WorldWideScience

Sample records for metallothionein gene expression

  1. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Cousins, R.J.

    1990-01-01

    Attention has focused on the cytokine interleukin 6 (IL-6) as a major mediator of acute-phase protein synthesis in hepatocytes in response to infection and tissue injury. The authors have evaluated the effects of IL-6 and IL-1α as well as extracellular zinc and glucocorticoid hormone on metal-lothionein gene expression and cellular zinc accumulation in rat hepatocyte monolayer cultures. Further, they have evaluated the teleological basis for cytokine mediation by examining cyto-protection from CCl 4 -induced damage. Incubation of hepatocytes with IL-6 led to concentration-dependent and time-dependent increases in metallothionein-1 and -2 mRNA and metallothionein protein. The level of each was increased within 3 hr after the addition of IL-6 at 10 ng/ml. Maximal increases the metallothionein mRNA and metallothionein protein were achieved after 12 hr and 36 hr, respectively. Concomitant with the up-regulation of metallothionein gene expression, IL-6 also increased cellular zinc. Responses to IL-6 required the synthetic glucocorticoid hormone dexamethasone and were optimized by increased extracellular zinc. Thus, IL-6 is a major cytokine mediator of metallothionein gene expression and zinc metabolism in hepatocytes and provides cytoprotection from CCl 4 -induced hepatotoxicity via a mode consistent with dependence upon increased cellular metallothionein synthesis and zinc accumulation

  2. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  3. Metallothionein gene expression in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Deeksha Pal

    2014-01-01

    Full Text Available Introduction: Metallothioneins (MTs are a group of low-molecular weight, cysteine-rich proteins. In general, MT is known to modulate three fundamental processes: (1 the release of gaseous mediators such as hydroxyl radical or nitric oxide, (2 apoptosis and (3 the binding and exchange of heavy metals such as zinc, cadmium or copper. Previous studies have shown a positive correlation between the expression of MT with invasion, metastasis and poor prognosis in various cancers. Most of the previous studies primarily used immunohistochemistry to analyze localization of MT in renal cell carcinoma (RCC. No information is available on the gene expression of MT2A isoform in different types and grades of RCC. Materials and Methods: In the present study, total RNA was isolated from 38 histopathologically confirmed cases of RCC of different types and grades. Corresponding adjacent normal renal parenchyma was taken as control. Real-time polymerase chain reaction (RT PCR analysis was done for the MT2A gene expression using b-actin as an internal control. All statistical calculations were performed using SPSS software. Results: The MT2A gene expression was found to be significantly increased (P < 0.01 in clear cell RCC in comparison with the adjacent normal renal parenchyma. The expression of MT2A was two to three-fold higher in sarcomatoid RCC, whereas there was no change in papillary and collecting duct RCC. MT2A gene expression was significantly higher in lower grade (grades I and II, P < 0.05, while no change was observed in high-grade tumor (grade III and IV in comparison to adjacent normal renal tissue. Conclusion: The first report of the expression of MT2A in different types and grades of RCC and also these data further support the role of MT2A in tumorigenesis.

  4. A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein.

    Science.gov (United States)

    Dar, Saira; Shuja, Rukhsana N; Shakoori, Abdul Rauf

    2013-02-01

    Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10-30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd(2+)-ions.

  5. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  6. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    OpenAIRE

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-01-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) ...

  7. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.

  8. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Wang Xiaojuan; Song, Yu; Ma Yanhua; Zhuo Renying; Jin Liang

    2011-01-01

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: → Evaluate Cd tolerance in wide sources of alfalfa accessions. → Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. → Cloned differentially expressed metallothionein (MT) genes. → Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. → MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  9. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaojuan, E-mail: xiaojuanwang@lzu.edu.cn [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Song, Yu [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Environment Management College of China, Qinhuangdao 066004 (China); Ma Yanhua [Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhuo Renying [Key Lab of Tree Genomics, Research Institute of Subtropical of Forest, Chinese Academy of Forest, Fuyang 311400 (China); Jin Liang [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China)

    2011-12-15

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: > Evaluate Cd tolerance in wide sources of alfalfa accessions. > Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. > Cloned differentially expressed metallothionein (MT) genes. > Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. > MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  10. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    International Nuclear Information System (INIS)

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    Highlights: ► Developed qPCR assays to distinguish closely related GST isoforms in salmon. ► Examined the effect of cadmium on GST and metallothionein genes in 3 tissues. ► Modulation of GST varied among isoforms, tissues, and included a loss of expression. ► Metallothionein outperformed, but generally complemented, GSTs as biomarkers. ► Salmon olfactory genes were among the most responsive to cadmium. - Abstract: The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GSTs as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8–48 h) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 h relative to earlier time

  11. Metallothionein expression during liver regeneration after partial hepatectomy in cadmium-pretreated rats

    Energy Technology Data Exchange (ETDEWEB)

    Margeli, A.P. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Theocharis, S.E. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Yannacou, N.N. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Spiliopoulou, C. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Koutselinis, A. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece))

    1994-10-01

    Metallothionein is a low molecular mass protein inducible mainly by heavy metals, having high affinity for binding cadmium, zinc and copper. In the present study we investigated the expression of metallothionein in regenerating liver, at different time intervals, in cadmium pretreated partially hepatectomized rats. Liver metallothionein is highly expressed during regeneration induced by partial hepatectomy in rats, providing zinc within the rapidly growing tissue. Cadmium pretreatment caused inhibition of the first peak of liver regeneration, while metallothionein expression was markedly more prominent in the liver residues of cadmium-pretreated rats. These results demonstrate that although metallothionein able to bind temporarily metal ions as zinc and cadmium has been highly expressed, the liver regenerative process was inhibited possibly due to the effects of cadmium on other pivotal events necessary to the DNA replication. (orig.)

  12. An Effect of Cadmium and Lead Ions on Escherichia coli with the Cloned Gene for Metallothionein (MT-3) Revealed by Electrochemistry

    International Nuclear Information System (INIS)

    Adam, Vojtech; Chudobova, Dagmar; Tmejova, Katerina; Cihalova, Kristyna; Krizkova, Sona; Guran, Roman; Kominkova, Marketa; Zurek, Michal; Kremplova, Monika; Jimenez, Ana Maria Jimenez; Konecna, Marie

    2014-01-01

    This study was focused on the application of electrochemical methods for studying of bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) before and after the application of cadmium and/or lead ions in four concentrations (25, 50, 75 and 150 μM). Bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) were used like model organisms for studying of metals influence to metallothionein expression. Metallothionein was isolated using fast protein liquid chromatography and quantified by electrochemical methods. The occurrence of metallothionein in E.coli was confirmed by gel electrophoresis by the presence of the bands at 15 (MT dimer) and 22 kDa (MT trimer). The changes in electrochemical records due to the interactions of metallothioneins (MT-3 and MT-2A) with cadmium and lead ions showed decline of Cat2 signal of MT with the increasing interaction time because of metal ions binding to cysteines. Electrochemical determination also revealed that Cd(II) remains in E. coli cells in the higher amount than Pb (II). Opposite situation was found at E. coli–MT-3 strain. The antimicrobial effect of cadmium ions was determined by IC 50 and was statistically calculated as 39.2 and 95.5 μM for E. coli without cloned MT-3 and E. coli carrying MT-3 gene, respectively. High provided concentration IC 50 in strains after lead ions application (352.5 μM for E. coli without cloning and 207.0 μM for E. coli carrying cloned MT-3 gene) indicates lower toxicity of lead ions on bacterial strains compared to the cadmium ions

  13. A cadmium metallothionein gene of ridgetail white prawn Exopalaemon carinicauda (Holthuis, 1950) and its expression

    Science.gov (United States)

    Zhang, Jiquan; Wang, Jing; Xiang, Jianhai

    2013-11-01

    Metallothioneins (MTs) are a group of low molecular weight cysteine-rich proteins capable of binding heavy metal ions. A cadmium metallothionein ( EcMT — Cd) cDNA with a 189 bp open reading frame (ORF) that encoded a 62 amino acid protein was obtained from Exopalaemon carinicauda. Seventeen cysteines were in the deduced amino acid sequence, and the cysteine (Cys)-rich characteristic was revealed in different metallothioneins in other species. In addition, the deduced amino acid sequence did not contain any aromatic amino acid residues, such as tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). EcMT—Cd mRNA was expressed in all tested tissues (the ovary, muscle, stomach, and hepatopancreas), and its expression profiles in the hepatopancreas were very different when shrimps were exposed to seawater containing either 50 μmol/L CuSO4 or 2.5 μmol/L CdCl 2. The expression of EcMT-Cd was significantly up-regulated in shrimp exposed to CuSO4 for 12 h and down-regulated in shrimps exposed to CdCl2 for 12 h. After 24 h exposure to both metals, its expression was down-regulated. By contrast, at 48 h the EcMT-Cd was up-regulated in test shrimps exposed to CdCl2. The transcript of EcMT-Cd was very low or even absent before the zoea stage, and the expression of EcMT-Cd was detected from mysis larvae-I, then its expression began to rise. In conclusion, a cadmium MT exists in E. carinicauda that is expressed in different tissues and during different developmental stages, and responds to the challenge with heavy metal ions, which provides a clue to understanding the function of cadmium MT.

  14. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Carrasco, J; Hidalgo, J

    2001-01-01

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS. Metallothioneins-I+II are antioxidant proteins induced in the CNS by immobilisation stress, trauma or degenerative diseases which have been postulated to play a neuroprotective role, while the CNS isoform metallothionein......-III has been related to Alzheimer's disease. We have analysed metallothioneins-I-III expression in the CNS of mice with experimental autoimmune encephalomyelitis. Moreover, we have examined the putative role of interferon-gamma, a pro-inflammatory cytokine, in the control of metallothioneins expression...

  15. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Metallothionein Isoform Expression in Benign and Malignant Thyroid Lesions.

    Science.gov (United States)

    Wojtczak, Beata; Pula, Bartosz; Gomulkiewicz, Agnieszka; Olbromski, Mateusz; Podhorska-Okolow, Marzena; Domoslawski, Paweł; Bolanowski, Marek; Daroszewski, Jacek; Dziegiel, Piotr

    2017-09-01

    Metallothioneins (MTs) are involved in numerous cell processes such as binding and transport of zinc and copper ions, differentiation, proliferation and apoptosis, therefore contributing to carcinogenesis. Scarce data exist on their expression in benign and malignant lesions of the thyroid. mRNA expression of functional isoforms of MT genes (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1X, MT2A, MT4) was studied in 17 nodular goiters (NG), 12 follicular adenomas (FA) and 26 papillary thyroid carcinomas (PTC). One-way ANOVA revealed significant differences in mRNA expression levels of MT1A (pbenign and malignant lesions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    International Nuclear Information System (INIS)

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel A.C.

    2013-01-01

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species

  18. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  19. Expression of metallothioneins I and II related to oxidative stress in the liver of aluminium-treated rats.

    Science.gov (United States)

    Ghorbel, Imen; Chaabane, Mariem; Elwej, Awatef; Boudawara, Ons; Abdelhedi, Sameh; Jamoussi, Kamel; Boudawara, Tahya; Zeghal, Najiba

    2016-10-01

    Hepatotoxicity, induced by aluminium chloride (AlCl 3 ), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl 3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.

  20. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis

    Czech Academy of Sciences Publication Activity Database

    Hložková, K.; Matěnová, M.; Žáčková, P.; Strnad, Hynek; Hršelová, Hana; Hroudová, Miluše; Kotrba, P.

    2016-01-01

    Roč. 120, č. 3 (2016), s. 358-369 ISSN 1878-6146 R&D Projects: GA ČR(CZ) GAP504/11/0484 Institutional support: RVO:61388971 ; RVO:68378050 Keywords : Ectomycorrhizal fungi * Gene expression * Metal binding * Metallothionein Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.184, year: 2016

  1. Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina.

    Science.gov (United States)

    Averbeck, N B; Borghouts, C; Hamann, A; Specke, V; Osiewacz, H D

    2001-01-01

    The lifespan of the ascomycete Podospora anserina was previously demonstrated to be significantly increased in a copper-uptake mutant, suggesting that copper is a potential stressor involved in degenerative processes. In order to determine whether changes in copper stress occur in the cells during normal aging of cultures, we cloned and characterized a gene coding for a component of the molecular machinery involved in the control of copper homeostasis. This gene, PaMt1, is a single-copy gene that encodes a metallothionein of 26 amino acids. The coding sequence of PaMt1 is interrupted by a single intron. The deduced amino acid sequence shows a high degree of sequence identity to metallothioneins of the filamentous ascomycete Neurospora crassa and the basidiomycete Agaricus bisporus, and to the N-terminal portion of mammalian metallothioneins. Levels of PaMt1 transcript increase in response to elevated amounts of copper in the growth medium and during aging of wild-type cultures. In contrast, in the long-lived mutant grisea, transcript levels first increase but then decrease again. The ability of wild-type cultures to respond to exogenous copper stress via the induction of PaMt1 transcription is not affected as they grow older.

  2. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Saijoh, Kiyofumi; Sumino, Kimiaki [Department of Public Health, Kobe University School of Medicine (Japan); Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako [Department of Pharmacology, Kobe University of Medicine (Japan)

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using /sup 32/P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author).

  3. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    International Nuclear Information System (INIS)

    Saijoh, Kiyofumi; Sumino, Kimiaki; Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using 32 P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author)

  4. Expression response of duplicated metallothionein 3 gene to copper stress in Silene vulgaris ecotypes

    Czech Academy of Sciences Publication Activity Database

    Nevrtalová, Eva; Baloun, Jiří; Hudzieczek, Vojtěch; Čegan, Radim; Vyskot, Boris; Doležel, Jaroslav; Šafář, Jan; Milde, D.; Hobza, Roman

    2014-01-01

    Roč. 251, č. 6 (2014), s. 1427-1439 ISSN 0033-183X R&D Projects: GA ČR(CZ) GAP501/12/2220; GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GP13-34962P; GA ČR(CZ) GA522/09/0083 Institutional support: RVO:68081707 Keywords : Copper * Gene duplication * Metallothionein Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 2.651, year: 2014

  5. Metallothionein expression and roles in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2002-01-01

      Metallothioneins (MTs) are low-molecular-weight (6-7 kDa) nonenzymatic proteins (60-68 amino acid residues, 25-30% being cysteine) expressed ubiquitous in the animal kingdom. In the central nervous system (CNS), three MT isoforms are known, namely MT-I to MT-III. MT-I and MT-II (MT...

  6. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  7. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein.

    OpenAIRE

    Welch, J; Fogel, S; Buchman, C; Karin, M

    1989-01-01

    The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned ...

  8. Tetrahymena metallothioneins fall into two discrete subfamilies.

    Directory of Open Access Journals (Sweden)

    Silvia Díaz

    2007-03-01

    Full Text Available Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals.We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5. Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3' UTR of the MTT5 mRNA with potential regulatory activity is reported.The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances.

  9. Partial contribution of the Keap1–Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shinkai, Yasuhiro [Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Kimura, Tomoki [Faculty of Science and Engineering, Setsunan University, 17-8 Ikedanaka-machi, Neyagawa, Osaka 572-8508 (Japan); Itagaki, Ayaka [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa, Kanazawa, 920-1181, Ishikawa (Japan); Yamamoto, Chika [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa, Kanazawa, 920-1181, Ishikawa (Japan); Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan); Taguchi, Keiko; Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Kumagai, Yoshito, E-mail: yk-em-tu@md.tsukuba.ac.jp [Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Kaji, Toshiyuki, E-mail: t-kaji@rs.tus.ac.jp [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa, Kanazawa, 920-1181, Ishikawa (Japan); Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2016-03-15

    Cadmium is an environmental electrophile that modifies protein reactive thiols such as Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of nuclear factor-erythroid 2-related factor 2 (Nrf2). In the present study, we investigated a role of the Keap1–Nrf2 system in cellular response to cadmium in vascular endothelial cells. Exposure of bovine aortic endothelial cells to cadmium resulted in modification of Keap1 and Nrf2 activation, thereby up-regulating not only its typical downstream proteins but also metallothionein-1/2. Experiments with siRNA-mediated knockdown of Nrf2 or Keap1 supported participation of the Keap1–Nrf2 system in the modulation of metallothionein-1/2 expression. Furthermore, chromatin immunoprecipitation assay showed that Nrf2 was recruited to the antioxidant response element of the promoter region of the bovine metallothionein-2 gene in the presence of cadmium. These results suggest that the transcription factor Nrf2 plays, at least in part, a role in the changes in metallothionein expression mediated by exposure to cadmium. - Highlights: • Role of the Keap1–Nrf2 system in cellular response to cadmium was examined. • We used bovine aortic endothelial cells as a model of the vascular endothelium. • Exposure of cells to cadmium resulted in modification of Keap1 and Nrf2 activation. • Keap1–Nrf2 system participated in the modulation of metallothionein-1/2 expression. • Nrf2 was recruited to the antioxidant response element of MT2 promoter region.

  10. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Boru Zhou

    2014-06-01

    Full Text Available Cadmium (Cd is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD activity and chlorophyll concentration, but decreases of peroxidase (POD activity and malondialdehyde (MDA accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  11. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco.

    Science.gov (United States)

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-06-10

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  12. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells.

    NARCIS (Netherlands)

    Reinecke, F.; Levanets, O.; Olivier, Y.; Louw, R.; Semete, B.; Grobler, A.; Hidalgo, J.; Smeitink, J.A.M.; Olckers, A.; Westhuizen, F.H. van der

    2006-01-01

    The role of MT (metallothionein) gene expression was investigated in rotenone-treated HeLa cells to induce a deficiency of NADH:ubiquinone oxidoreductase (complex I). Complex I deficiency leads to a diversity of cellular consequences, including production of ROS (reactive oxygen species) and

  13. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    International Nuclear Information System (INIS)

    Nakamori, Taizo; Fujimori, Akira; Kinoshita, Keiji; Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi

    2010-01-01

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by γ-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  14. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, Taizo, E-mail: taizo@ynu.ac.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Fujimori, Akira [Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kinoshita, Keiji [Nagoya University Avian Bioscience Research Centre, Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-05-15

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  15. Differential metallothionein expression in oral lichen planus and amalgam-associated oral lichenoid lesions.

    Science.gov (United States)

    Mendes, G-G; Servato, J-P-S; Borges, F-C; Rosa, R-R; Siqueira, C-S; de Faria, P-R; Loyola, A-M; Cardoso, S-V

    2018-05-01

    Oral lichen planus (OLP) is a chronic inflammatory disease mediated by T cells, which manifests as reticular (white) or erosive (red) lesions, that are eventually painful. Oral lichenoid lesion (OLL) are distinguished from OLP by the presence of precipitating factors. The aim of this study was to evaluate whether the presence of metallothionein, which is involved in anti-apoptotic pathways and the anti-oxidative response, could serve as a differential diagnostic for OLP and OLL. We evaluated the expression of metallothionein in 40 cases of OLP and 20 cases of OLL using immunohistochemistry. White OLP has higher concentrations of metallothionein than red OLP in basal and parabasal layers. Moreover, metallothionein was more frequently observed in the cytoplasm and nuclei of basal cells in OLP patients compared to the same regions of OLL cases. Metallothionein levels are related to OLP severity and may contribute to a differential diagnosis between OLP and OLL.

  16. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  17. Metallothionein (MT)-III

    DEFF Research Database (Denmark)

    Carrasco, J; Giralt, M; Molinero, A

    1999-01-01

    Metallothionein-III is a low molecular weight, heavy-metal binding protein expressed mainly in the central nervous system. First identified as a growth inhibitory factor (GIF) of rat cortical neurons in vitro, it has subsequently been shown to be a member of the metallothionein (MT) gene family...... injected rats. The specificity of the antibody was also demonstrated in immunocytochemical studies by the elimination of the immunostaining by preincubation of the antibody with brain (but not liver) extracts, and by the results obtained in MT-III null mice. The antibody was used to characterize...... the putative differences between the rat brain MT isoforms, namely MT-I+II and MT-III, in the freeze lesion model of brain damage, and for developing an ELISA for MT-III suitable for brain samples. In the normal rat brain, MT-III was mostly present primarily in astrocytes. However, lectin staining indicated...

  18. Structure and function of the human metallothionein gene family: Final technical report

    International Nuclear Information System (INIS)

    Karin, M.

    1986-01-01

    The full nucleotide sequence of two additional human metallothionein (hMT) genes has been determined. These genes, hMT-I/sub B/ and hMT-I/sub F/, are located within the MT-I gene cluster we have described originally. The hMT-I/sub F/ gene is the first hMT-I gene whose amino acid sequence is in complete agreement with the published sequence of the human MT-I proteins. Therefore it is likely to be an active gene encoding a functional protein. However, since we have just completed the sequence analysis, we have not characterized this gene further yet. The hMT-I/sub B/ gene is closely linked to the hMT-I/sub A/ gene, and two pseudogenes, hMT-I/sub C/ and hMT-I/sub D/ separate the two. From its nucleotide sequence hMT-I/sub B/ seems to be an active gene, encoding a functional protein even though it differs in four positions from the published sequence of human MT-I proteins. This gene is expressed in a human hepatoma cell line, HepG2, and its expression is stimulated by Cd ++ . Using gene fusions to the viral thymidine-kinase gene we find that hMT-I/sub B/, like the hMT-I/sub A/ and hMT-II/sub A/ genes, contains a heavy metal responsive promoterregulatory element within its 5' flanking region. We analyzed the level of hMT-I/sub B/ mRNA in a variety of human cell lines by the S1 nuclease technique, and compared it to the expression of the hMT-II/sub A/ gene. While the hMT-II/sub A/ gene was expressed in all of the cell lines analyzed, the hMT-I/sub B/ gene was expressed in liver and kidney derived cell lines cells. This suggest that the expression of the hMT-I/sub B/ gene is controlled in a tissue specific manner. 13 refs

  19. Metallothionein-I and -III expression in animal models of Alzheimer disease

    DEFF Research Database (Denmark)

    Carrasco, J; Adlard, P; Cotman, C

    2006-01-01

    Previous studies have described altered expression of metallothioneins (MTs) in neurodegenerative diseases like multiple sclerosis (MS), Down syndrome, and Alzheimer's disease (AD). In order to gain insight into the possible role of MTs in neurodegenerative processes and especially in human...

  20. Trace metals and over-expression of metallothioneins in bladder tumoral lesions: a case-control study

    Directory of Open Access Journals (Sweden)

    Cymbron Teresa

    2009-07-01

    Full Text Available Abstract Background Previous studies have provided some evidence of a possible association between cancer and metallothioneins. Whether this relates to an exposure to carcinogenic metals remains unclear. Methods In order to examine the association between the expression of metallothioneins and bladder tumors, and to compare the levels of arsenic, cadmium, chromium, lead and nickel in animals with bladder tumors and animals without bladder tumors, 37 cases of bovine bladder tumors and 17 controls were collected. The detection and quantification of metallothioneins in bladder tissue of both cases and controls was performed by immunohistochemistry. And the quantification of metals in tissue and hair was assessed by inductively coupled plasma – mass spectrometry. Results Increased expression of metallothioneins was associated with bladder tumors when compared with non-tumoral bladder tissue (OR = 9.3, 95% CI: 1.0 – 480. The concentrations of cadmium, chromium, lead and nickel in hair of cases were significantly higher than those of controls. However, as for the concentration of metals in bladder tissue, the differences were not significant. Conclusion Though the sample size was small, the present study shows an association between bladder tumors and metallothioneins. Moreover, it shows that concentrations of metals such as cadmium, chromium, lead and nickel in hair may be used as a biomarker of exposure.

  1. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  2. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents.

    OpenAIRE

    Kaina, B; Lohrer, H; Karin, M; Herrlich, P

    1990-01-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of re...

  3. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR

    International Nuclear Information System (INIS)

    Zorita, I.; Bilbao, E.; Schad, A.; Cancio, I.; Soto, M.; Cajaraville, M.P.

    2007-01-01

    Metallothioneins (MTs) are metal-inducible proteins that can be used as biomarkers of metal exposure. In mussels two families of MT isoforms (MT10 and MT20) have been characterized. In this study, mussels (Mytilus galloprovincialis) were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metal-induced MT expression. Non-radioactive in situ hybridization demonstrated that both MT isoforms were mainly transcribed in digestive tubule epithelial cells, especially in basophilic cells. Weaker MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles and oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis intron-less MT10B isoform. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (Vv BAS ) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells lysosomes and the Vv BAS increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggest that MTs are expressed in a tissue-, cell- and isoform-specific way in response to different metals

  4. Heterologous expression of a rice metallothionein isoform (OsMTI-1b in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance

    Directory of Open Access Journals (Sweden)

    Zahra Ansarypour

    Full Text Available Abstract Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.

  5. Survey of ABC transporter and metallothionein genes expressions in tall fescue inoculated with Funneliformis intraradices under Nickel toxicity

    Directory of Open Access Journals (Sweden)

    Massomeh Rafiei-Demneh

    2016-09-01

    Full Text Available In plants, there are complex network of transport, chelation, and sequestration processes that functions in maintaining concentrations of essential metal ions in different cellular compartments, thus minimizing the damage caused by entry of non-essential metal ions into the cytosol. In the presence of toxic ones, arbuscular mycorrhizal (AM fungi are able to alleviate metal toxicity in the plant. In this study the effect of an arbuscular mycorrhizal fungi Funneliformis intraradices on growth, Nickel tolerance, and ABC transporter and metallothionein expression in leaves and roots of tall fescue (Festuca arundinacea plants cultivated in Ni polluted soil were evaluated. The fungi infected (M+ and uninfected (M- fescue plants were cultivated in soil under different Ni concentrations (0, 30, 90 and 180 ppm for 3 months. Results demonstrated the positive effect of fungi colonization on the increase in growth and reduction in Ni uptake (90 and 180 ppm and Ni translocation from roots to shoot of tall fescue under Ni stress. The results also demonstrated that the level of ABC transporterand metallothionein transcripts accumulation in roots was considerably higher for both M- and M+ plants compared to the control. Also, M+ plants showed less ABC and MET expression compared to the M- plants. These results demonstrated the importance of mycorrhizal colonization of F. intraradices in reduction of Ni transport from root to shoot of tall fescue which alleviates Ni-induced stress.

  6. Preparation of Preproinsulin Gene Construct Containing the Metallothionein2A (pBINDMTChIns and Its Expression in NIH3T3 Cell Line and Muscle Tissue of Alloxan Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Piri

    2014-08-01

    Full Text Available Background Diabetes mellitus type 1, formerly called insulin-dependent diabetes, is one of the autoimmune diseases where insulin-producing cells are destroyed by autoimmune response via T cells. The new approaches in treatment of diabetes are using the stem cells, cell transplantation of islet β cell, gene transfer by virus based plasmids, and non-viral gene constructs. Objectives The purpose of this study was to construct glucose inducible insulin gene plasmid and use it in the muscle tissue of the rabbit. Materials and Methods To achieve this goal, the preproinsulin, metallothionein2A promoter and the response element to carbohydrate genes were cloned into pBIND plasmid by standard cloning methods, to construct pBINDMTChIns. The gene cloning products were confirmed by the polymerase chain reaction (PCR and restriction enzyme digestion template. The recombinant plasmid, containing the preproinsulin gene, was transferred into NIH3T3 cells and insulin gene expression was evaluated by reverse transcriptase PCR and western blotting techniques. Plasmid naked DNA containing the preproinsulin gene was injected into the rabbits’ thigh muscles, and its expression was confirmed by western blotting method. Results This study shows the prepared gene construct is inducible by glucose. Gene expression of preproinsulin was observed in muscle tissue of rabbits. Conclusions These finding indicated that research in diabetes mellitus gene therapy could be performed on larger animals.

  7. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    Science.gov (United States)

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  9. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  10. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress.

    Science.gov (United States)

    Schor-Fumbarov, Tamar; Goldsbrough, Peter B; Adam, Zach; Tel-Or, Elisha

    2005-12-01

    A cDNA encoding a type 2 metallothionein (MT) was isolated from Azolla filiculoides, termed AzMT2, accession no. AF482470. The AzMT2 transcript was expressed in sterile A. filiculoides that were free of the cyanobiont Anabaena azollae after erythromycin treatment, proving that AzMT2 is encoded by the fern genome. AzMT2 RNA expression was enhanced by the addition of Cd(+2), Cu(+2), Zn(+2) and Ni(+2) to the growth medium. The transcript level of AzMT2 correlated with the metal content in the plants. Temporal analysis of AzMT2 expression demonstrated that Cd(2+) and Ni(2+) induction of AzMT2 RNA expression occurred within 48 h. AzMT2-enhanced expression responded more intensely to the toxic Cd and Ni ions in A. filiculoides suggesting that AzMT2 may participate in detoxification mechanism. The more moderate response of AzMT2 to Zn and Cu ions, which are essential micronutrients, suggest a role for AzMT2 in metal homeostasis.

  11. Time-course expression of CNS inflammatory, neurodegenerative tissue repair markers and metallothioneins during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Demestre, M

    2005-01-01

    -inflammatory, neuroprotective, antioxidant proteins expressed during EAE and MS, in which they might play a protective role. The present study aimed to describe the expression profile of a group of inflammatory, neurodegenerative and tissue repair markers as well as metallothioneins during proteolipid protein-induced EAE...

  12. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  13. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai).

    Science.gov (United States)

    Lee, Sang Yoon; Nam, Yoon Kwon

    2016-11-01

    A novel metallothionein (MT) gene from the Pacific abalone H. discus hannai was characterized and its mRNA expression patterns (tissue distribution, developmental expression and differential expression in responsive to various in vivo stimulatory treatments) were examined. Abalone MT shares conserved structural features with previously known gastropod orthologs at both genomic (i.e., tripartite organization) and amino acid (conserved Cys motifs) levels. The 5'-flanking regulatory region of abalone MT gene displayed various transcription factor binding motifs particularly including ones related with metal regulation and stress/immune responses. Tissue distribution and basal expression patterns of MT mRNAs indicated a potential association between ovarian MT expression and sexual maturation. Developmental expression pattern suggested the maternal contribution of MT mRNAs to embryonic and early larval developments. Abalone MT mRNAs could be significantly induced by various heavy metals in different tissues (gill, hepatopancreas, muscle and hemocyte) in a tissue- and/or metal-dependent fashion. In addition, the abalone MT gene was highly modulated in responsive to other non-metal, stimulatory treatments such as immune challenge (LPS, polyI:C and bacterial injections), hypoxia (decrease from normoxia 8 ppm-2 ppm), thermal elevation (increase from 20 °C to 30 °C), and xenobiotic exposure (250 ppb of 17α-ethynylestradiol and 0.25 ppb of 2,3,7,8-tetrachlorodibenzodioxin) where differential expression patterns were toward either up- or down-regulation depending on types of stimulations and tissues examined. Taken together, our results highlight that MT is a multifunctional effector playing in wide criteria of cellular pathways especially associated with development and stress responses in this abalone species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Location-specific epigenetic regulation of the metallothionein 3 gene in esophageal adenocarcinomas.

    Directory of Open Access Journals (Sweden)

    Dunfa Peng

    Full Text Available Metallothionein 3 (MT3 maintains intracellular metal homeostasis and protects against reactive oxygen species (ROS-induced DNA damage. In this study, we investigated the epigenetic alterations and gene expression of the MT3 gene in esophageal adenocarcinomas (EACs.Using quantitative bisulfite pyrosequencing, we detected unique DNA methylation profiles in the MT3 promoter region. The CpG nucleotides from -372 to -306 from the transcription start site (TSS were highly methylated in tumor (n = 64 and normal samples (n = 51, whereas CpG nucleotides closest to the TSS (-4 and +3 remained unmethylated in all normal and most tumor samples. Conversely, CpG nucleotides in two regions (from -139 to -49 and +296 to +344 were significantly hypermethylated in EACs as compared to normal samples [FDR3.0]. The DNA methylation levels from -127 to -8 CpG sites showed the strongest correlation with MT3 gene expression (r = -0.4, P<0.0001. Moreover, the DNA hypermethylation from -127 to -8 CpG sites significantly correlated with advanced tumor stages and lymph node metastasis (P = 0.005 and P = 0.0313, respectively. The ChIP analysis demonstrated a more repressive histone modification (H3K9me2 and less active histone modifications (H3K4me2, H3K9ace in OE33 cells than in FLO-1 cells; concordant with the presence of higher DNA methylation levels and silencing of MT3 expression in OE33 as compared to FLO-1 cells. Treatment of OE33 cells with 5-Aza-deoxycitidine restored MT3 expression with demethylation of its promoter region and reversal of the histone modifications towards active histone marks.In summary, EACs are characterized by frequent epigenetic silencing of MT3. The choice of specific regions in the CpG island is a critical step in determining the functional role and prognostic value of DNA methylation in cancer cells.

  15. Induction of Metallothionein Expression After Exposure to Conventional Cigarette Smoke but Not Electronic Cigarette (ECIG-Generated Aerosol in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Eric Cobb

    2018-04-01

    Full Text Available Aim: With the invention of electronic cigarettes (ECIG, many questions have been raised regarding their safety as an alternative to smoking conventional cigarettes. Conventional cigarette smoke contains a variety of toxicants including heavy metals. However, ECIG-generated aerosol contains only trace amounts of metals, adding to the argument for it being a safer alternative. In response to heavy metal exposure, metallothioneins are induced in cells to help store the metal, detoxify the body, and are also known responders to oxidative stress. In an attempt to add to the evaluation of the safety of ECIGs, metallothionein expression was quantified using the nematode Caenorhabditis elegans as an assessment of stress induced cellular damage caused by exposure.Methods: Adult nematodes were exposed to either ECIG aerosol or conventional cigarette smoke at doses of 15, 30, and 45 puffs, the equivalent of one, two, and three cigarettes, respectively. Movement, survival, and stress-induced sleep were assessed for up to 24 h after exposure. Relative expression levels for mtl-1 and mtl-2, C. elegans metallothionein genes, were analyzed after 1, 5, and 24 h post exposure using quantitative RT-PCR.Results: Nematodes exposed to conventional cigarette smoke underwent stress-induced sleep in a dose dependent manner with animals recovering to values within the range of air control after 5 h post exposure. Those exposed to ECIG aerosol did not undergo stress-induced sleep and were indistinguishable from controls. The expression of mtl-1 increased in a dose and time dependent manner in C. elegans exposed to conventional cigarette smoke, with a maximum expression observed at 5 h post exposure of 45 puffs. No induction of mtl-2 was observed in any animals. Additionally, ECIG aerosol did not induce expression of mtl-1 and mtl-2 at levels different than those of untreated.Conclusion: ECIG aerosol failed to induce a stress response in C. elegans. In contrast

  16. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    Lohrer, H.

    1987-01-01

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.) [de

  17. Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress

    Energy Technology Data Exchange (ETDEWEB)

    Huang Guoyong, E-mail: huang_gyh@sina.com [Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang Youshao [Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China)

    2010-08-01

    Metallothioneins (MTs) are a family of low-molecular-weight cysteine-rich proteins and are thought to play possible roles in metal metabolism or detoxification. To evaluate the roles of metallothioneins in metal homeostasis or tolerance in Avicennia marina, a real-time quantitative PCR protocol was developed to directly evaluate the expression of AmMT2 mRNA, when A. marina seedlings were exposed to different concentrations of zinc (Zn), copper (Cu) or lead (Pb) for 3 and 7 d. Real-time quantitative PCR results indicated that the regulation of AmMT2 mRNA expression by Zn, Cu and Pb was strongly dependent on concentration and time of exposure. A significant increase in the transcripts of AmMT2 gene was also found in response to Zn, Cu and Pb, at least under some experimental conditions. When AmMT2 was overexpressed in Escherichia coli BL21 as a carboxy-terminal extension of glutathione-S-transferase (GST), the transgenic bacteria showed an increased tolerance to Zn, Cu, Pb and Cd exposure as compared to control strains. Moreover, GST-AmMT2 was purified from E. coli cells grown in the presence of 400 {mu}M Zn, Cu, Pb or Cd. The purified GST-AmMT2 fusion protein could bind higher levels of all four metals than GST alone. Taken together, these data support the hypothesis that AmMT2 may be involved in processes of metal homeostasis or tolerance in A. marina.

  18. Expression of the rgMT gene, encoding for a rice metallothionein ...

    Indian Academy of Sciences (India)

    the rice rgMT gene in transgenic yeast and Arabidopsis is implicated in improving their tolerance for .... possible by the use of a microscope with UV optics that ... Abiotic stress factors that induced the expression of the ..... Arabidopsis mutant.

  19. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats.

    Directory of Open Access Journals (Sweden)

    Yuping Wang

    Full Text Available To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense.Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA and collagen III (Col III were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD and malondialdehyde (MDA in liver homogenates were determined. Metallothionein (MT expression was detected by real-time RT-PCR and immunohistochemical techniques.Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT, increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver.Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis.

  20. The renal metallothionein expression profile is altered in human lupus nephritis

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund

    2008-01-01

    of standard statistical methods. RESULTS: Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median......INTRODUCTION: Metallothionein (MT) isoforms I + II are polypeptides with potent antioxidative and anti-inflammatory properties. In healthy kidneys, MT-I+II have been described as intracellular proteins of proximal tubular cells. The aim of the present study was to investigate whether the renal MT......-I+II expression profile is altered during lupus nephritis. METHODS: Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means...

  1. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    Science.gov (United States)

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  2. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  3. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Science.gov (United States)

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M; Cartagena, Preston M; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda; Myers, Richard M; Jones, Edward G; Bunney, William E; Vawter, Marquis P

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  4. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice.

    Science.gov (United States)

    Xu, Yun-Yan; Xu, Ya-Sha; Wang, Yuan; Wu, Qin; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2017-10-01

    In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid β-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders. © 2017 Royal Pharmaceutical Society.

  5. Comparative population analysis of metallothionein promoter alleles suggests stress-induced microevolution in the field.

    NARCIS (Netherlands)

    Janssens, T.K.S.; Del Rio Lopez, R.; Mariën, A.G.H.; Timmermans, M.J.T.N.; Montagne-Wajer, K; van Straalen, N.M.; Roelofs, D.

    2008-01-01

    We investigate a model system for microevolution of transcriptional regulation: metallothionein expression in springtails. A previous survey of the metallothionein promoter in Orchesella cincta (Collembola) revealed nine alleles with differential basal activities and responses to cadmium and

  6. Comparative population analysis of metallothionein promoter alleles suggests stress-induced microevolution in the field

    NARCIS (Netherlands)

    Janssens, Thierry K S; Lopéz, Ricardo del Rio; Mariën, Janine; Timmermans, Martijn J T N; Montagne-Wajer, K; van Straalen, Nico M; Roelofs, Dick

    2008-01-01

    We investigate a model system for microevolution of transcriptional regulation: metallothionein expression in springtails. A previous survey of the metallothionein promoter in Orchesella cincta (Collembola) revealed nine alleles with differential basal activities and responses to cadmium and

  7. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli.

    Science.gov (United States)

    Chin, Wei-Chih; Lin, Kuo-Hsing; Liu, Chun-Chi; Tsuge, Kenji; Huang, Chieh-Chen

    2017-04-11

    N-Butanol has favorable characteristics for use as either an alternative fuel or platform chemical. Bio-based n-butanol production using microbes is an emerging technology that requires further development. Although bio-industrial microbes such as Escherichia coli have been engineered to produce n-butanol, reactive oxygen species (ROS)-mediated toxicity may limit productivity. Previously, we show that outer-membrane-targeted tilapia metallothionein (OmpC-TMT) is more effective as an ROS scavenger than human and mouse metallothioneins to reduce oxidative stress in the host cell. The host strain (BUT1-DE) containing the clostridial n-butanol pathway displayed a decreased growth rate and limited n-butanol productivity, likely due to ROS accumulation. The clostridial n-butanol pathway was co-engineered with inducible OmpC-TMT in E. coli (BUT3-DE) for simultaneous ROS removal, and its effect on n-butanol productivity was examined. The ROS scavenging ability of cells overexpressing OmpC-TMT was examined and showed an approximately twofold increase in capacity. The modified strain improved n-butanol productivity to 320 mg/L, whereas the control strain produced only 95.1 mg/L. Transcriptomic analysis revealed three major KEGG pathways that were significantly differentially expressed in the BUT3-DE strain compared with their expression in the BUT1-DE strain, including genes involved in oxidative phosphorylation, fructose and mannose metabolism and glycolysis/gluconeogenesis. These results indicate that OmpC-TMT can increase n-butanol production by scavenging ROS. The transcriptomic analysis suggested that n-butanol causes quinone malfunction, resulting in oxidative-phosphorylation-related nuo operon downregulation, which would diminish the ability to convert NADH to NAD + and generate proton motive force. However, fructose and mannose metabolism-related genes (fucA, srlE and srlA) were upregulated, and glycolysis/gluconeogenesis-related genes (pfkB, pgm) were

  8. METALLOTHIONEIN: CLASSIFICATION, BIOCHEMICAL FEATURES AND CLINICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Tooba Naz Shamsi

    2014-03-01

    Full Text Available Metallothionein (MT is a ubiquitous low molecular weight protein with high cysteine content and has strong affinity for heavy metals. MT provides protection against heavy metal toxicity, oxidative stress, and participates in the regulation of physiological metals like zinc (Zn2+ and copper (Cu. Abnormal MT expression and function presumably leads to various diseases like diabetes, cancer and neuro-degenerative diseases. MT gene expression is induced by a high variety of stimuli like metal exposure, oxidative stress, glucocorticoids, hydric stress etc. The level of the response to these inducers depends on the MT gene. These activities are regulated through intracellular metal ion modulation and free radical scavenging. MT participates in the uptake, transport, and regulation of zinc in biological system. It regulates zinc homeostasis by binding and releasing zinc ions which are a key element for the activation and binding of certain transcription factors through its participation in the zinc finger region of the protein. It also seems to be important for the regulation of tumor suppressor protein, p 53. Because MT plays an important role in transcription factor regulation, problems with MT function or expression may lead to malignant transformation of cells and ultimately cancer. There are variou

  9. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes.

    Science.gov (United States)

    Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky

    2017-09-01

    Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Metallothionein as a useful marker in Hodgkin lymphoma subclassification

    DEFF Research Database (Denmark)

    Penkowa, Milena; Sørensen, Brit Ladegaard; Nielsen, Signe Lidou

    2009-01-01

    Metallothionein (MT) expression is considered to be a prognostic factor that promotes tumor resistance to apoptosis. In non-Hodgkin lymphomas, MT is differentially expressed and constitutes a risk factor. We have characterised MT in lymph nodes of Hodgkin lymphoma (HL) [patients with nodular...

  11. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min, E-mail: wmtian9110@126.com

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.

  12. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xia; Zhou, Shanshan [The First Hospital of Jilin University, Changchun, 130021 (China); KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Zheng, Yang, E-mail: zhengyang@jlu.edu.cn [The First Hospital of Jilin University, Changchun, 130021 (China); Tan, Yi [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Chinese–American Research Institute for Diabetic Complications, Wenzhou Medical College School of Pharmacy, Wenzhou, 325035 (China); Kong, Maiying [Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202 (United States); Wang, Bo [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Department of Pathology, Inner Mongolia Forestry General Hospital, Yakeshi, 022150 (China); Feng, Wenke [Department of Medicine, School of Medicine, University of Louisville, Louisville, 40202 (United States); Epstein, Paul N. [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Cai, Jun, E-mail: j0cai002@louisville.edu [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Cai, Lu [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Chinese–American Research Institute for Diabetic Complications, Wenzhou Medical College School of Pharmacy, Wenzhou, 325035 (China); Department of Medicine, School of Medicine, University of Louisville, Louisville, 40202 (United States)

    2014-05-15

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O{sub 2}/8% O{sub 2} F{sub I}O{sub 2} (30 episodes per hour) with 20 s at the nadir F{sub I}O{sub 2} for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage.

  13. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    International Nuclear Information System (INIS)

    Yin, Xia; Zhou, Shanshan; Zheng, Yang; Tan, Yi; Kong, Maiying; Wang, Bo; Feng, Wenke; Epstein, Paul N.; Cai, Jun; Cai, Lu

    2014-01-01

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O 2 /8% O 2 F I O 2 (30 episodes per hour) with 20 s at the nadir F I O 2 for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage

  14. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    Science.gov (United States)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  15. Endocrine disruptors in soil: Effects of bisphenol A on gene expression of the earthworm Eisenia fetida.

    Science.gov (United States)

    Novo, M; Verdú, I; Trigo, D; Martínez-Guitarte, J L

    2018-04-15

    Xenobiotics such as bisphenol A (BPA), are present in biosolids, which are applied as organic fertilizers in agricultural fields. Their effects on soil life have been poorly assessed, and this is particularly important in the case of earthworms, which represent the main animal biomass in this medium. In the present work we study the impacts of BPA on gene expression of Eisenia fetida, a widely used ecotoxicological model. Chronic soil tests and acute contact tests were performed, and gene expression was analyzed in total tissue and in masculine reproductive organs of the earthworms. The genes studied in this research played a role in endocrine pathways, detoxification mechanisms, stress response, epigenetics, and genotoxicity. Most of the genes were identified for the first time, providing potentially useful biomarkers for future assessments. For chronic exposures, no changes were detected in whole-body tissue; however, masculine reproductive organs showed changes in the expression of genes related to endocrine function (EcR, MAPR, AdipoR), epigenetic mechanisms (DNMTs), genotoxicity (PARP1), and stress responses (HSC70 4). For acute exposures, the expression of one epigenetic-related gene was altered for both whole-body tissues and male reproductive organs (Piwi2). Further changes were detected for whole-body tissues involved in detoxification (Metallothionein), stress (HSC70 4), and genotoxicity (PARP1) mechanisms. Acute exposure effects were also tested in whole-body tissues of juveniles, showing changes in the expression of Metallothionein and Piwi2. The molecular changes found in the analyzed earthworms indicate that exposure to BPA may have negative implications in their populations. Particularly interesting are the alterations related to epigenetic mechanisms, which suggest that future generations may be impacted. This study is the first to evaluate the molecular effects of BPA on soil organisms, and further assays will be necessary to better characterize

  16. Metallothionein as an Anti-Inflammatory Mediator

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Inoue

    2009-01-01

    Full Text Available The integration of knowledge concerning the regulation of MT, a highly conserved, low molecular weight, cystein-rich metalloprotein, on its proposed functions is necessary to clarify how MT affects cellular processes. MT expression is induced/enhanced in various tissues by a number of physiological mediators. The cellular accumulation of MT depends on the availability of cellular zinc derived from the diet. MT modulates the binding and exchange/transport of heavy metals such as zinc, cadmium, or copper under physiological conditions and cytoprotection from their toxicities, and the release of gaseous mediators such as hydroxyl radicals or nitric oxide. In addition, MT reportedly affects a number of cellular processes, such as gene expression, apoptosis, proliferation, and differentiation. Given the genetic approach, the apparently healthy status of MT-deficient mice argues against an essential biological role for MT; however, this molecule may be critical in cells/tissues/organs in times of stress, since MT expression is also evoked/enhanced by various stresses. In particular, because metallothionein (MT is induced by inflammatory stress, its roles in inflammation are implied. Also, MT expression in various organs/tissues can be enhanced by inflammatory stimuli, implicating in inflammatory diseases. In this paper, we review the role of MT of various inflammatory conditions.

  17. METALLOTHIONEINS AS SENSORS AND CONTROLS EXCHANGE OF METALS IN THE CELLS

    Directory of Open Access Journals (Sweden)

    V. A. Kutyakov

    2014-01-01

    Full Text Available The basic information on the classification, structure, induction and degradation, functions of the protein family – metallothionein (MT, including CNS in health and disease are presented in this review. It was found that four major isoforms of metallothionein perform different biological roles, are localized in dif- ferent tissues. Induction of MT is a universal reaction to the impact of a variety of stress factors. In recent years, understanding of the role of metallothioneins in metal homeostasis in the tissues in normal and pathological conditions have changed significantly. Notes polyfunctionality metallothioneins (transport of metal ions, maintaining redox reactions, tread, signal, modulated and regulatory functions and their im- pact on basic cellular functions such as proliferation, differentiation, programmed cell death. Further- more, a special role is shown MT in the pathogenesis of cardiovascular, neurodegenerative and neoplastic disorders.Currently, these molecules are increasingly considered as potential targets for therapy of a wide range of diseases and the development of targeted approaches to the regulation of expression of MT – one of the promising areas of pharmacology and toxicology. Stressed the safety of metallothioneins as therapeutic agents.

  18. Barley metallothioneins

    DEFF Research Database (Denmark)

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas

    2012-01-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the prot......Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization...

  19. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  20. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

    Science.gov (United States)

    Yang, Jingli; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping; Li, Chenghao

    2011-03-01

    A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

  1. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    Science.gov (United States)

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  2. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  3. Modulation of metallothionein, pi-GST and Se-GPx mRNA expression in the freshwater bivalve Dreissena polymorpha transplanted into polluted areas

    Directory of Open Access Journals (Sweden)

    Périne Doyen

    2015-04-01

    Full Text Available Glutathione S-transferases (GST, glutathione peroxidases (GPx and metallothioneins (MT are essential components of cellular detoxication systems. We studied the expression of pi-GST, Se-GPx, and MT transcripts in the digestive gland of Dreissena polymorpha exposed to organic and metallic pollutants. Mussels from a control site were transplanted during 3, 15 and 30 days into the Moselle River, upstream and downstream to the confluence with the Fensch River, a tributary highly polluted by polycyclic aromatic hydrocarbons and heavy metals. Se-GPx and pi-GST mRNA expression increased in mussels transplanted into the upstream site, Se-GPx response being the earliest. These genes were also induced after 3-days exposure at the downstream site. These inductions suggest an adaptative response to an alteration of the environment. Moreover, at this site, a significant decrease of the expression of MT, pi-GST and Se-GPx transcripts was observed after 30 days which could correspond to an inefficiency of detoxification mecanisms. The results are in correlation with the levels of pollutants in the sediments and their bioaccumulation in mussels, they confirm the environmental deleterious impact of the pollutants carried by the Fensch River.

  4. Expression, purification of metallothionein genes from freshwater crab (Sinopotamon yangtsekiense) and development of an anti-metallothionein ELISA

    Science.gov (United States)

    Zhang, Hao; Zhou, Hui

    2017-01-01

    Using the phoA-fusion technology, the recombinant metallothionein (MT) from freshwater crab (Sinopotamon yangtsekiense) has been successfully produced in Escherichia coli. MT purified from the bacterial suspension showed one polypeptide with a molecular weight of 7 kDa by tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE). Western-blotting confirmed the polypeptides had a specific reactivity with mouse polyclonal MT anti-serum. Based on the purified MT and MT anti-serum, the reaction parameters for an enzyme-linked immunosorbent assay (ELISA) were developed. The direct coating ELISA showed a higher linear relationship compared to antibody sandwich coating ELISA. The optimal dilution rates of purified MT anti-serum and coating period were shown to be 1:160,000 and 12 hours at 4°C. At 37°C, the appropriate reaction duration of the first antibody and the second antibody were 2 hours and 1 hour, respectively. According to these optimal parameters, the standard linear equation, y = 0.0032x + 0.1769 (R2 = 0.9779, x, y representing MT concentration and OD450 value), was established for the determination of MT concentration with a valid range of 3.9–500 ng/ml. In verification experiments, the mean coefficients of variation of the intra-assay and inter-assay were 3.260% and 3.736%, respectively. According to the result of MT recovery, ELISA with an approaching 100% MT recovery was more reliable and sensitive than the Cd saturation assay. In conclusion, the newly developed ELISA of this study was precise, stable and repeatable, and could be used as a biomarker tool to monitor pollution by heavy metals. PMID:28350826

  5. Metallothionein expression in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Ortega-Aznar, A

    2003-01-01

    Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS...

  6. Metallothionein in Brain Disorders

    Directory of Open Access Journals (Sweden)

    Daniel Juárez-Rebollar

    2017-01-01

    Full Text Available Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV, three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.

  7. Expression of mtc in Folsomia candida indicative of metal pollution.

    NARCIS (Netherlands)

    Nota, B.; Vooijs, H.; van Straalen, N.M.; Roelofs, D.

    2011-01-01

    The soil-living springtail Folsomia candida is frequently used in reproduction bioassays to assess soil contamination. Alternatively, the response of genes to contamination is assessed. In this study the expression of F. candida's gene encoding the deduced metallothionein-like motif containing

  8. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  9. Diurnal-and sex-related difference of metallothionein expression in mice

    Directory of Open Access Journals (Sweden)

    Zhang Dan

    2012-07-01

    Full Text Available Abstract Background Metallothionein (MT is a small, cysteine-rich, metal-binding protein that plays an important role in protecting against toxicity of heavy metal and chemicals. This study was aimed to define diurnal and sex variation of MT in mice. Methods Adult mice were maintained in light- and temperature-controlled facilities for 2 weeks with light on at 8:00 and light off at 20:00. The blood, liver, and kidneys were collected every 4 h during the 24 h period. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis and MT protein was determined by western blot and the Cd/hemoglobin assay. Results The diurnal variations in mRNA levels of MT-1 and MT-2in liver were dramatic, up to a 40-foldpeak/trough ratio. MT mRNA levels in kidneys and blood also showed diurnal variation, up to 5-fold peak/trough ratio. The diurnal variation of MT mRNAs resembled the clock gene albumin site D-binding protein (Dbp, and was anti-phase to the clock gene Brain and Muscle ARNT-like Protein 1 (Bmal1 in liver and kidneys. The peaks of MT mRNA levels were higher in females than in males. Hepatic MT protein followed a similar pattern, with about a 3-fold difference. Conclusion MT mRNA levels and protein showed diurnal- and sex-variation in liver, kidney, and blood of mice, which could impact the body defense against toxic stimuli.

  10. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    International Nuclear Information System (INIS)

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P.

    1990-01-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions

  11. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P. (Kernforschungszentrum Karlsruhe, Karlsruhe (Germany, F.R.))

    1990-04-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions.

  12. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents.

    Science.gov (United States)

    Kaina, B; Lohrer, H; Karin, M; Herrlich, P

    1990-01-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions. Images PMID:2320583

  13. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Sam [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom); School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom); Stuerzenbaum, Stephen R. [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom) and School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom)]. E-mail: stephen.sturzenbaum@kcl.ac.uk

    2007-01-15

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity, a dose dependent reduction in total brood size and volumetric growth was observed in wild type animals, which was magnified in single knockouts and further exacerbated in the double knockout. However, the metallothionein deletion caused two effects that are independent of cadmium exposure, namely all knockout strains displayed a reduced total brood size and the deletion of both metallothionein loci caused a significant reduction in volumetric growth. In summary, metallothionein is undoubtedly an important player in cadmium detoxification, but evidently also an important factor in cadmium independent pathways. - Metallothionein is a modifier of life-history parameters.

  14. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    International Nuclear Information System (INIS)

    Hughes, Sam; Stuerzenbaum, Stephen R.

    2007-01-01

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity, a dose dependent reduction in total brood size and volumetric growth was observed in wild type animals, which was magnified in single knockouts and further exacerbated in the double knockout. However, the metallothionein deletion caused two effects that are independent of cadmium exposure, namely all knockout strains displayed a reduced total brood size and the deletion of both metallothionein loci caused a significant reduction in volumetric growth. In summary, metallothionein is undoubtedly an important player in cadmium detoxification, but evidently also an important factor in cadmium independent pathways. - Metallothionein is a modifier of life-history parameters

  15. Cucumber Metallothionein-Like 2 (CsMTL2 Exhibits Metal-Binding Properties

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2016-11-01

    Full Text Available We identified a novel member of the metallothionein (MT family, Cucumis sativus metallothionein-like 2 (CsMTL2, by screening a young cucumber fruit complementary DNA (cDNA library. The CsMTL2 encodes a putative 77-amino acid Class II MT protein that contains two cysteine (Cys-rich domains separated by a Cys-free spacer region. We found that CsMTL2 expression was regulated by metal stress and was specifically induced by Cd2+ treatment. We investigated the metal-binding characteristics of CsMTL2 and its possible role in the homeostasis and/or detoxification of metals by heterologous overexpression in Escherichia coli cells. Furthermore, we produced a deletion mutant form of the protein, CsMTL2m, that contained the two Cys-rich clusters but lacked the spacer region, in E. coli. We compared the metal-binding properties of CsMTL2 with those of CsMTL2m, the β domain of human metallothionein-like protein 1 (HsMTXb, and phytochelatin-like (PCL heterologously expressed in E. coli using metal-binding assays. We found that E. coli cells expressing CsMTL2 accumulated the highest levels of Zn2+ and Cd2+ of the four transformed cell types, with levels being significantly higher than those of control cells containing empty vector. E. coli cells expressing CsMTL2 had a higher tolerance for cadmium than for zinc ions. These findings show that CsMTL2 improves metal tolerance when heterologously expressed in E. coli. Future studies should examine whether CsMTL2 improves metal tolerance in planta.

  16. Long-term effects of di-octyl phthalate on the expression of immune-related genes in Tegillarca granosa

    Science.gov (United States)

    Wang, Ji; Li, Ye; Dai, Juan; Su, Xiurong; Li, Chenghua; Shen, Lingling

    2016-05-01

    Di-octyl phthalate (DOP) is widely used as a plasticizer in the plastics industry. As a result, DOP is often found in marine water ecosystems where many species are exposed to it. Our objective was to evaluate the effect of long-term (14 d) DOP exposure (2.6, 7.8, or 31.2 mg/L) on the expression of immunerelated genes in Tegillarca granosa. The expression of small heat shock protein (sHSPs) and tissue inhibitor of metalloproteinase (TIMP) were highest in clams exposed to 31.2 mg/L DOP on days 7 and 14. The relative expression of Tg-ferritin, superoxide dismutase (SOD), and metallothionein (MT) increased initially then decreased as the concentration of DOP increased. The hemoglobin of T. granosa (Tg-HbI) exhibited two distinct expression patterns at two time points. Our results suggest that the immune response of T. granosa against DOP pollution varies depending on the dose. Additionally, we identified some immune-related genes that are promising candidates for biomarkers of DOP.

  17. Metallothionein from Wild Populations of the African Catfish Clarias gariepinus: From Sequence, Protein Expression and Metal Binding Properties to Transcriptional Biomarker of Metal Pollution

    Directory of Open Access Journals (Sweden)

    Ethel M’kandawire

    2017-07-01

    Full Text Available Anthropogenic pollution with heavy metals is an on-going concern throughout the world, and methods to monitor release and impact of heavy metals are of high importance. With a view to probe its suitability as molecular biomarker of metal pollution, this study has determined a coding sequence for metallothionein of the African sharptooth catfish Clarias gariepinus. The gene product was recombinantly expressed in Escherichia coli in presence of Zn(II, Cd(II, or Cu, and characterised by Electrospray Ionisation Mass Spectrometry and elemental analysis. C. gariepinus MT displays typical features of fish MTs, including 20 conserved cysteines, and seven bound divalent cations (Zn(II or Cd(II when saturated. Livers from wild C. gariepinus fish collected in all three seasons from four different sites on the Kafue River of Zambia were analysed for their metal contents and for MT expression levels by quantitative PCR. Significant correlations were found between Zn and Cu levels and MT expression in livers, with MT expression clearly highest at the most polluted site, Chililabombwe, which is situated in the Copperbelt region. Based on our findings, hepatic expression of MT from C. gariepinus may be further developed as a major molecular biomarker of heavy metal pollution resulting from mining activities in this region.

  18. Metallothionein from Wild Populations of the African Catfish Clarias gariepinus: From Sequence, Protein Expression and Metal Binding Properties to Transcriptional Biomarker of Metal Pollution.

    Science.gov (United States)

    M'kandawire, Ethel; Mierek-Adamska, Agnieszka; Stürzenbaum, Stephen R; Choongo, Kennedy; Yabe, John; Mwase, Maxwell; Saasa, Ngonda; Blindauer, Claudia A

    2017-07-18

    Anthropogenic pollution with heavy metals is an on-going concern throughout the world, and methods to monitor release and impact of heavy metals are of high importance. With a view to probe its suitability as molecular biomarker of metal pollution, this study has determined a coding sequence for metallothionein of the African sharptooth catfish Clarias gariepinus . The gene product was recombinantly expressed in Escherichia coli in presence of Zn(II), Cd(II), or Cu, and characterised by Electrospray Ionisation Mass Spectrometry and elemental analysis. C. gariepinus MT displays typical features of fish MTs, including 20 conserved cysteines, and seven bound divalent cations (Zn(II) or Cd(II)) when saturated. Livers from wild C. gariepinus fish collected in all three seasons from four different sites on the Kafue River of Zambia were analysed for their metal contents and for MT expression levels by quantitative PCR. Significant correlations were found between Zn and Cu levels and MT expression in livers, with MT expression clearly highest at the most polluted site, Chililabombwe, which is situated in the Copperbelt region. Based on our findings, hepatic expression of MT from C. gariepinus may be further developed as a major molecular biomarker of heavy metal pollution resulting from mining activities in this region.

  19. Cadmium modulates adipocyte functions in metallothionein-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya, E-mail: suzukis@ph.bunri-u.ac.jp

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  20. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver. Keywords: Nanosilver, Silver nanoparticles, Nanoparticles, Toxicogenomics, DNA microarray, Global gene expression profiles, Caco2 cells

  1. Modulation of gene expression as a new skin anti-aging strategy.

    Science.gov (United States)

    Talbourdet, Sylvie; Sadick, Neil S; Lazou, Kristell; Bonnet-Duquennoy, Mathilde; Kurfurst, Robin; Neveu, Michele; Heusèle, Catherine; André, Patrice; Schnebert, Sylvianne; Draelos, Zoe D; Perrier, Eric

    2007-06-01

    [corrected] The signs of aging may originate from natural processes or from exposure to the sun, wind, or other environmental factors. To evaluate the anti-aging effects of potential agents researchers must first identify and be able to quantify epidermal markers that change with aging. This paper summarizes the results of studies conducted to evaluate the transcriptional effects of an Aframomum angustifolium seed extract and Malva Sylvestris extract, and the antiaging efficacy of a skin care product containing the Aframomum angustifolium seed extract. The transcriptional effect of an Aframomum angustifolium seed extract on normal human keratinocytes (NHKs) and normal human fibroblasts (NHF) was evaluated in vitro with the use of a low-density DNA array technology. The Malva Sylvestris extract was studied with a commercial DNA macroarray and by a real-time quantitative reverse transcriptase-polymerase chain reaction. The in vitro anti-aging activities of the Malva sylvestris extract were compared with those of all-trans retinoic acid (RA), a well-established topical therapy for photodamage and wrinkles. The genes studied were known to be modified by RA. The anti-aging efficacy of a facial skin care product containing Aframomum angustifolium seed extract was evaluated in a single-center study using image processing analysis and in a 2-center study by evaluation of the photographs by the investigator, independent evaluators, and subjects. In general, the Aframomum angustifolium seed extract strongly modified the gene expression profiles of NHKs and weakly modified the gene expression profiles of NHFs. After incubation with Aframomum angustifolium seed extract, the expressions of 3 antioxidant genes (metallothionein 1, metallothionein 2, and thioredoxin) were increased in NHKs, while expressions of 1 antioxidant gene (glutathione peroxidase) was increased in NHFs. Concerning the Malva sylvestris extract, a cDNA macro-array technology experiment with the reconstructed

  2. Metallothioneins in human tumors and potential roles in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-12-10

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  3. Metallothioneins in human tumors and potential roles in carcinogenesis

    International Nuclear Information System (INIS)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-01-01

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  4. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    International Nuclear Information System (INIS)

    Adams, Scott V.; Barrick, Brian; Christopher, Emily P.; Shafer, Martin M.; Makar, Karen W.; Song, Xiaoling; Lampe, Johanna W.; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  5. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Barrick, Brian [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Christopher, Emily P. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Shafer, Martin M. [Environmental Chemistry and Technology, Wisconsin State Laboratory of Hygiene, University of Wisconsin, 2601 Agriculture Dr., Madison, WI 53718 (United States); Makar, Karen W.; Song, Xiaoling [Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Lampe, Johanna W. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Vilchis, Hugo [Border Epidemiology and Environmental Health Center, New Mexico State University, Box 30001 MSC 3BEC, Las Cruces, NM 88003 (United States); Ulery, April [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Newcomb, Polly A. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States)

    2015-12-15

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  6. Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta

    Directory of Open Access Journals (Sweden)

    van Straalen Nico M

    2007-06-01

    Full Text Available Abstract Background Metallothionein (mt transcription is elevated in heavy metal tolerant field populations of Orchesella cincta (Collembola. This suggests that natural selection acts on transcriptional regulation of mt in springtails at sites where cadmium (Cd levels in soil reach toxic values This study investigates the nature and the evolutionary origin of polymorphisms in the metallothionein promoter (pmt and their functional significance for mt expression. Results We sequenced approximately 1600 bp upstream the mt coding region by genome walking. Nine pmt alleles were discovered in NW-European populations. They differ in the number of some indels, consensus transcription factor binding sites and core promoter elements. Extensive recombination events between some of the alleles can be inferred from the alignment. A deviation from neutral expectations was detected in a cadmium tolerant population, pointing towards balancing selection on some promoter stretches. Luciferase constructs were made from the most abundant alleles, and responses to Cd, paraquat (oxidative stress inducer and moulting hormone were studied in cell lines. By using paraquat we were able to dissect the effect of oxidative stress from the Cd specific effect, and extensive differences in mt induction levels between these two stressors were observed. Conclusion The pmt alleles evolved by a number of recombination events, and exhibited differential inducibilities by Cd, paraquat and molting hormone. In a tolerant population from a metal contaminated site, promoter allele frequencies differed significantly from a reference site and nucleotide polymorphisms in some promoter stretches deviated from neutral expectations, revealing a signature of balancing selection. Our results suggest that the structural differences in the Orchesella cincta metallothionein promoter alleles contribute to the metallothionein -over-expresser phenotype in cadmium tolerant populations.

  7. Erythrocyte metallothionein as an index of zinc status in humans

    International Nuclear Information System (INIS)

    Grider, A.; Bailey, L.B.; Cousins, R.J.

    1990-01-01

    Metallothionein concentrations in erythrocyte lysates derived from human subjects were measured by an ELISA procedure. IgG obtained from serum of sheep injected with human metallothionein 1 was used in this competitive assay. Subjects were fed a semipurified zinc-deficient diet for an 8-day depletion period after 3 days of acclimation. Fasting plasma zinc concentrations were reduced ∼7%. Metallothionein in the erythrocyte lysates was significantly decreased to 59% of the initial level by the end of the depletion period. Supplementation of these depleted subjects with zinc did not increase erythrocyte metallothionein levels within 24 hr. Daily supplementation of control subjects with zinc increased erythrocyte metallothionein to a 7-fold maximum within 7 days. These levels were reduced by 61% within 14 days after zinc supplementation was terminated. Incubation of rat [ 35 S]metallothionein with human erythrocyte lysate showed a time-dependent increase in 35 S soluble in 20% trichloroacetic acid, indicating degradation of the labeled protein, presumably via protease activity in the lysate. It is proposed that zinc supplementation induces erythrocyte metallothionein during erythropoiesis and that low zinc intake decreases synthesis and/or accelerates degradation of the protein in reticulocytes/erythrocytes. Metallothionein levels in erythrocytes may provide a useful index upon which to assess zinc status in humans

  8. Gene expression analysis of 4 biomarker candidates in Eisenia fetida exposed to an environmental metallic trace elements gradient: A microcosm study

    Energy Technology Data Exchange (ETDEWEB)

    Brulle, Franck; Lemiere, Sebastien [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France); Waterlot, Christophe; Douay, Francis [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Sols et Environnement, Groupe ISA, 48 boulevard Vauban, F-59046 Lille Cedex (France); Vandenbulcke, Franck, E-mail: franck.vandenbulcke@univ-lille1.fr [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France)

    2011-11-15

    Past activities of 2 smelters (Metaleurop Nord and Nyrstar) led to the accumulation of high amounts of Metal Trace Elements (TEs) in top soils of the Noyelles-Godault/Auby area, Northern France. Earthworms were exposed to polluted soils collected in this area to study and better understand the physiological changes, the mechanisms of acclimation, and detoxification resulting from TE exposure. Previously we have cloned and transcriptionally characterized potential biomarkers from immune cells of the ecotoxicologically important earthworm species Eisenia fetida exposed in vivo to TE-spiked standard soils. In the present study, analysis of expression kinetics of four candidate indicator genes (Cadmium-metallothionein, coactosin like protein, phytochelatin synthase and lysenin) was performed in E. fetida after microcosm exposures to natural soils exhibiting an environmental cadmium (Cd) gradient in a kinetic manner. TE body burdens were also measured. This microcosm study provided insights into: (1) the ability of the 4 tested genes to serve as expression biomarkers, (2) detoxification processes through the expression analysis of selected genes, and (3) influence of land uses on the response of potential biomarkers (gene expression or TE uptake). - Highlights: {yields} Expression biomarkers in animals exposed to Cadmium-contaminated field soils. {yields} Expression kinetics to test the ability of genes to serve as expression biomarkers. {yields} Study of detoxification processes through the expression analysis of selected genes.

  9. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-04-01

    Full Text Available Differentiation of human pluripotent stem cells towards definitive endoderm (DE is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Keywords: hPSC, Differentiation, Definitive endoderm, Heterogeneity, Single cell, RNA sequencing

  10. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  11. cDNA cloning and nucleotide sequence comparison of Chinese hamster metallothionein I and II mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B B; Walters, R A; Enger, M D; Hildebrand, C E; Griffith, J K

    1983-01-01

    Polyadenylated RNA was extracted from a cadmium resistant Chinese hamster (CHO) cell line, enriched for metal-induced, abundant RNA sequences and cloned as double-stranded cDNA in the plasmid pBR322. Two cDNA clones, pCHMT1 and pCHMT2, encoding two Chinese hamster isometallothioneins were identified, and the nucleotide sequence of each insert was determined. The two Chinese hamster metallothioneins show nucleotide sequence homologies of 80% in the protein coding region and approximately 35% in both the 5' and 3' untranslated regions. Interestingly, an 8 nucleotide sequence (TGTAAATA) has been conserved in sequence and position in the 3' untranslated regions of each metallothionein mRNA sequenced thus far. Estimated nucleotide substitution rates derived from interspecies comparisons were used to calculate a metallothionein gene duplication time of 45 to 120 million years ago. 39 references, 1 figure, 1 table.

  12. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    Directory of Open Access Journals (Sweden)

    Davey Jennifer C

    2007-12-01

    Full Text Available Abstract Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT. The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for

  13. The role of metallothionein in oncogenesis and cancer treatment

    OpenAIRE

    Anna Bizoń; Kinga Jędryczko; Halina Milnerowicz

    2017-01-01

    Metallothionein is cysteine-rich low molecular mass protein. The involvement of MT in many physiological and pathophysiological processes such as apoptosis, proliferation, angiogenesis, and the detoxification of heavy metals suggested participation of this protein in carcinogenesis and tumor therapy.Depending on the type of tissue and classification of carcinoma various it was observed relation between MT expression and tumor type, stage, grade, poor prognosis and body resistance to radiother...

  14. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene.

    Science.gov (United States)

    Qiang, Jun; Tao, Yi-Fan; He, Jie; Xu, Pao; Bao, Jin-Wen; Sun, Yi-Lan

    2017-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3'untranslated region (3'UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3'UTR, as shown by a 3' UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3'UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Insight on trace element detoxification in the Black-tailed Godwit (Limosa limosa) through genetic, enzymatic and metallothionein analyses

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, Magali, E-mail: m.lucia33@laposte.net [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Bocher, Pierrick [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Cosson, Richard P. [Mer Molecules Sante (MMS), Universite de Nantes, EA 2663, 2 rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Churlaud, Carine; Robin, Frederic; Bustamante, Paco [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2012-04-15

    Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn) were investigated in the liver, kidneys, muscle and feathers of 31 black-tailed godwits (Limosa limosa) accidentally killed during catches by mist net in the Pertuis Charentais, Atlantic coast of France. Analyses of carbon and nitrogen stable isotope ratios were carried out in liver, muscle and feathers in order to elucidate dietary patterns and to determine whether differences in diet explained the variation in elemental uptake. This study also aimed to have a preliminary assessment of sub-lethal effects triggered by trace elements through the investigation of gene expressions by quantitative real-time PCR, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase), and metallothionein (MT) levels. The results showed that Cr and Ni concentrations in tissues of adults were lower than in juveniles in part because adults may have eliminated these trace elements through moulting. Except for Cd and Ni, trace element concentrations were negatively correlated to the body mass of godwits. Ag, As, Hg and Se concentrations were positively linked with the trophic position of birds. The diet could be considered as a fundamental route of exposure for these elements demonstrating therefore the qualitative linkage between dietary habits of godwits and their contaminant concentrations. Our results strongly suggest that even though trace element concentrations were mostly below toxicity threshold level, the elevated concentrations of As, Ag, Cd, Cu, Fe and Se may however trigger sub-lethal effects. Trace elements appear to enhance expression of genes involved in oxidative stress defence, which indicates the production of reactive oxygen species. Moreover, birds with the highest concentrations appeared to have an increased mitochondrial metabolism suggesting that the fight against trace element toxicity requires additional energetic needs notably to produce detoxification

  16. Insight on trace element detoxification in the Black-tailed Godwit (Limosa limosa) through genetic, enzymatic and metallothionein analyses

    International Nuclear Information System (INIS)

    Lucia, Magali; Bocher, Pierrick; Cosson, Richard P.; Churlaud, Carine; Robin, Frédéric; Bustamante, Paco

    2012-01-01

    Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn) were investigated in the liver, kidneys, muscle and feathers of 31 black-tailed godwits (Limosa limosa) accidentally killed during catches by mist net in the Pertuis Charentais, Atlantic coast of France. Analyses of carbon and nitrogen stable isotope ratios were carried out in liver, muscle and feathers in order to elucidate dietary patterns and to determine whether differences in diet explained the variation in elemental uptake. This study also aimed to have a preliminary assessment of sub-lethal effects triggered by trace elements through the investigation of gene expressions by quantitative real-time PCR, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase), and metallothionein (MT) levels. The results showed that Cr and Ni concentrations in tissues of adults were lower than in juveniles in part because adults may have eliminated these trace elements through moulting. Except for Cd and Ni, trace element concentrations were negatively correlated to the body mass of godwits. Ag, As, Hg and Se concentrations were positively linked with the trophic position of birds. The diet could be considered as a fundamental route of exposure for these elements demonstrating therefore the qualitative linkage between dietary habits of godwits and their contaminant concentrations. Our results strongly suggest that even though trace element concentrations were mostly below toxicity threshold level, the elevated concentrations of As, Ag, Cd, Cu, Fe and Se may however trigger sub-lethal effects. Trace elements appear to enhance expression of genes involved in oxidative stress defence, which indicates the production of reactive oxygen species. Moreover, birds with the highest concentrations appeared to have an increased mitochondrial metabolism suggesting that the fight against trace element toxicity requires additional energetic needs notably to produce detoxification

  17. Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut

    International Nuclear Information System (INIS)

    Shu, Yinghua; Zhang, Guren; Wang, Jianwu

    2012-01-01

    By exposing the common cutworm Spodoptera litura Fabricius larvae to a range of Zinc (Zn) stress, we investigated the effects of dietary Zn on Zn accumulation, metallothionein (MT), and on the ultrastructure of the midgut. The techniques we used were inductively coupled plasma-atomic emission spectrometer (ICP-AES), real-time PCR combined with cadmium-hemoglobin total saturation, and transmission electron microscopy (TEM), respectively. There was a significant dose–response relationship between the Zn accumulations in the midgut of the larvae and the Zn concentrations in the diet. Furthermore, both MT content and MT gene expression in the midgut were significantly induced in the 50–500 mg Zn/kg treatments, and were significantly positively correlated with the Zn accumulations in the midgut. When S. litura larvae were fed with the diet treated with 500 mg Zn/kg, Zn accumulation and MT content in the midgut was 4450.85 mg Zn/kg and 372.77 mg/kg, respectively, thereafter there was a little increase; the level of MT gene expression was maximal, thereafter there was a sharp decrease. TEM showed that numerous electron-dense granules (EDGs) and vacuoles appeared in the cytoplasm of the midgut cells, their number and size being closely correlated with the Zn accumulations in the midgut. Moreover, the nuclei were strongly influenced by Zn stress, evidenced by chromatin condensation and irregular nuclear membranes. Therefore, after being exposed to Zn in the threshold (500 mg Zn/kg) range, S. litura larvae could accumulate Zn in the midgut, which led to the induction of MT and changes in cell ultrastructure (mainly the presence of EDGs). The induction of MT and precipitation of Zn in EDGs may be the effective detoxification mechanisms by which the herbivorous insect S. litura defends itself against heavy metals. -- Graphical abstract: When the herbivorous insect Spodoptera litura Fabricius larvae were fed on the artificial diet with different concentrations of Zn

  18. Molecular cloning of chicken metallothionein. Deduction of the complete amino acid sequence and analysis of expression using cloned cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D; Andrews, G K

    1988-01-25

    A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (375 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparison establish that chicken MT shares extensive homology with mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.

  19. Effects of Methylmercury Contained in a Diet Mimicking the Wayana Amerindians Contamination through Fish Consumption: Mercury Accumulation, Metallothionein Induction, Gene Expression Variations, and Role of the Chemokine CCL2

    Directory of Open Access Journals (Sweden)

    Daniel Brèthes

    2012-06-01

    Full Text Available Methylmercury (MeHg is a potent neurotoxin, and human beings are mainly exposed to this pollutant through fish consumption. We addressed the question of whether a diet mimicking the fish consumption of Wayanas Amerindians from French Guiana could result in observable adverse effects in mice. Wayanas adult men are subjected to a mean mercurial dose of 7 g Hg/week/kg of body weight. We decided to supplement a vegetarian-based mice diet with 0.1% of lyophilized Hoplias aimara fish, which Wayanas are fond of and equivalent to the same dose as that afflicting the Wayanas Amerindians. Total mercury contents were 1.4 ± 0.2 and 5.4 ± 0.5 ng Hg/g of food pellets for the control and aimara diets, respectively. After 14 months of exposure, the body parts and tissues displaying the highest mercury concentration on a dry weight (dw basis were hair (733 ng/g and kidney (511 ng/g, followed by the liver (77 ng/g. Surprisingly, despite the fact that MeHg is a neurotoxic compound, the brain accumulated low levels of mercury (35 ng/g in the cortex. The metallothionein (MT protein concentration only increased in those tissues (kidney, muscles in which MeHg demethylation had occurred. This can be taken as a molecular sign of divalent mercurial contamination since only Hg2+ has been reported yet to induce MT accumulation in contaminated tissues. The suppression of the synthesis of the chemokine CCL2 in the corresponding knockout (KO mice resulted in important changes in gene expression patterns in the liver and brain. After three months of exposure to an aimara-containing diet, eight of 10 genes selected (Sdhb, Cytb, Cox1, Sod1, Sod2, Mt2, Mdr1a and Bax were repressed in wild-type mice liver whereas none presented a differential expression in KO Ccl2/ mice. In the wild-type mice brain, six of 12 genes

  20. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene

    International Nuclear Information System (INIS)

    Qiang, Jun; Tao, Yi-Fan; He, Jie; Xu, Pao; Bao, Jin-Wen; Sun, Yi-Lan

    2017-01-01

    Highlights: • MiR-122 regulated tilapia MT by directly targeting MT 3′UTR. • MiR-122 level was negatively related to MT level under Cd stress. • MiR-122 silencing caused up-regulation of MT expression. • MiR-122 loss relieved liver stress and stimulated antioxidant enzymes. - Abastract: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3′untranslated region (3′UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3′UTR, as shown by a 3′ UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3′UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses.

  1. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Jun, E-mail: Qiangj@ffrc.cn [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China); Tao, Yi-Fan [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); He, Jie [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China); Xu, Pao, E-mail: Xup@ffrc.cn [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China); Bao, Jin-Wen [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Sun, Yi-Lan [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China)

    2017-01-15

    Highlights: • MiR-122 regulated tilapia MT by directly targeting MT 3′UTR. • MiR-122 level was negatively related to MT level under Cd stress. • MiR-122 silencing caused up-regulation of MT expression. • MiR-122 loss relieved liver stress and stimulated antioxidant enzymes. - Abastract: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3′untranslated region (3′UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3′UTR, as shown by a 3′ UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3′UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses.

  2. ECOLOGICAL RISK ASSESSMENT OF ALFALFA (MEDICAGO VARIA L.) GENETICLALY ENGINEERED TO EXPRESS A HUMAN METALLOTHIONEIN (HMT) GENE

    Science.gov (United States)

    The objectives of these studies were two-fold: (1) to determine efficacy of low and high expression hMT gene constructs by assessing accumulation of Cu in shoots of parental and transgenic plants of alfalfa (Medicago varia L.) exposed to different concentrations of CuSO4 by addit...

  3. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease

    Directory of Open Access Journals (Sweden)

    Martha Elba Gonzalez-Mejia

    2014-04-01

    Full Text Available Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO, has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf, infected N-monomethyl-L-arginine treated (Inf L-NAME, non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001. In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels.

  4. Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics

    International Nuclear Information System (INIS)

    Konlechner, Cornelia; Türktaş, Mine; Langer, Ingrid; Vaculík, Marek; Wenzel, Walter W.; Puschenreiter, Markus; Hauser, Marie-Theres

    2013-01-01

    Salix caprea is well suited for phytoextraction strategies. In a previous survey we showed that genetically distinct S. caprea plants isolated from metal-polluted and unpolluted sites differed in their zinc (Zn) and cadmium (Cd) tolerance and accumulation abilities. To determine the molecular basis of this difference we examined putative homologues of genes involved in heavy metal responses and identified over 200 new candidates with a suppression subtractive hybridization (SSH) screen. Quantitative expression analyses of 20 genes in leaves revealed that some metallothioneins and cell wall modifying genes were induced irrespective of the genotype's origin and metal uptake capacity while a cysteine biosynthesis gene was expressed constitutively higher in the metallicolous genotype. The third and largest group of genes was only induced in the metallicolous genotype. These data demonstrate that naturally adapted woody non-model species can help to discover potential novel molecular mechanisms for metal accumulation and tolerance. -- Highlights: ► The transcriptional Zn/Cd response of the willow Salix caprea was quantified. ► Two genotypes from a highly contaminated and a control environment were compared. ► In addition to candidate genes an SSH library revealed over 200 metal induced genes. ► Constitutive upregulation and isolate-specific induction of genes were revealed. ► Willows adapt to environmental Zn/Cd contamination on the transcriptional level. -- Expression analyzes reveal different responses to Cd and Zn exposure of S. caprea genotypes with different heavy metal accumulation abilities

  5. Effect of metallothionein core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Mergen, Goerkem; Soeylemezoglu, Tuelin

    2010-01-01

    Metallothioneins (MTs) are metal-binding, low molecular weight proteins and are involved in pathophysiological processes like metabolism of essential metals, metal ion homeostasis and detoxification of heavy metals. Metallothionein expression is induced by various heavy metals especially cadmium, mercury and zinc; MTs suppress toxicity of heavy metals by binding themselves to these metals. The aim of this study was to investigate the association between the - 5 A/G metallothionein 2A (MT2A) single nucleotide polymorphism (SNP) and Cd, Zn and Cu levels in the renal cortex from autopsy cases. MT2A core promoter region - 5 A/G SNP was analyzed by PCR-RFLP method using 114 autopsy kidney tissues and the genotype frequencies of this polymorphism were found as 87.7% homozygote typical (AA), 11.4% heterozygote (AG) and 0.9% homozygote atypical (GG). In order to assess the Cd, Zn and Cu levels in the same autopsy kidney tissues, a dual atomic absorption spectrophotometer system was used and the average levels of Cd, Zn and Cu were measured as 95.54 ± 65.58 μg/g, 181.20 ± 87.72 μg/g and 17.14 ± 16.28 μg/g, respectively. As a result, no statistical association was found between the - 5 A/G SNP in the MT2A gene and the Zn and Cu levels in the renal cortex (p > 0.05), but considerably high accumulation of Cd was monitored for individuals having AG (151.24 ± 60.21 μg/g) and GG genotypes (153.09 μg/g) compared with individuals having AA genotype (87.72 ± 62.98 μg/g) (p < 0.05). These results show that the core promoter region polymorphism of metallothionein 2A increases the accumulation of Cd in human renal cortex.

  6. Genotoxic effects and gene expression in Danio rerio (Hamilton 1822) (Cypriniformes: Cyprinidae) exposed to mining-impacted tributaries in Manizales, Colombia.

    Science.gov (United States)

    Ossa-López, Paula A; Castaño-Villa, Gabriel J; Rivera-Páez, Fredy A

    2017-09-25

    The zebrafish (Danio rerio) is one of the most studied aquatic organisms for water biomonitoring, due to its sensitivity to environmental degradation and resistance to toxic substances. This study determined the presence of micronuclei and nuclear abnormalities in peripheral blood erythrocytes, and assessed the gene expression of caspase-3 (CASP-3) and metallothionein 1 (MT-1) in the gills and liver of D. rerio. The study fish (n = 45) were exposed to water collected from two stations with mining impact (E2 and E3) and a reference station without evident mining contamination (E1), all located in La Elvira stream (Manizales-Colombia). In addition, a positive control (PC) with HgCl 2 (50 μg/L) and negative control (NC) with tap water were included. The fish from the PC and E2 and E3 treatments displayed genotoxic effects and changes in gene expression, with significant differences in micronuclei formation and the presence of blebbed nuclei. The cytochrome oxidase subunit I (COI) gene was used as reference and proved to be stable compared to the β-actin and 28S ribosomal RNA (28S) genes. In gills, CASP-3 expression was higher in the PC, and MT-1 expression was higher in the PC and E3 treatment. In liver, CASP-3 was expressed in the E2 treatment, and MT-1 expression was low. These results show that the genotoxic effects and differential gene expression observed in fish exposed to water from La Elvira stream could also be affecting the organisms present in this habitat.

  7. Bioaccumulation, morphological changes, and induction of metallothionein gene expression in the digestive system of the freshwater crab Sinopotamon henanense after exposure to cadmium.

    Science.gov (United States)

    Wu, Hao; Li, Yingjun; Lang, Xingping; Wang, Lan

    2015-08-01

    To study the responses of digestive system of the freshwater crab Sinopotamon henanense to the exposure with cadmium (Cd), crabs were acutely exposed to 7.25, 14.50, and 29.00 mg/l Cd for 96 h and subchronically exposed to 0.725, 1.450, and 2.900 mg/l for 21 days. Cd bioaccumulation in the hepatopancreas and digestive tract (esophagus and intestine) was examined. Furthermore, histopathological alterations of the esophagus, midgut, hindgut, and hepatopancreas were assessed in animals from the 29.0 and 2.90 mg/l Cd treatment groups, and expression of metallothionein messenger RNA (MT mRNA) in the hepatopancreas and intestine was measured in all treatment groups. The results showed difference in the middle and high concentrations between acute and subchronic treatment groups. Cd content in digestive tract after acute 14.5 and 29.0 mg/l Cd exposure was significantly higher than that at subchronic 1.45 and 2.90 mg/l exposure, but Cd levels in hepatopancreas were not significantly different under the same condition. Acute exposure to Cd induced greater morphological damage than subchronic exposure: large areas of epithelial cells were necrotic in hepatopancreas and midgut, which detached from the basal lamina. Vacuolated muscle cells were observed in the hindgut of animals from the acute exposure group, but the changes of esophageal morphology were not obvious after acute or subchronic treatments. The expression of MT mRNA increased with increasing Cd concentration, and MT mRNA level in acute exposure groups was significantly lower when compared to the subchronic exposure groups. Higher Cd content and lower MT mRNA expression in the acutely exposed groups may be responsible for more severe damage of digestive system in these exposure groups.

  8. Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum.

    Science.gov (United States)

    Alizadeh, Fahimeh; Abdullah, Siti Nor Akmar; Khodavandi, Alireza; Abdullah, Faridah; Yusuf, Umi Kalsom; Chong, Pei Pei

    2011-07-01

    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum

  9. Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Yinghua [Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642 (China); Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642 (China); State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guren [State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Jianwu, E-mail: wangjw@scau.edu.cn [Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642 (China); Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642 (China)

    2012-11-01

    By exposing the common cutworm Spodoptera litura Fabricius larvae to a range of Zinc (Zn) stress, we investigated the effects of dietary Zn on Zn accumulation, metallothionein (MT), and on the ultrastructure of the midgut. The techniques we used were inductively coupled plasma-atomic emission spectrometer (ICP-AES), real-time PCR combined with cadmium-hemoglobin total saturation, and transmission electron microscopy (TEM), respectively. There was a significant dose-response relationship between the Zn accumulations in the midgut of the larvae and the Zn concentrations in the diet. Furthermore, both MT content and MT gene expression in the midgut were significantly induced in the 50-500 mg Zn/kg treatments, and were significantly positively correlated with the Zn accumulations in the midgut. When S. litura larvae were fed with the diet treated with 500 mg Zn/kg, Zn accumulation and MT content in the midgut was 4450.85 mg Zn/kg and 372.77 mg/kg, respectively, thereafter there was a little increase; the level of MT gene expression was maximal, thereafter there was a sharp decrease. TEM showed that numerous electron-dense granules (EDGs) and vacuoles appeared in the cytoplasm of the midgut cells, their number and size being closely correlated with the Zn accumulations in the midgut. Moreover, the nuclei were strongly influenced by Zn stress, evidenced by chromatin condensation and irregular nuclear membranes. Therefore, after being exposed to Zn in the threshold (500 mg Zn/kg) range, S. litura larvae could accumulate Zn in the midgut, which led to the induction of MT and changes in cell ultrastructure (mainly the presence of EDGs). The induction of MT and precipitation of Zn in EDGs may be the effective detoxification mechanisms by which the herbivorous insect S. litura defends itself against heavy metals. -- Graphical abstract: When the herbivorous insect Spodoptera litura Fabricius larvae were fed on the artificial diet with different concentrations of Zn, amounts of

  10. Metallothionein in brook trout (salvelinus fontinalis) as a biological indicator of inorganic chemical contaminant stress

    International Nuclear Information System (INIS)

    Hamilton, S.J.

    1985-01-01

    A technique for quantifying metallothionein was evaluated with fish tissue. Adult brook trout were administered 3 mg 109 cadmium/kg body weight by intraperitoneal injection over a 5 day period to induce metallothionein concentrations in liver and kidney tissues. The method was modified so cadmium bound to unsaturated metallothionein could be measured. The method gave precise measurements and was used to evaluate the toxicological significant of metallothionein in two 30-day chronic toxicity studies of cadmium on brook trout. In particular, metallothionein was evaluated as a biological indicator of inorganic chemical stress in brook trout. Pathological effects in animals resulting from exposure to inorganic chemicals is thought to occur when metallothionein's sequestering ability is exceeded; a phenomenon explained by the spillover hypothesis. The presence of free cadmium in tissues of fish from all exposures suggests metallothionein was not saturated with cadmium perhaps because of competition for binding sites on metallothionein between cadmium and other inorganic chemicals such as copper and zinc. Based on results of the two toxicity studies, the spillover hypothesis should be redefined to a continuum of toxic responses to varying balances between the relative abundance of inorganic chemicals present and their respective binding affinities for metallothionein

  11. Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Guo, Hui; Li, Kexu; Wang, Wei; Wang, Chenggui; Shen, Yuchun

    2017-10-01

    Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L -1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6-48 h among shrimp exposed to 1 mg L -1 Cu and at each time points in 5 mg L -1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.

  12. Effects of heavy metals on population growth and metallothionein gene expression in the mosquito Culex quinquefasciatus, from Calcutta, India

    International Nuclear Information System (INIS)

    Sarkar, Sagartirtha; Duttagupta, Asish K.; Mal, Tarun K.

    2004-01-01

    Major water bodies in and around the city of Calcutta (India) receive heavy metal contaminated effluents from industries, households, and vehicular traffic through sewage or drainage. We quantified concentrations of Cu, Zn, and Cd from three water bodies at Kalighat, Tangra, and VIP Road, respectively. The concentrations of these heavy metals were significantly greater in the summer than in monsoon when heavy downpours resulted in reduced metal concentrations. Concentrations of metals in the mosquito Culex quinquefasciatus also reflected such seasonal fluctuations. Hatchability and survivorship of C. quinquefasciatus significantly differed among the sites and were reduced significantly from the control. Exposure to heavy metals also induced MT-gene expression in C. quinquefasciatus, likely helping them to survive in the water bodies stressed with heavy metals. MT-gene activity demonstrated significant variation among sites and seasons with the highest activity in the summer in the VIP Road population. This study suggests that C. quinquefasciatus could be used as an ecological indicator of heavy metal pollution by monitoring its MT-gene expression. - The mosquito, Culex quinquefasciatus, might be useful as an indicator of trace metals

  13. Effects of heavy metals on population growth and metallothionein gene expression in the mosquito Culex quinquefasciatus, from Calcutta, India

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sagartirtha; Duttagupta, Asish K.; Mal, Tarun K

    2004-01-01

    Major water bodies in and around the city of Calcutta (India) receive heavy metal contaminated effluents from industries, households, and vehicular traffic through sewage or drainage. We quantified concentrations of Cu, Zn, and Cd from three water bodies at Kalighat, Tangra, and VIP Road, respectively. The concentrations of these heavy metals were significantly greater in the summer than in monsoon when heavy downpours resulted in reduced metal concentrations. Concentrations of metals in the mosquito Culex quinquefasciatus also reflected such seasonal fluctuations. Hatchability and survivorship of C. quinquefasciatus significantly differed among the sites and were reduced significantly from the control. Exposure to heavy metals also induced MT-gene expression in C. quinquefasciatus, likely helping them to survive in the water bodies stressed with heavy metals. MT-gene activity demonstrated significant variation among sites and seasons with the highest activity in the summer in the VIP Road population. This study suggests that C. quinquefasciatus could be used as an ecological indicator of heavy metal pollution by monitoring its MT-gene expression. - The mosquito, Culex quinquefasciatus, might be useful as an indicator of trace metals.

  14. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus

    International Nuclear Information System (INIS)

    Jaeckel, Petra; Krauss, Gudrun; Menge, Sieglinde; Schierhorn, Angelika; Ruecknagel, Peter; Krauss, Gerd-Joachim

    2005-01-01

    Cadmium stress response was measured at the thiol peptide level in an aquatic hyphomycete (Heliscus lugdunensis). In liquid culture, 0.1mM cadmium increased the glutathione (GSH) content and induced the synthesis of additional thiol peptides. HPLC, electrospray ionization mass spectrometry, and Edman degradation confirmed that a novel small metallothionein as well as phytochelatin (PC2) were synthesized. The metallothionein has a high homology to family 8 metallothioneins (http://www.expasy.ch/cgi-bin/lists?metallo.txt). The bonding of at least two cadmium ions to the metallothionein was demonstrated by mass spectrometry (MALDI MS). This is the first time that simultaneous induction of metallothionein and phytochelatin accompanied by an increase in GSH level has been shown in a fungus under cadmium stress, indicating a potential function of these complexing agents for in vivo heavy metal detoxification. The method presented here should be applicable as biomarker tool. ol

  15. A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomi Hirako

    Full Text Available We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.

  16. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  17. Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    JUAN DIEGO MAYA

    2004-01-01

    Full Text Available Proteins rich in sulfhydryl groups, such as metallothionein, are present in several strains of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Metallothionein-like protein concentrations ranged from 5.1 to 13.2 pmol/mg protein depending on the parasite strain and growth phase. Nifurtimox and benznidazole, used in the treatment of Chagas' disease, decreased metallothionein activity by approximately 70%. T. cruzi metallothionein was induced by ZnCl2. Metallothionein from T. cruzi was partially purified and its monobromobimane derivative showed a molecular weight of approximately 10,000 Da by SDS-PAGE analysis. The concentration of trypanothione, the major glutathione conjugate in T. cruzi, ranged from 3.8 to 10.8 nmol/mg protein, depending on the culture phase. The addition of buthionine sulfoximine to the protozoal culture considerably reduced the concentration of trypanothione and had no effect upon the metallothionein concentration. The possible contribution of metallothionein-like proteins to drug resistance in T. cruzi is discussed.

  18. Variations in gene expression levels in four European zebra mussel, Dreissena polymorpha, populations in relation to metal bioaccumulation: A field study.

    Science.gov (United States)

    Kerambrun, E; Rioult, D; Delahaut, L; Evariste, L; Pain-Devin, S; Auffret, M; Geffard, A; David, E

    2016-12-01

    The present study was performed to validate the suitability of using gene expression in zebra mussels, Dreissena polymorpha, for biomonitoring of freshwater environment. Mussels were collected in four French rivers (Meuse, Moselle, Oise and Vilaine) in spring and autumn. Relative gene expression of 9 candidate genes involved in cellular metabolic activities (Cytochrome-c-oxidase - cox, and ATP synthase - atp), detoxification process (Metallothionein - mt and Glutathion-S-Transferase - gst), oxidative stress (Catalase - cat, Superoxyde Dismutase - sod and Glutathion peroxidase - gpx) and digestive functions (Amylase - amy and Cellulase - ghf) were measured in digestive gland. Metal bioaccumulation in tissues and morphometric parameters were also analyzed to interpret molecular responses. All our results are consistent with different physiological reactions to environmental condition between zebra mussel populations. In spring, the levels of mt, sod, gpx, cat, atp, amy and ghf relative expression were significantly higher in mussels with the lowest metal bioaccumulation (the Meuse) compared to at least one of the other sites. In autumn, this higher expression levels in Meuse River were still observed for gpx, cat, atp and amy. This study has also pointed out different sources of variability in gene expression (individual size, season, trophic resources and origin of mussels) which are inevitable in natural fluctuant environment. This underlines the importance to take them into account in field study to propose a correct interpretation of biomarker responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  20. Intraneuronal signaling pathways of metallothionein

    DEFF Research Database (Denmark)

    Asmussen, Johanne Wirenfeldt; Von Sperling, Marie Louise; Penkowa, Milena

    2009-01-01

    Metallothionein (MT) belongs to a family of metal-binding cysteine-rich proteins comprising several structurally related proteins implicated in tissue protection and regeneration after injuries and functioning as antiapoptotic antioxidants in neurological disorders. This has been demonstrated in ...

  1. Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans.

    Science.gov (United States)

    Roh, Ji-Yeon; Jung, In-Ho; Lee, Jai-Young; Choi, Jinhee

    2007-07-31

    In this study, di(2-ethylhexyl)phthalate (DEHP) toxicities to Caenorhabditis elegans were investigated using multiple toxic endpoints, such as mortality, growth, reproduction and stress-related gene expression, focusing on the identification of chemical-induced gene expression as a sensitive biomarker for DEHP monitoring. The possible use of C. elegans as a sentinel organism in the monitoring of soil ecosystem health was also tested by conducting the experiment on the exposure of nematode to field soil. Twenty-four-hour median lethal concentration (LC50) data suggest that DEHP has a relatively high potential of acute toxicity to C. elegans. Decreases in body length and egg number per worm observed after 24h of DEHP exposure may induce long-term alteration in the growth and reproduction of the nematode population. Based on the result from the C. elegans genome array and indicated in the literatures, stress proteins, metallothionein, vitellogenin, xenobiotic metabolism enzymes, apoptosis-related proteins, and antioxidant enzyme genes were selected as stress-related genes and their expression in C. elegans by DEHP exposure was analyzed semi-quantitatively. Expression of heat shock protein (hsp)-16.1 and hsp-16.2 genes was decreased by DEHP exposure. Expression of cytochrome P450 (cyp) 35a2 and glutathione-S-transferease (gst)-4, phase I and phase II of xenobiotic metabolism enzymes, was increased by DEHP exposure in a concentration-dependent manner. An increase in stress-related gene expressions occurred concomitantly with the deterioration on the physiological level, which suggests an increase in expression of those genes may not be considered as a homeostatic response but as a toxicity that might have physiological consequences. The experiment with the soil from the landfill site suggests that the potential of the C. elegans biomarker identified in laboratory conditions should be calibrated and validated for its use in situ.

  2. Metallothionein mRNA induction is correlated with the decrease of DNA strand breaks in cadmium exposed zebra mussels.

    Science.gov (United States)

    Vincent-Hubert, Françoise; Châtel, Amélie; Gourlay-Francé, Catherine

    2014-05-15

    We have previously shown that cadmium (Cd) and benzo[a]pyrene (BaP) induced early DNA damages in zebra mussels, and that the level of DNA strand breaks (SB) returned to a basal level after 3 days of exposure to Cd. The aim of the present study was to go further in the mechanisms of Cd and BaP detoxification. For that purpose, expression of genes encoding for metallothionein (MT), aryl hydrocarbon receptor (AHR), P-gp, catalase, glutathione S-transferase and heat shock protein 70 (HSP70) proteins have been measured using RT-qPCR. Data reported here show that Cd is a strong inducer of MT and HSP70 genes, and that BaP is a strong inducer of P-gp and AHR genes. Exposure to Cd and BaP resulted in moderate changes in antioxidant enzymes mRNA. Since the increase of MT mRNA occurred when the DNA SB level returned to its basal level, we can suggest that MT is implicated in cadmium detoxification. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Metallothionein-I plus II and receptor megalin are altered in relation to oxidative stress in cerebral lymphomas

    DEFF Research Database (Denmark)

    Pedersen, M.O.; Hansen, P.B.; Nielsen, Signe Ledou

    2010-01-01

    . This article characterizes the histopathology and expression profiles of metallothionein-I + II (MT-I + II) and their receptor megalin along with proliferation, oxidative stress, and apoptosis in PCNSL and in central nervous system (CNS) lymphomas due to relapse from DLBCL (collectively referred to as CNS...

  4. Neuroprotective Effects of Metallothionein Against Rotenone-Induced Myenteric Neurodegeneration in Parkinsonian Mice

    OpenAIRE

    Murakami, Shinki; Miyazaki, Ikuko; Sogawa, Norio; Miyoshi, Ko; Asanuma, Masato

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disease with motor symptoms as well as non-motor symptoms that precede the onset of motor symptoms. Mitochondrial complex I inhibitor, rotenone, has been widely used to reproduce PD pathology in the central nervous system (CNS) and enteric nervous system (ENS). We reported previously that metallothioneins (MTs) released from astrocytes can protect dopaminergic neurons against oxidative stress. The present study examined the changes in MT express...

  5. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  6. Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes

    Czech Academy of Sciences Publication Activity Database

    Sácký, J.; Leonhardt, T.; Borovička, Jan; Gryndler, Milan; Briksí, A.; Kotrba, P.

    2014-01-01

    Roč. 67, JUN (2014), s. 3-14 ISSN 1087-1845 R&D Projects: GA ČR(CZ) GAP504/11/0484 Institutional support: RVO:61388971 ; RVO:61389005 Keywords : mycorrhizal fungi * metal tolerance * hebeloma mesophaeum * compartmentalization * metallothionein Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.587, year: 2014

  7. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  8. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications.

    Science.gov (United States)

    Lephart, Edwin D; Andrus, Merritt B

    2017-09-01

    Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment

  9. Two cis-acting elements responsible for posttranscriptional trans-regulation of gene expression of human T-cell leukemia virus type I

    International Nuclear Information System (INIS)

    Seiki, Motoharu; Inoue, Junichiro; Hidaka, Makoto; Yoshida, Mitsuaki

    1988-01-01

    The pX sequence of human T-cell leukemia virus type I codes for two nuclear proteins, p40 tax and p27 rex and a cytoplasmic protein, p21 X-III . p40 tax activates transcription from the long terminal repeat (LTR), whereas p27 rex modulates posttranscriptional processing to accumulate gag and env mRNAs that retain intron sequences. In this paper, the authors identify two cis-acting sequence elements needed for regulation by p27 rex : a 5' splice signal and a specific sequence in the 3' LTR. These two sequence elements are sufficient for regulation by p27 rex ; expression of a cellular gene (metallothionein I) became sensitive to rex regulation when the LTR was inserted at the 3' end of this gene. The requirement for these two elements suggests and unusual regulatory mechanism of RNA processing in the nucleus

  10. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  11. Anti-metallothionein IgG and levels of metallothionein in autistic children with GI disease

    Directory of Open Access Journals (Sweden)

    A J Russo

    2009-01-01

    Full Text Available A J RussoMount Saint Mary’s University, Emmitsburg, MD, USAAim: To assess both serum concentration of metallotionein (MT and anti-metallothionein (anti-MT immunoglobulin G (IgG in autistic children with gastrointestinal (GI symptoms and controls, and to test the hypothesis that there is an association between the presence of MT, anti-MT IgG, and inflammatory GI disease seen in many children with autistic spectrum disorder (ASD.Subjects and methods: ELISAs were used to measure serum MT and anti-MT IgG in 41 autistic children with chronic digestive disease (many with ileo-colonic lymphoid nodular hyperplasia [LNH] and inflammation of the colorectum, small bowel, and/or stomach, and 33 controls (17 age-matched autistic children with no GI disease and 16 age-matched children without autism or GI disease.Results: Ten of 41 autistic children with chronic digestive disease had high serum concentration of MT compared to only one of the 33 controls (p < 0.01. Thirteen of the 41 autistic children with chronic digestive disease had anti-MT IgG compared to only four of 33 controls (p < 0.01. Nine of 10 (90% of autistic children with GI disease with high MT levels had a regressive onset (compared to the expected 25 of 41, or 61%, in this group (p < 0.05, whereas only nine of 13 of the autistic children with GI disease and anti-MT IgG had a regressive onset (70% which was not significantly higher than the expected. We didn’t find any correlation between severity of GI disease and MT concentration or anti-MT IgG.Discussion: These results suggest a relationship between MT, anti-MT IgG and GI disease seen in many ASD individuals.Keywords: autism, metallothionein, anti-metallothionein, GI disease

  12. Gene expression dose-response changes in microarrays after exposure of human peripheral lung epithelial cells to nickel(II).

    Science.gov (United States)

    Cheng, Robert Y S; Zhao, Ailian; Alvord, W Gregory; Powell, Douglas A; Bare, Robert M; Masuda, Akira; Takahashi, Takashi; Anderson, Lucy M; Kasprzak, Kazimierz S

    2003-08-15

    Occupational exposure to nickel compounds is associated with lung cancer risk; both genotoxic and epigenetic mechanisms have been proposed. For comprehensive examination of the acute effects of nickel(II) acetate on gene expression in cultured human peripheral lung epithelial HPL1D cells, microarray analyses were carried out with cDNA chips (approximately 8000 cDNAs). Cells were exposed for 24 h to nontoxic (50, 100, and 200 microM) or toxic (400, 800, and 1600 microM) nickel(II) concentrations. Cluster analysis was applied to the 868 genes with > or = 2-fold change at any concentration. Two main clusters showed marked up- or down-regulation at the highest, toxic concentrations. The data further subdivided into 10 highly cohesive clusters with high probability, and of these only 2 had the same response trend at low nontoxic as at high concentrations, an observation of clear relevance to the process of high- to low-dose extrapolation in risk assessment. There were 113 genes showing > or = 2-fold change at the three lower nontoxic concentrations, those most relevant to in vivo carcinogenesis. In addition to expected responses of metallothionein, ferritin, and heat-shock proteins, the results revealed for the first time changed expression of some potential cancer-related genes in response to low-dose Ni(II): RhoA, dyskerin, interferon regulatory factor 1, RAD21 homologue, and tumor protein, translationally controlled. Overall, most of the genes impacted by nontoxic concentrations of nickel(II) acetate related to gene transcription, protein synthesis and stability, cytoskeleton, signaling, metabolism, cell membrane, and extracellular matrix.

  13. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  14. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus.

    Science.gov (United States)

    Nguyen, Hoai; Rineau, François; Vangronsveld, Jaco; Cuypers, Ann; Colpaert, Jan V; Ruytinx, Joske

    2017-07-01

    The basidiomycete Suillus luteus is an important member of the ectomycorrhizal community that thrives in heavy metal polluted soils covered with pioneer pine forests. This study aimed to identify potential heavy metal chelators in S. luteus. Two metallothionein (MT) coding genes, SlMTa and SlMTb, were identified. When heterologously expressed in yeast, both SlMTa and SlMTb can rescue the Cu sensitive mutant from Cu toxicity. In S. luteus, transcription of both SlMTa and SlMTb is induced by Cu but not Cd or Zn. Several putative Cu-sensing and metal-response elements are present in the promoter sequences. These results indicate that SlMTa and SlMTb function as Cu-thioneins. Homologs of the S. luteus MTs are present in 49 species belonging to 10 different orders of the subphylum Agaricomycotina and are remarkably conserved. The length of the proteins, number and distribution of cysteine residues indicate a novel family of fungal MTs. The ubiquitous and highly conserved features of these MTs suggest that they are important for basic cellular functions in species in the subphylum Agaricomycotina. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  16. The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Bryś, Magdalena; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek; Pietkiewicz, Piotr [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Lewy-Trenda, Iwona; Danilewicz, Marian [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); Krześlak, Anna [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland)

    2015-06-15

    Metallothioneins (MTs) are intracellular thiol-rich heavy metal-binding proteins which join trace metal ions protecting cells against heavy metal toxicity and regulate metal distribution and donation to various enzymes and transcription factors. The goal of this study was to identify the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene, and to investigate its effect on allele-specific gene expression and Cd, Zn, Cu and Ni content in sinonasal inverted papilloma tissue (IP), with non-cancerous sinonasal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was identified by restriction fragment length polymorphism using 117 IP and 132 NCM. MT2A gene analysis was performed by quantitative real-time PCR. Metal levels were analyzed by flame atomic absorption spectrometry. The frequency of A allele carriage was 99.2% and 100% in IP and NCM, respectively. The G allele carriage was detected in 23.9% of IP and in 12.1% of the NCM samples. As a result, a significant association of − 5 A/G SNP in MT2A gene with mRNA expression in both groups was determined. A significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. A highly significant association was detected between the rs28366003 genotype and Cd and Zn content in IP. Furthermore, significant differences were identified between A/A and A/G genotype with regard to the type of metal contaminant. The Spearman rank correlation results showed the MT2A gene expression and both Cd and Cu levels were negatively correlated. The results obtained in this study suggest that the − 5 A/G SNP in the MT2A gene may have an effect on allele-specific gene expression and toxic metal accumulation in sinonasal inverted papilloma. - Highlights: • MT2A gene expression and metal content in sinonasal inverted papilloma tissues • Association between SNP (rs28366003) and expression of MT2A • Significant

  17. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents

    International Nuclear Information System (INIS)

    Lohrer, H.; Robson, T.

    1989-01-01

    Metallothionein protein protects cells from the toxic effects of heavy metal ions. To establish its protective function against ionizing radiation and alkylating agents, a model system was created by transfecting two CHO cell lines (wild-type, K1-2 and X-ray sensitive, xrs-2 subclone Bc11) with the human metallothionein II-A (hMTII-A) gene integrated in a bovine papilloma derived autonomously replicating vector. The isolated transfectants are cadmium-resistant (Cd 1 ), due to the overexpression of the hMTII-A gene. Their steady-state level of hMTII-A mRNA can be increased up to 40-fold after Cd treatment and 20-fold after induction with ionizing radiation. The transfected cell lines proved to be as sensitive as the recipient cell lines to ionizing radiation and bleomycin but the transfectants were significantly more resistant to N-methyl-nitro-nitrosoguanidine (MNNG) and mitomycin C (MMC). These results lead to the conclusion that the MT protein does provide a defence mechanism to protect cells from monofunctional alkylating and cross-linking agents but not from free radicals. (author)

  18. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Lohrer, H.; Robson, T. (Newcastle upon Tyne Univ. (UK). Cancer Research Unit)

    1989-12-01

    Metallothionein protein protects cells from the toxic effects of heavy metal ions. To establish its protective function against ionizing radiation and alkylating agents, a model system was created by transfecting two CHO cell lines (wild-type, K1-2 and X-ray sensitive, xrs-2 subclone Bc11) with the human metallothionein II-A (hMTII-A) gene integrated in a bovine papilloma derived autonomously replicating vector. The isolated transfectants are cadmium-resistant (Cd{sup 1}), due to the overexpression of the hMTII-A gene. Their steady-state level of hMTII-A mRNA can be increased up to 40-fold after Cd treatment and 20-fold after induction with ionizing radiation. The transfected cell lines proved to be as sensitive as the recipient cell lines to ionizing radiation and bleomycin but the transfectants were significantly more resistant to N-methyl-nitro-nitrosoguanidine (MNNG) and mitomycin C (MMC). These results lead to the conclusion that the MT protein does provide a defence mechanism to protect cells from monofunctional alkylating and cross-linking agents but not from free radicals. (author).

  19. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium.

    Science.gov (United States)

    Acharya, Celin; Blindauer, Claudia A

    2016-02-15

    Molecules for remediating or recovering uranium from contaminated environmental resources are of high current interest, with protein-based ligands coming into focus recently. Metallothioneins either bind or redox-silence a range of heavy metals, conferring protection against metal stress in many organisms. Here, we report that the cyanobacterial metallothionein SmtA competes with carbonate for uranyl binding, leading to formation of heterometallic (UO2)(n)Zn4SmtA species, without thiol oxidation, zinc loss, or compromising secondary or tertiary structure of SmtA. In turn, only metalated and folded SmtA species were found to be capable of uranyl binding. (1)H NMR studies and molecular modeling identified Glu34/Asp38 and Glu12/C-terminus as likely adventitious, but surprisingly strong, bidentate binding sites. While it is unlikely that these interactions correspond to an evolved biological function of this metallothionein, their occurrence may offer new possibilities for designing novel multipurpose bacterial metallothioneins with dual ability to sequester both soft metal ions including Cu(+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+) and hard, high-oxidation state heavy metals such as U(VI). The concomitant protection from the chemical toxicity of uranium may be valuable for the development of bacterial strains for bio-remediation.

  20. Histological changes, apoptosis and metallothionein levels in Triturus carnifex (Amphibia, Urodela) exposed to environmental cadmium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Capaldo, Anna, E-mail: anna.capaldo@unina.it [Department of Biology, University of Naples Federico II, Naples (Italy); Gay, Flaminia [Department of Chemistry and Biology, University of Salerno, Salerno (Italy); Scudiero, Rosaria; Trinchella, Francesca [Department of Biology, University of Naples Federico II, Naples (Italy); Caputo, Ivana; Lepretti, Marilena; Marabotti, Anna; Esposito, Carla [Department of Chemistry and Biology, University of Salerno, Salerno (Italy); Laforgia, Vincenza [Department of Biology, University of Naples Federico II, Naples (Italy)

    2016-04-15

    Highlights: • Specimens of the newt Triturus carnifex were exposed to environmental Cd doses. • Newts exposed to Cd during 9 months accumulated Cd in their tissues. • Cd induced histological alterations in the skin, liver and kidneys. • Cd induced apoptosis only in the kidneys. • Cd did not increase metallothionein levels in the skin and the liver, nor MTs mRNA. - Abstract: The aim of this study was to verify if the freshwater safety values established from the European Community (1998) and the Italian Ministry of Health (2001) for cadmium (44.5 nM/L in drinking water and 178 nM/L in sewage waters) were safe for amphibians, since at these same concentrations cadmium induced endocrine disruption in the newt Triturus carnifex. Adult male specimens of T. carnifex were exposed daily to cadmium (44.5 nM/L and 178 nM/L as CdCl{sub 2}, nominal concentrations), respectively, during 3- and 9-months; at the same time, control newts were exposed to tap water only. The accumulation of cadmium in the skin, liver and kidney, the levels of metallothioneins in the skin and the liver, the expression of metallothionein mRNA in the liver, as well as the presence of histological alterations and of apoptosis in the target organs were evaluated. The 9-months exposure induced cadmium accumulation in all the tissues examined; moreover, histological changes were observed in all the tissues examined, irrespective of the dose or the time of exposure. Apoptosis was only detected in the kidney, whereas metallothioneins and metallothionein mRNA did not increase. This study demonstrates that the existing chronic water quality criterion established for cadmium induces in the newt T. carnifex cadmium accumulation and histological alterations in the target organs examined. Together with our previous results, showing that, at these same concentrations, cadmium induced endocrine disruption, the present results suggest that the existing chronic water quality criterion for cadmium appears to

  1. Differential effects of metal contamination on the transcript expression of immune- and stress-response genes in the Sydney Rock oyster, Saccostrea glomerata

    International Nuclear Information System (INIS)

    Taylor, Daisy A.; Thompson, Emma L.; Nair, Sham V.; Raftos, David A.

    2013-01-01

    Environmental contamination by metals is a serious threat to the biological sustainability of coastal ecosystems. Our current understanding of the potential biological effects of metals in these ecosystems is limited. This study tested the transcriptional expression of immune- and stress-response genes in Sydney Rock oysters (Saccostrea glomerata). Oysters were exposed to four metals (cadmium, copper, lead and zinc) commonly associated with anthropogenic pollution in coastal waterways. Seven target genes (superoxide dismutase, ferritin, ficolin, defensin, HSP70, HSP90 and metallothionein) were selected. Quantitative (real-time) PCR analyses of the transcript expression of these genes showed that each of the different metals elicited unique transcriptional profiles. Significant changes in transcription were found for 18 of the 28 combinations tested (4 metals × 7 genes). Of these, 16 reflected down-regulation of gene transcription. HSP90 was the only gene significantly up-regulated by metal contamination (cadmium and zinc only), while defensin expression was significantly down-regulated by exposure to all four metals. This inhibition could have a significant negative effect on the oyster immune system, promoting susceptibility to opportunistic infections and disease. -- Highlights: ► Oysters were exposed to Cd, Cu, Pb or Zn, all commonly associated with coastal pollution. ► qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to these metals. ► qPCR showed that each of the different metals elicited unique transcriptional profiles. ► The genes identified have the potential to lead to increased disease susceptibility in oysters. -- qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to metals, which could lead to increased disease susceptibility

  2. Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): Histopathological changes and expression characterization of stress response genes.

    Science.gov (United States)

    Zhu, Qi-Hui; Zhou, Zhong-Kai; Tu, Dan-Dan; Zhou, Yi-Lian; Wang, Cong; Liu, Ze-Peng; Gu, Wen-Bin; Chen, Yu-Yin; Shu, Miao-An

    2018-02-01

    Cadmium (Cd) is a heavy metal that accumulates easily in organisms and causes several detrimental effects, including tissue damage. Cd contamination from anthropogenic terrestrial sources flows into rivers, and through estuaries to the ocean. To evaluate the toxic effects of Cd on estuary crustaceans, we exposed the mud crab Scylla paramamosain to various Cd concentrations (0, 10.0, 20.0, and 40.0mg/L) for 24h. We also exposed mud crabs to a fixed Cd concentration (20.0mg/L) for various periods of time (0, 6, 12, 24, 48, and 72h). We observed that after exposure to Cd, the surfaces of the gill lamellae were wrinkled, and the morphologies of the nuclei and mitochondria in the hepatopancreas were altered. We analyzed the expression profiles of 36 stress-related genes after Cd exposure, including those encoding metallothioneins, heat shock proteins, apoptosis-related proteins, and antioxidant proteins, with quantitative reverse transcription PCR. We found that exposure to Cd altered gene expression, and that some genes might be suitable bioindicators of Cd stress. Gene expression profiles were organ-, duration-, and concentration-dependent, suggesting that stress-response genes might be involved in an innate defense system for handling heavy metal exposure. To the best of our knowledge, this study is the first one of histopathology and stress-response gene expression pattern of Scylla paramamosain after Cd exposure. Our work could increase our understanding of the effect of environmental toxins on estuary crustaceans. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Shapes of Differential Pulse Voltammograms and Level of Metallothionein at Different Animal Species

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2007-10-01

    Full Text Available Metallothioneins play a key role in maintaining homeostasis of essential metalsand in protecting of cells against metal toxicity as well as oxidative damaging. Exceptinghumans, blood levels of metallothionein have not yet been reported from any animalspecies. Blood plasma samples of 9 animal species were analysed by the adsorptive transferstripping technique to obtain species specific voltammograms. Quite distinct records wereobtained from the Takin (Budorcas taxicolor, while other interesting records were observedin samples from the European Bison (Bison bonasus bonasus and the Red-eared Slider(Trachemys scripta elegans. To quantify metallothionein the catalytic peak Cat2 was used,well developed in the Domestic Fowl (Gallus gallus f. domestica and showing a very lowsignal in the Red Deer (Cervus elaphus. The highest levels of metallothionein reachingover 20 μM were found in the Domestic Fowl. High levels of MT were also found in theBearded Dragon (Pogona vitticeps and the Grey Wolf (Canis lupus lupus. The lowestvalues of about 1-3 μM were determined in the Red-eared Slider, Takin and Red Deer. Employing a simple electrochemical detection it was possible to examine variation in blood metallothionein in different species of vertebrates.

  4. Expression and function analysis of metallothionein in the testis of stone crab Charybdis japonica exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Mao Huan [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Tan Fuqing [The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Wang Dahui [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Zhu Junquan [Faculty of Life Science and Bioengineering, Ningbo University, Zhejiang 315211 (China); Zhou Hong [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Yang Wanxi, E-mail: wxyang@spermlab.org [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Metallothionein (MT) participates in metallic homeostasis and detoxification in living animals. Previous studies have focused mainly on the functions of MT in vertebrates, but the functions of MT during spermiogenesis in invertebrates remain unclear. In order to investigate the functions of MT during spermiogenesis in the Japanese stone crab (Charybdis japonica), we identified the C. japonica MT complete cDNA sequence from the total RNA of the testis using RT-PCR and RACE. The 587 bp MT cDNA contains: an 80 bp 5 Prime untranslated region, a 333 bp 3 Prime untranslated region, and a 174 bp open reading frame. MT has 57 amino acids including 19 cysteines. The protein alignment between MT sequences of C. japonica and other crabs shows a high similarity and a strong identity in cysteine residues vital for the metal-binding affinity of MT. After the cadmium (Cd) exposure, the testis displays both abnormal morphology and MT mRNA expression both of which indicate a sensitive response of testis MT to Cd. Therefore, we suggest that MT is an excellent biomarker candidate for evaluating Cd pollution.

  5. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    Science.gov (United States)

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  6. EST sequencing and gene expression profiling of defence-related genes from Persea americana infected with Phytophthora cinnamomi

    Directory of Open Access Journals (Sweden)

    Mahomed Waheed

    2011-11-01

    Full Text Available Abstract Background Avocado (Persea americana belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR. Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. Results 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. Conclusions This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved

  7. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation.

    Science.gov (United States)

    Dorts, Jennifer; Falisse, Elodie; Schoofs, Emilie; Flamion, Enora; Kestemont, Patrick; Silvestre, Frédéric

    2016-10-12

    DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors.

  8. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    International Nuclear Information System (INIS)

    Homa, Joanna; Olchawa, Ewa; Stuerzenbaum, Stephen R.; John Morgan, A.; Plytycz, Barbara

    2005-01-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes

  9. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Joanna [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Olchawa, Ewa [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Stuerzenbaum, Stephen R. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); John Morgan, A. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); Plytycz, Barbara [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland)]. E-mail: plyt@zuk.iz.uj.edu.pl

    2005-05-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes.

  10. A Plasmid Containing the Human Metallothionein II Gene Can Function as an Antibody-assisted Electrophoretic Biosensor for Heavy Metals

    Science.gov (United States)

    2015-01-16

    Biol. Chem. 273:7127–7133. Brugnera, E., Georgiev, O., Radtke , F., et al. 1994. Cloning, chromosomal mapping and characterization of the human metal...Signaling events for metallothionein induction. Mutat. Res. 533:211–226. Heuchel, R., Radtke , F., Georgiev, O., et al. 1994. The transcription factor MTF

  11. Structure and Function of Vertebrate Metallothioneins

    DEFF Research Database (Denmark)

    Penkowa, Milena; Vasak, Milan; Hidalgo, Juan

    2009-01-01

    In 1957, Margoshes and Vallee reported on the isolation of a protein from horse kidney, which showed a high affinity for cadmium, and soon thereafter the protein was named metallothionein (MT) by the leading scientists Ka¨ gi and Vallee. Fifty years of intense research has dissected out many of t...

  12. Induced synthesis of metallothionein by pig kidney cells in vitro in response to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M; Daniel, M

    1975-01-01

    Cells of a line (K7), derived from the cortex of the adult pig kidney, synthesize and accumulate high levels of metallothionein when grown in vitro in the presence of low concentrations (0.5 ..mu..g/ml) of Cd/sup 2 +/. This indicates that the accumulation of this protein in the kidneys of animals exposed to cadmium is due at least partly to synthesis in situ, and not solely to uptake by the renal cells of metallothionein produced by the liver. It is suggested that the ability to synthesize large amounts of metallothionein indicates the tubular origin of the cells of this line.

  13. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  14. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  15. Expression and function analysis of metallothionein in the testis of Portunus trituberculatus exposed to cadmium

    International Nuclear Information System (INIS)

    Xiang, Dong-Fang; Zhu, Jun-Quan; Jin, Shan; Hu, Yan-Jun; Tan, Fu-Qing; Yang, Wan-Xi

    2013-01-01

    Highlights: •We identified P. trituberculatus MT-1 and MT-2 complete cDNA sequence. •We analyzed the protein alignment comparisons and phylogenetic trees of MT-1 and MT-2. •RT-PCR analysis the tissue expression of MT-1 and MT-2 mRNA. •The spatial and temporal distribution pattern of MT-1 and MT-2 mRNA during spermiogenesis. •Testis MT-1 and MT-2 mRNA expression are dramatically affected after the cadmium exposure. -- Abstract: Metallothioneins (MTs) possess a unique molecular structure that provides metal-binding and redox capabilities. These capabilities include the maintenance of metal equilibria that protect against heavy metals (especially cadmium) and oxidative damage. Past studies have focused on the function of MTs in vertebrates. However, the functions of MTs during spermiogenesis in invertebrates remain unclear. In order to investigate the function of MTs during spermiogenesis in Portunus trituberculatus, we used RT-PCR and RACE to identify two MT complete cDNA sequences in the total RNA from the P. trituberculatus testis. The 450 bp MT-1 cDNA consists of a 77 bp 5′ untranslated region, a 196 bp 3′ untranslated region, and a 177 bp open reading frame that encodes 58 amino acids including 19 cysteines. The 581 bp MT-2 cDNA consists of 73 bp 5′ untranslated region, a 328 bp 3′ untranslated region, and a 180 bp open reading frame that encodes 59 amino acids including 18 cysteines. MT-1 and MT-2 of P. trituberculatus more closely resemble invertebrate (especially crab) MT homologues than vertebrate MT homologues as indicated by protein alignment comparisons and phylogenetic tree analysis. MT-1 and MT-2 were detected in the heart, testis, muscle, hepatopancreas, and gill of P. trituberculatus by tissue expression analysis. In addition, MT-1 and MT-2 are present during the entire process of spermiogenesis in P. trituberculatus as indicated by H and E staining and in situ hybridization. MT-1 and MT-2 expression levels significantly increase

  16. Expression and function analysis of metallothionein in the testis of Portunus trituberculatus exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dong-Fang [School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211 (China); The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 (China); Zhu, Jun-Quan; Jin, Shan [School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211 (China); Hu, Yan-Jun [Department of Reproductive Endocrinology, Women' s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Tan, Fu-Qing [The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Yang, Wan-Xi, E-mail: wxyang@spermlab.org [The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2013-09-15

    Highlights: •We identified P. trituberculatus MT-1 and MT-2 complete cDNA sequence. •We analyzed the protein alignment comparisons and phylogenetic trees of MT-1 and MT-2. •RT-PCR analysis the tissue expression of MT-1 and MT-2 mRNA. •The spatial and temporal distribution pattern of MT-1 and MT-2 mRNA during spermiogenesis. •Testis MT-1 and MT-2 mRNA expression are dramatically affected after the cadmium exposure. -- Abstract: Metallothioneins (MTs) possess a unique molecular structure that provides metal-binding and redox capabilities. These capabilities include the maintenance of metal equilibria that protect against heavy metals (especially cadmium) and oxidative damage. Past studies have focused on the function of MTs in vertebrates. However, the functions of MTs during spermiogenesis in invertebrates remain unclear. In order to investigate the function of MTs during spermiogenesis in Portunus trituberculatus, we used RT-PCR and RACE to identify two MT complete cDNA sequences in the total RNA from the P. trituberculatus testis. The 450 bp MT-1 cDNA consists of a 77 bp 5′ untranslated region, a 196 bp 3′ untranslated region, and a 177 bp open reading frame that encodes 58 amino acids including 19 cysteines. The 581 bp MT-2 cDNA consists of 73 bp 5′ untranslated region, a 328 bp 3′ untranslated region, and a 180 bp open reading frame that encodes 59 amino acids including 18 cysteines. MT-1 and MT-2 of P. trituberculatus more closely resemble invertebrate (especially crab) MT homologues than vertebrate MT homologues as indicated by protein alignment comparisons and phylogenetic tree analysis. MT-1 and MT-2 were detected in the heart, testis, muscle, hepatopancreas, and gill of P. trituberculatus by tissue expression analysis. In addition, MT-1 and MT-2 are present during the entire process of spermiogenesis in P. trituberculatus as indicated by H and E staining and in situ hybridization. MT-1 and MT-2 expression levels significantly increase

  17. Changes in Histopathology, Enzyme Activities, and the Expression of Relevant Genes in Zebrafish (Danio rerio) Following Long-Term Exposure to Environmental Levels of Thallium.

    Science.gov (United States)

    Hou, Li-Ping; Yang, Yang; Shu, Hu; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Yi-Bing; Chen, Yong-Heng; Fang, Gui-Zhen; Li, Xin; Liu, Ji-Sheng

    2017-11-01

    Thallium is a rare-earth element, but widely distributed in water environments, posing a potential risk to our health. This study was designed to investigate the chronic effects of thallium based on physiological responses, gene expression, and changes in the activity of relevant enzymes in adult zebra fish exposed to thallium at low doses. The endpoints assessed include mRNA expression of metallothionein (MT)2 and heat shock protein HSP70; enzymatic activities of superoxide dismutase (SOD) and Na + /K + -ATPase; and the histopathology of gill, gonad, and liver tissues. The results showed significant increases in HSP70 mRNA expression following exposure to 100 ng/L thallium and in MT2 expression following exposure to 500 ng/L thallium. Significantly higher activities were observed for SOD in liver and Na + /K + -ATPase activity in gill in zebra fish exposed to thallium (20 and 100 ng/L, respectively) in comparison to control fish. Gill, liver, and gonad tissues displayed different degrees of damage. The overall results imply that thallium may cause toxicity to zebra fish at environmentally relevant aqueous concentrations.

  18. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    + rad group. Metallothionein is involved in the regulation of physiological metals and also has antioxidant activities. Among the drug metabolism genes examined, ATP binding cassette subfamily B (Abcb1b) gene expression increased more than 10-fold in both groups that received radiation treatments. This increased expression was also seen at the protein level. This ABC transporter carries many different compounds across cell membranes, including administered medications. The cytochrome P450 2E1 enzyme, a mixed-function oxidase that deactivates some medications and activates others, showed about a 2-fold increase in gene expression in both radiation-treated groups, with a trend toward increased expression at the protein level. Expression of epoxide hydrolase, which detoxifies polycyclic aromatic hydrocarbons, showed similar 2-fold increases. Among the DNA repair genes examined, expression of RAD51 was significantly down regulated (1.5 fold) in the radiation treated group. RAD51 is involved in repair of double-stranded DNA breaks. CONCLUSION This experiment used 2 different sources of physiological oxidative stress, administered separately and together, and examined their impacts on liver gene and protein expression. It is clear that significant changes occurred in expression of several genes and proteins in the radiation-treated animals. If the results from this ground analog of portions of the spaceflight environment hold true for the spaceflight environment itself, the physiological roles of the affected enzymes (drug transport and metabolism, redox homeostasis) could mean consequences in redox homeostasis or the pharmacokinetics of administered medications

  19. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Comparison of minichromosome maintenance proteins (MCM-3, MCM-7) and metallothioneins (MT-I/II, MT-III) expression in relation to clinicopathological data in ovarian cancer.

    Science.gov (United States)

    Kobierzycki, Christopher; Pula, Bartosz; Skiba, Mateusz; Jablonska, Karolina; Latkowski, Krzysztof; Zabel, Maciej; Nowak-Markwitz, Ewa; Spaczynski, Marek; Kedzia, Witold; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2013-12-01

    Despite great progress in the understanding of ovarian cancer biology, clinicopathological data (i.e. grade, stage, histological type and residual disease after surgery) seem to be the most important prognostic factors. The present study aimed to investigate the relationship between expression of minichromosome maintenance proteins (MCM-3, MCM-7), metallothioneins (MT-I/II, MT-III), and Ki-67 in 103 ovarian cancer cases, mostly of the serous histological type. Statistical analysis revealed strong positive correlations in the expression of MCM-3 vs. Ki-67 (r=0.492), MCM-7 vs. Ki-67 (r=0.651), and MCM-3 vs. MCM-7 (r=0.515) (all pMCM-3 and Ki-67 with increasing grade of histological malignancy (p=0.0011, p=0.029, respectively). Regarding clinical progression, cytoplasmic MT-I/II expression was significantly higher in more advanced disease stages (III+IV vs. I+II; p=0.0247). Due to the correlations shown here, the determination of MCM proteins as proliferation markers of ovarian cancer, should be strongly considered.

  1. Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells

    Science.gov (United States)

    Jiwaji, Meesbah; Sandison, Mairi E.; Reboud, Julien; Stevenson, Ross; Daly, Rónán; Barkess, Gráinne; Faulds, Karen; Kolch, Walter; Graham, Duncan; Girolami, Mark A.; Cooper, Jonathan M.; Pitt, Andrew R.

    2014-01-01

    Introduction Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. PMID:24926959

  2. Heavy metal-induced gene expression in fish and fish cell lines

    International Nuclear Information System (INIS)

    Price-Haughey, J.; Bonham, K.; Gedamu, L.

    1986-01-01

    Two isoforms of metallothionein (MT) have been isolated from rainbow trout livers following CdCl 2 injections. These MTs have been identified by standard procedures and appear to be similar to mammalian MTs. Total RNA from such induced livers was shown to contain high levels of MT-mRNA activity when translated in cell free systems. This activity was demonstrated to be in the 8 to 10S region of a sucrose gradient. The RNA fractions also showed homology to a mouse MT-I cDNA probe. The exposure of rainbow trout hepatoma (RTH) cells to various concentrations of CdCl 2 and ZnCl 2 induced the expression of MT and MT-mRNA. Exposure of Chinook salmon embryonic (CHSE) cells to these metals, however, did not result in MT synthesis, suggesting that the MT genes have not become committed to transcription. Instead, an unknown low molecular weight (MW = 14 kDa) protein was induced. This metal-inducible protein (MIP) was capable of binding 109 Cd and was stable to heating, while the binding of the metal to this protein was not. These characteristics have been reported for a protein induced in rainbow trout liver following environmental exposure to cadmium

  3. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  4. Short-term exposure of mice to gasoline vapor increases the metallothionein expression in the brain, lungs and kidney

    OpenAIRE

    Grebic, Damir; Jakovac, Hrvoje; Mrakovcic-Sutic, Ines; Tomac, J.; Bulog, A.; Micovic, V.; Radosevic-Stasic, Biserka

    2007-01-01

    Environmental airborne pollution has been repeatedly shown to affect multiple aspects of brain and cardiopulmonary function, leading to cognitive and behavioral changes and to the pronounced inflammatory response in the respiratory airways. Since in the cellular defense system the important role might have stress proteins-metallothionein (MT)-I and MT-II, which are involved in sequestration and dispersal of metal ions, regulation of the biosynthesis and activities of z...

  5. Acute and subacute pulmonary toxicity caused by a single intratracheal instillation of colloidal silver nanoparticles in mice: pathobiological changes and metallothionein responses.

    Science.gov (United States)

    Kaewamatawong, Theerayuth; Banlunara, Wijit; Maneewattanapinyo, Pattwat; Thammachareon, Chuchaat; Ekgasit, Sanong

    2014-01-01

    To study the acute and subacute pulmonary toxicity of colloidal silver nanoparticles (Ag-NPs), 0 or 100 ppm of Ag-NPs were instilled intratracheally in mice. Cellular and biochemical parameters in bronchoalveolar lavage fluid (BALF) and histological alterations were determined 1, 3, 7, 15, and 30 days after instillation. Ag-NPs induced moderate pulmonary inflammation and injury on BALF indices during the acute period; however, these changes gradually regressed in a time-dependent manner. Concomitant histopathological and laminin immunohistochemical findings generally correlated to BALF data. Superoxide dismutase and metallothionein expression occurred in particle-laden macrophages and alveolar epithelial cells, which correlated to lung lesions in mice treated with Ag-NPs. These findings suggest that instillation of Ag-NPs causes transient moderate acute lung inflammation and tissue damage. Oxidative stress may underlie the induction of injury to lung tissue. Moreover, the expression of metallothionein in tissues indicated the protective response to exposure to Ag-NPs.

  6. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco; Murphy, Catherine; Hamers, Robert J.; Orr, Galya; Klaper, Rebecca D.

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.

  7. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  8. Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nishiuchi, Shunsaku; Liu, Shenkui; Takano, Tetsuo

    2007-08-01

    Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO(3), and isolated a type 1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO(3)), a ROS inducer (paraquat), and metals (CuSO(4), ZnSO(4), and CoCl(2)). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO(3). About 5 microM Paraquat, 500 microM Zn(2+), and 500 microM Co(2+) also induced expression of ChlMT1 in leaf after 6 h, and 100 microM Cu(2+) induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO(3)) and ROS.

  9. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  10. Short-term exposure of mice to gasoline vapor increases the metallothionein expression in the brain, lungs and kidney.

    Science.gov (United States)

    Grebić, D; Jakovac, H; Mrakovcić-Sutić, I; Tomac, J; Bulog, A; Micović, V; Radosević-Stasić, B

    2007-06-01

    Environmental airborne pollution has been repeatedly shown to affect multiple aspects of brain and cardiopulmonary function, leading to cognitive and behavioral changes and to the pronounced inflammatory response in the respiratory airways. Since in the cellular defense system the important role might have stress proteins-metallothionein (MT)-I and MT-II, which are involved in sequestration and dispersal of metal ions, regulation of the biosynthesis and activities of zinc-dependent transcription factors, as well as in cellular protection from reactive oxygen species, genotoxicity and apoptosis, in this study we investigated their expression in the brain, lungs and kidney, following intermittent exposure of mice to gasoline vapor. Control groups consisted of intact mice and of those closed in the metabolic chamber and ventilated with fresh air. The data obtained by immunohistochemistry showed that gasoline inhalation markedly upregulated the MTs expression in tissues which were directly or indirectly exposed to toxic components, significantly increasing the number of MT I+II positive cells in CNS (the entorhinal cortex, ependymal cells, astroglial cells in subventricular zone and inside the brain parenchyma, subgranular and CA1-CA3 zone of the dentate gyrus in hippocampus and macrophages-like cells in perivascular spaces), in the lungs (pneumocytes type I and type II) and in the kidneys (parietal wall of Bowman capsule, proximal and distal tubules). The data point to the protective and growth-regulatory effects of MT I + II on places of injuries, induced by inhalation of gasoline vapor.

  11. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-11-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO{sup +} oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO{sup +} oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression

  12. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO + oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO + oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ

  13. Temporal variations in metallothionein concentration and subcellular distribution of metals in gills and digestive glands of the oyster Crassostrea angulata

    Directory of Open Access Journals (Sweden)

    Chiara Trombini

    2010-11-01

    Full Text Available The metallothionein levels and metal concentrations in whole body, digestive gland and gills of Crassostrea angulata were analyzed in field samples collected from the River Guadalquivir estuary over several years following a mining waste spill upstream. The subcellular distribution of metals was analyzed to determine the mechanisms involved in the detoxification process. The highest metallothionein levels were reported in the digestive gland shortly after the mining contamination event. In this organ, metals are stored preferentially in the non-cytosolic fraction when increased bioaccumulation takes place. In the cytosol of the gills, metals are associated with metallothionein, whereas in the digestive gland, the distribution of metals between metallothioneins and high molecular weight proteins is similar. Metallothionein variation cannot be explained by metals alone; other abiotic factors must be taken into account. In order to use metallothionein as a metal exposure biomarker in field studies, natural variability needs to be taken into account for the correct interpretation of results.

  14. Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults

    International Nuclear Information System (INIS)

    Navarro, Anna; Faria, Melissa; Barata, Carlos; Pina, Benjamin

    2011-01-01

    Development of stress markers for the invader freshwater zebra mussel (Dreissena polymorpha) is of great interest for both conservation and biomonitoring purposes. Gene expression profiles of several putative or already established gene expression stress markers (Metallothionein, Superoxide dismutase, Catalase, Glutathione S transferase, Glutathione peroxidase, Cytochrome c oxidase, the multixenobiotic resistance P-gp1, and heat shock proteins HSP70 and HSP90) were analyzed by quantitative Real-Time PCR in adults and pediveliger larvae after exposure to metals (Hg, Cu, Cd). A defined pattern of coordinated responses to metal exposure and, presumably, to oxidative stress was observed in gills and digestive gland from adults. A similar, albeit partial response was observed in larvae, indicating an early development of stress-related gene responses in zebra mussel. The tools developed in this study may be useful both for future control strategies and for the use of zebra mussel as sentinel species in water courses with stable populations. - Coordinated expression of stress genes in zebra mussel.

  15. Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Anna; Faria, Melissa; Barata, Carlos [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona (Spain); Pina, Benjamin, E-mail: bpcbmc@cid.csic.e [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona (Spain)

    2011-01-15

    Development of stress markers for the invader freshwater zebra mussel (Dreissena polymorpha) is of great interest for both conservation and biomonitoring purposes. Gene expression profiles of several putative or already established gene expression stress markers (Metallothionein, Superoxide dismutase, Catalase, Glutathione S transferase, Glutathione peroxidase, Cytochrome c oxidase, the multixenobiotic resistance P-gp1, and heat shock proteins HSP70 and HSP90) were analyzed by quantitative Real-Time PCR in adults and pediveliger larvae after exposure to metals (Hg, Cu, Cd). A defined pattern of coordinated responses to metal exposure and, presumably, to oxidative stress was observed in gills and digestive gland from adults. A similar, albeit partial response was observed in larvae, indicating an early development of stress-related gene responses in zebra mussel. The tools developed in this study may be useful both for future control strategies and for the use of zebra mussel as sentinel species in water courses with stable populations. - Coordinated expression of stress genes in zebra mussel.

  16. Identification of stress-induced genes from the drought-tolerant plant Prosopis juliflora (Swartz) DC. through analysis of expressed sequence tags.

    Science.gov (United States)

    George, Suja; Venkataraman, Gayatri; Parida, Ajay

    2007-05-01

    Abiotic stresses such as cold, salinity, drought, wounding, and heavy metal contamination adversely affect crop productivity throughout the world. Prosopis juliflora is a phreatophyte that can tolerate severe adverse environmental conditions such as drought, salinity, and heavy metal contamination. As a first step towards the characterization of genes that contribute to combating abiotic stress, construction and analysis of a cDNA library of P. juliflora genes is reported here. Random expressed sequence tag (EST) sequencing of 1750 clones produced 1467 high-quality reads. These clones were classified into functional categories, and BLAST comparisons revealed that 114 clones were homologous to genes implicated in stress response(s) and included heat shock proteins, metallothioneins, lipid transfer proteins, and late embryogenesis abundant proteins. Of the ESTs analyzed, 26% showed homology to previously uncharacterized genes in the databases. Fifty-two clones from this category were selected for reverse Northern analysis: 21 were shown to be upregulated and 16 downregulated. The results obtained by reverse Northern analysis were confirmed by Northern analysis. Clustering of the 1467 ESTs produced a total of 295 contigs encompassing 790 ESTs, resulting in a 54.2% redundancy. Two of the abundant genes coding for a nonspecific lipid transfer protein and late embryogenesis abundant protein were sequenced completely. Northern analysis (after polyethylene glycol stress) of the 2 genes was carried out. The implications of the analyzed genes in abiotic stress tolerance are also discussed.

  17. Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins

    International Nuclear Information System (INIS)

    Li, Xue-Jiao; Wang, Yong-Sheng; Yang, Sheng-Yuan; Tang, Xian; Zhou, Bin; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin; He, Shun-Zhen; Liu, Lu

    2016-01-01

    We report on a photometric method for the determination of the metallothioneins (MTs). It is known that citrate capped gold nanoparticles (AuNPs) coated with traces of mercury possess peroxidase-like properties that can catalyze the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonate) (ABTS) to form a blue product in acetate buffer of pH 4.5. It is found that if the AuNPs are first aggregated by the cysteine-rich metallothioneins, the peroxidase-like properties of the resulting aggregates (AuNP-Hg-MTs) cause a largely accelerated oxidation of ABTS. The effect of adding MTs to such a solution is used to quantify the MTs by a kinetic assay. Changes in absorbance at 416 nm are linearly correlated to the concentration of MTs in the 4.3 to 49 nM range, and the detection limit is 1.3 nM. The method was successfully applied to the determination of MTs in (spiked) human urine. The strategy may pave the way for related detection platforms. (author)

  18. Amount and metal composition of midgut gland metallothionein in shore crabs (Carcinus maenas) after exposure to cadmium in the food

    International Nuclear Information System (INIS)

    Pedersen, Knud Ladegaard; Bach, Louise Thornhøj; Bjerregaard, Poul

    2014-01-01

    Highlights: • Crabs were fed with Cd in concentrations of 1.1–5.1 μg g −1 food. • Metallothionein concentrations only increased at 5.1 μg g −1 . • Cd contents of metallothionein increased linearly with exposure. • A marked influence by the variable Cu contents on metal composition was recorded. • Digestive gland metallothionein is a poor biomarker for Cd exposure. - Abstract: Accumulation of cadmium in aquatic invertebrates may compromise human food safety and anthropogenic additions of cadmium to coastal areas cause concern. Induction of crustacean metallothionein has been suggested as a useful biomarker for contamination of the aquatic environment with cadmium. We investigated how exposure to low concentrations of cadmium in the food affects the subcellular binding of cadmium with the shore crab Carcinus maenas as model organism. Approximately 80% of the assimilated cadmium was bound in the soluble fraction of the midgut gland and of this, 82% was found in the metallothionein fraction. Metallothionein synthesis was only induced at the highest exposure level. However, the number of cadmium atoms bound per molecule of metallothionein increased linearly with exposure, from approximately 0.18 in the control group to 1.4 in a group administered food containing 5.1 μg Cd g −1 . We noted a marked interaction between the presence of copper and zinc in the midgut gland and the binding of cadmium. The usefulness of crustacean midgut gland metallothionein as a biomarker for cadmium exposure at modest levels was questioned since exposures at levels producing significant increases in the tissue contents of the metal did not result in elevated concentrations of metallothionein in the midgut gland

  19. Amount and metal composition of midgut gland metallothionein in shore crabs (Carcinus maenas) after exposure to cadmium in the food

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Knud Ladegaard; Bach, Louise Thornhøj; Bjerregaard, Poul, E-mail: poul@biology.sdu.dk

    2014-05-01

    Highlights: • Crabs were fed with Cd in concentrations of 1.1–5.1 μg g⁻¹ food. • Metallothionein concentrations only increased at 5.1 μg g⁻¹. • Cd contents of metallothionein increased linearly with exposure. • A marked influence by the variable Cu contents on metal composition was recorded. • Digestive gland metallothionein is a poor biomarker for Cd exposure. - Abstract: Accumulation of cadmium in aquatic invertebrates may compromise human food safety and anthropogenic additions of cadmium to coastal areas cause concern. Induction of crustacean metallothionein has been suggested as a useful biomarker for contamination of the aquatic environment with cadmium. We investigated how exposure to low concentrations of cadmium in the food affects the subcellular binding of cadmium with the shore crab Carcinus maenas as model organism. Approximately 80% of the assimilated cadmium was bound in the soluble fraction of the midgut gland and of this, 82% was found in the metallothionein fraction. Metallothionein synthesis was only induced at the highest exposure level. However, the number of cadmium atoms bound per molecule of metallothionein increased linearly with exposure, from approximately 0.18 in the control group to 1.4 in a group administered food containing 5.1 μg Cd g⁻¹. We noted a marked interaction between the presence of copper and zinc in the midgut gland and the binding of cadmium. The usefulness of crustacean midgut gland metallothionein as a biomarker for cadmium exposure at modest levels was questioned since exposures at levels producing significant increases in the tissue contents of the metal did not result in elevated concentrations of metallothionein in the midgut gland.

  20. Metallothionein induction in aquatic oligochaete tubifex tubifex exposed to herbicide isoproturon.

    Science.gov (United States)

    Mosleh, Y Y; Paris-Palacios, S; Arnoult, F; Couderchet, M; Biagianti-Risbourg, S; Vernet, G

    2004-02-01

    Metallothioneins (MTs) are low-molecular-weight proteins mainly involved in metal ion detoxification. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth and antioxidative defenses. Moreover, pesticides can induce their synthesis. The aim of the current work was to determine the effects of isoproturon, either pure or formulated as Matin (suspension containing an isoproturon concentration of 500 g. L(-1)), on the metallothionein and total protein contents of the aquatic worm Tubifex tubifex. MT levels in exposed worms increased significantly after 7 and 15 days of exposure to a concentration of the herbicide of 50 mg. L(-1). Isoproturon reduced the metal (Cu, Zn, and Cd) content of metallothioneins, and it also increased the total protein content of the worms. These results suggest that MT induction may not be considered a specific biomarker of metal exposure but that it can be used as a nonspecific biomarker of the effect of isoproturon effect in aquatic worms. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 88-93, 2004.

  1. Gene expression inference with deep learning.

    Science.gov (United States)

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Recent Developments in Quantification Methods for Metallothionein

    Czech Academy of Sciences Publication Activity Database

    Dabrio, M.; Rodriquez, A. R.; Bordin, G.; Bebiano, M. J.; De Ley, M.; Šestáková, Ivana; Vašák, M.; Nordberg, M.

    2002-01-01

    Roč. 88, č. 2 (2002), s. 123-134 ISSN 0162-0134 R&D Projects: GA MŠk OC D21.002; GA MŠk OC D8.10 Institutional research plan: CEZ:AV0Z4040901 Keywords : electrochemistry * metallothionein * mass spectrometry Subject RIV: CG - Electrochemistry Impact factor: 2.204, year: 2002

  3. Smoking specifically induces metallothionein-2 isoform in human placenta at term

    International Nuclear Information System (INIS)

    Ronco, Ana Maria; Garrido, Fernando; Llanos, Miguel N.

    2006-01-01

    Recently, we reported the presence of higher levels of metallothionein (MT) in placentas of smokers compared to non-smokers. In the present study, we designed experiments to separate and evaluate two isoforms of MT (MT-1 and MT-2) in placentas of smokers and non-smokers. Metallothionein was extracted and separated by ion-exchange high performance liquid chromatography (HPLC), previous saturation with cadmium chloride. Two peaks eluting at 6 and 12.5 min, corresponding to MT-1 and MT-2, respectively, were obtained. Metallothionein present in both peaks was identified by Western blot analysis using a monoclonal antibody directed against MT-1 and MT-2. Each isoform concentration was calculated after measuring its cadmium content by atomic absorption spectrometry with inductively coupled-plasma. In placentas of smokers, MT-2 levels increased by seven-fold compared to non-smokers, whereas MT-1 was not changed. Total placental cadmium and zinc concentrations, determined by atomic absorption spectrometry and neutron activation analysis, respectively, were higher in smokers. Metallothioneins levels were clearly in excess to bind all cadmium ions present in placentas. However, most of placental zinc remains unbound to MTs, although as much as twice zinc ions could be bound to MT in smokers. In conclusion, MT-2 is the main isoform induced by smoking, suggesting that this isoform could be involved in placental cadmium and zinc retention. This fact, which could contribute to reduce the transference of zinc to the fetus, may be associated to detrimental effects on fetal growth and development

  4. Cytotoxicant-induced trophoblast dysfunction and abnormal pregnancy outcomes: role of zinc and metallothionein.

    Science.gov (United States)

    McAleer, Mary Frances; Tuan, Rocky S

    2004-12-01

    Normal trophoblast function, including implantation, hormone production, and formation of the selectively permeable maternofetal barrier, is essential for the establishment and maintenance of the fetoplacental unit and proper fetal development. Maternal cytotoxicant exposure causes the destruction of these cells, especially the terminally differentiated syncytiotrophoblasts, and results in a myriad of poor pregnancy outcomes. These outcomes range from intrauterine growth retardation and malformation to spontaneous abortion or stillbirth. There is recent evidence that the metal-binding protein, metallothionein, is involved in the protection of human trophoblastic cells from heavy metal-induced and severe oxidative stress-induced apoptosis. Metallothionein, with its unique biochemical structure, can both bind essential metal ions, such as the transcription modulator zinc, and yet allow their ready displacement by toxic nonessential metal ions or damaging free radicals. These properties suggest that metallothionein may be responsible not only for sequestering the cytotoxic agents, but also for altering signal transduction in the affected cells. Here, we review several identified causes of adverse pregnancy outcomes (specifically, prenatal exposure to cigarette smoke and alcohol, gestational infection, and exposure to environmental contaminants), discuss the role of zinc in modulating the cellular response to these toxic insults, and then propose how metallothionein may function to mediate this protective response. Published 2005 Wiley-Liss, Inc.

  5. The role of metallothionein in oncogenesis and cancer treatment.

    Science.gov (United States)

    Bizoń, Anna; Jędryczko, Kinga; Milnerowicz, Halina

    2017-02-14

    Metallothionein is cysteine-rich low molecular mass protein. The involvement of MT in many physiological and pathophysiological processes such as apoptosis, proliferation, angiogenesis, and the detoxification of heavy metals suggested participation of this protein in carcinogenesis and tumor therapy. Depending on the type of tissue and classification of carcinoma various it was observed relation between MT expression and tumor type, stage, grade, poor prognosis and body resistance to radiotherapy and chemotherapy. MT in tumor cell plays important role in defense mechanism against the effect of radiation by inhibiting the processes that lead to the apoptosis. A number of studies have shown an increased expression of MT in various human tumors of larynx, pancreas, kidney, uterus and breast, whereas lower MT expression was detected in liver tumors. Variable MT expression was detected in case of thyroid, prostate, lung, stomach and central nervous system tumors. Also MT plays crucial role in the cytostatics treatment. MT can bind cis-platinum compounds and removes them from the cells, which may lead to multidrug resistance. However, the same functions of MT protect against the negative effects of chemotherapeutic treatment. It is especially important in case of heart cells. Analysis of MT expression in tumor cells may be useful in choosing method of treatment. It is difficult to determine whether increased expression of MT is only a inducing factor of the development of the carcinogenesis, its malignances and multidrug resistance, or it is a factor inhibiting the induction and development of cancer.

  6. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes.

    Science.gov (United States)

    Lee, Sook-Jeong; Koh, Jae-Young

    2010-10-26

    Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological

  7. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Lee Sook-Jeong

    2010-10-01

    Full Text Available Abstract Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the

  8. Scaling of gene expression data allowing the comparison of different gene expression platforms

    NARCIS (Netherlands)

    van Ruissen, Fred; Schaaf, Gerben J.; Kool, Marcel; Baas, Frank; Ruijter, Jan M.

    2008-01-01

    Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce

  9. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  10. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  11. Role of metallothioneins in peripheral nerve function and regeneration

    DEFF Research Database (Denmark)

    Ceballos, D; Lago, N; Verdú, E

    2003-01-01

    The physiological role of the metallothionein (MT) family of proteins during peripheral nerve injury and regeneration was examined in Mt1+ 2 and Mt3 knockout (KO) mice. To this end, the right sciatic nerve was crushed, and the regeneration distance was evaluated by the pinch test 2-7 days....... The improved regeneration observed with the Mt3 KO mice was confirmed by compound nerve action potentials that were recorded from digital nerves at 14 dpl only in this group. We conclude that Mt3 normally inhibits peripheral nerve regeneration........ Moreover, the number of regenerating axons in the distal tibial nerve was significantly higher in Mt3KO mice than in the other two strains at 14 dpl. Immunoreactive profiles to protein gene product 9.5 were present in the epidermis and the sweat glands of the plantar skin of the hindpaw of the Mt3 KO group...

  12. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  13. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  14. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  15. Expression of mtc in Folsomia candida indicative of metal pollution in soil

    International Nuclear Information System (INIS)

    Nota, Benjamin; Vooijs, Riet; Straalen, Nico M. van; Roelofs, Dick

    2011-01-01

    The soil-living springtail Folsomia candida is frequently used in reproduction bioassays to assess soil contamination. Alternatively, the response of genes to contamination is assessed. In this study the expression of F. candida's gene encoding the deduced metallothionein-like motif containing protein (MTC) was assessed, using quantitative PCR, in response to six different metals, each at two concentrations in soil. The expression of mtc was induced after exposure to all metals, except for one chromium concentration. Exposure to soil originating from metal-contaminated field sites also induced mtc, while the expression did not change in response to a polycyclic aromatic hydrocarbon. Since this transcript is induced by most of the tested metals, it may potentially be a good indicator of metal contamination. The presented gene expression assay might become a useful tool to screen potentially polluted sites, in order to identify the ones that need further ecotoxicological investigation. - Highlights: → mtc expression in the springtail Folsomia candida is measured in response to different metals. → Expression of this gene changed in response to all tested metals, except for one. → Metal-contaminated field soils also changed the expression of mtc significantly. → The polycyclic aromatic hydrocarbon phenanthrene did not change mtc's expression. → mtc expression may be a specific indicator of metal soil contamination. - Exposure to metal containing soil induces the expression of mtc in the springtail Folsomia candida.

  16. Using gene expression noise to understand gene regulation

    NARCIS (Netherlands)

    Munsky, B.; Neuert, G.; van Oudenaarden, A.

    2012-01-01

    Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a

  17. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Nelva E. [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain); Quesada, Iban [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain); Hylland, Ketil [Norwegian Institute for Water Research (NIVA), Brekkeveien 19, P.O. Box 173, Kjelsaas, N-0411 Oslo (Norway); Marigomez, Ionan [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain); Soto, Manu [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain)]. E-mail: zopsolom@lg.ehu.es

    2006-04-20

    Turbot (Scophthalmus maximus) were exposed to two sublethal concentrations (1 and 10 mg metal/l) of cadmium (8.9 and 89 {mu}M Cd), copper (15.26 and 152.6 {mu}M Cu) and zinc (15.3 and 153 {mu}M Zn) for 7 days, and afterwards were maintained depurating for 14 days. Immunoreactive metallothioneins (irMTs) and metal ions were localized in the branchial epithelium by immunohistochemistry (using an anti-Cod MT antibody) and autometallography (AMG), respectively. Metal ions were demonstrated by AMG as black silver deposits (BSD), mainly in mucocytes (MC) and to a lesser extent in the other branchial cell-types (respiratory cells (RC), chloride cells (CC) and basal layer cells (BLC)). Irrespective of the metal supplied, BSD were rapidly visualized in MC after 1 h of exposure. This accumulation did not increase with increasing exposure time and concentration. Metallothionein expression was mainly observed in mature CC in the interlamellar space for all exposure conditions and it was shown that all mature cells express the same amount of irMT. The number of CC exhibiting irMT in metal-exposed turbots increased following short exposure times (1 h-1 day) in the filament epithelium and following longer exposure times (1-7 days) in the secondary lamellae. Total levels of irMT in the gills (quantified by image analysis and densitometry) increased significantly in metal-exposed turbot and were related to increased exposure times. It can be concluded that the total content of irMT in the gills of metal-exposed turbot is governed by changes in the number of mature CC expressing the protein. The quantification of total irMT in branchial CC can be considered as a reliable biomarker of metal exposure since reflects changes in metal bioavailability. This approach based on cell-selective immunohistochemistry can be simplified by only quantifying the number of mature CC. In addition, the dramatic increase of CC in the gills that produces epithelial thickening of the FE enhances migration

  18. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment

    International Nuclear Information System (INIS)

    Alvarado, Nelva E.; Quesada, Iban; Hylland, Ketil; Marigomez, Ionan; Soto, Manu

    2006-01-01

    Turbot (Scophthalmus maximus) were exposed to two sublethal concentrations (1 and 10 mg metal/l) of cadmium (8.9 and 89 μM Cd), copper (15.26 and 152.6 μM Cu) and zinc (15.3 and 153 μM Zn) for 7 days, and afterwards were maintained depurating for 14 days. Immunoreactive metallothioneins (irMTs) and metal ions were localized in the branchial epithelium by immunohistochemistry (using an anti-Cod MT antibody) and autometallography (AMG), respectively. Metal ions were demonstrated by AMG as black silver deposits (BSD), mainly in mucocytes (MC) and to a lesser extent in the other branchial cell-types (respiratory cells (RC), chloride cells (CC) and basal layer cells (BLC)). Irrespective of the metal supplied, BSD were rapidly visualized in MC after 1 h of exposure. This accumulation did not increase with increasing exposure time and concentration. Metallothionein expression was mainly observed in mature CC in the interlamellar space for all exposure conditions and it was shown that all mature cells express the same amount of irMT. The number of CC exhibiting irMT in metal-exposed turbots increased following short exposure times (1 h-1 day) in the filament epithelium and following longer exposure times (1-7 days) in the secondary lamellae. Total levels of irMT in the gills (quantified by image analysis and densitometry) increased significantly in metal-exposed turbot and were related to increased exposure times. It can be concluded that the total content of irMT in the gills of metal-exposed turbot is governed by changes in the number of mature CC expressing the protein. The quantification of total irMT in branchial CC can be considered as a reliable biomarker of metal exposure since reflects changes in metal bioavailability. This approach based on cell-selective immunohistochemistry can be simplified by only quantifying the number of mature CC. In addition, the dramatic increase of CC in the gills that produces epithelial thickening of the FE enhances migration of CC

  19. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins

    Directory of Open Access Journals (Sweden)

    Atrian Sílvia

    2011-01-01

    Full Text Available Abstract Background The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT were used as model molecules in order to elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD and ultra violet-visible (UV-Vis spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was

  20. Characterization by Suppression Subtractive Hybridization of Transcripts That Are Differentially Expressed in Leaves of Anthracnose-Resistant Ramie Cultivar.

    Science.gov (United States)

    Xuxia, Wang; Jie, Chen; Bo, Wang; Lijun, Liu; Hui, Jiang; Diluo, Tang; Dingxiang, Peng

    2012-01-01

    For the purpose of screening putative anthracnose resistance-related genes of ramie ( Boehmeria nivea L. Gaud), a cDNA library was constructed by suppression subtractive hybridization using anthracnose-resistant cultivar Huazhu no. 4. The cDNAs from Huazhu no. 4, which were infected with Colletotrichum gloeosporioides , were used as the tester and cDNAs from uninfected Huazhu no. 4 as the driver. Sequencing analysis and homology searching showed that these clones represented 132 single genes, which were assigned to functional categories, including 14 putative cellular functions, according to categories established for Arabidopsis . These 132 genes included 35 disease resistance and stress tolerance-related genes including putative heat-shock protein 90, metallothionein, PR-1.2 protein, catalase gene, WRKY family genes, and proteinase inhibitor-like protein. Partial disease-related genes were further analyzed by reverse transcription PCR and RNA gel blot. These expressed sequence tags are the first anthracnose resistance-related expressed sequence tags reported in ramie.

  1. Metallothionein as biomarker of mussel exposure to heavy metals

    International Nuclear Information System (INIS)

    Raspor, B.; Erk, M.; Pavicic, J.; Juric, D.; Kwokal, Z.; Odzak, N.

    1999-01-01

    The biological effect of marine pollution with heavy metals is followed in bivalves by means of the induced amount of metallothioneins (MTs), determined in different tissue types. The biological effect of the available toxic metals, cadmium and mercury, are related to the amount of MTs in the whole edible part, gills and the digestive gland of Mytilus galloprovincialis. For that purpose highly sensitive chemical and biochemical methods for metal and metallothionein content determination were developed and applied. The study was conducted in the Kastela Bay, which is the urban and industrial center of Dalmatia, Croatia, with two groups of mussels, indigenous and the transplanted. In accordance with the objective of the Symposium the results on monitoring the marine pollution by means of MTs as a biomarker, isolated from the edible, sessile and filter-feeding bivalves are discussed. (author)

  2. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  3. Gill damage, metallothionein gene expression and metal ...

    African Journals Online (AJOL)

    Water and sediment samples from each site, together with fish muscle and gills, were analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for Li, Na, Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, ... Keywords: anthropogenic impacts, bioaccumulation, biomarkers, histopathology, rivers, sediments, toxic effects

  4. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  5. The role of metallothionein in oncogenesis and cancer treatment

    Directory of Open Access Journals (Sweden)

    Anna Bizoń

    2017-02-01

    Full Text Available Metallothionein is cysteine-rich low molecular mass protein. The involvement of MT in many physiological and pathophysiological processes such as apoptosis, proliferation, angiogenesis, and the detoxification of heavy metals suggested participation of this protein in carcinogenesis and tumor therapy.Depending on the type of tissue and classification of carcinoma various it was observed relation between MT expression and tumor type, stage, grade, poor prognosis and body resistance to radiotherapy and chemotherapy. MT in tumor cell plays important role in defense mechanism against the effect of radiation by inhibiting the processes that lead to the apoptosis. A number of studies have shown an increased expression of MT in various human tumors of larynx, pancreas, kidney, uterus and breast, whereas lower MT expression was detected in liver tumors. Variable MT expression was detected in case of thyroid, prostate, lung, stomach and central nervous system tumors.Also MT plays crucial role in the cytostatics treatment. MT can bind cis-platinum compounds and removes them from the cells, which may lead to multidrug resistance. However, the same functions of MT protect against the negative effects of chemotherapeutic treatment. It is especially important in case of heart cells.Analysis of MT expression in tumor cells may be useful in choosing method of treatment. It is difficult to determine whether increased expression of MT is only a inducing factor of the development of the carcinogenesis, its malignances and multidrug resistance, or it is a factor inhibiting the induction and development of cancer.

  6. Metallothioneins I and II: neuroprotective significance during CNS pathology

    DEFF Research Database (Denmark)

    Penkowa, Milena; Stankovic, Roger; Chung, Roger

    2006-01-01

    Metallothioneins (MTs) constitutes a superfamily of highly conserved, low molecular weight polypeptides, which are characterized by high contents of cysteine (sulphur) and metals. As intracellular metal-binding proteins they play a significant role in the regulation of essential metals. The major...

  7. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-01-01

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1

  8. Alterations of gene expression indicating effects on estrogen signaling and lipid homeostasis in seabream hepatocytes exposed to extracts of seawater sampled from a coastal area of the central Adriatic Sea (Italy).

    Science.gov (United States)

    Cocci, Paolo; Capriotti, Martina; Mosconi, Gilberto; Campanelli, Alessandra; Frapiccini, Emanuela; Marini, Mauro; Caprioli, Giovanni; Sagratini, Gianni; Aretusi, Graziano; Palermo, Francesco Alessandro

    2017-02-01

    Recent evidences suggest that the toxicological effects of endocrine disrupting chemicals (EDCs) involve multiple nuclear receptor-mediated pathways, including estrogen receptor (ER) and peroxisome proliferator-activated receptor (PPAR) signaling systems. Thus, our objective in this study was to detect the summated endocrine effects of EDCs with metabolic activity in coastal waters of the central Adriatic Sea by means of a toxicogenomic approach using seabream hepatocytes. Gene expression patterns were also correlated with seawater levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). We found that seawater extracts taken at certain areas induced gene expression profiles of ERα/vitellogenin, PPARα/Stearoyl-CoA desaturase 1A, cytochrome P4501A (CYP1A) and metallothionein. These increased levels of biomarkers responses correlated with spatial distribution of PAHs/PCBs concentrations observed by chemical analysis in the different study areas. Collectively, our data give a snapshot of the presence of complex EDC mixtures that are able to perturb metabolic signaling in coastal marine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  10. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can......The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...

  11. Metal and metallothionein content in tissues from wild and farmed Anguilla anguilla at commercial size.

    Science.gov (United States)

    Ureña, R; Peri, S; del Ramo, J; Torreblanca, A

    2007-05-01

    Metallothionein and metal content (Cd, Zn, Hg, Cu, Fe, Pb and Mn) were determined in various organs of commercially available eel (Anguilla anguilla) of similar size obtained from a local farm and from The Albufera Lake in Valencia (Spain). Farmed fish showed statistically significant higher Cd concentrations in liver and kidney whereas wild individuals had higher levels of Pb in blood and Zn in kidney. Significant positive correlations were found between metallothionein and Cd in kidney of farmed eel and between metallothionein and Cu in liver of wild ones. No statistically significant differences were found between the two populations in the concentration of any of the metals analyzed in muscle and in all instances these levels were lower than the limits established by the Spanish legislation for fish destined for human consumption.

  12. Review on methods for determination of metallothioneins in aquatic organisms.

    Science.gov (United States)

    Shariati, Fatemeh; Shariati, Shahab

    2011-06-01

    One aspect of environmental degradation in coastal areas is pollution from toxic metals, which are persistent and are bioaccumulated by marine organisms, with serious public health implications. A conventional monitoring system of environmental metal pollution includes measuring the level of selected metals in the whole organism or in respective organs. However, measuring only the metal content in particular organs does not give information about its effect at the subcellular level. Therefore, the evaluation of biochemical biomarker metallothionein may be useful in assessing metal exposure and the prediction of potential detrimental effects induced by metal contamination. There are some methods for the determination of metallothioneins including spectrophotometric method, electrochemical methods, chromatography, saturation-based methods, immunological methods, electrophoresis, and RT-PCR. In this paper, different methods are discussed briefly and the comparison between them will be presented.

  13. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  15. Metallothionein response in earthworms Lampito mauritii (Kinberg) exposed to fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S.; Hattacharya, S.; Chaudhury, S. [Visva Bharati, Santini Ketan (India)

    2009-10-15

    Among pollutants, the coal fly ash occupies a significant position in industrial wastes. The fly ash matrix is a complex mixture of various organic (polyhalogenated compounds) and inorganic (Si, Al, Fe, As, Cd, Bi, Hg, etc.) chemicals. The application of fly ash for agricultural purposes and as landfills may lead to the contamination of the land with some of the toxic chemical compounds present in fly ash. Thus prior to the application of fly ash for developmental activities, it requires bio-monitoring and risk characterization. In order to achieve this objective adult Lampito mauritii were exposed to different proportions of fly ash in soil for 30 d and the concentrations of metallothionein in earthworm were assessed. The results revealed that up to 50% of fly ash amendment does not apparently harm the earthworm in respect of their survival and growth. A significant increase in tissue metallothionein level was recorded in L mauritii exposed to fly ash amended soil without tissue metal accumulation indicating that metallothionein is involved in scavenging of free radicals and reactive oxygen species metabolites. It is concluded that this biochemical response observed in L mauritii exposed to fly ash amended soil could be used in ecotoxicological field monitoring.

  16. Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Directory of Open Access Journals (Sweden)

    Dana Cucu

    2011-08-01

    Full Text Available Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+ by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2. Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1. Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1 in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1 and heme-oxygenase-1 (HO-1 as well as the pro-apoptotic Bcl-2-associated X protein (Bax were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.

  17. Changes in nucleosome repeat lengths precede replication in the early replicating metallothionein II gene region of cells synchronized in early S phase

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Tobey, R.A.

    1989-01-01

    Previous investigations showed that inhibition of DNA synthesis by hydroxyurea, aphidicolin, or 5-fluorodeoxyuridine produced large changes in the composition and nucleosome repeat lengths of bulk chromatin. There the authors report results of investigations to determine whether the changes in nucleosome repeat lengths might be localized in the initiated replicons, as postulated. In most experiments, Chinese hamster (line CHO) cells were synchronized in G1, or they were synchronized in early S phase by allowing G1 cells to enter S phase in medium containing 1 mM hydroxyurea or 5 μg mL -1 aphidicolin, a procedure believed to produce an accumulation of initiated replicons that arise from normally early replicating DNA. Measurements of nucleosome repeat lengths of bulk chromatin, the early replicating unexpressed metallothionein II (MTII) gene region, and a later replicating repeated sequence indicate that the changes in repeat lengths occur preferentially in the early replicating MTII gene region as G1 cells enter and become synchronized in early S phase. During that time, the MTII gene region is not replicated nor is there any evidence for induction of MTII messenger RNA. Thus, the results are consistent with the hypothesis that changes in chromatin structure occur preferentially in the early replicating (presumably initiated) replicons at initiation or that changes in chromatin structure can precede replication during inhibition of DNA synthesis. The shortened repeat lengths that precede MTII replication are, potentially, reversible, because they become elongated when the synchronized early S-phase cells are released to resume cell cycle progression

  18. Increased levels of metallothionein in placenta of smokers

    International Nuclear Information System (INIS)

    Ronco, Ana Maria; Arguello, Graciela; Suazo, Myriam; Llanos, Miguel N.

    2005-01-01

    Experiments were designed to evaluate and compare metallothionein (MT), zinc and cadmium levels in human placentas of smoking and non-smoking women. Smoking was assessed by self-reported cigarette consumption and urine cotinine levels before delivery. Smoking pregnant women with urine cotinine levels higher than 130 ng/ml were included in the smoking group. Determination of placental MT was performed by western blot analysis after tissue homogenization and saturation with cadmium chloride (1000 ppm). Metallothionein was analyzed with a monoclonal antibody raised against MT-1 and MT-2 and with a second anti mouse antibody conjugated to alkaline phosphatase. Zinc and cadmium were determined by neutron activation analysis and atomic absorption spectrometry respectively. Smokers showed higher placental MT and cadmium levels, together with decreased newborn birth weights, as compared to non-smokers. The semi-quantitative analysis of western blots by band densitometry indicated that darker bands corresponded to MT present in smokers' samples. This study confirms that cigarette smoking increases cadmium accumulation in placental tissue and suggests that this element has a stimulatory effect on placental MT production

  19. Stress-related gene expression changes in rainbow trout hepatocytes exposed to various municipal wastewater treatment influents and effluents.

    Science.gov (United States)

    Gagné, F; Smyth, S A; André, C; Douville, M; Gélinas, M; Barclay, K

    2013-03-01

    The present study sought to examine the performance of six different wastewater treatment processes from 12 wastewater treatment plants using a toxicogenomic approach in rainbow trout hepatocytes. Freshly prepared rainbow trout hepatocytes were exposed to increasing concentrations of influent (untreated wastewaters) and effluent (C(18)) extracts for 48 h at 15 °C. A test battery of eight genes was selected to track changes in xenobiotic biotransformation, estrogenicity, heavy metal detoxification, and oxidative stress. The wastewaters were processed by six different treatment systems: facultative and aerated lagoons, activated sludge, biological aerated filter, biological nutrient removal, chemically assisted primary treated, and trickling filter/solids contact. Based on the chemical characteristics of the effluents, the treatment plants were generally effective in removing total suspended solids and chemical oxygen demand, but less so for ammonia and alkalinity. The 12 influents differed markedly with each other, which makes the comparison among treatment processes difficult. For the influents, both population size and flow rate influenced the increase in the following mRNA levels in exposed hepatocytes: metallothionein (MT), cytochrome P4503A4 (CYP3A4), and vitellogenin (VTG). Gene expression of glutathione S-transferase (GST) and the estrogen receptor (ER), were influenced only by population size in exposed cells to the influent extracts. The remaining genes-superoxide dismutase (SOD) and multidrug resistance transporter (MDR)-were not influenced by either population size or flow rate in exposed cells. It is noteworthy that the changes in MT, ER, and VTG in cells exposed to the effluents were significantly affected by the influents across the 12 cities examined. However, SOD, CYP1A1, CYP3A4, GST, and MDR gene expression were the least influenced by the incoming influents. The data also suggest that wastewater treatments involving biological or aeration

  20. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    Science.gov (United States)

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  1. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Boris P Hejblum

    2015-06-01

    Full Text Available Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial, and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.

  2. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  3. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Krześlak, Anna; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Morawiec-Sztandera, Alina [Department of Head and Neck Surgery, Medical University of Łódź, Paderewskiego 4, 93-509 Łódź (Poland); Aleksandrowicz, Paweł [Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin (Poland); Lewy-Trenda, Iwona [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  4. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    International Nuclear Information System (INIS)

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona

    2014-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels

  5. Effect of A One-Week Balanced Diet on Expression of Genes Related to Zinc Metabolism and Inflammation in Type 2 Diabetic Patients.

    Science.gov (United States)

    Lais, Lucia Leite; de Lima Vale, Sancha Helena; Xavier, Camila Alves; de Araujo Silva, Alfredo; Aydemir, Tolunay Beker; Cousins, Robert J

    2016-01-01

    To evaluate the effect of diet on metabolic control and zinc metabolism in patients with type 2 diabetes mellitus (T2DM). One-week balanced diet was provided to 10 Brazilians patients with T2DM. Nutritional assessment, laboratorial parameters and expression of zinc transporter and inflammatory genes in peripheral blood mononuclear cells (PBMC) were performed. Healthy non-diabetic subjects of the same demographic were recruited to provide baseline data. Diabetic patients had higher body mass index and greater fasting plasma glucose, plasma tumor necrosis factor α (TNFα) and plasma interleukin 6 (IL6) levels compared with healthy subjects. In addition, the expression of transporters 4 (ZnT4) mRNA was lower and IL6 mRNA was higher in PBMC of these diabetic patients than in healthy subject. One week after a balanced diet was provided, fasting plasma glucose decreased significantly as did TNFα, IL6 and Metallothionein 1 (MT1) mRNAs. No change was observed in zinc transporter expression in PBMC after the dietary intervention. A healthy eating pattern maintained for one week was able to improve metabolic control of diabetic patients by lowering fasting plasma glucose. This metabolic control may be related to down-regulation of zinc-related transcripts from PBMCs, as TNFα, IL6 and MT1 mRNA.

  6. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  7. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  8. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  9. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  10. Metallothioneins: Emerging Modulators in Immunity and Infection

    Directory of Open Access Journals (Sweden)

    Kavitha Subramanian Vignesh

    2017-10-01

    Full Text Available Metallothioneins (MTs are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn and copper (Cu, mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.

  11. The effects of air pollution and smoking on placental cadmium, zinc concentration and metallothionein expression

    International Nuclear Information System (INIS)

    Sorkun, Hulya Cetin; Bir, Ferda; Akbulut, Metin; Divrikli, Umit; Erken, Gulten; Demirhan, Huriye; Duzcan, Ender; Elci, Latif; Celik, Ismail; Yozgatli, Unsal

    2007-01-01

    This study is designed to determine the placental zinc (Zn) and cadmium (Cd) levels in mothers who were smokers, mothers who were thought to be exposed to air pollution, and mothers who were non-smokers and to investigate the relationship between the expression of placental metallothionein (MT) binding these metals and blood progesterone level. Placental Zn and Cd levels were measured by atomic absorption spectrometry. Presence of placental MT was determined immunohistochemically. Placental changes were examined by light microscope after H and E and PAS staining. Immunohistochemical MT staining of syncytiotrophoblastic and villous interstitial cells were scored as positive or negative. Among the 92 mothers included in the study, 33 were smokers (Group I), 29 had been exposed to air pollution (Group II) and 30 were non-smoker rural residents who had never been exposed to air pollution (Group III). Mean off-spring birth weight of 3198.62 ± 380.01 g and mean placenta weight of 561.38 ± 111.55 g of Group II were lower when compared with those of other two groups. In Group I, mean placental Cd and Zn were 0.063 ± 0.022 μg/g and 39.84 ± 15.5 μg/g, respectively, being higher than in other groups. In Group II, mean placental Cd and Zn levels were higher than those of Group III. Blood progesterone levels of subjects in Group I (121 ng/ml) were the lowest of all groups. While the mean count of villi was the highest in Group III; the highest mean count of syncytial knots was in Group II. Thickening of vasculo-syncytial membrane was most prominent in Group I. Similarly, MT staining was positive and very dense in 72.7% (24/33) of cases in Group I (p ≤ 0.05). MT staining was positive in 69.0% (29/20) and denser in Group II cases compared to 36% (11/30) in Group III (p ≤ 0.05). This study showed that smoking increased Cd levels in placenta and accompanied an increase in placental MT expression immunohistochemically. The effects of exposure to air pollution are equally

  12. Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots.

    Science.gov (United States)

    Tang, Song; Allagadda, Vinay; Chibli, Hicham; Nadeau, Jay L; Mayer, Gregory D

    2013-10-01

    Recent advances in the ability to manufacture and manipulate materials at the nanometer scale have led to increased production and use of many types of nanoparticles. Quantum dots (QDs) are small, fluorescent nanoparticles composed of a core of semiconductor material (e.g. cadmium selenide, zinc sulfide) and shells or dopants of other elements. Particle core composition, size, shell, and surface chemistry have all been found to influence toxicity in cells. The aim of this study was to compare the toxicities of ionic cadmium (Cd) and zinc (Zn) and Cd- and Zn-containing QDs in zebrafish liver cells (ZFL). As expected, Cd(2+) was more toxic than Zn(2+), and the general trend of IC50-24 h values of QDs was determined to be CdTe InP/ZnS, suggesting that ZnS-shelled CdSe/ZnS QDs were more cytocompatible than bare core CdTe crystals. Smaller QDs showed greater toxicity than larger QDs. Isolated mRNA from these exposures was used to measure the expression of metal response genes including metallothionein (MT), metal response element-binding transcription factor (MTF-1), divalent metal transporter (DMT-1), zrt and irt like protein (ZIP-1) and the zinc transporter, ZnT-1. CdTe exposure induced expression of these genes in a dose dependent manner similar to that of CdSO4 exposure. However, CdSe/ZnS and InP/ZnS altered gene expression of metal homeostasis genes in a manner different from that of the corresponding Cd or Zn salts. This implies that ZnS shells reduce QD toxicity attributed to the release of Cd(2+), but do not eliminate toxic effects caused by the nanoparticles themselves.

  13. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  14. Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression

    DEFF Research Database (Denmark)

    Penkowa, Milena; Camats, Jordi; Giralt, Mercedes

    2003-01-01

    injury, such as a cryolesion, demonstrate a neuroprotective role of IL-6. Thus, the GFAP-IL-6 mice showed faster tissue repair and decreased oxidative stress and apoptosis compared with control litter-mate mice. The neuroprotective factors metallothionein-I+II (MT-I+II) were upregulated by the cryolesion...... the inflammatory response, decreased oxidative stress and apoptosis significantly, and increased brain tissue repair in comparison with either GFAP-IL-6 or control litter-mate mice. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors....

  15. Simple Comparative Analyses of Differentially Expressed Gene Lists May Overestimate Gene Overlap.

    Science.gov (United States)

    Lawhorn, Chelsea M; Schomaker, Rachel; Rowell, Jonathan T; Rueppell, Olav

    2018-04-16

    Comparing the overlap between sets of differentially expressed genes (DEGs) within or between transcriptome studies is regularly used to infer similarities between biological processes. Significant overlap between two sets of DEGs is usually determined by a simple test. The number of potentially overlapping genes is compared to the number of genes that actually occur in both lists, treating every gene as equal. However, gene expression is controlled by transcription factors that bind to a variable number of transcription factor binding sites, leading to variation among genes in general variability of their expression. Neglecting this variability could therefore lead to inflated estimates of significant overlap between DEG lists. With computer simulations, we demonstrate that such biases arise from variation in the control of gene expression. Significant overlap commonly arises between two lists of DEGs that are randomly generated, assuming that the control of gene expression is variable among genes but consistent between corresponding experiments. More overlap is observed when transcription factors are specific to their binding sites and when the number of genes is considerably higher than the number of different transcription factors. In contrast, overlap between two DEG lists is always lower than expected when the genetic architecture of expression is independent between the two experiments. Thus, the current methods for determining significant overlap between DEGs are potentially confounding biologically meaningful overlap with overlap that arises due to variability in control of expression among genes, and more sophisticated approaches are needed.

  16. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  17. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  18. Metallothionein and antioxidant enzymes in Long-Evans Cinnamon rats treated with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Medici, Valentina; Sturniolo, Giacomo Carlo; D' Inca, Renata [Department of Surgical and Gastroenterological Sciences, University of Padua, Padua (Italy); Santon, Alessandro; Giannetto, Sabrina; Albergoni, Vincenzo; Irato, Paola [Department of Biology, University of Padua, via U. Bassi 58/B, 35131 Padua (Italy)

    2002-09-01

    The Long-Evans Cinnamon (LEC) rat is a mutant animal model for Wilson's disease. It is known that an abnormal accumulation of Cu and Fe in the liver and low concentrations of both ceruloplasmin and Cu in the serum occur in these rats. The accumulation of Cu is explained by the defective expression of the Cu-transporting P-type ATPase gene, homologous to the gene for Wilson's disease (ATP7B). The aim of this work was to clarify the action mechanism of Zn, and to verify the role that this metal plays in LEC rats in short-term treatment experiments (1 and 2 weeks) on concentrations of Cu, Zn, Fe, metallothionein (MT), 8-hydroxy-2'-deoxyguanosine (oh{sup 8}dG) and on the activity of antioxidant enzymes. It is well known that Zn induces MT and has the ability to prevent redox-active metals, Cu and Fe, binding to and causing oxidative damage at active sites of Zn metalloenzymes and nonspecific binding sites on proteins. Zn administration reduces Cu and Fe transport from mucosal to serosal intestinal sides through competitive mechanisms. Our findings show that treatment with zinc acetate increases tissue Zn and MT contents and decreases Cu and Fe concentrations in the liver and kidneys, even if hepatic Zn and MT concentrations decrease with treatment period. Induction of MT synthesis by Zn contributes to the reduction in free radicals produced by Cu and Fe. We also observed that the superoxide dismutase (SOD)activity in liver decreases with treatment duration in association with the Cu and Fe liver decrease. However, the SOD activity in kidney increases in untreated rats at 2 weeks relative to those untreated for 1 week. (orig.)

  19. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  20. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  1. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  2. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  3. Hsp27, Hsp70, and metallothionein in MDCK and LLC-PK1 renal epithelial cells: effects of prolonged exposure to cadmium

    International Nuclear Information System (INIS)

    Bonham, Rita T.; Fine, Michael R.; Pollock, Fiona M.; Shelden, Eric A.

    2003-01-01

    Cadmium is a widely distributed industrial and environmental toxin. The principal target organ of chronic sublethal cadmium exposure is the kidney. In renal epithelial cells, acute high-dose cadmium exposure induces differential expression of proteins, including heat shock proteins. However, few studies have examined heat shock protein expression in cells after prolonged exposure to cadmium at sublethal concentrations. Here, we assayed total cell protein, neutral red uptake, cell death, and levels of metallothionein and heat shock proteins Hsp27 and inducible Hsp70 in cultures of MDCK and LLC-PK1 renal epithelial cells treated with cadmium for 3 days. Treatment with cadmium at concentrations equal to or greater than 10 μM (LLC-PK1) or 25 μM (MDCK) reduced measures of cell vitality and induced cell death. However, a concentration-dependent increase in Hsp27 was detected in both cell types treated with as little as 5 μM cadmium. Accumulation of Hsp70 was correlated only with cadmium treatment at concentrations also causing cell death. Metallothionein was maximally detected in cells treated with cadmium at concentrations that did not reduce cell vitality, and further increases were not detected at greater concentrations. These results reveal that heat shock proteins accumulate in renal epithelial cells during prolonged cadmium exposure, that cadmium induces differential expression of heat shock protein in epithelial cells, and that protein expression patterns in epithelial cells are specific to the cadmium concentration and degree of cellular injury. A potential role for Hsp27 in the cellular response to sublethal cadmium-induced injury is also implicated by our results

  4. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    International Nuclear Information System (INIS)

    Dudek, E.J.; Roth, R.M.

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs

  5. A constructive approach to gene expression dynamics

    International Nuclear Information System (INIS)

    Ochiai, T.; Nacher, J.C.; Akutsu, T.

    2004-01-01

    Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property

  6. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  7. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  8. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Konecna, Marie; Novotny, Karel; Krizkova, Sona; Blazkova, Iva; Kopel, Pavel; Kaiser, Jozef; Hodek, Petr; Kizek, Rene

    2014-01-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA

  9. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konecna, Marie [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Novotny, Karel [Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Krizkova, Sona [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Blazkova, Iva [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kopel, Pavel [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kaiser, Jozef [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Hodek, Petr [Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 00 Prague,Czech Republic (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); and others

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA.

  10. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  11. Stochastic gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  12. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  13. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  14. Noncooperative cadmium(II) binding to human metallothionein 1a

    International Nuclear Information System (INIS)

    Sutherland, Duncan E.K.; Stillman, Martin J.

    2008-01-01

    The two-domain (βα) mammalian metallothionein binds seven divalent metals, however, the binding mechanism is not well characterized and recent reports require the presence of the partially metallated protein. In this paper, step-wise metallation of the metal-free, two-domain βα-rhMT and the isolated β-rhMT using Cd(II) is shown to proceed in a noncooperative manner by analysis of electrospray ionization mass spectrometric data. Under limiting amounts of Cd(II), all intermediate metallation states up to the fully metallated Cd 3 -β-rhMT and Cd 7 -βα-rhMT were observed. Addition of excess Cd(II), resulted in formation of the supermetallated (metallation in excess of normal levels) Cd 4 -β- and Cd 8 -βα-metallothionein species. These data establish that noncooperative cadmium metallation is a property of each isolated domain and the complete two-domain protein. Our data now also establish that supermetallation is a property that may provide information about the mechanism of metal transfer to other proteins

  15. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  17. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  18. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  19. Analysis of multiplex gene expression maps obtained by voxelation.

    Science.gov (United States)

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  20. A comparative gene expression database for invertebrates

    Directory of Open Access Journals (Sweden)

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  1. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  2. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  3. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  4. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  5. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  6. Alterations of tissue metallothionein and vitellogenin concentrations in tropical cup oysters (Saccostrea sp.) following short-term (96 h) exposure to cadmium

    International Nuclear Information System (INIS)

    Moncaleano-Niño, Angela M.; Barrios-Latorre, Sergio A.; Poloche-Hernández, Javier F.; Becquet, Vanessa; Huet, Valérie; Villamil, Luisa; Thomas-Guyon, Hélène; Ahrens, Michael J.; Luna-Acosta, Andrea

    2017-01-01

    Highlights: • The cup oyster Saccostrea sp. is present in Santa Marta, Colombian Caribbean. • 96 h exposure of oysters to Cd increased metallothionein concentrations in digestive glands up to 2-fold. • 96 h exposure of oysters to Cd decreased vitellogenin concentrations in gonads up to 6-fold. • Metallothionein and vitellogenin tissue concentrations correlated with whole tissue Cd concentrations. • Significant changes in metallothionein and vitellogenin levels were only evident at Cd concentrations above 100 μg/L. - Abstract: Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96 h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5–5.0 cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5 days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000 μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations ≥ 100 μg/L showed a significant increase, from 8.0 to 14.8 μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297 μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96 h of exposure to 1000 μg/L Cd, were significantly lower (0

  7. Alterations of tissue metallothionein and vitellogenin concentrations in tropical cup oysters (Saccostrea sp.) following short-term (96 h) exposure to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Moncaleano-Niño, Angela M.; Barrios-Latorre, Sergio A.; Poloche-Hernández, Javier F. [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia); Becquet, Vanessa; Huet, Valérie [Littoral Environnement et Sociétés (LIENSs) – UMR 7266, CNRS-Université de La Rochelle, Bâtiment ILE 2, rue Olympe de Gouges, 17 000 La Rochelle (France); Villamil, Luisa [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia); Thomas-Guyon, Hélène [Littoral Environnement et Sociétés (LIENSs) – UMR 7266, CNRS-Université de La Rochelle, Bâtiment ILE 2, rue Olympe de Gouges, 17 000 La Rochelle (France); Ahrens, Michael J., E-mail: michael.ahrens@utadeo.edu.co [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia); Luna-Acosta, Andrea [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia)

    2017-04-15

    Highlights: • The cup oyster Saccostrea sp. is present in Santa Marta, Colombian Caribbean. • 96 h exposure of oysters to Cd increased metallothionein concentrations in digestive glands up to 2-fold. • 96 h exposure of oysters to Cd decreased vitellogenin concentrations in gonads up to 6-fold. • Metallothionein and vitellogenin tissue concentrations correlated with whole tissue Cd concentrations. • Significant changes in metallothionein and vitellogenin levels were only evident at Cd concentrations above 100 μg/L. - Abstract: Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96 h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5–5.0 cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5 days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000 μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations ≥ 100 μg/L showed a significant increase, from 8.0 to 14.8 μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297 μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96 h of exposure to 1000 μg/L Cd, were significantly lower (0

  8. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  9. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes Using Gene Expression Heterogeneity.

    Science.gov (United States)

    Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun

    2018-01-01

    When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.

  10. The evolution of gene expression in primates

    OpenAIRE

    Tashakkori Ghanbarian, Avazeh

    2015-01-01

    The evolution of a gene’s expression profile is commonly assumed to be independent of its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between expression of neighboring genes in extant taxa. Indeed, in all eukaryotic genomes, genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their e...

  11. Regulation of tissue levels of metallothionein with emphasis on metallothionein degradation

    International Nuclear Information System (INIS)

    Chen, M.L.

    1988-01-01

    The synthesis and degradation of metallothionein (MT) was studied in streptozotocin-induced diabetic rats and monolayer cultures of adult rat hepatocytes. Critical analysis of in vivo studies with diabetic rats and other literature revealed that cytoplasmic turnover of MT may not reflect actual degradation of this protein. Therefore, the characteristics of MT degradation in primary cultures of hepatocytes were investigated in subsequent studies. Hepatocytes were incubated in medium containing 35 S-cysteine and 100 μM Zn overnight to induce MT synthesis. The level of 35 S-MT was quantified in heat stable extracts of cell homogenates by Fast Protein Liquid Chromatography (FPLC). When Zn was removed from medium, the rate of 35 S-MT turnover was found times faster than general 3 H-protein. This decrease in cellular MT level reflected degradation since less than 1% of cellular MT was secreted. The rate of MT degradation was inversely proportional to cellular Zn status

  12. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    International Nuclear Information System (INIS)

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-01

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  13. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  14. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  15. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  16. Dynamic association rules for gene expression data analysis.

    Science.gov (United States)

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed

  17. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  18. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  19. Comparative gene expression between two yeast species

    Directory of Open Access Journals (Sweden)

    Guan Yuanfang

    2013-01-01

    Full Text Available Abstract Background Comparative genomics brings insight into sequence evolution, but even more may be learned by coupling sequence analyses with experimental tests of gene function and regulation. However, the reliability of such comparisons is often limited by biased sampling of expression conditions and incomplete knowledge of gene functions across species. To address these challenges, we previously systematically generated expression profiles in Saccharomyces bayanus to maximize functional coverage as compared to an existing Saccharomyces cerevisiae data repository. Results In this paper, we take advantage of these two data repositories to compare patterns of ortholog expression in a wide variety of conditions. First, we developed a scalable metric for expression divergence that enabled us to detect a significant correlation between sequence and expression conservation on the global level, which previous smaller-scale expression studies failed to detect. Despite this global conservation trend, between-species gene expression neighborhoods were less well-conserved than within-species comparisons across different environmental perturbations, and approximately 4% of orthologs exhibited a significant change in co-expression partners. Furthermore, our analysis of matched perturbations collected in both species (such as diauxic shift and cell cycle synchrony demonstrated that approximately a quarter of orthologs exhibit condition-specific expression pattern differences. Conclusions Taken together, these analyses provide a global view of gene expression patterns between two species, both in terms of the conditions and timing of a gene's expression as well as co-expression partners. Our results provide testable hypotheses that will direct future experiments to determine how these changes may be specified in the genome.

  20. Interactive visualization of gene regulatory networks with associated gene expression time series data

    NARCIS (Netherlands)

    Westenberg, M.A.; Hijum, van S.A.F.T.; Lulko, A.T.; Kuipers, O.P.; Roerdink, J.B.T.M.; Linsen, L.; Hagen, H.; Hamann, B.

    2008-01-01

    We present GENeVis, an application to visualize gene expression time series data in a gene regulatory network context. This is a network of regulator proteins that regulate the expression of their respective target genes. The networks are represented as graphs, in which the nodes represent genes,

  1. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  2. An Interactive Database of Cocaine-Responsive Gene Expression

    Directory of Open Access Journals (Sweden)

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  3. CDX2 gene expression in acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Arnaoaut, H.H.; Mokhtar, D.A.; Samy, R.M.; Omar, Sh.A.; Khames, S.A.

    2014-01-01

    CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR) to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL) at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD) on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  4. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  5. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  6. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  7. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  8. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  9. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    promoter was only detected in 14 samples and only at a low level with no correlation to gene expression. MSH2 gene expression was not a prognostic factor for overall survival in univariate or multivariate analysis. The gene expression of MSH2 is a potential quantitative marker ready for further clinical...

  10. Metallothionein, a marker of antiapoptosis, is associated with clinical forms of oral lichen planus.

    Science.gov (United States)

    Allon, Irit; Ofir, Merav; Vered, Hanna; Hirshberg, Abraham

    2014-11-01

    To investigate the expression of anti- and proapoptosis markers, metallothionein (MT), and caspase-2, in the epithelial and inflammatory cells of oral lichen planus (OLP) patients, and to investigate the association with clinical parameters. Included were biopsies of 70 OLP patients. The clinical data were collected from patients' charts. The expression of MT and caspase-2 was immunomorphometrically analyzed in the epithelial and inflammatory cells, and the results were correlated with the clinical presentation. The epithelial and inflammatory cells expressed MT (10.2 ± 5.75 and 0.68 ± 0.86) and caspase-2 (1.54 ± 2.6 and 0.98 ± 1.15) which show a trend toward an inverse expression. The expression of MT in the epithelium was significantly higher in patients presenting with keratotic lichen planus than in patients with the atrophic and erosive forms (P = 0.0008). In the inflammatory cells, the expression of MT was inversely correlated with increasing age (R = 0.34, P = 0.0069). The pattern of expression of MT and caspase-2 in OLP suggests an extensive antiapoptotic response in the keratotic form of the disease. Symptomatic patients may benefit from therapy targeted to apoptosis in the future. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  12. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  13. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  14. Noise minimization in eukaryotic gene expression

    International Nuclear Information System (INIS)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-01

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection

  15. Metallothionein metabolism in the streptozotocin-diabetic rat

    International Nuclear Information System (INIS)

    Chen, M.L.; Failla, M.L.

    1986-01-01

    Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of 35 S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively

  16. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  17. A stochastic approach to multi-gene expression dynamics

    International Nuclear Information System (INIS)

    Ochiai, T.; Nacher, J.C.; Akutsu, T.

    2005-01-01

    In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption-Markov property-and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model

  18. Assays for noninvasive imaging of reporter gene expression

    International Nuclear Information System (INIS)

    Gambhir, S.S.; Barrio, J.R.; Herschman, H.R.; Phelps, M.E.

    1999-01-01

    Repeated, noninvasive imaging of reporter gene expression is emerging as a valuable tool for monitoring the expression of genes in animals and humans. Monitoring of organ/cell transplantation in living animals and humans, and the assessment of environmental, behavioral, and pharmacologic modulation of gene expression in transgenic animals should soon be possible. The earliest clinical application is likely to be monitoring human gene therapy in tumors transduced with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) suicide gene. Several candidate assays for imaging reporter gene expression have been studied, utilizing cytosine deaminase (CD), HSV1-tk, and dopamine 2 receptor (D2R) as reporter genes. For the HSV1-tk reporter gene, both uracil nucleoside derivatives (e.g., 5-iodo-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil [FIAU] labeled with 124 I, 131 I ) and acycloguanosine derivatives {e.g., 8-[ 18 F]fluoro-9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (8-[ 18 F]-fluoroganciclovir) ([ 18 F]FGCV), 9-[(3-[ 18 F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([ 18 F]FHPG)} have been investigated as reporter probes. For the D2R reporter gene, a derivative of spiperone {3-(2'-[ 18 F]-Fluoroethyl)spiperone ([ 18 F]FESP)} has been used with positron emission tomography (PET) imaging. In this review, the principles and specific assays for imaging reporter gene expression are presented and discussed. Specific examples utilizing adenoviral-mediated delivery of a reporter gene as well as tumors expressing reporter genes are discussed

  19. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  20. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    Science.gov (United States)

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  1. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  2. Mining gene expression data of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Pi Guo

    Full Text Available Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example.Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models' performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined.An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score.The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases.

  3. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue

    Directory of Open Access Journals (Sweden)

    Dunner Susana

    2008-09-01

    Full Text Available Abstract Background Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR is a technique used to measure mRNA species copy number as a way to determine key genes involved in different biological processes. However, the expression level of these key genes may vary among tissues or cells not only as a consequence of differential expression but also due to different factors, including choice of reference genes to normalize the expression levels of the target genes; thus the selection of reference genes is critical for expression studies. For this purpose, ten candidate reference genes were investigated in bovine muscular tissue. Results The value of stability of ten candidate reference genes included in three groups was estimated: the so called 'classical housekeeping' genes (18S, GAPDH and ACTB, a second set of genes used in expression studies conducted on other tissues (B2M, RPII, UBC and HMBS and a third set of novel genes (SF3A1, EEF1A2 and CASC3. Three different statistical algorithms were used to rank the genes by their stability measures as produced by geNorm, NormFinder and Bestkeeper. The three methods tend to agree on the most stably expressed genes and the least in muscular tissue. EEF1A2 and HMBS followed by SF3A1, ACTB, and CASC3 can be considered as stable reference genes, and B2M, RPII, UBC and GAPDH would not be appropriate. Although the rRNA-18S stability measure seems to be within the range of acceptance, its use is not recommended because its synthesis regulation is not representative of mRNA levels. Conclusion Based on geNorm algorithm, we propose the use of three genes SF3A1, EEF1A2 and HMBS as references for normalization of real-time RTqPCR in muscle expression studies.

  5. Metallothionein Zn(2+)- and Cu(2+)-clusters from first-principles calculations

    DEFF Research Database (Denmark)

    Greisen, Per Junior; Jespersen, Jakob Berg; Kepp, Kasper Planeta

    2012-01-01

    Detailed electronic structures of Zn(ii) and Cu(ii) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(ii) intermediates affect Zn-binding to MT and cooperatively lead to Cu(i)MT. The inferred accura...

  6. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  7. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  8. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-01-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  9. Genetic architecture of gene expression in the chicken

    Directory of Open Access Journals (Sweden)

    Stanley Dragana

    2013-01-01

    Full Text Available Abstract Background The annotation of many genomes is limited, with a large proportion of identified genes lacking functional assignments. The construction of gene co-expression networks is a powerful approach that presents a way of integrating information from diverse gene expression datasets into a unified analysis which allows inferences to be drawn about the role of previously uncharacterised genes. Using this approach, we generated a condition-free gene co-expression network for the chicken using data from 1,043 publically available Affymetrix GeneChip Chicken Genome Arrays. This data was generated from a diverse range of experiments, including different tissues and experimental conditions. Our aim was to identify gene co-expression modules and generate a tool to facilitate exploration of the functional chicken genome. Results Fifteen modules, containing between 24 and 473 genes, were identified in the condition-free network. Most of the modules showed strong functional enrichment for particular Gene Ontology categories. However, a few showed no enrichment. Transcription factor binding site enrichment was also noted. Conclusions We have demonstrated that this chicken gene co-expression network is a useful tool in gene function prediction and the identification of putative novel transcription factors and binding sites. This work highlights the relevance of this methodology for functional prediction in poorly annotated genomes such as the chicken.

  10. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Directory of Open Access Journals (Sweden)

    Lavinia Liliana Ruta

    Full Text Available In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I, Zn(II or Cd(II. The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3 were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyperaccumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II, Zn(II or Cd(II, but also non-canonical metal ions, such as Co(II, Mn(II or Ni(II, myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  11. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Science.gov (United States)

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  12. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  13. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  14. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  15. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  16. Gene expression analysis of flax seed development

    Science.gov (United States)

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  17. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  18. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  19. Identification of suitable reference genes for gene expression studies of shoulder instability.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available Shoulder instability is a common shoulder injury, and patients present with plastic deformation of the glenohumeral capsule. Gene expression analysis may be a useful tool for increasing the general understanding of capsule deformation, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR has become an effective method for such studies. Although RT-qPCR is highly sensitive and specific, it requires the use of suitable reference genes for data normalization to guarantee meaningful and reproducible results. In the present study, we evaluated the suitability of a set of reference genes using samples from the glenohumeral capsules of individuals with and without shoulder instability. We analyzed the expression of six commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, TBP and TFRC in the antero-inferior, antero-superior and posterior portions of the glenohumeral capsules of cases and controls. The stability of the candidate reference gene expression was determined using four software packages: NormFinder, geNorm, BestKeeper and DataAssist. Overall, HPRT1 was the best single reference gene, and HPRT1 and B2M composed the best pair of reference genes from different analysis groups, including simultaneous analysis of all tissue samples. GenEx software was used to identify the optimal number of reference genes to be used for normalization and demonstrated that the accumulated standard deviation resulting from the use of 2 reference genes was similar to that resulting from the use of 3 or more reference genes. To identify the optimal combination of reference genes, we evaluated the expression of COL1A1. Although the use of different reference gene combinations yielded variable normalized quantities, the relative quantities within sample groups were similar and confirmed that no obvious differences were observed when using 2, 3 or 4 reference genes. Consequently, the use of 2 stable reference genes for normalization, especially

  20. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  1. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  2. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Directory of Open Access Journals (Sweden)

    Øvstebø Reidun

    2010-05-01

    Full Text Available Abstract Background Gene expression in lipopolysaccharide (LPS-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR using GAPDH (glyceraldehyde 3-phosphate dehydrogenase or ACTB (beta-actin as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system. Results Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B, B2M (beta-2-microglobulin and PPIA (cyclophilin A as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha and IL10 (interleukin 10 expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH. Conclusions Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.

  3. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  4. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  5. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  6. High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines

    Directory of Open Access Journals (Sweden)

    Koop Ben F

    2010-05-01

    Full Text Available Abstract Background Two decades after the introduction of oil-based vaccines in the control of bacterial and viral diseases in farmed salmonids, the mechanisms of induced side effects manifested as intra-abdominal granulomas remain unresolved. Side effects have been associated with generation of auto-antibodies and autoimmunity but the underlying profile of inflammatory and immune response has not been characterized. This study was undertaken with the aim to elucidate the inflammatory and immune mechanisms of granuloma formation at gene expression level associated with high and low side effect (granuloma indices. Groups of Atlantic salmon parr were injected intraperitoneally with oil-adjuvanted vaccines containing either high or low concentrations of Aeromonas salmonicida or Moritella viscosa antigens in order to induce polarized (severe and mild granulomatous reactions. The established granulomatous reactions were confirmed by gross and histological methods at 3 months post vaccination when responses were known to have matured. The corresponding gene expression patterns in the head kidneys were profiled using salmonid cDNA microarrays followed by validation by real-time quantitative PCR (qPCR. qPCR was also used to examine the expression of additional genes known to be important in the adaptive immune response. Results Granulomatous lesions were observed in all vaccinated fish. The presence of severe granulomas was associated with a profile of up-regulation of innate immunity-related genes such as complement factors C1q and C6, mannose binding protein, lysozyme C, C-type lectin receptor, CD209, Cathepsin D, CD63, LECT-2, CC chemokine and metallothionein. In addition, TGF-β (p = 0.001, IL-17A (p = 0.007 and its receptor (IL-17AR (p = 0.009 representing TH17 were significantly up-regulated in the group with severe granulomas as were arginase and IgM. None of the genes directly reflective of TH1 T cell lineage (IFN-γ, CD4 or TH2 (GATA-3

  7. Induction of Cellular Metallothionein in Irradiated Rats Supplemented with Egyptian Propolis Extract

    International Nuclear Information System (INIS)

    Nada, A.SH.; Azab, KH.SH.

    2005-01-01

    Proplis, a resinous yellow to dark substance collected by worker honeybees has been extensively used in folk medicine for management of a wide spectrum of disorders. The current study was conducted to evaluate the role of Egyptian propolis extract in modification of metallothionen (MT) induction in rats exposed to whole body fractionated gamma irradiation (delivered as 1.5 Gy every day up to 7.5 Gy total dose) and the relevance of certain metals (Cu, Zn, Mg, Mn and Fe) for metallothionein induction. In addition, lipid peroxides (thiobarbituric acid reactive substance; TEARS) and reduced glutathione (GSH) concentrations were observed in different subjected tissues. Metal content of crude propolis and certain related natural forms (bee pollen and honey) were also identified. Propolis extract was supplemented daily to rats (10 ml/kg body wt/day) by stomach tube, 15 days before and during exposure to gamma radiation. Experimental investigations were carried out on the 1st and 10th days after the last irradiation fraction in liver, kidney, brain, heart, lung and spleen tissues. The results obtained reveal that the administration of propolis extract increased significantly the metallothionein (MT) concentration in all examined tissues as compared with control rats. Records on all subjected tissues imparted that propolis extract supplementation has significantly minimized the radiation-induced increases in the amount of TBARS, maintained GSH con centration within normal levels except for lung and spleen and increased MT levels comparing to irradiated rats. Furthermore, significant amelioration in the levels of trace metals was observed such as zinc and copper in liver, kidney and brain. It could be postulated that the prolonged administration of Egyptian propolis extract attenuates the lipid peroxidation process in different rat's tissues and that might attributed to its antioxidant potency partially expressed through MT induction, maintenance of GSH levels and the

  8. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  9. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Gene expression analysis in watermelon (Citrullus lanatus fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC, β-actin (ClACT, and alpha tubulin 5 (ClTUA5 as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1, a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  10. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Science.gov (United States)

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  11. Novel gene sets improve set-level classification of prokaryotic gene expression data.

    Science.gov (United States)

    Holec, Matěj; Kuželka, Ondřej; Železný, Filip

    2015-10-28

    Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.

  12. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  13. Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng

    Directory of Open Access Journals (Sweden)

    Meizhen eWang

    2016-01-01

    Full Text Available Reverse transcription-qPCR (RT-qPCR has become a popular method for gene expression studies. Its results require data normalization by housekeeping genes. No single gene is proved to be stably expressed under all experimental conditions. Therefore, systematic evaluation of reference genes is necessary. With the aim to identify optimum reference genes for RT-qPCR analysis of gene expression in different tissues of Panax ginseng and the seedlings grown under heat stress, we investigated the expression stability of eight candidate reference genes, including elongation factor 1-beta (EF1-β, elongation factor 1-gamma (EF1-γ, eukaryotic translation initiation factor 3G (IF3G, eukaryotic translation initiation factor 3B (IF3B, actin (ACT, actin11 (ACT11, glyceraldehyde-3-phosphate dehydrogenase (GAPDH and cyclophilin ABH-like protein (CYC, using four widely used computational programs: geNorm, Normfinder, BestKeeper, and the comparative ΔCt method. The results were then integrated using the web-based tool RefFinder. As a result, EF1-γ, IF3G and EF1-β were the three most stable genes in different tissues of P. ginseng, while IF3G, ACT11 and GAPDH were the top three-ranked genes in seedlings treated with heat. Using three better reference genes alone or in combination as internal control, we examined the expression profiles of MAR, a multiple function-associated mRNA-like non-coding RNA (mlncRNA in P. ginseng. Taken together, we recommended EF1-γ/IF3G and IF3G/ACT11 as the suitable pair of reference genes for RT-qPCR analysis of gene expression in different tissues of P. ginseng and the seedlings grown under heat stress, respectively. The results serve as a foundation for future studies on P. ginseng functional genomics.

  14. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Science.gov (United States)

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Improved gene expression signature of testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Leffers, Henrik; Lothe, Ragnhild A

    2007-01-01

    on global gene expression in testicular CIS have been previously published. We have merged the two data sets on CIS samples (n = 6) and identified the shared gene expression signature in relation to expression in normal testis. Among the top-20 highest expressed genes, one-third was transcription factors...... development' were significantly altered and could collectively affect cellular pathways like the WNT signalling cascade, which thus may be disrupted in testicular CIS. The merged CIS data from two different microarray platforms, to our knowledge, provide the most precise CIS gene expression signature to date....

  16. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  17. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  18. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  19. A metallothionein mimetic peptide protects neurons against kainic acid-induced excitotoxicity

    DEFF Research Database (Denmark)

    Sonn, Katrin; Pankratova, Stanislava; Korshunova, Irina

    2010-01-01

    Metallothioneins I and II (MTI/II) are metal-binding proteins overexpressed in response to brain injury. Recently, we have designed a peptide, termed EmtinB, which is modeled after the beta-domain of MT-II and mimics the biological effects of MTI/II in vitro. Here, we demonstrate the neuroprotect...

  20. The Medicago truncatula gene expression atlas web server

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-12-01

    Full Text Available Abstract Background Legumes (Leguminosae or Fabaceae play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible

  1. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes.

    Directory of Open Access Journals (Sweden)

    Simone de Jong

    Full Text Available Despite large-scale genome-wide association studies (GWAS, the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1, is located in, and regulated by the major histocompatibility (MHC complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.

  2. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  3. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  4. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  5. Understanding gene expression in coronary artery disease through ...

    Indian Academy of Sciences (India)

    Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes. Prathima ... Table 2. Differentially expressed genes in CAD compared to age and gender matched controls. .... Regulation of nuclear pre-mRNA domain containing 1A.

  6. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  7. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Urinary metallothionein as a biological indicator of occupational cadmium exposure

    International Nuclear Information System (INIS)

    Tohyama, C.; Shaikh, Z.A.; Ellis, K.J.; Cohn, S.H.

    1981-01-01

    Radioimmunoassay and neutron activation data indicate that the urinary metallothionein concentration is related to the liver Cd concentration in occupational Cd exposure. It is also related to the kidney Cd content - but only before the onset of renal dysfunction. Further epidemiological studies are needed to establish a dose-response relationship, which may be useful in minimizing the hazard of Cd-induced renal dysfunction

  9. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  10. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  11. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Gene expression patterns in pancreatic tumors, cells and tissues.

    Directory of Open Access Journals (Sweden)

    Anson W Lowe

    2007-03-01

    Full Text Available Cancers of the pancreas originate from both the endocrine and exocrine elements of the organ, and represent a major cause of cancer-related death. This study provides a comprehensive assessment of gene expression for pancreatic tumors, the normal pancreas, and nonneoplastic pancreatic disease.DNA microarrays were used to assess the gene expression for surgically derived pancreatic adenocarcinomas, islet cell tumors, and mesenchymal tumors. The addition of normal pancreata, isolated islets, isolated pancreatic ducts, and pancreatic adenocarcinoma cell lines enhanced subsequent analysis by increasing the diversity in gene expression profiles obtained. Exocrine, endocrine, and mesenchymal tumors displayed unique gene expression profiles. Similarities in gene expression support the pancreatic duct as the origin of adenocarcinomas. In addition, genes highly expressed in other cancers and associated with specific signal transduction pathways were also found in pancreatic tumors.The scope of the present work was enhanced by the inclusion of publicly available datasets that encompass a wide spectrum of human tissues and enabled the identification of candidate genes that may serve diagnostic and therapeutic goals.

  13. Metallothioneins are multipurpose neuroprotectants during brain pathology

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    Metallothioneins (MTs) constitute a family of cysteine-rich metalloproteins involved in cytoprotection during pathology. In mammals there are four isoforms (MT-I - IV), of which MT-I and -II (MT-I + II) are the best characterized MT proteins in the brain. Accumulating studies have demonstrated MT......-I overexpression demonstrated the importance of MT-I + II for coping with brain pathology. In addition, exogenous MT-I or MT-II injected intraperitoneally is able to promote similar effects as those of endogenous MT-I + II, which indicates that MT-I + II have both extra- and intracellular actions. In injured brain...

  14. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  15. Vaginal Gene Expression During Treatment With Aromatase Inhibitors.

    Science.gov (United States)

    Kallak, Theodora Kunovac; Baumgart, Juliane; Nilsson, Kerstin; Åkerud, Helena; Poromaa, Inger Sundström; Stavreus-Evers, Anneli

    2015-12-01

    Aromatase inhibitor (AI) treatment suppresses estrogen biosynthesis and causes genitourinary symptoms of menopause such as vaginal symptoms, ultimately affecting the quality of life for many postmenopausal women with breast cancer. Thus, the aim of this study was to examine vaginal gene expression in women during treatment with AIs compared with estrogen-treated women. The secondary aim was to study the presence and localization of vaginal aromatase. Vaginal biopsies were collected from postmenopausal women treated with AIs and from age-matched control women treated with vaginal estrogen therapy. Differential gene expression was studied with the Affymetrix Gene Chip Gene 1.0 ST Array (Affymetrix Inc, Santa Clara, CA) system, Ingenuity pathway analysis, quantitative real-time polymerase chain reaction, and immunohistochemistry. The expression of 279 genes differed between the 2 groups; AI-treated women had low expression of genes involved in cell differentiation, proliferation, and cell adhesion. Some differentially expressed genes were found to interact indirectly with the estrogen receptor alpha. In addition, aromatase protein staining was evident in the basal and the intermediate vaginal epithelium layers, and also in stromal cells with a slightly stronger staining intensity found in AI-treated women. In this study, we demonstrated that genes involved in cell differentiation, proliferation, and cell adhesion are differentially expressed in AI-treated women. The expression of vaginal aromatase suggests that this could be the result of local and systemic inhibition of aromatase. Our results emphasize the role of estrogen for vaginal cell differentiation and proliferation and future drug candidates should be aimed at improving cell differentiation and proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Gene-expression profiling after exposure to C-ion beams

    International Nuclear Information System (INIS)

    Saegusa, Kumiko; Furuno, Aki; Ishikawa, Kenichi; Ishikawa, Atsuko; Ohtsuka, Yoshimi; Kawai, Seiko; Imai, Takashi; Nojima, Kumie

    2005-01-01

    It is recognized that carbon-ion beam kills cancer cells more efficiently than X-ray. In this study we have compared cellular gene expression response after carbon-ion beam exposure with that after X-ray exposure. Gene expression profiles of cultured neonatal human dermal fibroblasts (NHDF) at 0, 1, 3, 6, 12, 18, and 24 hr after exposure to 0.1, 2 and 5 Gy of X-ray or carbon-ion beam were obtained using 22K oligonucleotide microarray. N-way ANOVA analysis of whole gene expression data sets selected 960 genes for carbon-ion beam and 977 genes for X-ray, respectively. Interestingly, majority of these genes (91% for carbon-ion beam and 88% for X-ray, respectively) were down regulated. The selected genes were further classified by their dose-dependence or time-dependence of gene expression change (fold change>1.5). It was revealed that genes involved in cell proliferation had tendency to show time-dependent up regulation by carbon-ion beam. Another N-way ANOVA analysis was performed to select 510 genes, and further selection was made to find 70 genes that showed radiation species-dependent gene expression change (fold change>1.25). These genes were then categorized by the K-Mean clustering method into 4 clusters. Each cluster showed tendency to contain genes involved in cell cycle regulation, cell death, responses to stress and metabolisms, respectively. (author)

  17. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    Directory of Open Access Journals (Sweden)

    Xia Yuannan

    2006-12-01

    Full Text Available Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes. Results AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, GeneFinder for detecting significant genes in a treatment versus control experiment and GOTree for mapping genes of interest onto the Gene Ontology (GO space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications. Conclusion AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.

  18. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  19. Evaluation of cadmium, lead and metallothionein contents in the tissues of mussels (Mytilus galloprovincialis) from the Campania coast (Italy): levels and seasonal trends.

    Science.gov (United States)

    Scudiero, Rosaria; Cretì, Patrizia; Trinchella, Francesca; Grazia Esposito, Maria

    2014-01-01

    The biological effect of seasonality on cadmium, lead and metallothionein contents was assessed in mussels Mytilus galloprovincialis from natural banks located along the coastline of the Gulf of Naples (Campania, Italy). Heavy metals and metallothionein concentrations were measured in digestive and reproductive glands. The results showed a clear correlation between metallothionein content and the reproductive gland status determined during the seasons; on the contrary, no correlation was found between metallothionein and metal contents. Data allow us to hypothesize that metallothionein functions go beyond metal detoxification, thus opening new scenarios for these proteins in invertebrates. The effect of seasons on metals concentration in mussel tissues showed similar seasonal patterns between the sites, regardless of their anthropogenic impacts. Cadmium content was not strictly related to seasonal periods, whereas lead content was significantly lower in summer. The results also indicate that the metal contents in mussels from the Gulf of Naples do not represent a risk to human health, even in the period of their maximum accumulation, and that the relaying of mussels before marketing could improve the animal stress conditions, but having a slight effect on metal excretion. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  1. Regulation of gene expression in protozoa parasites.

    Science.gov (United States)

    Gomez, Consuelo; Esther Ramirez, M; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  2. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes

    DEFF Research Database (Denmark)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood...... of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co......, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes...

  3. Divergent and nonuniform gene expression patterns in mouse brain

    Science.gov (United States)

    Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.

    2010-01-01

    Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311

  4. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  5. Variation-preserving normalization unveils blind spots in gene expression profiling

    Science.gov (United States)

    Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.

    2017-01-01

    RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435

  6. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  7. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  8. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Science.gov (United States)

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  9. Selection for the compactness of highly expressed genes in Gallus gallus

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2010-05-01

    Full Text Available Abstract Background Coding sequence (CDS length, gene size, and intron length vary within a genome and among genomes. Previous studies in diverse organisms, including human, D. Melanogaster, C. elegans, S. cerevisiae, and Arabidopsis thaliana, indicated that there are negative relationships between expression level and gene size, CDS length as well as intron length. Different models such as selection for economy model, genomic design model, and mutational bias hypotheses have been proposed to explain such observation. The debate of which model is a superior one to explain the observation has not been settled down. The chicken (Gallus gallus is an important model organism that bridges the evolutionary gap between mammals and other vertebrates. As D. Melanogaster, chicken has a larger effective population size, selection for chicken genome is expected to be more effective in increasing protein synthesis efficiency. Therefore, in this study the chicken was used as a model organism to elucidate the interaction between gene features and expression pattern upon selection pressure. Results Based on different technologies, we gathered expression data for nuclear protein coding, single-splicing genes from Gallus gallus genome and compared them with gene parameters. We found that gene size, CDS length, first intron length, average intron length, and total intron length are negatively correlated with expression level and expression breadth significantly. The tissue specificity is positively correlated with the first intron length but negatively correlated with the average intron length, and not correlated with the CDS length and protein domain numbers. Comparison analyses showed that ubiquitously expressed genes and narrowly expressed genes with the similar expression levels do not differ in compactness. Our data provided evidence that the genomic design model can not, at least in part, explain our observations. We grouped all somatic-tissue-specific genes

  10. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-05-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  11. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-01-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  12. Aging and Gene Expression in the Primate Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.; Paabo, Svante; Eisen, Michael B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  13. Aging and gene expression in the primate brain.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2005-09-01

    Full Text Available It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  14. Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice*

    Science.gov (United States)

    Takarada, Takeshi; Kodama, Ayumi; Hotta, Shogo; Mieda, Michihiro; Shimba, Shigeki; Hinoi, Eiichi; Yoneda, Yukio

    2012-01-01

    We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression. PMID:22936800

  15. A Gene Expression Classifier of Node-Positive Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Paul F. Meeh

    2009-10-01

    Full Text Available We used digital long serial analysis of gene expression to discover gene expression differences between node-negative and node-positive colorectal tumors and developed a multigene classifier able to discriminate between these two tumor types. We prepared and sequenced long serial analysis of gene expression libraries from one node-negative and one node-positive colorectal tumor, sequenced to a depth of 26,060 unique tags, and identified 262 tags significantly differentially expressed between these two tumors (P < 2 x 10-6. We confirmed the tag-to-gene assignments and differential expression of 31 genes by quantitative real-time polymerase chain reaction, 12 of which were elevated in the node-positive tumor. We analyzed the expression levels of these 12 upregulated genes in a validation panel of 23 additional tumors and developed an optimized seven-gene logistic regression classifier. The classifier discriminated between node-negative and node-positive tumors with 86% sensitivity and 80% specificity. Receiver operating characteristic analysis of the classifier revealed an area under the curve of 0.86. Experimental manipulation of the function of one classification gene, Fibronectin, caused profound effects on invasion and migration of colorectal cancer cells in vitro. These results suggest that the development of node-positive colorectal cancer occurs in part through elevated epithelial FN1 expression and suggest novel strategies for the diagnosis and treatment of advanced disease.

  16. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  17. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  18. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  19. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  20. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  1. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression.

    Directory of Open Access Journals (Sweden)

    Marta Miró-Murillo

    Full Text Available Von Hippel Lindau (Vhl gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs, have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2. Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed-UBC-Cre-ER(T2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.

  2. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  3. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  4. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    Science.gov (United States)

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  5. GeneCAT--novel webtools that combine BLAST and co-expression analyses

    DEFF Research Database (Denmark)

    Mutwil, Marek; Obro, Jens; Willats, William G T

    2008-01-01

    The gene co-expression analysis toolbox (GeneCAT) introduces several novel microarray data analyzing tools. First, the multigene co-expression analysis, combined with co-expressed gene networks, provides a more powerful data mining technique than standard, single-gene co-expression analysis. Second...... orthologs in the plant model organisms Arabidopsis thaliana and Hordeum vulgare (Barley). GeneCAT is equipped with expression data for the model plant A. thaliana, and first to introduce co-expression mining tools for the monocot Barley. GeneCAT is available at http://genecat.mpg.de....

  6. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  7. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  8. A compendium of canine normal tissue gene expression.

    Directory of Open Access Journals (Sweden)

    Joseph Briggs

    Full Text Available BACKGROUND: Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. METHODOLOGY/PRINCIPAL FINDINGS: The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. CONCLUSIONS/SIGNIFICANCE: These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.

  9. Expression of streptavidin gene in bacteria and plants

    International Nuclear Information System (INIS)

    Guan, Xueni; Wurtele, E.S.; Nikolau, B.J.

    1990-01-01

    Six biotin-containing proteins are present in plants, representing at least four different biotin enzymes. The physiological function of these biotin enzymes is not understood. Streptavidin, a protein from Streptomyces avidinii, binds tightly and specifically to biotin causing inactivation of biotin enzymes. One approach to elucidating the physiological function of biotin enzymes in plant metabolism is to create transgenic plants expressing the streptavidin gene. A plasmid containing a fused streptavidin-beta-galactosidase gene has been expressed in E. coli. We also have constructed various fusion genes that include an altered CaMV 35S promoter, signal peptides to target the streptavidin protein to specific organelles, and the streptavidin coding gene. We are examining the expression of these genes in cells of carrot

  10. Evaluation of suitable reference genes for gene expression studies ...

    Indian Academy of Sciences (India)

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  11. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    Science.gov (United States)

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  13. Role of metallothionein-III following central nervous system damage

    DEFF Research Database (Denmark)

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes

    2003-01-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area...... the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process....

  14. Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis

    NARCIS (Netherlands)

    Beauchamp, Nicholas J.; van Achterberg, Tanja A. E.; Engelse, Marten A.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Migration and proliferation of vascular smooth muscle cells (SMCs) are key events in atherosclerosis. However, little is known about alterations in gene expression upon transition of the quiescent, contractile SMC to the proliferative SMC. We performed serial analysis of gene expression (SAGE) of

  15. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metallothionein and heavy metals in daphnia pulex from Jose Antonio Alzate reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, I.; Diazdelgado, C.

    2001-01-01

    Water and specimens of the freshwater cladoceran Dhapnia pulex were collected at 4 different sites located in an area influenced by industrial, agricultural and urban activities in the Jose Antonio Alzate Reservoir in two different seasons. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico. There are about 2,500 industrial discharges between the river source and the Alzate Reservoir which makes the Lerma river and the Jose Antonio Alzate Reservoir the most contaminated water bodies in the State of Mexico. The Monitoring National Network recognises these waters as highly contaminated, especially in the zone located between the Mexico-Toluca highway and the Alzate Reservoir. Water samples and freshwater cladoceran were analysed for Cu and Zn by Energy Dispersive X-Ray Fluorescence (EDXRF) and for Hg and Cd by Neutron Activation Analysis (NAA). As a general feature, the heavy metal concentrations of the water were found to decrease in the sequence: Cu > Zn > Hg > Cd. Metallothioneins (MT) were determined by silver saturation method. Tissue concentrations of MT in Dhapnia pulex varied between 5.69 and 8.96 (mg MT/ g wet wt) in rain season and between 48.87 and 74.00 (mg MT/ g wet wt) in dry season. Metallothioneins levels in Dhapnia pulex were significantly correlated (P < 0.01) with tissue Hg concentrations. In contrast, correlations between MT and tissue levels of Cu and Zn were weak. These observations suggest that Hg2+ activity is the key environmental factor to which metallothionein levels in Daphnia pulex are responding in the studied reservoir

  17. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium

    International Nuclear Information System (INIS)

    Franchi, Nicola; Piccinni, Ester; Ferro, Diana; Basso, Giuseppe; Spolaore, Barbara; Santovito, Gianfranco; Ballarin, Loriano

    2014-01-01

    Highlights: • Ciona intestinalis have a functional phytochelatin synthase (PCS) gene (cipcs). • CiPCS amino acid sequence is phylogentically related to other metazoan PCSs. • CiPCS catalyze the synthesis of PC2. • cipcs are mostly transcribed in circulating hemocytes, in both tunic and blood lacunae. • Cadmium exposure results in a significant increase of cipcs and cipcna transcription. - Abstract: The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96 h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal

  18. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Piccinni, Ester [Department of Biology, University of Padova, Padova (Italy); Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Basso, Giuseppe [Department of Woman and Child Health, University of Padova, Padova (Italy); Spolaore, Barbara [CRIBI Biotechnology Centre, University of Padova, Padova (Italy); Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2014-07-01

    Highlights: • Ciona intestinalis have a functional phytochelatin synthase (PCS) gene (cipcs). • CiPCS amino acid sequence is phylogentically related to other metazoan PCSs. • CiPCS catalyze the synthesis of PC2. • cipcs are mostly transcribed in circulating hemocytes, in both tunic and blood lacunae. • Cadmium exposure results in a significant increase of cipcs and cipcna transcription. - Abstract: The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96 h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.

  19. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  20. The human cumulus--oocyte complex gene-expression profile

    Science.gov (United States)

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  1. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  2. Finding gene regulatory network candidates using the gene expression knowledge base.

    Science.gov (United States)

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  3. Variation in gene expression within clones of the earthworm Dendrobaena octaedra.

    Directory of Open Access Journals (Sweden)

    Marina Mustonen

    Full Text Available Gene expression is highly plastic, which can help organisms to both acclimate and adapt to changing environments. Possible variation in gene expression among individuals with the same genotype (among clones is not widely considered, even though it could impact the results of studies that focus on gene expression phenotypes, for example studies using clonal lines. We examined the extent of within and between clone variation in gene expression in the earthworm Dendrobaena octaedra, which reproduces through apomictic parthenogenesis. Five microsatellite markers were developed and used to confirm that offspring are genetic clones of their parent. After that, expression of 12 genes was measured from five individuals each from six clonal lines after exposure to copper contaminated soil. Variation in gene expression was higher over all genotypes than within genotypes, as initially assumed. A subset of the genes was also examined in the offspring of exposed individuals in two of the clonal lines. In this case, variation in gene expression within genotypes was as high as that observed over all genotypes. One gene in particular (chymotrypsin inhibitor also showed significant differences in the expression levels among genetically identical individuals. Gene expression can vary considerably, and the extent of variation may depend on the genotypes and genes studied. Ensuring a large sample, with many different genotypes, is critical in studies comparing gene expression phenotypes. Researchers should be especially cautious inferring gene expression phenotypes when using only a single clonal or inbred line, since the results might be specific to only certain genotypes.

  4. Dlx homeobox gene family expression in osteoclasts.

    Science.gov (United States)

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  5. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance

    International Nuclear Information System (INIS)

    Ding, Kai; Wang, Xiao-ming; Fu, Rong; Ruan, Er-bao; Liu, Hui; Shao, Zong-hong

    2012-01-01

    To investigate the expression of the preferentially expressed antigen of melanoma (PRAME) gene in acute leukemia and its clinical significance. The level of expressed PRAME mRNA in bone marrow mononuclear cells from 34 patients with acute leukemia (AL) and in 12 bone marrow samples from healthy volunteers was measured via RT-PCR. Correlation analyses between PRAME gene expression and the clinical characteristics (gender, age, white blood count, immunophenotype of leukemia, percentage of blast cells, and karyotype) of the patients were performed. The PRAME gene was expressed in 38.2% of all 34 patients, in 40.7% of the patients with acute myelogenous leukemia (AML, n=27), and in 28.6% of the patients with acute lymphoblastic leukemia (ALL, n=7), but was not expressed in the healthy volunteers. The difference in the expression levels between AML and ALL patients was statistically significant. The rate of gene expression was 80% in M 3 , 33.3% in M 2 , and 28.6% in M 5 . Gene expression was also found to be correlated with CD15 and CD33 expression and abnormal karyotype, but not with age, gender, white blood count or percentage of blast cells. The PRAME gene is highly expressed in acute leukemia and could be a useful marker to monitor minimal residual disease. This gene is also a candidate target for the immunotherapy of acute leukemia

  6. Epigenetic regulation on the gene expression signature in esophagus adenocarcinoma.

    Science.gov (United States)

    Xi, Ting; Zhang, Guizhi

    2017-02-01

    Understanding the molecular mechanisms represents an important step in the development of diagnostic and therapeutic measures of esophagus adenocarcinoma (NOS). The objective of this study is to identify the epigenetic regulation on gene expression in NOS, shedding light on the molecular mechanisms of NOS. In this study, 78 patients with NOS were included and the data of mRNA, miRNA and DNA methylation of were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis between NOS and controls was performed in terms of gene expression, miRNA expression, and DNA methylation. Bioinformatic analysis was followed to explore the regulation mechanisms of miRNA and DNA methylationon gene expression. Totally, up to 1320 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs were identified. 240 DEGs that were not only the target genes but also negatively correlated with the screened differentially expressed miRNAs. 101 DEGs were found to be highlymethylated in CpG islands. Then, 8 differentially methylated genes (DMGs) were selected, which showed down-regulated expression in NOS. Among of these genes, 6 genes including ADHFE1, DPP6, GRIA4, CNKSR2, RPS6KA6 and ZNF135 were target genes of differentially expressed miRNAs (hsa-mir-335, hsa-mir-18a, hsa-mir-93, hsa-mir-106b and hsa-mir-21). The identified altered miRNA, genes and DNA methylation site may be applied as biomarkers for diagnosis and prognosis of NOS. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Codon usage and amino acid usage influence genes expression level.

    Science.gov (United States)

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  8. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE)

    Science.gov (United States)

    Sharon, Dror; Blackshaw, Seth; Cepko, Constance L.; Dryja, Thaddeus P.

    2002-01-01

    We used the serial analysis of gene expression (SAGE) technique to catalogue and measure the relative levels of expression of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium (RPE) from one or both of two humans, aged 88 and 44 years. The cone photoreceptor contribution to all transcription in the retina was found to be similar in the macula versus the retinal periphery, whereas the rod contribution was greater in the periphery versus the macula. Genes encoding structural proteins for axons were found to be expressed at higher levels in the macula versus the retinal periphery, probably reflecting the large proportion of ganglion cells in the central retina. In comparison with the younger eye, the peripheral retina of the older eye had a substantially higher proportion of mRNAs from genes encoding proteins involved in iron metabolism or protection against oxidative damage and a substantially lower proportion of mRNAs from genes encoding proteins involved in rod phototransduction. These differences may reflect the difference in age between the two donors or merely interindividual variation. The RPE library had numerous previously unencountered tags, suggesting that this cell type has a large, idiosyncratic repertoire of expressed genes. Comparison of these libraries with 100 reported nonocular SAGE libraries revealed 89 retina-specific or enriched genes expressed at substantial levels, of which 14 are known to cause a retinal disease and 53 are RPE-specific genes. We expect that these libraries will serve as a resource for understanding the relative expression levels of genes in the retina and the RPE and for identifying additional disease genes. PMID:11756676

  9. Disease gene characterization through large-scale co-expression analysis.

    Directory of Open Access Journals (Sweden)

    Allen Day

    2009-12-01

    Full Text Available In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET.Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2 and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders.UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis.

  10. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  11. Screening for interaction effects in gene expression data.

    Directory of Open Access Journals (Sweden)

    Peter J Castaldi

    Full Text Available Expression quantitative trait (eQTL studies are a powerful tool for identifying genetic variants that affect levels of messenger RNA. Since gene expression is controlled by a complex network of gene-regulating factors, one way to identify these factors is to search for interaction effects between genetic variants and mRNA levels of transcription factors (TFs and their respective target genes. However, identification of interaction effects in gene expression data pose a variety of methodological challenges, and it has become clear that such analyses should be conducted and interpreted with caution. Investigating the validity and interpretability of several interaction tests when screening for eQTL SNPs whose effect on the target gene expression is modified by the expression level of a transcription factor, we characterized two important methodological issues. First, we stress the scale-dependency of interaction effects and highlight that commonly applied transformation of gene expression data can induce or remove interactions, making interpretation of results more challenging. We then demonstrate that, in the setting of moderate to strong interaction effects on the order of what may be reasonably expected for eQTL studies, standard interaction screening can be biased due to heteroscedasticity induced by true interactions. Using simulation and real data analysis, we outline a set of reasonable minimum conditions and sample size requirements for reliable detection of variant-by-environment and variant-by-TF interactions using the heteroscedasticity consistent covariance-based approach.

  12. Anterior-posterior regionalized gene expression in the Ciona notochord.

    Science.gov (United States)

    Reeves, Wendy; Thayer, Rachel; Veeman, Michael

    2014-04-01

    In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. Copyright © 2013 Wiley Periodicals, Inc.

  13. Changes in gene expression following androgen receptor blockade ...

    Indian Academy of Sciences (India)

    Madhu urs

    of gene expression in the ventral prostate, it is not clear whether all the gene expression ... These include clusterin, methionine adenosyl transferase IIα, and prostate-specific ..... MAGEE1 melanoma antigen and no similarity was found with the ...

  14. Expression and clinical significance of Pax6 gene in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Hai-Dong Huang

    2013-07-01

    Full Text Available AIM: To discuss the expression and clinical significance of Pax6 gene in retinoblastoma(Rb. METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCRmethods were used to detect Pax6 protein and Pax6 mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the Pax6 gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of Pax6 gene in Rb were discussed. RESULTS: In the observation group, average value of mRNA expression of Pax6 gene was 0.99±0.03; average value of Pax6 gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(PCONCLUSION: Abnormal expression of Pax6 gene is likely to accelerate the occurrence of Rb.

  15. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  16. Observation of intermittency in gene expression on cDNA microarrays

    CERN Document Server

    Peterson, L E

    2002-01-01

    We used scaled factorial moments to search for intermittency in the log expression ratios (LERs) for thousands of genes spotted on cDNA microarrays (gene chips). Results indicate varying levels of intermittency in gene expression. The observation of intermittency in the data analyzed provides a complimentary handle on moderately expressed genes, generally not tackled by conventional techniques.

  17. Gene expression during testis development in Duroc boars

    DEFF Research Database (Denmark)

    Lervik, Siri; Kristoffersen, Anja Bråthen; Conley, Lene

    2015-01-01

    . Nine clusters of genes with significant differential expression over time and 49 functional charts were found in the analysed testis samples. Prominent pathways in the prepubertal testis were associated with tissue renewal, cell respiration and increased endocytocis. E-cadherines may be associated...... with the onset of pubertal development. With elevated steroidogenesis (weeks 16 to 27), there was an increase in the expression of genes in the MAPK pathway, STAR and its analogue STARD6. A pubertal shift in genes coding for cellular cholesterol transport was observed. Increased expression of meiotic pathways...

  18. Equivalent Gene Expression Profiles between Glatopa™ and Copaxone®.

    Directory of Open Access Journals (Sweden)

    Josephine S D'Alessandro

    Full Text Available Glatopa™ is a generic glatiramer acetate recently approved for the treatment of patients with relapsing forms of multiple sclerosis. Gene expression profiling was performed as a means to evaluate equivalence of Glatopa and Copaxone®. Microarray analysis containing 39,429 unique probes across the entire genome was performed in murine glatiramer acetate--responsive Th2-polarized T cells, a test system highly relevant to the biology of glatiramer acetate. A closely related but nonequivalent glatiramoid molecule was used as a control to establish assay sensitivity. Multiple probe-level (Student's t-test and sample-level (principal component analysis, multidimensional scaling, and hierarchical clustering statistical analyses were utilized to look for differences in gene expression induced by the test articles. The analyses were conducted across all genes measured, as well as across a subset of genes that were shown to be modulated by Copaxone. The following observations were made across multiple statistical analyses: the expression of numerous genes was significantly changed by treatment with Copaxone when compared against media-only control; gene expression profiles induced by Copaxone and Glatopa were not significantly different; and gene expression profiles induced by Copaxone and the nonequivalent glatiramoid were significantly different, underscoring the sensitivity of the test system and the multiple analysis methods. Comparative analysis was also performed on sets of transcripts relevant to T-cell biology and antigen presentation, among others that are known to be modulated by glatiramer acetate. No statistically significant differences were observed between Copaxone and Glatopa in the expression levels (magnitude and direction of these glatiramer acetate-regulated genes. In conclusion, multiple methods consistently supported equivalent gene expression profiles between Copaxone and Glatopa.

  19. Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots

    Science.gov (United States)

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...

  20. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  1. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  2. Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects.

    Science.gov (United States)

    Shakeel, Muhammad; Rodriguez, Alicia; Tahir, Urfa Bin; Jin, Fengliang

    2018-02-01

    Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.

  3. GOBO: gene expression-based outcome for breast cancer online.

    Directory of Open Access Journals (Sweden)

    Markus Ringnér

    Full Text Available Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo, allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1 rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2 identification of co-expressed genes for creation of potential metagenes, 3 association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

  4. Regulation of mitochondrial gene expression, the epigenetic enigma

    NARCIS (Netherlands)

    Mposhi, Archibold; van der Wijst, Monique G. P.; Faber, Klaas Nico; Rots, Marianne G.

    2017-01-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether

  5. Ebola virus infection induces irregular dendritic cell gene expression.

    Science.gov (United States)

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  6. Xylella fastidiosa gene expression analysis by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Regiane F. Travensolo

    2009-01-01

    Full Text Available Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE. All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others. The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  7. Clinicopathologic and gene expression parameters predict liver cancer prognosis

    International Nuclear Information System (INIS)

    Hao, Ke; Zhong, Hua; Greenawalt, Danielle; Ferguson, Mark D; Ng, Irene O; Sham, Pak C; Poon, Ronnie T; Molony, Cliona; Schadt, Eric E; Dai, Hongyue; Luk, John M; Lamb, John; Zhang, Chunsheng; Xie, Tao; Wang, Kai; Zhang, Bin; Chudin, Eugene; Lee, Nikki P; Mao, Mao

    2011-01-01

    The prognosis of hepatocellular carcinoma (HCC) varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types) in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome

  8. Gene expression and adaptive noncoding changes during human evolution.

    Science.gov (United States)

    Babbitt, Courtney C; Haygood, Ralph; Nielsen, William J; Wray, Gregory A

    2017-06-05

    Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive changes in cis-regulatory regions remains unclear. Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to detect correlations. Consistent with previous studies, we find little correlation between gene expression and adaptive noncoding changes at the level of individual genes; however, we do find significant correlations at the level of biological function ontology groups. The types of function include processes regulated by specific transcription factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system. Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent themes include cancer, particularly epithelial cancers, and neural development and function.

  9. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  10. Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica

    Czech Academy of Sciences Publication Activity Database

    Strouhal, M.; Kizek, René; Vacek, Jan; Trnková, L.; Němec, M.

    2003-01-01

    Roč. 60, 1-2 (2003), s. 29-36 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004110; GA ČR GA203/02/0422 Institutional research plan: CEZ:AV0Z5004920; CEZ:MSM 143100005 Keywords : electrochemical determination of metallothionein and heavy metals * yeast * Yarrowia lipolytica Subject RIV: BO - Biophysics Impact factor: 1.482, year: 2003

  11. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  12. Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Directory of Open Access Journals (Sweden)

    Lincoln Douglas

    2006-06-01

    Full Text Available Abstract Background Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. Methods Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by Kaplan-Meier survival curves. Results Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p Conclusion These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis.

  13. Functional clustering of time series gene expression data by Granger causality

    Science.gov (United States)

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  14. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae).

    Science.gov (United States)

    Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S

    2012-08-19

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.

  15. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    Science.gov (United States)

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  16. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2017-01-01

    Full Text Available Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.

  17. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    2007-01-01

    Full Text Available Background: Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently.Results: We have developed (gene set matrix analysis GSMA as a useful method for the rapid testing of group-wise up- or downregulation of gene expression simultaneously for multiple lists of genes (gene sets against entire distributions of gene expression changes (datasets for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously.Conclusions: GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.

  18. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  19. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE)

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2001-01-01

    cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE......, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE....... However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce...

  20. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia

    2003-01-01

    significantly increased up to but not including 20 dpl in the GFAP-IL6 mice. Oxidative stress as well as apoptotic cell death was significantly decreased throughout the time period studied in the GFAP-IL6 mice compared to controls. This could be linked to the altered inflammatory response as well......The effect of CNS-targeted IL-6 gene expression has been thoroughly investigated in the otherwise nonperturbed brain but not following brain injury. Here we examined the impact of astrocyte-targeted IL-6 production in a traumatic brain injury (cryolesion) model using GFAP-IL6 transgenic mice...... as to the transgenic IL-6-induced increase of the antioxidant, neuroprotective proteins metallothionein-I + II. These results indicate that although in the brain the chronic astrocyte-targeted expression of IL-6 spontaneously induces an inflammatory response causing significant damage, during an acute...

  1. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  2. Population and sex differences in Drosophila melanogaster brain gene expression

    Directory of Open Access Journals (Sweden)

    Catalán Ana

    2012-11-01

    Full Text Available Abstract Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (Cyp6g1 and CHKov1. Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues.

  3. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Balestrini, Raffaella; Lanfranco, Luisa

    2006-11-01

    Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.

  4. VESPUCCI: exploring patterns of gene expression in grapevine

    Directory of Open Access Journals (Sweden)

    Marco eMoretto

    2016-05-01

    Full Text Available Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult.In this paper we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI, a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.

  5. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  6. Large clusters of co-expressed genes in the Drosophila genome.

    Science.gov (United States)

    Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2002-12-12

    Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.

  7. Domestication rewired gene expression and nucleotide diversity patterns in tomato.

    Science.gov (United States)

    Sauvage, Christopher; Rau, Andrea; Aichholz, Charlotte; Chadoeuf, Joël; Sarah, Gautier; Ruiz, Manuel; Santoni, Sylvain; Causse, Mathilde; David, Jacques; Glémin, Sylvain

    2017-08-01

    Plant domestication has led to considerable phenotypic modifications from wild species to modern varieties. However, although changes in key traits have been well documented, less is known about the underlying molecular mechanisms, such as the reduction of molecular diversity or global gene co-expression patterns. In this study, we used a combination of gene expression and population genetics in wild and crop tomato to decipher the footprints of domestication. We found a set of 1729 differentially expressed genes (DEG) between the two genetic groups, belonging to 17 clusters of co-expressed DEG, suggesting that domestication affected not only individual genes but also regulatory networks. Five co-expression clusters were enriched in functional terms involving carbohydrate metabolism or epigenetic regulation of gene expression. We detected differences in nucleotide diversity between the crop and wild groups specific to DEG. Our study provides an extensive profiling of the rewiring of gene co-expression induced by the domestication syndrome in one of the main crop species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Science.gov (United States)

    Yurong, Chai; Yumin, Lu; Tianyun, Wang; Weihong, Hou; Lexun, Xue

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  9. Density based pruning for identification of differentially expressed genes from microarray data

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2010-11-01

    Full Text Available Abstract Motivation Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes. Results We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change. Conclusions Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune

  10. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases (Dnmts), DNA ...

  11. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  12. Global gene expression analysis for evaluation and design of biomaterials

    International Nuclear Information System (INIS)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi

    2010-01-01

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  13. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  14. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  15. Reproducibility of gene expression across generations of Affymetrix microarrays

    Directory of Open Access Journals (Sweden)

    Haslett Judith N

    2003-06-01

    Full Text Available Abstract Background The development of large-scale gene expression profiling technologies is rapidly changing the norms of biological investigation. But the rapid pace of change itself presents challenges. Commercial microarrays are regularly modified to incorporate new genes and improved target sequences. Although the ability to compare datasets across generations is crucial for any long-term research project, to date no means to allow such comparisons have been developed. In this study the reproducibility of gene expression levels across two generations of Affymetrix GeneChips® (HuGeneFL and HG-U95A was measured. Results Correlation coefficients were computed for gene expression values across chip generations based on different measures of similarity. Comparing the absolute calls assigned to the individual probe sets across the generations found them to be largely unchanged. Conclusion We show that experimental replicates are highly reproducible, but that reproducibility across generations depends on the degree of similarity of the probe sets and the expression level of the corresponding transcript.

  16. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  17. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    Science.gov (United States)

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  18. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    Science.gov (United States)

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  19. Radiation-modulated gene expression in C. elegans

    International Nuclear Information System (INIS)

    Nelson, G.A.; Bayeta, E.; Perez, C.; Lloyd, E.; Jones, T.; Smith, A.; Tian, J.

    2003-01-01

    Full text: We use the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation with emphasis effects of charged particle radiation and have described the fluence vs. response relationships for mutation, chromosome aberration and certain developmental errors. These endpoints quantify the biological after repair and compensation pathways have completed their work. In order to address the control of these reactions we have turned to gene expression profiling to identify genes that uniquely respond to high LET species or respond differentially as a function of radiation properties. We have employed whole genome microarray methods to map gene expression following exposure to gamma rays, protons and accelerated iron ions. We found that 599 of 17871 genes analyzed showed differential expression 3 hrs after exposure to 3 Gy of at least one radiation types. 193 were up-regulated, 406 were down-regulated, and 90% were affected by only one species of radiation. Genes whose transcription levels responded significantly mapped to definite statistical clusters that were unique for each radiation type. We are now trying to establish the functional relationships of the genes their relevance to mitigation of radiation-induced damage. Three approaches are being used. First, bioinformatics tools are being used to determine the roles of genes in co-regulated gene sets. Second, we are applying the technique of RNA interference to determine whether our radiation-induced genes affect cell survival (measured in terms of embryo survival) and chromosome aberration (intestinal anaphase bridges). Finally we are focussing on the response of the most strongly-regulated gene in our data set. This is the autosomal gene, F36D3.9, whose predicted structure is that of a cysteine protease resembling cathepsin B. An enzymological approach is being used to characterize this gene at the protein level. This work was supported by NASA Cooperative Agreement NCC9-149

  20. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Thrush Anthony

    2010-01-01

    Full Text Available Abstract Background Perennial ryegrass (Lolium perenne L. is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2 were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L. samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h, a moderately, but stably expressed eEF1A (s, and combined expression of multigene eEF1A (m. NormFinder identified eEF1A (s and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples

  1. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  2. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  3. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    Science.gov (United States)

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  4. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    Science.gov (United States)

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  5. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    Science.gov (United States)

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  6. Expression of isgylation related genes in regenerating rat liver

    Directory of Open Access Journals (Sweden)

    Kuklin A. V.

    2015-10-01

    Full Text Available Our recent studies have revealed the early up-regulated expression of interferon alpha (IFNα in the liver, induced by partial hepatectomy. The role of this cytokine of innate immune response in liver regeneration is still controversial. Aim. To analyze expression of canonical interferon-stimulated genes Ube1l, Ube2l6, Trim25, Usp18 and Isg15 during the liver transition from quiescence to proliferation induced by partial hepatectomy, and acute phase response induced by laparotomy. These genes are responsible for posttranslational modification of proteins by ISGylation. The expression of genes encoding TATA binding protein (TBP and 18S rRNA served as indirect general markers of transcriptional and translational activities. Methods. The abundance of investigated RNAs was assessed in total liver RNA by real time RT–qPCR. Results. Partial hepatecomy induced steady upregulation of the Tbp and 18S rRNA genes expression during 12 hours post-surgery and downregulation or no change in expression of ISGylation-related genes during the first 3 hours followed by slight upregulation at 12 hours. The level of Isg15 transcripts was permanently below that of the control during the prereplicative period. Laparotomy induced a continuous downregulation of Tbp and 18S rRNA expression and early (1–3h upregulation of ISGylation–related transcripts followed by a sharp drop at 6 hours and slight increase/decrease at 12 hours. The changes in the abundance of Ifnα and ISGylation-related mRNAs were oppositely directed at each stage of the response to partial hepatectomy and laparotomy. Conclusion. We suggest that the expression of ISGylation-related genes does not depend on the expression of Ifnα gene after both surgeries. The indirect indices of transcription and translation as well as the expression of ISGylation-relaled genes are principally different in response to partial hepatectomy and laparotomy and argue for the high specificity of innate immune response.

  7. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases.

  8. Automatic Control of Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  9. Identification of differentially expressed genes in childhood asthma.

    Science.gov (United States)

    Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen

    2018-05-01

    Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.

  10. Screening key genes for abdominal aortic aneurysm based on gene expression omnibus dataset.

    Science.gov (United States)

    Wan, Li; Huang, Jingyong; Ni, Haizhen; Yu, Guanfeng

    2018-02-13

    Abdominal aortic aneurysm (AAA) is a common cardiovascular system disease with high mortality. The aim of this study was to identify potential genes for diagnosis and therapy in AAA. We searched and downloaded mRNA expression data from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) from AAA and normal individuals. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, transcriptional factors (TFs) network and protein-protein interaction (PPI) network were used to explore the function of genes. Additionally, immunohistochemical (IHC) staining was used to validate the expression of identified genes. Finally, the diagnostic value of identified genes was accessed by receiver operating characteristic (ROC) analysis in GEO database. A total of 1199 DEGs (188 up-regulated and 1011 down-regulated) were identified between AAA and normal individual. KEGG pathway analysis displayed that vascular smooth muscle contraction and pathways in cancer were significantly enriched signal pathway. The top 10 up-regulated and top 10 down-regulated DEGs were used to construct TFs and PPI networks. Some genes with high degrees such as NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16 and FOXO1 were identified to be related to AAA. The consequences of IHC staining showed that CCR7 and PDGFA were up-regulated in tissue samples of AAA. ROC analysis showed that NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16, FOXO1 and PDGFA had the potential diagnostic value for AAA. The identified genes including NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16, FOXO1 and PDGFA might be involved in the pathology of AAA.

  11. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  12. Multi-targeted priming for genome-wide gene expression assays

    Directory of Open Access Journals (Sweden)

    Adomas Aleksandra B

    2010-08-01

    Full Text Available Abstract Background Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. Results We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Conclusions Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and

  13. Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions--that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders.

  14. Astrocyte-targeted expression of interleukin-3 and interferon-alpha causes region-specific changes in metallothionein expression in the brain

    DEFF Research Database (Denmark)

    Giralt, M; Carrasco, J; Penkowa, M

    2001-01-01

    Transgenic mice expressing IL-3 and IFN-alpha under the regulatory control of the GFAP gene promoter (GFAP-IL3 and GFAP-IFNalpha mice) exhibit a cytokine-specific, late-onset chronic-progressive neurological disorder which resemble many of the features of human diseases such as multiple sclerosis...... was confirmed by immunohistochemistry. MT-III immunoreactivity was present in cells that were mainly round or amoeboid monocytes/macrophages and in astrocytes. MT-I+II induction was more generalized in the GFAP-IFNalpha (GIFN12 and GIFN39 lines) mice, with significant increases in the cerebellum, thalamus...

  15. Light-Dependent Expression of Four Cryptic Archaeal Circadian Gene Homologs

    Directory of Open Access Journals (Sweden)

    Michael eManiscalco

    2014-03-01

    Full Text Available Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. To investigate this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12 during balanced growth in H. volcanii. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes results in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.

  16. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Sterry Wolfram

    2006-08-01

    Full Text Available Abstract Background Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC. Results Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled, actinic keratosis (AK (two were pooled, and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p vs. AK and SCC were observed for 118 genes. Conclusion The majority of identified differentially expressed genes in cutaneous SCC were previously not described.

  17. Amplification biases: possible differences among deviating gene expressions

    Directory of Open Access Journals (Sweden)

    Piumi Francois

    2008-01-01

    Full Text Available Abstract Background Gene expression profiling has become a tool of choice to study pathological or developmental questions but in most cases the material is scarce and requires sample amplification. Two main procedures have been used: in vitro transcription (IVT and polymerase chain reaction (PCR, the former known as linear and the latter as exponential. Previous reports identified enzymatic pitfalls in PCR and IVT protocols; however the possible differences between the sequences affected by these amplification defaults were only rarely explored. Results Screening a bovine cDNA array dedicated to embryonic stages with embryonic (n = 3 and somatic tissues (n = 2, we proceeded to moderate amplifications starting from 1 μg of total RNA (global PCR or IVT one round. Whatever the tissue, 16% of the probes were involved in deviating gene expressions due to amplification defaults. These distortions were likely due to the molecular features of the affected sequences (position within a gene, GC content, hairpin number but also to the relative abundance of these transcripts within the tissues. These deviating genes mainly encoded housekeeping genes from physiological or cellular processes (70% and constituted 2 subsets which did not overlap (molecular features, signal intensities, gene ID. However, the differential expressions identified between embryonic stages were both reliable (minor intersect with biased expressions and relevant (biologically validated. In addition, the relative expression levels of those genes were biologically similar between amplified and unamplified samples. Conclusion Conversely to the most recent reports which challenged the use of intense amplification procedures on minute amounts of RNA, we chose moderate PCR and IVT amplifications for our gene profiling study. Conclusively, it appeared that systematic biases arose even with moderate amplification procedures, independently of (i the sample used: brain, ovary or embryos, (ii

  18. RNA preparation and characterization for gene expression studies

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Much information can be obtained from knowledge of the relative expression level of each gene in the transcriptome. With the current advances in technology as little as a single cell is required as starting material for gene expression experiments. The mRNA from a single cell may be linearly...

  19. Confidence in Phase Definition for Periodicity in Genes Expression Time Series.

    Science.gov (United States)

    El Anbari, Mohammed; Fadda, Abeer; Ptitsyn, Andrey

    2015-01-01

    Circadian oscillation in baseline gene expression plays an important role in the regulation of multiple cellular processes. Most of the knowledge of circadian gene expression is based on studies measuring gene expression over time. Our ability to dissect molecular events in time is determined by the sampling frequency of such experiments. However, the real peaks of gene activity can be at any time on or between the time points at which samples are collected. Thus, some genes with a peak activity near the observation point have their phase of oscillation detected with better precision then those which peak between observation time points. Separating genes for which we can confidently identify peak activity from ambiguous genes can improve the analysis of time series gene expression. In this study we propose a new statistical method to quantify the phase confidence of circadian genes. The numerical performance of the proposed method has been tested using three real gene expression data sets.

  20. Ethylene-Related Gene Expression Networks in Wood Formation

    Directory of Open Access Journals (Sweden)

    Carolin Seyfferth

    2018-03-01

    Full Text Available Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2 homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and