

    Science.gov (United States)

    Tzvetkova, Nikolina; Miladinova, Kamelya; Ivanova, Katya; Georgieva, Teodora; Geneva, Marya; Markovska, Yuliana

    2015-01-01

    One-year-old two Paulownia lines (Ptomentosa x fortunei--TF 01 and R elongata x fortunei--EF 02) were grown, as pot experiment, in soil collected from the field of waste depository of Kremikovtzi ferrous metallurgical industry near Sofia. The soil was heavily polluted with Cd. Metals content (Ca, Mg, K, Na, Cd, Cu, Pb, Zn and Fe) in soil and its distribution in roots, stems and leaves of both lines was studied. The results showed that Ca and K accumulated more in stem, Mg, Na, Fe and Cd in root, while Pb, Cu and Zn in the leaves of both lines. The bloaccumulation factor (BF) and translocation factor (TF) were evaluated in order to determine the potential of plants in removing metals from contaminated soil. The BF for Fe, Pb, Cu and Zn in TF 01 line exceeded that of EF 02 line--5.6; 1.03; 1.20; 1.14 times, respectively. TF was higher in TF 01 line for Fe, Pb and Cd (6.0; 1.92 and 1.03, respectively), but not for Cu and Zn. The success of phytoremediation depends on plant growth and restricted distribution of heavy metals in shoots. Our results showed that stem length and total leaf area of Paulownia elongata x fortunei were higher than Paulownia tomentosa x fortuneibut BF for Cu and Zn and TF for Pb was less. BF for Cd was 1.7 times higher and TF for Zn was 1.03 times higher in Paulownia elongata x fortunei. Selected two lines (P. tomentosa x fortunei--TF 01 and P elongataxfortunei--EF02) were accumulators of Cu, Zn and Cd. Paulownia tomentosax fortunei accumulated more Pb and Zn in aboveground parts, while Paulownia elongata x fortunei--accumulated Zn only. These lines proved to be a promising species for phytoremediation of heavy metal polluted soils due to high biomass productivity.

  16. Optical analysis of lens-like Cu{sub 2}CdSnS{sub 4} quaternary alloy nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Odeh, Ali Abu; Ayub, R.M. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); Al-Douri, Y. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); University of Sidi-Bel-Abbes, Physics Department, Faculty of Science, Sidi-Bel-Abbes (Algeria); Ameri, M. [Universite Djilali Liabes de Sidi Bel- Abbes, Laboratoire Physico-Chimie des Materiaux Avances (LPCMA), Sidi-Bel-Abbes (Algeria); Bouhemadou, A. [University of Setif 1, Laboratory for Developing New Materials and Their Characterization, Setif (Algeria); Prakash, Deo [SMVD University, Faculty of Engineering, School of Computer Science and Engineering, Kakryal, Katra, J and K (India); Verma, K.D. [S.V. College, Material Science Research Laboratory, Department of Physics, Aligarh, U.P. (India)

    2016-10-15

    Cu{sub 2}CdSnS{sub 4} quaternary alloy nanostructures with different copper concentrations (0.2, 0.4, 0.6, 0.8 and 1.0 M) were successfully synthesized on n-type silicon substrates using spin coating technique with annealing temperature at 300 C. Optical properties were analyzed through UV-Vis and Photoluminescence spectroscopies, and thus, there is a change in energy band gap with increasing Cu concentration from 0.2 to 1.0 M. The structural properties of Cu{sub 2}CdSnS{sub 4} quaternary alloy nanostructures were investigated by X-ray diffraction. The particles size and shape have a direct relationship with copper concentration. Morphological and topographical studies were carried out by using scanning electron microscopy and atomic force microscopy. The obtained results are investigated to be available in the literature for future studies. (orig.)

  17. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Soltani-Felehgari, Farzaneh; Madrakian, Tayyebeh; Ghaedi, Hamed; Rezaeivala, Majid

    2013-01-01

    Highlights: ► A new modified electrochemical sensor was constructed and used. ► A new Schiff base coated nano-silica was used as modifier. ► The electrochemical properties of electrode were studied. ► This modifier enhanced the electrochemical properties of electrode. ► The electrode was used for simultaneous determination of Cd 2+ , Cu 2+ and Hg 2+ ions. -- Abstract: A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL −1 for the determination of Cd 2+ , Cu 2+ and Hg 2+ , respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd 2+ , Cu 2+ and Hg 2+ . Furthermore, the present method was applied to the determination of Cd 2+ , Cu 2+ and Hg 2+ in water and some foodstuff samples

  18. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Götze, Sandra [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Matoo, Omera B. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Saborowski, Reinhard [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2014-04-01

    Highlights: • Elevated PCO₂ enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated PCO₂. • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated PCO₂ negatively affected energy status. - Abstract: Increased anthropogenic emission of CO₂ changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO₂ and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L⁻¹ Cu or 50 μg L⁻¹ Cd at one of three partial pressures of CO₂ PCO₂ ~395, ~800 and ~1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated PCO₂ enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated PCO₂, but PCO₂ modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome

  19. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    Science.gov (United States)

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  20. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    Science.gov (United States)

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  1. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.

    Science.gov (United States)

    Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  3. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls

    International Nuclear Information System (INIS)

    Rao, M. Madhava; Ramana, D.K.; Seshaiah, K.; Wang, M.C.; Chien, S.W. Chang

    2009-01-01

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g -1 for Pb(II), 21.2 mg g -1 for Zn(II), 19.5 mg g -1 for Cu(II), and 15.7 mg g -1 for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  4. Comparing heavy metals accumulation potential in natural vegetation and soil adjoining wastewater canal

    International Nuclear Information System (INIS)

    Aurangzeb, N.; Irshad, M.; Hussain, F.; Mahmood, Q.

    2011-01-01

    Heavy metal (HM) pollution of waters, soils and vegetation is a major ecological problem that needs to be investigated. The present study involved the collection of soil samples and natural vegetations (Tribilas terristris, Lepia nodiflora, Amaranthus viridis, Heliotropium euoropeum, Coronopis didymus, Cynodon ductylon, Chenopodium murale and Eclipta alba) from the vicinity of wastewater canal and subsequent analysis for their HM concentrations. Results showed that HM concentrations varied within the species of vegetation and type of metal analyzed. The order of vegetation for metal concentrations was A. viridis > E. alba > H. euoropeum > L. nodiflora > C. murale > C. didymus > C. ductylon > T. terristris. Metals prevailed in plants in the decreasing order of Fe > Mn > Zn > Pb > Cr > Cu > Cd, irrespective of the vegetation. Metal prevalence in soils was in the order of Fe > Mn > Cd > Cr > Pb > Zn > Cu. Samples near canal were found with higher level of Mn, Pb and Zn as compared to soil away from canal water. Distant sampling gave higher accumulation of Cd, Cr, Cu and Fe as compared to the soil nearby wastewater. The analyzed species of HM in the soils and plants may indicate the variability of their composition in wastewater. (author)

  5. Size distribution, characteristics and sources of heavy metals in haze episode in Beijing.

    Science.gov (United States)

    Duan, Jingchun; Tan, Jihua; Hao, Jiming; Chai, Fahe

    2014-01-01

    Size segragated samples were collected during high polluted winter haze days in 2006 in Beijing, China. Twenty nine elements and 9 water soluble ions were determined. Heavy metals of Zn, Pb, Mn, Cu, As, Cr, Ni, V and Cd were deeply studied considering their toxic effect on human being. Among these heavy metals, the levels of Mn, As and Cd exceeded the reference values of National Ambient Air Quality Standard (GB3095-2012) and guidelines of World Health Organization. By estimation, high percentage of atmospheric heavy metals in PM2.5 indicates it is an effective way to control atmospheric heavy metals by PM2.5 controlling. Pb, Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and accumulation modes, and Ni and Cr exist in all of the three modes. Considering the health effect, the breakthrough rates of atmospheric heavy metals into pulmonary alveoli are: Pb (62.1%) > As (58.1%) > Cd (57.9%) > Zn (57.7%) > Cu (55.8%) > Ni (53.5%) > Cr (52.2%) > Mn (49.2%) > V (43.5%). Positive matrix factorization method was applied for source apportionment of studied heavy metals combined with some marker elements and ions such as K, As, SO4(2-) etc., and four factors (dust, vehicle, aged and transportation, unknown) are identified and the size distribution contribution of them to atmospheric heavy metals are discussed.

  6. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    Science.gov (United States)

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The effects of microalloying with Cd on precipitation processes in Al-1.7 Cu-0.3 mg (At. %) alloys

    International Nuclear Information System (INIS)

    Sofyan, Bondan T.

    2002-01-01

    The present work investigates the effects of microalloying with Cd on precipitation processes in Al-1.7 Cu-0.3 mg (At. %) alloys. Analytical STEM (Scanning Transmission Electron Microscope) revealed the presence of clusters rich in Cd and Mg at early stages of ageing, which is believed to be responsible in promoting the nucleation of θ (Al,Cu) in the alloy on its (001) planes. The Cd-Mg clusters then grow as Cd-Mg-rich particles when ageing is continued beyond the peak hardness. The presence of Cd-Mg-rich clusters is thought to play an important role on the nucleation of θ phase by accommodating the misfit strain on the non-coherent rim of the phase. The accommodation of misfit strain is made available by the presence of large amount of vacancies, which is trapped by Cd and Mg atoms during quenching, around θ platelet nuclei

  8. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  9. Trace metal concentrations are higher in cartilage than in bones of scaup and pochard wintering in Poland

    International Nuclear Information System (INIS)

    Kalisinska, Elzbieta; Salicki, Wieslaw; Kavetska, Katarzyna M.; Ligocki, Marek

    2007-01-01

    Bones and cartilage of two species of diving ducks: the scaup Aythya marila (n = 24) and the pochard A. ferina (n = 24) were studied. Scaup is protected in Poland where it spends only the winter, while pochard is a game bird, abundant and breeding in Poland. In winter, the two species form large flocks off the southern coast of the Baltic, particularly in the Szczecin Lagoon where they were collected for this study. The bones and cartilage (trachea) were assayed for concentrations (dry weight-based) of three essential metals: iron (Fe), copper (Cu), and zinc (Zn); concentrations of the two toxic metals: lead (Pb) and cadmium (Cd) were assayed as well. These hard tissues of the two species showed the following order of metal concentrations Zn > Fe > Pb > Cu > Cd. In scaup and pochard bones, the respective geometric mean concentrations of Zn, Fe, Pb, Cu, and Cd were 94.4 and 102.0; 20.2 and 24.7; 6.2 and 9.6; 0.19 and 0.26; 0.114 and 0.162 mg/kg. The levels of all the metals in cartilage (Zn 149.1 and 165.8; Fe 58.4 and 116.3; Pb 10.6 and 14.9; Cu 1.41 and 3.31; Cd 0.144 and 0.175 mg/kg, respectively) were higher than in the bones of A. marila and A. ferina. However, statistically significant differences were found in respect to the essential metals only (Zn, Fe, Cu). The inter-species comparisons showed the two species to differ in their cartilage concentrations of Fe, Cu, Zn, and Cd and in their bone concentrations of Pb and Cd. In each case, the pochard exhibited higher concentrations of metals. This study showed distinct differences between trace element accumulation by two heavily mineralised avian body parts: leg bones (tarsometatarsus) and cartilage (trachea). The results are in agreement with data reported by other workers who analysed trace metals in cartilaginous and bone components of the femoral head in homoiotherm vertebrates, including humans. Therefore it is important that intra- and inter-species comparisons of hard biological components be based on

  10. Behaviour of heavy metals in soils

    NARCIS (Netherlands)

    Harmsen, K.

    1977-01-01

    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention

  11. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.

    Science.gov (United States)

    Muhammad, Dawood; Chen, Fei; Zhao, Jing; Zhang, Guoping; Wu, Feibo

    2009-08-01

    A pot experiment was conducted to study the performance of EDTA and citric acid (CA) addition in improving phytoextraction of Cd, Cu, Pb, and Cr from artificially contaminated soil by T. angustifolia. T. angustifolia showed the remarkable resistance to heavy metal toxicity with no visual toxic symptom including chlorosis and necrosis when exposed to metal stress. EDTA-addition significantly reduced plant height and biomass, compared with the control, and stunted plant growth, while 2.5 and 5 mM CA addition induced significant increases in root dry weight. EDTA, and 5 and 10 mM CA significantly increased shoot Cd, Pb, and Cr concentrations compared with the control, with EDTA being more effective. At final harvest, the highest shoot Cd, Cr, and Pb concentrations were recorded in the treatment of 5 mM EDTA addition, while maximal root Pb concentration was found at the 2.5 mM CA treatment. However, shoot Cd accumulation in the 10 mM CA treatment was 36.9% higher than that in 2.5 mM EDTA, and similar with that in 10 mM EDTA. Shoot Pb accumulation was lower in 10 mM CA than that in EDTA treatments. Further, root Cd, Cu, and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments were markedly higher than that of control and EDTA treatments. The results also showed that EDTA dramatically increased the dissolution of Cu, Cr, Pb, and Cd in soil, while CA addition had less effect on water-soluble Cu, Cr, and Cd, and no effect on Pb levels. It is suggested that CA can be a good chelator candidate for T. angustifolia used for environmentally safe phytoextraction of Cd and Cr in soils.

  12. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  13. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India.

    Science.gov (United States)

    Manjula, Menon; Mohanraj, R; Devi, M Prashanthi

    2015-05-01

    Heavy metals continue to remain as a major environmental concern in spite of emission control measures. In this study, we analyzed the concentrations of heavy metals (Fe, Cr, Mn, Ni, Cu, Zn, and Cd) in the feathers of 11 species of birds collected from urban and rural areas of Tiruchirappalli, Southern India. Metal concentrations followed the order: Fe > Cu > Zn > Cr > Mn > Ni > Cd. Irrespective of sample locations, heavy metals such as Fe, Cr, Ni, Zn, and Cu were detected in high concentrations, while Cd and Mn were observed in lower concentrations. In contrary to our assumption, there were no statistically significant intraspecific and urban-rural differences in the metal concentrations except for Zn. Pairwise comparisons among species irrespective of metal type showed significant interspecific differences between Acridotheres tristis and Centropus phasianinus, A. tristis and Milvus migrans, C. phasianinus and M. migrans, M. migrans and Eudynamys scolopaceus, and Psittacula krameri and E. scolopaceus. Principal component analysis carried out for urban data extracted Ni, Mn, Zn, Fe, and Cu accounting for 48% variance implying dietary intake and external contamination as important sources for metals. In the rural, association of Zn, Cd, Ni, and Cr suggests the impact of metal fabrication industries and leather tanning operations.

  14. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    Science.gov (United States)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  15. Metales pesados en el riñón del delfín franciscana, Pontoporia blainvillei (Cetácea: Pontoporiidae y su relación con parámetros biológicos Heavy metals in kidney tissues of Franciscana dolphin, Pontoporia blainvillei (Cetacea: Pontoporiidae, and their relationship with biological parameters

    Directory of Open Access Journals (Sweden)

    María V Panebianco

    2011-11-01

    Full Text Available En este estudio se determinó los niveles de metales pesados (Cd, Pb, Zn, Cu, Cr y Ni en el tejido renal del delfín franciscana, Pontoporia blainvillei, y se estableció la influencia de los parámetros ecológicos y biológicos sobre la bioacumulación de estos elementos. Se analizaron muestras de 38 ejemplares colectados entre 2004 y 2010 en el sur de Buenos Aires, Argentina. La edad de los animales y el estado de madurez sexual se determinaron por métodos histológicos, y los niveles de metales pesados por Espectrofotometría de Absorción Atómica. No se determinaron diferencias significativas para las concentraciones de Zn, Cu y Cd entre ambos sexos. Los niveles de Cd presentaron diferencias según el estado de madurez sexual y se relacionaron positivamente con la longitud, peso corporal y edad. Los niveles de Cd, Cu y Zn resultaron menores a los informados en estudios previos realizados en el norte de Buenos Aires y Uruguay.Heavy metal (Cd, Pb, Zn, Cu, Cr,Ni concentrations were determined in the kidney tissue of the Franciscana dolphin, Pontoporia blainvillei, and the influence of ecological and biological parameters on the bioaccumulation of these elements was established. Samples from 38 specimens, collected between 2004 and 2010 off southern Buenos Aires, Argentina, were analyzed. Histological methods were used to determine both the age and sexual maturity of the animals. Heavy metal concentrations were measured by atomic absorption spectrophotometry. No significant differences were found by sex for Zn, Cu, and Cd. However, Cd levels differed between maturity stages and were positively related to length, body weight, and age. The Cd, Cu, and Zn levels reported here in were lower than those included in previous studies done off northern Buenos Aires and Uruguay.

  16. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    Science.gov (United States)

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Decorated Shastry-Sutherland lattice in the spin-(1)/(2) magnet CdCu2(BO3)2

    Science.gov (United States)

    Janson, O.; Rousochatzakis, I.; Tsirlin, A. A.; Richter, J.; Skourski, Yu.; Rosner, H.

    2012-02-01

    We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.80.104405 80, 104405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling Jd within the structural Cu2O6 dimers, two interdimer couplings Jt1 and Jt2, forming magnetic tetramers, and a ferromagnetic coupling Jit between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings Jd : Jt1 : Jt2 : Jit = 1 : 0.20 : 0.45 : -0.30, with Jd of about 178 K. The inequivalence of Jt1 and Jt2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.

  18. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    Science.gov (United States)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction

  19. Study of Cd Te recrystallization by hydrated-CdCl{sub 2} thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez V, C.; Albor A, M. L.; Galarza G, U.; Aguilar H, J. R. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico); Gonzalez T, M. A. [IPN, Escuela Superior de Computo, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico); Flores M, J. M. [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria en Metalurgia y Materiales, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico); Jimenez O, D. [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, SEPI, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico)

    2017-11-01

    Cd Te thin films solar cells are currently produced using a layer sequence of glass/FTO/CdS/Cd Te/metal contact (Cu/Ag), these films are deposited by two different techniques, chemical bath deposition (CBD) and close space vapour transport (CSVT). In order to reach reasonable conversion efficiencies, the device has to be thermally treated in a hydrated-CdCl{sub 2} atmosphere. This study was carried out using X-ray diffraction (XRD), photoluminescence, Sem-EDS, four probe method and Sims profiling of Cd Te. These analyses confirm the presence of hydrated CdCl{sub 2} and Cd Te phases on Cd Te surface and shown a good recrystallization morphology helping to the carriers mobility along the structure. Using the thermal treatment was possible to reduce the resistivity of Cd Te thin film; it is a result to the Cl migration along the Cd Te solar cell structure, reducing the defects between CdS and Cd Te thin films. A strong Cd Te thin film recrystallization was observed by the implementation of a hydrated-CdCl{sub 2} treatment doing to this a good candidate to Cd Te solar cells process. (Author)

  20. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.